A. Frischmeyer, P. A. Dietz, H. C. Parker, R. Van-hoof, A. Staples et al., Exosome-mediated recognition and degradation of mRNAs lacking a termination codon, Mol. Cell. Biol, vol.295, pp.8230-8243, 2000.

W. Hu, T. J. Sweet, S. Chamnongpol, K. E. Baker, and J. Coller, Co-translational mRNA decay in Saccharomyces cerevisiae, Nature, vol.461, pp.225-229, 2009.

E. Kowalinski, A. Kögel, J. Ebert, P. Reichelt, E. Stegmann et al., Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex, Mol. Cell, vol.63, pp.125-134, 2016.

V. V. Kushnirov, Rapid and reliable protein extraction from yeast, Yeast Chichester Engl, vol.16, pp.857-860, 2000.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

F. W. Larimer, C. L. Hsu, M. K. Maupin, and A. Stevens, Characterization of the XRN1 gene encoding a 5'-->3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells, Gene, vol.120, pp.51-57, 1992.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Genome Project Data Processing Subgroup, vol.25, pp.2078-2079, 2009.

L. Milligan, L. Decourty, C. Saveanu, J. Rappsilber, H. Ceulemans et al., , 2008.

, A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts, Mol. Cell. Biol, vol.28, pp.5446-5457

P. Mitchell, E. Petfalski, R. Houalla, A. Podtelejnikov, M. Mann et al., , 2003.

P. Mitchell and D. Tollervey, An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation, Mol. Cell, vol.11, pp.1405-1413, 2003.

N. Nagaraj, N. Alexander-kulak, J. Cox, N. Neuhauser, K. Mayr et al., System-wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap, Mol. Cell. Proteomics MCP, vol.11, pp.90-97, 2012.

R. Parker, RNA Degradation in Saccharomyces cerevisae, Genetics, vol.191, pp.671-702, 2012.

V. Pelechano, W. Wei, and L. M. Steinmetz, Widespread co-translational RNA decay reveals ribosome dynamics, Cell, vol.161, pp.1400-1412, 2015.

F. Ramírez, F. Dündar, S. Diehl, B. A. Grüning, and T. Manke, deepTools: a flexible platform for exploring deep-sequencing data, Nucleic Acids Res, vol.42, pp.187-191, 2014.

J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander et al., Integrative genomics viewer, Nat. Biotechnol, vol.29, pp.24-26, 2011.

C. Schmidt, The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex, Science, vol.354, pp.1431-1433, 2016.

Y. Shieh, P. Minguez, P. Bork, J. J. Auburger, D. L. Guilbride et al., , 2015.

, Operon structure and cotranslational subunit association direct protein assembly in bacteria, Science, vol.350, pp.678-680

S. A. Synowsky and A. J. Heck, The yeast Ski complex is a hetero-tetramer, Protein Sci. Publ. Protein Soc, vol.17, pp.119-125, 2008.

S. Tharun and R. Parker, Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs, Mol. Cell, vol.8, pp.1075-1083, 2001.

A. Toh-e, P. Guerry, and R. B. Wickner, , 1978.

, Chromosomal superkiller mutants of Saccharomyces cerevisiae, J. Bacteriol, vol.136, pp.1002-1007

J. N. Wells, L. T. Bergendahl, and J. A. Marsh, Co-translational assembly of protein complexes, Biochem. Soc. Trans, vol.43, pp.1221-1226, 2015.

W. R. Widner and R. B. Wickner, Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA, Mol. Cell. Biol, vol.13, pp.4331-4341, 1993.

K. Richter, M. Haslbeck, and J. Buchner, The heat shock response: life on the verge of death, Mol. Cell, vol.40, pp.253-266, 2010.

J. A. Johnston, C. L. Ward, and R. R. Kopito, Aggresomes: a cellular response to misfolded proteins, J. Cell Biol, vol.143, pp.1883-1898, 1998.

R. R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol, vol.10, pp.524-530, 2000.

P. A. Frischmeyer, A. Van-hoof, K. O'donnell, A. L. Guerrerio, R. Parker et al., An mRNA surveillance mechanism that eliminates transcripts lacking termination codons, Science, vol.295, pp.2258-2261, 2002.

A. Van-hoof, P. A. Frischmeyer, H. C. Dietz, and R. Parker, Exosome-mediated recognition and degradation of mRNAs lacking a termination codon, Science, vol.295, pp.2262-2264, 2002.

M. K. Doma and R. Parker, Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation, Nature, vol.440, pp.561-564, 2006.

L. N. Dimitrova, K. Kuroha, T. Tatematsu, and T. Inada, Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome, J. Biol. Chem, vol.284, pp.10343-10352, 2009.

S. Ito-harashima, K. Kuroha, T. Tatematsu, and T. Inada, Translation of the poly(A) tail plays crucial roles in NonStop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast, Genes Dev, vol.21, pp.519-524, 2007.

F. J. Lariviere, S. E. Cole, D. J. Ferullo, and M. J. Moore, A lateacting quality control process for mature eukaryotic rRNAs, Mol. Cell, vol.24, pp.619-626, 2006.

K. Fujii, M. Kitabatake, T. Sakata, and M. Ohno, 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay, EMBO J, vol.31, pp.2579-2589, 2012.

C. J. Shoemaker and R. Green, Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast, Proc. Natl. Acad. Sci, vol.108, pp.1392-1398, 2011.

T. Tsuboi, K. Kuroha, K. Kudo, S. Makino, E. Inoue et al., Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3? end of aberrant mRNA, Mol. Cell, vol.46, pp.518-529, 2012.

O. Brandman, J. Stewart-ornstein, D. Wong, A. Larson, C. C. Williams et al., A ribosomebound quality control complex triggers degradation of nascent peptides and signals translation stress, Cell, vol.151, pp.1042-1054, 2012.

Q. Defenouillère, Y. Yao, J. Mouaikel, A. Namane, A. Galopier et al., Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.5046-5051, 2013.

M. H. Bengtson and C. A. Joazeiro, Role of a ribosome-associated E3 ubiquitin ligase in protein quality control, Nature, vol.467, pp.470-473, 2010.

D. Lyumkis, D. Oliveira-dos-passos, E. B. Tahara, K. Webb, E. J. Bennett et al., Structural basis for translational surveillance by the large ribosomal subunitassociated protein quality control complex, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.15981-15986, 2014.

P. S. Shen, J. Park, Y. Qin, X. Li, K. Parsawar et al., Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains, Science, vol.347, pp.75-78, 2015.

S. Shao, A. Brown, B. Santhanam, and R. S. Hegde, Structure and assembly pathway of the ribosome quality control complex, Mol. Cell, vol.57, pp.433-444, 2015.

R. Verma, R. S. Oania, N. J. Kolawa, and R. J. Deshaies, Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome, vol.2, p.308, 2013.

O. Brandman and R. S. Hegde, Ribosome-associated protein quality control, Nat. Struct. Mol. Biol, vol.23, pp.7-15, 2016.

J. Tyedmers, A. Mogk, and B. Bukau, Cellular strategies for controlling protein aggregation, Nat. Rev. Mol. Cell Biol, vol.11, pp.777-788, 2010.

V. V. Kushnirov, Rapid and reliable protein extraction from yeast, Yeast, vol.16, pp.857-860, 2000.

A. Shevchenko, H. Tomas, J. Havlis, J. V. Olsen, and M. Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc, vol.1, pp.2856-2860, 2006.

G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann et al., A generic protein purification method for protein complex characterization and proteome exploration, Nat. Biotechnol, vol.17, pp.1030-1032, 1999.

R. Rott, R. Szargel, J. Haskin, V. Shani, A. Shainskaya et al., Monoubiquitylation of alphasynuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells, J. Biol. Chem, vol.283, pp.3316-3328, 2008.

D. Kaganovich, R. Kopito, and J. Frydman, Misfolded proteins partition between two distinct quality control compartments, Nature, vol.454, pp.1088-1095, 2008.

Y. Wang, A. B. Meriin, N. Zaarur, N. V. Romanova, Y. O. Chernoff et al., Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery, FASEB J, vol.23, pp.451-463, 2009.

S. B. Miller, C. Ho, J. Winkler, M. Khokhrina, A. Neuner et al., Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition, EMBO J, vol.34, pp.778-797, 2015.

Z. Lu and D. M. Cyr, Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1, J. Biol. Chem, vol.273, pp.27824-27830, 1998.

M. Rape, T. Hoppe, I. Gorr, M. Kalocay, H. Richly et al., Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone, Cell, vol.107, pp.667-677, 2001.

H. Richly, M. Rape, S. Braun, S. Rumpf, C. Hoege et al., A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting, Cell, vol.120, pp.73-84, 2005.

K. A. Morano, N. Santoro, K. A. Koch, and D. J. Thiele, A transactivation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress, Mol. Cell. Biol, vol.19, pp.402-411, 1999.

A. N. Albrecht, U. Kornak, A. Böddrich, K. Süring, P. N. Robinson et al., A molecular pathogenesis for transcription factor associated poly-alanine tract expansions, Hum. Mol. Genet, vol.13, pp.2351-2359, 2004.

E. Z. Bibliographie-alkalaeva, A. V. Pisarev, L. Y. Frolova, L. L. Kisselev, and T. V. Pestova, In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3, Cell, vol.125, pp.1125-1136, 2006.

C. Allmang, E. Petfalski, A. Podtelejnikov, M. Mann, D. Tollervey et al., The yeast exosome and human PM--Scl are related complexes of 3' ----> 5' exonucleases, Genes Dev, vol.13, pp.2148-2158, 1999.

N. Altamura, O. Groudinsky, G. Dujardin, and P. P. Slonimski, NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn--ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae, J. Mol. Biol, vol.224, pp.575-587, 1992.

H. H. Aly, J. Suzuki, K. Watashi, K. Chayama, S. Hoshino et al., RNA Exosome Complex Regulates Stability of the Hepatitis B Virus X--mRNA Transcript in a Non--stop--mediated (NSD) RNA Quality Control Mechanism, J. Biol. Chem, vol.291, pp.15958-15974, 2016.

N. Amrani, R. Ganesan, S. Kervestin, D. A. Mangus, S. Ghosh et al., A faux 3'--UTR promotes aberrant termination and triggers nonsense--mediated mRNA decay, Nature, vol.432, pp.112-118, 2004.

D. S. Andersen and S. J. Leevers, The essential Drosophila ATP--binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP--dependent manner and is required for translation initiation, J. Biol. Chem, vol.282, pp.14752-14760, 2007.

J. S. Anderson and R. P. Parker, The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex, EMBO J, vol.17, pp.1497-1506, 1998.

Y. Araki, S. Takahashi, T. Kobayashi, H. Kajiho, S. Hoshino et al., Ski7p G protein interacts with the exosome and the Ski complex for 3'--to--5' mRNA decay in yeast, EMBO J, vol.20, pp.4684-4693, 2001.

J. A. Arribere and W. V. Gilbert, Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing, Genome Res, vol.23, pp.977-987, 2013.

G. C. Atkinson, S. L. Baldauf, and V. Hauryliuk, Evolution of nonstop, no--go and nonsense--mediated mRNA decay and their termination factor--derived components, BMC Evol. Biol, vol.8, p.290, 2008.

G. Badis, C. Saveanu, M. Fromont--racine, and A. Jacquier, Targeted mRNA degradation by deadenylation--independent decapping, Mol. Cell, vol.15, pp.5-15, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-01404698

D. Barthelme, S. Dinkelaker, S. Albers, P. Londei, U. Ermler et al., , 2011.

, Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin--ATPase ABCE1, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.3228-3233

A. Baudin--baillieu, R. Legendre, C. Kuchly, I. Hatin, S. Demais et al., Genome--wide translational changes induced by the prion, 2014.

, Cell Rep, vol.8, pp.439-448

A. Baudrimont, S. Voegeli, E. C. Viloria, F. Stritt, M. Lenon et al., Multiplexed gene control reveals rapid mRNA turnover, Sci. Adv, vol.3, 2017.

C. Bebeacua, A. Förster, C. Mckeown, H. H. Meyer, X. Zhang et al., Distinct conformations of the protein complex p97--Ufd1--Npl4 revealed by electron cryomicroscopy, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.1098-1103, 2012.

T. Becker, J. Armache, A. Jarasch, A. M. Anger, E. Villa et al., Structure of the no--go mRNA decay complex Dom34--Hbs1 bound to a stalled 80S ribosome, Nat. Struct. Mol. Biol, vol.18, pp.715-720, 2011.

T. Becker, S. Franckenberg, S. Wickles, C. J. Shoemaker, A. M. Anger et al., Structural basis of highly conserved ribosome recycling in eukaryotes and archaea, Nature, vol.482, pp.501-506, 2012.

L. Bedford, S. Paine, P. W. Sheppard, R. J. Mayer, and J. Roelofs, Assembly, structure, and function of the 26S proteasome, Trends Cell Biol, vol.20, pp.391-401, 2010.

L. Benard, K. Carroll, R. C. Valle, D. C. Masison, and R. B. Wickner, The ski7 antiviral protein is an EF1--alpha homolog that blocks expression of non--Poly(A) mRNA in Saccharomyces cerevisiae, J. Virol, vol.73, pp.2893-2900, 1999.

M. H. Bengtson and C. A. Joazeiro, Role of a ribosome--associated E3 ubiquitin ligase in protein quality control, Nature, vol.467, pp.470-473, 2010.

A. Ben--shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The structure of the eukaryotic ribosome at 3.0 Å resolution, Science, vol.334, pp.1524-1529, 2011.

M. J. Bessman, D. N. Frick, and S. F. Handley, The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes, J. Biol. Chem, vol.271, pp.25059-25062, 1996.

K. A. Blake--hodek, L. Cassimeris, and T. C. Huffaker, Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP--170 families of plus--end tracking proteins, Mol. Biol. Cell, vol.21, pp.2013-2023, 2010.

R. Boeck, S. Tarun, M. Rieger, J. A. Deardorff, S. Müller--auer et al., The yeast Pan2 protein is required for poly(A)--binding protein--stimulated poly(A)--nuclease activity, J. Biol. Chem, vol.271, pp.432-438, 1996.

F. Bonneau, J. Basquin, J. Ebert, E. Lorentzen, and E. Conti, The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation, Cell, vol.139, pp.547-559, 2009.

C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR--mediated gene disruption and other applications, Yeast Chichester Engl, vol.14, pp.115-132, 1998.

O. Brandman and R. S. Hegde, Ribosome--associated protein quality control, Nat. Struct. Mol. Biol, vol.23, pp.7-15, 2016.

O. Brandman, J. Stewart--ornstein, D. Wong, A. Larson, C. C. Williams et al., A ribosome--bound quality control complex triggers degradation of nascent peptides and signals translation stress, Cell, vol.151, pp.1042-1054, 2012.

M. A. Braun, P. J. Costa, E. M. Crisucci, and K. M. Arndt, Identification of Rkr1, a nuclear RING domain protein with functional connections to chromatin modification in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.27, pp.2800-2811, 2007.

M. Brengues, D. Teixeira, and R. Parker, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies, Science, vol.310, pp.486-489, 2005.

M. W. Briggs, K. T. Burkard, and J. S. Butler, Rrp6p, the yeast homologue of the human PM--Scl 100--kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation, J. Biol. Chem, vol.273, pp.13255-13263, 1998.

A. J. Brown, Messenger RNA stability in yeast, Yeast, vol.5, pp.239-257, 1989.

C. E. Brown and A. B. Sachs, Poly(A) tail length control in Saccharomyces cerevisiae occurs by message--specific deadenylation, Mol. Cell. Biol, vol.18, pp.6548-6559, 1998.

J. T. Brown, X. Bai, J. , and A. W. , The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo, RNA N. Y. N, vol.6, pp.449-457, 2000.

A. M. Burroughs, A. , and L. , A highly conserved family of domains related to the DNA--glycosylase fold helps predict multiple novel pathways for RNA modifications, RNA Biol, vol.11, pp.360-372, 2014.

J. S. Butler, M. , and P. , Rrp6, rrp47 and cofactors of the nuclear exosome, Adv. Exp. Med. Biol, vol.702, pp.91-104, 2011.

H. C. Causton, B. Ren, S. S. Koh, C. T. Harbison, E. Kanin et al., Remodeling of yeast genome expression in response to environmental changes, Mol. Biol. Cell, vol.12, pp.323-337, 2001.

A. Celik, S. Kervestin, and A. Jacobson, NMD: At the crossroads between translation termination and ribosome recycling, Biochimie, vol.114, pp.2-9, 2015.

S. Chakrabarti, U. Jayachandran, F. Bonneau, F. Fiorini, C. Basquin et al., Molecular mechanisms for the RNA--dependent ATPase activity of Upf1 and its regulation by Upf2, Mol. Cell, vol.41, pp.693-703, 2011.

H. Chamieh, L. Ballut, F. Bonneau, L. Hir, and H. , NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity, Nat. Struct. Mol. Biol, vol.15, pp.85-93, 2008.

C. Charenton, V. Taverniti, C. Gaudon--plesse, R. Back, B. Séraphin et al., Structure of the active form of Dcp1--Dcp2 decapping enzyme bound to m(7)GDP and its Edc3 activator, Nat. Struct. Mol. Biol, vol.23, pp.982-986, 2016.

J. Chaudhuri, K. Si, and U. Maitra, Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF--4C) in initiation of protein synthesis, J. Biol. Chem, vol.272, pp.7883-7891, 1997.

L. Chavatte, A. Seit--nebi, V. Dubovaya, and A. Favre, The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome, EMBO J, vol.21, pp.5302-5311, 2002.

J. Chen, Y. Chiang, and C. L. Denis, CCR4, a 3'--5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase, EMBO J, vol.21, pp.1414-1426, 2002.

L. Chen, D. Muhlrad, V. Hauryliuk, Z. Cheng, M. K. Lim et al., Structure of the Dom34--Hbs1 complex and implications for no--go decay, Nat. Struct. Mol. Biol, vol.17, pp.1233-1240, 2010.

Z. Chen, J. Dong, A. Ishimura, I. Daar, A. G. Hinnebusch et al., The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors, J. Biol. Chem, vol.281, pp.7452-7457, 2006.

Z. Cheng, K. Saito, A. V. Pisarev, M. Wada, V. P. Pisareva et al., Structural insights into eRF3 and stop codon recognition by eRF1, Genes Dev, vol.23, pp.1106-1118, 2009.

A. Chlebowski, M. Lubas, T. H. Jensen, and A. Dziembowski, RNA decay machines: the exosome, Biochim. Biophys. Acta, vol.1829, pp.552-560, 2013.

Y. Choe, S. Park, T. Hassemer, R. Körner, L. Vincenz--donnelly et al., Failure of RQC machinery causes protein aggregation and proteotoxic stress, Nature, vol.531, pp.191-195, 2016.

A. Chowdhury, J. Mukhopadhyay, and S. Tharun, The decapping activator Lsm1p--7p--Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs, RNA N. Y. N, vol.13, pp.998-1016, 2007.

A. Chowdhury, S. Kalurupalle, and S. Tharun, Pat1 contributes to the RNA binding activity of the Lsm1--7--Pat1 complex, vol.20, pp.1465-1475, 2014.

J. Chu, N. A. Hong, C. A. Masuda, B. V. Jenkins, K. A. Nelms et al., A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2097-2103, 2009.

M. Clerici, A. Mourão, I. Gutsche, N. H. Gehring, M. W. Hentze et al., Unusual bipartite mode of interaction between the nonsense--mediated decay factors, UPF1 and UPF2, EMBO J, vol.28, pp.2293-2306, 2009.

G. A. Collins and A. L. Goldberg, The Logic of the 26S Proteasome, Cell, vol.169, pp.792-806, 2017.

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD--box protein family of RNA helicases, Gene, vol.367, pp.17-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132162

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.--range mass accuracies and proteome--wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., , 2011.

, Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805

J. J. Crowder, M. Geigges, R. T. Gibson, E. S. Fults, B. W. Buchanan et al., Rkr1/Ltn1 Ubiquitin Ligase--mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins, J. Biol. Chem, vol.290, pp.18454-18466, 2015.

Y. Cui, K. W. Hagan, S. Zhang, and S. W. Peltz, Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon, Genes Dev, vol.9, pp.423-436, 1995.

K. Czaplinski, M. J. Ruiz--echevarria, S. V. Paushkin, X. Han, Y. Weng et al., The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs, Genes Dev, vol.12, pp.1665-1677, 1998.

M. Daugeron, F. Mauxion, and B. Séraphin, The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation, Nucleic Acids Res, vol.29, pp.2448-2455, 2001.

C. Davidovich, M. Belousoff, A. Bashan, Y. , and A. , The evolving ribosome: from non--coded peptide bond formation to sophisticated translation machinery, Res. Microbiol, vol.160, pp.487-492, 2009.

C. J. Decker and R. Parker, A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation, Genes Dev, vol.7, pp.1632-1643, 1993.

C. J. Decker, D. Teixeira, and R. Parker, Edc3p and a glutamine/asparagine--rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae, J. Cell Biol, vol.179, pp.437-449, 2007.

L. Decourty, C. Saveanu, K. Zemam, F. Hantraye, E. Frachon et al., Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.5821-5826, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01404694

L. Decourty, A. Doyen, C. Malabat, E. Frachon, D. Rispal et al., Long open reading frame transcripts escape nonsense--mediated mRNA decay in yeast, Cell Rep, vol.6, pp.593-598, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01404015

Q. Defenouillère, F. , and M. , The ribosome--bound quality control complex: from aberrant peptide clearance to proteostasis maintenance, Curr. Genet, 2017.

Q. Defenouillère, Y. Yao, J. Mouaikel, A. Namane, A. Galopier et al., Cdc48--associated complex bound to 60S particles is required for the clearance of aberrant translation products, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.5046-5051, 2013.

Q. Defenouillère, E. Zhang, A. Namane, J. Mouaikel, A. Jacquier et al., Rqc1 and Ltn1 Prevent C--terminal Alanine--Threonine Tail (CAT--tail)--induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits, J. Biol. Chem, vol.291, pp.12245-12253, 2016.

Q. Defenouillère, A. Namane, J. Mouaikel, A. Jacquier, F. et al., The ribosome--bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation, Mol. Biol. Cell, vol.28, pp.1165-1176, 2017.

C. Delan--forino, C. Schneider, and D. Tollervey, Transcriptome--wide analysis of alternative routes for RNA substrates into the exosome complex, PLoS Genet, vol.13, p.1006699, 2017.

R. Deliz--aguirre, A. L. Atkin, and B. W. Kebaara, Copper tolerance of Saccharomyces cerevisiae nonsense--mediated mRNA decay mutants, Curr. Genet, vol.57, pp.421-430, 2011.

C. L. Denis, C. , and J. , The CCR4--NOT complex plays diverse roles in mRNA metabolism, Prog. Nucleic Acid Res. Mol. Biol, vol.73, pp.221-250, 2003.

M. V. Deshmukh, B. N. Jones, D. Quang--dang, J. Flinders, S. N. Floor et al., mRNA decapping is promoted by an RNA--binding channel in Dcp2, Mol. Cell, vol.29, pp.324-336, 2008.

T. E. Dever, R. Green, E. Van-dijk, N. Cougot, S. Meyer et al., Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures, Cold Spring Harb. Perspect. Biol, vol.4, pp.6915-6924, 2002.

L. N. Dimitrova, K. Kuroha, T. Tatematsu, and T. Inada, Nascent peptide--dependent translation arrest leads to Not4p--mediated protein degradation by the proteasome, J. Biol. Chem, vol.284, pp.10343-10352, 2009.

S. K. Doamekpor, J. Lee, N. L. Hepowit, C. Wu, C. Charenton et al., Structure and function of the yeast listerin (Ltn1) conserved N--terminal domain in binding to stalled 60S ribosomal subunits, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.4151-4160, 2016.

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, pp.884-890, 2003.

M. K. Doma and R. Parker, Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation, Nature, vol.440, pp.561-564, 2006.

J. Dong, R. Lai, K. Nielsen, C. A. Fekete, H. Qiu et al., The essential ATP--binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly, J. Biol. Chem, vol.279, pp.42157-42168, 2004.

C. D. Duncan and J. Mata, Widespread cotranslational formation of protein complexes, PLoS Genet, vol.7, 2011.

T. Dunckley and R. Parker, The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif, EMBO J, vol.18, pp.5411-5422, 1999.

A. Dupressoir, A. P. Morel, W. Barbot, M. P. Loireau, L. Corbo et al., Identification of four families of yCCR4--and Mg2+--dependent endonuclease--related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine--rich repeat essential for hCAF1/hPOP2 binding, BMC Genomics, vol.2, p.9, 2001.

D. M. Dykxhoorn, P--bodies and RNAi: The missing link?, J. RNAi Gene Silenc. Int. J. RNA Gene Target. Res, vol.2, pp.105-106, 2005.

F. Edfors, F. Danielsson, B. M. Hallström, L. Käll, E. Lundberg et al., Gene--specific correlation of RNA and protein levels in human cells and tissues, Mol. Syst. Biol, vol.12, p.883, 2016.

H. K. Edskes, V. T. Gray, and R. B. Wickner, The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.1498-1503, 1999.

A. Fabre, B. Charroux, C. Martinez--vinson, B. Roquelaure, E. Odul et al., SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome, Am. J. Hum. Genet, vol.90, pp.689-692, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843403

D. Finley, Recognition and processing of ubiquitin--protein conjugates by the proteasome, Annu. Rev. Biochem, vol.78, pp.477-513, 2009.

S. N. Floor, M. S. Borja, and J. D. Gross, Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.2872-2877, 2012.

Z. Fourati, O. Kolesnikova, R. Back, J. Keller, C. Charenton et al., The C--terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment, PloS One, vol.9, p.96828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048605

J. Frank and R. K. Agrawal, A ratchet--like inter--subunit reorganization of the ribosome during translocation, Nature, vol.406, pp.318-322, 2000.

T. M. Franks, G. Singh, L. , and J. , Upf1 ATPase--dependent mRNP disassembly is required for completion of nonsense--mediated mRNA decay, Cell, vol.143, pp.938-950, 2010.

P. A. Frischmeyer, A. Van-hoof, K. O'donnell, A. L. Guerrerio, R. Parker et al., An mRNA surveillance mechanism that eliminates transcripts lacking termination codons, Science, vol.295, pp.2258-2261, 2002.

L. Frolova, X. Le-goff, G. Zhouravleva, E. Davydova, M. Philippe et al., , 1996.

, Eukaryotic polypeptide chain release factor eRF3 is an eRF1-- and ribosome--dependent guanosine triphosphatase, vol.2, pp.334-341

L. Frolova, A. Seit--nebi, and L. Kisselev, Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1, vol.8, pp.129-136, 2002.

L. Y. Frolova, R. Y. Tsivkovskii, G. F. Sivolobova, N. Y. Oparina, O. I. Serpinsky et al., Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl--tRNA hydrolysis, RNA N. Y. N, vol.5, pp.1014-1020, 1999.

M. Fromont--racine, J. C. Rain, and P. Legrain, Toward a functional analysis of the yeast genome through exhaustive two--hybrid screens, Nat. Genet, vol.16, pp.277-282, 1997.

M. Funakoshi, T. Sasaki, T. Nishimoto, and H. Kobayashi, Budding yeast Dsk2p is a polyubiquitin--binding protein that can interact with the proteasome, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.745-750, 2002.

A. Gaba, A. Jacobson, and M. S. Sachs, Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense--mediated mRNA decay, Mol. Cell, vol.20, pp.449-460, 2005.

R. Gandhi, M. Manzoor, and K. A. Hudak, Depurination of Brome mosaic virus RNA3 in vivo results in translation--dependent accelerated degradation of the viral RNA, J. Biol. Chem, vol.283, pp.32218-32228, 2008.

Y. Gao, M. Selmer, C. M. Dunham, A. Weixlbaumer, A. C. Kelley et al., The structure of the ribosome with elongation factor G trapped in the posttranslocational state, Science, vol.326, pp.694-699, 2009.

R. García--mata, Z. Bebök, E. J. Sorscher, and E. S. Sztul, Characterization and dynamics of aggresome formation by a cytosolic GFP--chimera, J. Cell Biol, vol.146, pp.1239-1254, 1999.

E. Garí, L. Piedrafita, M. Aldea, and E. Herrero, A set of vectors with a tetracycline--regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae, Yeast Chichester Engl, vol.13, pp.837-848, 1997.

A. P. Gasch, Comparative genomics of the environmental stress response in ascomycete fungi, Yeast Chichester Engl, vol.24, pp.961-976, 2007.

S. Geissler, K. Siegers, and E. Schiebel, A novel protein complex promoting formation of functional alpha--and gamma--tubulin, EMBO J, vol.17, pp.952-966, 1998.

A. Des-georges, V. Dhote, L. Kuhn, C. U. Hellen, T. V. Pestova et al., Structure of mammalian eIF3 in the context of the 43S preinitiation complex, Nature, vol.525, pp.491-495, 2015.

S. Ghaemmaghami, W. Huh, K. Bower, R. W. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, pp.737-741, 2003.

A. L. Goldberg, Protein degradation and protection against misfolded or damaged proteins, Nature, vol.426, pp.895-899, 2003.

J. H. Graber, C. R. Cantor, S. C. Mohr, and T. F. Smith, In silico detection of control signals: mRNA 3'--end--processing sequences in diverse species, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.14055-14060, 1999.

M. Graille, M. Chaillet, and H. Van-tilbeurgh, Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No--Go decay, J. Biol. Chem, vol.283, pp.7145-7154, 2008.

Z. Hakhverdyan, M. Domanski, L. E. Hough, A. A. Oroskar, A. R. Oroskar et al., Rapid, optimized interactomic screening, Nat. Methods, vol.12, pp.553-560, 2015.

F. Halbach, M. Rode, and E. Conti, The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome, RNA N. Y, vol.18, pp.124-134, 2012.

F. Halbach, P. Reichelt, M. Rode, and E. Conti, The Yeast Ski Complex: Crystal Structure and RNA Channeling to the Exosome Complex, Cell, vol.154, pp.814-826, 2013.

Y. Harigaya and R. Parker, No--go decay: a quality control mechanism for RNA in translation, Wiley Interdiscip. Rev. RNA, vol.1, pp.132-141, 2010.

Y. Harigaya, B. N. Jones, D. Muhlrad, J. D. Gross, and R. Parker, Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.30, pp.1446-1456, 2010.

F. U. Hartl and M. Hayer--hartl, Converging concepts of protein folding in vitro and in vivo, Nat. Struct. Mol. Biol, vol.16, pp.574-581, 2009.

Y. Hashem, A. Des-georges, V. Dhote, R. Langlois, H. Y. Liao et al., Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29, Cell, vol.153, pp.1108-1119, 2013.

F. He and A. Jacobson, Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense--containing mRNAs and wild--type mRNAs, 2001.

, Mol. Cell. Biol, vol.21, pp.1515-1530

F. He and A. Jacobson, Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C--terminal domain, RNA N. Y. N, vol.21, pp.1633-1647, 2015.

F. He and A. Jacobson, Nonsense--Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story, Annu. Rev. Genet, vol.49, pp.339-366, 2015.

F. He, S. W. Peltz, J. L. Donahue, M. Rosbash, and A. Jacobson, Stabilization and ribosome association of unspliced pre--mRNAs in a yeast upf1-- mutant, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.7034-7038, 1993.

F. He, A. H. Brown, and A. Jacobson, Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense--mediated mRNA decay pathway, Mol. Cell. Biol, vol.17, pp.1580-1594, 1997.

A. Heuer, M. Gerovac, C. Schmidt, S. Trowitzsch, A. Preis et al., Structure of the 40S--ABCE1 post--splitting complex in ribosome recycling and translation initiation, Nat. Struct. Mol. Biol, vol.24, pp.453-460, 2017.

T. Hilal, H. Yamamoto, J. Loerke, J. Bürger, T. Mielke et al., Structural insights into ribosomal rescue by Dom34 and Hbs1 at near--atomic resolution, Nat. Commun, vol.7, p.13521, 2016.

V. Hilgers, D. Teixeira, and R. Parker, Translation--independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae, RNA N. Y. N, vol.12, pp.1835-1845, 2006.

D. Hoepfner, S. B. Helliwell, H. Sadlish, S. Schuierer, I. Filipuzzi et al., High--resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions, Microbiol. Res, vol.169, pp.107-120, 2014.

W. M. Holmes, C. L. Klaips, and T. R. Serio, Defining the limits: Protein aggregation and toxicity in vivo, Crit. Rev. Biochem. Mol. Biol, vol.49, pp.294-303, 2014.

A. Van-hoof, R. R. Staples, R. E. Baker, and R. Parker, Function of the ski4p (Csl4p) and Ski7p proteins in 3'--to--5' degradation of mRNA, Mol. Cell. Biol, vol.20, pp.8230-8243, 2000.

A. Van-hoof, P. A. Frischmeyer, H. C. Dietz, and R. Parker, Exosome--mediated recognition and degradation of mRNAs lacking a termination codon, Science, vol.295, pp.2262-2264, 2002.

B. A. Hook, A. C. Goldstrohm, D. J. Seay, and M. Wickens, Two yeast PUF proteins negatively regulate a single mRNA, J. Biol. Chem, vol.282, pp.15430-15438, 2007.

S. Hoshino, M. Imai, T. Kobayashi, N. Uchida, and T. Katada, The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3'--Poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate--binding protein, J. Biol. Chem, vol.274, pp.16677-16680, 1999.

C. L. Hsu and A. Stevens, Yeast cells lacking 5'---->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure, Mol. Cell. Biol, vol.13, pp.4826-4835, 1993.

N. C. Hubner and M. Mann, Extracting gene function from protein--protein interactions using Quantitative BAC InteraCtomics (QUBIC), Methods San Diego Calif, vol.53, pp.453-459, 2011.

K. Ito and S. Chiba, Arrest peptides: cis--acting modulators of translation, Annu. Rev. Biochem, vol.82, pp.171-202, 2013.

S. Ito--harashima, K. Kuroha, T. Tatematsu, and T. Inada, Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast, Genes Dev, vol.21, pp.519-524, 2007.

P. V. Ivanov, N. H. Gehring, J. B. Kunz, M. W. Hentze, and A. E. Kulozik, Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways, EMBO J, vol.27, pp.736-747, 2008.

T. Izawa, T. Tsuboi, K. Kuroha, T. Inada, S. Nishikawa et al., Roles of dom34:hbs1 in nonstop protein clearance from translocators for normal organelle protein influx, Cell Rep, vol.2, pp.447-453, 2012.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.113-127, 2010.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, Termination and post--termination events in eukaryotic translation, Adv. Protein Chem. Struct. Biol, vol.86, pp.45-93, 2012.

T. R. Jahn and S. E. Radford, The Yin and Yang of protein folding, FEBS J, vol.272, pp.5962-5970, 2005.

K. Januszyk and C. D. Lima, Structural components and architectures of RNA exosomes, Adv. Exp. Med. Biol, vol.702, pp.9-28, 2010.

L. Jenner, S. Melnikov, N. Garreau-de-loubresse, A. Ben--shem, M. Iskakova et al., Crystal structure of the 80S yeast ribosome, Curr. Opin. Struct. Biol, vol.22, pp.759-767, 2012.

J. A. Johnston, C. L. Ward, and R. R. Kopito, Aggresomes: a cellular response to misfolded proteins, J. Cell Biol, vol.143, pp.1883-1898, 1998.

C. I. Jones, M. V. Zabolotskaya, and S. F. Newbury, The 5' ? 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development, Interdiscip. Rev. RNA, vol.3, pp.455-468, 2012.

J. Kadlec, E. Izaurralde, and S. Cusack, The structural basis for the interaction between nonsense--mediated mRNA decay factors UPF2 and UPF3, Nat. Struct. Mol. Biol, vol.11, pp.330-337, 2004.

D. Kaganovich, R. Kopito, and J. Frydman, Misfolded proteins partition between two distinct quality control compartments, Nature, vol.454, pp.1088-1095, 2008.

L. D. Kapp and J. R. Lorsch, The molecular mechanics of eukaryotic translation, Annu. Rev. Biochem, vol.73, pp.657-704, 2004.

B. W. Kebaara and A. L. Atkin, Long 3?--UTRs target wild--type mRNAs for nonsense--mediated mRNA decay in Saccharomyces cerevisiae, Nucleic Acids Res, vol.37, pp.2771-2778, 2009.

A. Kitamura, H. Kubota, C. Pack, G. Matsumoto, S. Hirayama et al., Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state, Nat. Cell Biol, vol.8, pp.1163-1170, 2006.

K. Kobayashi, I. Kikuno, K. Kuroha, K. Saito, K. Ito et al., Structural basis for mRNA surveillance by archaeal Pelota and GTP--bound EF1? complex, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.17575-17579, 2010.

K. K. Kostova, K. L. Hickey, B. A. Osuna, J. A. Hussmann, A. Frost et al., CAT--tailing as a fail--safe mechanism for efficient degradation of stalled nascent polypeptides, Science, vol.357, pp.414-417, 2017.

S. Krobitsch and S. Lindquist, Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.1589-1594, 2000.

J. A. Kruk, A. Dutta, J. Fu, D. S. Gilmour, R. et al., The multifunctional Ccr4--Not complex directly promotes transcription elongation, Genes Dev, vol.25, pp.581-593, 2011.

M. Kulkarni, S. Ozgur, and G. Stoecklin, On track with P--bodies, Biochem. Soc. Trans, vol.38, pp.242-251, 2010.

K. Kuroha, M. Akamatsu, L. Dimitrova, T. Ito, Y. Kato et al., Receptor for activated C kinase 1 stimulates nascent polypeptide--dependent translation arrest, EMBO Rep, vol.11, pp.956-961, 2010.

V. V. Kushnirov, Rapid and reliable protein extraction from yeast, Yeast Chichester Engl, vol.16, pp.857-860, 2000.

A. ?abno, R. Tomecki, and A. Dziembowski, Cytoplasmic RNA decay pathways --Enzymes and mechanisms, Biochim. Biophys. Acta, vol.1863, pp.3125-3147, 2016.

T. Lagrandeur and R. Parker, The cis acting sequences responsible for the differential decay of the unstable MFA2 and stable PGK1 transcripts in yeast include the context of the translational start codon, RNA N. Y. N, vol.5, pp.420-433, 1999.

C. Lawless, S. W. Holman, P. Brownridge, K. Lanthaler, V. M. Harman et al., Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring, Mol. Cell. Proteomics MCP, vol.15, pp.1309-1322, 2016.

A. Lebreton, R. Tomecki, A. Dziembowski, and B. Séraphin, Endonucleolytic RNA cleavage by a eukaryotic exosome, Nature, vol.456, pp.993-996, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01350769

D. Lee, T. Ohn, Y. Chiang, G. Quigley, G. Yao et al., PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1--mRNP structure, J. Mol. Biol, vol.399, pp.562-575, 2010.

W. S. Lee, K. M. Teo, R. T. Ng, S. Y. Chong, B. P. Kee et al., Novel mutations in SKIV2L and TTC37 genes in Malaysian children with trichohepatoenteric syndrome, Gene, vol.586, pp.1-6, 2016.

P. Leeds, S. W. Peltz, A. Jacobson, and M. R. Culbertson, The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon, Genes Dev, vol.5, pp.2303-2314, 1991.

P. Leeds, J. M. Wood, B. S. Lee, and M. R. Culbertson, Gene products that promote mRNA turnover in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.12, pp.2165-2177, 1992.

A. Leitner, L. A. Joachimiak, A. Bracher, L. Mönkemeyer, T. Walzthoeni et al.,

S. Pechmann, S. Holmes, Y. Cong, and B. Ma, The molecular architecture of the eukaryotic chaperonin, TRiC/CCT. Struct. Lond. Engl, vol.20, pp.814-825, 1993.

D. H. Levin, D. Kyner, and G. Acs, Protein initiation in eukaryotes: formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate, Proc. Natl. Acad. Sci. U. S. A, vol.70, pp.41-45, 1973.

J. Liu, M. A. Bratkowski, X. Liu, C. Niu, A. Ke et al., Visualization of distinct substrate--recruitment pathways in the yeast exosome by EM, Nat. Struct. Mol. Biol, vol.21, pp.95-102, 2014.

J. Liu, C. Niu, Y. Wu, D. Tan, Y. Wang et al., CryoEM structure of yeast cytoplasmic exosome complex, Cell Res, vol.26, pp.822-837, 2016.

Q. Liu, J. C. Greimann, and C. D. Lima, Reconstitution, activities, and structure of the eukaryotic RNA exosome, Cell, vol.127, pp.1223-1237, 2006.

J. R. Lorsch and D. Herschlag, Kinetic dissection of fundamental processes of eukaryotic translation initiation in vitro, EMBO J, vol.18, pp.6705-6717, 1999.

R. Losson and F. Lacroute, Interference of nonsense mutations with eukaryotic messenger RNA stability, Proc. Natl. Acad. Sci. U. S. A, vol.76, pp.5134-5137, 1979.

J. Lu and C. Deutsch, Electrostatics in the ribosomal tunnel modulate chain elongation rates, J. Mol. Biol, vol.384, pp.73-86, 2008.

K. Lu, I. Psakhye, J. , and S. , Autophagic clearance of polyQ proteins mediated by ubiquitin--Atg8 adaptors of the conserved CUET protein family, Cell, vol.158, pp.549-563, 2014.

D. Lyumkis, D. Oliveira-dos-passos, E. B. Tahara, K. Webb, E. J. Bennett et al., Structural basis for translational surveillance by the large ribosomal subunit--associated protein quality control complex, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.15981-15986, 2014.

D. L. Makino, M. Baumgärtner, and E. Conti, Crystal structure of an RNA--bound 11--subunit eukaryotic exosome complex, Nature, vol.495, pp.70-75, 2013.

D. L. Makino, B. Schuch, E. Stegmann, M. Baumgärtner, C. Basquin et al., RNA degradation paths in a 12--subunit nuclear exosome complex, Nature, vol.524, pp.54-58, 2015.

C. Malabat, F. Feuerbach, L. Ma, C. Saveanu, and A. Jacquier, Quality control of transcription start site selection by nonsense--mediated--mRNA decay, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01404014

H. Malet, M. Topf, D. K. Clare, J. Ebert, F. Bonneau et al., RNA channelling by the eukaryotic exosome, EMBO Rep, vol.11, pp.936-942, 2010.

K. Von-der-malsburg, S. Shao, and R. S. Hegde, The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon, Mol. Biol. Cell, vol.26, pp.2168-2180, 2015.

A. Marintchev, K. A. Edmonds, B. Marintcheva, E. Hendrickson, M. Oberer et al., Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation, Cell, vol.136, pp.447-460, 2009.

R. Matsuda, K. Ikeuchi, S. Nomura, and T. Inada, Protein quality control systems associated with no--go and nonstop mRNA surveillance in yeast, Genes Cells Devoted Mol. Cell. Mech, vol.19, pp.1-12, 2014.

Y. Matsuo, K. Ikeuchi, Y. Saeki, S. Iwasaki, C. Schmidt et al., Ubiquitination of stalled ribosome triggers ribosome--associated quality control, Nat. Commun, vol.8, p.159, 2017.

A. B. Meriin, X. Zhang, X. He, G. P. Newnam, Y. O. Chernoff et al., , 2002.

, Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion--like protein Rnq1, J. Cell Biol, vol.157, pp.997-1004

T. I. Merkulova, L. Y. Frolova, M. Lazar, J. Camonis, and L. L. Kisselev, C--terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction, FEBS Lett, vol.443, pp.41-47, 1999.

G. Millán--zambrano and S. Chávez, Nuclear functions of prefoldin, 2014.

L. Milligan, L. Decourty, C. Saveanu, J. Rappsilber, H. Ceulemans et al., A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts, Mol. Cell. Biol, vol.28, pp.5446-5457, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01404695

P. Mitchell and D. Tollervey, An NMD pathway in yeast involving accelerated deadenylation and exosome--mediated 3'---->5' degradation, Mol. Cell, vol.11, pp.1405-1413, 2003.

P. Mitchell, E. Petfalski, R. Houalla, A. Podtelejnikov, M. Mann et al., Rrp47p is an exosome--associated protein required for the 3' processing of stable RNAs, Mol. Cell. Biol, vol.23, pp.6982-6992, 2003.

H. M. Moon, B. Redfield, and H. Weissbach, Interaction of eukaryote elongation factor EF 1 with guanosine nucleotides and aminoacyl--tRNA, Proc. Natl. Acad. Sci. U. S. A, vol.69, pp.1249-1252, 1972.

D. Muhlrad and R. Parker, Mutations affecting stability and deadenylation of the yeast MFA2 transcript, Genes Dev, vol.6, pp.2100-2111, 1992.

D. Muhlrad and R. Parker, Premature translational termination triggers mRNA decapping, Nature, vol.370, pp.578-581, 1994.

D. Muhlrad and R. Parker, Aberrant mRNAs with extended 3' UTRs are substrates for rapid degradation by mRNA surveillance, RNA N. Y. N, vol.5, pp.1299-1307, 1999.

D. Muhlrad, C. J. Decker, and R. Parker, Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'---->3' digestion of the transcript, Genes Dev, vol.8, pp.855-866, 1994.

D. Muhlrad, C. J. Decker, and R. Parker, Turnover mechanisms of the stable yeast PGK1 mRNA, Mol. Cell. Biol, vol.15, pp.2145-2156, 1995.

E. De-nadal, G. Ammerer, and F. Posas, Controlling gene expression in response to stress, Nat. Rev. Genet, vol.12, pp.833-845, 2011.

N. Nagaraj, N. A. Kulak, J. Cox, N. Neuhauser, K. Mayr et al., System--wide perturbation analysis with nearly complete coverage of the yeast proteome by single--shot ultra HPLC runs on a bench top Orbitrap, Mol. Cell. Proteomics MCP, vol.11, 2012.

E. Natan, J. N. Wells, S. A. Teichmann, and J. A. Marsh, Regulation, evolution and consequences of cotranslational protein complex assembly, Curr. Opin. Struct. Biol, vol.42, pp.90-97, 2017.

T. Nissan, P. Rajyaguru, M. She, H. Song, and R. Parker, Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms, Mol. Cell, vol.39, pp.773-783, 2010.

T. Nyström, Role of oxidative carbonylation in protein quality control and senescence, EMBO J, vol.24, pp.1311-1317, 2005.

M. Oeffinger, K. E. Wei, R. Rogers, J. A. Degrasse, B. T. Chait et al., Comprehensive analysis of diverse ribonucleoprotein complexes, Nat. Methods, vol.4, pp.951-956, 2007.

W. Olivas and R. Parker, The Puf3 protein is a transcript--specific regulator of mRNA degradation in yeast, EMBO J, vol.19, pp.6602-6611, 2000.

B. A. Osuna, C. J. Howard, S. Kc, A. Frost, and D. E. Weinberg, In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing, 2017.

F. Ozsolak, P. Kapranov, S. Foissac, S. W. Kim, E. Fishilevich et al., Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation, Cell, vol.143, pp.1018-1029, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01215317

D. A. Parsell, A. S. Kowal, and S. Lindquist, Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP--induced structural changes, J. Biol. Chem, vol.269, pp.4480-4487, 1994.

D. O. Passos, M. K. Doma, C. J. Shoemaker, D. Muhlrad, R. Green et al., Analysis of Dom34 and its function in no--go decay, Mol. Biol. Cell, vol.20, pp.3025-3032, 2009.

P. Segura, E. Vergara, S. V. Rodríguez--navarro, S. Parker, R. Thiele et al.,

, The Cth2 ARE--binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency, J. Biol. Chem, vol.283, pp.28527-28535

V. Pelechano, W. Wei, and L. M. Steinmetz, Widespread Co--translational RNA Decay Reveals Ribosome Dynamics, Cell, vol.161, pp.1400-1412, 2015.

S. W. Peltz, A. H. Brown, and A. Jacobson, mRNA destabilization triggered by premature translational termination depends on at least three cis--acting sequence elements and one trans--acting factor, Genes Dev, vol.7, pp.1737-1754, 1993.

T. V. Pestova, S. I. Borukhov, H. , and C. U. , Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons, Nature, vol.394, pp.854-859, 1998.

T. V. Pestova, I. B. Lomakin, J. H. Lee, S. K. Choi, T. E. Dever et al., The joining of ribosomal subunits in eukaryotes requires eIF5B, Nature, vol.403, pp.332-335, 2000.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera----a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

C. Piccirillo, R. Khanna, and M. Kiledjian, Functional characterization of the mammalian mRNA decapping enzyme hDcp2, RNA N. Y. N, vol.9, pp.1138-1147, 2003.

A. V. Pisarev, C. U. Hellen, and T. V. Pestova, Recycling of eukaryotic posttermination ribosomal complexes, Cell, vol.131, pp.286-299, 2007.

A. V. Pisarev, V. G. Kolupaeva, M. M. Yusupov, C. U. Hellen, and T. V. Pestova, , 2008.

, Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes, EMBO J, vol.27, pp.1609-1621

A. V. Pisarev, M. A. Skabkin, V. P. Pisareva, O. V. Skabkina, A. M. Rakotondrafara et al., The role of ABCE1 in eukaryotic posttermination ribosomal recycling, Mol. Cell, vol.37, pp.196-210, 2010.

V. P. Pisareva and A. V. Pisarev, DHX29 and eIF3 cooperate in ribosomal scanning on structured mRNAs during translation initiation, vol.22, pp.1859-1870, 2016.

V. P. Pisareva, A. V. Pisarev, A. A. Komar, C. U. Hellen, and T. V. Pestova, Translation initiation on mammalian mRNAs with structured 5'UTRs requires DExH--box protein DHX29, Cell, vol.135, pp.1237-1250, 2008.

O. Porrua and D. Libri, RNA quality control in the nucleus: the Angels' share of RNA, Biochim. Biophys. Acta, vol.1829, pp.604-611, 2013.

A. Preis, A. Heuer, -. Barrio, C. Garcia, A. Hauser et al., Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1--eRF3 or, Cell Rep, vol.8, pp.59-65, 2014.

S. Preissler, J. Reuther, M. Koch, A. Scior, M. Bruderek et al., Not4--dependent translational repression is important for cellular protein homeostasis in yeast, EMBO J, vol.34, pp.1905-1924, 2015.

V. Presnyak, N. Alhusaini, Y. Chen, S. Martin, N. Morris et al., Codon optimality is a major determinant of mRNA stability, Cell, vol.160, pp.1111-1124, 2015.

H. Qiu, C. Hu, S. Yoon, K. Natarajan, M. J. Swanson et al., An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter--bound Gcn4p, Mol. Cell. Biol, vol.24, pp.4104-4117, 2004.

X. Qu, Z. Yang, S. Zhang, L. Shen, A. W. Dangel et al., The human DEVH--box protein Ski2w from the HLA is localized in nucleoli and ribosomes, Nucleic Acids Res, vol.26, pp.4068-4077, 1998.

M. Rape, T. Hoppe, I. Gorr, M. Kalocay, H. Richly et al., Mobilization of processed, membrane--tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin--selective chaperone, Cell, vol.107, pp.667-677, 2001.

P. Raychaudhuri, A. Chaudhuri, and U. Maitra, Formation and release of eukaryotic initiation factor 2 X GDP complex during eukaryotic ribosomal polypeptide chain initiation complex formation, J. Biol. Chem, vol.260, pp.2140-2145, 1985.

L. M. Rendl, M. A. Bieman, and C. A. Smibert, S. cerevisiae Vts1p induces deadenylation--dependent transcript degradation and interacts with the Ccr4p--Pop2p--Not deadenylase complex, RNA N. Y. N, vol.14, pp.1328-1336, 2008.

H. Richly, M. Rape, S. Braun, S. Rumpf, C. Hoege et al., A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting, Cell, vol.120, pp.73-84, 2005.

K. Richter, M. Haslbeck, and J. Buchner, The heat shock response: life on the verge of death, Mol. Cell, vol.40, pp.253-266, 2010.

M. V. Rodnina and W. Wintermeyer, Recent mechanistic insights into eukaryotic ribosomes, Curr. Opin. Cell Biol, vol.21, pp.435-443, 2009.

D. W. Rogers, M. A. Böttcher, A. Traulsen, and D. Greig, Ribosome reinitiation can explain length--dependent translation of messenger RNA, PLoS Comput. Biol, vol.13, p.1005592, 2017.

M. J. Ruiz--echevarría and S. W. Peltz, The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames, Cell, vol.101, pp.741-751, 2000.

J. Saarikangas and Y. Barral, Protein aggregation as a mechanism of adaptive cellular responses, Curr. Genet, vol.62, pp.711-724, 2016.

A. B. Sachs, R. W. Davis, and R. D. Kornberg, A single domain of yeast poly(A)--binding protein is necessary and sufficient for RNA binding and cell viability, Mol. Cell. Biol, vol.7, pp.3268-3276, 1987.

S. Sayani, M. Janis, C. Y. Lee, I. Toesca, and G. F. Chanfreau, Widespread Impact of Nonsense--Mediated mRNA Decay on the Yeast Intronome, Mol. Cell, vol.31, pp.360-370, 2008.

D. Schaeffer, B. Tsanova, A. Barbas, F. P. Reis, E. G. Dastidar et al., The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities, Nat. Struct. Mol. Biol, vol.16, pp.56-62, 2009.

D. Schaeffer, A. Clark, A. A. Klauer, B. Tsanova, and A. Van-hoof, Functions of the cytoplasmic exosome, Adv. Exp. Med. Biol, vol.702, pp.79-90, 2011.

C. Schmidt, E. Kowalinski, V. Shanmuganathan, Q. Defenouillère, K. Braunger et al., The cryo--EM structure of a ribosome-Ski2--Ski3--Ski8 helicase complex, Science, vol.354, pp.1431-1433, 2016.

C. Schneider, E. Leung, J. Brown, and D. Tollervey, The N--terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome, Nucleic Acids Res, vol.37, pp.1127-1140, 2009.

A. P. Schuller and R. Green, The ABC(E1)s of Ribosome Recycling and Reinitiation, Mol. Cell, vol.66, pp.578-580, 2017.

D. C. Schwartz and R. Parker, mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E, Mol. Cell. Biol, vol.20, pp.7933-7942, 2000.

L. D. Serdar, D. L. Whiteside, and K. E. Baker, ATP hydrolysis by UPF1 is required for efficient translation termination at premature stop codons, Nat. Commun, vol.7, p.14021, 2016.

S. Shao and R. S. Hegde, Reconstitution of a minimal ribosome--associated ubiquitination pathway with purified factors, Mol. Cell, vol.55, pp.880-890, 2014.

S. Shao, K. Von-der-malsburg, and R. S. Hegde, Listerin--dependent nascent protein ubiquitination relies on ribosome subunit dissociation, Mol. Cell, vol.50, pp.637-648, 2013.

S. Shao, A. Brown, B. Santhanam, and R. S. Hegde, Structure and assembly pathway of the ribosome quality control complex, Mol. Cell, vol.57, pp.433-444, 2015.

M. She, C. J. Decker, K. Sundramurthy, Y. Liu, N. Chen et al., Crystal structure of Dcp1p and its functional implications in mRNA decapping, Nat. Struct. Mol. Biol, vol.11, pp.249-256, 2004.

M. She, C. J. Decker, N. Chen, S. Tumati, R. Parker et al., Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe, Nat. Struct. Mol. Biol, vol.13, pp.63-70, 2006.

M. She, C. J. Decker, D. I. Svergun, A. Round, N. Chen et al., Structural basis of dcp2 recognition and activation by dcp1, Mol. Cell, vol.29, pp.337-349, 2008.

P. S. Shen, J. Park, Y. Qin, X. Li, K. Parsawar et al., Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA--independent elongation of nascent chains, Science, vol.347, pp.75-78, 2015.

U. Sheth and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science, vol.300, pp.805-808, 2003.

U. Sheth and R. Parker, Targeting of aberrant mRNAs to cytoplasmic processing bodies, Cell, vol.125, pp.1095-1109, 2006.

C. J. Shoemaker and R. Green, Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.1392-1398, 2011.

C. J. Shoemaker and R. Green, Translation drives mRNA quality control, Nat. Struct. Mol. Biol, vol.19, pp.594-601, 2012.

C. J. Shoemaker, D. E. Eyler, and R. Green, Dom34:Hbs1 promotes subunit dissociation and peptidyl--tRNA drop--off to initiate no--go decay, Science, vol.330, pp.369-372, 2010.

G. Singh, I. Rebbapragada, L. , and J. , A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense--mediated mRNA decay, PLoS Biol, vol.6, p.111, 2008.

C. S. Sitron, J. H. Park, and O. Brandman, Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation, vol.23, pp.798-810, 2017.

M. A. Skabkin, O. V. Skabkina, V. Dhote, A. A. Komar, C. U. Hellen et al., Activities of Ligatin and MCT--1/DENR in eukaryotic translation initiation and ribosomal recycling, Genes Dev, vol.24, pp.1787-1801, 2010.

N. Sonenberg, M. Wilchek, and A. Zamir, Mapping of 23--S rRNA at the ribosomal peptidyl--transferase center by photo--affinity labeling, Eur. J. Biochem, vol.77, pp.217-222, 1977.

H. Song, P. Mugnier, A. K. Das, H. M. Webb, D. R. Evans et al., The crystal structure of human eukaryotic release factor eRF1----mechanism of stop codon recognition and peptidyl--tRNA hydrolysis, Cell, vol.100, pp.311-321, 2000.

C. Spiess, A. S. Meyer, S. Reissmann, and J. Frydman, Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets, Trends Cell Biol, vol.14, pp.598-604, 2004.

I. Stansfield, K. M. Jones, and M. F. Tuite, The end in sight: terminating translation in eukaryotes, Trends Biochem. Sci, vol.20, pp.489-491, 1995.

M. W. Staudt, E. K. Kruzel, K. Shimizu, and C. M. Hull, Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans, Fungal Genet. Biol. FG B, vol.47, pp.310-317, 2010.

M. Steiger, A. Carr--schmid, D. C. Schwartz, M. Kiledjian, and R. Parker, Analysis of recombinant yeast decapping enzyme, RNA, vol.9, pp.231-238, 2003.

E. Svidritskiy, A. F. Brilot, C. S. Koh, N. Grigorieff, and A. A. Korostelev, Structures of Yeast 80S Ribosome--tRNA Complexes in the Rotated and Nonrotated Conformations, Structure, vol.22, pp.1210-1218, 2014.

S. A. Synowsky and A. J. Heck, The yeast Ski complex is a hetero--tetramer, Protein Sci. Publ. Protein Soc, vol.17, pp.119-125, 2008.

S. Takahashi, Y. Araki, T. Sakuno, and T. Katada, Interaction between Ski7p and Upf1p is required for nonsense--mediated 3'--to--5' mRNA decay in yeast, EMBO J, vol.22, pp.3951-3959, 2003.

S. Tam, R. Geller, C. Spiess, and J. Frydman, The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit--specific interactions, Nat. Cell Biol, vol.8, pp.1155-1162, 2006.

E. Tashiro, T. Zako, H. Muto, Y. Itoo, K. Sörgjerd et al., Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation, J. Biol. Chem, vol.288, 2013.

M. D. Ter--avanesyan, V. V. Kushnirov, A. R. Dagkesamanskaya, S. A. Didichenko, Y. O. Chernoff et al., Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non--overlapping functional regions in the encoded protein, Mol. Microbiol, vol.7, pp.683-692, 1993.

S. Tharun, Roles of eukaryotic Lsm proteins in the regulation of mRNA function, Int. Rev. Cell Mol. Biol, vol.272, pp.149-189, 2009.

S. Tharun and R. Parker, Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p--7p complex on deadenylated yeast mRNAs, Mol. Cell, vol.8, pp.1075-1083, 2001.

T. Tsuboi, K. Kuroha, K. Kudo, S. Makino, E. Inoue et al., , 2012.

, Dom34:hbs1 plays a general role in quality--control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA, Mol. Cell, vol.46, pp.518-529

M. Tucker, M. A. Valencia--sanchez, R. R. Staples, J. Chen, C. L. Denis et al., The Transcription Factor Associated Ccr4 and Caf1 Proteins Are Components of the Major Cytoplasmic mRNA Deadenylase in Saccharomyces cerevisiae, Cell, vol.104, pp.377-386, 2001.

J. Tyedmers, A. Mogk, and B. Bukau, Cellular strategies for controlling protein aggregation, Nat. Rev. Mol. Cell Biol, vol.11, pp.777-788, 2010.

R. J. Ulbricht and W. M. Olivas, Puf1p acts in combination with other yeast Puf proteins to control mRNA stability, RNA N. Y. N, vol.14, pp.246-262, 2008.

E. Valkov, S. Muthukumar, C. Chang, S. Jonas, O. Weichenrieder et al., Structure of the Dcp2--Dcp1 mRNA--decapping complex in the activated conformation, Nat. Struct. Mol. Biol, vol.23, pp.574-579, 2016.

R. Verma, R. S. Oania, N. J. Kolawa, and R. J. Deshaies, Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome, vol.2, p.308, 2013.

D. Voges, P. Zwickl, and W. Baumeister, The 26S proteasome: a molecular machine designed for controlled proteolysis, Annu. Rev. Biochem, vol.68, pp.1015-1068, 1999.

E. Wagner, L. , and J. , mRNA surveillance: the perfect persist, J. Cell Sci, vol.115, pp.3033-3038, 2002.

E. Wahle and G. S. Winkler, RNA decay machines: deadenylation by the Ccr4--not and Pan2--Pan3 complexes, Biochim. Biophys. Acta, vol.1829, pp.561-570, 2013.

P. Walsh, D. Bursa?, Y. C. Law, D. Cyr, and T. Lithgow, The J--protein family: modulating protein assembly, disassembly and translocation, EMBO Rep, vol.5, pp.567-571, 2004.

C. Wan, B. Borgeson, S. Phanse, F. Tu, K. Drew et al., Panorama of ancient metazoan macromolecular complexes, Nature, vol.525, pp.339-344, 2015.

H. Wang, J. Wang, F. Ding, K. Callahan, M. A. Bratkowski et al., Architecture of the yeast Rrp44-exosome complex suggests routes of RNA recruitment for 3? end processing, Proc. Natl. Acad. Sci, vol.104, pp.16844-16849, 2007.

L. Wang, M. S. Lewis, J. , and A. W. , Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p, RNA N. Y. N, vol.11, pp.1291-1302, 2005.

Y. Wang, A. B. Meriin, N. Zaarur, N. V. Romanova, Y. O. Chernoff et al., Abnormal proteins can form aggresome in yeast: aggresome--targeting signals and components of the machinery, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.23, pp.451-463, 2009.

E. M. Welch and A. Jacobson, An internal open reading frame triggers nonsense--mediated decay of the yeast SPT10 mRNA, EMBO J, vol.18, pp.6134-6145, 1999.

J. N. Wells, L. T. Bergendahl, and J. A. Marsh, Co--translational assembly of protein complexes, Biochem. Soc. Trans, vol.43, pp.1221-1226, 2015.

Y. Weng, K. Czaplinski, and S. W. Peltz, Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein, Mol. Cell. Biol, vol.16, pp.5477-5490, 1996.

Y. Weng, K. Czaplinski, and S. W. Peltz, Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover, Mol. Cell. Biol, vol.16, pp.5491-5506, 1996.

M. Wery, M. Descrimes, N. Vogt, A. Dallongeville, D. Gautheret et al., Nonsense--Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double--Stranded RNA Structure, Mol. Cell, vol.61, pp.379-392, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01311517

D. Wessel and U. I. Flügge, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids, Anal. Biochem, vol.138, pp.141-143, 1984.

D. N. Wilson, S. Arenz, and R. Beckmann, Translation regulation via nascent polypeptide--mediated ribosome stalling, Curr. Opin. Struct. Biol, vol.37, pp.123-133, 2016.

M. A. Wilson, S. Meaux, and A. Van-hoof, A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism, Genetics, vol.177, pp.773-784, 2007.

J. Yang, X. Hao, X. Cao, B. Liu, and T. Nyström, Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex, 2016.

Y. Ye, H. H. Meyer, and T. A. Rapoport, Function of the p97--Ufd1--Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains, J. Cell Biol, vol.162, pp.71-84, 2003.

R. Yonashiro, E. B. Tahara, M. H. Bengtson, M. Khokhrina, H. Lorenz et al., The Rqc2/Tae2 subunit of the ribosome--associated quality control (RQC) complex marks ribosome--stalled nascent polypeptide chains for aggregation, vol.5, p.11794, 2016.

D. J. Young, N. R. Guydosh, F. Zhang, A. G. Hinnebusch, and R. Green, Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo, vol.162, pp.872-884, 2015.

J. M. Zaborske, B. Zeitler, and M. R. Culbertson, Multiple Transcripts from a 3?--UTR Reporter Vary in Sensitivity to Nonsense--Mediated mRNA Decay in Saccharomyces cerevisiae, PLOS ONE, vol.8, p.80981, 2013.

S. Zhang, E. M. Welch, K. Hogan, A. H. Brown, S. W. Peltz et al., , 1997.

, Polysome--associated mRNAs are substrates for the nonsense--mediated mRNA decay pathway in Saccharomyces cerevisiae, RNA N. Y. N, vol.3, pp.234-244

G. Zhouravleva, L. Frolova, X. Le-goff, R. Le-guellec, S. Inge--vechtomov et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J, vol.14, pp.4065-4072, 1995.

C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., , 1998.

, Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast Chichester Engl, vol.14, pp.115-132

C. J. Decker and R. Parker, A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation, Genes Dev, vol.7, pp.1632-1643, 1993.

Q. Defenouillère, Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.5046-5051, 2013.

L. N. Dimitrova, K. Kuroha, T. Tatematsu, and T. Inada, Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome, J. Biol. Chem, vol.284, pp.10343-10352, 2009.

E. Garí, L. Piedrafita, M. Aldea, and E. Herrero, A set of vectors with a tetracyclineregulatable promoter system for modulated gene expression in Saccharomyces cerevisiae, Yeast Chichester Engl, vol.13, pp.837-848, 1997.

S. Ghaemmaghami, W. Huh, K. Bower, R. W. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, pp.737-741, 2003.

K. Kobayashi, I. Kikuno, K. Kuroha, K. Saito, K. Ito et al., Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1? complex, Proc. Natl. Acad. Sci, vol.107, pp.17575-17579, 2010.

C. B. References-brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast Chichester Engl, vol.14, pp.115-132, 1998.

Q. Defenouillère, Y. Yao, J. Mouaikel, A. Namane, A. Galopier et al., Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.5046-5051, 2013.

V. V. Kushnirov, Rapid and reliable protein extraction from yeast, Yeast Chichester Engl, vol.16, pp.857-860, 2000.

P. S. Shen, J. Park, Y. Qin, X. Li, K. Parsawar et al., Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains, Science, vol.347, pp.75-78, 2015.