F. Alber, S. Dokudovskaya, L. M. Veenhoff, W. Zhang, J. Kipper et al., The molecular architecture of the nuclear pore complex, Nature, vol.450, pp.695-701, 2007.

P. Bernard and M. Couturier, Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes, J. Mol. Biol, vol.226, pp.735-745, 1992.

M. M. Bharath, N. R. Chandra, and M. R. Rao, Prediction of an HMG-box fold in the C-terminal domain of histone H1: insights into its role in DNA condensation, Proteins, vol.49, pp.71-81, 2002.

X. Bi, Y. Cheng, B. Hu, X. Ma, R. Wu et al., Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery, Genome Res, vol.27, pp.1162-1173, 2017.

C. Bourbousse, I. Mestiri, G. Zabulon, M. Bourge, F. Formiggini et al., Light signaling controls nuclear architecture reorganization during seedling establishment, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.2836-2844, 2015.

E. M. Bradbury, Reversible histone modifications and the chromosome cell cycle, Bioessays, vol.14, pp.9-16, 1992.

P. Breyne, M. Van-montagu, and G. Gheysen, The role of scaffold attachment regions in the structural and functional organization of plant chromatin, Transgenic Res, vol.3, pp.195-202, 1994.

S. G. Brohawn, J. R. Partridge, J. R. Whittle, and T. U. Schwartz, The nuclear pore complex has entered the atomic age, Structure, vol.17, pp.1156-1168, 2009.

B. Burke, It takes KASH to hitch to the SUN, Cell, vol.149, pp.961-963, 2012.

B. Burke and C. L. Stewart, The nuclear lamins: flexibility in function, Nat. Rev. Mol. Cell Biol, vol.14, pp.13-24, 2013.

L. T. Burns and S. R. Wente, From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression, Mol. Cell. Biol, vol.34, pp.2114-2120, 2014.

M. Capelson and M. W. Hetzer, The role of nuclear pores in gene regulation, development and disease, EMBO Rep, vol.10, pp.697-705, 2009.

L. Chen and K. Wu, Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response, Plant Signal Behav, vol.5, pp.1318-1320, 2010.

C. Chen, K. Wu, and W. Schmidt, The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis, Sci. Rep, vol.5, 2015.

Y. Gu, S. G. Zebell, Z. Liang, S. Wang, B. Kang et al., Nuclear Pore Permeabilization Is a Convergent Signaling Event in Effector-Triggered Immunity, Cell, vol.166, pp.1526-1538, 2016.

L. Guelen, L. Pagie, E. Brasset, W. Meuleman, M. B. Faza et al., Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, vol.453, pp.948-951, 2008.

H. K. Gumber, J. F. Mckenna, A. L. Estrada, A. F. Tolmie, K. Graumann et al., Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays, J. Cell. Sci, vol.132, 2019.

I. Hagan and M. Yanagida, The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability, J. Cell Biol, vol.129, pp.1033-1047, 1995.

E. Heitz, Das Heterochromatin der Moose. I Jahrb, Wiss. Bot, vol.69, pp.762-818, 1928.

S. Henikoff, Nucleosome destabilization in the epigenetic regulation of gene expression, Nat. Rev. Genet, vol.9, pp.15-26, 2008.

R. Ho and R. A. Hegele, Complex effects of laminopathy mutations on nuclear structure and function, Clin. Genet, 2018.

M. D. Huber, T. Guan, and L. Gerace, Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation, Mol. Cell. Biol, vol.29, pp.5718-5728, 2009.

S. Hutten, A. Flotho, F. Melchior, and R. H. Kehlenbach, The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import, Mol. Biol. Cell, vol.19, pp.2300-2310, 2008.

A. Imhof and P. B. Becker, Modifications of the histone N-terminal domains. Evidence for an "epigenetic code, Mol. Biotechnol, vol.17, pp.1-13, 2001.

T. Jenuwein, A. , and C. D. , Translating the histone code, Science, vol.293, pp.1074-1080, 2001.

S. Kagale and K. Rozwadowski, Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif, Plant Signal. Behav, vol.5, pp.691-694, 2010.

S. Kagale and K. Rozwadowski, EAR motif-mediated transcriptional repression in plants, Epigenetics, vol.6, pp.141-146, 2011.

T. Karpova and J. G. Mcnally, Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching, Curr Protoc Cytom Chapter, 2006.

T. S. Karpova, C. T. Baumann, L. He, X. Wu, A. Grammer et al., , 2003.

A. Mattout, T. Dechat, S. A. Adam, R. D. Goldman, and Y. Gruenbaum, Nuclear lamins, diseases and aging, Current Opinion in Cell Biology, vol.18, pp.335-341, 2006.

I. Meier, The plant nuclear envelope, Cell. Mol. Life Sci, vol.58, pp.1774-1780, 2001.

I. Meier, LINCing the eukaryotic tree of life -towards a broad evolutionary comparison of nucleocytoplasmic bridging complexes, J. Cell. Sci, vol.129, pp.3523-3531, 2016.

A. Méjat and T. Misteli, LINC complexes in health and disease, Nucleus, vol.1, p.40, 2010.

J. Meng, M. Rojas, W. Bacon, J. T. Stickney, and W. Ip, Methods to study protein-protein interactions, Methods Mol. Biol, vol.289, pp.341-358, 2005.

S. Moreno-díaz-de-la-espina, I. Barthellemy, and M. A. Cerezuela, Isolation and ultrastructural characterization of the residual nuclear matrix in a plant cell system, Chromosoma, vol.100, pp.110-117, 1991.

L. C. Mounkes and C. L. Stewart, Aging and nuclear organization: lamins and progeria, Current Opinion in Cell Biology, vol.16, pp.322-327, 2004.

S. P. Murphy, C. R. Simmons, and H. W. Bass, Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants, BMC Plant Biol, vol.10, p.269, 2010.

A. Németh, A. Conesa, J. Santoyo-lopez, I. Medina, D. Montaner et al., Initial genomics of the human nucleolus, PLoS Genet, vol.6, p.1000889, 2010.

Y. Oda and H. Fukuda, Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping, Plant J, vol.66, pp.629-641, 2011.

T. Okada, M. Endo, M. B. Singh, and P. L. Bhalla, Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3, Plant J, vol.44, pp.557-568, 2005.

R. C. O'malley, S. C. Huang, L. Song, M. G. Lewsey, A. Bartlett et al., Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape, Cell, vol.165, pp.1280-1292, 2016.

R. Omarov, K. Sparks, L. Smith, J. Zindovic, and H. B. Scholthof, Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs, J. Virol, vol.80, pp.3000-3008, 2006.

A. Pecinka, H. Q. Dinh, T. Baubec, M. Rosa, N. Lettner et al., , 2010.

, Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis, Plant Cell, vol.22, pp.3118-3129

S. J. Petesch and J. T. Lis, Overcoming the nucleosome barrier during transcript elongation, Trends Genet, vol.28, pp.285-294, 2012.

A. Picart-picolo, N. Picault, and F. Pontvianne, Ribosomal RNA genes shape chromatin domains associating with the nucleolus, Nucleus, vol.1, issue.6, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02115403

A. Pombo, D. , and N. , Three-dimensional genome architecture: players and mechanisms, Nat. Rev. Mol. Cell Biol, vol.16, pp.245-257, 2015.

F. Pontvianne, M. Carpentier, N. Durut, V. Pavli?tová, K. Ja?ke et al., Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana, Genome. Cell Rep, vol.16, pp.1574-1587, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02115369

A. Poulet, I. Arganda-carreras, D. Legland, A. V. Probst, P. Andrey et al., NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei, Bioinformatics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01920000

A. Poulet, A. V. Probst, K. Graumann, C. Tatout, and D. Evans, Exploring the evolution of the proteins of the plant nuclear envelope, Nucleus, vol.8, pp.46-59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01919986

A. Poulet, C. Duc, M. Voisin, S. Desset, S. Tutois et al., The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants, J. Cell. Sci, vol.130, pp.590-601, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01629338

A. V. Probst, E. Dunleavy, A. , and G. , Epigenetic inheritance during the cell cycle, Nat. Rev. Mol. Cell Biol, vol.10, pp.192-206, 2009.

K. L. Reddy, J. M. Zullo, E. Bertolino, and H. Singh, Transcriptional repression mediated by repositioning of genes to the nuclear lamina, Nature, vol.452, pp.243-247, 2008.

M. A. Ricci, C. Manzo, M. F. García-parajo, M. Lakadamyali, and M. P. Cosma, , 2015.

, Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell, vol.160, pp.1145-1158

A. Rose, S. Patel, and I. Meier, The plant nuclear envelope, Planta, vol.218, pp.327-336, 2004.

A. Rothballer and U. Kutay, The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin, Chromosoma, vol.122, pp.415-429, 2013.

F. Roudier, F. K. Teixeira, and V. Colot, Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more, Trends Genet, vol.25, pp.511-517, 2009.

F. Roudier, I. Ahmed, C. Bérard, A. Sarazin, T. Mary-huard et al., Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO J, vol.30, pp.1928-1938, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999846

X. Zhou and I. Meier, Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins, Proc. Natl. Acad. Sci. U.S.A, 2014.

X. Zhou, K. Graumann, D. E. Evans, and I. Meier, Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination, J. Cell Biol, vol.196, pp.203-211, 2012.

X. Zhou, K. Graumann, L. Wirthmueller, J. D. Jones, and I. Meier, Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants, J. Cell Biol, vol.205, pp.677-692, 2014.

V. Appendix, Scientific contribution during the PhD Posters: 2016 -SEB meeting in, 2019.

V. Pawar, A. Poulet, G. Détourné, C. Tatout, E. Vanrobays et al., A novel family of plant nuclear envelope-associated proteins, J. Exp. Bot, vol.67, pp.5699-5710, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01927334

C. Duc, M. Benoit, G. Détourné, L. Simon, A. Poulet et al., Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression, Plant Cell, vol.29, pp.1773-1793, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01919975

R. References, M. Abou-ellail, R. Cooke, and J. Sáez-vásquez, Variations in a team: major and minor variants of Arabidopsis thaliana rDNA genes, Nucleus, vol.2, pp.294-299, 2011.

A. A. Alekseyenko, A. A. Gorchakov, B. M. Zee, S. M. Fuchs, P. V. Kharchenko et al., Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs, Genes Dev, vol.28, pp.1445-1460, 2014.

M. P. Alexander, Differential staining of aborted and nonaborted pollen, Stain Technol, vol.44, pp.117-122, 1969.

A. Alexeev, A. Mazin, and S. C. Kowalczykowski, Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament, Nat. Struct. Biol, vol.10, pp.182-186, 2003.

D. D. Banks and L. M. Gloss, Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosome, Protein Sci, vol.13, pp.1304-1316, 2004.

A. R. Bassett, S. E. Cooper, A. Ragab, and A. A. Travers, The chromatin remodelling factor dATRX is involved in heterochromatin formation, PLoS One, vol.3, p.2099, 2008.

Y. V. Bernatavichute, X. Zhang, S. Cokus, M. Pellegrini, and S. E. Jacobsen, Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana, PLoS One, vol.3, p.3156, 2008.

C. Bowler, G. Benvenuto, P. Laflamme, D. Molino, A. V. Probst et al., Chromatin techniques for plant cells, Plant J, vol.39, pp.776-789, 2004.

C. Charbonnel, E. Allain, M. E. Gallego, and C. I. White, Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis, DNA Repair (Amst.), vol.10, pp.611-619, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00595841

K. Chen, Y. Xi, X. Pan, Z. Li, K. Kaestner et al., DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing, Genome Res, vol.23, pp.341-351, 2013.

D. Clynes, D. R. Higgs, and R. J. Gibbons, The chromatin remodeller ATRX: a repeat offender in human disease, Trends Biochem. Sci, vol.38, pp.461-466, 2013.

N. Collins, R. A. Poot, I. Kukimoto, C. García-jiménez, G. Dellaire et al., An ACF1-ISWI chromatinremodeling complex is required for DNA replication through heterochromatin, Nat. Genet, vol.32, pp.627-632, 2002.

T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi, and W. R. Scheible, Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis, Plant Physiol, vol.139, pp.5-17, 2005.

A. Dhayalan, R. Tamas, I. Bock, A. Tattermusch, E. Dimitrova et al., The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9, Hum. Mol. Genet, vol.20, pp.2195-2203, 2011.

P. Drané, K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche, The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3, Genes Dev, vol.24, pp.1253-1265, 2010.

Z. Du, X. Zhou, Y. Ling, Z. Zhang, and Z. Su, agriGO: a GO analysis toolkit for the agricultural community, Nucleic Acids Res, vol.38, pp.64-70, 2010.

C. Duc, M. Benoit, S. Le-goff, L. Simon, A. Poulet et al., The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants, Plant J, vol.81, pp.707-722, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01919996

N. Durut, A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis, Plant Cell, vol.26, pp.1330-1344, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02116071

S. J. Elsässer, H. Huang, P. W. Lewis, J. W. Chin, C. D. Allis et al., DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition, Nature, vol.491, pp.560-565, 2012.

S. J. Elsässer, K. Noh, N. Diaz, C. D. Allis, and L. A. Banaszynski, Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells, Nature, vol.522, pp.240-244, 2015.

A. V. Emelyanov, A. Y. Konev, E. Vershilova, and D. V. Fyodorov, Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo, J. Biol. Chem, vol.285, pp.15027-15037, 2010.

S. Eustermann, J. Yang, M. J. Law, R. Amos, L. M. Chapman et al., Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin, Nat. Struct. Mol. Biol, vol.18, pp.777-782, 2011.

D. Filipescu, E. Szenker, A. , and G. , Developmental roles of histone H3 variants and their chaperones, Trends Genet, vol.29, pp.630-640, 2013.

P. Fransz, S. Armstrong, C. Alonso-blanco, T. C. Fischer, R. A. Torres-ruiz et al., Cytogenetics for the model system Arabidopsis thaliana, Plant J, vol.13, pp.867-876, 1998.

D. Garrick, J. A. Sharpe, R. Arkell, L. Dobbie, A. J. Smith et al., Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues, PLoS Genet, vol.2, p.58, 2006.

R. J. Gibbons, D. J. Picketts, and D. R. Higgs, Syndromal mental retardation due to mutations in a regulator of gene expression, Hum. Mol. Genet, vol.4, pp.1705-1709, 1995.

R. J. Gibbons, D. J. Picketts, L. Villard, and D. R. Higgs, Mutations in a putative global transcriptional regulator cause X-linked mental retardation with a-thalassemia (ATR-X syndrome), Cell, vol.80, pp.837-845, 1995.

D. Gokhman, I. Livyatan, B. S. Sailaja, S. Melcer, and E. Meshorer, Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones, Nat. Struct. Mol. Biol, vol.20, pp.119-126, 2013.

A. D. Goldberg, Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell, vol.140, pp.678-691, 2010.

I. Grummt and G. Längst, Epigenetic control of RNA polymerase I transcription in mammalian cells, Biochim. Biophys. Acta, vol.1829, pp.393-404, 2013.

Q. He, H. Kim, R. Huang, W. Lu, M. Tang et al., The Daxx/ Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation, Cell Stem Cell, vol.17, pp.273-286, 2015.

S. I. Honda, T. Hongladarom, and G. G. Laties, A new isolation medium for plant organelles, J. Exp. Bot, vol.17, pp.460-472, 1966.

M. S. Huh, T. Price-o'dea, D. Ouazia, B. C. Mckay, G. Parise et al., Compromised genomic integrity impedes muscle growth after Atrx inactivation, J. Clin. Invest, vol.122, pp.4412-4423, 2012.

M. Ingouff, S. Rademacher, S. Holec, L. Solji?, N. Xin et al., Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis, Curr. Biol, vol.20, pp.2137-2143, 2010.

S. Iwase, B. Xiang, S. Ghosh, T. Ren, P. W. Lewis et al., ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome, Nat. Struct. Mol. Biol, vol.18, pp.769-776, 2011.

Y. Jacob, S. Feng, C. A. Leblanc, Y. V. Bernatavichute, H. Stroud et al., ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing, Nat. Struct. Mol. Biol, vol.16, pp.763-768, 2009.

D. T. Jones, W. R. Taylor, and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences, Comput. Appl. Biosci, vol.8, pp.275-282, 1992.

H. Kaya, K. I. Shibahara, K. I. Taoka, M. Iwabuchi, B. Stillman et al., FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems, Cell, vol.104, pp.131-142, 2001.

A. Y. Konev, M. Tribus, S. Y. Park, V. Podhraski, C. Y. Lim et al., CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo, Science, vol.317, pp.1087-1090, 2007.

A. Laferté, E. Favry, A. Sentenac, M. Riva, C. Carles et al., The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components, Genes Dev, vol.20, pp.2030-2040, 2006.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

M. J. Law, ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner, Cell, vol.143, pp.367-378, 2010.

R. J. Lawrence, K. Earley, O. Pontes, M. Silva, Z. J. Chen et al., A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance, Mol. Cell, vol.13, pp.599-609, 2004.

N. G. Lee, Y. K. Hong, S. Y. Yu, S. Y. Han, D. Geum et al., dXNP, a Drosophila homolog of XNP/ATRX, induces apoptosis via Jun-N-terminal kinase activation, FEBS Lett, vol.581, pp.2625-2632, 2007.

J. W. Leung, .. Ghosal, G. Wang, W. Shen, X. Wang et al., Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress, J. Biol. Chem, vol.288, pp.6342-6350, 2013.

P. W. Lewis, S. J. Elsaesser, K. M. Noh, S. C. Stadler, A. et al., Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres, Proc. Natl. Acad. Sci. USA, vol.107, pp.14075-14080, 2010.

C. Liu, C. Wang, G. Wang, C. Becker, M. Zaidem et al., Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution, Genome Res, vol.26, pp.1057-1068, 2016.

C. Liu, C. Xiong, M. Wang, Z. Yu, N. Yang et al., Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX, Nat. Struct. Mol. Biol, vol.19, pp.1287-1292, 2012.

B. López-falcón, S. Meyer-nava, B. Hernández-rodríguez, A. Campos, D. Montero et al., Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX) vertebrate protein, PLoS One, vol.9, p.113182, 2014.

T. L. Mcdowell, Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes, Proc. Natl. Acad. Sci. USA, vol.96, pp.13983-13988, 1999.

B. Mcstay and I. Grummt, The epigenetics of rRNA genes: from molecular to chromosome biology, Annu. Rev. Cell Dev. Biol, vol.24, pp.131-157, 2008.

G. Mizuguchi, X. Shen, J. Landry, W. Wu, S. Sen et al., ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex, Science, vol.303, pp.343-348, 2004.

G. Mohannath, F. Pontvianne, and C. S. Pikaard, Selective nucleolus organizer inactivation in Arabidopsis is a chromosome position-effect phenomenon, Proc. Natl. Acad. Sci. USA, vol.113, pp.13426-13431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02115349

I. Mozgová, P. Mokros, and J. Fajkus, Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana, Plant Cell, vol.22, pp.2768-2780, 2010.

V. Muchová, S. Amiard, I. Mozgová, M. Dvo?á?ková, M. E. Gallego et al., Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants, Plant J, vol.81, pp.198-209, 2015.

J. W. Nicol, G. A. Helt, S. G. Blanchard, . Jr, A. Raja et al., The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets, ATRX Controls H3.3 Incorporation in Arabidopsis, vol.25, pp.2730-2731, 2009.

X. Nie, H. Wang, J. Li, S. Holec, and F. Berger, The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics, Biol. Open, vol.3, pp.794-802, 2014.

T. Okada, M. Endo, M. B. Singh, and P. L. Bhalla, Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3, Plant J, vol.44, pp.557-568, 2005.

T. Ono, H. Kaya, S. Takeda, M. Abe, Y. Ogawa et al., Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis, Genes Cells, vol.11, pp.153-162, 2006.

S. Otero, B. Desvoyes, and C. Gutierrez, Histone H3 dynamics in plant cell cycle and development, Cytogenet. Genome Res, vol.143, pp.114-124, 2014.

V. Pavli?tová, M. Dvo?á?ková, M. Je?, I. Mozgová, P. Mokro? et al., Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes, Plant J, vol.88, pp.411-424, 2016.

N. A. Pchelintsev, T. Mcbryan, T. S. Rai, J. Van-tuyn, D. Ray-gallet et al., Placing the HIRA histone chaperone complex in the chromatin landscape, Cell Reports, vol.3, pp.1012-1019, 2013.

A. Pecinka, H. Q. Dinh, T. Baubec, M. Rosa, N. Lettner et al., Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis, Plant Cell, vol.22, pp.3118-3129, 2010.

O. Pontes, R. J. Lawrence, N. Neves, M. Silva, J. Lee et al., Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis, Proc. Natl. Acad. Sci. USA, vol.100, pp.11418-11423, 2003.

F. Pontvianne, Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana, PLoS Genet, vol.6, p.1001225, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00787644

F. Pontvianne, T. Blevins, C. Chandrasekhara, W. Feng, H. Stroud et al., , 2012.

, Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis, Genes Dev, vol.26, pp.945-957

F. Pontvianne, T. Blevins, C. Chandrasekhara, I. Mozgová, C. Hassel et al., Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states, Genes Dev, vol.27, pp.1545-1550, 2013.

S. Preuss and C. S. Pikaard, rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch, Biochim. Biophys. Acta, vol.1769, pp.383-392, 2007.

K. Ratnakumar, ATRX-mediated chromatin association of histone variant macroH2A1 regulates a-globin expression, Genes Dev, vol.26, pp.433-438, 2012.

D. Ray-gallet, A. Woolfe, I. Vassias, C. Pellentz, N. Lacoste et al., Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity, Mol. Cell, vol.44, pp.928-941, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743096

M. D. Ricketts, B. Frederick, H. Hoff, Y. Tang, D. C. Schultz et al., Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex, Nat. Commun, vol.6, p.7711, 2015.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

M. A. Rounds and P. B. Larsen, Aluminum-dependent rootgrowth inhibition in Arabidopsis results from AtATR-regulated cellcycle arrest, Curr. Biol, vol.18, pp.1495-1500, 2008.

D. Sadic, K. Schmidt, S. Groh, I. Kondofersky, J. Ellwart et al., Atrx promotes heterochromatin formation at retrotransposons, EMBO Rep, vol.16, pp.836-850, 2015.

J. J. Sandmeier, S. French, Y. Osheim, W. L. Cheung, C. M. Gallo et al., RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase, EMBO J, vol.21, pp.4959-4968, 2002.

S. Sawatsubashi, A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor, Genes Dev, vol.24, pp.159-170, 2010.

J. I. Schneiderman, G. A. Orsi, K. T. Hughes, B. Loppin, A. et al., Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant, Proc. Natl. Acad. Sci. USA, vol.109, pp.19721-19726, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782360

J. I. Schneiderman, A. Sakai, S. Goldstein, A. , and K. , , 2009.

, The XNP remodeler targets dynamic chromatin in Drosophila, Proc. Natl. Acad. Sci. USA, vol.106, pp.14472-14477

H. Shaked, N. Avivi-ragolsky, and A. A. Levy, Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination, Genetics, vol.173, pp.985-994, 2006.

L. Shi, J. Wang, F. Hong, D. L. Spector, and Y. Fang, Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes, Proc. Natl. Acad. Sci. USA, vol.108, pp.10574-10578, 2011.

H. Shu, M. Nakamura, A. Siretskiy, L. Borghi, I. Moraes et al., Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes, Genome Biol, vol.15, p.62, 2014.

S. Smith and B. Stillman, Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro, Cell, vol.58, pp.15-25, 1989.

A. Steimer, P. Amedeo, K. Afsar, P. Fransz, O. Mittelsten-scheid et al., Endogenous targets of transcriptional gene silencing in Arabidopsis, Plant Cell, vol.12, pp.1165-1178, 2000.

H. Stroud, M. V. Greenberg, S. Feng, Y. V. Bernatavichute, and S. E. Jacobsen, Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome, Cell, vol.152, pp.352-364, 2013.

H. Stroud, S. Otero, B. Desvoyes, E. Ramírez-parra, S. E. Jacobsen et al., Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, vol.109, pp.5370-5375, 2012.

H. Tagami, D. Ray-gallet, G. Almouzni, and Y. Nakatani, , 2004.

H. Histone, 1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis, Cell, vol.116, pp.51-61

P. B. Talbert, A unified phylogeny-based nomenclature for histone variants, Epigenetics Chromatin, vol.5, p.7, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00710902

P. B. Talbert and S. Henikoff, Histone variants-ancient wrap artists of the epigenome, Nat. Rev. Mol. Cell Biol, vol.11, pp.264-275, 2010.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol, vol.30, pp.2725-2729, 2013.

J. Tang, S. Wu, H. Liu, R. Stratt, O. G. Barak et al., A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein, J. Biol. Chem, vol.279, pp.20369-20377, 2004.

H. L. Thompson, R. Schmidt, and C. Dean, Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome, Nucleic Acids Res, vol.24, pp.3017-3022, 1996.

I. Vaillant, I. Schubert, S. Tourmente, and O. Mathieu, MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis, EMBO Rep, vol.7, pp.1273-1278, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01917196

M. I. Vaquero-sedas and M. A. Vega-palas, Differential association of Arabidopsis telomeres and centromeres with histone H3 variants, Sci. Rep, vol.3, p.1202, 2013.

A. Veluchamy, T. Jégu, F. Ariel, D. Latrasse, K. G. Mariappan et al., LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome, PLoS One, vol.11, p.158936, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602849

H. P. Voon, J. R. Hughes, C. Rode, I. A. De-la-rosa-velázquez, T. Jenuwein et al., , 2015.

, ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes, Cell Reports, vol.11, pp.405-418

H. Wollmann, The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana, Genome Biol, vol.18, p.94, 2017.

H. Wollmann, S. Holec, K. Alden, N. D. Clarke, P. É. Jacques et al., Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome, PLoS Genet, vol.8, p.1002658, 2012.

L. H. Wong, J. D. Mcghie, M. Sim, M. A. Anderson, S. Ahn et al., ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells, Genome Res, vol.20, pp.351-360, 2010.

Y. Xue, R. Gibbons, Z. Yan, D. Yang, T. L. Mcdowell et al., The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies, Proc. Natl. Acad. Sci. USA, vol.100, pp.10635-10640, 2003.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), 2008.

, Genome Biol, vol.9, p.137

. Ne)-renfermant, Une nouvelle famille de protéines associées à l'enveloppe nucléaire (NEAP), proposées comme nouveaux composants du nucléosquelette de la plante, a récemment été mise en évidence dans la plante modèle Arabidopsis thaliana. Ces protéines sont codées par une famille de trois gènes et sont ciblées vers le noyau via un NLS où elles sont ancrées à l'INM via leur domaine transmembranaire C-terminal. Les protéines AtNEAPs possèdent également plusieurs longs domaines en spirale (coiled-coil) rappelant la structure des lamines chez les animaux. Cette thèse visait à réaliser une analyse fonctionnelle des AtNEAPs à l'aide de lignées mutantes T-DNA et CRISPR/Cas9. L'interactome AtNEAP a été étudié par des approches moléculaires (Yeast Two Hybrid), indiquant des interactions entre AtNEAPs pouvant former des homo-ou hétéro-dimères; ainsi que la localisation et la co-localisation in vivo couplées à de l'imagerie (apFRET), qui ont confirmé les interactions avec le facteur de transcription (TF) AtbZIP18. Les anticorps spécifiques à AtNEAP générés au cours de cette étude ont été utilisés pour confirmer l'expression in vivo, une structure où l'ADN s'enroule autour de protéines histones