T. and K. -morphism-f-:-t-k-?-a, Let S be a Dedekind scheme, with ring of rational functions K. Let A be a K-scheme. A Néron lft-model over S for A is the datum of a smooth separated scheme A ? S and a K-isomorphism ? : A × S K ? A satisfying the following universal property: for any smooth map of schemes

, A Néron lft-model differs from a Néron model in that the former is not required to be quasi-compact

, Let S be a trait and G a smooth separated S-group scheme. The following are equivalent: i) G is a Néron lft-model of its generic fibre

?. S-?-s,-with-k-=-frac and O. , the map G(S ) ? G(K ) is surjective. K : Spec K ? Pic X K /K . Then the fppf-quotient sheaf N = Pic X /S / cl(e K ) is representable by a smooth separated S-group scheme. Moreover, the quotient morphism

, K ) is a group algebraic space, smooth over S because Pic X /S is; as cl(e K ) is closed in Pic X /S , N is separated over S. In particular, N is a separated group algebraic space locally of finite type over S, so it is a group scheme by, Proof. As cl(e K ) is flat over S, the fppf-quotient of sheaves N = Pic X /S / cl

. ?-z-v, 2, ii)) is injective, hence the intersection of cl(e K ) with the identity component Pic 0

X. X-/s-?-pic, S is trivial and it follows that cl

, Let S sh ? S be a strict henselization of S with respect to some algebraic closure of the residue field, and denote by K sh its fraction field. If (?, l) is not circuit-coprime, the map Pic(X S sh ) ? Pic

, Now, as the special fibre of X S sh /S sh is generically smooth, X S sh ? S sh admits a section

, As the quotient Pic X /S ? N is anétale surjective morphism of S sh -algebraic spaces (lemma 13.5), the map Pic X /S (S sh ) ? N (S sh ) is surjective. We deduce that N (S sh ) ? Pic X K /K (K sh ) is not surjective

, ) is not surjective, hence N is not a Néron model of Pic X K /K . Now assume that (?, l) is circuit coprime. Assume first that S is strictly henselian. By proposition 13.4 it is enough to prove that for all essentially smooth local extensions R ? R of discrete valuation rings

. T-k-?-pic-x-k-/k-a-k-morphism, The two maps p * 1 g, p * 2 g : q * T ? q * N both coincide with q * f when restricted to q * T K . As q * T ? S is flat, q * T K is schematically dense in q * T . Since moreover q * N is separated, we have that p * 1 g = p * 2 g. Hence g descends to a morphism T ? N extending f . Again, the extension is unique because N ? S is separated and T K is schematically dense in T, is surjective. As X ? S admits a section, we may apply lemma 13.2 and just show that Pic(X R ) ? Pic(X K ) is surjective. The map R ? R has ramification index 1, vol.1

, It is enough to check that the labelled graph ( ?, l) of X ? S is circuitcoprime, by the previous Theorem. As labelled graphs are preserved unde? etale extensions of the base trait, we may assume that X ? S has special fibre with split singularities

, Let k be a separable closure of the residue field of S and suppose that the graph of X k is a tree. Then N = Pic X /S / cl(e K ) is a Néron lft-model for Pic X K /K over S. We have shown how to construct Néron lft-models for the group scheme Pic X K /K , without ever imposing bounds on the degree of line bundles; the following lemma allows us to retrieve lft-Néron models for subgroup schemes of Pic X K /K , and applies in particular to subgroup schemes that are open and closed, Corollary 13.8. Let X ? S be a nodal curve over a trait with perfect fraction field K

X. ,

, Let X /S be a nodal curve over a trait, and H ? Pic X K /K a K-smooth closed subgroup scheme of Pic X K /K . Let N ? S be the Néron model of Pic X K /K . Then H admits a Néron lft-model H over S

X. ,

A. B. Altman and S. L. Kleiman, Compactifying the Picard scheme, Adv. in Math, vol.35, issue.1, pp.50-112, 1980.

. Sivaramakrishna-anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, p.33, 1973.

S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol.21, 1990.

L. Caporaso, Néron models and compactified Picard schemes over the moduli stack of stable curves, Amer. J. Math, vol.130, issue.1, pp.1-47, 2008.

P. Deligne and . Le-lemme-de-gabber, Astérisque, vol.127, pp.131-150, 1985.

R. Diestel, Graph theory, Graduate Texts in Mathematics, vol.173, 2005.

A. J. De and J. , Smoothness, semi-stability and alterations, Inst. Haute? Etudes Sci. Publ. Math, issue.83, pp.51-93, 1996.

B. Edixhoven, Néron models and tame ramification, Compositio Mathematica, vol.81, issue.3, pp.291-306, 1992.

A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV, of Publications Mathématiques. Institute des HautesÉtudes Scientifiques, vol.20, pp.1964-1967

L. Gruson and M. Raynaud, Critères de platitude et de projectivité. Techniques de "platification" d'un module. Inventiones mathematicae, vol.13, pp.1-89, 1971.

A. Grothendieck, Revêtementsétales et groupe fondamental, vol.224, 1971.

A. Grothendieck, M. Raynaud, and D. Rim, Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, vol.288, 1967.

D. Holmes, Extending the double ramification cycle by resolving the Abel-Jacobi map, 2017.

D. Holmes, Néron models of jacobians over base schemes of dimension greater than 1. To appear in Journal für die reine und angewandte Mathematik, 2017.

Q. Liu, Algebraic geometry and arithmetic curves, of Oxford Graduate Texts in Mathematics, vol.6, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00194204

L. Moret-bailly, Pinceaux de variétés abéliennes, Astérisque, issue.129, p.266, 1985.

A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. HautesÉtudes Sci. Publ.Math. No, vol.21, p.128, 1964.

G. Orecchia, Semi-factorial nodal curves and Néron models of jacobians, Manuscripta Mathematica, vol.154, issue.3, pp.309-341, 2017.

C. Pépin, Modèles semi-factoriels et modèles de Néron, Math. Ann, vol.355, issue.1, pp.147-185, 2013.

M. Raynaud, Spécialisation du foncteur de Picard, Inst. Haute? Etudes Sci. Publ. Math, issue.38, pp.27-76, 1970.

M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, vol.119, 1970.

C. Scheiderer, Real andétale cohomology, Lecture Notes in Mathematics, vol.1588, 1994.

I. R. Shafarevich, Basic algebraic geometry, vol.1

, The Stacks Project Authors. Stacks Project, 2016.

K. Thulasiraman and M. N. Swamy, Graphs: theory and algorithms, 1992.