, Pour une injection de 3.5 mg de dodécane. Pour rappel (cf. §2.1), le volume de la cellule à précombustion est de

, L, la densité de remplissage de 23 kg/m 3 , et il y a 15% d'oxygène dans les gaz avant injection

C. Abram, B. Fond, and F. Beyrau, Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles, Progress in Energy and Combustion Science, vol.64, p.3601285, 2018.

T. Aizawa and H. Kosaka, Laser-Induced Phosphorescence Thermography of Combustion Chamber Wall of Diesel Engine, SAE International Journal of Fuels and Lubricants, vol.1, issue.1, pp.1946-3960, 2009.

M. Aldén, Thermographic phosphors for thermometry : A survey of combustion applications, Progress in Energy and Combustion Science, vol.37, pp.422-461, 2011.

S. W. Allison and G. T. Gillies, Remote thermometry with thermographic phosphors : Instrumentation and applications, Semiotica 117.1. issn, pp.37-1998, 1997.

M. André, Potentiel de la combustion HCCI et injection précoce, 2010.

W. J. Annand, Heat transfer in the cylinders of reciprocating internal combustion engines, Proc Instn Mech Engrs 177, vol.36, pp.973-996, 1963.

M. A. Araújo and . De, Measurement of Gaussian laser beam radius using the knife-edge technique : Improvement on data analysis, Applied Optics, vol.48, pp.3-6935, 2009.

D. N. Assanis, E. Et, and . Badillo, Evaluation of Alternative Thermocouple Designs for Transient Heat Transfer Measurements in Metal and Ceramic Engines, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 1989.

D. Astm-committee, ASTM D2699 -Test Method for Research Octane Number of Spark-Ignition Engine Fuel, 2018.

B. Atakan and D. Roskosch, Thermographic phosphor thermometry in transient combustion : A theoretical study of heat transfer and accuracy, Proceedings of the Combustion Institute, vol.34, p.15407489, 2013.

K. T. Aung, M. I. Hassan, and G. M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure, Combustion and Flame, vol.109, issue.1-2, pp.1-24, 1997.

M. L. Baglione, Development of system analysis methodologies and tools for modeling and optimizing vehicle system efficiency, 2007.

H. Bendu and S. Murugan, Homogeneous charge compression ignition (HCCI) combustion : Mixture preparation and control strategies in diesel engines, Renewable and Sustainable Energy Reviews, vol.38, p.13640321, 2014.

R. E. Bentley, The use of elemental thermocouples in high-temperature precision thermometry, Measurement 23.1, pp.35-46, 1998.

T. L. Bergman, Introduction to heat transfer, 2011.

J. Beulshausen, S. Pischinger, and M. Nijs, Drivetrain Energy Distribution and Losses from Fuel to Wheel, SAE International Journal of Passenger Cars -Mechanical Systems, vol.6, pp.1946-4002, 2013.

C. Binder, F. Abou-nada, and M. Richter, Effect of Flame Luminosity on Phosphor Thermometry Measurements Using the Decay Time Method, 1st International Conference on Phosphor Thermometry -extended abstracts, 2018.

C. Binder, Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements, SAE International Journal of Engines 10.4. issn, pp.1946-3944, 2017.

S. Blundell and K. M. Blundell, Concepts in thermal physics, p.9780191574337, 2010.

M. Bolla, Influence of turbulent fluctuations on radiation heat transfer, NO and soot formation under ECN Spray A conditions, Proceedings of the Combustion Institute, vol.36, p.15407489, 2017.

G. Borman and K. Nishiwaki, Internal-combustion engine heat transfer, Progress in Energy and Combustion Science, vol.13, pp.1-46, 1987.

R. Bounaceur, Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates, SAE 2010 World Congress & Exhibition. SAE Technical Paper Series. SAE Interna-tional400 Commonwealth Drive, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01169466

B. Boust, A thermal formulation for single-wall quenching of transient laminar flames, Combustion and Flame, vol.149, pp.286-294, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00360525

B. Boust, Étude expérimentale et modélisation des pertes thermiques pariétales lors de l'interaction flamme-paroi instationnaire, 2006.

. Boust, J. Bastien, M. Sotton, and . Bellenoue, Unsteady Contribution of Water Vapor Condensation to Heat Losses at Flame-Wall Interaction, Journal of Physics : Conference Series, vol.395, pp.1742-6588, 2012.

D. Bradley, T. Et-gautam, and . Kalghatgi, Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines, Combustion and Flame, vol.156, pp.2307-2318, 2009.

J. Brübach, On surface temperature measurements with thermographic phosphors : A review, Progress in Energy and Combustion Science, vol.39, pp.37-60, 2013.

G. Bruneaux, Etude Asymptotique, Simulation Numérique Directe et Modélisation de l'Interaction Flamme Turbulente Prémélangée -Paroi, 1996.

D. Burgess, M. Yust, and K. G. Kreider, Transient Thermal Response of Plasmaisprayed Zirconia Measured with Thin-m Thermocouples, In : Sensors and Actuators A, vol.24, pp.155-161, 1990.

S. P. Burke and T. E. Schumann, Diffusion Flames". In : Industrial & Engineering Chemistry, vol.20, pp.19-7866, 1928.

G. W. Burns, Temperature-electromotive force reference functions and tables for the letterdesignated thermocouple types based on the ITS-90, 1993.

G. Busse and K. F. Renk, Stereoscopic depth analysis by thermal wave transmission for nondestructive evaluation, Applied Physics Letters, vol.42, pp.3-6951, 1983.

L. M. Cantu, Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy, Experimental Thermal and Fluid Science, vol.95, p.8941777, 2018.

J. Chang, New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux, SAE Technical Paper Series, 2004.

A. G. Charalambides, Using Infrared Laser Absorption to Measure Hydrocarbon Concentration in a Lean-Burn, Stratified-Charge, Spark-Ignition Engine, Combustion Science and Technology 187, vol.5, pp.679-696, 2015.

R. Chartrand, Numerical Differentiation of Noisy, Nonsmooth Data, ISRN Applied Mathematics 2011.1-4, pp.2090-5564, 2011.

Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames : Methane/air at normal temperature and pressure, Combustion and Flame, vol.162, pp.2442-2453, 2015.

X. -. Cheng and . Bei, Investigation of the combustion and emission characteristics of partially premixed compression ignition in a heavy-duty diesel engine, Proceedings of the Institution of Mechanical Engineers, Part D : Journal of Automobile Engineering 228, vol.7, pp.784-798, 2014.

G. N. Coleman, D. Richard, and . Sandberg, A primer on direct numerical simulation of turbulence -methods, procedures and guidelines, Commission européenne, pp.52017-0676, 2010.

W. Commons, Four stroke cycle, title=File:Four_stroke_cycle_start.png%5C&oldid=144496769, 2005.

P. Otto, , 2016.

H. Consigny, Heat Transfer Measurement Techniques Used or in Development at ONERA/Chalais-Meudon, New Trends in Instrumentation for Hypersonic Research. Sous la dir. d'A. Boutier, pp.437-447, 1993.

W. J. Cook, Determination of heat-transfer rates from transient surface temperature measurements, AIAA Journal 8.7, pp.1-1452, 1970.

. Corning, HPFS Fused Silica KrF Grade, 2008.

A. D'adamo, Chemistry-Based Laminar Flame Speed Correlations for a Wide Range of Engine Conditions for Iso-Octane, n-Heptane, Toluene and Gasoline Surrogate Fuels, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2017.

R. N. Dahms, Understanding the ignition mechanism of high-pressure spray flames, Proceedings of the Combustion Institute, vol.36, pp.1540-7489, 2017.

P. Dai, Numerical experiments on reaction front propagation in n -heptane/air mixture with temperature gradient, Proceedings of the Combustion Institute, vol.35, p.15407489, 2015.

R. S. Davis, D. Gary, T. Mandrusiak, and . Landenfeld, Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection, SAE International Journal of Engines 1.1, pp.1946-3944, 2009.

J. E. Dec, Advanced compression-ignition engines-understanding the in-cylinder processes, SAE International Congress & Exposition, vol.32, pp.2727-2742, 1997.

K. Dejima, Development of MEMS Heat Flux Vector Sensor for Internal Combustion Engines, COMODIA (The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines). T. 2017.9, p.202, 2017.

J. Demuynck, Local heat flux measurements in a hydrogen and methane spark ignition engine with a thermopile sensor, International Journal of Hydrogen Energy, vol.34, pp.360-3199, 2009.

J. M. Desantes, A 1D model for the description of mixing-controlled reacting diesel sprays, Combustion and Flame, vol.156, pp.234-249, 2009.

C. Ding, Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine, Applied Physics B, vol.123, pp.946-2171, 2017.

O. A. Eekoye, Heat transfer modeling during knock and flame quenching in an engine chamber, Symposium (International) on Combustion 26, vol.2, pp.2661-2668, 1996.

F. N. Egolfopoulos, P. Cho, and C. K. Law, Laminar flame speeds of methane-air mixtures under reduced and elevated pressures, Combustion and Flame, vol.76, issue.3-4, pp.90119-90122, 1989.

F. N. Egolfopoulos, D. L. Zhu, and C. K. Law, Experimental and numerical determination of laminar flame speeds : mixtures of C2-hydrocarbons with oxygen and nitrogen, 23rd symposium on Combustion. Sous la dir. de The Combustion Institute, pp.471-478, 1990.

K. Elser, Der instationäre Wärmeübergang in Dieselmotoren : theoretische und experimentelle Untersuchungen. Leemann, 1954.

E. Toolbox, Fuels -Higher and Lower Calorific Values, 2003.

Y. Enomoto and S. Furuhama, A Study of the Local Heat Transfer Coefficient on the Combustion Chamber Walls of a Four-Stroke Gasoline Engine, pp.107-114, 1989.

Y. Enomoto, Heat transfer coefficient on the combustion chamber wall surfaces in a naturally aspirated direct-injection diesel engine, International Journal of Engine Research, vol.15, pp.1468-0874, 2014.

, Vehicles in use : Europe, ACEA _ Report _ Vehicles _ in _ use -Europe_2017.pdf, 2017.

J. Ewald, Extended Charge Motion Design : CAE Based Prediction of Gasoline Engine Pre-ignition Risk, Proceedings of the FISITA 2012 World Automotive Congress. T. 190. Lecture Notes in Electrical Engineering, pp.978-981, 2013.

, Fiber Bragg Grating (FBG) sensor principle, FBGS, 2019.

J. Feist and . Peter, Development of Phosphor Thermometry for Gas Turbines, 2011.

C. R. Ferguson, C. Et-james, and . Keck, On laminar flame quenching and its application to spark ignition engines, Combustion and Flame, vol.28, pp.90025-90031, 1977.

C. R. Ferguson, . Et-allan, and . Kirkpatrick, Internal combustion engines : Applied thermosciences, p.9781118926376, 2016.

C. A. Finol and . Et-kevin-robinson, Thermal Profile of a Modern Passenger Car Diesel Engine, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2006.

F. Foucher, Étude expérimentale de l'interaction flamme-paroi : application au moteur à allumage commandé, 2002.

N. Fuhrmann, Gd 3 Ga 5 O 12 : Cr-a phosphor for two-dimensional thermometry in internal combustion engines, Measurement Science and Technology, vol.22, pp.957-0233, 2011.

N. Fuhrmann, Two-dimensional surface temperature diagnostics in a full-metal engine using thermographic phosphors, Measurement Science and Technology, vol.24, p.95203, 2013.

K. Fukui, Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2016.

E. Gingrich, J. B. Ghandhi, and R. D. Reitz, Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes, SAE International Journal of Engines, pp.1946-3944, 2014.

E. Goldhahn and J. Seume, The background oriented schlieren technique : Sensitivity, accuracy, resolution and application to a three-dimensional density field, Experiments in Fluids, vol.43, issue.2-3, pp.723-4864, 2007.

D. G. Goodwin, K. Harry, R. L. Moffat, and . Speth, , 2017.

B. Grandin and I. Denbratt, The Effect of Knock on Heat Transfer in SI Engines, SAE Technical Paper Series, 2002.

X. J. Gu, D. R. Emerson, and D. Bradley, Modes of reaction front propagation from hot spots, Combustion and Flame, vol.133, issue.1-2, pp.63-74, 2003.

T. L. Hendricks, B. Et-jaal, and . Ghandhi, Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements : Processing Code Effects, SAE International Journal of Engines, vol.5, pp.1946-3944, 2012.

T. L. Hendricks, A. Derek, B. Splitter, and . Ghandhi, Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes, International Journal of Engine Research, vol.15, pp.684-705, 2014.

J. B. Heywood, Z. Et-orian, and . Welling, Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines, SAE International Journal of Engines 2.1, pp.1946-3944, 2009.

P. Higelin and T. Jaine, Modélisation du cycle moteur Moteur à allumage par compression, Techniques de l'ingénieur base documentaire : TIB166DUO, 2007.

K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in passenger cars, Tribology International, vol.47, pp.221-234, 2012.

W. M. Huang, S. R. Vosen, and R. Greif, Heat transfer during laminar flame quenching : Effect of fuels, Symposium (International) on Combustion 21.1. Twenty-First Symposuim (International on Combustion), pp.82-0784, 1988.

T. Husberg, Piston Temperature Measurement by Use of Thermographic Phosphors and Thermocouples in a Heavy-Duty Diesel Engine Run Under Partly Premixed Conditions, SAE Technical Paper Series, 2005.

I. Infra-red-analyzers, Operating Principles of Infrared Thermography, 2019.

M. Jansons, Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine, SAE Technical Paper Series, 2008.

, Motor vehicle statistics of Japan, 2018.

Y. Jo and . Suk, Performance Maps of Turbocharged SI Engines with Gasoline-Ethanol Blends : Torque, Efficiency, Compression Ratio, Knock Limits, and Octane, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2014.

B. Johnson and C. Edwards, Exploring the Pathway to High Efficiency IC Engines through Exergy Analysis of Heat Transfer Reduction, SAE International Journal of Engines, vol.6, pp.1946-3944, 2013.

G. Jomaas, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures, Proceedings of the Combustion Institute, vol.30, p.15407489, 2005.

G. T. Kalghatgi, Knock onset, knock intensity, superknock and preignition in spark ignition engines, International Journal of Engine Research, vol.19, pp.1468-0874, 2017.

G. T. Kalghatgi, H. Babiker, and J. Badra, A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates, SAE International Journal of Engines, vol.8, pp.1946-3944, 2015.

T. Kármán, G. Von, and . Millán, Thermal theory of a laminar flame front near a cold wall, Symposium (International) on Combustion 4.1. Fourth Symposium (International) on Combustion, pp.82-0784, 1953.

M. Karrer, Diagnostic des plasmas de combustion par sonde d'ionisation : application à l'étude de l'interaction flamme-paroi instationnaire, 2009.

J. T. Kashdan, G. Et, and . Bruneaux, Laser-Induced Phosphorescence Measurements of Combustion Chamber Surface Temperature on a Single-Cylinder Diesel Engine, SAE International Powertrains, Fuels and Lubricants Meeting. SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2011.

W. Kester and . Allan, Data conversion handbook. Analog Devices series, p.9780750678414, 2005.

C. Knappe, Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures, SAE International Journal, pp.1946-3944, 2011.

C. Knappe, Thickness dependent variations in surface phosphor thermometry during transient combustion in an HCCI engine, Combustion and Flame, vol.160, pp.1466-1475, 2013.

J. Kodavasal, The effects of thermal and compositional stratification on the ignition and duration of homogeneous charge compression ignition combustion, Combustion and Flame, vol.162, pp.451-461, 2015.

F. Köpple, Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine via Instantaneous Surface Temperature Measurements, SAE International Journal of Engines, pp.1946-3944, 2014.

B. Lawton, Effect of Compression and Expansion on Instantaneous Heat Transfer in Reciprocating Internal Combustion Engines, Proc Instn Mech Engrs, vol.201, pp.175-186, 1987.

K. Lee, A study on combustion control and operating range expansion of gasoline HCCI, Energy 91, pp.1038-1048, 2015.

. Lee, C. Soduk, J. Schenk, and . Mcdonald, Air Flow Optimization and Calibration in High-Compression-Ratio Naturally Aspirated SI Engines with Cooled-EGR, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2016.

M. Leidenfrost and E. Werner, Measuring Temperature at a Cylinder Head under Thermal Load, MTZ worldwide 73, pp.2192-9114, 2012.

D. Lejsek and A. Kulzer, Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection, SAE International Journal of Engines 2.1, pp.1946-3944, 2009.

T. G. Leone, The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency, Environmental science & technology 49, vol.18, pp.10778-10789, 2015.

A. G. Lewis, Dynamic Measurement of Heat Flux through the Cylinder Wall of a Modern HSDI Engine Over a New European Drive Cycle, SAE Technical Paper Series, 2010.

. Li and . Shi-wen, Heat Transfer From Impinging Diesel Flames to the Combustion Chamber Wall, SAE Technical Paper. SAE International, 1997.

R. D. Lorenz, Subsurface ambient thermoelectric power for moles and penetrators, 2003 IEEE Aerospace Conference, 2003.

J. H. Lu, Unsteady heat transfer during side wall quenching of a laminar flame, Symposium (International) on Combustion 23.1, pp.441-446, 1991.

J. Lu, Effect of Knock on Time-Resolved Engine Heat Transfer". In : SAE International Congress and Exposition, 1989.

X. Lu, D. Han, and Z. Huang, Fuel design and management for the control of advanced compression-ignition combustion modes, Progress in Energy and Combustion Science, vol.37, p.3601285, 2011.

X. Luo, X. Yu, and M. Jansons, Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine, 2015.

M. A. Marr, A fast response thermocouple for internal combustion engine surface temperature measurements, Experimental Thermal and Fluid Science, vol.34, pp.183-189, 2010.

I. Marusic, Wall-bounded turbulent flows at high Reynolds numbers : Recent advances and key issues, Physics of Fluids, vol.22, p.65103, 2010.

. Mazda, Mazda Announces Long-Term Vision for Technology Development, 2017.

G. E. Meier, Computerized background-oriented schlieren, Experiments in Fluids, vol.33, pp.181-187, 2002.

K. Michels, H. Hoffmeyer, and J. Theobald, Determination of thermal boundary conditions of a turbo charged direct injection SI engine using surface thermocouple, 2012.

. Mittal, B. M. Vikram, J. B. Revier, and . Heywood, Phenomena that Determine Knock Onset in Spark-Ignition Engines, 2007 Fuels and Emissions Conference. SAE International, 2007.

K. Mogi, Analysis and avoidance of pre-ignition in S.I. gasoline engines, JSAE Review 19.1, pp.9-14, 1998.

K. Mukai, H. Miyazaki, and S. Yashuara, Measuring technique of the cooling loss and the influences of the operating variables on heat balance in a gasoline engine, SAE Technical Paper Series, 2003.

K. Mukai, The Effects of Design Factors of the Combustion Chamber on Heat Balance in a Gasoline Engine, SAE Technical Paper, 2005.

L. Muller, Experimental study of unsteady flame-wall interaction on non-isothermal initial conditions, Theses. ISAE-ENSMA École Nationale Supérieure de Mécanique et d'Aérotechique -Poitiers, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00743578

A. Nada and F. Jouda, Phosphor Thermometry : Advances in Technique Development and Applications, 2016.

A. Naidja, Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems, Progress in Energy and Combustion Science, vol.29, p.3601285, 2003.

, RTD measurement and theory, Omega, 2017.

, Physical Properties of Thermoelement Materials, 2018.

V. D. Overbye, Unsteady Heat Transfer in Engines, SAE Technical Paper, 1961.

P. Pacaud, H. Perrin, and O. Laget, Cold Start on Diesel Engine : Is Low Compression Ratio Compatible with Cold Start Requirements ?, In : SAE International Journal of Engines, vol.1, issue.1, pp.1946-3944, 2009.

J. Pareja, Surface thermometry in combustion diagnostics by sputtered thin films of thermographic phosphors, Applied Physics B, vol.117, pp.946-2171, 2014.

S. Park, . Han, and . Seung-hyun-yoon, Effect of dual-fuel combustion strategies on combustion and emission characteristics in reactivity controlled compression ignition (RCCI) engine". In : Fuel 181, pp.16-2361, 2016.

W. J. Parker, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics, vol.32, pp.21-8979, 1961.

A. Parlak, H. Yasar, and . Bahri-sahin, Performance and exhaust emission characteristics of a lower compression ratio LHR Diesel engine, Energy Conversion and Management, vol.44, pp.196-8904, 2003.

R. Payri, A study on diesel spray tip penetration and radial expansion under reacting conditions, In : Applied Thermal Engineering, vol.90, pp.1359-4311, 2015.

L. M. Pickett, L. Dennis, . Siebers, A. Cherian, and . Idicheria, Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets, 2005.

L. M. Pickett, Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities, SAE International Journal of Engines 3.2, p, pp.1946-3944, 2010.

. Poinsot, D. C. Thierry, G. Haworth, and . Bruneaux, Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion, Combustion and Flame, vol.95, issue.1-2, pp.90056-90065, 1993.

T. Poinsot and D. Veynante, Theoretical and numerical combustion. 2, p.9781930217102, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

A. Rabl and C. E. Nielsen, Solar ponds for space heating, Solar Energy 17.1, pp.1-12, 1975.

H. Raheman and S. V. Ghadge, Performance of diesel engine with biodiesel at varying compression ratio and ignition timing, Fuel 87, vol.12, pp.16-2361, 2008.

R. D. Reitz, . Et-ganesh, and . Duraisamy, Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science, vol.46, pp.12-71, 2015.

?. Re?ito?lu and . Aslan, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technologies and Environmental Policy, vol.17, pp.1618-9558, 2015.

D. C. Ripple, ITS-90 Thermocouple Database, NIST Standard Reference Database, vol.60, 1995.

L. Russier, Évolutions technologiques des moteurs à allumage commandé et Diesel. IFP Training, 2015.

O. V. Rzhevskaya, Optical and luminescence properties of CdWO4 and CdWO4:Mo single crystals, Optics and Spectroscopy, vol.104, pp.366-373, 2008.

G. Särner, Cycle Resolved Wall Temperature Measurements Using Laser-Induced Phosphorescence in an HCCI Engine, Powertrain & Fluid Systems Conference & Exhibition. SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2005.

. Shen and S. Hsi-ping, A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures, Energy & Fuels, vol.23, pp.2482-2489, 2009.

D. L. Siebers, . Et-brian, and . Higgins, Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions, SAE Technical Paper Series, 2001.

G. P. Smith, , 2000.

. Smith, J. B. Patrick, W. K. Heywood, and . Cheng, Effects of Compression Ratio on Spark-Ignited Engine Efficiency, SAE 2014 International Powertrain, Fuels & Lubricants Meeting. SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2014.

J. Smolke, Effect of n -dodecane decomposition on its fundamental flame properties, Combustion and Flame, vol.190, pp.65-73, 2018.

J. Sotton, Interactions entre une combustion turbulente et la paroi dans une enceinte fermée, 2003.

H. S. Soyhan, Evaluation of heat transfer correlations for HCCI engine modeling, In : Applied Thermal Engineering, vol.29, issue.2-3, pp.1359-4311, 2009.

R. L. Speth, adiabatic_flame.py, 2016.

C. Strozzi, Étude expérimentale de l'auto-inflammation de mélanges gazeux en milieux confinés et sa modélisation avec une description cinétique chimique detaillée, 2008.

D. Takahashi, K. Nakata, and Y. Yoshihara, Engine Thermal Control for Improving the Engine Thermal Efficiency and Anti-Knocking Quality, SAE International Journal of Engines, 2012.

S. Tanov, Influence of the number of injections on piston heat rejection under low temperature combustion conditions in an optical compression-ignition engine, Energy Conversion and Management, vol.153, pp.196-8904, 2017.

C. Taylor and . Fayette, The internal-combustion engines in theory and practice. T. II, Combustion, fuels, materials, design. Rev, p.9780262700276, 1985.

I. Taymaz, An experimental study of energy balance in low heat rejection diesel engine, pp.364-371, 2006.

J. R. Theis, A. Getsoian, and C. Lambert, The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future, 2017.

A. Tikhonov, V. H. Nikolaevi?, . Winston, and . Wiley, Solutions of ill-posed problems. Scripta series in mathematics, 1977.

T. Tsurushima, The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines, SAE 2002 World Congress & Exhibition. SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2002.

, Where the Energy Goes : Gasoline Vehicles, 2014.

, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends, 1975.

L. Venkatakrishnan and G. E. Meier, Density measurements using the Background Oriented Schlieren technique, Experiments in Fluids, vol.37, pp.723-4864, 2004.

S. R. Vosen, R. Greif, and C. K. Westbrook, Unsteady heat transfer during laminar flame quenching, Symposium (International) on Combustion 20.1. Twentieth Symposium (International) on Combustion, pp.82-0784, 1985.

X. Wang, Heat release and heat flux in a spray-guided direct-injection gasoline engine, Proceedings of the Institution of Mechanical Engineers, vol.221, pp.1441-1452, 2007.

C. J. Weingartz, L. Carl, . Anderson, A. Scott, and . Miers, Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine, SAE World Congress & Exhibition. SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2009.

C. K. Westbrook, A. Andrew, G. A. Adamczyk, and . Lavoie, A numerical study of laminar flame wall quenching, Combustion and Flame, vol.40, pp.81-99, 1981.

T. S. Wilson, An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 2005.

N. Winkler, Effect of pressure oscillations on in-cylinder heat transfer -through large eddy simulation, International Journal of Engine Research, vol.16, pp.1468-0874, 2014.

R. S. Wolf, K. Et-wai, and . Cheng, Heat Transfer Characteristics of Impinging Diesel Sprays, SAE Technical Paper. SAE International, 1989.

G. Woschni, A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Technical Paper Series 670931, 1967.

Y. Gonzalez and A. , On-Line Temperature Measurement Inside a Thermal Barrier Sensor Coating During Engine Operation, Journal of Turbomachinery, vol.137, pp.889-504, 2015.

B. Yang, Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel, In : Applied Energy, vol.113, pp.306-2619, 2014.

M. Yao, Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progress in Energy and Combustion Science, vol.35, p.3601285, 2009.

M. K. Yassine, White Smoke Emissions Under Cold Starting of Diesel Engines, SAE Technical Paper Series. SAE International400 Commonwealth Drive, 1996.

W. M. Yen, H. Shigeo-shionoya, and . Yamamoto, Phosphor handbook, p.1420005235, 2007.

M. Yoshida, Y. Harigaya, and K. Sato, Variation of Heat Flux through a Combustion Chamber Wall of Pre-chamber type Diesel Engine : Heat Flux through Piston Crown, Cylinder Head, Suction Valve, Exhaust Valve, Pre-combustion Chamber and Exhaust Port Wall, Bulletin of JSME 25, vol.201, pp.426-437, 1982.

F. Zeng and K. L. Hohn, Modeling of three-way catalytic converter performance with exhaust mixture from natural gas-fueled engines, Applied Catalysis B : Environmental, vol.182, p.9263373, 2016.

Z. Zheng and M. Yao, Charge stratification to control HCCI : Experiments and CFD modeling with n-heptane as fuel, Fuel 88, vol.2, pp.16-2361, 2009.

I. Pos,

. Le-système-de-plaque, ) peut être déplacé par translation perpendiculairement à la face d'insertion. On décrit sa position par rapport au l'élément déclencheur de la combustion (bougie pour l'allumage commandé, injecteur pour le Diesel) par : -Une lettre : P pour "Perpendiculaire" ou F pour "en F ace" -Une distance d en mm : -du capteur à l'axe central pour la série P -du capteur à l'élément déclencheur pour la série F La figure A.1 indique les cotes en question avec la variation effectivement effectuée de positions pour le point Diesel. Pour les points d'allumage commandé, l'insert est toujours placé en haut de la cellule et c

A. Combustion,

, Le capteur ne résoud alors les harmoniques que d'un quadrant supérieur droit de la figure B.2. Si ce quadrant est situé au-delà de la zone problématique, le capteur ne résoudra pas d'éventuels effets de diffusion transverse. Typiquement, la bande passante temporelle permet de résoudre au mieux à 0.1 ms. L'étendue spatiale de la zone de mesure est difficile à évaluer précisément dans le cas d'une jonction déposée où cohabitent deux ou trois métaux (les deux câbles thermocouple et le matériau de jonction) ; on la suppose au moins aussi grande que le diamètre d'un fil thermocouple typique soit 50 mum, Interprétation Un capteur de température réel ne mesure pas toutes les harmoniques possibles dans l'équation B.1. Il existe un effet de bande passante temporelle

, La plupart des conditions usuelles de combustion d'hydrocarbures conduisent à une vitesse de flamme laminaire U ? 200 mm/s ; les vitesses de flamme turbulente sont toujours supérieures. Les valeurs critiques valent alors t c ? 0.125 ms, d c ? 25µm. La distance critique étant inférieure à la taille typique du capteur

, La seule vitesse de flamme laminaire inférieure à la valeur précédente utilisée dans les essais présentés ici est pour la précombustion type ECN spray A : U = 50 mm/s. Les valeurs sont alors t c ? 2 ms, d c ? 100µm. Dans ce cas, tracé en figure B.3, une fraction des harmoniques temporelles entre 0.5 et 2 ms soit 500 ? 2000 Hz et spatiales entre 50 et 100 µm mesurées par le capteur sont affectées par les effets de diffusion tangentielle. Cependant, pour ce cas, l'épaisseur de flamme laminaire est supérieure à 100µm

, Dans ce cas, la zone rouge s'étend à l'infini, car il n'y a aucun effet de propagation : d c , t c ? +?. Par conséquent, les effets de diffusion transverse affectent une grande partie du diagramme

, Conclusion Compte tenu de la résolution estimée du capteur et des caractéristiques de flamme, l'hypothèse que le flux thermique est normal à la paroi dans le solide est justifiée dans tous les cas de combustion, alors même que le profil de flux imposé n'est pas spatialement homogène à tout instant. En revanche

B. Figure, 3 -Précombustion ECN, vitesse de propagation faible (U = 50 mm/s) : certaines harmoniques

, La thermométrie phosphore rapide ajoute des contraintes supplémentaires par rapport à la thermométrie phosphore standard décrite en 1.5.4. Dans l'étude présente, quoique ces contraintes n'aient pas présenté d'obstacle majeur dans l'étude présente, elles peuvent

C. , Excitation laser Il est nécessaire de pouvoir exciter le phosphore à la fréquence d'acquisition désirée

, IFPEN dispose d'un laser rapide Nd-YAG de fréquence maximale 10 kHz ; cependant, la longueur d'onde minimale d'émission des impulsions laser est de 355 nm (troisième harmonique du Nd-YAG), Cela nécessite d'abord un laser pulsé adapté aux hautes fréquences. L'

, est que le temps de décroissance doit être suffisamment rapide par rapport à la période entre deux tirs laser. Cette contrainte recouvre en fait deux notions : -D'un point de vue physique, la décroissance de la luminosité avec le temps risque d'être différente selon l'état d'excitation des atomes de phosphore avant l'impulsion laser. Il faut donc idéalement s'assurer que le phosphore est desexcité, sinon effectuer la calibration avec la même fréquence pour annuler un éventuel biais

. -d'un-point-de-vue-technique, si le signal enregistré est partiel (car la décroissance n'est pas complète avant l'impulsion laser suivante), la procédure de post-traitement risque d'engendrer des biais

, le La 2 O 2 S :Eu utilisé ici) ont plusieurs lignes spectrales de temps de décroissance différents

L. , La présence d'autres états électroniques excités peut alors modifier la décroissance de la population de l'état (E) par un

. F-[aldén, , 2011.

, Ces trois états électroniques sont créés à partir d'un état de transfert de charge (CTS, charge transfer state) correspondant à un état excité du La 2 O 2 S, 2007.

, Fahed Abou Nada de l'université de Lund indique n'avoir pas observé de rayonnement phosphore pour CdWO4 pour une excitation de 15 mJ à 355 nm, ce qui est cohérent avec les spectres d'absorption de la littérature