W. Paw and R. Eisenberg, Inorg. Chem, vol.36, pp.2287-2293, 1997.

C. Viala and C. Coudret, Inorganica Chim. Acta, vol.359, pp.984-989, 2006.

C. E. Mccusker and J. K. Mccusker, Inorg. Chem, vol.50, pp.1656-1669, 2011.

V. Goudy, J. Maynadié, X. L. Goff, D. Meyer, and M. Fontecave, New J Chem, vol.40, pp.1704-1714, 2016.

X. Zhu, M. Zhang, A. Yu, C. Wang, J. Cheng et al., Publications Keywords: carbon dioxide reduction · hydrogen · metalorganic frameworks · photocatalysis · rhodium [1] For selected recent Reviews, see: a), Coord. Chem. Rev, vol.130, pp.631-675, 1983.

O. Takeda, C. Ishitani, ). Y. Izumi-;-c, R. N. Windle, and . Perutz, Coord. Chem. Rev, vol.254, pp.2562-2570, 2010.

D. J. Cole-hamilton, Science, vol.299, pp.1702-1706, 2003.

J. Wang, . P. Wang-;-m, C. Conley, and . Coperet, Pure Appl. Chem, vol.81, pp.843-851, 2009.

J. Mao, K. Li, T. C. Peng-;-b)-s, O. K. Roy, M. Varghese et al., For selected recent Reviews, vol.3, pp.562-577, 2006.

). X. Zhao, X. Y. Bao, W. Guo, and F. Y. Lee, Mater. Today, vol.9, pp.32-39, 2006.

). U. Diaz, M. Boronat, and A. Corma, Proc. R. Soc. London Ser. A, vol.468, pp.1303-1324, 1927.

C. , Curr. Org. Chem, vol.17, pp.1303-1324, 2013.

M. J. Ingleson, J. P. Barrio, J. B. Guilbuad, Y. Z. Khimyak, M. J. Doonan et al., Rosseinsky, Angew. Chem. Int. Ed, vol.131, pp.7424-7427, 2008.

. Angew, ). X. Chem-;-d, F. Zhang, A. Llabres, J. Corma et al., J. Am. Chem. Soc, vol.121, pp.16997-17003, 2009.

T. Zhang, F. Song, and W. Lin, b) B. Pugin, J. Mol. Catal. A, vol.48, pp.273-279, 1996.

D. Esken, X. Zhang, O. I. Lebedev, F. Schroder, R. A. Fischer-;-b)-y et al., Eur. J. Inorg. Chem, vol.19, pp.1876-1887, 2009.

C. C. Guo, J. X. Song, X. B. Chen, G. F. Jiang-;-b)-h, B. Blaser et al., Adv. Synth. Catal, vol.157, pp.12639-12641, 2000.

C. Copøret, M. Chabanas, R. P. Saint-arroman, and J. M. Basset, Angew. Chem. Int. Ed, vol.42, pp.156-181, 2003.

. Angew and . Chem, , vol.115, pp.164-191, 2003.

C. E. Song, D. H. Kim, and D. S. Choi, Eur. J. Inorg. Chem, vol.41, pp.708-720, 2006.

F. Dal-santo, C. Liguori, M. Pirovano, . M. Guidotti-;-e)-j, and . Thomas, Phys. Chem. Chem. Phys, vol.15, pp.7647-7661, 2010.

H. Fei, J. Shin, Y. S. Meng, M. Adelhardt, J. Sutter et al., J. Am. Chem. Soc, vol.136, pp.4965-4973, 2014.

C. Wang, Z. Xie, K. E. Dekrafft, and W. Lin, J. Am. Chem. Soc, vol.133, pp.13445-13454, 2011.

M. Chen and . Hong, Chem. Sci, vol.5, pp.3808-3813, 2014.

C. H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. et al., J. Am. Chem. Soc, vol.135, pp.10942-10945, 2013.

E. Steckhan, S. Hermann, R. Ruppert, E. Dietz, M. Frede et al., Organometallics, vol.10, pp.1568-1577, 1991.

C. Caix, S. Chardon-noblat, and A. Deronzier, J. Electroanal. Chem, vol.434, pp.163-170, 1997.

Q. Liu, L. Wu, S. Gulak, N. Rockstroh, R. Jackstell et al., Angew. Chem. Int. Ed, vol.53, pp.7085-7088, 2014.

. Angew, F. Chem-;-b)-a.-boddien, C. Gartner, P. Federsel, D. Sponholz et al., Angew. Chem. Int. Ed, vol.126, pp.6411-6414, 2011.

. Angew, B. Chem-;-c)-a.-boddien, H. Loges, M. Junge, ). S. Beller-;-d et al., ChemSusChem, vol.123, pp.603-608, 2008.

-. Wiley, &. Gmbh, . Co, ;. S. Kgaa, M. K. Ubnoske et al., Weinheim 607 Communications

J. Meyer, . Am, S. Kang, T. J. Zhang, M. Meyer et al., Angew. Chem. Int. Ed, vol.136, pp.8709-8713, 2014.

. Angew and . Chem, , vol.126, pp.8853-8857, 2014.

). D. Mellman, E. Barsch, M. Bauer, K. Grabow, A. Boddien et al., Electrochim. Acta, vol.20, pp.127-136, 2014.

). H. Wang, L. Aldoen, F. J. Disalovo, and H. D. Abruna, Phys. Chem. Chem. Phys, vol.10, pp.3739-3751, 2008.

). U. Kçlle and M. Grützel, Angew. Chem. Int. Ed. Engl, vol.26, pp.567-570, 1987.

. Angew, W. K. Chem-;-e.-kumaran, and . Leong, Organometallics, vol.99, pp.1068-1072, 1987.

J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., J. Am. Chem. Soc, vol.130, pp.13850-13851, 2008.

S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri et al., Phys. Chem. Chem. Phys, vol.14, pp.1614-1626, 2012.

W. A. Maza and A. J. Morris, J. Phys. Chem. C, vol.118, pp.8803-8817, 2014.

). W. Maza, S. R. Ahrenholtz, C. C. Epley, C. S. Day, and A. J. Morris, J. Phys. Chem. C, vol.118, pp.14200-14210, 2014.

K. T. Butler, C. H. Hendon, and A. Walsh, J. Am. Chem. Soc, vol.136, pp.2703-2706, 2014.

T. Yui, Y. Tamaki, K. Sekizawa, and O. Ishitani, Top. Curr. Chem, vol.303, pp.151-184, 2011.

H. Takeda, H. Koizumi, K. Okamoto, and O. Ishitani, Chem. Commun, vol.50, pp.1491-1493, 2014.

M. L. Clark, K. A. Grice, C. E. Moore, A. L. Rheingold, and C. P. Kubiak, Inorg. Chem, vol.5, pp.9283-9289, 2010.

). Y. Himeda, S. Miyazawa, and T. Hirose, ChemSusChem, vol.4, pp.487-493, 2011.

C. Creutz and M. H. Chou, J. Am. Chem. Soc, vol.131, pp.2794-2795, 2009.

N. Himeda, H. Onozawa-komatsuzaki, H. Sugihara, K. Arakawa, and . Kasuga, Organometallics, vol.23, pp.1480-1483, 2004.

N. S. Lewis, G. Crabtree, A. J. Nozik, M. R. Wasielewski, P. Alivisatos et al., Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, 2005.

N. S. Lewis, Powering the Planet, MRS Bull, vol.32, issue.10, 2007.

G. W. Crabtree and N. S. Lewis, Solar Energy Conversion. Phys. Today, vol.60, issue.3, pp.37-42, 2007.

N. S. Lewis and D. G. Nocera, Powering the Planet: Chemical Challenges in Solar Energy Utilization, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.43, pp.15729-15735, 2006.

B. O'regan, M. Gra?zel, and . Low-cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO 2 Films, Nature, vol.353, issue.6346, pp.737-740, 1991.

M. Gra?zel, Photoelectrochemical Cells, Nature, vol.414, issue.6861, pp.338-344, 2001.

C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann et al., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc, vol.80, issue.12, pp.3157-3171, 1997.

M. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, and T. E. Mallouk, Photocatalytic Water Oxidation in a Buffered Tris, p.2

, Ruthenium Complex-Colloidal IrO 2 System, J. Phys. Chem. A, vol.104, issue.22, pp.5275-5280, 2000.

T. Takata, A. Tanaka, M. Hara, J. N. Kondo, and K. Domen, Recent Progress of Photocatalysts for Overall Water Splitting, Catal. Today, vol.44, issue.1, pp.17-26, 1998.

Q. Sun, Z. Dai, X. Meng, and F. Xiao, Porous Polymer Catalysts with Hierarchical Structures, Chem. Soc. Rev, vol.44, issue.17, pp.6018-6034, 2015.

Y. Zhang and J. Y. Ying, Main-Chain Organic Frameworks with Advanced Catalytic Functionalities, ACS Catal, vol.2015, issue.4, pp.2681-2691

X. Wang, M. Chrzanowski, D. Yuan, B. S. Sweeting, and S. Ma, Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst, Chem. Mater, vol.26, issue.4, pp.1639-1644, 2014.

M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke et al., Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks, Acc. Chem. Res, vol.34, issue.4, pp.319-330, 2001.

R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams et al., Functionalized Conjugated Microporous Polymers, Macromolecules, vol.42, issue.22, pp.8809-8816, 2009.

Z. Xie, C. Wang, K. E. Dekrafft, and W. Lin, Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis, J. Am. Chem. Soc, issue.7, pp.2056-2059, 2011.

C. Wang, Z. Xie, K. E. Dekrafft, and W. Lin, Light-Harvesting Cross-Linked Polymers for Efficient Heterogeneous Photocatalysis

, ACS Appl. Mater. Interfaces, vol.2012, issue.4, pp.2288-2294

P. Kaur, J. T. Hupp, and S. T. Nguyen, Porous Organic Polymers in Catalysis: Opportunities and Challenges, ACS Catal, vol.2011, issue.7, pp.819-835

A. P. Cote, H. M. El-kaderi, H. Furukawa, J. R. Hunt, and O. M. Yaghi, Reticular Synthesis of Microporous and Mesoporous 2d

, Covalent Organic Frameworks. J. Am. Chem. Soc, vol.129, issue.43, 2007.

P. Kuhn, M. Antonietti, A. Thomas, and . Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis

, Angew. Chem., Int. Ed, vol.47, issue.18, pp.3450-3453, 2008.

E. L. Spitler, W. R. Dichtel, and . Lewis, Acid-Catalysed Formation of Two-Dimensional Phthalocyanine Covalent Organic Frameworks, Nat. Chem, vol.2010, issue.8, pp.672-677

D. Wu, F. Xu, B. Sun, R. Fu, H. He et al., Design and Preparation of Porous Polymers, Chem. Rev, vol.2012, issue.7, pp.3959-4015

N. Aratani, D. Kim, and A. Osuka, Discrete Cyclic Porphyrin Arrays as Artificial Light-Harvesting Antenna, Acc. Chem. Res, vol.42, issue.12, 1922.

D. Gust, T. A. Moore, and A. L. Moore, Solar Fuels Via Artificial Photosynthesis, Acc. Chem. Res, vol.42, issue.12, pp.1890-1898, 2009.

M. C. So, G. P. Wiederrecht, J. E. Mondloch, J. T. Hupp, and O. K. Farha, Metal-Organic Framework Materials for Light-Harvesting and Energy Transfer, Chem. Commun, vol.51, issue.17, pp.3501-3510, 2015.

V. Balzani, G. Bergamini, P. Ceroni, and F. Vogtle, Electronic Spectroscopy of Metal Complexes with Dendritic Ligands, Coord. Chem. Rev, issue.3?4, pp.525-535, 2007.

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, Zeolite-Like Metal?Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts, J. Am. Chem. Soc, vol.130, issue.38, pp.12639-12641, 2008.

J. Wang, C. Wang, and W. Lin, Metal?Organic Frameworks for Light Harvesting and Photocatalysis, ACS Catal, vol.2012, issue.12, pp.2630-2640

C. A. Kent, D. Liu, L. Ma, J. M. Papanikolas, T. J. Meyer et al., Light Harvesting in Microscale Metal?Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching, J. Am. Chem. Soc, issue.33, pp.12940-12943, 2011.

C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer et al., Energy Transfer Dynamics in Metal?Organic Frameworks, J. Am. Chem. Soc, issue.37, pp.12767-12769, 2010.

B. Durham, J. V. Caspar, J. K. Nagle, and T. J. Meyer, 2?-bipyridine) Ruthenium (2+) Ion, Photochemistry of Tris, vol.104, pp.4803-4810, 1982.

V. Artero, M. Chavarot-kerlidou, and M. Fontecave, Splitting Water with Cobalt, Angew. Chem., Int. Ed, vol.50, issue.32, pp.7238-7266, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01063099

J. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell et al., Conjugated Microporous Poly(aryleneethynylene) Networks, Angew. Chem., Int. Ed, vol.46, issue.45, pp.8574-8578, 2007.

J. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu et al., Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks, J. Am. Chem. Soc, vol.130, issue.24, pp.7710-7720, 2008.

R. Dawson, A. I. Cooper, and D. J. Adams, Nanoporous Organic Polymer Networks, Prog. Polym. Sci, vol.2012, issue.4, pp.530-563

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem, vol.57, issue.4, pp.603-619, 1985.

C. D. Wood, B. Tan, A. Trewin, F. Su, M. J. Rosseinsky et al., Microporous Organic Polymers for Methane Storage, Adv. Mater, vol.20, issue.10, 1916.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Muller et al., Conversion of Light to Electricity by cis-X 2 bis(2, 2?-bipyridyl-4, 4?-dicarboxylate) ruthenium (II) Charge-Transfer Sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes, J. Am. Chem. Soc, vol.115, issue.14, pp.6382-6390, 1993.

L. Pazderski, T. Pawlak, J. Sitkowski, and L. Kozerski, Ru(II) and Os(II) Cationic Complexes with 2,2?-Bipyridine and 1,10-Phenanthroline, Sz?yk, E. 1 H NMR Assignment Corrections and 1 H, 13 C, 15 N NMR Coordination Shifts Structural Correlations in Fe(II), pp.450-457, 2010.

K. M. Omberg, J. R. Schoonover, J. A. Treadway, R. M. Leasure, R. B. Dyer et al., Mid-Infrared Spectrum of

*. , J. Am. Chem. Soc, vol.119, issue.30, pp.7013-7018, 1997.

O. F. Mohammed, D. Xiao, V. S. Batista, and E. T. Nibbering, Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling, J. Phys. Chem. A, vol.118, pp.3090-3099, 2014.

J. Sun, W. Yu, A. Usman, T. T. Isimjan, S. Dgobbo et al., Generation of Multiple Excitons in Ag 2 S Quantum Dots: Single High-Energy Versus Multiple-Photon Excitation, J. Phys. Chem. Lett, vol.5, issue.4, pp.659-665, 2014.

J. Kallioinen, G. Benko, V. Sundstrom, J. E. Korppi-tommola, and A. P. Yartsev, Electron Transfer from the Singlet and Triplet Excited States of Ru (dcbpy) 2 (NCS) 2 into Nanocrystalline TiO 2 Thin Films, J. Phys. Chem. B, issue.17, pp.4396-4404, 2002.

J. Wang, C. Wang, K. E. Dekrafft, and W. Lin, Cross-Linked Polymers with Exceptionally High Ru(bipy) 3 2+ Loadings for Efficient Heterogeneous Photocatalysis, ACS Catal, vol.2012, issue.3, pp.417-424

A. Reynal, E. Pastor, M. A. Gross, S. Selim, E. Reisner et al., Unravelling the PH-dependence of a Molecular Photocatalytic System for Hydrogen Production, Chem. Sci, vol.2015, issue.8, pp.4855-4859

X. Dong, M. Zhang, R. Pei, Q. Wang, D. Wei et al., A Crystalline Copper(II) Coordination Polymer for the Efficient Visible-Light-Driven Generation of Hydrogen, Angew. Chem., Int. Ed, vol.55, issue.6, pp.2073-2077, 2016.

S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, and S. Ott, Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal?Organic Framework, J. Am. Chem. Soc, vol.135, issue.45, pp.16997-17003, 2013.

K. Sasan, Q. Lin, C. Mao, and P. Feng, Incorporation of Iron Hydrogenase Active Sites into a Highly Stable Metal-Organic Framework for Photocatalytic Hydrogen Generation, Chem. Commun, vol.50, issue.72, pp.10390-10393, 2014.

A. Bhattacharjee, M. Chavarot-kerlidou, E. S. Andreiadis, M. Fontecave, M. J. Field et al., Combined Experimental? Theoretical Characterization of the Hydrido-Cobaloxime
URL : https://hal.archives-ouvertes.fr/hal-01018371

, Inorg. Chem, vol.51, issue.13, pp.7087-7093, 2012.

J. Bartelmess, A. J. Francis, K. A. El-roz, F. N. Castellano, W. W. Weare et al., Light-Driven Hydrogen Evolution by BODIPY-Sensitized Cobaloxime Catalysts, Inorg. Chem, vol.53, issue.9, pp.4527-4534, 2014.

A. Panagiotopoulos, K. Ladomenou, D. Sun, V. Artero, and A. G. Coutsolelos, Photochemical Hydrogen Production and Cobaloximes: The Influence of the Cobalt Axial N-Ligand on the System Stability, Dalton Trans, vol.45, issue.15, pp.6732-6738, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301908

R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill et al., Visible Light Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts, Angew. Chem., Int. Ed, vol.55, issue.5, pp.1792-1796, 2016.

N. S. Lewis and D. G. Nocera, Bridge, vol.45, pp.41-47, 2015.

N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15729-15735, 2006.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets et al., Chem. Rev, vol.110, pp.6474-6502, 2010.

J. Qiao, Y. Liu, F. Hong, and J. Zhang, Chem. Soc. Rev, vol.43, pp.631-675, 2014.

C. Costentin, M. Robert, and J. Savéant, Chem. Soc. Rev, vol.42, pp.2423-2436, 2013.

J. England, E. Bill, T. Weyhermüller, F. Neese, M. Atanasov et al., Inorg. Chem, vol.54, pp.12002-12018, 2015.

M. Wang, T. Weyhermüller, E. Bill, S. Ye, and K. Wieghardt, Inorg. Chem, vol.55, pp.5019-5036, 2016.

M. Wang, J. England, T. Weyhermu, and K. Wieghardt, Inorg. Chem, vol.53, pp.2276-2287, 2014.

C. C. Scarborough, K. M. Lancaster, S. Debeer, T. Weyhermueller, S. Sproules et al., Inorg. Chem, vol.51, pp.3718-3732, 2012.

A. Winter, G. R. Newkome, and U. S. Schubert, ChemCatChem, 1384.

C. Kaes, A. Katz, and M. W. Hosseini, Chem. Rev, vol.100, pp.3553-3590, 2000.

J. Hawecker, J. Lehn, and R. Ziessel, Chem. Commun, pp.536-538, 1983.

N. Elgrishi, , 2015.

J. R. Aranzaes, M. Daniel, and D. Astruc, Can. J. Chem, vol.84, pp.288-299, 2006.

C. G. Zoski, Handbook of Electrochemustry, 2007.

M. L. Pegis, J. A. Roberts, D. J. Wasylenko, E. A. Mader, A. M. Appel et al., Inorg. Chem, vol.54, pp.11883-11888, 2015.

M. L. Clark, K. A. Grice, C. E. Moore, A. L. Rheingold, and C. P. Kubiak, Chem. Sci, vol.5, pp.1894-1900, 2014.

F. Franco, C. Cometto, F. Sordello, C. Minero, L. Nencini et al., ChemElectroChem, vol.2, pp.1372-1379, 2015.

J. Tory, G. Gobaille-shaw, A. M. Chippindale, and F. Hartl, J. Organomet. Chem, vol.760, pp.30-41, 2014.

J. Tory, B. Setterfield-price, R. A. Dryfe, and F. Hartl, ChemElectroChem, vol.2, pp.213-217, 2015.

J. Hawecker, J. M. Lehn, and R. Ziessel, Helv. Chim. Acta, vol.69, 1986.

J. Hawecker, J. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun, vol.984, pp.328-330, 1984.

J. Savéant, Chem. Rev, vol.108, pp.2348-2378, 2008.

G. Sahara and O. Ishitani, Inorg. Chem, vol.54, pp.5096-5104, 2015.

B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, J. Chem. Soc., Chem. Commun, pp.1414-1416, 1985.

F. P. Johnson, M. W. George, F. Hartl, and J. J. Turner, Organometallics, vol.15, pp.3374-3387, 1996.

J. M. Smieja and C. P. Kubiak, Inorg. Chem, vol.49, pp.9283-9289, 2010.

S. A. Chabolla, E. A. Dellamary, C. W. Machan, F. A. Tezcan, and C. P. Kubiak, Inorg. Chim. Acta, vol.422, pp.109-113, 2014.

K. Wong, W. Chung, and C. Lau, J. Electroanal. Chem, vol.453, pp.161-170, 1998.

J. M. Smieja, E. E. Benson, B. Kumar, K. A. Grice, C. S. Seu et al., Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15646-15650, 2012.

E. E. Benson and C. P. Kubiak, Chem. Commun, vol.48, pp.7374-7376, 2012.

S. Meister, R. O. Reithmeier, M. Tschurl, U. Heiz, and B. Rieger, ChemCatChem, vol.7, pp.690-697, 2015.

J. A. Keith, K. A. Grice, C. P. Kubiak, and E. A. Carter, J. Am. Chem. Soc, vol.135, pp.15823-15829, 2013.

C. Riplinger and E. A. Carter, , vol.5, pp.900-908, 2015.

C. Riplinger, M. D. Sampson, A. M. Ritzmann, C. P. Kubiak, and E. A. Carter, J. Am. Chem. Soc, vol.136, pp.16285-16298, 2014.

E. E. Benson, M. D. Sampson, K. A. Grice, J. M. Smieja, J. D. Froehlich et al., Angew. Chem., Int. Ed, vol.52, pp.4841-4844, 2013.

E. E. Benson, K. A. Grice, J. M. Smieja, and C. P. Kubiak, Polyhedron, vol.58, pp.229-234, 2013.

M. D. Sampson, J. D. Froehlich, J. M. Smieja, E. E. Benson, I. D. Sharp et al., Energy Environ. Sci, vol.6, pp.3748-3755, 2013.

K. A. Grice, N. X. Gu, M. D. Sampson, and C. P. Kubiak, Dalton Trans, vol.42, pp.8498-8503, 2013.

Y. Hayashi, S. Kita, B. S. Brunschwig, and E. Fujita, J. Am. Chem. Soc, vol.125, pp.11976-11987, 2003.

J. Agarwal, E. Fujita, H. F. Schaefer, and J. T. Muckerman, J. Am. Chem. Soc, vol.134, pp.5180-5186, 2012.

C. W. Machan, S. A. Chabolla, J. Yin, M. K. Gilson, F. A. Tezcan et al., J. Am. Chem. Soc, vol.136, pp.14598-14607, 2014.

, Downloaded by Universite Pierre et Marie Curie on, View Article Online Chem. Soc. Rev. This journal is © The Royal Society of Chemistry, vol.13, 2017.

H. Hori, O. Ishitani, K. Koike, F. P. Johnson, and T. Ibusuki, Energy Convers. Manage, vol.36, pp.621-624, 1995.

K. Koike, H. Hori, M. Ishizuka, J. R. Westwell, K. Takeuchi et al., Organometallics, vol.16, pp.5724-5729, 1997.

H. Takeda, K. Koike, H. Inoue, and O. Ishitani, J. Am. Chem. Soc, vol.130, pp.2023-2031, 2008.

T. Morimoto, T. Nakajima, S. Sawa, R. Nakanishi, D. Imori et al., J. Am. Chem. Soc, vol.135, pp.16825-16828, 2013.

A. Kobayashi, H. Konno, K. Sakamoto, A. Sekine, Y. Ohashi et al., Chem. -Eur. J, vol.11, pp.4219-4226, 2005.

Y. Tamaki, K. Koike, T. Morimoto, and O. Ishitani, J. Catal, vol.304, pp.22-28, 2013.

Y. Tamaki, K. Koike, and O. Ishitani, Chem. Sci, vol.6, pp.7213-7221, 2015.

B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue et al., Inorg. Chem, vol.44, pp.2326-2336, 2005.

H. Hori, F. P. Johnson, K. Koike, O. Ishitani, and T. Ibusuki, J. Photochem. Photobiol., A, vol.96, pp.171-174, 1996.

H. Hori, J. Ishihara, K. Koike, K. Takeuchi, T. Ibusuki et al., J. Photochem. Photobiol., A, vol.120, pp.119-124, 1999.

S. Sato, K. Koike, H. Inoue, and O. Ishitani, Photochem. Photobiol. Sci, vol.6, pp.454-461, 2007.

Y. Tamaki, K. Watanabe, K. Koike, H. Inoue, T. Morimoto et al., Faraday Discuss, vol.155, pp.115-127, 2012.

E. Kato, H. Takeda, K. Koike, K. Ohkubo, and O. Ishitani, Chem. Sci, vol.6, pp.3003-3012, 2015.

Z. Bian, K. Sumi, M. Furue, S. Sato, K. Koike et al., Dalton Trans, pp.983-993, 2009.

C. D. Windle, M. V. Câmpian, A. Duhme-klair, E. A. Gibson, R. N. Perutz et al., Chem. Commun, vol.48, pp.8189-8191, 2012.

C. Matlachowski, B. Braun, S. Tschierlei, and M. Schwalbe, Inorg. Chem, vol.54, pp.10351-10360, 2015.

J. Schneider, K. Q. Vuong, J. A. Calladine, X. Sun, A. C. Whitwood et al., Inorg. Chem, vol.50, pp.11877-11889, 2011.

A. Nakada, K. Koike, T. Nakashima, T. Morimoto, and O. Ishitani, Inorg. Chem, vol.54, pp.1800-1807, 2015.

Y. Tamaki, K. Koike, T. Morimoto, Y. Yamazaki, and O. Ishitani, Inorg. Chem, vol.52, pp.11902-11909, 2013.

H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun, vol.197, pp.131-132, 1987.

H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, pp.181-186, 1987.

J. R. Pugh, M. R. Bruce, B. P. Sullivan, and T. J. Meyer, Inorg. Chem, vol.30, pp.86-91, 1991.

C. W. Machan, M. D. Sampson, and C. P. Kubiak, J. Am. Chem. Soc, vol.137, pp.8564-8571, 2015.

S. Chardon-noblat, P. Costa, A. Deronzier, S. Maniguet, and R. Ziessel, J. Electroanal. Chem, vol.529, pp.135-144, 2002.

B. A. Johnson, S. Maji, H. Agarwala, T. A. White, E. Mijangos et al., Angew. Chem., Int. Ed, vol.2, issue.0, 1825.

L. Duan, G. F. Manbeck, M. Kowalczyk, D. J. Szalda, J. T. Muckerman et al., Inorg. Chem, vol.55, pp.4582-4594, 2016.

H. Nagao, T. Mizukawa, and K. Tanaka, Inorg. Chem, vol.33, pp.3415-3420, 1994.

Z. Chen, C. Chen, D. R. Weinberg, P. Kang, J. J. Concepcion et al., Chem. Commun, vol.47, pp.12607-12609, 2011.

Z. Chen, P. Kang, M. Zhang, and T. J. Meyer, Chem. Commun, vol.50, pp.335-337, 2014.

Z. Chen, J. J. Concepcion, M. K. Brennaman, P. Kang, M. R. Norris et al., Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15606-15611, 2012.

M. M. Ali, H. Sato, M. M. Ali, H. Sato, T. Mizukawa et al., Chem. Commun, vol.1, issue.9, pp.9-11

J. M. Lehn and R. Ziessel, J. Organomet. Chem, vol.382, pp.157-173, 1990.

P. Voyame, K. E. Toghill, M. A. Méndez, and H. H. Girault, Inorg. Chem, vol.52, pp.10949-10957, 2013.

H. Ishida, T. Terada, K. Tanaka, and T. Tanaka, Inorg. Chem, vol.29, pp.905-911, 1990.

A. Rosas-hernández, H. Junge, and M. Beller, ChemCatChem, vol.7, 2015.

Y. Kuramochi, M. Kamiya, and H. Ishida, Inorg. Chem, vol.53, pp.3326-3332, 2014.

A. Paul, D. Connolly, M. Schulz, M. T. Pryce, and J. G. Vos, Inorg. Chem, vol.51, pp.1977-1979, 2012.

Y. Kuramochi, J. Itabashi, K. Fukaya, A. Enomoto, M. Yoshida et al., Chem. Sci, vol.6, pp.3063-3074, 2015.

S. Chardon-noblat, A. Deronzier, R. Ziessel, and D. Zsoldos, Inorg. Chem, vol.36, pp.5384-5389, 1997.

K. Toyohara, H. Nagao, T. Mizukawa, and K. Tanaka, Inorg. Chem, vol.34, pp.5399-5400, 1995.

D. H. Gibson, J. G. Andino, and M. S. Mashuta, Organometallics, vol.25, pp.3-5, 2006.

T. A. White, S. Maji, and S. Ott, Dalton Trans, vol.43, pp.15028-15037, 2014.

A. Begum and P. G. Pickup, Electrochem. Commun, vol.9, pp.2525-2528, 2007.

M. R. Bruce, E. Megehee, B. P. Sullivan, H. Thorp, T. R. O'toole et al., Organometallics, vol.7, pp.238-240, 1988.

M. R. Bruce, E. Megehee, B. P. Sullivan, H. H. Thorp, T. R. O'toole et al., Inorg. Chem, vol.31, pp.4864-4873, 1992.

S. Chardon-noblat, A. Deronzier, F. Hart, J. Van-slageren, and T. Mahabiersing, Eur. J. Inorg. Chem, pp.613-617, 2001.

J. Chauvin, F. Lafolet, S. Chardon-noblat, A. Deronzier, M. Jakonen et al., Chem. -Eur. J, vol.17, pp.4313-4322, 2011.

C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story et al., J. Chem. Soc., Chem. Commun, pp.796-797, 1985.

C. M. Bolinger, N. Story, B. P. Sullivan, and T. J. Meyer, Inorg. Chem, vol.27, pp.4582-4587, 1988.

C. Caix, S. Chardon-noblat, and A. Deronzier, J. Electroanal. Chem, vol.434, pp.163-170, 1997.

P. Paul, B. Tyagi, A. K. Bilakhiya, M. M. Bhadbhade, E. Suresh et al., This journal is © The Royal Society of Chemistry, vol.1, issue.9, 2017.

, Chem. Soc. Rev

M. B. Chambers, X. Wang, N. Elgrishi, C. H. Hendon, A. Walsh et al., ChemSusChem, vol.8, pp.603-608, 2015.

R. O. Reithmeier, S. Meister, B. Rieger, A. Siebel, M. Tschurl et al., Dalton Trans, vol.43, pp.13259-13269, 2014.

S. Sato, T. Morikawa, T. Kajino, and O. Ishitani, Angew. Chem., Int. Ed, vol.52, pp.988-992, 2013.

P. Paul, J. Chem. Sci, vol.114, pp.269-276, 2002.

A. G. Hossain, T. Nagaoka, and K. Ogura, Electrochim. Acta, vol.42, pp.2577-2585, 1997.

J. A. Ramos-sende, C. R. Arana, L. Hernandez, K. T. Potts, M. Keshevarz-k et al., Inorg. Chem, vol.34, pp.3339-3348, 1995.

M. Bourrez, F. Molton, S. Chardon-noblat, and A. Deronzier, Angew. Chem., Int. Ed, vol.50, pp.9903-9906, 2011.

J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich et al., Inorg. Chem, vol.52, pp.2484-2491, 2013.

C. W. Machan, C. J. Stanton, J. E. Vandezande, G. F. Majetich, H. F. Schaefer et al., Inorg. Chem, vol.54, pp.4-9, 2015.

M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A. L. Rheingold et al., J. Am. Chem. Soc, vol.136, pp.5460-5471, 2014.

M. D. Sampson and C. P. Kubiak, J. Am. Chem. Soc, vol.138, pp.1386-1393, 2016.

F. Franco, C. Cometto, F. Ferrero, F. Vallana, E. Sordello et al., Chem. Commun, vol.50, pp.14670-14673, 2014.

J. Agarwal, T. W. Shaw, H. F. Schaefer, and A. B. Bocarsly, Inorg. Chem, vol.54, pp.5285-5294, 2015.

H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak, and S. M. Cohen, Inorg. Chem, vol.2, issue.0, 6821.

M. Bourrez, M. Orio, F. Molton, H. Vezin, C. Duboc et al., Angew. Chem., Int. Ed, vol.53, 0240.

D. C. Grills, J. Farrington, B. H. Layne, S. V. Lymar, B. A. Mello et al., J. Am. Chem. Soc, vol.136, pp.5563-5566, 2014.

M. Hammouche, D. Lexa, M. Momenteau, and J. M. Saveant, J. Am. Chem. Soc, vol.113, pp.8455-8466, 1991.

L. Gamier, Y. Rollin, and J. Périchon, J. Organomet. Chem, vol.367, pp.347-358, 1989.

H. Takeda, H. Koizumi, K. Okamoto, and O. Ishitani, Chem. Commun, vol.50, pp.1491-1493, 2014.

P. L. Cheung, C. W. Machan, A. Y. Malkhasian, J. Agarwal, and C. P. Kubiak, Inorg. Chem, vol.55, pp.3192-3198, 2016.

C. Costentin, S. Drouet, M. Robert, and J. Savéant, Science, vol.338, pp.90-94, 2012.

C. Costentin, G. Passard, M. Robert, and J. Savéant, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.14990-14994, 2014.

C. Costentin, M. Robert, and J. M. Savéant, Acc. Chem. Res, vol.48, pp.2996-3006, 2015.

T. C. Simpson and R. R. Durand, Electrochim. Acta, vol.33, pp.581-583, 1988.

S. Pun, W. Chung, K. Lam, P. Guo, P. Chan et al., J. Chem. Soc, pp.575-583, 2002.

J. Chen, D. J. Szalda, E. Fujita, and C. Creutz, Inorg. Chem, vol.49, pp.9380-9391, 2010.

C. Arana, S. Yan, M. Keshavarz-k, K. T. Potts, and H. D. Abruña, Inorg. Chem, vol.31, pp.3680-3682, 1992.

C. Arana, M. Keshavarz, K. T. Potts, and H. D. Abruña, Inorg. Chim. Acta, vol.225, pp.285-295, 1994.

N. Elgrishi, M. B. Chambers, V. Artero, and M. Fontecave, Phys. Chem. Chem. Phys, vol.16, pp.13635-13644, 2014.

H. Takeda, K. Ohashi, A. Sekine, and O. Ishitani, J. Am. Chem. Soc, vol.138, pp.4354-4357, 2016.

J. M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.701-704, 1982.

R. Ziessel, J. Hawecker, and J. Lehn, Helv. Chim. Acta, vol.69, pp.1065-1084, 1986.

T. Hirose, S. Shigaki, M. Hirose, and A. Fushimi, J. Fluorine Chem, vol.131, pp.915-921, 2010.

F. R. Keene, C. Creutz, and N. Sutin, Coord. Chem. Rev, vol.64, pp.247-260, 1985.

N. Elgrishi, M. B. Chambers, and M. Fontecave, Chem. Sci, vol.6, pp.2522-2531, 2015.

J. Costamagna and J. Canales, Pure Appl. Chem, vol.67, pp.1045-1052, 1995.

M. Isaacs, J. C. Canales, M. J. Aguirre, G. Estiú, F. Caruso et al., Inorg. Chim. Acta, vol.339, pp.224-232, 2002.

S. Daniele, P. Ugo, G. Bontempelli, and M. Fiorani, J. Electroanal. Chem, vol.219, pp.259-271, 1987.

K. Lam, K. Wong, S. Yang, and C. Che, J. Chem. Soc, pp.1103-1107, 1995.

P. A. Christensen, A. Hamnett, S. J. Higgins, and J. A. Timney, J. Electroanal. Chem, vol.1, issue.9, 0195.

J. Canales, J. Ramirez, G. Estiu, and J. Costamagna, Polyhedron, vol.19, pp.2373-2381, 2000.

Y. Mori, D. J. Szalda, B. S. Brunschwig, H. A. Schwarz, and E. Fujita, Photochemistry and Radiation Chemistry, vol.254, pp.279-292, 1998.

J. S. Field, R. J. Haines, C. J. Parry, and S. H. Sookraj, Polyhedron, vol.12, pp.2425-2428, 1993.

R. J. Haines, R. E. Wittrig, and C. P. Kubiak, Inorg. Chem, vol.33, pp.4723-4728, 1994.

J. P. Muena, M. Villagrán, J. Costamagna, and M. J. Aguirre, J. Coord. Chem, vol.61, pp.479-489, 2008.

A. S. Varela, M. Kroschel, T. Reier, and P. Strasser, Catal. Today, vol.260, pp.8-13, 2016.

R. Kas, R. Kortlever, A. Milbrat, M. T. Koper, G. Mul et al., Phys. Chem. Chem. Phys, vol.16, pp.12194-12201, 2014.

T. N. Huan, E. S. Andreiadis, J. Heidkamp, P. Simon, E. Derat et al., J. Mater. Chem. A, vol.2, issue.0

, Downloaded by Universite Pierre et Marie Curie on, View Article Online Chem. Soc. Rev. This journal is © The Royal Society of Chemistry, vol.13, 2017.

D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi et al., ACS Catal, vol.5, pp.2814-2821, 2015.

J. H. Montoya, A. A. Peterson, and J. K. Nørskov, ChemCatChem, issue.5, pp.737-742, 2013.

T. R. O'toole, L. D. Margerum, T. D. Westmoreland, W. J. Vining, R. W. Murray et al., J. Chem. Soc., Chem. Commun, pp.1416-1417, 1985.

R. L. House, N. Y. Iha, R. L. Coppo, L. Alibabaei, B. D. Sherman et al., J. Photochem. Photobiol., C, vol.25, pp.32-45, 2015.

Y. Yamazaki, H. Takeda, and O. Ishitani, J. Photochem. Photobiol., C, vol.25, pp.106-137, 2015.

P. D. Tran, L. H. Wong, J. Barber, and J. S. Loo, Energy Environ. Sci, vol.5, pp.5902-5918, 2012.

C. D. Windle and E. Reisner, Chimia, vol.69, pp.435-441, 2015.

M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares et al., J. Am. Chem. Soc, vol.2, issue.0, 13085.

J. J. Walsh, C. Jiang, J. Tang, and A. J. Cowan, Phys. Chem. Chem. Phys, vol.18, pp.24825-24829, 2016.

C. D. Windle, E. Pastor, A. Reynal, A. C. Whitwood, Y. Vaynzof et al., Chem. -Eur. J, vol.21, pp.3746-3754, 2015.

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, Angew. Chem., Int. Ed, vol.54, pp.2406-2409, 2015.

K. Sekizawa, K. Maeda, K. Domen, K. Koike, and O. Ishitani, J. Am. Chem. Soc, vol.135, pp.4596-4599, 2013.

K. Pool and R. P. Buck, J. Electroanal. Chem. Interfacial Electrochem, vol.95, pp.241-246, 1979.

S. Anderson, E. C. Constable, M. P. Dare-edwards, J. B. Goodenough, A. Hamnett et al., Nature, vol.280, pp.571-573, 1979.

P. Ghosh and T. G. Spiro, J. Am. Chem. Soc, vol.102, pp.5543-5549, 1980.

H. D. Abruna, P. Denisevich, M. Umana, T. J. Meyer, and R. W. Murray, J. Am. Chem. Soc, vol.103, pp.1-5, 1981.

H. D. Abruna, T. J. Meyer, and R. W. Murray, Inorg. Chem, vol.18, pp.3233-3240, 1979.

T. R. O'toole, B. P. Sullivan, M. R. Bruce, L. D. Margerum, R. W. Murray et al., J. Electroanal. Chem. Interfacial Electrochem, vol.1, issue.9, 0217.

C. R. Cabrera and H. D. Abruña, J. Electroanal. Chem. Interfacial Electrochem, vol.209, pp.101-107, 1986.

F. Cecchet, M. Alebbi, C. A. Bignozzi, and F. Paolucci, Inorg. Chim. Acta, vol.359, pp.3871-3874, 2006.

S. Cosnier, A. Deronzier, and J. Moutet, J. Electroanal. Chem. Interfacial Electrochem, vol.207, pp.315-321, 1986.

S. Chardon-noblat, M. Collomb-dunand-sauthier, A. Deronzier, R. Ziessel, and D. Zsoldos, Inorg. Chem, vol.33, pp.4410-4412, 1994.

T. R. O'toole, T. J. Meyer, and B. P. Sullivan, Chem. Mater, vol.1, pp.574-576, 1989.

H. C. Hurrell, A. L. Mogstad, D. A. Usifer, K. T. Potts, and H. D. Abruna, Inorg. Chem, vol.28, pp.1080-1084, 1989.

M. Collomb-dunand-sauthier, A. Deronzier, and R. Ziessel, Inorg. Chem, vol.1, issue.9, 2961.

M. Collomb-dunand-sauthier, A. Deronzier, and R. Ziessel, J. Chem. Soc., Chem. Commun, vol.1, issue.9, pp.9-10

J. D. Blakemore, A. Gupta, J. J. Warren, B. S. Brunschwig, and H. B. Gray, J. Am. Chem. Soc, vol.135, pp.18288-18291, 2013.

N. Elgrishi, S. Griveau, M. B. Chambers, F. Bedioui, and M. Fontecave, Chem. Commun, vol.51, pp.2995-2998, 2015.

S. Oh, J. R. Gallagher, J. T. Miller, and Y. Surendranath, J. Am. Chem. Soc, vol.138, pp.1820-1823, 2016.

T. Yamamoto, Y. Yoneda, and T. Maruyama, J. Chem. Soc., Chem. Commun, pp.1652-1654, 1992.

L. Li, R. G. Hadt, S. Yao, W. Lo, Z. Cai et al., Chem. Mater, vol.28, pp.5394-5399, 2016.

T. Maruyama and T. Yamamoto, J. Phys. Chem. B, vol.101, pp.3806-3810, 1997.

T. Yamamoto, T. Maruyama, Z. Zhou, T. Ito, T. Fukuda et al., J. Am. Chem. Soc, vol.116, pp.4832-4845, 1994.

C. Wang, Z. Xie, K. E. Dekrafft, and W. Lin, J. Am. Chem. Soc, vol.133, pp.13445-13454, 2011.

R. Huang, Y. Peng, C. Wang, Z. Shi, and W. Lin, Eur. J. Inorg. Chem, pp.4358-4362, 2016.

L. Li, S. Zhang, L. Xu, J. Wang, L. Shi et al., Chem. Sci, vol.5, pp.3808-3813, 2014.

T. Yoshida, K. Tsutsumida, S. Teratani, K. Yasufuku, and M. Kaneko, J. Chem. Soc., Chem. Commun, pp.631-633, 1993.

T. Yoshida, T. Iida, T. Shirasagi, R. Lin, and M. Kaneko, J. Electroanal. Chem, vol.344, pp.355-362, 1993.

J. J. Walsh, G. Neri, C. L. Smith, and A. J. Cowan, Chem. Commun, vol.50, pp.12698-12701, 2014.

J. J. Walsh, C. L. Smith, G. Neri, G. F. Whitehead, C. M. Robertson et al., Faraday Discuss, vol.183, pp.147-160, 2015.

, × 50 mL). The organic phases were combined, dried over sodium sulfate, filtered, and evaporated. The residue was purified by column chromatography on silica gel (eluent 3:2 cyclohexane/ethyl acetate) to yield a pale yellow solid (270 mg, 48% chemical yield). Characterizations were in accordance with those, aqueous ammonium hydroxide (20 mL, 0.1 M) and sodium ethylenediaminetetraacetate (20 mL, 0.1 M) solutions were added to the aqueous phase. The aqueous phase was extracted with DCM

H. Nmr, 13 C{ 1 H} NMR (75 MHz, 300 MHz, CD 3 CN): ? (ppm) 9.06 (s, 1H), 9.00 (ddd, J = 5.5, 1.4, 0.8 Hz, 1H), 8.18 (ddd, J = 7.9, 7.8, 1.4 Hz, 1H), 8.08 (ddd, J = 7.9, 1.4, 0.8 Hz, 1H), 7.78 (m, 2H), 7.55 (ddd, J = 7.8, 5.5, 1.4 Hz, 1H), 7.49 (m, 2H), vol.2

, The solution was cooled to 0°C, and tert-butyl nitrite (274 ?L, 2.3 mmol, 1.5 equiv) was added dropwise, followed by azidotrimethylsilane (238 ?L, 1.8 mmol, 1.2 equiv) dropwise. After the solution was stirred overnight at room temperature, the solvent was evaporated to dryness, and the residue was purified by column chromatography on silica gel, mmol, 1.0 equiv) was dissolved in anhydrous MeCN (4 mL) under argon

, CDCl 3 ): ? (ppm) 7.35 (s, 2H), 1.48 (s, 18H), 1.32 (s, 9H)

. Mhz, (ESI +) calcd for C 18 H 30 N 260.2378

, mg, 0.17 mmol, 1.0 equiv) and 2-ethynylpyridine (18.0 mg, 0.17 mmol, 1.0 equiv) were dissolved, vol.4, p.1

, 3 mg, 0.017 mmol, 0.1 equiv) and sodium ascorbate (6.8 mg, 0.035 mmol, 0.2 equiv) in water (0.5 mL) were added to the mixture. After it was stirred for 48 h, DCM (10 mL) was added to the mixture, The organic phase was decanted out and aqueous ammonium hydroxide (10 mL, 0.1 M) and sodium ethylenediaminetetraacetate

, The aqueous phase was extracted with DCM (3 × 10 mL). The organic phases were combined, dried over sodium sulfate, filtered and evaporated. The residue was purified by column chromatography on silica gel (eluent 4:1 cyclohexane/ethyl acetate) to yield a white crystalline solid (30 mg, M) solutions were added to the aqueous phase

, CDCl 3 ): ? (ppm) 8.61 (ddd

M. , This complex was obtained following the general procedure A starting from 2, pp.391-2857

H. Nmr, 63 (s, 2H), 1.37 (s, 9H), 1.07 (s, 9H), 1.05 (s, 9H). 13 C{ 1 H} NMR (75 MHz, 300 MHz, DMSO-d 6 ): ? (ppm) 9.76 (s, 1H), 9.01 (m, 1H), 8.33 (m, 2H), 7.77 (m, 1H), vol.7

, Bis(triphenylphosphine)palladium(II) dichloride (16.6 mg, 0.0236 mmol, 1.1 mol %) and CuI (1.7 mg, 0.0086 mmol, 0.4 mol %) were added under an atmosphere of argon, followed by trimethylsilylacetylene (365 ?L, 2.58 mmol, 1.2 equiv). The mixture was stirred at 60°C under argon for 4 h. The mixture was diluted with DCM and washed with saturated aqueous ammonium chloride solution (2×) and saturated brine. The organic phase was dried over sodium sulfate, The residue was purified by column chromatography on silica gel

, mg, 1.7 mmol, 1.0 equiv) was dissolved in methanol (30.0 mL), and potassium carbonate (247.0 mg, 1.79 mmol, 1.05 equiv) was added. The mixture was stirred at room temperature under argon for 3 h. The mixture was diluted wih DCM and water and extracted with DCM (2×). The combined organic phases were dried over sodium sulfate, The residue was purified by column chromatography on silica gel

, 3-triazol-4-yl)-4-methoxypyridine. 2-Ethyn-DCM and water and decanted. The organic phase was dried over sodium sulfate, filtered, and evaporated. The residue was purified by column chromatography (eluent ethyl acetate) to afford 2-(1-dodecyl-1H-1,2,3-triazol-4-yl)-4-methoxypyridine as a white solid, vol.2

R. , CDCl 3 ): ? (ppm): 8.37 (d, J = 5.8 Hz, 1H), 8.21 (s, 1H), 7.76 (d, J = 2.6 Hz, 1H), 6.78 (dd

. Hz, CDCl 3 ): ? (ppm): 166.9

+. Hrms, ESI+) calcd for C 20 H 33 N 4 O 345.2654, found 345.2652. [2-(1-Dodecyl-1H-1,2,3-triazol-4-yl)-4-methoxypyridine]-chlorotricarbonylrhenium(I) (5)

H. Nmr, CDCl 3 ): ? (ppm): 8.70 (d, J = 6.4 Hz, 1H), MHz, vol.8, issue.300

. Mhz, MS (ESI+) m/z (%): 673.1538 (100) [M + Na] + . HRMS (ESI +): calcd for C 23 H 32 ClN 4 NaO 4 Re 673.1567, found 673.1538. HPLC (80 to 100% ACN in 10 min

, Inorg. Chem, vol.56, pp.2966-2976, 2017.

?. References,

R. Dubois, M. Dubois, and D. L. , Development of Molecular Electrocatalysts for CO 2 Reduction and H 2 Production/Oxidation, Acc. Chem. Res, vol.42, issue.12, 1974.

A. J. Morris, G. J. Meyer, and E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels, Acc. Chem. Res, vol.42, issue.12, 1983.

E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels, Chem. Soc. Rev, vol.38, issue.1, pp.89-99, 2009.

J. Qiao, Y. Liu, F. Hong, and J. Zhang, A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels, Chem. Soc. Rev, vol.43, issue.2, pp.631-675, 2014.

N. P. Rodrigues, J. Obirai, T. Nyokong, and F. Bedioui, Electropolymerized Pyrrole-Substituted Manganese Phthalocyanine Films for the Electroassisted Biomimetic Catalytic Reduction of Molecular Oxygen, Electroanalysis, vol.17, issue.2, pp.186-190, 2005.

D. P. Harrison, A. M. Lapides, R. A. Binstead, J. J. Concepcion, M. A. Me?dez et al., Coordination Chemistry of Single-Site Catalyst Precursors in Reductively Electropolymerized Vinylbipyridine Films, Inorg. Chem, vol.52, issue.9, pp.4747-4749, 2013.

J. D. Blakemore, A. Gupta, J. J. Warren, B. S. Brunschwig, and H. B. Gray, Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production, J. Am. Chem. Soc, vol.135, issue.49, pp.18288-18291, 2013.

X. Chen, H. Ren, W. Peng, H. Zhang, J. Lu et al., Highly Efficient Molecular Cobalt Electrode for (Photo)electrochemical Hydrogen Evolution, J. Phys. Chem. C, issue.36, pp.20791-20798, 2014.

N. Elgrishi, S. Griveau, M. B. Chambers, F. Bedioui, and M. Fontecave, Versatile Functionalization of Carbon Electrodes with a Polypyridine Ligand: Metallation and Electrocatalytic H + and CO 2 Reduction, Chem. Commun, vol.51, issue.14, pp.2995-2998, 2015.

T. E. Rosser, C. D. Windle, and E. Reisner, Electrocatalytic and Solar-Driven CO 2 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous TiO 2, Angew. Chem., Int. Ed, vol.55, issue.26, pp.7388-7392, 2016.

C. Costentin, S. Drouet, M. Robert, and J. Saveánt, A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst, Science, vol.2012, issue.6103, pp.90-94

J. Hawecker, J. Lehn, and R. Ziessel, Electrocatalytic Reduction of Carbon Dioxide Mediated by Re(bipy) (CO)3Cl (Bipy = 2,2?-Bipyridine), J. Chem. Soc., Chem. Commun, vol.984, issue.6, p.328, 1984.

J. M. Smieja and C. P. Kubiak, Re(bipy-tBu) (CO)3Cl-Improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies, Inorg. Chem, issue.20, pp.9283-9289, 2010.

A. P. Smith, C. L. Fraser, and . Bipyridine-ligands, Comprehensive Coordination Chemistry II

R. Bodapati, M. Sarma, A. Kanakati, and S. K. Das, Asymmetrically Substituted and ?-Conjugated 2,2?-Bipyridine Derivatives: Synthesis, Spectroscopy, Computation, and Crystallography, J. Org. Chem, vol.80, issue.24, pp.12482-12491, 2015.

T. Y. Kim, A. B. Elliott, K. J. Shaffer, ;. Mcadam, C. Gordon et al., Rhenium(I) Complexes of Readily Functionalized Bidentate Pyridyl-1,2,3-Triazole "click" ligands: A Systematic Synthetic, Spectroscopic and Computational Study, Polyhedron, vol.52, pp.1391-1398, 2013.

H. C. Bertrand, S. Clede, R. Guillot, F. Lambert, and C. Policar, Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations, Inorg. Chem, issue.12, pp.6204-6223, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01003175

S. Clede, F. Lambert, R. Saint-fort, M. A. Plamont, H. Bertrand et al., Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study, Chem. -Eur. J, vol.20, issue.28, pp.8714-8722, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010332

L. Gjonaj and G. Roelfes, Selective Chemical Modification of DNA with Alkoxy-and Benzyloxyamines, Org. Biomol. Chem, issue.21, pp.6059-6065, 2015.

M. Juríc?k, P. H. Kouwer, J. Reha?, J. Sly, and A. E. Rowan, A Novel Modular Approach to Triazole-Functionalized Phthalocyanines Using Click Chemistry, J. Org. Chem, vol.74, issue.1, pp.21-25, 2009.

X. Q. Zhu, M. T. Zhang, A. Yu, C. H. Wang, and J. Cheng,

H. Hydride and . Atom, Proton, and Electron Transfer Driving Forces of Various Five-Membered Heterocyclic Organic Hydrides and Their Reaction Intermediates in Acetonitrile, J. Am. Chem. Soc, vol.130, issue.8, pp.2501-2516, 2008.

A. Bolje, D. Urankar, and J. Kosmrlj, Synthesis and NMR Analysis of 1,4-Disubstituted 1,2,3-Triazoles Tethered to Pyridine, Pyrimidine, and Pyrazine Rings, Eur. J. Org. Chem, issue.36, pp.8167-8181, 2014.

A. C. Carlsson, K. Mehmeti, M. Uhrbom, A. Karim, M. Bedin et al., J. Am. Chem. Soc, vol.138, issue.31, pp.9853-9863, 2016.

G. M. Sheldrick and . Shelxs-97, SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data, 1997.

L. J. Farrugia, Suite for Small-Molecule Single-Crystal Crystallography, J. Appl. Crystallogr, vol.32, issue.4, pp.2966-2976, 1999.

A. Tsuboyama, S. Okada, T. Takiguchi, K. Suzuki, S. Miura et al., Electroluminescent Device Using Metal Coordination Compound, 2004.

, Tricyclic Heterocycles as BET Protein Inhibitors

P. Kurz, B. Probst, B. Spingler, and R. Alberto, Ligand Variations in [ReX(diimine) (CO)3] Complexes: Effects on Photocatalytic CO2 Reduction, Eur. J. Inorg. Chem, issue.15, pp.2966-2974, 2006.

M. Wolff, L. Munoz, A. Francois, C. Carrayon, A. Seridi et al., Tricarbonylrhenium Complexes from 2-Pyridyl-1,2,3-Triazole Ligands Bearing a 4-Substituted Phenyl Arm: A Combined Experimental and Theoretical Study, Dalton Trans, vol.42, issue.19, pp.7019-7031, 2013.

W. K. Lo, G. S. Huff, J. R. Cubanski, A. D. Kennedy, C. J. Mcadam et al., Comparison of Inverse and Regular 2-Pyridyl-1,2,3-triazole "click" Complexes: Structures, Stability, Electrochemical, and Photophysical Properties, Inorg. Chem, vol.54, issue.4, pp.1572-1587, 2015.

A. J. Bard and L. R. Faulkner, Electrochemical Methods, 2001.

J. E. Baur and R. M. Wightman, Diffusion Coefficients Determined with Microelectrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.305, issue.1, pp.73-81, 1991.

J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich et al., Manganese as a Substitute for Rhenium in CO2 Reduction Catalysts: The Importance of Acids, Inorg. Chem, vol.52, issue.5, pp.2484-2491, 2013.

F. P. Johnson, M. W. George, F. Hartl, and J. J. Turner, Electrocatalytic Reduction of CO 2 Using the Complexes

. L]-n-(n-=-+-1,-l-=-p,

-. N-=-0,-l-=-cl and -. Otf,

, Bpy =, vol.2, p.2

-. Otf and . Cf, SO 3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation, Organometallics, vol.3, issue.15, pp.3374-3387, 1996.

K. Saravanan and J. A. Keith, Standard Redox Potentials, pK a S, and Hydricities of Inorganic Complexes under Electrochemical Conditions and Implications for CO 2 Reduction, Dalt. Trans, vol.45, issue.39, pp.15336-15341, 2016.

G. A. Felton, A. K. Vannucci, N. Okumura, L. T. Lockett, D. H. Evans et al., Hydrogen Generation from Weak Acids: Electrochemical and Computational Studies in the [(? 5 -C 5 H 5)Fe(CO) 2 ] 2 System, Organometallics, vol.27, issue.18, pp.4671-4679, 2008.

S. Foit, R. Eichel, I. C. Vinke, and L. G. De-haart, Power-to-Syngas -an Enabling Technology for the Transition of the Energy System? Production of Tailored Synfuels and Chemicals Using Renewably Generated Electricity, Angew. Chem., Int. Ed, 2016.

N. P. Liyanage, H. A. Dulaney, A. J. Huckaba, J. W. Jurss, and J. H. Delcamp, Electrocatalytic Reduction of CO 2 to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities, Inorg. Chem, issue.12, pp.6085-6094, 2016.

J. Hawecker, J. Lehn, and R. Ziessel, Efficient Photochemical Reduction of CO 2 to CO by Visible Light Irradiation of Systems Containing Re(bipy) (CO) 3 X or Ru(bipy) 3 2+ ? Co 2+ Combinations as Homogeneous Catalysts, J. Chem. Soc., Chem. Commun, issue.9, pp.536-538, 1983.

H. Hori, O. Ishitani, K. Koike, F. P. Johnson, and T. Ibusuki, Efficient Carbon Dioxide Photoreduction by Novel Metal Complexes and Its Reaction Mechanisms, Energy Convers. Manage, vol.36, issue.6? 9, pp.621-624, 1995.

J. Hawecker, J. Lehn, and R. Ziessel, Photochemical Reduction of Carbon Dioxide to Formate Mediated by Ruthenium Bipyridine Complexes as Homogeneous Catalysts, J. Chem. Soc., Chem. Commun, vol.20, issue.2, p.56, 1985.

A. Juris, V. Balzani, P. Belser, and A. Von-zelewsky, Characterization of the Excited State Properties of Some New Photosensitizers of the Ruthenium (Polypyridine) Family, Helv. Chim. Acta, vol.64, issue.7, pp.2175-2182, 1981.

H. Takeda, K. Koike, H. Inoue, and O. Ishitani, Development of an Efficient Photocatalytic System for CO 2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies, J. Am. Chem. Soc, vol.130, issue.6, pp.2023-2031, 2008.

D. H. Gibson and X. Yin, Synthesis and Reactions of Fac -Re(dmbpy) (CO) 3 X (Dmbpy = 4

X. Coome, H. , O. H. , and O. ). , J. Am. Chem. Soc, vol.120, issue.43, pp.11200-11201, 1998.

Y. Hayashi, S. Kita, B. S. Brunschwig, and E. Fujita, Involvement of a Binuclear Species with the Re?C(O)O?Re Moiety in CO 2

, Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands: Strikingly Slow Formation of the Re?Re and Re?

. O?re, Species from Re(dmb) (CO) 3 S (Dmb =, vol.4, p.4

, J. Am. Chem. Soc, vol.125, issue.39, pp.11976-11987, 2003.

T. Morimoto, T. Nakajima, S. Sawa, R. Nakanishi, D. Imori et al., CO 2 Capture by a Rhenium(I) Complex with the Aid of Triethanolamine, J. Am. Chem. Soc, vol.135, issue.45, pp.2966-2976, 2013.

J. Hawecker, J. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun, pp.536-538, 1983.

H. Ishida, K. Tanaka, and T. Tanaka, Inorg. Chem, pp.905-911, 1990.

J. M-o-r-r-i-s and G. J. M-e-y-e-ra-n-de, Acc. Chem. Res, vol.42, 1983.

Y. Yamazaki, H. Takeda, and O. Ishitani, J. Photochem. Photobiol., C, vol.25, pp.106-137, 2015.

B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue et al., Inorg. Chem, vol.44, pp.2326-2336, 2005.

J. M. Smieja, E. E. Benson, B. Kumar, K. A. Grice, C. S. Seu et al., Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15646-15650, 2012.

Y. Tamaki, K. Koike, T. Morimoto, Y. Yamazaki, and O. Ishitani, Inorg. Chem, vol.52, pp.11902-11909, 2013.

C. Matlachowski, B. Braun, S. Tschierlei, and M. Schwalbe, Inorg. Chem, vol.54, pp.10351-10360, 2015.

C. Matlachowski, M. Schwalbe, and D. Trans, , vol.44, pp.6480-6489, 2015.

K. Koike, S. Naito, S. Sato, Y. Tamaki, and O. Ishitani, J. Photochem. Photobiol., A, vol.207, pp.109-114, 2009.

Z. Bian, K. Sumi, M. Furue, S. Sato, K. Koike et al., Inorg. Chem, vol.47, pp.10801-10803, 2008.

S. Sato, K. Koike, H. Inoue, and O. Ishitani, Photochem. Photobiol. Sci, vol.6, pp.454-461, 2007.

Y. Tamaki, T. Morimoto, K. Koike, and O. Ishitani, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15673-15678, 2012.

E. Kato, H. Takeda, K. Koike, K. Ohkubo, and O. Ishitani, Chem. Sci, vol.6, pp.3003-3012, 2015.

A. Nakada, K. Koike, T. Nakashima, T. Morimoto, and O. Ishitani, Inorg. Chem, vol.54, pp.1800-1807, 2015.

T. Nakajima, Y. Tamaki, K. Ueno, E. Kato, T. Nishikawa et al., J. Am. Chem. Soc, vol.138, pp.13818-13821, 2016.

A. Kobayashi, H. Konno, K. Sakamoto, A. Sekine, Y. Ohashi et al., Chem. -Eur. J, vol.11, pp.4219-4226, 2005.

Y. Tamaki, K. Koike, T. Morimoto, and O. Ishitani, J. Catal, vol.304, pp.22-28, 2013.

G. Sahara and O. Ishitani, Inorg. Chem, vol.54, pp.5096-5104, 2015.

E. Kimura, S. Wada, M. Shionoya, T. Takahashi, and Y. Litaka, J. Chem. Soc., Chem. Commun, pp.397-398, 1990.

E. Kimura, X. Bu, M. Shionoya, S. Wada, and S. Maruyama, Inorg. Chem, vol.31, pp.4542-4546, 1992.

E. Kimura, S. Wada, M. Shinoya, and Y. Okazaki, Inorg. Chem, vol.33, pp.770-778, 1994.

N. Komatsuzaki, Y. Himeda, H. Sugihara, and K. Kasuga, Bull. Chem. Soc. Jpn, vol.72, pp.725-731, 1999.

J. Hawecker, J. Lehn, and R. Ziessel, Helv. Chim. Acta, vol.69, 1986.

E. A. Steck and A. R. Day, J. Am. Chem. Soc, vol.65, pp.452-456, 1943.

V. Goudy, J. Maynadié, X. L. Goff, D. Meyer, and M. Fontecave, New J. Chem, vol.40, pp.1704-1714, 2016.

J. V. Caspar and T. J. Meyer, J. Am. Chem. Soc, vol.105, pp.5583-5590, 1983.

K. Ruffray, M. Autillo, X. L. Goff, J. Maynadié, and D. Meyer, Inorg. Chim. Acta, vol.440, pp.26-37, 2016.

J. Lehn and R. Ziessel, Notes and references, vol.382, pp.157-173, 1990.

C. Song, Catal. Today, vol.115, pp.2-32, 2006.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, Renewable Sustainable Energy Rev, vol.15, pp.1-23, 2011.

J. Hawecker, J. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun, pp.536-538, 1983.

H. Ishida, K. Tanaka, and T. Tanaka, Inorg. Chem, pp.905-911, 1990.

M. Bourrez, F. Molton, S. Chardon-noblat, and A. Deronzier, Angew. Chem., Int. Ed, vol.50, pp.9903-9906, 2011.

H. Takeda, H. Koizumi, K. Okamoto, and O. Ishitani, Chem. Commun, vol.50, pp.1491-1493, 2014.

J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich et al., Inorg. Chem, vol.52, pp.2484-2491, 2013.

M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A. L. Rheingold et al., J. Am. Chem. Soc, vol.136, pp.5460-5471, 2014.

C. W. Machan, C. J. Stanton, J. E. Vandezande, G. F. Majetich, H. F. Schaefer et al., Inorg. Chem, vol.54, pp.8849-8856, 2015.

P. L. Cheung, C. W. Machan, A. Y. Malkhasian, J. Agarwal, and C. P. Kubiak, Inorg. Chem, vol.55, pp.3192-3198, 2016.

M. V. Vollmer, C. W. Machan, M. L. Clark, W. E. Antholine, J. Agarwal et al., Organometallics, vol.34, pp.3-12, 2015.

T. E. Rosser, C. D. Windle, and E. Reisner, Angew. Chem., Int. Ed, vol.55, pp.7388-7392, 2016.

H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak, and S. M. Cohen, Inorg. Chem, vol.54, pp.6821-6828, 2015.

N. Mizoshita, T. Tani, and S. Inagaki, Chem. Soc. Rev, vol.40, pp.789-800, 2011.

F. Hoffmann and M. Fröba, Chem. Soc. Rev, vol.40, pp.608-620, 2011.

A. Mehdi, C. Reye, and R. Corriu, Chem. Soc. Rev, vol.40, pp.563-574, 2011.

W. R. Grüning, G. Siddiqi, O. V. Safonova, and C. Copéret, Adv. Synth. Catal, vol.356, pp.673-679, 2014.

Y. Maegawa, S. Inagaki, and D. Trans, , vol.44, pp.13007-13016, 2015.

H. Takeda, M. Ohashi, T. Tani, O. Ishitani, and S. Inagaki, Inorg. Chem, vol.49, pp.4554-4559, 2010.

Y. Kuramochi, M. Sekine, K. Kitamura, Y. Maegawa, Y. Goto et al., Chem.-Eur. J, vol.23, pp.10301-10309, 2017.

I. Thiel, A. Fedorov, R. Verel, S. Yakunin, M. V. Kovalenko et al., Phys. Chem. Chem. Phys, vol.18, pp.13746-13749, 2016.

C. Copéret, A. Comas-vives, M. P. Conley, D. P. Estes, A. Fedorov et al., Chem. Rev, vol.116, pp.323-421, 2016.

C. Copéret, A. Fedorov, and P. A. Zhizhko, Catal. Lett, vol.147, pp.2247-2259, 2017.

M. Waki, Y. Maegawa, K. Hara, Y. Goto, S. Shirai et al., J. Am. Chem. Soc, vol.136, pp.4003-4011, 2014.

, A control reaction of, p.5

, Br] with bisphenyl-PMO, a material where bpy units are replaced by bisphenyl ones, did not result in any immobilization of Mn in this PMO material, as evidenced by the absence of n CO bands in the FTIR spectra (Fig. S14 ?) and catalytic activity of the resulting material

W. R. Grüning, A. J. Rossini, A. Zagdoun, D. Gajan, A. Lesage et al., Phys. Chem. Chem. Phys, p.13270, 2013.

G. J. Stor, S. L. Morrison, D. J. Stu?ens, and A. Oskam, Organometallics, vol.13, pp.2641-2650, 1994.

C. J. Kleverlaan, F. Hartl, and D. J. Stu?ens, J. Organomet. Chem, vol.561, pp.57-65, 1998.

A. J. Blake, N. R. Champness, T. L. Easun, D. R. Allan, H. Nowell et al., Nat. Chem, vol.2, pp.688-694, 2010.

C. Creutz, Comments Inorg. Chem, vol.1, pp.293-311, 1982.

C. Kutal, M. A. Weber, G. Ferraudi, and D. Geiger, Organometallics, vol.4, pp.2161-2166, 1985.

J. Tory, B. Setter?eld-price, R. A. Dryfe, and F. Hartl, ChemElectroChem, vol.2, pp.213-217, 2015.

F. Hartl, B. D. Rossenaar, G. J. Stor, and D. J. Stu?ens, Recl. Trav. Chim. Pays-Bas, vol.114, pp.565-570, 1995.

C. Daniel, D. Guillaumont, C. Ribbing, and B. Minaev, J. Phys. Chem. A, vol.103, pp.5766-5772, 1999.

D. R. Kidd, C. P. Cheng, and T. L. Brown, J. Am. Chem. Soc, vol.100, pp.4103-4107, 1978.

R. W. Saalfrank and W. Rost, Angew. Chem., Int. Ed, vol.24, pp.855-856, 1985.

R. R. Andréa, W. G. De-lange, T. Van-der-graaf, M. Rijkhoff, and D. J. Stu?ens, Organometallics, vol.7, pp.1100-1106, 1988.

K. Maeda, R. Kuriki, M. Zhang, X. Wang, and O. Ishitani, J. Mater. Chem. A, vol.2, pp.15146-15151, 2014.

M. B. Chambers, X. Wang, N. Elgrishi, C. H. Hendon, A. Walsh et al., ChemSusChem, vol.8, pp.603-608, 2015.

K. Kalyanasundaram, J. Chem. Soc., Faraday Trans. 2, vol.82, pp.2401-2415, 1986.

Y. Tamaki, K. Koike, T. Morimoto, and O. Ishitani, J. Catal, vol.304, pp.22-28, 2013.

Y. Tamaki, T. Morimoto, K. Koike, and O. Ishitani, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15673-15678, 2012.

B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue et al., Inorg. Chem, vol.44, pp.2326-2336, 2005.

, While the concentration of the catalyst in the sample cannot be rigorously de?ned as the reaction is heterogeneous, we describe here by convenience the amount of of Mn sites present in the 1 mL sample in mmol mL À1

H. Takeda, K. Ohashi, A. Sekine, and O. Ishitani, J. Am. Chem. Soc, vol.138, pp.4354-4357, 2016.

Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-mallart, S. Ng et al., J. Am. Chem. Soc, vol.138, pp.9413-9416, 2016.

J. Zhang, C. Hu, W. Wang, H. Wang, and Z. Bian, Appl. Catal., A, vol.522, pp.145-151, 2016.

X. Zhu, M. Zhang, A. Yu, C. Wang, and J. Cheng, J. Am. Chem. Soc, vol.130, pp.2501-2516, 2008.

C. M. Elliott and E. J. Hershenhart, J. Am. Chem. Soc, vol.104, pp.7519-7526, 1982.

S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.

E. G. Azenha, A. C. Serra, M. Pineiro, M. M. Pereira, S. De-melo et al., Chem. Phys, vol.280, pp.177-190, 2002.