P. Huber, Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media, Journal of Physics: Condensed Matter, vol.27, issue.10, p.103102, 2015.

A. Jani, D. Losic, and N. H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications, Progress in Materials Science, vol.58, issue.5, pp.636-704, 2013.

C. V. Cerclier, M. Ndao, R. Busselez, R. Lefort, E. Grelet et al., Structure and phase behavior of a discotic columnar liquid crystal confined in nanochannels, The Journal of Physical Chemistry C, vol.116, issue.35, pp.18990-18998, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734817

R. Lefort, J. L. Duvail, T. Corre, Y. Zhao, and D. Morineau, Phase separation of a binary liquid in anodic aluminium oxide templates, The European Physical Journal E, vol.34, issue.7, p.71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00713739

A. Hamid, R. Mhanna, R. Lefort, A. Ghoufi, C. Alba-simionesco et al., Microphase separation of binary liquids confined in cylindrical pores, The Journal of Physical Chemistry C, vol.120, issue.17, pp.9245-9252, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01303306

A. Kusmin, S. Gruener, A. Henschel, N. De-souza, J. Allgaier et al., Polymer dynamics in nanochannels of porous silicon: A neutron spin echo study, Macromolecules, vol.43, issue.19, pp.8162-8169, 2010.

G. Stelios-alexandris, M. Sakellariou, G. Steinhart, and . Floudas, Dynamics of unentangled cis-1,4-polyisoprene confined to nanoporous alumina, Macromolecules, vol.47, issue.12, pp.3895-3900, 2014.

F. Barroso-bujans, P. Palomino, F. Fernandez-alonso, S. Rudi?, A. Alegría et al., Intercalation and confinement BIBLIOGRAPHY of poly(ethylene oxide) in porous carbon nanoparticles with controlled morphologies, Macromolecules, vol.47, issue.24, pp.8729-8737, 2014.

L. Li, D. Zhou, D. Huang, and G. Xue, Double glass transition temperatures of poly(methyl methacrylate) confined in alumina nanotube templates, Macromolecules, vol.47, issue.1, pp.297-303, 2014.

J. Maiz, W. Zhao, Y. Gu, J. Lawrence, A. Arbe et al., Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores, Polymer, vol.55, issue.16, pp.4057-4066, 2014.

M. Leili-javidpour, M. Reza-rahimi-tabar, and . Sahimi, Molecular simulation of protein dynamics in nanopores. ii. diffusion, The Journal of Chemical Physics, vol.130, issue.8, p.85105, 2009.

E. P. Gilbert, L. Auvray, and J. Lal, Structure of polyelectrolyte chains confined in nanoporous glass, Macromolecules, vol.34, issue.14, pp.4942-4948, 2001.

M. William, F. G. Deen, and . Smith, Hindered diffusion of synthetic polyelectrolytes in charged microporous membranes, Journal of Membrane Science, vol.12, issue.2, pp.217-237, 1982.

P. Jie-ren-ku and . Stroeve, Protein diffusion in charged nanotubes: "on-off" behavior of molecular transport, Langmuir, vol.20, issue.5, pp.2030-2032, 2004.

G. Oukhaled, L. Bacri, J. Mathé, J. Pelta, and L. Auvray, Effect of screening on the transport of polyelectrolytes through nanopores, Europhysics Letters), vol.82, issue.4, p.48003, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02006554

M. Ali, B. Yameen, J. Cervera, P. Ramírez, R. Neumann et al., Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: Insights from theory and experiment, Journal of the American Chemical Society, vol.132, issue.24, pp.8338-8348, 2010.

T. D. Lazzara, K. H. , A. Lau, A. I. Abou-kandil, A. Caminade et al., Polyelectrolyte layer-by-layer deposition in cylindrical nanopores, ACS Nano, vol.4, issue.7, pp.3909-3920, 2010.

H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, vol.268, issue.5216, pp.1466-1468, 1995.

X. Kai, W. Liping, and J. Lei, Biomimetic solid-state nanochannels: From fundamental research to practical applications, Small, vol.12, issue.21, pp.2810-2831

W. Lee and S. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chemical Reviews, vol.114, issue.15, pp.7487-7556, 2014.

C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira et al., Nanoporous alumina as templates for multifunctional applications, Applied Physics Reviews, vol.1, issue.3, p.31102, 2014.

V. Romero, M. I. Vázquez, S. Cañete, V. Vega, J. García et al., Frictional and electrical effects involved in the diffusive transport through a nanoporous alumina membrane, The Journal of Physical Chemistry C, vol.117, issue.48, pp.25513-25518, 2013.

A. Mozalev, S. Magaino, and H. Imai, The formation of nanoporous membranes from anodically oxidized aluminium and their application to li rechargeable batteries. Electrochimica Acta, vol.46, pp.2825-2834, 2001.

F. Boué, J. P. Cotton, A. Lapp, and G. Jannink, A direct measurement of the polyion conformation in aqueous solutions at different temperatures. small angle neutron scattering of PSSNa using zero average and full contrast, The Journal of Chemical Physics, vol.101, issue.3, pp.2562-2568, 1994.

M. N. Spiteri, F. Boué, A. Lapp, and J. P. Cotton, Persistence length for a PSSNa polyion in semidilute solution as a function of the ionic strength, Phys. Rev. Lett, vol.77, pp.5218-5220, 1996.

E. Dubois and F. Boué, Conformation of poly(styrenesulfonate) polyions in the presence of multivalent ions :â small-angle neutron scattering experiments, Macromolecules, vol.34, issue.11, pp.3684-3697, 2001.

J. Combet, F. Isel, M. Rawiso, and F. Boué, Scattering functions of flexible polyelectrolytes in the presence of mixed valence counterions : condensation and scaling, Macromolecules, vol.38, issue.17, pp.7456-7469, 2005.

R. H. Colby, Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions, Rheologica Acta, vol.49, issue.5, pp.425-442, 2010.

Y. Jan-michael, A. V. Carrillo, and . Dobrynin, Detailed molecular dynamics simulations of a model napss in water, The Journal of Physical Chemistry B, vol.114, issue.29, pp.9391-9399, 2010.

Q. Wang, Y. Long, and B. Sun, Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution, Journal of Porous Materials, vol.20, issue.4, pp.785-788, 2013.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing, Scientific Reports, vol.3, p.2748

H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, vol.268, issue.5216, pp.1466-1468, 1995.

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Advanced Materials, vol.12, issue.8, pp.582-586, 2000.

A. Santos, T. Kumeria, and D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors, TrAC Trends in Analytical Chemistry, vol.44, pp.25-38, 2013.

A. G. Koutsioubas, N. Spiliopoulos, D. Anastassopoulos, A. A. Vradis, and G. D. Priftis, Nanoporous alumina enhanced surface plasmon resonance sensors, Journal of Applied Physics, vol.103, issue.9, p.94521, 2008.

E. M. Sevick, Shear swelling of polymer brushes grafted onto convex and concave surfaces, Macromolecules, vol.29, issue.21, pp.6952-6958, 1996.

E. P. Gilbert, L. Auvray, and J. Lal, Structure of polyelectrolyte chains confined in nanoporous glass, Macromolecules, vol.34, issue.14, pp.4942-4948, 2001.

K. Lagrené and J. Zanotti, Anodic aluminium oxide: Concurrent SEM and SANS characterisation. influence of AAO confinement on PEO mean-square displacement, The European Physical Journal Special Topics, vol.141, issue.1, pp.261-265, 2007.

K. Lagrené, J. Zanotti, M. Daoud, B. Farago, and P. Judeinstein, Large-scale dynamics of a single polymer chain under severe confinement, Physical Review E, vol.81, issue.6, pp.2010-2016

F. Lange, P. Judeinstein, C. Franz, B. Hartmann-azanza, S. Ok et al., Large-scale diffusion of entangled polymers along nanochannels, ACS Macro Letters, vol.4, issue.5, pp.561-565, 2015.

F. Keller, M. S. Hunter, and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, Journal of The Electrochemical Society, vol.100, issue.9, pp.411-419, 1953.

H. Masuda and M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Japanese Journal of Applied Physics, vol.35, issue.1B, p.126, 1996.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, Fast fabrication of long range ordered porous alumina membranes by hard anodization, Nature Materials, vol.5, p.741, 2006.

W. Lee and S. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chemical Reviews, vol.114, issue.15, pp.7487-7556, 2014.

B. Abad, J. Maiz, and M. Martin-gonzalez, Rules to determine thermal conductivity and density of anodic aluminum oxide (aao) membranes, The Journal of Physical Chemistry C, vol.120, issue.10, pp.5361-5370, 2016.

K. L. Étude, . De, . Sous, . Quasi-uniaxial, and . Theses, , 2008.

S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer et al., Scattering curves of ordered mesoscopic materials, The Journal of Physical Chemistry B, vol.109, issue.4, pp.1347-1360, 2005.

A. Sundblom, L. P. Cristiano, A. E. Oliveira, J. S. Palmqvist, and . Pedersen, Modeling in situ small-angle x-ray scattering measurements following the formation of mesostructured silica, The Journal of Physical Chemistry C, vol.113, issue.18, pp.7706-7713, 2009.

V. Ilya, E. O. Roslyakov, K. S. Gordeeva, and . Napolskii, Role of electrode reaction kinetics in self-ordering of porous anodic alumina, Electrochimica Acta, vol.241, pp.362-369, 2017.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing, Scientific Reports, vol.3, p.2748, 2013.

H. Masuda, F. Hasegwa, and S. Ono, Selfâordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, Journal of The Electrochemical Society, vol.144, issue.5, pp.127-130, 1997.

M. Kim, H. Kim, C. Bae, J. Lee, H. Yoo et al., Initial self-ordering of porous anodic alumina: Transition from polydispersity to monodispersity, The Journal of Physical Chemistry C, vol.118, issue.46, pp.26789-26795, 2014.

A. Nikolay, G. S. Vinogradov, F. Harlow, J. Carlá, L. Evertsson et al., Observation of pore growth and self-organization in anodic alumina by time-resolved x-ray scattering, ACS Applied Nano Materials, vol.1, issue.3, pp.1265-1271, 2018.

J. Mary-runge, A Brief History of Anodizing Aluminum, pp.65-148, 2018.

F. Li, L. Zhang, and R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chemistry of Materials, vol.10, issue.9, pp.2470-2480, 1998.

M. Pashchanka and J. J. Schneider, Origin of self-organisation in porous anodic alumina films derived from analogy with rayleighâbénard convection cells, J. Mater. Chem, vol.21, pp.18761-18767, 2011.

M. Pashchanka and J. J. Schneider, Formation of alumina under unstable electroconvection flow regimes: A case study of tartronic acid electrolyte, The Journal of Physical Chemistry C, vol.121, issue.42, pp.23683-23692, 2017.

M. Pashchanka and J. J. Schneider, Self-ordering regimes of porous anodic alumina layers formed in highly diluted sulfuric acid electrolytes, The Journal of Physical Chemistry C, vol.120, issue.27, pp.14590-14596, 2016.

J. Siejka and C. Ortega, An O18 Study of Field Assisted Pore Formation in Compact Anodic Oxide Films on Aluminum, Journal of The Electrochemical Society, vol.124, issue.6, pp.883-891, 1977.

C. Cherki and J. Siejka, Study by Nuclear Microanalysis and O18 Tracer Techniques of the Oxygen Transport Processes and the Growth Laws for Porous Anodic Oxide Layers on Aluminum, Journal of The Electrochemical Society, vol.120, issue.6, pp.784-791, 1973.

A. Baron-wieche?, M. G. Burke, T. Hashimoto, H. Liu, P. Skeldon et al., Tracer study of pore initiation in anodic alumina formed in phosphoric acid, Electrochimica Acta, vol.113, pp.302-312, 2013.

J. Oh and C. V. Thompson, The role of electric field in pore formation during aluminum anodization, Electrochimica Acta, vol.56, issue.11, pp.4044-4051, 2011.

F. Brown and W. D. Mackintosh, The use of rutherford backscattering to study the behavior of ionâimplanted atoms during anodic oxidation of aluminum: Ar, kr, xe, k, rb, cs, cl, br, and l, vol.120, pp.1096-1102, 1973.

S. J. Garcia-vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochimica Acta, vol.52, issue.2, pp.681-687, 2006.

J. E. Houser and K. R. Hebert, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films, Nature Materials, vol.8, issue.5, pp.415-420, 2009.

, Stress induced by electrolyte anion incorporation in porous anodic aluminum oxide, Electrochimica Acta, vol.238, pp.368-374, 2017.

Q. Dou, Q. Van-overmeere, P. Shrotriya, W. Li, and K. R. Hebert, Stress induced by incorporation of sulfate ions into aluminum oxide films, Electrochemistry Communications, vol.88, pp.39-42, 2018.

X. Zhu, L. Liu, Y. Song, H. Jia, H. Yu et al., Oxygen evolution and porous anodic alumina formation, Materials Letters, vol.62, issue.24, pp.4038-4040, 2008.

Y. Ruiquan, J. Longfei, Z. Xufei, S. Ye, Y. Dongliang et al., Theoretical derivation of ionic current and electronic current and comparison between fitting curves and measured curves, RSC Adv, vol.2, pp.12474-12481, 2012.

Y. Xu-fei-zhu, L. Song, C. Liu, J. Wang, H. Zheng et al., Electronic currents and the formation of nanopores in porous anodic alumina, Nanotechnology, vol.20, issue.47, p.475303, 2009.

D. Mercier, Q. Van-overmeere, R. Santoro, and J. Proost, In-situ optical emission spectrometry during galvanostatic aluminum anodising, Electrochimica Acta, vol.56, issue.3, pp.1329-1336, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02177296

M. Pashchanka and J. J. Schneider, Experimental validation of the novel theory explaining self-organization in porous anodic alumina films, Phys. Chem. Chem. Phys, vol.15, pp.7070-7074, 2013.

M. Norek, D. Zasada, and D. Siemiaszko, Systematic study on morphology of anodic alumina produced by hard anodization in the electrolytes modified with ethylene glycol, Journal of Nano Research, vol.46, pp.165-178, 2017.

J. Martín, C. V. Manzano, O. Caballero-calero, and M. Martín-gonzález, High-aspect-ratio and highly ordered 15-nm porous alumina templates, ACS Applied Materials & Interfaces, vol.5, issue.1, pp.72-79, 2013.

W. J. St-eniowski, D. Forbot, M. Ma-lgorzata-norek, A. Michalska-domanska, and . Król, The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide, Electrochimica Acta, vol.133, pp.57-64, 2014.

X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng et al., Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid, Surface and Coatings Technology, vol.254, pp.398-401, 2014.

M. Salerno, N. Patra, R. Losso, and R. Cingolani, Increased growth rate of anodic porous alumina by use of ionic liquid as electrolyte additive, Materials Letters, vol.63, issue.21, pp.1826-1829, 2009.

G. A. Dorsey, The characterization of anodic aluminas: Iii . barrier layer composition and structure, Journal of The Electrochemical Society, vol.113, issue.3, pp.284-286, 1966.

P. Lu, H. Strutzberg, S. Wenham, and A. Lennon, Hydrogen incorporation during aluminium anodisation on silicon wafer surfaces. Electrochimica Acta, vol.133, pp.153-160, 2014.

A. Krezel and W. Bal, A formula for correlating pka values determined in D 2 O and H 2 O, Journal of inorganic biochemistry, vol.98, issue.1, pp.161-166, 2004.

M. Pashchanka and J. J. Schneider, Experimental validation of the novel theory explaining self-organization in porous anodic alumina films, Phys. Chem. Chem. Phys, vol.15, pp.7070-7074, 2013.

G. E. Thompson and G. C. Wood, Porous anodic film formation on aluminium, Nature, vol.290, p.230, 1981.

I. Mínguez-bacho, S. Rodríguez-lópez, A. Climent, D. Fichou, M. Vázquez et al., Influence of sulfur incorporation into nanoporous anodic alumina on the volume expansion and self-ordering degree, The Journal of Physical Chemistry C, vol.119, issue.49, pp.27392-27400, 2015.

C. Y. Han, G. A. Willing, Z. Xiao, and H. Wang, Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching, Langmuir, vol.23, issue.3, pp.1564-1568, 2007.

X. Wang, Y. Cheng, G. Li, L. Chen, H. He et al., Preparation and thermal stability of porous alumina membranes with nano-pore arrays, Applied Physics A, vol.98, issue.4, pp.745-749, 2010.

Y. Chang, Z. Ling, Y. Liu, X. Hu, and Y. Li, A simple method for fabrication of highly ordered porous ?-alumina ceramic membranes, J. Mater. Chem, vol.22, pp.7445-7448, 2012.

M. Tatsuya, A. Hidetaka, H. Satoshi, and S. Ono, Nanoporous alpha;-alumina membrane prepared by anodizing and heat treatment. Electrochemistry, vol.82, pp.448-455, 2014.

L. Igor and B. David, Metastable alumina polymorphs: Crystal structures and transition sequences, Journal of the American Ceramic Society, vol.81, issue.8, pp.1995-2012, 2005.

S. Zhao, K. Chan, A. Yelon, and T. Veres, Preparation of openthrough anodized aluminium oxide films with a clean method, Nanotechnology, vol.18, issue.24, p.245304, 2007.

T. Yanagishita and H. Masuda, High-throughput fabrication process for highly ordered through-hole porous alumina membranes using two-layer anodization, Electrochimica Acta, vol.184, pp.80-85, 2015.

F. Cousin and A. Menelle, Neutron reflectivity, EPJ Web of Conferences, vol.104, p.1005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02202132

T. Lebyedyeva, S. Kryvyi, and P. Lytvyn, Mykola Skoryk, and Pavlo Shpylovyy. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates, Nanoscale Research Letters, p.11, 2016.

C. Ottone, M. Laurenti, K. Bejtka, A. Sanginario, and V. Cauda, The effects of the film thickness and roughness in the anodization process of very thin aluminum films, Journal of Materials Science and Nanotechnology, vol.1, issue.1, p.1

M. Kokonou, A. G. Nassiopoulou, and K. P. Giannakopoulos, Ultra-thin porous anodic alumina films with self-ordered cylindrical vertical pores on a p-type silicon substrate, Nanotechnology, vol.16, issue.1, p.103, 2005.

J. K. Percus and G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev, vol.110, pp.1-13, 1958.

M. T. Wu, I. C. Leu, and M. H. Hon, Anodization behavior of al film on si substrate with different interlayers for preparing si-based nanoporous alumina template, Journal of Materials Research, vol.19, issue.3, pp.888-895, 2004.

A. Nelson, Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT, Journal of Applied Crystallography, vol.39, issue.2, pp.273-276, 2006.

I. Vrublevsky, K. Chernyakova, A. Bund, A. Ispas, and U. Schmidt, Effect of anodizing voltage on the sorption of water molecules on porous alumina, Applied Surface Science, vol.258, issue.14, pp.5394-5398, 2012.

M. E. Mata-zamora and J. M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, Revista mexicana de física, vol.51, pp.502-509, 2005.

J. P. O'sullivan, J. A. Hockey, and G. C. Wood, Infra-red spectroscopic study of anodic alumina films, Trans. Faraday Soc, vol.65, pp.535-541, 1969.

I. Mínguez-bacho, S. Rodríguez-lópez, A. Climent-font, D. Fichou, M. Vázquez et al., Variation of the refractive index by means of sulfate anion incorporation into nanoporous anodic aluminum oxide films, Microporous and Mesoporous Materials, vol.225, pp.192-197, 2016.

L. François-le-coz, L. Arurault, and . Datas, Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Materials Characterization, vol.6, issue.3, pp.283-288, 2010.

A. Kirchner, K. J. Mackenzie, I. W. Brown, T. Kemmitt, and M. E. Bowden, Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process, Journal of Membrane Science, vol.287, issue.2, pp.264-270, 2007.

P. Peter, A. N. Mardilovich, N. I. Govyadinoy, R. Mazurenko, and . Paterson, New and modified anodic alumina membranes part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes, Journal of Membrane Science, vol.98, issue.1, pp.143-155, 1995.

L. François-le-coz, L. Arurault, and . Datas, Chemical analysis of a single basic cell of porous anodic aluminium oxide templates, Materials Characterization, vol.61, issue.3, pp.283-288, 2010.

, Porous anodic film formation on aluminium, vol.290

Y. Xu, G. E. Thompson, G. C. Wood, and B. Bethune, Anion incorporation and migration during barrier film formation on aluminium, Corrosion Science, vol.27, issue.1, pp.83-102, 1987.

D. H. Fan, G. Q. Ding, W. Z. Shen, and M. J. Zheng, Anion impurities in porous alumina membranes: Existence and functionality, Microporous and Mesoporous Materials, vol.100, issue.1, pp.154-159, 2007.

S. Ono, H. Ichinose, and N. Masuko, The high resolution observation of porous anodic films formed on aluminum in phosphoric acid solution, Corrosion Science, vol.33, issue.6, pp.841-850, 1992.

P. Peter, A. N. Mardilovich, N. I. Govyadinov, A. M. Mukhurov, R. Rzhevskii et al., New and modified anodic alumina membranes part i. thermotreatment of anodic alumina membranes, Journal of Membrane Science, vol.98, issue.1, pp.131-142, 1995.

S. Kingo-itaya, . Sugawara, A. Kunio, and S. Saito, Properties of porous anodic aluminum oxide films as membranes, Journal of Chemical Engineering of Japan, vol.17, issue.5, pp.514-520, 1984.

X. Carrier, E. Marceau, J. Lambert, and M. Che, Transformations of ?-alumina in aqueous suspensions: 1. alumina chemical weathering studied as a function of ph, Journal of Colloid and Interface Science, vol.308, issue.2, pp.429-437, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00133775

S. Akiya, T. Kikuchi, S. Natsui, and R. O. Suzuki, Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution, Applied Surface Science, vol.403, pp.652-661, 2017.

C. Lee, H. Kang, Y. Chang, and Y. Hahm, Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation, Korean Journal of Chemical Engineering, vol.17, issue.3, pp.266-272, 2000.

. Dmitrii-i-petukhov, A. Dmitrii, . Buldakov, A. Alexey, . Tishkin et al., Liquid permeation and chemical stability of anodic alumina membranes, Beilstein Journal of Nanotechnology, vol.8, pp.561-570, 2017.

N. Kirill, S. Roslyakov-ilya, V. Eliseev, A. A. Petukhov, A. V. Byelov-dmytro et al., Long-range ordering in anodic alumina films: a microradian xâray diffraction study, Journal of Applied Crystallography, vol.43, issue.3, pp.531-538

V. Ilya, A. A. Roslyakov, E. V. Eliseev, A. V. Yakovenko, K. S. Zabelin et al., Longitudinal pore alignment in anodic alumina films grown on polycrystalline metal substrates, Journal of Applied Crystallography, vol.46, issue.6, pp.1705-1710, 2013.

V. Ilya, D. S. Roslyakov, A. A. Koshkodaev, D. Eliseev, V. K. Hermida-merino et al., Growth of porous anodic alumina on low-index surfaces of al single crystals, The Journal of Physical Chemistry C, vol.121, issue.49, pp.27511-27520, 2017.

A. Waheed, M. Mehmood, R. Benfield, J. Ahmad, H. Amenitsch et al., Small-angle x-ray scattering (SAXS) study of porous anodic aluminaâa new approach, Materials Chemistry and Physics, vol.131, issue.1, pp.362-369, 2011.

M. Engel, B. Stühn, J. J. Schneider, T. Cornelius, and M. Naumann, Small-angle x-ray scattering (saxs) off parallel, cylindrical, well-defined nanopores: from random pore distribution to highly ordered samples, Applied Physics A, vol.97, issue.1, pp.99-108, 2009.

I. Turkevych, V. Vasyl-ryukhtin, S. Garamus, T. Kato, G. Takamasu et al., Studies of self-organization processes in nanoporous alumina membranes by small-angle neutron scattering, Nanotechnology, vol.23, issue.32, p.325606, 2012.

S. V. Grigoryev, N. A. Grigoryeva, A. V. Syromyatnikov, K. S. Napolskii, A. A. Eliseev et al., Two-dimensional spatially ordered Al 2 O 3 systems: small-angle neutron scattering investigation, JETP Letters, vol.85, issue.9, pp.549-554, 2007.

D. Marchal and B. Demé, Small-angle neutron scattering by porous alumina membranes made of aligned cylindrical channels, Journal of Applied Crystallography, vol.36, issue.3, pp.713-717, 2003.

K. Lagrené and J. Zanotti, Evidence of bayerite clusters within the AAO amorphous bulk alumina. Consequence for AAO SANS matching properties, MRS Online Proceedings Library Archive, 1074, 2008.

R. Lefort, J. Duvail, T. Corre, Y. Zhao, and D. Morineau, Phase separation of a binary liquid in anodic aluminium oxide templates, The European Physical Journal E, vol.34, issue.7, p.71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00713739

D. Marchal, C. Bourdillon, and B. Demé, Small-angle neutron scattering by highly oriented hybrid bilayer membranes confined in anisotropic porous alumina, Langmuir, vol.17, issue.26, pp.8313-8320, 2001.

Y. Han, L. Cao, F. Xu, T. Chen, Z. Zheng et al., Quantitative investigation in the influence of oxalic impurities on photoluminescence properties of porous aaos, Materials Chemistry and Physics, vol.129, issue.3, pp.1247-1251, 2011.

K. Shin, S. Obukhov, J. Chen, J. Huh, Y. Hwang et al., Enhanced mobility of confined polymers, vol.6, p.961

M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz et al., Effect of nanoconfinement on polymer dynamics: Surface layers and interphases, Phys. Rev. Lett, vol.110, p.108303, 2013.

R. Syed, D. Sen, K. V. Mani-krishna, and S. K. Ghosh, Fabrication of highly ordered nanoporous alumina membranes: Probing microstructures by saxs, fesem and afm, Microporous and Mesoporous Materials, vol.264, pp.13-21, 2018.

I. Grillo, Small-Angle Neutron Scattering and Applications in Soft Condensed Matter, pp.723-782, 2008.

M. E. Mata-zamora and J. M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, Revista mexicana de física, vol.51, pp.502-509, 2005.

I. Vrublevsky, K. Chernyakova, A. Bund, A. Ispas, and U. Schmidt, Effect of anodizing voltage on the sorption of water molecules on porous alumina, Applied Surface Science, vol.258, issue.14, pp.5394-5398, 2012.

A. Sundblom, L. P. Cristiano, A. E. Oliveira, J. S. Palmqvist, and . Pedersen, Modeling in situ small-angle x-ray scattering measurements following the formation of mesostructured silica, The Journal of Physical Chemistry C, vol.113, issue.18, pp.7706-7713, 2009.

I. Vrublevsky, A. Jagminas, S. Hemeltjen, and W. A. Goedel, Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid, Applied Surface Science, vol.254, issue.22, pp.7326-7330, 2008.

D. Peak and D. L. Sparks, Mechanisms of selenate adsorption on iron oxides and hydroxides, Environmental Science & Technology, vol.36, issue.7, pp.1460-1466, 2002.

G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston et al.,

K. H. Mccarthy, D. A. Nealson, M. F. Sverjensky, J. M. Toney, and . Zachara, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chemical Reviews, vol.99, issue.1, pp.77-174, 1999.

G. A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chemical Reviews, vol.65, issue.2, pp.177-198, 1965.

B. Reto, J. Schoch, P. Han, and . Renaud, Transport phenomena in nanofluidics, Reviews of Modern Physics, vol.80, issue.3, pp.839-883, 2008.

L. Tennyson, C. Doane, R. J. Chuang, C. Hill, and . Burda, Nanoparticle ? -potentials, Accounts of Chemical Research, vol.45, issue.3, pp.317-326, 2012.

W. Chen, J. Yuan, and X. Xia, Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes, Analytical Chemistry, vol.77, issue.24, pp.8102-8108, 2005.

E. A. Bluhm, E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young et al., Surface effects on cation transport across porous alumina membranes, Langmuir, vol.15, issue.25, pp.8668-8672, 1999.

H. Benjamin, R. E. Winkler, and . Baltus, Modification of the surface characteristics of anodic alumina membranes using solâgel precursor chemistry, Journal of Membrane Science, vol.226, issue.1, pp.75-84, 2003.

B. J. Pedimonte, T. Moest, T. Luxbacher, T. Cornelius-von-wilmowsky, K. A. Fey et al., Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence, Acta Biomaterialia, vol.10, issue.2, pp.968-974, 2014.

F. Bragheri, R. M. Vazquez, and R. Osellame, Chapter 12.3 -microfluidics, Three-Dimensional Microfabrication Using Two-photon Polymerization, Micro and Nano Technologies, pp.310-334

C. Tasserit, Transport d'ions et d'objets dans des nanopores, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00589602

T. Fukutsuka, K. Koyamada, S. Maruyama, K. Miyazaki, and T. Abe, Ion transport in organic electrolyte solution through the pore channels of anodic nanoporous alumina membranes, Electrochimica Acta, vol.199, pp.380-387, 2016.

A. Gadaleta, C. Sempere, S. Gravelle, A. Siria, R. Fulcrand et al., Sub-additive ionic transport across arrays of solid-state nanopores, Physics of Fluids, vol.26, issue.1, p.12005, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01628780

N. A. Lange and J. A. Dean, Lange's Handbook of chemistry. Number v. 12 in Lange's Handbook of Chemistry, 1979.

M. Kosmulski, Chemical Properties of Material Surfaces. Surfactant Science, 2001.

A. Hernández, J. I. Calvo, P. Prádanos, L. Palacio, M. L. Rodríguez et al., Surface structure of microporous membranes by computerized SEM image analysis applied to Anopore filters, Journal of Membrane Science, vol.137, issue.1, pp.89-97, 1997.

W. Shi, Y. Shen, D. Ge, M. Xue, H. Cao et al., Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation, Journal of Membrane Science, vol.325, issue.2, pp.801-808, 2008.

M. Muthukumar, 50th anniversary perspective: A perspective on polyelectrolyte solutions. Macromolecules, vol.50, pp.9528-9560, 2017.

A. V. Dobrynin, R. H. Colby, and M. Rubinstein, Scaling theory of polyelectrolyte solutions, Macromolecules, vol.28, issue.6, pp.1859-1871, 1995.

D. Baigl, A. P. Thomas, C. E. Seery, and . Williams, Preparation and characterization of hydrosoluble, partially charged poly(styrenesulfonate)s of various controlled charge fractions and chain lengths, Macromolecules, vol.35, issue.6, pp.2318-2326, 2002.

G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions i. colligative properties, The Journal of Chemical Physics, vol.51, issue.3, pp.924-933, 1969.

F. Oosawa, . M. Polyelectrolytes, and . Dekker, , 1971.

A. V. Dobrynin and M. Rubinstein, Progress in Polymer Science, vol.30, pp.1049-1118, 2005.

I. Borukhov, D. Andelman, and H. Orland, Steric effects in electrolytes: A modified poisson-boltzmann equation, vol.79, pp.435-438, 1997.

D. D. Jiang, Q. Yao, M. A. Mckinney, and C. A. Wilkie, Tga/ftir studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts, Polymer Degradation and Stability, vol.63, issue.3, pp.423-434, 1999.

C. David, R. H. Boris, and . Colby, Rheology of sulfonated polystyrene solutions, Macromolecules, vol.31, issue.17, pp.5746-5755, 1998.

I. Mínguez-bacho, S. Rodríguez-lópez, A. Climent-font, D. Fichou, M. Vázquez et al., Variation of the refractive index by means of sulfate anion incorporation into nanoporous anodic aluminum oxide films, Microporous and Mesoporous Materials, vol.225, pp.192-197, 2016.

K. Sandeep, R. E. Dalvie, and . Baltus, Transport studies with porous alumina membranes, Journal of Membrane Science, vol.71, issue.3, pp.247-255, 1992.

, Flow through polydisperse pores in an anodic alumina membrane; a new method to measure the mean pore diameter, Anastasia Christoulaki Dimitrios Anastassopoulos Nikolaos Spiliopoulos Alexandros Vradis Chris Toprakcioglu Christos Kostaras, Spilios Dellis and George Priftis

, IAPWS 2008. Viscosity of water, 1999.

J. Benjamin, B. Rogers, M. J. Wei, and . Wirth, Ultra high efficiency protein separations with submicrometer silica using slip flow, vol.30, pp.890-897

H. Kah-peng-lee, D. Leese, and . Mattia, Water flow enhancement in hydrophilic nanochannels, Nanoscale, vol.4, pp.2621-2627, 2012.

V. M. Prabhu, M. Muthukumar, G. D. Wignall, and Y. B. Melnichenko, Polyelectrolyte chain dimensions and concentration fluctuations near phase boundaries, The Journal of Chemical Physics, vol.119, issue.7, pp.4085-4098, 2003.

C. Tasserit, A. Koutsioubas, D. Lairez, G. Zalczer, and M. Clochard, Pink noise of ionic conductance through single artificial nanopores revisited, Phys. Rev. Lett, vol.105, p.260602, 2010.

M. Lillo and D. Losic, Ion-beam pore opening of porous anodic alumina: The formation of single nanopore and nanopore arrays, Materials Letters, vol.63, issue.3, pp.457-460, 2009.

J. Andrew and . Jackson, Introduction to small-angle neutron scattering and neutron reflectometry, 2008.

F. Cousin and A. Menelle, Neutron reflectivity, EPJ Web of Conferences, vol.104, p.1005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02202132

F. Ott, Study of magnetic thin fims by polarized neutron reflectometry. Offspecular scattering on periodic structures, 1998.
URL : https://hal.archives-ouvertes.fr/tel-00429503