L. Al, Ainsi les calculs permettent d'obtenir le diagramme d'existence de l'aluminium III en fonction du pH : Annexe 1: Diagramme d'existence de l'aluminium III en fonction du pH

, Si) menées sur les nanotubes non-traités et traités à 700°C, la modélisation mathématique des spectres a permis d'obtenir les positions et intensités des pics, Analyse RMN en CP-MAS et Single-Pulse des nanotubes de silice non traités SiO2Chry, vol.2

. Sio2chry, Single-Pulse)

, Références bibliographiques

L. and R. Française, , 2018.

F. J. Wicks and D. S. Ohanley, Serpentine Minerals -Structures And Petrology, Rev. Mineral, vol.19, pp.91-167, 1988.

A. Pacella, G. B. Andreozzi, and J. Fournier, Detailed crystal chemistry and iron topochemistry of asbestos occurring in its natural setting: A first step to understanding its chemical reactivity, Chemical Geology, vol.277, pp.197-206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00604789

S. H. Gaines, R. V. Ford, E. E. Mason, B. Rosenzweig, and A. , , 1997.

B. E. Warren, The structure of Chrysotile H4Mg3Si2O9, vol.76, pp.201-210, 1930.

B. E. , .. H. Warren, and K. , The random structure of chrysotile asbestos, Physics revue, vol.59, p.925, 1941.

G. W. Brindley, Varieties Of Order And Disorder In Layer Silicates, Bulletin De Mineralogie, vol.103, pp.395-403, 1980.

K. Yada, Study Of Chrysotile Asbestos By A High Resolution Electron Microscope, Acta Crystallographica, vol.23, p.704, 1967.

G. Falini, E. Foresti, M. Gazzano, A. E. Gualtieri, M. Leoni et al., Tubular-shaped stoichiometric Chrysotile nanocrystals, vol.10, pp.3043-3049, 2004.

K. Yada, Study Of Microstructure Of Chrysotile Asbestos By High Resolution Electron Microscopy, Acta Crystallographica Section a-Crystal Physics Diffraction Theoretical and General Crystallography, vol.27, p.659, 1971.

E. J. Whittaker, The Structure Of Chrysotile, Acta Crystallographica, vol.6, pp.747-748, 1953.

E. J. Wicks, A reappraisal of the structures of the serpentine minerals, The Canadian Mineralogist, vol.13, pp.227-243, 1975.

L. Pauling, The structure of me chlorites, Proc. Natl. Acad. Sci. U. S. A, vol.16, pp.578-582, 1930.

B. E. Warren, The crystal structure and chemical composition of the monoclinic amphiboles, Z. Kristall, vol.72, pp.493-517, 1930.

E. J. Whittaker, The Crystal Chemistry Of The Amphiboles, Acta Crystallographica, vol.13, pp.291-298, 1960.

R. M. Papike, J. J. Clark, and J. R. , Crystal chemical characterization of clinoamphiboles based on five new structure refinements, vol.2, pp.117-137, 1969.

F. C. Hawthorne, G. D. Ventura, R. Oberti, J. L. Robert, and G. Iezzi, Short-range order in minerals: Amphiboles, vol.43, pp.1895-1920, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00023419

M. J. Luys, G. L. Deroy, F. Adams, and E. F. Vansant, Cation Site Population In Amphibole Asbestos -A Mossbauer Study, Journal of the Chemical Society-Faraday Transactions I, vol.79, pp.1451-1459, 1983.

M. Schindler, E. Sokolova, Y. Abdu, F. C. Hawthorne, B. W. Evans et al., The crystal chemistry of the gedrite-group amphiboles. I Crystal structure and site populations, Mineral. Mag, vol.72, pp.703-730, 2008.

M. Harper, B. Van-gosen, O. S. Crankshaw, S. S. Doorn, T. J. Ennis et al., The Annals of Occupational Hygiene, vol.59, pp.91-103, 2015.

I. J. Selikoff and D. H. Lee, Asbestos and disease, p.549, 1978.

P. Gross and D. C. Braun, Toxic and biomedical effects of fibers-Asbestos, talc, inorganic fibers, man-made vitreous fibers, and organic fibers: Park Ridge, p.257, 1984.

O. Bowles, Asbestos : The silk of the mineral kingdom, p.39, 1946.

B. Haag, Asbestos-Its sources, extraction, preparation, manufacture and uses in industry and engineering, vol.88, p.p, 1928.

O. Bowles, Asbestos: U.S, Bureau of Mines Bulletin, vol.403, p.p, 1937.

O. Bowles, Asbestos-Domestic and foreign deposits, U.S. Bureau of Mines Information Circular, vol.6790, p.p, 1934.

R. L. Virta, Worldwide Asbestos Supply and Consumption Trends from 1900 through, U.S. Geological Survey, 2003.

M. Amsa and . Amiante, , 2018.

D. V. Rosato, Asbestos-Its industrial applications, vol.214, p.p, 1959.

W. E. Sinclair, Asbestos-Its origin, production, and utilization, vol.512, p.p, 1959.

A. , International Ban Asbestos Secretariat, 2018.

J. E. Alleman and B. T. Mossman, Asbestos revisited, Scientific American, vol.277, pp.70-75, 1997.

R. L. Virta, Asbestos-Geology, mineralogy, mining, and uses, vol.35, p.p, 2002.

S. K. Mohanty, C. Gonneau, A. Salamatipour, R. A. Pietrofesa, B. Casper et al., Siderophore-mediated iron removal from chrysotile: Implications for asbestos toxicity reduction and bioremediation, J. Hazard. Mater, vol.341, pp.290-296, 2018.

, Amiante Fiche toxicologique n°145, INRS, 2018.

S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease, Cancer science, vol.100, pp.9-16, 2009.

D. W. Kamp, P. Graceffa, W. A. Pryor, and S. A. Weitzman, The role of free radicals in asbestos-induced diseases, Free Radical Biology and Medicine, vol.12, pp.293-315, 1992.

K. R. Maples and N. F. Johnson, Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans, Carcinogenesis, vol.13, pp.2035-2039, 1992.

H. Dong, A. Buard, A. Renier, F. Levy, L. Saint-etienne et al., Role of oxygen derivatives in the cytotoxicity and DNA damage produced by asbestos on rat pleural mesothelial cells in vitro, Carcinogenesis, vol.15, pp.1251-1255, 1994.

J. A. Hardy and A. E. Aust, The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks, Carcinogenesis, vol.16, pp.319-325, 1995.

J. S. Harington, K. Miller, and G. Macnab, Hemolysis by asbestos, Environmental Research, vol.4, pp.95-117, 1971.

S. H. Chew and S. Toyokuni, Malignant mesothelioma as an oxidative stress-induced cancer: An update, Free Radical Biology and Medicine, vol.86, pp.166-178, 2015.

O. A. Inrs, , 2018.

S. Bordebeure, Déchets amiantés, Fiche technique ADEME, 2017.

F. D. Pooley, The Identification Of Asbestos Dust With An Electron Microscope Microprobe Analaser, The Annals of Occupational Hygiene, vol.18, pp.181-186, 1975.

, Identification de la présence d'amiante dans les matériaux de construction, INRS, 2010.

V. E. Nouvel and J. P. , Gestion de la fin de vie des matériaux à base d'amiante et autres matériaux fibreux, RECORD, 2016.

R. Kusiorowski, T. Zaremba, J. Piotrowski, and J. Adamek, Thermal decomposition of different types of asbestos, Journal of Thermal Analysis and Calorimetry, vol.109, pp.693-704, 2012.

G. W. Brindley and J. Zussman, A Structural Study Of The Thermal Transformation Of Serpentine Minerals To Forsterite, American Mineralogist, vol.42, pp.461-474, 1957.

C. J. Martin, The thermal decomposition of chrysotile, Mineralogical Magazine, pp.453-459, 1977.

T. Zaremba and M. Peszko, Investigation of the thermal modification of asbestos wastes for potential use in ceramic formulation, Journal of Thermal Analysis and Calorimetry, vol.92, pp.873-877, 2008.

A. F. Gualtieri and A. Tartaglia, Thermal decomposition of asbestos and recycling in traditional ceramics, J. European Ceram. Soc, vol.20, pp.1409-1418, 2000.

P. Vast, . Andri, V. S. Egrave, M. A. Martines, J. P. Auffredic et al., Treatment and Destruction of Inorganic Fibers Wastes Like Asbestos by Sodium Polyphosphate, Phosphorus Research Bulletin, vol.15, pp.68-82, 2004.

M. Fujishige, R. Sato, A. Kuribara, I. Karasawa, and A. Kojima, CaCl2 addition effect and melt formation in low-temperature decomposition of chrysotile with CaCO3, J. Ceram. Soc. Jpn, vol.114, pp.844-848, 2006.

R. Kusiorowski, T. Zaremba, J. Piotrowski, and A. Gerle, Thermal decomposition of asbestos-containing materials, Journal of Thermal Analysis and Calorimetry, vol.113, pp.179-188, 2013.

A. F. Gualtieri, C. Cavenati, I. Zanatto, M. Meloni, G. Elmi et al., The transformation sequence of cement-asbestos slates up to 1200 degrees C and safe recycling of the reaction product in stoneware tile mixtures, J. Hazard. Mater, vol.152, pp.563-570, 2008.

S. Y. Min, S. Maken, J. W. Park, A. Gaur, and J. S. Hyun, Melting treatment of waste asbestos using mixture of hydrogen and oxygen produced from water electrolysis, Korean J. Chem. Eng, vol.25, pp.323-328, 2008.

F. Dellisanti, P. L. Rossi, and G. Valdre, Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus, International Journal of Mineral Processing, vol.91, pp.61-67, 2009.

S. Hashimoto, H. Takeda, A. Okuda, A. Kambayashi, S. Honda et al., Detoxification of industrial asbestos waste by low-temperature heating in a vacuum, J. Ceram. Soc. Jpn, vol.116, pp.242-246, 2008.

A. Cattaneo, A. F. Gualtieri, and G. Artioli, Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD, Phys. Chem. Miner, vol.30, pp.177-183, 2003.

T. H. Ball and C. , The dehydration of chrysotile in air andunder hydrothermal conditions, Min. Mag, vol.33, pp.467-482, 1963.

T. Kozawa, A. Onda, K. Yanagisawa, O. Chiba, H. Ishiwata et al., Thermal decomposition of chrysotile-containing wastes in a water vapor atmosphere, J. Ceram. Soc. Jpn, vol.118, pp.1199-1201, 2010.

A. Valouma, A. Verganelaki, I. Tetoros, P. Maravelaki-kalaitzaki, and E. Gidarakos, Magnesium oxide production from chrysotile asbestos detoxification with oxalic acid treatment, J. Hazard. Mater, vol.336, pp.93-100, 2017.

A. Valouma, A. Verganelaki, P. Maravelaki-kalaitzaki, and E. Gidarakos, Chrysotile asbestos detoxification with a combined treatment of oxalic acid and silicates producing amorphous silica and biomaterial, J. Hazard. Mater, vol.305, pp.164-170, 2016.

H. Jo, Y. N. Jang, and J. H. Jo, A Low Temperature Detoxification Method for Treatment of Chrysotile-Containing Waste Roofing Slate, p.13, 2017.

L. M. Lavkulich, H. E. Schreier, and J. E. Wilson, Effects of natural acids on surface properties of asbestos minerals and kaolinite, J Environ Sci Health A Tox Hazard Subst Environ Eng, vol.49, pp.617-624, 2014.

K. Yanagisawa, T. Kozawa, A. Onda, M. Kanazawa, J. Shinohara et al., A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas, J. Hazard. Mater, vol.163, pp.593-599, 2009.

M. Hyatt, N. D. Macrae, and H. W. Nesbitt, Chemical treatment of chrysotile asbestos in laboratory solutions, Environment International, vol.7, pp.215-220, 1982.

N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, M. Kobayashi et al., Hydrothermal conversion of chrysotile to amorphous silica or brucite, J. Ceram. Soc. Jpn, vol.117, pp.1240-1242, 2009.

L. Heasman and G. Baldwin, The Destruction Of Chrysotile Asbestos Using Waste Acids, Waste Manage. Res, vol.4, pp.215-223, 1986.

S. Habaue, T. Hirasa, Y. Akagi, K. Yamashita, and M. Kajiwara, Synthesis and property of silicone polymer from chrysotile asbestos by acid-leaching and silylation, J. Inorg. Organomet. Polym. Mater, vol.16, pp.155-160, 2006.

S. N. Nam, S. Jeong, and H. Lim, Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid, J Hazard Mater, vol.265, pp.151-157, 2014.

L. P. Block, L. E. Dolhert, D. F. Myers, L. Hegedus, R. P. Webster et al., A novel approach for the in-situ chemical elimination of chrysotilefrom asbestos-containing fireproofing materials, Environmental Science and Technology, vol.11, pp.2293-2298, 2000.

A. Pawelczyk, F. Bozek, K. Grabas, and J. Checmanowski, Chemical elimination of the harmful properties of asbestos from military facilities, Waste Manag, pp.377-385, 2017.

A. P. Trefler and M. Nowak, The waste free method of utilizing asbestos and the products containing asbestos, Polish Journal of Chemical Technology, vol.6, p.59

T. Hongo, Dissolution of the chrysotile structure in nitric-acid solutions at different pH, Clay Min, vol.51, pp.715-722, 2016.

T. Sugama, R. Sabatini, and L. Petrakis, Decomposition of chrysotile asbestos by fluorosulfonic acid, Industrial & Engineering Chemistry Research, vol.37, pp.79-88, 1998.

G. Denis and M. Delmas, Procede de traitement d'un solide amiante, pp.2009141565-2009141567, 2010.

A. Pawelczyk, F. Bozek, K. Grabas, and J. Checmanowski, Chemical elimination of the harmful properties of asbestos from military facilities, Waste Management, pp.377-385, 2017.

D. M. Timmons, Système et procédé pour le traitement de l'amiante, pp.2010039737-2010039739, 2010.

D. M. Timmons, Systeme et procede pour accelerer la transformation de l'amiante dans le processus de transformation mineralogique, pp.1919637-1919638, 2007.

F. Colangelo, R. Cioffi, M. Lavorgna, L. Verdolotti, and L. D. Stefano, Treatment and recycling of asbestos-cement containing waste, J. Hazard. Mater, vol.195, pp.391-397, 2011.

P. Plescia, D. Gizzi, S. Benedetti, L. Camilucci, C. Fanizza et al., Mechanochemical treatment to recycling asbestos-containing waste, Waste Management, vol.23, pp.209-218, 2003.

F. Turci, M. Tomatis, S. Mantegna, G. Cravotto, and B. Fubini, A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound, Ultrason. Sonochem, vol.15, pp.420-427, 2008.

K. Granat, D. Nowak, M. Pigiel, W. Florczak, and B. Opyd, Application of microwave radiation in innovative process of neutralising asbestos-containing wastes, Archives of Civil and Mechanical Engineering, vol.15, pp.188-194, 2015.

D. N. Boccaccini, C. Leonelli, M. R. Rivasi, M. Romagnoli, P. Veronesi et al., Recycling of microwave inertised asbestos containing waste in refractory materials, J. European Ceram. Soc, vol.27, pp.1855-1858, 2007.

C. Leonelli, P. Veronesi, D. N. Boccaccini, M. R. Rivasi, L. Barbieri et al., Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics, J. Hazard. Mater, vol.135, pp.149-155, 2006.

A. Averroes, H. Sekiguchi, and K. Sakamoto, Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma, J. Hazard. Mater, vol.195, pp.405-413, 2011.

A. Viani and A. F. Gualtieri, Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker, J Hazard Mater, vol.260, pp.813-818, 2013.

R. Kusiorowski, T. Zaremba, J. Piotrowski, and J. Podworny, Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture, J. Mater. Sci, vol.50, pp.6757-6767, 2015.

K. W. Ryu, Y. N. Jang, and M. G. Lee, Enhancement of Chrysotile Carbonation in Alkali Solution, Materials Transactions, vol.53, pp.1349-1352, 2012.

F. Larachi, I. Daldoul, and G. Beaudoin, Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations, Geochimica et Cosmochimica Acta, vol.74, pp.3051-3075, 2010.

A. H. Park and L. S. Fan, CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chem. Eng. Sci, vol.59, pp.5241-5247, 2004.

A. H. Park, R. Jadhav, and L. S. Fan, CO2 mineral sequestration: Chemically enhanced aqueous carbonation of serpentine, Can. J. Chem. Eng, vol.81, pp.885-890, 2003.

M. Radvanec, L. Tucek, J. Derco, K. Cechovska, and Z. Nemeth, Change of carcinogenic chrysotile fibers in the asbestos cement (eternit) to harmless waste by artificial carbonatization: Petrological and technological results, J. Hazard. Mater, vol.252, pp.390-400, 2013.

G. Gadikota, C. Natali, C. Boschi, and A. H. Park, Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals, J Hazard Mater, vol.264, pp.42-52, 2014.

K. Anastasiadou, D. Axiotis, and E. Gidarakos, Hydrothermal conversion of chrysotile asbestos using near supercritical conditions, J Hazard Mater, vol.179, pp.926-932, 2010.

V. Geoffroy, J. Haines, O. Cambon, C. Bore, W. Balmer et al., Neutralisation des dangers inhérents aux déchets d'amiantes et perspectives de valorisation, 2015.

P. G. Chabanel, Liaison chimique et spectroscopie, Ellipses

J. M. Griffins, Handdbook of vibrational spectroscopy, p.1, 2002.

L. H. Colthup and S. E. Wiberley, Introduction to infrared and raman spectroscopy, p.3, 1964.

C. V. Raman and K. S. Krishnan, A New Type of Secondary Radiation, Nature, vol.121, p.501, 1928.

G. Anbalagan, G. Sivakumar, A. R. Prabakaran, and S. Gunasekaran, Spectroscopic characterization of natural chrysotile, Vibrational Spectroscopy, vol.52, pp.122-127, 2010.

S. France, , 2018.

V. Thirion-merle, HAL, 2014.

H. M. Rietveld, J.Appl. Crystallogr, vol.2, pp.65-71, 1969.

K. Sing, The use of nitrogen adsorption for the characterisation of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.3-9, 2001.

M. Thommes, K. Kaneko, V. Alexander, P. O. James, F. Rodriguez-reinoso et al., Sing Kenneth, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure and Applied Chemistry, p.1051, 2015.

S. Ahmed, A. Ramli, and S. Yusup, CO 2 adsorption study on primary, secondary and tertiary amine functionalized Si-MCM-41, International Journal of Greenhouse Gas Control, vol.51, pp.230-238, 2016.

M. Fujishige, A. Kuribara, I. Karasawa, and A. Kojima, Low-temperature pyrolysis of crocidolite and amosite using calcium salts as a flux, J. Ceram. Soc. Jpn, vol.115, pp.434-439, 2007.

E. Foresti, E. Fornero, I. G. Lesci, C. Rinaudo, T. Zuccheri et al., Asbestos health hazard: a spectroscopic study of synthetic geoinspired Fe-doped chrysotile, J Hazard Mater, vol.167, pp.1070-1079, 2009.

I. R. Lewis, N. C. Chaffin, M. E. Gunter, and P. R. Griffiths, Vibrational spectroscopic studies of asbestos and comparison of suitability for remote analysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.52, pp.315-328, 1996.

V. ?ontevska, G. Jovanovski, and P. Makreski, Minerals from Macedonia. Part XIX. Vibrational spectroscopy as identificational tool for some sheet silicate minerals, Journal of Molecular Structure, pp.318-327, 2007.

L. Wang, A. Lu, C. Wang, X. Zheng, D. Zhao et al., Nano-fibriform production of silica from natural chrysotile, Journal of Colloid and Interface Science, vol.295, pp.436-439, 2006.

H. Suquet, Effects of Dry Grinding and Leaching on the Crystal Structure of Chrysotile, 1989.

M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, and A. R. Grimmer, Solid-state high-resolution silicon-29 chemical shifts in silicates, The Journal of Physical Chemistry, vol.88, pp.1518-1522, 1984.

C. M. Hughes, T. G. Jones, S. Pelham, P. Fletcher, and C. Hall, Determining cement composition by fourier transform infrared spectroscopy, Advn Cem Bas Mat, vol.2, pp.91-104, 1995.

R. Ylmén, U. Jäglid, B. Steenari, and I. Panas, Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques, vol.39, pp.433-439, 2009.

S. Teir, H. Revitzer, S. Eloneva, C. Fogelholm, and R. Zevenhoven, Dissolution of natural serpentinite in mineral and organic acids, International Journal of Mineral Processing, vol.83, pp.36-46, 2007.

G. Alexander, M. M. Maroto-valer, and P. Gafarova-aksoy, Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation, Fuel, vol.86, pp.273-281, 2007.

Z. H. Li and R. S. Bowman, Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite, Environmental Science & Technology, vol.31, pp.2407-2412, 1997.

G. E. Boyd, A. W. Adamson, and L. S. Myers, The Exchange Adsorption Of Ions From Aqueous Solutions By Organic Zeolites, Journal of the American Chemical Society, vol.2, pp.2836-2848, 1947.

C. D. Chang and A. J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, Journal of Catalysis, vol.47, pp.249-259, 1977.

M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki et al., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, p.246, 2009.

H. Chang and W. Shih, Synthesis of Zeolites A and X from Fly Ashes and Their Ion-Exchange Behavior with Cobalt Ions, Industrial & Engineering Chemistry Research, vol.39, pp.4185-4191, 2000.

Q. Liu, H. Xu, and A. Navrotsky, Nitrate cancrinite: Synthesis, characterization, and determination of the enthalpy of formation, Microporous and Mesoporous Materials, vol.87, pp.146-152, 2005.

A. V. Borhade, T. A. Kshirsagar, A. G. Dholi, and J. A. Agashe, Removal of Heavy Metals Cd2+, Pb2+, and Ni2+From Aqueous Solutions Using Synthesized Azide Cancrinite, Journal of Chemical & Engineering Data, vol.60, pp.586-593, 2015.

A. V. Borhade, T. A. Kshirsagar, S. G. Wakchaure, and A. G. Dholi, Synthesis, characterization and gas sensing performance of aluminosilicate azide cancrinite, Bulletin of Materials Science, vol.39, pp.1557-1563, 2016.

K. Hackbarth, T. M. Gesing, M. Fechtelkord, F. Stief, and J. C. Buhl, Synthesis and crystal structure of carbonate cancrinite Na8, Microporous and Mesoporous Materials, vol.30, pp.347-358, 1999.

W. Qiu and Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinitetype zeolite synthesized from fly ash, Chemical Engineering Journal, vol.145, pp.483-488, 2009.

K. J. Sung and K. M. , The removal of iron and cobalt from aqueous solutions by ion exchange with Na-Y zeolite: batch, semi-batch and continuous operation, Journal of Chemical Technology & Biotechnology, vol.77, pp.633-640, 2002.

S. Ahmed, S. Chughtai, and M. A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite, Separation and Purification Technology, vol.13, pp.57-64, 1998.

M. A. Keane, The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.138, pp.11-20, 1998.

A. Langella, M. Pansini, P. Cappelletti, B. De-gennaro, M. De'-gennaro et al., NH+4, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, Microporous and Mesoporous Materials, vol.37, pp.337-343, 2000.

S. M. Bosco, R. S. Jimenez, and W. A. Carvalho, Removal of toxic metals from wastewater by Brazilian natural scolecite, Journal of Colloid and Interface Science, vol.281, pp.424-431, 2005.

E. Erdem, N. Karapinar, and R. Donat, The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science, vol.280, pp.309-314, 2004.

B. Bi?kup and B. Suboti?, Kinetic analysis of the exchange processes between sodium ions from zeolite A and cadmium, copper and nickel ions from solutions, Separation and Purification Technology, vol.37, pp.17-31, 2004.

R. Shawabkeh, A. Al-harahsheh, M. Hami, and A. Khlaifat, Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater, Fuel, vol.83, pp.981-985, 2004.

A. M. El-kamash, A. A. Zaki, and M. A. Geleel, Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A, J. Hazard. Mater, vol.127, pp.211-220, 2005.

U. Wingenfelder, C. Hansen, G. Furrer, and R. Schulin, Removal of Heavy Metals from Mine Waters by Natural Zeolites, Environmental Science & Technology, vol.39, pp.4606-4613, 2005.

Ö. Yavuz, Y. Altunkaynak, and F. Güzel, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research, vol.37, pp.948-952, 2003.

J. Peri?, M. Trgo, N. Vukojevi?, and . Medvidovi?, Removal of zinc, copper and lead by natural zeolitea comparison of adsorption isotherms, Water Research, vol.38, pp.1893-1899, 2004.

C. Cabrera, C. Gabaldón, and P. , Sorption characteristics of heavy metal ions by a natural zeolite, Journal of Chemical Technology & Biotechnology, vol.80, pp.477-481, 2005.

B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. Mckay et al., Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems, Chemical Engineering Journal, vol.346, pp.258-270, 2018.

R. I. Yousef, B. El-eswed, and A. A. Al-muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies, vol.171, pp.1143-1149, 2011.

S. Lagergren, About the theroy of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens. Handlingar, pp.24-1898

C. Wong, J. P. Barford, G. Chen, and G. Mckay, Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, Journal of Environmental Chemical Engineering, vol.2, pp.698-707, 2014.

Y. C. Wong, Y. S. Szeto, W. H. Cheung, and G. Mckay, Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan, Journal of Applied Polymer Science, vol.92, pp.1633-1645, 2004.

Y. S. Ho and G. Mckay, Pseudo-second order model for sorption processes, Process Biochemistry, vol.34, pp.451-465, 1999.

I. Langmuir, The Adsorption Of Gases On Plane Surfaces Of Glass, Mica And Platinum, Journal of the American Chemical Society, vol.40, pp.1361-1403, 1918.

H. Freundlich and W. Heller, The Adsorption of cis-and trans-Azobenzene, Journal of the American Chemical Society, pp.2228-2230, 1939.

A. A. Serjeant, The determination of ionization constants, 1984.

Y. Marcus, Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K, Journal of the Chemical Society, vol.87, pp.2995-2999, 1991.

E. R. Nightingale, Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions, The Journal of Physical Chemistry, vol.63, pp.1381-1387, 1959.

, Journal of the American Chemical Society, vol.128, pp.5585-5585, 2005.

L. Canet and P. Seta, Extraction and separation of metal cations in solution by supported liquid membrane using lasalocid A as carrier, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01727999

Y. Z. Chou, , 2006.

S. Kang, J. Lee, S. Moon, and K. Kim, Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, 2004.

J. P. Chen and L. Wang, Characterization Of A Ca-Alginate Based Ion-Exchange Resin And Its Applications In Lead, Copper, And Zinc Removal, Separation Science and Technology, vol.36, pp.3617-3637, 2001.

H. Mimura and T. Kanno, Distribution and Fixation of Cesium and Strontium in Zeolite A and Chabazite, Journal of Nuclear Science and Technology, vol.22, pp.284-291, 1985.

H. Mimura and K. Akiba, Adsorption Behavior of Cesium and Strontium on Synthetic Zeolite P, Journal of Nuclear Science and Technology, vol.30, pp.436-443, 1993.

J. Buhl, F. Stief, M. Fechtelkord, T. M. Gesing, U. Taphorn et al., Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na7.6[AlSiO4]6(NO3)1.6(H2O)2, Journal of Alloys and Compounds, vol.305, pp.93-102, 2000.

A. J. Schwanke, C. W. Lopes, and S. B. Pergher, Synthesis of Mesoporous Material from Chrysotile-Derived Silica, Materials Sciences and Applications, pp.68-72, 2013.

C. Chen, S. Xiao, and M. E. Davis, Studies on ordered mesoporous materials III. Comparison of MCM-41 to mesoporous materials derived from kanemite, Microporous Materials, 4, pp.1-20, 1995.

P. Mcmillan, Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy, vol.69, pp.622-644, 1984.

R. K. Biswas, P. Khan, S. Mukherjee, A. K. Mukhopadhyay, J. Ghosh et al., Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS, J. Non-Cryst. Solids, vol.488, pp.1-9, 2018.

J. C. Mikkelsen and F. L. Galeener, Thermal equilibration of raman active defects in vitreous silica, J. Non-Cryst. Solids, vol.37, pp.71-84, 1980.

G. Hu, W. Li, J. Xu, G. He, Y. Ge et al., Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt, Materials Letters, vol.170, pp.179-182, 2016.

I. P. Swainson, M. T. Dove, and D. C. Palmer, Infrared and Raman spectroscopy studies of the ?-? phase transition in cristobalite, Phys. Chem. Miner, vol.30, pp.353-365, 2003.

G. D. Chukin and V. I. Malevich, Infrared spectra of silica, Journal of Applied Spectroscopy, vol.26, pp.223-229, 1977.

L. V. Bantignies, D. Maurin, P. Hermet, P. Dieudonné, M. W. Man et al., Insights into the Self-Directed Structuring of Hybrid Organic-Inorganic Silicas through Infrared Studies, J. Phys. Chem, vol.110, pp.15797-15802, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00163295

F. Boccuzzi, S. Coluccia, G. Ghiotti, C. Morterra, and A. Zecchina, Infrared study of surface modes on silica, The Journal of Physical Chemistry, vol.82, pp.1298-1303, 1978.

D. Bergé-lefranc, O. Schäf, R. Denoyel, J. Bergé-lefranc, R. Guieu et al., The extraction of creatinine from a physiological medium by a microporous solid and its quantification by diffuse reflectance UV spectroscopy, Microporous and Mesoporous Materials, vol.129, pp.144-148, 2010.

D. Bergé-lefranc, C. Vagner, R. Calaf, H. Pizzala, R. Denoyel et al., In vitro elimination of protein bound uremic toxin p-cresol by MFI-type zeolites, Microporous and Mesoporous Materials, vol.153, pp.288-293, 2012.

B. M. Weckhuysen, R. Rao, J. Pelgrims, R. A. Schoonheydt, P. Bodart et al., Synthesis, Spectroscopy and Catalysis of