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Résumé xvii

Intégration de connaissances biomédicales hétérogènes grâce à un modèle basé
sur les ontologies de support

Résumé

Dans le domaine de la santé, il existe un nombre très important de sources de connais-
sances, qui vont de simples terminologies, classifications et vocabulaires contrôlés à des
représentations très formelles, que sont les ontologies. Cette hétérogénéité des sources de
connaissances pose le problème de l’utilisation secondaire des données, et en particulier
de l’exploitation de données hétérogènes dans le cadre de la médecine personnalisée
ou translationnelle. En effet, les données à utiliser peuvent être codées par des sources
de connaissances décrivant la même notion clinique de manière différente ou décrivant
des notions distinctes mais complémentaires. Pour répondre au besoin d’utilisation
conjointe des sources de connaissances encodant les données de santé, nous avons étudié
trois processus permettant de répondre aux conflits sémantiques (difficultés résultant
de leur mise en relation) : (1) l’alignement qui consiste à créer des relations de mappings
(équivalence et/ou subsumption) entre les entités des sources de connaissances, (2)
l’intégration qui consiste à créer des mappings et à organiser les autres entités dans
une même structure commune cohérente et, enfin, (3) l’enrichissement sémantique de
l’intégration qui consiste à créer des mappings grâce à des relations transversales en
plus de celles d’équivalence et de subsumption. Dans un premier travail, nous avons
aligné la terminologie d’interface du laboratoire d’analyses du CHU de Bordeaux à
la LOINC. Deux étapes principales ont été mises en place : (i) le prétraitement des
libellés de la terminologie locale qui comportaient des troncatures et des abréviations,
ce qui a permis de réduire les risques de survenue de conflits de nomenclature, (ii) le
filtrage basé sur la structure de la LOINC afin de résoudre les différents conflits de
confusion. Deuxièmement, nous avons intégré RxNorm à la sous-partie de la SNOMED
CT décrivant les connaissances sur les médicaments afin d’alimenter la SNOMED CT
avec les entités de RxNorm. Ainsi, les médicaments dans RxNorm ont été décrits en
OWL grâce à leurs éléments définitionnels (substance, unité de mesure, dose, etc.). Nous
avons ensuite fusionné cette représentation de RxNorm à la structure de la SNOMED
CT, résultant en une nouvelle source de connaissances. Nous avons ensuite comparé les
équivalences inférées (entre les entités de RxNorm et celles de la SNOMED CT) grâce à
cette nouvelle structure avec les équivalences préétablies de manière morphosyntaxique
par RxNorm. Notre méthode a résolu des conflits de nomenclature mais était confrontée
à certains conflits de confusion et d’échelle permettant ainsi de mettre en évidence
des éléments d’amélioration dans RxNorm et la SNOMED CT. Finalement, nous avons
réalisé une intégration sémantiquement enrichie de la CIM10 et de la CIMO3 en utili-
sant la SNOMED CT comme support. La CIM10 décrivant des diagnostics et la CIMO3
décrivant cette notion suivant deux axes différents (celui des lésions histologiques et
celui des localisations anatomiques), nous avons utilisé la structure de la SNOMED CT
pour retrouver des relations transversales entre les concepts de la CIM10 et de la CIMO3
(résolution de conflits ouverts). Au cours du processus, la structure de la SNOMED CT a
également été utilisée pour supprimer les mappings erronés (conflits de nomenclature
et de confusion) et désambiguïser les cas de mappings multiples (conflits d’échelle).

Mots clés : intégration sémantique, terminologies biomédicales, ontologies de support

Bordeaux Population Health – Research Center (BPH)
INSERM U1219, ERIAS – Université de Bordeaux , Case 11 – 146 rue Léo
Saignat – 33076 Bordeaux cedex – France



xviii Résumé

Integrating heterogeneous biomedical knowledge through a model based on sup-
port ontologies

Abstract

In the biomedical domain, there are almost as many knowledge resources in health
as there are application fields. These knowledge resources, described according to
different representation models and for different contexts of use, raise the problem of
complexity of their interoperability, especially for actual public health problematics
such as personalized medicine, translational medicine and the secondary use of medical
data. Indeed, these knowledge resources may represent the same notion in different
ways or represent different but complementary notions. For being able to use knowledge
resources jointly, we studied three processes, which can overcome semantic conflicts
(difficulties encountered when relating distinct knowledge resources): the alignment, the
integration and the semantic enrichment of the integration. The alignment consists in
creating a set of equivalence or subsumption mappings between entities from knowledge
resources. The integration aims not only to find mappings but also to organize all
knowledge resource entities into a unique and coherent structure. Finally, the semantic
enrichment of integration consists in finding all the required mapping relations between
entities of distinct knowledge resources (equivalence, subsumption, transversal and,
failing that, disjunction relations). In this frame, we firstly realized the alignment of
laboratory tests terminologies: LOINC and the local terminology of Bordeaux hospital.
We pre-processed the noisy labels of the local terminology to reduce the risk of naming
conflicts. Then, we suppressed erroneous mappings (confounding conflicts) using the
structure of LOINC. Secondly, we integrated RxNorm to SNOMED CT. We constructed
formal definitions for each entity in RxNorm by using their definitional features (active
ingredient, strength, dose form, etc.) according to the design patterns proposed by
SNOMED CT. We then integrated the constructed definitions into SNOMED CT. The
obtained structured was classified and the inferred equivalences between RxNorm and
SNOMED CT were compared to morphosyntactic mappings. Our process resolved
some cases of naming conflicts but was confronted to confounding or scaling conflicts
highlighting the needs of improvement in RxNorm and SNOMED CT. Finally, we
performed a semantically enriched integration of ICD-10 and ICD-O3 using SNOMED
CT as support. As ICD-10 describes diagnoses and ICD-O3 describes this notion
according to two different axes (i.e., histological lesions and anatomical structures), we
used the SNOMED CT structure to identify transversal relations between their entities
(resolution of open conflicts). During the process, the structure of the SNOMED CT
was also used to suppress erroneous mappings (naming and confusion conflicts) and
disambiguate multiple mappings (scale conflicts).

Keywords: semantic integration, biomedical terminology, support ontology
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Un concept est une invention à
laquelle rien ne correspond
exactement, mais à laquelle
nombre de choses ressemblent

Friedrich Nietzsche

Substantial summary

Introduction

Dans le domaine de la santé, il existe un nombre très important de sources
de connaissances (SCs) [1], qui vont de simples terminologies, classifications et
vocabulaires contrôlés à des représentations très formelles, que sont les ontolo-
gies [2]. Nous utilisons par la suite le terme de sources de connaissances pour
désigner ces différents types de représentation [3].

Les SCs biomédicales constituent un groupe hétérogène puisqu’elles ont été
créées avec des niveaux de complexité différents. L’hétérogénéité de ce groupe
rend leur interopérabilité complexe [4]. En effet, l’utilisation secondaire des
données de santé [5] pour la recherche, la définition de politiques de santé et la
médecine personnalisée [6, 7] sont autant de champs nécessitant l’intégration de
données de natures diverses, provenant de différents systèmes d’information et
codées suivant des SCs différentes. Il est ainsi nécessaire de pouvoir utiliser ces
SCs de manière conjointe en ayant une vue complète et cohérente.

Dans la littérature, trois grands types d’hétérogénéité entre SCs ont été
recensés [8, 9]. On distingue ainsi :

— l’hétérogénéité syntaxique : elle correspond aux différences dues au lan-
gage utilisé pour décrire les SCs. Il s’agit de différences dans les formats
d’écriture des SCs (Resource Description Framework (RDF 1), Simple Know-
ledge Organization System (SKOS 2), Web Ontology Language (OWL 3),
etc.),

— l’hétérogénéité structurelle : elle correspond aux différentes manières de
représenter des données dans un même format (modèle d’écriture des
termes, type d’organisation hiérarchique des notions, etc.),

— l’hétérogénéité sémantique : elle correspond aux différences dans les no-
tions représentées (maladies, processus biologiques, actes médicaux, actes

1. https ://www.w3.org/RDF/
2. https ://www.w3.org/TR/skos-reference/
3. https ://www.w3.org/TR/owl-features/

1



2 Substantial summary

infirmiers, etc.).

Ce travail de thèse décrit l’intérêt d’utiliser une SC de support pour garan-
tir l’interopérabilité sémantique entre SCs. La première section présente les
différents processus applicables pour surmonter les hétérogénéités entre SCs.
Les trois sections suivantes introduisent les techniques que nous avons implé-
mentées pour mettre en œuvre les processus précédemment identifiés. Nous
discutons finalement l’intérêt d’utiliser une SC de support tel que cela a été mis
en évidence dans chaque processus.

Cadre d’étude

Les correspondances entre entités de deux SCs peuvent être retrouvées ma-
nuellement par des experts du domaine. Cependant, les SCs pouvant contenir
une grande quantité d’entités, il s’agit d’un processus qui peut être long et fasti-
dieux. L’alternative est d’établir les correspondances de manière automatique
par la création de mappings, qui consiste à déterminer une expression formelle
de la relation sémantique entre deux entités. Un mapping est souvent représenté
par un quintuplet <id, e1, e2, r, n>, où e1 et e2 sont les deux entités à lier, id est
l’identifiant de la correspondance, r la relation sémantique entre les deux entités
et n la mesure de confiance associée [10]. Deux processus existent pour établir
des correspondances entre des SCs :

— l’alignement qui vise à créer des mappings entre les entités des différentes
SCs [11],

— l’intégration qui consiste à créer une nouvelle SC en utilisant des SCs
préexistantes [12]. En pratique, cela nécessite d’établir des mappings entre
les entités des SCs à intégrer, puis à réorganiser les SCs dans une structure
conjointe et unique.

Dans la littérature, ce sont essentiellement les relations d’équivalence et de
subsomption qui sont trouvées lors de l’identification des mappings. Les entités
représentant des notions différentes sont au mieux associées via des relations de
disjonction. Ainsi, quand les notions entre les SCs à relier sont distinctes mais
complémentaires, les solutions proposées sont insuffisantes. Les travaux existants
se contentent d’organiser de manière cohérente les entités représentant des
notions différentes mais ne créent pas de liens directs entre les entités en cas de
complémentarité [13]. Pour répondre à cette problématique, nous introduisons le
besoin d’enrichir sémantiquement le processus d’intégration. Ce processus vise à
créer des mappings (relations d’équivalence ou de subsomption), à organiser de
manière cohérente les entités, puis à identifier des relations transversales entre
les entités qui sont différentes mais complémentaires (e.g., mappings entre gènes
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et médicaments, entre maladies et données géographiques). Il repose sur deux
étapes : (1) l’ancrage à une SC de support, et (2) la dérivation suivant la SC de
support.

Processus d’alignement : cas des analyses biologiques

La LOINC® (Logical Observation Identifiers Names and Codes [14, 15])
est une SC de support dans le domaine des analyses biologiques. Procéder à
l’alignement de SCs locales avec la LOINC permet d’assurer l’utilisation conjointe
des données de biologie provenant de plusieurs structures de soins. Ainsi, en
alignant les entités des SCs locales avec celles de la LOINC, les entités LOINC
peuvent être utilisées pour obtenir des données comparables à travers différents
systèmes d’information.

Figure 1 – Exemple d’alignement d’un concept de la SC locale du CHU de
Bordeaux à un concept LOINC.

Nous avons aligné la SC locale du CHU de Bordeaux à la LOINC. La métho-
dologie reposait sur trois étapes. La première étape a consisté au pré-traitement
des libellés de la SC locale [16]. La deuxième étape visait à calculer la similarité
morphosyntaxique entre les tokens constitutifs des libellés de la SC locale et de
la LOINC. Dans la troisième étape, nous avons utilisé la structure de la LOINC
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pour procéder au filtrage des mappings obtenus (Figure 1). En effet, les éléments
définitionnels des concepts de la LOINC sont délimités dans chacun des libellés
grâce à une ponctuation précise. Le caractère “:” sépare les concepts LOINC en
leurs éléments principaux, comme suit :
<composant/analyte>:<propriété>:<temps>:<milieu_biologique>:
<échelle>:<méthode>.
Ainsi, comme déjà implémenté dans [17], nous avons créé des relations entre
le concept LOINC et chacun de ses éléments définitionnels. Chaque relation
a été nommée en combinant le préfixe has_ et le type d’élément définitionnel
(has_component, has_property, etc.).

Nous avons utilisé ServoMap [18] pour créer des mappings entre les concepts
de la SC locale et les éléments définitionnels des concepts LOINC. Ensuite, des
relations de mapping ont été créées entre les concepts de la LOINC et ceux de
la SC locale qui partageaient le même analyte. Ces mappings ont ensuite été
filtrés grâce à la structure de la LOINC par la suppression de mappings erronés,
à savoir des mappings entre concepts n’appartenant pas au même chapitre et ne
décrivant pas le même milieu biologique ou la même méthode. Dans ce processus
d’alignement, la structure de la LOINC a donc permis de procéder à la correction
de mappings, palliant ainsi les limites de la SC locale.

Processus d’intégration : cas de la représentation du
médicament

Dans un deuxième travail, nous avons intégré RxNorm [15] à la sous-partie
de la SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) [15,
19] décrivant les connaissances sur les médicaments afin d’alimenter la SNO-
MED CT avec les entités de RxNorm. La SNOMED CT étant une référence
au niveau international et RxNorm étant utilisée aux États Unis, procéder à
l’intégration de ces deux SC vise à rendre interopérables les données sur le
médicament présentes dans les systèmes d’information sanitaire (SIS) aux États
Unis à n’importe quel SIS dans le monde qui utilise la SNOMED CT. De plus, un
nouveau modèle de représentation du médicament a été décrit au sein de la SNO-
MED CT [19]. Ce modèle étant basé sur les recommandations internationales
regroupées au sein de l’IDMP (Identification of Medicinal Products) [20], l’inté-
gration permettra d’évaluer la conformité de RxNorm aux règles internationales
de description du médicament.

Nous avons représenté les concepts RxNorm selon le modèle de description
du médicament utilisé par la SNOMED CT [19]. Ainsi, les médicaments dans
RxNorm ont été décrits en OWL grâce à leurs éléments définitionnels (substance,
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unité de mesure, dose, etc.). Nous avons ensuite fusionné cette représentation
de RxNorm à la structure de la SNOMED CT, résultant en une nouvelle SC
composée de RxNorm et de la SNOMED CT. Au sein de cette nouvelle SC, nous
avons créé des mappings d’équivalence entre les éléments définitionnels des
entités de RxNorm et celles de la SNOMED CT. Enfin, nous avons généré la
structure inférée de cette nouvelle SC en utilisant le raisonneur ELK [21, 22]. Ce
choix est motivé par le fait que ce raisonneur a été décrit comme étant le plus
adapté pour classer la SNOMED CT [23].

Nous avons comparé les “mappings déclarés” (i.e., les mappings créés de ma-
nière morphosyntaxique par les concepteurs de RxNorm entre les médicaments
dans RxNorm et ceux dans la SNOMED CT) aux “mappings inférés” (mappings
obtenus par la classification de la structure de la nouvelle SC réalisée par le
raisonneur).

Le tableau 1 décrit la distribution des concepts SNOMED CT en fonction de
leur mappings aux concepts de RxNorm.

Tableau 1 – Distribution des concepts SNOMED CT décrivant le médicament,
en fonction de leur mapping aux concepts RxNorm: comparaison des mappings
inférés aux mappings définis par RxNorm (mappings déclarés)

Mappings déclarés
TotalPrésents Absents

Mappings inférés
Présents 1 892 110 2 002
Absents 939 263 1 202

Total 2 831 398 3 204

L’intégration de RxNorm et de la SNOMED CT a permis de mettre en évi-
dence l’intérêt d’exploiter les éléments définitionnels des concepts de chaque
SC. Certains mappings ont pu être retrouvés uniquement de manière inférée
(110 mappings), témoignant de limites potentielles de la méthode morphosyn-
taxique utilisée par les concepteurs de RxNorm. En revanche, 939 mappings
déclarés n’ont pas été retrouvés par le processus que nous avons mis en œuvre.
Si certaines différences étaient consécutives aux limites de notre processus d’in-
tégration (telles que l’absence de conversion de certaines unités de mesure. Pour
ce cas spécifique, une solution pourra être implémentée en utilisant l’UCUM 4

(Unified Code for Units of Measure)). Nous avons par ailleurs identifié des in-
cohérences dans les éléments définitionnels des concepts. En effet, il existe des
différences de précision dans la définition de certains concepts. Par exemple,
RxNorm n’utilise pas d’“unité de présentation” (unité comptable dans laquelle
les médicaments sont présentés) pour décrire ses entités, contrairement à la

4. https://unitsofmeasure.org/trac
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SNOMED CT. Inversement, RxNorm utilise des “Qualitative Distinction” (i.e.,
des étiquettes qui sont cliniquement pertinentes telles que ”sans sucre”) pour
la description des médicaments, ce que ne fait pas la SNOMED CT. Des diffé-
rences dans des éléments majeurs tels que le “Basis of strength” (substance de
référence de la dose du médicament) ont également été trouvées, ce qui change
fondamentalement la définition. La mise en évidence de ces différences a permis
de proposer des pistes d’amélioration de la description du médicament dans les
deux SCs [24].

Enrichissement sémantique d’un processus d’inté-
gration: cas de la cancérologie

Dans le domaine de la cancérologie, la réutilisation des données est confron-
tée à l’hétérogénéité des SCs utilisées pour le codage des diagnostics. Afin de
pallier cette difficulté, il est nécessaire de mettre en correspondance ces diffé-
rentes SCs et, en particulier, la CIM-10 (dixième révision de la Classification
statistique Internationale des Maladies et des problèmes de santé connexes [25])
et la CIM-O3 (la troisième révision de la Classification Internationale des Mala-
dies pour l’Oncologie [26]). Ces deux SCs sont utilisées de manière différente
pour coder des diagnostics : la CIM-10 les décrit en tant que tels tandis que la
CIM-O3 décrit des lésions histologiques et des localisations anatomiques, qui
sont représentées suivant deux axes distincts et peuvent être combinées. Les
notions représentées par ces SCs étant distinctes, nous avons réalisé un processus
d’intégration semantiquement enrichi entre elles en utilisant la SNOMED CT
comme support.

Pour cela, deux étapes ont été mises en œuvre. Premièrement, la CIM-10 et
la CIM-O3 ont été alignées à la SNOMED CT. Cette étape d’alignement, quali-
fiée d’ancrage, vise à rechercher des mappings d’équivalence entre les concepts
de la CIM-10 et de la CIM-O3 et ceux de la SNOMED CT. La structure de la
SNOMED CT a servi à : (1) filtrer les mappings incorrects (notamment les map-
pings entre des concepts de maladie et d’anatomie), et (2) désambiguïser les
mappings multiples. La deuxième étape, dite de dérivation, a consisté à établir
des mappings complexes entre un concept CIM-10 et une paire de concepts
CIM-O3. Tout d’abord, nous avons cherché dans la SNOMED CT les relations
transversales pouvant lier les concepts de la CIM-10 et ceux de la CIM-O3. Nous
avons ainsi identifié finding_site pour associer les diagnostics et les localisations
anatomiques et associated_morphology entre les diagnostics et les lésions histolo-
giques. Nous avons ensuite construit une structure inférée de la SNOMED CT
grâce au raisonneur ELK [22, 23]. Sur la base des relations transversales iden-
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Figure 2 – Exemple d’enrichissement sémantique de l’intégration basé sur les
relations transversales décrites dans la SNOMED CT



8 Substantial summary

tifiées, nous avons repéré les concepts CIM-10 équivalents à une combinaison
de concepts CIM-O3 de morphologie et de topographie. Notons que l’identifica-
tion d’inférences erronées dans l’étape de dérivation a permis de détecter des
inconsistances dans la SNOMED CT.

L’enrichissement sémantique du processus d’intégration résulte en ce qui a
été appelé dans la littérature des mappings complexes [27]. On parle de mapping
complexe quand la relation de mapping est établie entre deux éléments dont
au moins un des éléments n’est pas une simple entité. Ainsi, pour aller plus
loin que l’établissement de mappings simples entre un code CIM-10 lié à un
code CIM-O3 de topographie par une relation transversale, nous avons identifié
des relations d’équivalence (lorsque le concept SNOMED CT était défini) ou de
subsomption (lorsque le concept SNOMED CT était primitif) entre un concept
CIM-10 et un couple de code CIM-O3. Nous avons automatiquement dérivé
86% (892/1032) des concepts CIM-O3 morphologiques avec 38% (127/330) de
concepts CIM-O3 topographiques et 24% (203/852) des concepts CIM-10. La
dérivation, analysée manuellement, a permis d’identifier des erreurs dans la
hiérarchie de la SNOMED CT. Par exemple, elle a mis en évidence une relation de
subsomption erronée entre les concepts 20955008-insulinome malin et 3898006-
néoplasme bénin (version de janvier 2017). Cette erreur a depuis été corrigée lors
de la mise à jour de la SNOMED CT.

En conclusion, l’enrichissement sémantique du processus d’intégration a per-
mis de mettre en évidence l’intérêt d’utiliser une SC de support pour les tâches
suivantes : (i) la correction de mappings erronés lors de la phase d’ancrage, (ii) la
découverte de mappings impliquant des relations transversales, et (iii) l’audit
indirect de la SC de support lorsque des inférences erronées ont été identifiées.

Intérêts de l’utilisation d’une source de connaissances
de support

Pour l’alignement et l’intégration, les stratégies appliquées dans notre tra-
vail et dans la littérature se basent essentiellement sur le calcul de mesures
de similarité entre entités provenant de différentes SCs. Ces mesures de simi-
larité sont généralement calculées d’après des techniques morphosyntaxiques,
structurelles et sémantiques. Il est important de souligner que les similarités
obtenues peuvent donner lieu à des interprétations erronées : ce sont les conflits
sémantiques [28, 29]. Or, les conflits sémantiques ne sont pas tous résolus par
les processus d’alignement et d’intégration.

Les méthodes morphosyntaxiques, consistant à retrouver des similarités
entre les libellés des entités, sont souvent utilisées en premier lors de la création
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automatique de mappings [30, 31]. Ces méthodes sont confrontées au risque de
survenue de conflits de nomenclature, qui sont consécutifs aux similarités ou
dissimilarités incorrectes entre des termes utilisés pour désigner les entités des
SCs. Ainsi :

— dans les cas d’homonymie, des mappings sont établis de manière erronée
entre des concepts différents. Cette situation a été illustrée par les map-
pings qu’il était nécessaire de filtrer entre les concepts de la SC locale et
ceux de la LOINC.

— dans les cas de synonymie, certains concepts pourtant équivalents ne sont
pas mappés.

Les méthodes structurelles sont habituellement utilisées après les méthodes
morphosyntaxiques. Elles consistent à calculer le niveau de chevauchement des
instances ou la proximité taxonomique des concepts présents dans les SCs. Ces
stratégies peuvent résoudre des cas de synonymie [30]. Ainsi, à partir de la struc-
ture de la SNOMED CT et de RxNorm, des mappings ont pu être établis entre
des concepts qui n’avaient pas été mappés par des méthodes morphosyntaxiques
(Tableau 1). Cependant, les méthodes structurelles étant tributaires de la qualité
de la structure des SCs, elles sont sujettes aux conflits d’échelle et de confusion.
Les conflits d’échelle apparaissent lorsqu’il y a une différence de granularité
dans les définitions des notions représentées (e.g., absence d’“unités de présenta-
tion” dans la définition des concepts de RxNorm). Les conflits de confusion sont
dus à des définitions contradictoires (e.g., les différences de “Basis of strength”
entre les concepts RxNorm et ceux de la SNOMED CT).

Les méthodes sémantiques décrites dans la littérature consistent à utiliser un
support de connaissances. A partir des mappings avec une SC de support, les
entités de celles-ci servent à établir des ponts entre les SCs à mettre en correspon-
dance. Par exemple, à partir d’un concept de l’UMLS (Unified Medical Language
System), il est possible de retrouver tous les concepts des SCs intégrées dans
l’UMLS qui sont censées décrire la même notion [32–34]. Ainsi, les stratégies
proposées dans la littérature permettent de réaliser l’alignement ou l’intégration
de SCs. Néanmoins, parce que ces stratégies se limitent à la recherche d’enti-
tés équivalentes ou reliées hiérarchiquement entre différentes SCs, il n’est pas
possible de les utiliser pour relier des entités décrivant des notions différentes
mais complémentaires. Le processus permettant de prendre en compte ces li-
mites est ce que nous avons qualifié l’enrichissement sémantique du processus
d’intégration. Celui-ci est basé sur une méthode combinant les méthodes de
calcul de similarité pour répondre aux problématiques de conflits de confusion
et d’échelle, tout en établissant des correspondances entre des entités différentes
via des relations transversales [35, 36]. Cette méthode repose sur l’utilisation
d’une SC de support et consiste en deux étapes : l’ancrage et la dérivation.
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Comme les processus d’alignement et d’intégration que nous avons mis en
place, l’ancrage à une SC formelle permet la mise en place de procédures de
validation des mappings basée sur la structure de ce support. La SC de support
doit disposer d’une structure formelle et être, au mieux, une ontologie pour une
stratégie de mise en correspondance optimale. Les SCs de support apportent des
éléments définitionnels aux entités participant aux mappings, ce qui permet de
s’affranchir de la qualité des structures des SCs à relier. En effet, l’ancrage apporte
des synonymes [30] et supprime des mappings erronés [37] (comme illustré dans
la figure 2 avec le filtrage en cas de conflit de confusion et la désambiguisation
en cas de conflit d’échelle). Dans l’enrichissement des processus d’integration,
la dérivation est l’étape essentielle qui permet d’améliorer l’organisation entre
SCs en reliant les entités différentes par des relations transversales grâce à la
structure de la SC de support.

Conclusion

Notre étude présente trois processus permettant d’utiliser conjointement
des SCs biomédicales hétérogènes. Deux aspects résument l’intérêt d’exploi-
ter une SC de support dans ce cadre : (1) la résolution des différents conflits
sémantiques en procédant au filtrage de mappings erronés et à la désambiguï-
sation de mappings multiples, et (2) la possibilité d’établir automatiquement
des mappings complexes entre des entités différentes mais décrivant des notions
complémentaires.
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Chapter1
Integrating knowledge resources:
challenges and future trends

Summary: In this chapter, we describe the necessity to semantically enrich
the integration process of knowledge resources. More specifically, this chapter
motivates the need to reveal all possible links between knowledge resources,
even if they are different in their structure.

Thus, we described how mappings can be created on the basis of different
types of relation: equivalence, subsumption, disjunction and specific transver-
sal relations. By analyzing the literature according to the heterogeneities of
knowledge resources, we found that using support ontologies is the appropriate
way to find all the appropriate mapping relations between different knowledge
resources regardless of their structure.

Indeed, because they exhibit a formal structure, ontologies can be used to
create equivalence or hierarchical mappings between knowledge resources even
if they are poorly structured. It is most noteworthy that ontologies containing
relationships which may associate entities from distinct hierarchies, they are
useful to automatically establish mappings based on transversal relations.

Thus, we present different strategies that can be used for integrating knowl-
edge resources and how these strategies differently address the difficulties faced
when trying to relate concepts of distinct knowledge resources.

Keywords knowledge resources, semantic integration, support ontologies, se-
mantic conflicts

Valorization This chapter is based on the article entitled “Finding the appro-
priate transversal relations between knowledge resources to semantically enrich
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their integration process”, which has been submitted for publication in the
journal of biomedical semantic (JBS). This article is currently under review.

1.1 Introduction

In the medical domain, knowledge resources are science products that aim at
listing the concepts, corresponding to units of knowledge in a given domain [38,
39], and the appropriate terms to refer to them [39–41]. The identification and
the naming of domain concepts are tasks performed according to particular
contexts of use (international reference knowledge resources, local knowledge
resources, etc.) and according to predefined objectives (clinical use, epidemi-
ological use, bibliographic research etc.). Thus, organizing and naming the
inventoried concepts can be done with different levels of complexity.

Whatever the language of description for naming these concepts (English,
Chinese, French...), terms used to designate them can be written according to a
predefined writing convention. This is the case of SNOMED CT® (Systematized
Nomenclature of Medicine– Clinical Terms) in which terms have a “semantic
tag” in parenthesis which identifies the hierarchy to which the SNOMED CT-concept
belongs [42], and LOINC® (Logical Observation Identifier Names and Codes) [43]
in which punctuation within terms separate them into different sub-parts. Con-
versely, terms may have acronyms and word truncations that do not meet any
basic format. This last characteristic occurs more often in interface terminolo-
gies [44]. When organizing concepts in a knowledge resource, the existing
relationships between these concepts can be represented with different levels
of complexity. Thus, knowledge resources can be organized according to hi-
erarchical (like in taxonomies) and/or non-hierarchical (like in classifications)
relations. Hence, knowledge resources vary from terminologies, classifications
and controlled vocabularies to very formal representations [45]. When knowl-
edge resources are represented in a language that can be operationalized, with
entities that are logically defined, the term “ontologies” is used to designate
them [2]. Knowledge resources may be built according to different philoso-
phies [46] but they may be used together, precisely in the biomedical domain,
regardless of the complexity of their representation. In addition, what is called
an “ontology” in the biomedical field is not always conformed to all the char-
acteristics to be named as such [47]. For better readability, throughout the
rest of the document, we used the following terms: (i) knowledge resource
to designate this heterogeneous group, (ii) ontology for formal resources, and
(iii) terminology for non-formal resources.

In this chapter, we firstly described the necessity to overcome the heterogene-
ity of knowledge resources and relate them. Secondly, we describe the difficulties
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to relate knowledge resources. These difficulties are described on the basis of
the heterogeneity of knowledge resources. Finally, we describe the techniques
that can be applied to overcome each difficulty.

1.2 Challenges in finding correspondences between
knowledge resources

1.2.1 Needs for relating knowledge resources

Nowadays, the resolution of many health issues deals with the necessity to use
jointly data coming from information systems that employ different knowledge
resources for data recording.

Indeed, the secondary use of medical data [5], translational medicine [48],
personalized medicine [6, 7] and “One health” [49] necessitate to integrate in-
formation coming from various systems. These data are often annotated using
multiple heterogeneous knowledge resources. Finding semantic correspon-
dences between the entities of distinct knowledge resources that describe these
data is thus a requirement.

Secondary use of biomedical data.

Secondary use of biomedical data is a major issue because it supports the
improvement of health systems and a better understanding of diseases and
treatments. Indeed, it consists in using patient information collected during
care delivery for research and billing purposes as well as for certification and
accreditation of health facilities, evidence-based medicine and business applica-
tions [50].

Secondary use hence opens perspectives for applying data mining approaches
to the biomedical domain. These approaches are promising to “greatly expand
the capacity to generate new knowledge” and “help translate personalized medicine
initiatives into clinical practice by offering the opportunity to use analytical capabili-
ties that can integrate systems biology (e.g., genomics) with electronic health record
(EHR) data” [51]. For example, through the identification of cancer cases by
registries, oncology is an area where the secondary use of health data is particu-
larly important [52]. Indeed, the goal of cancer registries is to track all cases of
cancer occurring in a defined population. The cancer data are continuously and
systematically collected from various healthcare facilities (e.g., hospital, pathol-
ogy laboratory). The collected data are sociodemographic information about the
patients, as well as clinical and histopathological characteristics of the cancer
that is being studied. Cancer registries thus allow the follow-up of patients
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diagnosed with cancer and provide statistical results on the outcomes of the
corresponding disease (e.g., mortality, results of therapy) [53]. The collected data
are also used for epidemiological research on cancer incidence and determinants,
as well as for supporting evidence for health policies on diagnosis, prevention
and cancer treatment [54]. Therefore, cancer monitoring requires the concomi-
tant use of data coming from different sources with the difficulty that these data
are potentially encoded according to different knowledge resources [55]. Indeed,
for encoding data, cancer registries use the third edition of the International
Classification of Diseases for Oncology (ICD-O3) [26], while, in France for in-
stance, the medical data in hospitals are encoded (for billing purpose through the
PMSI “Programme de Médicalisation du Système d’Information” [56]) according
to the tenth revision of the International Statistical Classification of Diseases
and related health problems (ICD-10). In addition, morbidity and mortality
causes are internationally recorded using ICD-10 [25]. The achievement of the
objectives of cancer registries thus requires, among other things, the joint use of
ICD-10 and ICD-O3.

One health, translational and personalized medicines.

Secondary use of medical data focuses on reorienting medical data to a
purpose other than care. In contrast, translational and personalized medicine
as well as “One Health” paradigms are mainly lead by the need to better use
all accessible information, even if they have not been created for the purpose of
human health care, to make care decisions or disease prevention.

One health mainly consists in integrating information from animal and
human medicines 1, while translational medicine consists in using laboratory
research information into daily clinical care 2. Personalized medicine (also des-
ignated as genomics medicine or precision medicine) is differently defined in
the literature. The US National Institute of Health (NIH) characterized it as
“an emerging approach for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each person.” 3 For Jain
et al. [57], “Personalized medicine simply means the prescription of specific therapeu-
tics best suited for an individual based on pharmacogenetic and pharmacogenomic
information.” Thus, personalized medicine requires the integration of genetic,
environmental and medicinal product data to improve the treatment of a single
person, even if for now, the goals are to deal with sub-groups. As described
in [58], knowledge resources can help to prioritize the genes involved in a bio-
logical pathway on which the drug has an influence. In this regard, some works

1. https://www.who.int/features/qa/one-health/en/
2. https://www.eupati.eu/non-clinical-studies/translational-medicine/
3. https://ghr.nlm.nih.gov/primer/precisionmedicine/definition
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that aim to integrate knowledge resources representing drugs and biological
pathways have been realized in silico to orient clinical trial approaches [59].

1.2.2 Challenges in overcoming heterogeneities of knowledge
resources

The previous section illustrates that many application fields need to use
jointly health-related data. Nevertheless, this use is further complicated by the
heterogeneity of the knowledge resources used for encoding such data.

Heterogeneity of knowledge resources.

In the literature, the heterogeneity of knowledge resources corresponds to
one of the following three types [8, 9, 60–62]:

— syntactic heterogeneity: this situation occurs when there is a difference
in the writing formats used to describe the knowledge resources (e.g.,
Resource Description Framework (RDF 4), Simple Knowledge Organization
System (SKOS 5), Web Ontology Language (OWL 6)),

— structural heterogeneity: this second type of heterogeneity appears when
there is a difference in the representation of the concepts (e.g., composi-
tional structure of terms, hierarchical and non-hierarchical organization of
listed concepts),

— semantic heterogeneity: this heterogeneity appears when there is a dif-
ference in the knowledge conveyed by the resources (i.e., the represented
concepts are different).

Processes for linking knowledge resources.

To overcome the heterogeneity of knowledge resources and to link them,
multiple processes exist.

“Translation” [11, 63] (or “morphing” [64]) is commonly used as a first step
to link two knowledge resources. This process aims to overcome the syntactic
heterogeneity between knowledge resources. It involves either creating a new
writing format [65] or using a pre-existing one [11, 66]. Rewriting the format of
knowledge resources is essential and has been covered by many publications [64,
67–69]. In the remaining part of our work, we assume that knowledge resources

4. https://www.w3.org/RDF/
5. https://www.w3.org/TR/skos-reference/
6. https://www.w3.org/TR/owl-features/
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are written in an appropriate common format and we focus our study on the
next steps.

Figure 1.1 – Different processes of semantic integration. The processes are
ordered by complexity (from left to right). Alignment consists in finding map-
pings between entities of knowledge resources. Integration consists of two steps:
finding mappings and organizing all the entities of the resources to be integrated
into a unique coherent structure [13]. Semantically enriched integration goes
beyond the integration ; it consists in additionally identifying the appropriate
transversal relations between entities representing different but complementary
concepts. KR means “knowledge resource”.

Figure 1.1 presents processes that can be implemented to overcome the other
types of heterogeneity. For linking knowledge resources, two main strategies
may be implemented and combined:

— Correspondences are established manually by domain experts. Tools
have been developed to support the manual creation of mappings. Exam-
ples of manual approaches followed in the biomedical domain include the
work of Giannangelo et al., who created mappings between concepts of ICD-
10 and SNOMED CT (Systematized Nomenclature of Medicine-Clinical
Terms) [70], and the work of Souvignet et al., who established mappings
between concepts and relations of PS-CAST (Patient Safety Categorical
Structure), which is an ontology made by the WHO (World Health Orga-
nization) and BFO (Basic Formal Ontology), an upper level ontology [71].
However, this task can be tedious and time-consuming;

— Correspondences are established automatically by creating mappings [63].
Our work is focused on this task.

A mapping is often presented as a quintuple <id, e1, e2, r, n>, where e1
and e2 represent the entities to match, id the correspondence identifier, n the
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confidence measure and r the semantic relation between e1 and e2 [10]. If the
semantic relation can be of any type, most of the existing works aim to establish
equivalence and subsumption relations. Such mappings address the issue of
the alignment of knowledge resources (e.g., in [72–75]), which requires an
overlap between concepts represented in the knowledge resources [31].

Mappings are generally established according to similarity measures that
are calculated between entities [76–79]. When entities cannot be related through
equivalence and subsumption relations (i.e., when the mapping algorithm cannot
state that the entities are similar), the entities are at most related through a
disjunction relation. Alignment being defined as a set of correspondences, only
the set of mappings corresponding to equivalent or hierarchically related entities
are presented.

The step forward, which takes into account the difference of concepts in
knowledge resources, is the integration of knowledge resources. This process
is beyond alignment [76]. There is a misuse of the term “integration” in the liter-
ature [12]. Indeed, knowledge resource integration consists in the construction
of a new resource by reusing (assembling, specializing and/or adapting) pre-
existing ones. These resources may not describe the same domain. In this case, it
is possible to identify, in the newly constructed resource, modules that can corre-
spond to the knowledge resources used for integration. Nevertheless, integration
is sometimes assimilated to the “merging” process [80] where knowledge have
just a different level of granularity. In this merging process, it is difficult to find
modules in the new resource that can correspond to the knowledge resources
to be merged [12]. In our work, the integration process include the merging
process. The resulting knowledge resource is obtained through bridges that can
be used to link the entities of the resources to be integrated. These bridges are
entities that describe equivalent or hierarchically related concepts through the
different resources.

However, the integration process mainly relies on hierarchical relationships
available within the resources, thus ignoring the entities that could be related by
non-hierarchical or non-equivalence relationships (namely transversal) [81–84].
For example, a “breast cancer (disease)” arises in the “breast (organ)”. In the
mappings, such a disjunction relation must be specified with a more relevant
semantic relation, when it is possible. Indeed, linking data that describe differ-
ent concepts with complementary characteristics can help to better understand
diseases and improve treatments at the individual and population levels (e.g.,
genetic and disease relations, disease and geographic information). Nevertheless,
in the literature, when they are related, the entities describing complementary
concepts are represented in some simple matrix tables expressing the proximity
between them without a relation specifically defined. Although efforts have
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been made to represent relationships between entities describing complemen-
tary concepts, the relation is limited to a general description (e.g., “mapping
relationship”) [85, 86] or to a created similarity relation [87] that describes a
proximity between entities that display different but complementary concepts.
Certainly, the use of a general relation between entities may be explained by
the fact that these relations are still to be specified in the state-of-the-art. This
explanation is not always applicable,though.

As a result of previous assertions, we can conclude that the integration must
allow the establishment of mappings that can contain all the relevant types of
relation (equivalence, subsumption, transversal and, failing that, disjunction).
This statement is the way to induce that a given entity conserves the same
meaning across the knowledge resources. Otherwise, we are exposed to the
occurrence of semantic conflicts.

In the next sections of this chapter, we use the relevant literature as a starting
point for describing the semantic conflicts and the features needed to address
all of them to semantically enrich the integration process. We firstly propose
a general framework to identify which semantic conflicts have already been
addressed and which ones need to be explored further.

1.3 Framework to semantically enrich the integra-
tion process

1.3.1 The current situation

The semantic conflicts appear when a given information does not have the
same meaning across two contexts [88]. Such conflicts lead to difficulties in
reconciling the meaning of entities that are described in different knowledge
resources [89, 90]. To be resolved, semantic conflicts must be identified and
detected [77].

In the literature, based on the interpretation of similarity measures computed
between knowledge resources’ entities [77–79], the following three types of
semantic conflicts [91–93] have been identified:

— naming conflicts: irrelevant similarity or dissimilarity in names of entities,

— scaling conflicts: different levels of precision in the definitions of entities,

— confounding conflicts: contradictory definitions.

Thus, in the literature, the inventoried types of semantic conflicts are named
and described on the basis of the interpretations of similarity measures that are
computed between entities of knowledge resources [77–79]. Thereby, semantic
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conflicts are mainly described according to the relevance of the declaration of
similarity between two entities [91]. Consequently, these semantic conflicts
are not specified by taking into account the entities describing complementary
concepts.

The similarity and dissimilarity between entities must be better understood.
For this purpose, we firstly need to highlight the characteristics of entities that
can be used for computing similarity measures. This idea is to provide a more
complete definition of semantic conflicts through the refinement of similarity,
but also dissimilarity interpretations to allow a description of semantic relation
between entities that represent different but complementary concepts.

1.3.2 Proposed formalism to describe contents of knowledge
resources

To formally describe the entities in knowledge resources, we use the semiotic
triad of Peirce [94–97]. This triad is composed of:

— the referent, corresponding to the object or the knowledge to be repre-
sented,

— the representamen, corresponding to the sign used to designate the refer-
ent,

— the interpretant, corresponding to the described meaning of the referent.
In [98], it has been defined as “a meaning of a sign and also another sign
explaining the former one”.

Viewed through the prism of the semiotic triad, each entity in a knowledge
resource can be described according to a <R,T,D> triplet as follows:

— R (concept): the referent is the referred concept 7 of an entity and/or a
definition in the knowledge resource,

— T (term): the representamen is each element which can be used to designate
a concept in a knowledge resource. It may be a label (L) and/or a code or
index (I),

— D (description): the interpretant corresponds to the different descriptions
of a concept that are used in a knowledge resource. Four types of interpre-
tant may exist for a given concept in a knowledge resource:

— Df: the formal description of the concept (given in “Description
Logics” [99]). Such a rich description is only available in ontologies.

— Dn: the description of the concept in natural language (i.e., its textual
definition).

7. For readability, the concepts will be italicized and underlined in this chapter
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— Dc: a combination of labels or indexes to express a concept according
to the post-coordination mechanism [100, 101]. Some knowledge re-
sources may have a specific computational grammar for defining new
concepts with post-coordinated expressions, like in the Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED CT) 8.

— Co: the context of the concept. It is the hierarchy to which it belongs
(the position at one point of the hierarchy). This position is not
necessarily given by the structure of the knowledge resource but it
may exist implicitly in the guidelines of the resource. It may also be
the set of all binary relations in which the concept is involved within
the knowledge resource.

Figure 1.2 – Representation of the Malignant neoplasm of duodenum disease
according to the <R,T,D> triplet and using its descriptions given in ICD-10, Dis-
ease Ontology (DO) and SNOMED CT. The logical definitions (Df) are provided
according to the Manchester syntax [102].

1.3.3 Semantic conflicts to be resolved for enriching the inte-
gration process

Between two entities represented by the redefined <R,T,D> formalism (<R1,D1,T1>
and <R2,D2,T2>), each element of the triplet is a potential level where a semantic

8. https://confluence.ihtsdotools.org/display/DOCSTART/7.+SNOMED+ CT+Expressions
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conflict can appear.

1. The first level concerns the similarity between the representamens (T1 and
T2). This similarity corresponds to the morphosyntactic similarity of labels
(L1 and L2). A dissimilarity is established between T1 and T2 when a given
similarity measure between labels is below a given threshold.

2. The second level relates to the similarity between the interpretants (D1 and
D2). This similarity corresponds to an identical position of the definition in
a semantic hierarchy. This similarity can be calculated by structure-based
methods.

3. The last level is the similarity between the two referents (R1 and R2) when
R1 and R2 refer to the same knowledge. Thus, because a referent is the
intended concept, this similarity cannot be calculated but it must be inter-
preted according to the results obtained at the two preceding levels.

From the definition of these similarities and dissimilarities, we can refine the
semantic conflicts (Figure 1.3). In particular, two types of conflicts have been
added to the naming, scaling and confounding conflicts: the combined conflicts
(combination of previous conflicts) and open conflicts (situations where the
concepts to be related are different but complementary).

Absence of dissimilarity.

Two situations can occur when no dissimilarity has been found:

— Perfect correspondence (R1=R2, T1=T2, D1=D2): it is the ideal situation
where both triplets contain exactly the same referents (R), representamens
(T) and interpretants (D).

— Combined conflicts between different concepts (only R1,R2): it is the situation
where the triplets involve concepts that are different. These conflicts can
be theoretically found if a difference between concepts has already been
established. For example, the parthood 9 relation can lead to combined
conflicts [103]. Thus, in the two assertions (derived from the Foundational
Model of Anatomy [104]) “skin of hand part of hand” and “hand part of
upper limb”, the notion of part of describes a partitive relationship be-
tween two elements. However, if the first concept describes a constitutive
part relationship, the second describes a regional part relationship [105].
The absence of explicit definitions of these distinct notions can lead to
combined conflicts.

9. http://ontologydesignpatterns.org/cp/owl/partof.owl
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Figure 1.3 – Characterization of semantic conflicts according to the redefined
<R,T,D> triplet. Each semantic conflict is described according to similarities
or dissimilarities that can occur within each element of the triplet. Absence of
dissimilarity induces perfect correspondence (R1=R2,T1=T2, D1=D2) or com-
bined conflicts between different concepts (only R1,R2). Irrelevant similarity or
dissimilarity between representamens results in naming conflicts between dif-
ferent concepts (R1,R2, T1=T2, D1,D2) and naming conflicts between identical
concepts (only T1,T2). Irrelevant similarity or dissimilarity occurring between
interpretants of identical concepts (R1=R2, T1=T2, D1,D2) or between different
concepts (R1,R2, T1,T2, D1=D2) induces scaling or confounding conflicts. Ab-
sence of similarities results in combined conflicts between identical concepts
(R1=R2, T1,T2, D1,D2) or reveals a perfect difference (R1,R2, T1,T2, D1,D2).
In case of perfect difference, this reflects an open conflict when concepts describe
complementary notions.
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Irrelevant similarity or dissimilarity between representamens

This situation corresponds to naming conflicts in the <R,T,D> formalism.

— Naming conflicts between different concepts (R1,R2, T1=T2, D1,D2): this
situation corresponds to homonymy which occurs when there is a mor-
phosyntactic similarity between labels of different concepts. For example,
the term “duodenum” designates the organ in ICD-O3 whereas this term
is used in ICD-10 in which it designates the primary malignant neoplasm
of this organ (because the ICD-10 code is a subclass of the “Malignant
neoplasms” class). Concepts are clearly different although the labels are
the same.

— Naming conflicts between identical concepts (only T1,T2): this often corre-
sponds to synonymy. In this case, a conflict appears because two identical
concepts have different labels. For example, Organ heart is designated
by the term “heart” in FMA 10 whereas in SNOMED CT 11, it is the term
“cardiac structure”, which designates it.
Sometimes, one of the two triplets does not have any label. This case mostly
occurs between concepts that are not described in knowledge resources as
entities but that can be described by post-coordinated expressions.
For example, the Diagnosis of benign neoplasm of duodenum can be desig-
nated in ICD-10 by the code D13.2 or by the combination of the codes
8000/0 and C17.0 in ICD-O3. In ICD-10, a label corresponding to this con-
cept exists whereas in ICD-O3, there is no label - even if each element of the
post-coordination has a label (8000/0-Neoplasm, benign ; C17.0-Duodenum).

1.3.4 Irrelevant similarity or dissimilarity occurring between
interpretants

These dissimilarities appear when there is a lack or an evolution in the
definition of concepts.

— Conflicts between identical concepts (R1=R2, T1=T2, D1,D2): when two
identical concepts with identical labels present distinct definitions, the
situation corresponds to a:

10. http://xiphoid.biostr.washington.edu/fma/fmabrowser-hierarchy.html?
search=none&entryPoint=organSystems&extendHierarchy=true

11. Look for the SNOMED CT concept 80891009 in:
https://browser.ihtsdotools.org/?perspective=full
&conceptId1=404684003&edition=en-edition&release=v20190131&server=
https://prod-browser-exten.ihtsdotools.org/api/snomed&langRefset=900000000000509007
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• scaling conflict if the two definitions are not contradictory but are at dif-
ferent levels of precision. For example, in SNOMED CT, Ebola disease
is defined as a “Filoviral hemorrhagic fever” and in ICD-10 among
“Other viral haemorrhagic fevers, not elsewhere classified”. This con-
cept has the same label in the two knowledge resources, being “Ebola
virus disease”.

• confounding conflict when there is a contradiction in the definitions.
For example, Thalidomide is represented in ATC 12 among “Antineo-
plastic and immunomodulating agents”, although it has been intro-
duced as an “Hypnotic”. Even if the indication of Thalidomide has
changed, it is still described as a “hypnotic” in SNOMED CT 13.

— Conflicts between different concepts (R1,R2, T1,T2, D1=D2): scaling or con-
founding conflicts may arise when two triplets representing two different
concepts, with different labels, have identical interpretants. This can be a
problem due to the granularity of interpretants (case of scaling conflicts),
or this can be a consequence of obsolete or erroneous definitions (case of
confounding conflicts). For example, the Amyotrophic lateral sclerosis dis-
ease is defined in SNOMED CT as a motor neuron disease while the disease
Primary lateral sclerosis has the same definition in ICD-10. Although these
two concepts have the same definition, this is a case of scaling conflict
because the concepts are different (“to be a motor neuron disease” is not a
sufficient definition for both diseases).

1.3.5 Absence of similarities

Finally, we can describe two situations that can occur when there is no
similarity between the representamen and the interpretant (T1,T2 and D1,D2):

— Combined conflicts between identical concepts (R1=R2): these conflicts corre-
spond to a combination of a naming and a scaling or confounding conflicts.
An illustration of such situation is the ICD-10 concept Malignant neoplasm of
Meckel diverticulum, whose label is “Meckel diverticulum” and which is
defined as a malignant neoplasm of the small intestine. The same concept
in SNOMED CT is designated by the term “Malignant tumor of Meckel’s
diverticulum (disorder)” and is defined as a malignant tumor of the ileum,
a disorder of the extra-embryonic membrane and a disorder of the embry-
onic structure. There are no contradictions between the two definitions,
but the definition in SNOMED CT is more precise. This conflict thus
corresponds to a combination of naming and scaling conflicts.

12. https://www.whocc.no/atc_ddd_index/?code=L04AX02
13. September 2018 version and earlier
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— Perfect difference (R1,R2): it arises when two triplets representing two
different concepts have different interpretant and labels. This is the “ideal”
case where there is no similarity at all between the two <R,T,D> triplets.
This situation is of particular interest when such concepts correspond to
complementary knowledge. If no semantic links are defined between them,
it will not be possible to relate the concepts, which results in what we
chose to call an open conflict. For example, it would be useful that the two
different concepts Lyme disease in ICD-10 and Genus Borrelia (organism) in
SNOMED CT are linked through a has_causative_agent relation.

1.4 Techniques for the creation of mappings

To identify the additional layers needing to be implemented for overcoming
the listed semantic conflicts, this section presents existing techniques, used
within alignment and integration processes, according to the occurrence of
the five semantic conflicts defined in the previous section. Techniques can
be grouped into different categories [106, 107]. The most common grouping
description of techniques has been proposed by Euzenat et al. [107] who dis-
tinguish terminological (or lexical), structural, extensional (or instance-based)
and semantic techniques. By considering instances like elements of the knowl-
edge resource structure, we address extensional techniques in the same way as
structural techniques. Our analysis of the state-of-the-art shows that existing
techniques well address naming conflicts but the resolution of the other conflicts
remains challenging.

1.4.1 Lexical techniques for establishing morphosyntactic sim-
ilarity

Lexical techniques [30, 31] generally constitute the first step for establishing
mappings automatically. Many strategies have been described in the litera-
ture [28, 29, 108] to calculate lexical similarities. These strategies are composed
of multiple steps (e.g., lemmatization, tokenization, morphology of syntax, global
namespace), each one being useful. However, these strategies depend on the
quality of labels. As noted in [109], if reference knowledge resources have stable
and well-defined labels, this is not the case for local knowledge resources whose
labels may present acronyms and word truncations requiring a pre-process
before applying lexical techniques [44].

Lexical techniques are used for the alignment and/or integration of diverse
knowledge resources [32, 110]. In the international Ontology Alignment Eval-
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uation Initiative (OAEI), a benchmarking initiative started in 2004, Shvaiko
et al. have shown by an analysis of the algorithms proposed in the frame of
OAEI campaigns that most systems begin the creation of mappings with mor-
phosyntactic approaches [31]. This is the case in SAMBO [111], QODI [112],
AgreementMaker [113] and ServOMap [18].

Lexical techniques are however confronted to the following naming conflicts:

— synonymy, which prevents the establishment of correspondences between
similar concepts,

— homonymy, which results in correspondences between different concepts,

— concepts generated by post-coordination, which impede the possibility to
calculate a similarity measure.

To address the limitations of lexical approaches, some authors combined
them with structural techniques [28].

1.4.2 Structural techniques for the resolution of naming con-
flicts

Structural techniques for dealing with synonymy

Relying on correspondences found by lexical approaches, some authors cal-
culated graph or instance-based proximity between entities [32, 114, 115]. These
strategies bring about the possibility to match synonymous entities.

For example, in SAMBO [111], mappings are created between two concepts
which lie in a similar position with respect to is_a (i.e., subsumption) or part_of
relationships according to the mappings identified morphosyntactically. Ser-
vOMap [18] establishes similarity between concepts having the same structural
proximity (i.e., parents, siblings and descendants) according to already mapped
concepts. QODI [112] calculates similarity measures according to paths between
concepts. Authors select a specific path between two concepts in a first ontology.
Then, they compare this path with different possible paths present in the second
ontology. The comparison is based on the similarity between: (i) source concepts
of each path, (ii) datatype properties, (iii) labels of the concepts located between
the source concept and the last concept within each path, and on a penalty for
path length difference.

Structural techniques for dealing with homonymy

To reduce errors of lexical techniques, some authors used repair processes [37,
116]. A repair process consists in detecting erroneous similarity between labels
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for deleting wrong mappings. The main strategy entails highlighting and remov-
ing mappings between entities which do not belong to the same context (Co). For
example, mappings can be deleted if the entities to be mapped belong to disjoint
axes [117] or if they do not comply with predefined reasoning rules [118]. By
using algorithms called “reasoners”, reasoning consists in inferring an enriched
structure of knowledge resources thanks to logical consequences made from
explicit assertions.

Structural techniques in case of post-coordination

In addition to the resolution of synonymy and homonymy, structural strate-
gies have been used in the literature to overcome naming conflicts in case of
post-coordination [119]. Let us consider an entity e1 which is decomposed in a
given knowledge resource according to its characteristics (e.g., a cancer described
according to its morphology and its localization). If each of these characteristics
is mapped to an entity of another knowledge resource, a correspondence may
be found between e1 and a combination of the mapped entities of the second
resource (corresponding to a post-coordinated expression).

For relating pre-coordinated concepts and post-coordinated expressions, a
strategy proposed by Dolin et al. consists in providing a canonical form to pre-
coordinated concepts and post-coordinated expressions through Health Level 7
Reference Information Model (HL7 RIM) [120]. For the creation of mappings
between pre-coordinated concepts and post-coordinated expressions existing
in different knowledge resources, Dhombres et al. proposed a method that was
carried out to increase the coverage of HPO (Human Phenotype Ontology) con-
cepts mapped to SNOMED CT concepts [119]. Authors developed an algorithm
for identifying each term that represents a clinical notion within HPO concept
labels (e.g., the HPO label “abnormality of the lip” contains “abnormality” as
disorder and “lip” as anatomical structure). These terms were then mapped to
SNOMED CT concepts according to a morphosyntactic method. The resulting
SNOMED CT concepts were combined (through post-coordination) to represent
some disorders that correspond to the HPO concept (e.g., still for the HPO con-
cept “abnormality of the lip”, the corresponding post-coordination expression
proposed by authors is the following: 64572001-Disease (disorder) + 363698007-
Finding site (attribute) + 48477009-Lip structure (body structure)). This method
was thus able to find mappings between pre-coordinated concepts from HPO
with post-coordinated expressions in SNOMED CT. Note that this method re-
quires the concept labels to be interpretable with a sophisticated syntax and a
structure allowing the automatic post-coordination of knowledge resources to
be used together.
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Limitations of structural techniques

Despite the issues solved by structural techniques, it is important to no-
tice that they require that the knowledge resources to be related have a fairly
high-level structure. In addition, results given by these techniques are miscella-
neous [28, 121]. Indeed, they depend on lexical techniques which can generate
erroneous correspondences (consecutive to naming conflicts, such as homonymy).
Secondly, such techniques do not address confounding and scaling conflicts. In
fact, the structure of knowledge resources is based on relationships and the
interpretants are a set of relations between entities (e.g., formal definitions).
Thus, these interpretants may be confronted to quality issues (e.g., erroneous
definitions, knowledge evolution) leading to confounding and scaling conflicts.

1.4.3 Semantic techniques: use of lexical and structural tech-
niques in combination with external knowledge

Structural techniques obviously require a minimum of structure within
knowledge resources [122, 123]. Thus, overcoming naming conflicts by using
structural techniques is limited by the quality of the resource structure. In the
literature, some authors harnessed external knowledge to deal with the flaws of
the structure of the resources. Using external resources is a good way to detect
synonymies [30, 89, 108, 124].

For example, mappings have been validated by multiple experts in a con-
sensual way in [70, 125] and the Health Level 7 Reference Information Model
(HL7 RIM) has been used to resolve conflicts due to post-coordination in [120].
In addition, AgreementMaker [113] uses Wordnet [126], a lexical database for
English, and UBERON [127], a multispecies anatomy ontology. SAMBO uses
also two external resources. The first resource used by SAMBO is the UMLS
(Unified Medical Language System) Metathesaurus®, a multi-terminological sys-
tem containing more than 170 biomedical terminologies, for finding similarities
between concepts of knowledge resources that are included in the UMLS. The
second resource used by SAMBO is PubMed for calculating similarity measures
based on the concept co-occurrence in knowledge resources to be mapped in a
set of PubMed abstracts.

Notwithstanding the possibilities offered by the semantic techniques, their
use in the literature is generally limited to the identification of identical concepts
between different knowledge resources. We believe that they may be useful to
find the appropriate relation between complementary concepts.
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1.4.4 Remaining challenges to go beyond the integration pro-
cess

The remaining challenges when trying to relate knowledge resources are the
resolutions of scaling, confounding and open conflicts. To describe how such
conflicts can be detected, we have drawn inspiration from some works carried
out in Web information sharing [79, 128, 129]. The main strategy is based on
the structure of ontologies [78, 130]. When reasoning on the ontology structure,
some authors detected semantic conflicts through logical errors induced by
a mapping process (e.g., mappings between disjoint classes or contradictory
properties) [129]. Conversely, other authors made use of unsatisfiable concepts
for identifying erroneous placements of entities within the hierarchy thanks to
reasoning [79, 129].

Resolution of scaling and confounding conflicts

As described within Web information sharing, ontologies provide knowledge
on unstructured data allowing their automatic interpretation [131]. Therefore,
the knowledge supplied by a support ontology can be described as a formal
definition for each entity to be linked. To resolve scaling and confounding
conflicts, it is possible to formalize conflict resolution strategies induced by
the formal definition of entities [88]. These strategies can be resumed by the
interpretation and transformation of the interpretants according to the logical
structure of the support ontology. Thus, scaling or confounding conflicts can be
detected by confronting the interpretant of the entities to be mapped to those in
the support ontology.

Then, these conflicts can be resolved by providing logical definitions or
additional definitional features 14 coming from the support ontology to the
entities to be mapped (Figure 1.4). This strategy obviously assumes that the
support ontology covers the domains of the knowledge resources to be integrated
and also provides appropriate granularity and quality for the interpretants of its
entities.

14. Definitional features correspond to the hierarchical context (Co) of entities used to de-
scribe another entity. For example, in the National Cancer Institute thesaurus (NCI thesaurus),
“anatomical localization” and “histological lesion” are definitional features that can be used for
describing “cancer disease” entities
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Figure 1.4 – Illustration of a confounding conflict highlighted by RxNorm as
a support knowledge resource. In medical practice, the use of “cyclosporine
modified” in spite of (non-modified) cyclosporine is clinically different and
must be specified. Neoral being the brand name of a clinical drug containing
“cyclosporine modified”, the equivalence between the entity in SNOMED CT and
the entity in NDF-RT is erroneous.
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Resolution of open conflicts

In cases of open conflicts, to find links between complementary concepts
already known as different, some authors used external resources, such as a
model and/or a support ontology [35, 36]. Thus, for linking different but
complementary entities which correspond to elements of the model or entities
of the support ontology, transversal relations can be used (Figure 1.5).

Figure 1.5 – Illustration of the resolution of an open conflict using a support
ontology. The transversal relation finding_site is used to relate the main entities
of “Breast cancer” and “Mammary gland”, which are different but correlated. It
is important to notice that the naming conflict between “Mammary gland” and
“Breast” is resolved by the support ontology which use both terms to designate
the concept. KR means “knowledge resource”.

1.5 Conclusion

In this chapter, two main aspects have been explored: (1) the formal frame-
work for the description of the content of knowledge resources, and (2) the
different processes that can be performed to overcome semantic conflicts be-
tween knowledge resources.

We used the semiotic triad of Peirce [95] to describe the concepts of knowl-
edge resources. Representing the contents of ontologies [132] and/or termi-
nologies [46] with semantic triplets has already been realized in the literature.
In Visser et al. [132], the semantic triplet is specific to ontologies whereas the
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triplet that we propose concerns all types of knowledge resources. It can thus be
seen as an abstraction of the triplet proposed by Visser et al.. In addition, the
referents in this representation correspond to entities in the ontologies and not
to the referred concepts of each of them, which is the case in our work. Using
the referred concepts in the related domain as the referents gives the possibility
to represent all the concepts induced by the structure of knowledge resources,
in addition to the knowledge represented by each entity. Considering the two
separated dimensions of terminologies (linguistic dimension) and ontologies
(conceptual dimension), Roche [46] introduced the notion of “Ontoterminology”
using a double semantic triangle. In our work, the use of Pierce’s semiotic triad
helps reconciling the two dimensions in the common framework <R,T,D>, in
which each dimension conserves its characteristics. Our approach responds,
above all, to a practical need for the joint use of knowledge resources, regardless
of their philosophy of creation.

Based on this formalism and through an analysis of the literature describing
existing processes for finding correspondences between knowledge resources
regardless of their structure, we refined the description of semantic conflicts
and illustrated the necessity for semantically enriching the integration process.
The objective of such enhancement is to identify appropriate relations to link
different but complementary concepts. Support ontologies appear as the best
solution to deal with all the requirements of a process that can overcome any
type of semantic conflicts.

Considering this assumption, we present in the next chapters the use of a
knowledge resource as a support for each identified process: the alignment
(chapter 2), the integration (chapter 3) and the enriched integration (chapter 4).
We intend to highlight how each process deals with semantic conflicts according
to its objective.
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not know what you have received

Antonio Porchia

Chapter2
Alignment process: application to the
biological analyses

Summary: In this first implementation, we aligned the interface terminology
of the Bordeaux university hospital to Logical Observation Identifiers Names and
Codes (LOINC). This work describes the overcoming of noisy labels available in
the interface terminology for the alignment process.

We firstly constructed a graph structure for LOINC using its standardized
labels. This stage consisted in automatically incorporating the naming rules of
LOINC labels, based on punctuation. We implemented these rules and applied
them on French versions of LOINC.

Secondly, we pre-processed the noisy labels of the interface terminology. This
stage consisted in applying strategies developed for processing texts in forums,
social networks and short message systems to non-standard words that are used
in the interface terminology of the Bordeaux university hospital. Thus, the
main aspect in this part concerned the resolution of naming conflicts to find
the appropriate mappings according to equivalence or subsumption relations
between the entities to be related.

Finally, we used the constructed graph structure of LOINC and the enhanced
labels of the interface terminology in an alignment process based on a mor-
phosyntactic mapping step using the ServoMap tool and a filtering step based
on the LOINC structure.

Keywords interface terminologies, non-standard words, LOINC, alignment
process

Valorization The work described in this chapter has been valued in the frame
of two articles. The first article, entitled “Processus de prétraitement des libellés
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d’une terminologie d’interface”, has been published in the proceedings of the
Symposium sur l’Ingénierie de l’Information Médicale (SIIM), held in Toulouse in
2017. The last article, entitled “Alignment of an interface terminology to the
Logical Observation Identifiers Names and Codes (LOINC®)” is currently in
preparation for a submission to the Journal of the American Medical Informatics
Association.

2.1 Introduction

In this chapter, we present our first implementation that concerned the
alignment of the Logical Observation Identifiers Names and Codes (LOINC®) to
the “interface terminology” used to encode biological analyses in the university
hospital of Bordeaux. Thus, we describe a strategy used to overcome the naming
conflicts between “reference terminologies” and interface terminologies. This
strategy consisted in enhancing the quality of labels, applying morphosyntactic
techniques to find mappings and finally using structural techniques based on
LOINC’s structure to perform a repair process.

Interface terminologies are controlled vocabularies, which have been de-
fined in the biomedical domain as follows: “a systematic collection of health
care-related phrases (terms) that supports clinicians’ entry of patient-related informa-
tion into computer programs” [133, 134]. Indeed, such terminologies are created
for specific use cases within some given healthcare structures. If the usability of
interface terminologies is important for the health information systems in which
they are developed, their use may be limited in an integrated perspective. For
interoperability purpose, interface terminologies have to be aligned to reference
terminologies [133, 135], which are consensual knowledge resources whose
terms and structures have been validated by the scientific community. Thus,
aligning an interface terminology to a reference terminology is required for
sharing data between different health information systems [136, 137]. In the
literature, many works have been concerned with this issue [134, 138].

The ideal way to get an interface terminology aligned to a reference termi-
nology is to directly create the interface terminology from a reference terminol-
ogy [139–141]. But most of the time, this strategy cannot be applied. Indeed,
interface terminologies are usually created manually using items present in
paper forms [136]. Consequently, it is necessary to adapt techniques commonly
used in the literature for finding correspondences between terminologies [31],
to align interface terminologies to reference terminologies. At the Bordeaux
university hospital, such an interface terminology is used for encoding and
retrieving results of biomedical analyses. This interface terminology is herein
referred to by its French acronym TLAB for “Terminologie Locale d’Analyses
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Biomédicales”.
Many characteristics can induce the selection of a reference terminology as

a support for sharing information. Some reference terminologies are created
and/or recommended by the World Health Organization (WHO), such as the
ICD-10 1, which is used worldwide for epidemiology purpose. Nevertheless, the
novelty and the quality of some terminologies have imposed themselves as a ref-
erence in their sub-domain. LOINC is an example of such knowledge resources
for recording laboratory observations in many countries [14, 15]. Containing vali-
dated terms of the domain, LOINC is a reference terminology. Thus, many works
have been concerned by the mapping of local terminologies to LOINC [142–145],
positioning LOINC as an international support knowledge resource for sharing
information across different health systems. The selection of LOINC within our
alignment process has consequently been motivated by its wide-scale adoption
and use for representing biological analyses in a standardized way.

In the next section, the characteristics of LOINC and TLAB are presented,
as well as existing approaches for aligning terminologies in the light of these
characteristics. Then, we present the materials that we used and the methods
that we developed for the alignment process in sections 2.3 and 2.4. Finally, we
present the main results we obtained before concluding this chapter.

2.2 Background

This section describes the characteristics of TLAB and LOINC and discusses
existing techniques that have been developed for aligning an interface terminol-
ogy to a reference terminology.

2.2.1 Terminologies to be aligned

TLAB

The interface terminology used at the Bordeaux university hospital for en-
coding data of the medical test laboratory has been exported from the electronic
health record system of the hospital. TLAB labels are described in French
and have been recorded manually by health professionals. The space limits
in the recording step lead to non-conventional abbreviations of labels (e.g.,
PCR.C.TRACHO/GENI).

TLAB is a multi-axial terminology composed of 29,227 entities that are hi-
erarchically organized. The absence of formal descriptions for TLAB entities

1. https://icd.who.int/browse10/2016/en#/
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makes the Simple Knowledge Organization System (SKOS 2) format adequate to
represent TLAB [146]. Thus, TLAB entities have been described as skos:Concept
and their hierarchical relations have been defined through the skos:broader re-
lationship. Each entity corresponds to an alphanumeric code (Index) (e.g., syn-
ana-vrpu1). Among them, 29,191 indexes (I) are related to a label (L) using the
skos:prefLabel attribute, which means that 36 indexes (I) have no associated label.

Only 8,285 entities of TLAB are rooted by one of the following 15 high-level
entities that correspond to the different domains of biological analyses:

1. Anatomie et Cytologie Pathologiques (Pathological Anatomy and Cytology),

2. Bactériologie (Bacteriology),

3. Biochimie (Biochemistry),

4. Immuno-hématologie EFS (Immunohematology),

5. Génétique (Genetic),

6. Hématologie (Hematology),

7. Immunologie - Immunogénétique (Immunology and Immunogenetics),

8. Mycologie - Parasitologie (Mycology - Parasitology),

9. Hormonologie - Marqueurs tumoraux (Hormonology - Tumor markers),

10. Biologie de la reproduction (Reproductive biology),

11. Pharmacologie - Toxicologie (Pharmacology - Toxicology),

12. Recherche (Research),

13. Biologie des tumeurs (Tumor biology),

14. Virologie (Virology),

15. Hygiène hospitalière (Hospital hygiene).

When the extraction process could not associate an entity to one of these
15 high-level entities, it was described as being an orphan. The hierarchical
structure of TLAB being important in the process of alignment, these unclassified
entities were excluded from the alignment process described in section 2.4.

Thus, the 8,300 TLAB entities considered in the alignment process have the
following characteristics:

— 5 indexes have no label,

— 7,202 distinct labels exist, of which 639 are related to several indexes with
a maximum of 59 indexes for a given label.

2. https://www.w3.org/TR/skos-reference/

https://www.w3.org/TR/skos-reference/
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LOINC®

LOINC is a reference terminology created and maintained by the Regenstrief
Institute [15]. Published in 1995 [147], the first release of LOINC contained
only codes for laboratory testing. Nowadays, LOINC is a clinical terminology for
recording health measurements, observations and documents [15]. The current
version contains 50,000 codes describing lab tests for a total of 89,271 codes.
That codes are hereafter designated as “LOINC concepts”. The LOINC concepts
are defined using the following attributes (Figure 2.1):

Figure 2.1 – The description model of LOINC concepts. The model contains
six mandatory attributes (rectangles with rounded corners) and four optional
attributes (ovals) to refine the description of three mandatory attributes (com-
ponent, system and time). Each LOINC concept is attached to a specific class.
In the LOINC users’ guide [148], it is indicated that classes are not definitional
for LOINC concepts but that they are used for sorting purpose. These classes
mainly correspond to the analysis type of a lab test.

— six major attributes:

1. Component: it corresponds to the measured or observed analyte (e.g.,
sodium, ABO group, creatinine renal clearance),

2. Property: it represents the different quantitative and qualitative mea-
surements (e.g., mass, entitic number, catalytic activity, entitic vol-
ume),

3. Time: it indicates the punctual or the interval characteristics of the
measurement (e.g., point in time, episode, less than 1 hour, 6 hours),
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4. System: it mainly corresponds to the sample or the body system (e.g.,
abscess, blood venous, eye),

5. Scale: it provides a precision of the observation of the measurement
(e.g., quantitative, ordinal, narrative, nominal),

6. Method: it corresponds to the technique applied to obtain the results,
if it is clinically relevant to notice it (e.g., agglutination, immune
fluorescence, visual count).

— four minor attributes:

1. Challenge: it describes the possible preliminary action to realize
before the test.

2. Adjustments: it is used when some specific corrections are realized
on the obtained values.

3. Time modifier: the values taken by this optional attribute are min,
max, first, last and mean (default value).

4. Super-system: it specifies the origin of the sample, if it is not a patient.

LOINC concepts corresponded to a unique identifier (Index I) with a fully
specified name (label L), corresponding to the concatenation of LOINC attributes
according to a specific order and to specific punctuations (e.g., “:” to separate
major attributes as follows: <Analyte/component>:<kind of property of obser-
vation or measurement>:<time aspect>:<system (sample)>:<scale>:<method>
and “∧” to describe a minor attribute).

The LOINC concepts for lab tests can be identified using the following 14
classes [14]:

1. Antibiotic susceptibilities,

2. Blood bank,

3. Chemistry,

4. Coagulation,

5. Cytology,

6. Fertility,

7. Flow cytometry cell markers,

8. Hematology cell count,

9. Microbiology,

10. Molecular pathology,

11. Skin tests,

12. Pathology,
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13. Drug & toxicology,

14. Urinalysis.

The labels of LOINC concepts were originally available in English. In the
literature, LOINC is described as using a “part-based translation principle” to
automatically generate the fully specified name of LOINC concepts. “The atomic
elements that make up each LOINC term name are called Parts” [15]. LOINC
parts mainly correspond to LOINC attributes to which an identifier has been
assigned. For example, in the fully specified name of the LOINC concept 3665-7-
Gentamicin∧trough:MCnc:Pt:Ser/Plas:Qn, the atomic elements “Gentamicin” and
“trough” are LOINC parts that are respectively identified by the code LP15747-6
and LP20176-1. Like Gentamicin and trough, all the delimited elements of the
label (i.e., MCnc, Pt, Ser, Plas and Qn) are LOINC parts. Thus, LOINC editors
recommend to firstly translate LOINC parts and then to use these translations
for reconstituting the full label of LOINC concepts [149].

2.2.2 Alignment strategies

Relating interface terminologies to reference terminologies is an important
and time-consuming task. Automatic strategies are required for this task [142].
The strategy that we had to implement for the alignment of TLAB and LOINC
had necessarily to deal with the differences of their structure and the absence of
overlap between terms available in the reference and interface terminologies, as
well as the lack of quality that may exist in labels of interface terminologies [44,
109].

Existing alignment approaches to LOINC

Many works have been described in the literature using LOINC as the refer-
ence terminology for the mapping of laboratory terms [144, 150–154]. Three
main strategies are generally used to perform these alignments:

— the manual mapping of interface terminologies to LOINC [150], which is
a tedious task, which is not reasonable to implement when dealing with
large interface terminologies.

— the use of the REgenstrief LOINC Mapping Assistant (RELMA) [144, 152,
154]. RELMA is an open access mapping tool provided by the Regenstrief
Institute for the alignment of local terms (i.e., terms available in interface
terminologies or in corpora) to LOINC concepts [145]. RELMA uses a
morphosyntactic strategy with a manual correction of mappings, thus
needing users’ intervention [142]. In practice, the tool firstly proposes
LOINC concepts as potential equivalences for local labels (one at a time).
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Then, a validation is asked to users or an alternative label entry when no
LOINC concept is proposed.

— the use of home-made algorithms [142, 151, 153]. As RELMA, the other
mapping strategies are based on morphosyntactic approaches, sometimes
combined with machine learning algorithms. Existing morphosyntactic
approaches were however ineffective to deal with noisy labels. Indeed,
authors that used home-made algorithms and/or RELMA reported that
the variation of local terms and the incompleteness of the description in
interface terminologies are the main issues altering the quality of mappings.
To compensate for these limitations, some of these authors cleaned and
enhanced manually the terms in interface terminologies [145, 152].

All the applied strategies were designed rather to increase the number of
obtained mappings than to obtain an optimal semantic quality of resulting
mappings. Thus, naming conflicts were not overcome by existing automatic
processes. We believe that using the structure of LOINC labels as an element
of the validation of mappings’ may be a solution to deal with this issue. The
goal of our process is thus to implement a specific and automatic process for
the alignment of TLAB using a corrective step of TLAB labels that takes into
account the structure of LOINC for the validation of mappings.

Strategies for the pre-processing of the labels in interface terminologies

The morphosyntactic approach is the common initial step of all automatic
mapping processes. Such approaches are limited for interface terminologies
because of the quality of their labels [109]. A pre-processing is thus necessary
to improve the efficiency of mapping strategies and to overcome naming con-
flicts. For interface terminologies, it is sometimes possible to find guidelines
describing the naming conventions of their labels [44]. If such guidelines are
not available (which is the case of TLAB), strategies developed for processing
texts in forums, social networks and Short Message Systems (SMS) can be used
to improve the quality of local labels [155]. They consist in the detection and
correction of “Non Standard Words” (NSWs) [156]. Gadde et al. [157] explained
the occurrence of NSWs by four situations: character deletion (e.g., “Meningo”
for “meningococcus”), phonetic substitution (e.g., “2morrow” for “tomorrow”),
abbreviations (e.g., “HIV” for “human immunodeficiency virus”) and dialectical
usage (e.g., “gonna” for “going to”).
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2.3 Materials

2.3.1 LOINC release

For our work, we used the LOINC_2.65 version 3, which contained:

— the LOINC core table (LCT) which was the full version of LOINC describing
labels in English,

— the French variant tables (FVT) which described the main core of LOINC
in French,

— the LOINC part table (LPT) which described the relation of LOINC con-
cepts with their attributes (called “LOINC Parts” in the release).

The release contained four French language variants (French, Belgian, Cana-
dian and Swiss variants). Like in LCT, each line of FVT was composed of a
LOINC concept identifier and the labels of the six main attributes (each attribute
and the LOINC concept identifier being separated in distinct columns). The
French variant contained 49,437 LOINC concepts, the Belgian variant 45,779
LOINC concepts, the Canadian variant 45,411 LOINC concepts and the Swiss
variant 4,940 LOINC concepts. The Swiss variant has not been used in our
process because only short names (i.e., labels without the punctuation structure)
of LOINC concepts was provided. By pooling the French, Belgian and Canadian
variants, the French version of LOINC finally contained 54,480 LOINC concepts.

LPT described LOINC concept identifiers and labels, the identifiers and labels
of their related LOINC attributes, as well as the type of link existing between
LOINC concepts and their attributes (e.g., component when the relation holds
between a LOINC concept and a component attribute). LPT has already been
used to describe a formal structure of LOINC like in Bioloinc 4 and BioPortal 5.
In LPT, a LOINC concept can be related to multiple LOINC attributes of the
same type. The additional tags “primary” and “search” further specify the link
between LOINC concepts and attributes. The explanatory note accompanying
the LPT gives the following two definitions:

— “Primary-the primary parts associated with a given LOINC term, including
the six major parts”,

— “Search-parts that are only linked to a given term in order to facilitate efficient
searching and location of that term”.

3. https://loinc.org/
4. https://bioloinc.fr/bioloinc/KB/#Group:uri=http://aphp.fr/Bioloinc/

JDV_LOINC_Biologie;tab=props
5. https://bioportal.bioontology.org/ontologies/LOINC
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Thus, the “search” tag is mainly navigational whereas the “primary” tag is
definitional. Note that this does not exclude that a “primary” tag can be found
between a LOINC concept and more than one LOINC attribute of the same type.

2.3.2 ServoMap

ServoMap is a mapping tool developed in our research team by Diallo et
al. [18]. It is a highly configurable large scale ontology matching system able to process
large knowledge resources associated with multilingual terminologies. ServoMap is
based on Lucene [158] and provides equivalence mappings between entities of
two terminologies. ServoMap firstly measures morphosyntactic similarity to
find a first set of equivalences and then computes structural proximity between
entities identified as equivalent. We used the 2013 version of ServoMap in our
alignment process.

2.4 Alignment methods

The developed methods are composed of three main stages: (1) the construc-
tion of the French structure of LOINC, (2) the pre-process of TLAB labels, and
(3) the alignment process.

2.4.1 Construction of the French structure of LOINC

The construction was performed according to the rules based on the punctu-
ation present in the labels of LOINC concepts. We chose to describe LOINC in
the SKOS format to be able to represent multiple labels (L) for a given index (I).
In addition, the generalization hierarchy in SKOS seemed to be appropriate for
representing the LOINC hierarchy that is based on the compositional structure
of its labels. Indeed, SKOS has been proven to be well adapted for the description
of the hierarchical structure of terminologies [159], and LOINC has already been
described using SKOS [160].

We followed two steps to construct the French structure of LOINC: (i) the
description of the LOINC model, and (ii) the instantiation of the model according
to the structure of LOINC labels.

Description of the proposed LOINC model

Figure 2.2 displays the proposed model for the description of LOINC con-
cepts.
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Figure 2.2 – Proposed model used for the construction of the LOINC graph
structure

— The description of LOINC attributes: in the literature, LOINC attributes
are described as major attributes or minor attributes. When used, minor
attributes are parts of the description of major attributes. Thus, they corre-
spond to optional sub-parts of major attributes. We designate hereafter as
sub-attributes the sub-parts of LOINC major attributes. The sub-attributes
used for the description of major attributes that are not minor attributes
are called main attributes in the rest of this chapter. For example, in the
component (major attribute) “leukocytes∧∧corrected for nucleated ery-
throcytes”, “corrected for nucleated erythrocytes” is an adjustment (i.e., a
minor attribute), while the other part of this component (i.e., “leukocytes”)
is the main attribute.

— The description of relations in the model: for each major attribute, we
created a semantic link between the LOINC concept and the attribute.
The relation has been labelled using the prefix “has_” followed by the
name of the major attribute (e.g., a has_method relationship has been de-
fined to associate LOINC concepts to their method attribute(s)). Between
major attributes and minor attributes, the same strategy has been used
(e.g., a has_adjustment relationship has been defined to associate com-
ponent attributes to their related adjustment attribute). Between major
attributes and their main attribute, a hierarchical relation has been created
(skos:broader).
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All LOINC attributes and concepts were described as skos:Concept.

Instantiating the model

The instantiation was applied using data from the FVT. The process followed
the following two steps:

— The creation of sets of labels: for each LOINC concepts, we created sets
of labels from all the French variants of each type of attributes using a
tokenization process based on the punctuation of LOINC labels. The sets
of labels corresponding to main attributes were included in sets of labels
of major attributes. For example, we created a unique set of labels for
components and analytes.

— the caret character “∧” delimits the minor attributes and the main
attributes in the description of major attributes. Using this punc-
tuation, we created the set of major attributes and the set of minor
attributes. For example, from the LOINC label of the component
leukocytes∧∧corrected for nucleated erythrocytes, “leukocytes∧∧corrected
for nucleated erythrocytes” and “leukocytes” were integrated in the
set of components and “corrected for nucleated erythrocytes” was
integrated in the set of adjustments.

— the dot character “.” describes hierarchical relations between at-
tributes. For each dot character in a label, a sub-attribute correspond-
ing to the left side of the dot character was created. For example,
from the component label “epithelial cells.renal”, we created the label
“epithelial cells” and includes both labels in the set of components.

— the slash character “/” describes quotient relations in the components.
Like for the dot character, the left side of the slash character was also
extracted.

— the “+” and “&” signs may be used to create combined measurements
or combined results. The string characters related by the “+” and/or
“&” signs can then be decomposed. The left side of the related charac-
ters is identified as a prefix (an identifier was created for that prefix)
and the right side as a suffix. The sub-attributes were thus reconsti-
tuted by combining the prefix, each related character and the suffix.
For example, from the component label human papilloma virus 16+18
Ag, the related characters are “16” and “18”, the prefix is “human
papilloma virus” and the suffix is “Ag”. The following labels were
thus created and included in the set of components (in addition to
the suffix and component label): “human papilloma virus 16 Ag” and
“human papilloma virus 18 Ag”.
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— the “+” and “-” signs may be used to describe the cluster of differentia-
tion (CD) of cells when they appear at the end of a label. In such cases,
the “+” sign indicates the presence of a specific CD and “-” indicates
its absence. Thus, we applied the same rule as for the “+” and “&”
signs to identify the composed sub-attributes. For example, from the
component label Cells.CD3+CD4+CD27-CD45RO+CD62L-, we cre-
ated the following labels and included them in the set of component:
“cells”, “cells cd3”, “cells cd4”, “cells cd27-”, “cells cd45ro” and “cells
cd62l-”.

— The creation of an identifier: For each LOINC concepts and in each set of
labels, a unique code was assigned to each label. For each LOINC concept
related to an attribute, this attribute was considered as equivalent across
the different linguistic variants. Then, a unique identifier was created for
this attribute.
For example, in the FVT, the term “hémostase” was used in the French
variant to designate the class attribute of the LOINC concept 3245-8-Clot
Retraction [Time] in Blood by Coagulation assay while the term “coagulation”
was used in the Canadian variant. Thus, a unique code (CLAS1508) was
created for the two labels “hémostase” and “coagulation”.

Comparison of the constructed structure with the stated structure of LOINC

To highlight the advantages of the constructed structure, we compared it to
the stated structure of LOINC, which is commonly computed from the LPT. Each
row in the LPT describes a LOINC concept and its related attributes (Figure 2.3).

Figure 2.3 – Description of the LOINC concept 13505-3-Herpes simplex virus 1+2
Ab pattern [Interpretation] in serum in the LPT. Screen-shot of the SQL (Structured
Query Language) query : "Select * from LPT where LoincNumber="13505-3"
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For the construction of the LOINC structure, we described each relation
between LOINC concepts and attributes as a simple Resource Description Frame-
work (RDF 6) triple. For each type of attribute, we integrated in the structure
only relations between LOINC concepts related to exactly one LOINC attribute
through the link tag “primary”.

For example, the LOINC concept 13505-3-Herpes simplex virus 1+2 Ab pattern
[interpretation] in serum has been linked to the class LP7819-8-Micro. However,
this LOINC concept has not been related to the two components LP14822-8-
Herpes simplex virus 1+2 and LP40415-9-Herpes simplex virus 1+2 Ab pattern
because they are both tagged as “primary”.

The attributes created by our process and those from the LPT were considered
as equivalent when they shared the same LOINC concept identifier. Thus, we
computed the cardinality of these mappings where:

— 1-0 mappings corresponded to one created attribute for which no stated
attribute existed,

— 1-1 mappings associated one created attribute to one stated attribute,

— 1-N mappings associated one created attribute to more than one stated
attribute.

2.4.2 Pre-processing of TLAB labels

For the pre-processing of TLAB labels, we had to deal with three of the four
situations of NSWs listed by Gadde et al. [157] occurring in TLAB labels, being
the character deletion (e.g., “Conc.Nucl.In.Plaq”), abbreviations (e.g., “ARN VIH
LCR”) and the dialectical usage (e.g., “Cyto&CultureUrinAst”). The strategy for
correcting and enhancing the quality of labels in TLAB was composed of three
stages: (i) the detection of NSWs, (ii) the proposition of corrections for each
NSW, and (iii) the correction of NSWs in each label. The objective was to obtain
more expressive labels (e.g., to obtain the label (or a close one) “Recherche par
Réaction en chaîne par polymérase de Neisseria gonorrhoeae au niveau génital” from
the label “R.pcr.N.gonoGeni”).

Detection of NSWs

The detection strategy was based on three sub-processes (Figure 2.4):

— The selection of potential NSWs: potential NSWs correspond to words
(i.e. to strings delimited by white-spaces) that are composed of consonants
only or interspersed by punctuation or uppercase letters only.

6. https://www.w3.org/TR/rdf-schema/
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Figure 2.4 – The detection process of NSWs. A word corresponds to a string
delimited by white-spaces. Potential NSWs are words that are composed of
consonants or interspersed by punctuation or uppercase letters only. Candidate
NSWs are tokens obtained after segmentation of potential NSWs. Validated
NSWs are candidate NSWs that are composed of more than one character or do
not contain numbers.
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— The tokenization: candidate NSWs corresponded to tokens that result
from the segmentation of potential NSWs according to interspersing punc-
tuation and uppercase letters.

— The filtering: validated NSWs correspond to candidate NSWs that do not
contain numbers or consist in at least two characters.

Correction of NSWs

The correction strategy consisted in normalizing the NSWs and in creating
a dictionary with these normalized NSWs as entry indexes. The normalization
consisted in lowercasing tokens and in suppressing the punctuation attached
to each token. The dictionary was created using the list of French medical
abbreviations and their corrections given by Wikipedia 7. In addition, a manual
correction was proposed for indexes that are linked to more than five labels in
order to enrich the dictionary.

Correction for labels

The corrections of abbreviations found in Wikipedia were systematically used
to replace in the labels all corresponding words, described as an abbreviation in
the Wikipedia list. This replacement was performed even if the word was not
identified as a NSW. For the identified NSWs, the corresponding index was used
to obtain their appropriate correction in the dictionary. Each correction lead to
an additional label that was integrated using the skos:altLabel attribute.

2.4.3 Alignment process

To realize the alignment of TLAB and LOINC, the following three steps
further detailed below have been performed:

1. The mapping of tokens constituting the labels of concepts in both termi-
nologies,

2. The anchoring step first identifying the correspondences between TLAB’s
entities and the attributes of LOINC concepts and then the correspondences
between the TLAB entity and the LOINC concepts.

3. The data-driven validation.

7. https://fr.wikipedia.org/wiki/Liste_d%27abr%C3%A9viations_en_m%C3%A9decine
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Mapping of tokens

In this step, we used the ServoMap tool for the mapping of tokens that con-
stituted the labels of the terminologies (Figure 2.5). The tokenization process
consisted in splitting the labels of TLAB and LOINC according to white-spaces
and punctuation. We generated a unique code for each token that did not
correspond to a stop-word. The codes of LOINC and TLAB tokens were gen-
erated using the prefixes “LNCWORD” and “TERMWORD”, respectively. The
restriction on stop-words was realized using a list of French stop-words 8. As a
result, the cardinality of mappings between TLAB and LOINC tokens has been
computed.

Figure 2.5 – Mapping of TLAB and LOINC tokens starting from their labels.

Anchoring step

The anchoring step consisted in finding similarities between the concepts of
the source terminology and the target one. Then, these similarities are validated
as equivalence mappings according to the structure of both terminologies. This
is a twofold step: (i) the anchoring of TLAB entities to LOINC attributes, and
(ii) the anchoring of TLAB entities to LOINC concepts (Figure 2.6).

8. https://github.com/stopwords-iso/stopwords-fr
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Figure 2.6 – Anchoring of TLAB concepts to LOINC attributes and concepts

— The anchoring to LOINC attributes

The objective of this stage was to obtain some definitional attributes for
TLAB entities. The mapped tokens constituted bridges between TLAB
entities and attributes of LOINC concepts. For each type of attributes, when
a TLAB entity was mapped to multiple attributes, we chose the attributes
having the highest number of tokens in common for the description of this
TLAB entity. Then, the attributes related to a TLAB entity were propagated
to all its descendants.

— The anchoring to LOINC concepts

In this stage, we firstly identified the candidate anchors that correspond to
the LOINC concepts and TLAB entities sharing the same analyte. Then,
we filtered these correspondences according to class, system and method
hierarchies. Thus, the mappings involving entities belonging to distinct
classes, systems or methods were deleted. For the last step, when a TLAB
entity was not related to a LOINC method, we validated only the anchored
LOINC concepts that did not exhibit any method.
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Evaluation of the process

To evaluate the process, we proceeded with a data-driven validation process
by using lab test results coming from the data warehouse of Bordeaux University
Hospital.

The Bordeaux university hospital uses a health data warehouse (based on
i2b2 9) to integrate its data. The data warehouse gathers various structured
and unstructured data (clinical data, prescriptions and administration data of
medicinal products, biological data, medical imaging data, anatomopathological
data and administrative data) for patients who have been visited the hospital at
least once since 2010. At the 2019-05-31, the collected data concern 1,591,272
patients corresponding to 11,637,437 visits and 1,152,516,900 observations.
Biological data represent 47,9% of all available data (551,823,535 observations).

For the evaluation, we thus used the lab test results that are encoded with
TLAB. Test results provide information that is not contained in TLAB labels: the
property and the scale of the measurement. The objective was thus to select the
anchored LOINC concepts that can be instantiated using the results (i.e., values)
associated with each TLAB entity. The evaluation concerned 4,402 TLAB entities
that are used to encode 336,758,201 results from (2010-2019) in the laboratory
database. From the 4,402 TLAB entities found in the hospital data warehouse,
2,144 could be involved in our process (being non-orphan entities). These
entities represented 279,065,808 laboratory results (82.87% of all laboratory
results annotated by TLAB entities).

The following three steps were performed for the evaluation process (Fig-
ure 2.7):

— We firstly annotated the values and units of measure available in the labo-
ratory database by using the Unified Code for Units of Measure (UCUM 10)
codes. This annotation was realized using a simple morphosyntactic tech-
nique for mapping the UCUM code and the units of measure found in the
lab results.

— We then manually mapped the properties of the annotated codes in UCUM
to the properties of LOINC concepts. Thus, this mapping led to a descrip-
tion of TLAB entities used in the laboratory database with some validated
LOINC properties.

— For each TLAB entity, we finally validated the anchored LOINC concepts
that could be instantiated using numeric values and also exhibited the same
LOINC property. This choice was motivated by the fact that only numeric
values were available in the laboratory database. Then, we calculated the

9. https://www.i2b2.org/
10. https://unitsofmeasure.org/ucum.html
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recall of the validated mappings. Based on these results, we manually
curated the 1-1 mappings and computed the precision of results. The
validation was realized in a consensual way by two experts with medical
and knowledge representation backgrounds. We searched for equivalences
between TLAB entities and LOINC concepts or determined if a hierarchical
relation existed between them.

Figure 2.7 – Data-driven evaluation of the mapping strategy between TLAB and
LOINC concepts.

2.5 Results

2.5.1 The French structure of LOINC

Two main results presented in this section are the distribution of LOINC
concepts according to their related attributes and the distribution of delimited
LOINC attributes according to their mappings to the stated attributes.
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Firstly, Table 2.1 describes the characteristics of the constructed LOINC
structure for the French language, corresponding to 54,480 LOINC concepts, and
the stated structure resulting from the LPT content. This table is a quantitative
description of the constructed structures of LOINC.

Table 2.1 – Distribution of LOINC concepts according to their relation to LOINC
attributes in the French version and the stated structure

LOINC attributes LOINC French version Stated structure
Component 22,819 44,313
Analyte 28,807 NA
Challenge 819 1,791
Adjustment 15 35
Property 140 205
Time 31 59
Time aspect 26 NA
Time modifier 3 8
System 394 2,682
Main system 368 NA
Super system 16 62
Scale 6 10
Method 754 1,907
Class 103 389

The stated structure generated much more component, challenge, system,
scale, method and class attributes than the French version. For example, the
LOINC attribute LP7747-1-- (the dash is actually the label) used as a scale in
the stated structure was ignored in our construction process. We found 3,140
components that could be described with a challenge and/or an adjustment.
From the computed hierarchy, the process created 28,807 additional analytes.
An example of such created analyte from the component label of the LOINC
concept 90229-6-Herpes simplex virus 1 and 2 Ab.IgG and IgM panel - Serum or
Plasma is illustrated in Figure 2.8.
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Figure 2.8 – Constructed hierarchy of analytes according to the punctuation in
the LOINC component label herpes simplex virus 1 & 2 ab.igg & igm panel

Secondly, Table 2.2 describes the cardinality of mappings between the con-
structed and the stated LOINC structures.

Table 2.2 – Distribution of the constructed LOINC attributes according to the
cardinality of their mappings to the stated attributes

LOINC attributes 1-0 mappings 1-1 mappings 1-N mappings
Component 9,710 13,018 91
Challenge 3 804 12
Adjustment 0 15 0
Property 0 136 4
Time 0 31 0
Time modifier 0 3 0
System 43 344 7
Super system 0 15 1
Scale 0 5 1
Method 0 744 10
Class 0 100 3

The mapping process generated a few 1-N mappings. For example, the
scale attribute SCALE1503-quantitatif was mapped to LP7753-9-Qn and to
LP7751-3-Ord because the LOINC concept 3245-8-Clot Retraction [Time] in
Blood by Coagulation assay was described with the scale attribute “qualitatif” in
the French variant while the other variants used the scale “quantitatif”. This led
to erroneously consider that “quantitatif” and “qualitatif” are synonymous labels
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and to the creation of a unique identifier for them. Another example is the map-
ping between the component attribute COMP4206-Sulopenem and the LOINC
attributes LP94456-8-Linopristin+Flopristin and LP94455-0-Sulopenem because
the LOINC concept 55289-3-Sulopenem [Susceptibility] has been erroneously
described in the Belgian variant using “linopristin+flopristin” as a component
while the other variants used “solupenem”.

The 1-0 mappings mainly resulted from the disambiguation of multiple
attributes mapped to one LOINC concept. The attributes without mappings
corresponded to the attributes related through multiples link tags in the stated
structure. For example, for the LOINC concept 1352-4-Yt sup(b) Ag [Presence] on
Red Blood Cells from Donor, the stated structure described it with the following
two systems: LP30227-0-RBC∧donor and LP7536-8-RBC. Thus, no mapping
could be found because these relations were not computed. On the contrary, our
process described the concept with the system attribute SYST3303-RBC∧donor,
itself being related to the super system SSYS1533-RBC through a skos:broader
relation.

2.5.2 Pre-processing of TLAB labels

Figure 2.9 describes the results of the pre-processing of TLAB labels. Overall,
they are constituted of 6,593 words. From these words, 1,532 validated NSWs
were detected. These NSWs corresponded to 1,105 entry indexes of the dic-
tionary. We manually provided a translation for 191 of them, which impacted
3,005 labels. In addition, the correction using Wikipedia abbreviations involved
1,840 labels. For example, from the label “R.pcr.S.aureusUri”, we identified two
NSWs for which a correction existed (i.e., “Uri”-“urine/ urinaire” and “pcr”-
“pcr/réaction en chaîne par polymérase” ). The following five labels were thus
created:

1. “R. réaction en chaîne par polymérase S. Aureus Urine”,

2. “R. réaction en chaîne par polymérase S. Aureus Urinaire”,

3. “R. pcr S. Aureus Urine”,

4. “R. pcr S. Aureus Urinaire” and

5. “R. réaction en chaîne par polymérase S. Aureus Uri”.
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Figure 2.9 – Results of the detection of NSWs.
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2.5.3 Mapping of tokens

Table 2.3 describes the cardinality of mappings between the tokens of TLAB
and LOINC.

Table 2.3 – Distribution of TLAB and LOINC tokens according to the cardinality
of resulting mappings

TLAB tokens LOINC tokens

Mapping cardinality
1-0 2,389 10,327
1-1 2,226 2,347
1-N 120 63

Total 4,735 12,737

The tokens that could not be mapped corresponded to 50.45% (2,389/4,735)
of TLAB tokens and 81.07% (10,327/12,737) of LOINC tokens. Each LOINC
token has been mapped up to two TLAB tokens. Conversely, TLAB tokens
have been mapped up to four LOINC tokens. For example, the TLAB token
TERMWORD3191-stimule has been mapped to the LOINC tokens LNCWORD12088-
stimulating, LNCWORD3858-stimul, LNCWORD7284-stimule and LNCWORD10831-
stimulated. The last LOINC token has also been mapped to the TLAB token
TERMWORD2926-stimul.

2.5.4 Anchoring step

From the mapping of tokens, we inferred triplets composed of a TLAB entity,
an attribute relation and a LOINC attribute. The first inference corresponded to
8,521,727 triplets. These triplets have been reduced to 1,365,129 after consid-
ering, for a same type of attribute, the LOINC attributes that share the highest
number of tokens with TLAB entities. As an example, for the TLAB entity
syn-ana-vtal1-PCR Adéno/LCR (with its alternative labels “réaction en chaine
par polymérase Adéno / liquide céphalo-rachidien” and “réaction en chaine
par polymérase adénopathie liquide céphalo-rachidien”), the algorithm selected
SYST1723-liquide céphalorachidien rather than SYST1533-liquide vitrée because
the TLAB entity shared two tokens (liquide and céphalorachidien) with the first
LOINC system attribute, whereas it shared only one token with the second
LOINC system (liquide).
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Anchoring of attributes

Table 2.4 describes the distribution of TLAB entities according to their an-
choring to LOINC attributes. By propagating the LOINC attributes associated
with each TLAB entity to all their corresponding descendants, almost all TLAB
entities have been related to an analyte. The number of TLAB entities that
have been related to a LOINC system, a LOINC method or a LOINC class was
multiplied by 1.5 (from 3,371 to 5,065 entities), 1.6 (from 4,949 to 7,944 entities)
and 3.2 (2,262 to 7,137 entities), respectively.

Table 2.4 – Distribution of TLAB entities according to their anchoring to LOINC
attributes

Anchored attributes Validated anchors Extended anchors
Component 7,688 8,295
Analyte 7,756 8,295
Challenge 3,362 4,561
Adjustment 348 1,093
Property 1,656 2,374
Time 462 794
Time aspect 456 788
Time modifier 0 0
System 3,371 5,065
Main system 3,213 4,968
Super system 502 767
Scale 139 211
Method 4,949 7,944
Class 2,262 7,137

Anchoring to LOINC concepts

At the beginning of the anchoring process, only five TLAB entities have not
been anchored to any LOINC concept and ten TLAB entities have been anchored
to a unique LOINC concept. The other TLAB entities have been anchored to
multiple LOINC concepts with a maximum of 24,017 LOINC concepts for one
TLAB entity. The filtering step based on the LOINC classes, systems and methods
reduced the number of mapped LOINC concepts for a TLAB entity. Thus, the
filtering step increased the number of TLAB entities anchored to a unique LOINC
concept (from 99 (after filtering by class) and 354 (after filtering by system)
to 1,011 TLAB entities (after filtering by method)). Concurrently, the increase
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of TLAB entities anchored to only one LOINC concepts was accompanied by a
reduction of TLAB entities anchored to multiple LOINC concepts (from 8,195
(after filtering by class) and 8,149 (after filtering by system) to 6,880 TLAB
entities (after filtering by method)).

2.5.5 Data-driven evaluation process

We found that 1,942 TLAB entities were related to 92 units of measures for
the description of laboratory results (corresponding to 279,065,424 laboratory
results). We mapped 57 units of measures to UCUM codes. These UCUM
codes corresponded to 24 UCUM properties, which were mapped to 77 LOINC
properties. Thus, 1,187 TLAB entities have been instantiated with 8,455 LOINC
concepts. This corresponds to a recall of 0.61.

The median cardinality of mappings was reduced from 20 to 5 LOINC con-
cepts and the maximum from 5,254 to 1,227 LOINC concepts. As an example,
for the TLAB entity syn-ana-i261c-c261-pholcodine, the LOINC concept 73720-5-
pholcodine ige ab [units/volume] in serum was selected as the appropriate anchor
rather than 81971-4-Pholcodine IgE Ab RAST class [Presence] in Serum because
the results encoded with syn-ana-i261c are presented with the kUA/L unit of
measure. The 1,187 TLAB entities covered 152,159,025 laboratory results. The
manual evaluation concerned 197 mappings (1-1 mappings), of which 92 were
deemed equivalent and 25 mappings corresponded a subsumption relation. This
corresponds to a precision of 0.59.

2.6 Conclusions

In this implementation, we anchored an interface biology terminology to
LOINC. The process consisted in taking advantages of the LOINC structure
to compensate for the absence of appropriate labels in TLAB for establishing
equivalences, or at least hierarchically-related mappings. To deal with the French
labels of TLAB, we created a SKOS structure of LOINC integrating the different
French variants present in the LOINC release. Thus, this study highlighted the
difficulties in involving some interface terminologies in an alignment process
because of their noisy labels. In addition, the implementation also showed
that the instantiation of terminology entities (i.e., the data encoded with these
terminologies) can be used to guide the alignment validation process.

If some authors used machine learning algorithms [142, 161] to deal with
noisy labels, we chose a more controllable process by firstly correcting the
TLAB labels and the using the semantics of the LOINC structure. Indeed, the
performance of machine learning algorithms can be boosted by rich corpora
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and/or large data source but the labels of TLAB cannot be used to constitute
such a rich corpus.

2.6.1 The construction of a formal structure for LOINC

We constructed our own structure of LOINC and we did not use the ta-
bles describing the multi-axial hierarchies and the structure of LOINC parts
(available in the release) for four reasons. First, the hierarchy table of LOINC
concepts is manually maintained and the hierarchy is not meant to describe
LOINC as a pure ontology but according to the different domains of laboratory
analyses. Secondly, the description of parts is ambiguous. As illustrated in
Figure 2.3, multiple LOINC attributes of the same type may be used to describe
a LOINC concept. In this example and for a formal description, LP40415-9-
Herpes simplex virus 1+2 Ab pattern is the appropriate component but LOINC
does not prioritize it in the description of the LOINC concept 13505-3-Herpes sim-
plex virus 1+2 Ab pattern [interpretation] in Serum. Thirdly, in the multi-axial
table, hierarchies are not available for each attribute. In the example of Fig-
ure 2.3, no hierarchical link exists between LP40415-9 and the other components.
Especially between LP40415-9 and LP14822-8-Herpes simplex virus 1+2, a hier-
archical relation would clearly be expected (not to say that the “antibodies of
herpes virus” are a kind of “herpes virus” but rather to highlight that an analysis
on “antibodies of herpes virus” is an analysis on “herpes virus”). Finally, the
LOINC attributes are not available in French as elements of the release.

When comparing the obtained structure with the constructed LOINC using
the LPT (only for LOINC concepts related to a unique attribute of each type), we
noticed some inconsistencies due to translation errors. However, this construc-
tion gives a suitable structure for our alignment process. The limitations we
highlighted did not question the quality of the constructed structure but gave
the possibility to audit the translation process.

2.6.2 The pre-processing of TLAB labels

Enhancing the quality of TLAB was intended to reduce the occurrence of
naming conflicts between identical concepts. To correct TLAB labels, we adapted
strategies described in the literature for the detection and correction of NSWs
used in forums, social networks and SMS [155]. Our strategy was based on
punctuation and uppercase, like in [162]. Deliberately, delimited unique letters
and words containing integers were not considered as NSWs because many of
them corresponded to medical terms (e.g.,“B” in “lymphocytes B” and “H1N1”
in “virus H1N1”). For this reason, our strategy excluded abbreviations such
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as O2T for “oxygénothérapie” that were consequently not corrected. The pre-
processing exhibited reasonable performances with 3,005 labels corrected thanks
to corrections applied to NSWs and 1,840 corrected thanks to the Wikipedia
dictionary.

This step clearly demonstrates that a standardized process can be applied to
improve the quality of noisy labels present in interface terminologies, which are
barriers for mapping processes based on morphosyntactic techniques (naming
conflicts). In addition, it is a step that is useful locally because it helps to enhance
the quality of concept labels.

2.6.3 The alignment process

Our results unsurprisingly highlighted the poverty of overlapping terms
between TLAB and LOINC (44% of TLAB tokens and 18% of LOINC tokens have
been successfully mapped, as shown in Table 2.3). However, each implemented
step in our work tried to overcome semantic conflicts that could occur. To
address naming conflicts between identical concepts, our strategy consisted in
over-interpreting the mappings between tokens by considering them as sufficient
to induce an anchor between a TLAB entity and a LOINC attribute. On the other
hand, these over-interpretations led to the occurrence of scaling or confounding
conflicts between identical concepts as well as naming conflicts between different
concepts. Those negative effects have been partly resolved by the use of the
LOINC structure during the filtering step (Figure 2.10).

Combined conflicts between identical concepts have been overcome by prop-
agating the related LOINC attributes of a TLAB entity to all its descendants. To
illustrate this last situation, syn-ana-cy301-soit has correctly been anchored to
48432-9-fructose [molar amount] in unspecified time semen thanks to its hierar-
chical relation with syn-ana-csfru-FRUCTOSE SPERME. Conversely, with the
same inaccurate label, the other TLAB entity syn-ana-cy133-soit has correctly
been anchored to 50193-2-cholesterol in ldl.narrow density [mass/volume] in serum
or plasma thanks to its hierarchical relation with syn-ana-cldl-CHOLESTEROL
LDL. Thus, these mappings have been successfully established between entities
that did not share the same label or the same definitional elements (these TLAB
entities cannot be related to LOINC attributes). These correct anchors illustrated
the naming conflicts existing in TLAB.

Finally, we observed that all the characteristics used in the description of
LOINC labels cannot be found in an interface terminology label. The main
characteristics that can be expected in a TLAB label are the analyte, the system
and sometimes the technique. For this reason, only these attributes were used
in the mapping process. In addition, the difference of granularity between
TLAB concepts and LOINC concepts induced some multiple mappings for some
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Figure 2.10 – Illustration of the alignment process for the TLAB entity syn-
ana-bsnm-16s.N.MEN.Sou/PCR: the pre-process step reduces the occurrence
of naming conflicts. The filtering step helps to detect and correct cases of
confounding conflicts.
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TLAB concepts. For example, syn-ana-i202f-f202 noix cajou was anchored to
6718-1-cashew nut ige ab [units/volume] in serum and 7183-7-cashew nut igg ab
[units/volume] in serum. Using the original version of LOINC, other authors
used the LOINC group structure by seeking the parent concept of the anchored
LOINC concepts [142]. However, as illustrated in the previous example, such a
parent does not always exist.

We used classical methods for the natural language processing of TLAB
and LOINC labels. However, machine learning algorithms could be combined
with our process to enhance the quality of results. In addition, our strategy
being based on the structure of LOINC, a perspective could be the use of a
formal definition and a more formal language, like the Web Ontology Language
(OWL 11) in spite of the SKOS/RDF language used in this work. The appropriate
format, integrating all the linguistic variants and all LOINC parts, groups and
hierarchical structures (pre-existing or automatically created), could allow to
better disambiguate the multiple anchors by choosing the more general one or
the parent of all of them.

2.6.4 Focus on semantic conflicts

In conclusion, the proposed strategy is mainly based on the similarity be-
tween labels (T) computed thanks to morphosyntactic techniques. However, it
also focus on the similarity between interpretants (D) favoured by the support
model derived from LOINC. Indeed, through this model, contexts (Co) were
provided to entities of both terminologies based on their labels, which enabled to
compare the interpretants. Two main aspects regarding the resolution of naming
conflicts were thus addressed by our process:

— the reduction of naming conflicts between identical concepts by using
multiple linguistic variants for LOINC labels and creating alternative labels
for TLAB entities,

— the elimination of naming conflicts between different concepts by using
the structure of LOINC as a support in a repair process.

Thus, the main lesson learned from dealing with naming conflicts is that some
conflicts can be directly resolved, but in other cases, the risk of occurrence can
just be reduced by an appropriate approach without identifying specifically
such conflicts. However, the alignment strategy and performance are oriented
according to the identification of equivalent concepts across the knowledge
resources without handling links between different concepts. In the next section,
difference between concepts is taken into account. We show how to overcome

11. https://www.w3.org/TR/owl-features/
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semantic conflicts by organizing entities describing different notions into a
coherent structure.



Let food be thy medicine and
medicine be thy food.

Hippocrates

Chapter3
Integration process: representation of
medicinal products

Summary: In this chapter, we present the work we have done to integrate
RxNorm with the part of SNOMED CT that describes medicinal products. The
aim was to provide an automatic process for supplying SNOMED CT with
RxNorm concepts. In addition, because SNOMED CT has newly adapted its
model to comply with international recommendations, this integration was a
first step to assess the adherence of RxNorm to international standards for the
description of drugs.

Our integration strategy was based on the use of definitional features of
entities in SNOMED CT and RxNorm models. We firstly compared these two
representation models of medicinal products. We found out that both models
shared major definitional features, including ingredient (or substance), strength
and dose form. In addition, we highlighted that the representation proposed
by SNOMED CT is more rigorous and better aligned with international stan-
dards. In contrast, RxNorm describes implicit knowledge, simplifications, and
ambiguities in a simpler model.

Secondly, we translated the RxNorm concepts according to the OWL repre-
sentation of SNOMED CT. Thus, we constructed formal definitions for RxNorm
concepts using the ontology design patterns used for describing SNOMED CT
concepts. The constructed structure of RxNorm and SNOMED CT have been
merged and classified using the ELK reasoner, which highlighted the equivalent
concepts between the two knowledge resources as well as the concepts that are
specific to each of them.

Finally, the mappings provided by morphosyntactic techniques were com-
pared to the mappings induced by our process (comparison performed according
to formal definitions). The divergence between the two approaches showed that

65
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our process automatically resolved some naming conflicts. However, our method
generated scaling and confounding conflicts. These conflicts were manually iden-
tified and corresponded to areas for improvement in RxNorm and SNOMED CT.

Keywords integration process, medicinal products, RxNorm, SNOMED CT,
definitional features

Valorization This chapter is the outcome of a project that was realized dur-
ing an internship at the Cognitive Science Branch of the Lister Hill National
Center for Biomedical Communications at the United States National Library
of Medicine and supported by the Intramural Research Program of the Na-
tional Institute of Health. Part of this work has been described in an article
entitled “Comparing the representation of medicinal products in RxNorm and
SNOMED CT – Consequences on interoperability” and published in the pro-
ceedings of the 10th International Conference on Biomedical Ontology in 2019.
A further paper is in preparation for submission to the Journal of the American
Medical Informatics Association.

3.1 Introduction

This chapter addresses the integration process of knowledge resources. In
this process, we try to establish equivalences between formal definitions (Df)
of entities. We tried to overcome the naming conflicts by using structural
techniques. Then, we highlighted manually cases of scaling and confounding
conflicts induced by these structural techniques. We applied our integration
strategy to the field of medicinal products within which knowledge resources
support multiple use cases, such as electronic prescriptions [163–165], drug
information exchange, medication reconciliation [166, 167], and data analytics
(including pharmacovigilance) [168–170].

The variety of knowledge resources that represent medicinal products in-
duces the need for a formal representation of these entities for facilitating their
development and maintenance, as well as for precisely aligning existing drug
terminologies [171]. Many definitional characteristics of medicinal products are
similar among knowledge resources. For example, clinical drugs are generally
defined in terms of ingredient, strength and dose form. However, the level of
formalization and the formalism used for representing medicinal products may
differ between knowledge resources. Some characteristics may also be specific to
some terminologies (especially for country-dependent characteristics, such as
the packaging information) [19].
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To provide an international framework allowing the interoperability of medic-
inal product descriptions, international standards have been proposed, such as
the Identification of Medicinal Products (IDMP) [20] which is a collection of
recommendations from the International Organization for Standardization (ISO).
In this work, we tried to integrate RxNorm and SNOMED CT. This choice was
largely motivated by the fact that the SNOMED CT recently published a new
model for the representation of medicinal products integrating requirements
from the IDMP [19]. In addition, SNOMED CT is an international standard being
the largest clinical terminology in the world and supported by a consortium of
over 40 countries. On the other hand, RxNorm is a standardized nomenclature
for the medicinal products used in the United States of America (USA) that has
been analyzed [130, 172] and reused to create other standards [173], as well
as to integrate drug terminologies worldwide [174]. By integrating these two
knowledge resources, a medication list established with RxNorm in the USA
could be made available to any electronic health record system in the world, in
which drugs are represented using SNOMED CT. In addition, there has not been
a detailed comparison between RxNorm and SNOMED CT. Thus, the integration
allowing the comparison of both representations could help to improve the
structure of these knowledge resources with an international impact.

We firstly describe and compare the models of RxNorm and SNOMED CT [175].
Then, we present the materials that we used and the methods we developed
in order to integrate these knowledge resources. Finally, we provide our main
results.

3.2 Background

In this section, the models of RxNorm and SNOMED CT are described with a
focus on their definitional characteristics.

3.2.1 The SNOMED CT model for medicinal products

The new model of SNOMED CT has been constructed to support interna-
tional interoperability of medication concepts. For this purpose, the model is
restricted to generic drugs and does not represent packs because branded drug
names and packages are mainly country-specific [19]. The international goals of
SNOMED CT lead it to include the requirements of the ISO which provide the
main elements for the description of medicinal products into a set of standards:
the IDMP. One principal requirement from IDMP is the representation of clinical
drugs in the closed world view. This requirement means that characteristics used
to define clinical drugs must be sufficient and that what is not stated is false.
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In contrast, according to the open-world assumption underlying OWL, what
is not stated is potentially true. For example, the representation of a clinical
drug containing “Atorvastatin” must clearly state that it contains “Atorvastatin”
as its active ingredient and no other substance being an active ingredient. In
the open world view, products containing “Atorvastatin” may also contain other
substances, such as “Amlodipine”.

Figure 3.1 illustrates the SNOMED CT model describing medicinal products
in compliance with the IDMP recommendations. This model is composed of the
following six entities, arranged into a subclass hierarchy 1:

— Two medicinal product entities:

— in the open world view (called medicinal product, or MP): “A repre-
sentation of a medicinal product based on description of active ingredients
it contains, but not exclusively limited by that description”. An example
of a SNOMED CT concept instantiated as a medicinal product in the
open world view is 108655000-Product containing cetirizine (medicinal
product).

— in the closed world view (called medicinal product only, or MPO): “A
representation of a medicinal product based on description of only
and exclusively the active ingredients it contains.” An example of a
SNOMED CT concept instantiated as a medicinal product in the closed
world view is 775140005-Product containing only cetirizine (medicinal
product).

— Two medicinal product form entities:

— in the open world view (called medicinal product form, or MPF): “A
representation of a medicinal product based on description of active
ingredients it contains, but not limited by that description, and on
the (generalized) intended site of use for the product.” An example of
a SNOMED CT concept instantiated as a medicinal product form in
the open world view is 768065006-Product containing cetirizine in oral
dose form (me-dicinal product form).

— in the closed world view (called medicinal product form only, or
MPFO): “A representation of a medicinal product based on description
of only and exclusively the active ingredient(s) it contains and on the
(generalized) intended site of use for the product.” An example of a
SNOMED CT concept instantiated as a medicinal product form in the
closed world view is 778701007-Product containing only cetirizine in
oral dose form (medicinal product form).

1. the definitions of each entity are provided in the editorial guideline of SNOMED CT
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— One optional medicinal product containing precisely a given active in-
gredient (called medicinal product precisely, or MPP) defined in the closed
world view as “a representation of a medicinal product based on descrip-
tion of only and exclusively the precise active ingredients it contains”.
This optional entity is not currently represented in SNOMED CT but an
hypothetical example is Product containing precisely cetirizine hydrochloride
(medicinal product).

— One clinical drug defined in the closed world view as “a representation of
a medicinal product described by its precise active ingredient substances,
its manufactured dose form and its strength; strength may be expressed as
“presentation strength” or as “concentration strength” as appropriate and
the basis of strength substance is explicitly given”. An example of such clin-
ical drug is 320818006-Product containing precisely cetirizine hydrochloride
10 milligram/1 each conventional release oral tablet (clinical drug).

Figure 3.1 – SNOMED CT model for the representation of medicinal products
showing the six types of entities defined in the model along with their defi-
nitional features (and their type of values in brackets). Rectangles are model
entities and examples of SNOMED CT concepts associated with each type of
entity are provided below each rectangle.

The representation of SNOMED CT entities is thus based on “definitional
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roles” and on related “types of values” as follows:

— Substance is the type of values for active ingredient, precise active ingredi-
ent and basis of strength (the basis of strength is the substance for which
the strength is defined) roles. Examples of substances are 372523007-
Cetirizine (substance) and 108656004-Cetirizine hydrochloride (substance).
All the substances are descendants of the concept 105590001-Substance
(substance).

— Unit of measure is the type of values for the strength unit role, such as
258684004-Milligram (qualifier value).

— Number is the type of values for the strength value role, such as 3445001-10
(qualifier value). All the numbers are descendants of 260299005-Number
(qualifier value).

— Pharmaceutical dose form is the type of values for the manufactured dose
form role, such as 421026006-Conventional release oral tablet (dose form).
All the pharmaceutical dose forms are descendants of the SNOMED CT
concept 736542009-Pharmaceutical dose form (dose form).

— Unit of presentation is the type of values for the units of presentation role,
such as 732936001-Tablet (unit of presentation). All the units of presen-
tation are descendants of the SNOMED CT concept 732935002-Unit of
presentation (unit of presentation).

If there is a top concept for each type of values used as definitional features in
SNOMED CT, for the model entities, only the top concept 763158003-Medicinal
product (product) subsumes all medicinal products entities. However, as high-
lighted in the examples, semantic tags are used to differentiate the model entities
without specification of the appropriate “world view”.

In addition, there are no hierarchical relations between substances. However,
a modification_of relationship may be used to describe the link existing between a
modified substance (e.g., ester or salt) and the corresponding base substance (e.g.,
between Atorvastatin calcium and Atorvastatin). Note that modified substances
can be further modified.

Finally, IDMP requires that dose forms be defined in reference to a list of
dose forms from the European Directorate for Quality in Medicines (EDQM).
EDQM distinguishes between dose forms and units of presentation. Units of
presentation are used to express the strength and quantity in countable entities,
while dose forms correspond to the physical structure of the medicinal product.
In accordance with IDMP requirements, strength units in SNOMED CT are
aligned with an international standard for units of measure, the Unified Code
for Units of Measure (UCUM). Depending on the unit of presentation, strength
can be represented as a concentration strength, a presentation strength or both.
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3.2.2 RxNorm model for generic drug

Created in 2002, RxNorm is a normalized terminology for clinical drugs in
the USA. RxNorm represents both generic drugs and branded drugs, as well as
packs [176]. The full model of RxNorm contains ten entities, five for generic drug
entities and five for branded drug entities. For comparison with SNOMED CT,
we only present RxNorm generic drug entities and also omit packs.

The simplified RxNorm model for generic drug entities includes the following
four entities (Figure 3.2):

— Ingredient, including base ingredient (IN), precise ingredient (PIN), and
multi-ingredient (MIN) (e.g., IN: 20610-Cetirizine, PIN: 203150-Cetirizine
hydrochloride, MIN: 352367-Cetirizine / Pseudoephedrine).

— Clinical drug component (SCDC), combining ingredient and strength
(e.g., 1011480-Cetirizine hydrochloride 10 MG).

— Clinical drug form (SCDF), combining ingredient and dose form (e.g.,
371364-Cetirizine Oral Tablet).

— Clinical drug (SCD), combining ingredient, strength and dose form (e.g.,
1014678-Cetirizine hydrochloride 10 MG Oral Tablet).

Figure 3.2 – Simplified RxNorm model for the representation of generic medici-
nal products showing the four types of entities defined in the model, along with
their definitional features and examples from the RxNorm knowledge resource.

The representation of these entities relies on three mandatory and two op-
tional definitional features, as follows:
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— Mandatory definitional features:

— ingredient (IN/PIN/MIN). Ingredients in RxNorm can be understood
as either the substance contained in a medicinal product, or the class
of all medicinal products containing this substance explaining ingre-
dients.

— dose form (DF) (e.g., 317541-Oral Tablet).
— strength (e.g., 10 MG).

— Optional definitional features (see below for examples):

— quantity factor (QF).

— qualitative distinction (QD).

Strength is normalized in RxNorm. In its units of measure (e.g., for volume,
weight, surface), RxNorm uses one unit for each type of quantity (e.g., milligram
for weight rather than gram or microgram).

The representation of dose forms in RxNorm is not based on a specific stan-
dard [15]. It is also important to note that SCDs and SCDCs refer to the basis
of strength substance (e.g., cetirizine hydrochloride), while SCDFs refer to the
base ingredient (e.g., cetirizine). Precise ingredients (PINs) generally correspond
to modified forms of the corresponding base ingredients (INs). PINs cannot be
further modified.

In addition, RxNorm does not explicitly have a notion of “world view” (i.e.,
open or closed world view) for describing its entities. While clinical drugs
implicitly refer to the closed world view, ingredients, clinical drug components
and clinical drug forms can be understood in both open and closed world views.
Nevertheless, the distinction between the two world views can be assessed
through different queries on the RxNorm structure [177].

Finally, the quantity factor (QF) is a number followed by a unit of measure
corresponding to vial sizes or patch durations (e.g., “12H”). RxNorm does not
explicitly state whether strength is expressed as presentation strength or con-
centration strength. Presentation strength can be derived from concentration
strength by multiplying the concentration strength by the QF (e.g., if the con-
centration strength is 1MG/ML and the QF is 2ML, the presentation strength is
2MG/2ML). The qualitative distinction (QD) corresponds to qualitative charac-
teristics of a drug different from the main definitional features (e.g., “sugar free”
and “abuse-deterrent”). QD and QF are optional modifiers used in RxNorm to
define medicinal products when it is clinically relevant to identify such distinc-
tions [15]. All the described entities and definitional features can be accessed
through the RxCUI History API 2.

2. https://rxnav.nlm.nih.gov/RxcuiHistoryAPIs.html
#uLink=RxcuiHistory_REST_getRxcuiHistory
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3.2.3 SNOMED CT medicinal product design patterns

Ontology design patterns (ODP) are a set of solutions for recurring situations
when building knowledge resources. As pointed out in [178], “ontology design
patterns act as an interoperability fallback level through which local conceptual-
izations can differ to a degree required to appropriately model a given domain or
application while still sharing a common conceptual core”. In other words, when
creating locally a design pattern, attention should be paid to the fact that what
is designed can be related to a more formal and conventional model.

As a very large knowledge resource, SNOMED CT used ODP to describe its
content in description logics (DL) [179]. It contains over 300,000 concepts orga-
nized according to a hierarchy rooted by 19 high-level classes. Each SNOMED CT
concept has at least one subsumption relation with another SNOMED CT con-
cept.

Figure 3.3 – Description of the SNOMED CT concept 319775004-Product con-
taining precisely aspirin 75 milligram/1 each conventional release oral tablet (clinical
drug) according to the ODP constructed for the instantiation of SNOMED CT
clinical drugs.
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Thus, the largest structure of SNOMED CT induces the use of:

— the lightweight EL++ [23, 179, 180]: the OWL-EL syntax used for the
axiomatic descriptions of SNOMED CT concepts does not contain universal
restrictions (i.e., the DL quantifier “∀” (only)). Then, SNOMED CT cannot
represent the usual closure axiom to express that a clinical drug is restricted
to a given set of active ingredients. Instead, for the description of medicinal
products, SNOMED CT adds some axioms of “count of ingredients” to
express the closed world view [19].

— the role_group relation [181]: it is used to express related description
in SNOMED CT (Figure 3.3 3). More precisely, this relation is used to
describe each characteristic of an active ingredient (e.g., its strength, basis
of strength). Thus, for medicinal products containing multiple ingredients,
each active ingredient is described with its related characteristics.

Finally, in addition to the “closed world view” needed for clinical drugs,
IDMP also required that all the medicinal products be fully described. Thus,
unlike the previous version of SNOMED CT (in which medicinal products were
mainly primitive concepts), all the medicinal products must be fully defined
(i.e., described with equivalence axioms).

3.3 Framework for integrating RxNorm and SNOMED
CT

To realize our integration process, it was firstly necessary to compare the two
models for identifying a basis for comparison.

We manually searched for equivalences between the entities and between
the definitional features of the models. This step was realized on the basis of
the definitions of each entity and also based on discussions with the developers
of RxNorm and the contributors of the SNOMED International Drug Model
Working Group.

First, we disambiguated the notion of ingredient in RxNorm (i.e., IN, PIN,
MIN), because it can be understood as either a class of medicinal products (entity)
or a substance (definitional feature), as mentioned earlier. Therefore, as shown
in Figure 3.4, ingredients in RxNorm correspond to SNOMED CT medicinal
products (defined according to open and closed world views) or to SNOMED CT
substances, which are active ingredients of SNOMED CT medicinal products.

3. Annotated diagram from
https://browser.ihtsdotools.org/?perspective=full&conceptId1=404684003&
edition=MAIN&release=&languages=en
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Figure 3.4 – Comparison of RxNorm and SNOMED CT models

RxNorm does not formally have the notion of “unit of presentation”. Units of
presentation are implicitly represented through dose forms in RxNorm, whereas
the two notions are represented separately in SNOMED CT. For example, in
SNOMED CT, “Tablet” is the logical unit of presentation of the conventional
release oral tablet, while the two are conflated in the RxNorm dose form “Oral
Tablet”. Therefore, RxNorm dose forms generally correspond to pairs of a
pharmaceutical dose form and a unit of presentation in SNOMED CT.

In addition, there are no materialized concepts for SCDCs in SNOMED CT.
Instead, strength and basis of strength substance are associated as parts of the
definition of a clinical drug in SNOMED CT. Therefore, concepts instantiated as
SCDCs in RxNorm cannot be related to SNOMED CT concepts, but their defining
features are represented as part of clinical drug concepts in SNOMED CT.

SCDs in RxNorm are equivalent to clinical drugs in SNOMED CT as they
essentially share the same definitional features. The quantity factor in RxNorm
has no direct equivalent in SNOMED CT, but the QF information is implicitly
represented in the presentation strength. In contrast, qualitative distinctions are
absent from the SNOMED CT model.

While RxNorm only represents one level of modification (between PIN and
IN), SNOMED CT can represent arbitrary levels of modification among sub-
stances. Both RxNorm and SNOMED CT have the notion of concentration
strength and presentation strength. However, RxNorm emphasizes concentra-
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tion strength (from which presentation strength can be calculated using the
quantity factor), whereas SNOMED CT explicitly represents both presentation
strength and concentration strength when necessary.

Also, RxNorm normalizes all quantities to one unit (per type of quantity),
while SNOMED CT uses units that are most clinically appropriate (following
IDMP requirements). For example, RxNorm uses 0.001 milligram (MG) and
SNOMED CT uses 1 microgram (UG). This difference merely reflects differences
in editorial guidelines, as conversion between the two is trivial.

In conclusion, RxNorm and SNOMED CT models for representing medicinal
products are fairly similar and essentially compatible. Both models share major
definitional features including ingredients (or substances), strengths and dose
forms. Only the qualitative distinction feature of RxNorm has no correspondence
at all in SNOMED CT. SNOMED CT is more rigorous and better aligned with
international standards. In SNOMED CT, differences tend to be made explicit,
e.g., between a substance and the class of medicinal products containing this
substance as an ingredient, or between the class of all medicinal products con-
taining only a given substance and the class of all medicinal products containing
at least this substance. SNOMED CT also offers more flexibility with relations
among substances, as opposed to a fixed precise ingredient to base ingredient
relationship in RxNorm. This precision comes at the price of a more complex
model, and possibly a steeper learning curve. In contrast, RxNorm contains
implicit knowledge, simplifications and ambiguities, but its model is simpler.
Based on the comparable characteristics between RxNorm with SNOMED CT
models identified in this section, we thus tried to integrate them.

3.4 Materials

To integrate RxNorm with SNOMED CT medicinal products, we used SNOMED
CT 4 available in the OWL format (version as of 09/25/2018) and accessed
the content of RxNorm through the Restful API 5 (version as of 09/04/2018).
Through the Restful API, we also accessed to the mappings provided by RxNorm
between its concepts and the SNOMED CT.

3.4.1 SNOMED CT release

The release version of SNOMED CT contains 19,147 classes described as sub-
classes of 763158003-Medicinal product (product). The structure of SNOMED CT
is still under development. In the used version, all concepts were not up-to-date.

4. https://www.nlm.nih.gov/healthit/snomedct/international.html
5. https://rxnav.nlm.nih.gov/RxNormAPIREST.html
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In addition, entities of the model are not all instantiated. Semantic tags were
used for the up-to-date concepts without precision of the world view.

Thus, for the purpose of our work and according to IDMP requirements, we
firstly considered only medicinal products that are fully defined. This corre-
sponded to 18,693 SNOMED CT concepts. Based on the ODP described for each
entity of the SNOMED CT model, we identified the following number of entities
from the model corresponding to SNOMED CT concepts:

— 4,816 SNOMED CT concepts that described medicinal products in the
open world view (MP),

— 3,694 SNOMED CT concepts that described medicinal products in the
closed world view (MPO),

— 2,725 SNOMED CT concepts that described medicinal product forms in
the open world view (MPF),

— 2,609 SNOMED CT concepts that described medicinal product forms in
the closed world view (MPFO),

— 4,849 SNOMED CT concepts that described clinical drugs.

The SNOMED CT release did not contain concepts describing medicinal
products precisely (MPP).

3.4.2 RxNorm content

The used version of RxNorm contained 18,438 semantic clinical drugs (SCD)
to which are associated the following concepts:

— 3,334 ingredients (IN),

— 700 precise ingredients (PIN),

— 1,725 multiple ingredients (MIN),

— 116 dose forms (DF),

— 15,724 clinical drug components (SCDC),

— 8,069 clinical dose forms (SCDF).

All SCD concepts and their linked concepts are uniquely designated by the
RxCUI (RxNorm Concept Unique Identifier). The entities of the RxNorm model
are considered disjoint (INs are disjoint, DFs are disjoint, etc.)

3.4.3 Asserted mapping between RxNorm and SNOMED CT

SNOMED CT is part of knowledge resources that have been integrated into
RxNorm based on a morphosyntactic approach inherited from the UMLS. The
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mapping between RxNorm and SNOMED CT was extracted from RxNorm (and
reflects the US edition of SNOMED CT as of 03/2018). Table 3.1 displays the
cardinality and the number of mappings between entities from the RxNorm
model and their related SNOMED CT concepts.

Table 3.1 – Mappings between RxNorm and SNOMED CT concepts asserted by
RxNorm

SCD SCDC IN MIN PIN SCDF DF

Cardinality
1-0 12,900 15,723 1,082 1,288 160 8,062 114
1-1 5,248 1 269 430 456 7 2
1-N 290 0 1,983 7 84 0 0

Total 18,438 15,724 3,334 1,725 700 8,069 116

These asserted mappings involve 14,008 SNOMED CT concepts. These
existing mapping were further used to identify relations between the definitional
features but also to serve as a gold standard for evaluating the mappings we
found.

Unsurprisingly, 99.99% of SCDC have no mapping, confirming that there
is no equivalent entity in the SNOMED CT model. The unique mapping was
between the SNOMED CT concept 375287000-Oxygen 100% (product) and the
RxNorm SCDC Rx542303-Oxygen 100%, which corresponds to a naming conflict
because the SNOMED CT concept represents a clinical drug and not a clinical
drug component. Ingredients are mainly involved in 1-N mappings because they
are mapped to both medicinal products and substances in RxNorm (i.e., naming
conflicts). For example, the RxNorm ingredient Rx83367-Atorvastatin has been
mapped to the SNOMED CT concepts 108600003-Atorvastatin (product) and
373444002-Atorvastatin (substance) 6. Because SNOMED CT does not represent
combined substances, multiple ingredients are mainly involved in 1-1 mappings.
The low lexical overlap between RxNorm and SNOMED CT for the description
of dose forms was highlighted by the almost total absence of mappings for SCDF
and DF. Finally, 67% of SCDs were not mapped to any SNOMED CT concept.

3.5 Methods

Three steps have been implemented to perform our process: 1) the dis-
ambiguation of RxNorm concepts according to correspondences between the
RxNom and SNOMED CT models, 2) the mapping of concepts representing

6. After the used version for stated mappings, the SNOMED CT concepts have been renamed
to better fit the knowledge they represented
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definitional features of medicinal products, and 3) the translation of RxNorm
concepts.

To evaluate our process, we classified the integrated structure (translated
RxNorm concepts and SNOMED CT medicinal products) and compared the
inferred equivalences (i.e., equivalences between RxNorm and SNOMED CT
concepts that were obtained through classification) with the asserted mappings.

We used the ELK reasoner through the OWLAPI 5.1.0 to analyze the structure
of SNOMED CT, to realize the translation of RxNorm concepts and to classify
the resulting integrated structure of SNOMED CT and RxNorm. We chose to use
ELK because it had been reported that it performs a quick and efficient ranking
of SNOMED CT [23, 182].

3.5.1 Disambiguation of RxNorm concepts

This step consisted in mapping the RxNorm concepts to the entities of the
SNOMED CT model according to the comparison detailed in subsection 3.3 (e.g.,
ingredient-medicinal product, semantic clinical dose form-medicinal product
form, semantic clinical drug-clinical drug).

For this propose, for each RxNorm concept represented by a RxCUI, we
added a semantic tag before each RxCUI corresponding to its related entity in
the SNOMED CT model. We thus used “OntoOnlyRx”, “OntoSomeRx”, and
“OntoSubstRx”, “OntoDFRx” when the entity describes a medicinal product in
the closed world view, a medicinal product in the open world view, a substance
and a dose form, respectively.

Strengths in RxNorm were as simple strings. We automatically parsed these
strings and generated a list of numbers and units and assigned a unique code
to each of them. Each found number and unit was integrated as a subclass of
RxNumber and RxUnit, respectively.

3.5.2 Mapping of definitional features

This steps consisted in establishing mappings between the concepts of
RxNorm and SNOMED CT used as definitional features for the description
of medicinal products (e.g., ingredient-substance, dose form-dose form/unit of
presentation), as follows:

— the mapping of ingredients was obtained from the asserted mappings that
are declared in RxNorm. Only mappings involving descendants of the
SNOMED CT concept 105590001-Substance (substance) were retained.

— the mapping of numbers was realized by a simple morphosyntactic method,

— the mapping of dose forms and units of measure was performed manually.
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Table 3.2 – Mapping strategy for RxNorm definitional features and the type of
mapping relation

Model Target hierarchy Mapping techniques Type of
entities in SNOMED CT and strategy mapping relation

DF

732935002-Units of

Manual

Mappingpresentation
736542009-Pharmaceutical

Equivalence

dose form

Units 767524001-Units of
measure

Numbers 260299005-Number Morphosyntactic

IN/PIN 105590001-Substance
Look-up of RxNorm
mappings involving

substances

As described in Table 3.2, mappings between RxNorm and SNOMED CT
concepts are materialized through equivalence axioms, except for the dose
form-unit of presentation mappings that are expressed by a relation called
“mappingRelation”. As noticed previously, all RxNorm definitional features
being disjoint, multiple mappings were suppressed and only 1-1 mappings were
retained (i.e., one SNOMED CT concept for one RxNorm concept, and also one
RxNorm concept for one SNOMED CT concept).

3.5.3 Translation of RxNorm medicinal products

For each concept in RxNorm, we defined a generic pattern (i.e., a generic logi-
cal definition in OWL), and then we instantiated these patterns for all medicinal
products in RxNorm. This step induced an interpretant (i.e., a formal definition
(Df) (in OWL)) for each RxNorm concept. Thus, for each RxNorm concept, the
pattern was based on the SNOMED CT model for medicinal products and related
to its disambiguated concept.

Figure 3.5 illustrates the defined pattern for multiple ingredients as medicinal
products in the closed world view.

The description of each pattern is provided in Appendix D. Then, the trans-
lated RxNorm concepts and their formal definition are integrated in the OWL
format of SNOMED CT. Finally, we classified the obtained structure using the
ELK reasoner and selected the concepts of RxNorm and SNOMED CT that were
equivalent and denominated them as inferred mappings.
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Figure 3.5 – Example of pattern for RxNorm multiple ingredients as medicinal
products in the closed world view

3.5.4 Evaluation process

We considered the mappings asserted between concepts in RxNorm and
SNOMED CT as the gold standard for the evaluation of the quality of the pro-
posed process. Indeed, the evaluation of this process consisted in comparing the
inferred mappings obtained after classification of the logical definitions available
for RxNorm and SNOMED CT medicinal products to the mappings asserted in
RxNorm. A qualitative analysis of the non-overlapping mappings was realized to
analyze the description of medicinal products in both knowledge resources. We
performed this evaluation on clinical drugs. Indeed, the SNOMED CT model is
currently being instantiated, SCDs have been newly incorporated and were more
likely to be conform to the new model than the other entities whose description
may be confused with the previous model.

3.6 Results

3.6.1 Disambiguation of RxNorm concepts

RxNorm concepts were disambiguated according to the SNOMED CT model
as follows:

— medicinal products in the closed and open world views from INs, PINs or
MINs: 5,784 concepts were created for both medicinal product entities,

— medicinal product forms in the closed and open world views from RxNorm
SCDFs: 8,286 concepts were created for both medicinal product form
entities,

— clinical drug from SCDs: 18,438 concepts were created for clinical drug
entities.

As illustrated in Figure 3.6, the RxNorm ingredient Rx42347-Bupropion can
be used to describe both medicinal products in the closed and open world views
(with the appropriate semantic tags used as prefixes).
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Figure 3.6 – Illustration of the disambiguation of the RxNorm concept
Rx42347-Bupropion according to the correspondences between the RxNorm
and SNOMED CT models.

3.6.2 Mapping of definitional features

Table 3.3 describes the resulted mappings between definitional features in
RxNorm and SNOMED CT.

Table 3.3 – Distribution of SNOMED CT concepts according to their mappings
to RxNorm definitional features. Source concepts are SNOMED CT concepts,
target concepts are RxNorm definitional features and mapped concepts are the
SNOMED CT concepts that are involved in the mappings. * 1-N mappings.

Type of mappings Source concepts Target concepts Mapped concepts
Substance-(IN/PIN) 26,743 4,038 3,020
Number-Number 725 1,924 535
Unit of measure-Unit 1,236 18 10
Pharmaceutical dose 307 113 83form-Dose form
Unit of 50 113 *43presentation-Dose Form

The cardinality of resulting mappings is 1-1, except for the mappings between
dose forms and units of presentation. An example of such multiple mapping is
the SNOMED CT concept 732936001-Tablet (unit of presentation), related to 12
DF in RxNorm, including Rx10312-Delayed Release Oral Tablet and Rx970789-
Buccal Tablet.
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3.6.3 Translation of RxNorm medicinal products

All RxNorm ingredients (IN, PIN, MIN) and SCDFs were instantiated using
the appropriate patterns. In the process, 1,877 out of 18,438 SCDs were not
instantiated because some units of presentation have not been mapped to any
dose form. For example, the RxNorm concept Rx763306-Pantoprazole 40 MG
Oral Granules was not instantiated because no mapping has been found for Oral
granules with a unit of presentation. Figure 3.7 illustrates the instantiation of
the SCD Rx308135-Amlodipine 10MG Oral Tablet.

Figure 3.7 – Illustration of an instantiated RxNorm concept (SCD) according to
its related pattern

An example of RxNorm concept translation is provided for each type of
RxNorm entities in Appendix E.

Table 3.4 describes the inferred mappings between RxNorm and SNOMED CT
concepts. For CD, MP and MPO in SNOMED CT, more than 50% of them have
been mapped to a RxNorm concept. The results are more contrasted for MPF
and MPFO for which only 15 concepts have been mapped to a RxNorm concept.
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Table 3.4 – Characteristics of inferred mappings between RxNorm and
SNOMED CT concepts. Source concepts are RxNorm concepts, target con-
cepts are SNOMED CT concepts and mapped concepts are the RxNorm concepts
involved in the mapping. *Open world view. **Closed world view.

Related entities Source concepts Target concepts Mapped concepts
SCD-CD 16,561 3,204 2,002
Ingredient*-MP 3,299 4,816 2,470
Ingredient**- MPO 3,299 3,694 2,398
SCDF*- MPF 8,069 2,727 15
SCDF**- MPFO 8,069 2,609 15

3.6.4 Evaluation

Focusing on clinical drugs, we found that 11 SNOMED CT concepts were
mapped to multiple SCDs. For example, 327082002-Product containing precisely
ciclosporin 25 milligram/1 each conventional release oral capsule (clinical drug) was
inferred as being equivalent to the following two RxNorm concepts: Rx835894-
Cyclosporine, modified 25 MG Oral Capsule and Rx197553-Cyclosporine 25 MG
Oral Capsule

Table 3.5 describes the distribution of SNOMED CT concepts according
to their inferred and stated mapping with RxNorm. We found that, for 59%
(1,892/3,204) of SNOMED CT clinical drugs, the same mappings have been
obtained by our process and the morphosyntactic approach used for establishing
the asserted mappings. We also highlighted that no mapping could be provided
for 9% of SNOMED CT concepts, whatever the applied strategy.

Table 3.5 – Distribution of SNOMED CT clinical drugs according to their map-
ping to RxNorm concepts: comparison between inferred and stated mappings.

Asserted mappings
Total

Present Absent

Inferred mappings
Present 1,892 110 2,002
Absent 939 263 1,202

Total 2,831 373 3,204



3.7. Conclusions 85

3.7 Conclusions

3.7.1 Findings

In this chapter, we describe a work that consisted in integrating RxNorm
with SNOMED CT using the new SNOMED CT model for medicinal products.
We firstly compared the RxNorm and SNOMED CT models and highlighted the
definitional features of each entity related to medicinal products. We mapped
the definitional features of RxNorm and SNOMED CT and constructed a formal
definition (Df) for each RxNorm concept. By classifying the common structure,
we found 2,002 equivalences (out of 3,204 possibilities) for clinical drugs be-
tween the two knowledge resources (Table 3.5). The applied strategy used both
morphosyntactic and structural techniques for identifying similarity between
interpretants (D).

The whole process highlighted the compliance of RxNorm with the SNOMED CT
model and made RxNorm inherently consistent with SNOMED CT. The process
also specifically identified 110 mappings that were not found by the morphosyn-
tactic approach used for establishing the asserted mappings. For these concepts,
our structural approach could thus overcome the morphosyntactic limitations
(resolution of naming conflicts). However, the structural approach generated
some scaling conflicts, with mappings between RxNorm SCDs and multiple
SNOMED CT concepts.

The absence of mapping for certain concepts may correspond to the two
following situations:

— there exist some errors in the knowledge resources. For example, there
is a confounding conflict between 425766008-Product containing precisely
phentermine resin 30 milligram/1 each conventional release oral capsule (clini-
cal drug) (basis of strength: 426428004-Phentermine resin (substance)) and
Rx826910-Phentermine resin 30 MG Oral capsule (basis of strength: Rx8152-
Phentermine). According to DailyMed 7, “Phentermine base” seems to
be the appropriate basis of strength. Thus, SNOMED CT should use
373343009-Phentermine (substance) as the basis of strength. Note that this
mapping was established by the morphosyntactic approach but not by our
process.

— the granularity of both resources is not always the same. Indeed, a formal
definition has been assigned to each of the 16,561 SCDs in RxNorm us-
ing the ODP of SNOMED CT. Failing to identify equivalent concepts in
SNOMED CT, these concepts and their related definitional features may be

7. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7ca86c66-409b-4852-
8631-c3ada6e60738
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used to enrich SNOMED CT.

3.7.2 Limitations and perspectives

Firstly, our process did not address some scaling conflicts between the two
models. Indeed, 1,877 RxNorm concepts could not be instantiated according
to the defined pattern for SCDs because of the absence of units of presentation
in RxNorm. For oral solid dose forms, the unit of presentation was used as the
denominator unit of the strength. However, when no mapping was stated for
RxNorm dose forms, their related SCDs could not be instantiated (see the case
of Rx763306 in subsection 3.6.3). In addition, our process did not ensure the
conversion of units of measurement, thus inducing scaling conflicts. For example,
the equivalence between 326309006-Product containing precisely desogestrel 150
microgram and ethinylestradiol 20 microgram/1 each conventional release oral tablet
(clinical drug) and Rx249357-Desogestrel 0.15 MG / Ethinyl Estradiol 0.02 MG
Oral Tablet has not been established by our process. Such missing mapping is
consecutive to a granularity difference between the two knowledge resources in
the description of strengths.

Secondly, the difficulties for mapping dose forms, which are highlighted by
the low coverage of their mappings in asserted mappings (Table 3.1) and in
inferred mappings (Table 3.4), need to be overcome. Multiple experts, EDQM 8

as intermediate between RxNorm and SNOMED CT or reverse engineering
(using the morphosyntactic mappings between RxNorm and SNOMED CT clini-
cal drugs for inferring mappings of dose forms and units of presentation) are
examples of strategies that we plan to investigate in future works.

3.7.3 Focus on semantic conflicts

In conclusion, with a process mainly based on similarities between formal
definitions (Df), we highlighted the differences between the morphosyntactic
approach (performed in RxNorm) and the structural approach we implemented.
We also showed how the comparison of these two approaches can help in the
identification of naming, scaling and confounding conflicts. Indeed, the diver-
gence observed between equivalences generated by the morphosyntactic and
structural techniques induced three main aspects:

— the resolution of naming conflicts between identical concepts by the
creation of mappings only available through the equivalence of formal
definitions (Df).

8. https://www.edqm.eu/en/standard-terms-database
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— the elimination of naming conflicts between different concepts (that are
obtained by morphosyntactic techniques) thanks to structural techniques.

— the occurrence of scaling and confounding conflicts that can and have
to be manually identified.

In the following chapter, we describe how to automatically detect scaling and
confounding conflicts and, more importantly, how to automatically overcome
them (or, at least, to reduce their occurrence). In addition, we mainly describe
the resolution strategy of the last type of semantic conflicts: the open conflicts.
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Bridges are happy, because they do
not judge those who come to them.

Mehmet Murat ildan

Chapter4
Semantically-enriched integration
process: cancer diagnoses

Summary: In this chapter, we were interested in semantically enriching the
integration process for being able to link knowledge resources that describe
distinct but related domains. We applied the proposed methodology to the
oncology field where the reuse of data is confronted with the heterogeneity of
knowledge resources. The implemented strategy tried to address all types of
semantic conflicts: naming, scaling, confounding and, mostly, open conflicts.

In this frame, we tried to integrate ICD-10 and ICD-O3 by using SNOMED CT
as a support. We used two complementary resources (i.e., mapping tables
provided by SNOMED CT and the NCI Metathesaurus) in order to find mappings
between ICD-10 or ICD-O3 concepts and SNOMED CT concepts. We used the
SNOMED CT structure to filter inconsistent mappings (resolution of naming and
confounding conflicts), as well as to disambiguate multiple mappings (resolution
of scaling conflicts). Based on the remaining mappings, we used semantic
relations from SNOMED CT to establish links between ICD-10 and ICD-O3
(resolution of open conflicts).

By creating some complex mappings between ICD-10 and ICD-O3 pairs, we
compared the created mappings to the manually performed mappings available
in the SEER conversion file and found a recall of 0.50, a precision of 0.68 and an
F-measure of 0.58.

The automated process leveraged logical definitions (Df) of SNOMED CT
concepts. While the low quality of some of these definitions impacted nega-
tively the semantically-enriched integration process, the identification of such
situations made it possible to indirectly audit the structure of SNOMED CT.

89
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Keywords semantic integration, biomedical terminologies, logical definitions,
post-coordination, SNOMED CT, ICD-10, ICD-O3

Valorization Chapter 4 is based on the article entitled “Integrating cancer
diagnosis terminologies based on logical definitions of SNOMED CT concepts”
that was published in the Journal of Biomedical Informatics in 2017.

4.1 Introduction

In this chapter, we present our last implementation, which concerned the
integration of ICD-10 and ICD-O3, two terminologies maintained by the WHO.
Indeed, as previously described (section 1.2.1), these two terminologies need to
be integrated in the frame of oncology. The cancer registries, which use ICD-
O3, need to incorporate new data that are encoded using ICD-10 from health
structures to find the incidence cases of cancer. Also, the registries need to look
for cancers’ outcome in the health structure database. Thus, the integration of
ICD-10 and ICD-03 is fundamental.

However, as described by Jouhet et al. [36], ICD-10 and ICD-O3 exhibit
structural and semantic heterogeneities. Thus, it is not possible to find equiva-
lences between the concepts of these two terminologies, which correspond to
the occurrence of open conflicts. In this context, linking ICD-10 and ICD-O3
requires a true reconciliation of the concepts they describe. Thus, we explored
how to automatically resolve each type of semantic conflicts: naming, scaling,
confounding and, mainly, open conflicts.

The notion of reconciliation in this chapter emphasizes the need for identify-
ing any type of relation that can exist between two concepts (i.e., equivalent and
subsumption relations and, in case of disjunction, the appropriate transveral
relation), which means to semantically enrich their integration. Through the
enrichment of the integration process, we were able to construct some complex
mappings [27] between an ICD-10 concept and a post-coordinated expression
of two ICD-03 concepts. Complex mappings are correspondences between two
elements, in which at least one of these elements is not a single entity but has a
more complex structure (i.e., axioms or other expressions).

Thus, our goal was to implement an integration process of ICD-10 and
ICD-O3 for a true reconciliation of their concepts, which depends neither on
a great structuring of the knowledge resources to be integrated, nor on the
expressiveness of their concept labels.

In the following first section, a description of the characteristics of ICD-10
and ICD-O3 is provided before the justification of our methodological choices
for performing their semantic integration. Lastly, our analytical framework is
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featured. In the following sections, we present the materials we used, the meth-
ods we developed and the main results of the semantically-enriched integration
of ICD-10 and ICD-O3.

4.2 Background

4.2.1 Characteristics of ICD-10 and ICD-O3

ICD-10

ICD-10 is a classification maintained by the WHO for representing nosologic
entities through alphanumeric codes. The nosologic entities are autonomous in
their determinism. They are also consistent in their clinical manifestations and
organized according to their similarities and contrasts. Consequently, ICD-10
concepts are disjoint. Chapter II of ICD-10 is dedicated to tumors, in which 852
alphanumeric codes range from C00 to D48:

— C00-C97: concepts of malignant neoplasms

— C00-C75: concepts of malignant neoplasms, stated or presumed to be
primary, of specified sites, except for lymphoid, haematopoietic and
related tissues.

— C76-C80: concepts of malignant neoplasms of ill-defined, secondary
and unspecified sites.

— C81-C96: concepts of malignant neoplasms, stated or presumed to be
primary, of lymphoid, haematopoietic and related tissues.

— C97: concept of malignant neoplasms of independent (primary) mul-
tiple sites.

— D00-D09: concepts of in situ neoplasms.

— D10-D36: concepts of benign neoplasms.

— D37-D48: concepts of neoplasms having an uncertain or unknown behav-
ior.

The classification of tumors is mainly made by site, and in very large groups,
depending on the behavior of the tumor. Each compartment in ICD-10 can be
see as a Context (Co) of ICD-10 concepts in the frame of <R,T,D>.

ICD-O3

ICD-O3 is a biaxial classification describing, on the one hand, histological
lesions of tumors concepts (morphology), and on the other hand, their anatomical
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location(s) concepts (topography). The 1032 morphology codes start with the
letter “M-” followed five digits between M-8000/0 and M-9989/3. The first four
digits represent the specific histologic term , and by extension to the Context (Co)
of the morphology ICD-O3 morphology concepts. The fifth digit, behind the
slash (/), indicates the behavior of the tumor, i.e. whether it is primary malignant
(/3), secondary malignant (/6), benign (/0), in situ (/2), with an uncertain or
unknown behavior (/9) or undetermined behaviour (/1). The 330 topography
codes are composed of four characters and range from C00.0 to C80.9.

4.2.2 Methodological choices for the implemented process

ICD-10 and ICD-O3 are two classifications that differ by:

— The clinical concepts they describe: ICD-10 represents diseases whereas
ICD-O3 describes histological lesions and anatomical sites.

— Their structure: ICD-10 is mono-axial while ICD-O3 is biaxial.

This is a typical case of what we called an open conflict. Each ICD-10 con-
cept is used independently to record health data and expresses a diagnosis as a
whole, thus corresponding to a pre-coordinated concept. In contrast, an ICD-O3
morphology concept must be associated to an ICD-O3 topography concept in or-
der to express the complete diagnosis to be recorded. There are no combination
rules in ICD-O3. Thus, all combinations of ICD-03 topography and morphology
concepts are potentially allowed. ICD-O3 concepts thus need to be combined for
finding mappings with ICD-10 concepts. The link between ICD-10 and ICD-O3
can be made by describing a cancer disease (coded in ICD-10) in terms of its man-
ifestation (ICD-03 morphology concept) and its localization (ICD-O3 topography
concept). In a coherent way, the semantic integration of ICD-10 and ICD-O3
firstly required the establishment of the appropriate relation between ICD-10
and ICD-O3 concepts before performing a complex mapping between a ICD-10
pre-coordinated concepts and post-coordinated expressions corresponding to a
combination of ICD-O3 morphology and topography concepts.

Because ICD-10 and ICD-O3 are large, their manual reconciliation would be
a long and tedious task [183]. On the other hand, morphosyntactic approaches
exploiting the concept labels do not take into account the “pre-coordinated”
and “post-coordinated” characteristics of ICD-10 and ICD-O3 (cases of naming
conflicts). Finally, ICD-10 and ICD-O3 are not described in a formal language.
They are not ontologies but just classifications describing disjoint concepts. Thus,
integrating them on the basis of their semantic features cannot take into account
post-coordination issues. As a result, we used background knowledge available
in a support knowledge resource in order to create a method for integrating ICD-
O3 and ICD-10. The method using a knowledge resource as a support resource
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for resource integration is particularly relevant when they are weakly structured
or limited to simple classification hierarchies [184]. Indeed, this method allows
to compensate this weakness by articulating concepts of knowledge resource to
be integrated according to the support knowledge resource, making it possible
to automatically find correspondences or to analyze their quality.

4.2.3 Analytical framework

In order to integrate ICD-10 and ICD-O3 by using a support knowledge
resource, we have defined a conceptual framework based on the general pat-
terns firstly described by Alekovsky et al. [30] and echoed in [184–187] . It
consists in two stages (Figure 4.1): the anchoring stage (already introduced
in section 2.4.3), which aims to generate candidate mappings (called anchors)
between concepts of the resources to be integrated and concepts of the support
resource, 2) the derivation stage, which consists of identifying links between
the concepts participating in the anchors within the support knowledge resource
so that concepts from the resources to be integrated can be related to each other.

Figure 4.1 – Analytical framework: description of general patterns used to
integrate ICD-10 and ICD-O3 using a support knowledge resource. The two
stages for this semantically-enriched integration are: 1) the anchoring stage
that generates candidate mappings between ICD-10 and ICD-O3 concepts and
the support knowledge resource, 2) the derivation stage that identifies links
between the concepts of the support knowledge resource which participate in
the anchors.
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To implement this framework, it was first necessary to select an appropriate
support knowledge resource. The latter must be able to describe the appropriate
relations between the notions of tumor diseases, histological lesions and anatom-
ical localizations. Its structure must also allow logical inference because ICD-10
and ICD-O3 are large. Indeed, the automatic deduction of relations and con-
straints existing between the concepts of the support knowledge resource has to
be possible, without these relations and constraints being specifically expressed
by resources creators [21]. The external resource, which is the most commonly
used support knowledge resource within the biomedical domain, is the UMLS
Metathesaurus. For instance, it was exploited to align GALEN (Generalised Ar-
chitecture for Languages, Encyclopaedias and Nomenclatures in medicine) and
TAMBIS (Transparent Access to Bioinformatics Information Sources) [188], Med-
DRA and SNOMED CT [33], as well as CCC (Clinical Care Classification) and
NANDA-I (North American Nursing Diagnosis Association-International) [189].
Another biomedical knowledge resource, which has been used as a support for
aligning the ATC (Anatomical Therapeutic Chemical) and the MeSH (Medical
Subject Headings), is RxNorm [190]. In the specific domain of oncology, the
external resource which is often used is the NCI Metathesaurus [191, 192], while
Jouhet et al. have exploited the NCI thesaurus [193].

4.3 Materials

4.3.1 Support knowledge resource: SNOMED CT

For our study, we chose SNOMED CT for integrating ICD-10 and ICD-O3.
As one of the most descriptive biomedical knowledge resources, SNOMED CT
exhibits ontological characteristics [194] require for our process. SNOMED CT
is based on three types of components: (i) concepts which represent a clinical
meaning and have a unique identifier (SCTID), (ii) descriptions which repre-
sent labels of these concepts and (iii) relations which are binary links between
concepts [195].

SNOMED CT also associates logical definitions (Df) to most of its concepts.
This logical definition of is composed of other SNOMED CT concepts and re-
lations [196]. In SNOMED CT, it is thus possible to describe a tumor thanks
to the semantic link Associated morphology relating to a concept describing its
histologic lesion as well as the semantic link Finding site relating to a concept
describing its anatomical location [197]. Through the relation role_group, which
was introduced in 2002, SNOMED CT could better describe diseases which have
several sites or morphological abnormalities. More precisely, the role_group rela-
tion enables to describe the morphological lesion which is associated with each
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anatomical site [181, 198]. For example, the logical definition of the SNOMED CT
concept 86299006-Tetralogy of Fallot (which is a cardiac malformation character-
ized by different anomalies, which affect multiple anatomical sites) is given in
Figure 4.2 1.

4.3.2 Mapping resources for integrating ICD-10 and ICD-O3

The SNOMED CT mapping tables (SNCTmt). SNOMED CT provides a file
which contains, among others, mapping tables between SNOMED CT concepts
and ICD-10 as well as ICD-O3 concepts [199]. These mappings have been
established manually and their purpose was to find, for a given SNOMED CT
code, the corresponding ICD-10 code(s) or ICD-O3 code(s).

The NCI Metathesaurus (NCI Mt). The NCI Mt is a multi-terminology
database integrating around 100 biomedical knowledge resources related to
cancer [200]. ICD-10, ICD-O3 and SNOMED CT used in this study are included
within the NCI Mt. Like in the UMLS Metathesaurus, each concept in the NCI Mt
has a unique identifier, named Concept Unique Identifier (CUI), which clusters
the codes from distinct knowledge resources supposed to represent the same
notion. This clustering has been performed according to a morphosyntactic
approach [201].

4.4 Methods

For the semantically-enriched integration process, a preliminary stage has
been performed to recover the exhaustive list of ICD-10 codes “from C00 to
D48”, as well as the ICD-O3 codes from the NCI Mt. This list has been rid of
ICD-10 and ICD-O3 header codes (e.g., C00-C97 Malignant neoplasms) because,
in practice, they are not used for diagnostic coding.

As in the previous integration of RxNorm and SNOMED CT, to exploit the
structure of SNOMED CT, we applied the ELK reasoner [182]. We used the ELK
reasoner trough the OWLAPI 3.5.0 at the anchoring and derivation stages.

4.4.1 Anchoring stage

The anchoring stage consists of three steps: identifying candidate map-
pings for anchoring, filtering anchors and disambiguating multiple anchors
(Figure 4.3). For the two last steps, we used ELK to infer the whole SNOMED CT

1. Diagram from
https://browser.ihtsdotools.org/?perspective=full&conceptId1=404684003&
edition=MAIN&release=&languages=en
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Figure 4.2 – Tetralogy of Fallot diagram. The circles represent the role_group
attributes
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structure so that subsumption relations which are not explicitly stated between
some SNOMED CT concepts are also available.

Figure 4.3 – The three steps of the anchoring stage: 1) the identification of candi-
date mappings, 2) the filtering step, which consists in deleting anchors involving
concepts that do not describe the same clinical notions, 3) the disambiguation
step for excluding anchors involving a unique ICD-10/ICD-O3 concept and
multiple SNOMED CT concepts. *Deleted anchors are erroneous mappings.
**Excluded anchors are correct mappings which do not denote equivalences.
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Identifying candidate mappings

Two resources were used for the selection of candidate mappings. We first
used the SNCTmt by selecting only the anchors described as not obsolete. The
second mapping resource, namely the NCI Mt, was exploited to identify the CUI
including both a SNOMED CT code (SCTID) and an ICD-10 or ICD-O3 code
(Figure 4.4).

Figure 4.4 – Identifying candidate mappings within the NCI Metathesaurus

Filtering anchors

To eliminate inconsistent anchors, two sub-steps were performed: (i) a filter-
ing according to the SNOMED CT hierarchy and (ii) a filtering according to the
tumor behavior. These steps thus consisted in the detection and correction of
naming and/or confounding conflicts.

The filtering according to the hierarchy aimed to remove the anchors which
involved concepts that do not represent the same general clinical notions. In
other terms, it consisted in only validating the mappings between concepts that
share the same context (Co). Thus, the anchors were considered as inconsistent
in the following cases:

— for ICD-10 concepts (which represent diseases): if the mapped SNOMED CT
concept was not a descendant of the concept 64572001-Disease (disorder)
(The context (Co) of all concepts of disease in SNOMED CT),

— for ICD-O3 morphology concepts (which represent histologic lesions): if
the mapped SNOMED CT concept was not a descendant of the concept
416939005-Proliferative mass (morphologic abnormality) (The context (Co)
of all concepts of histological lesions in SNOMED CT),

— for ICD-O3 topography concepts (which represent anatomical localiza-
tions): if the mapped SNOMED CT concept was not a descendant of the
concept 91723000-Anatomical structure (body structure)(The context (Co)
of all anatomic concepts in SNOMED CT).
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The filtering according to the tumor behavior was applied only to anchors
in which ICD-10 concepts and ICD-O3 morphology concepts participated. This
step consisted in the reconciliation of the different classes of tumor behavior
found in the structure of the ICD-10 or within the ICD-03 morphology axis with
those represented in SNOMED CT. In practice, all anchors involving concepts
that do not describe the same kind of tumor behavior were removed. This step
was similar to the previous one but it involved more precise (Co) definitions.

Table 4.1 – High-level SNOMED CT concepts corresponding to classes of tumor
behaviors in ICD-10 and ICD-O3 : Mapping of the contexts (Co) of ICD-10/ICD-
O3 and SNOMED CT

Classes of tumor behavior Corresponding SNOMED CT concept(s)
ICD-10 Primary malignant

372087000-Primary malignant neoplasm (disorder)
(C00-C75)
Secondary 128462008-Secondary malignant neoplastic disease (disorder)
malignant 302817000-Malignant tumor of unknown origin
(C76-C80) or ill-defined site (disorder)
Haematological 269475001-Malignant tumor of lymphoid, hemopoietic
malignancy (C81-C96) AND/OR related tissue (disorder)
Multiple tumors (C97) 363500001-Multiple malignancy (disorder)
Tumor in situ 109355002-Carcinoma in situ (disorder)
(D00-D09) 127330008-Melanoma in situ by body site (disorder)
Benign tumor 20376005-Benign neoplastic disease (disorder)
(D10-D36)
Unpredictable tumor

118616009-Neoplastic disease of uncertain behavior (disorder)
(D37-D48)

ICD-O3 Benign (/0) 3898006-Neoplasm, benign (morphologic abnormality)
Undetermined 86251006-Neoplasm, uncertain whether benign or
behavior (/1) malignant (morphologic abnormality)
Uncertain or unknown 6219000-Neoplasm, malignant, uncertain whether primary
tumor behavior (/9) or metastatic (morphologic abnormality)
In situ morphology (/2) 127569003-In situ neoplasm (morphologic abnormality)
Primary malignant 86049000-Malignant neoplasm, primary
morphology (/3) (morphologic abnormality)
Secondary malignant

14799000-Neoplasm, metastatic (morphologic abnormality)
morphology (/6)

Thus, we have identified the high-level SNOMED CT concepts that corre-
spond to classes of tumor behavior (the appropriate Co for each SNOMED CT
concept) which are represented within the ICD-10 structure and within the
morphology axis of ICD-O3. The list of high-level SNOMED CT concepts chosen
for each class is presented in table 4.1. Some classes of tumor behavior in ICD-
10 have multiple corresponding SNOMED CT concepts because these classes
represent distinct notions that are not grouped together within SNOMED CT
(e.g., the high-level SNOMED CT concepts chosen for the ICD-10 class “Tumor
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in situ” are 109355002-Carcinoma in situ (disorder) and 127330008-Melanoma in
situ by body site (disorder)).

Disambiguating multiple anchors

The objective of the disambiguation process is to propose the best anchor(s)
when several SNOMED CT concepts are mapped to a single ICD-10 or ICD-
O3 concept. This means detect and correct the scaling between the mapped
concepts. To this end, we examined the existence of subsumption relations
between the SNOMED CT concepts. We then kept only the anchor(s) involving
the SNOMED CT concept(s) being the most generic (i.e., situated at the highest
level in the hierarchy).

Disambiguation does not reduce the number of ICD-10 or ICD-O3 concepts
involved in anchors but only the number of SNOMED CT concepts mapped
to them. The same disambiguation process was applied to the anchors of each
resource (first step), and to the pooling of anchors obtained at the first step
(second step).

More precisely, we first addressed the disambiguation of the anchors coming
from the SNCTmt independently from those coming from the NCI Mt. This
step was intended to harmonize anchors within each of these two resources. At
the second step, the disambiguated anchors obtained from the two resources
were pooled and a second disambiguation was performed, when needed. Indeed,
pooling anchors lead to two situations. Given an ICD-10/ICD-O3 concept:

— Anchor(s) retrieved by the two resources was (were) the same or only one
resource retrieved the anchor(s). In this situation, no additional disam-
biguation was needed.

— Anchors retrieved by the two resources were different (distinct SNOMED-
CT concepts). In this situation, the disambiguation process was performed
over pooled anchors. Thus, if one of the SNOMED CT concepts involved
in the multiple anchors was more general than others, this step allowed to
transform a 1-N anchor into a 1-1 anchor.

Evaluation of the anchoring stage

In order to evaluate the methods used during the anchoring stage, we first
estimated the coverage of ICD-10 and ICD-O3 concepts within anchors and
compared the results obtained through the SNCTmt and the NCI Mt. Then, to
assess the impact of each step of the anchoring stage, we calculated the number of
anchors obtained for each ICD-10 and ICD-O3 concept and having the following
cardinalities before and after each step:
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— 1-1 anchors: an ICD-10 or ICD-O3 concept mapped to a single SNOMED CT
concept.

— 1-N anchors: an ICD-10 or ICD-O3 concept mapped to more than one
SNOMED CT concept.

— 1-0 anchors: an ICD-10 or ICD-O3 concept which could not be mapped to
any SNOMED CT concept.

4.4.2 Derivation stage

Derivation method

This step consisted in identifying the relations existing between SNOMED CT
concepts participating in the anchors in order to deduce correspondences be-
tween ICD-10 concepts and combinations of an ICD-O3 morphology concept
and an ICD-O3 topography concept (Figure 4.5). Only 1-1 anchors obtained at
the end of the anchoring stage were used for the derivation stage. Therefore, each
possible pair of anchored ICD-O3 morphology and topography concepts corre-
sponds to a unique pair of SNOMED CT concepts. For each of these SNOMED CT
concept pairs, we looked for the SNOMED CT concepts of disease (equivalent
concept or, failing that, parent concepts) that have the appropriate semantic link
with each element of the pair (i.e., a finding_site relationship with anatomical
structures and an associated_morphology relationship with histological lesions).
The transversal relations, between the related contexts in SNOMED CT for
ICD-10 and ICD-O3 concepts, were manually determined. Toward this end,
we automatically generated DL-queries which were executed over the inferred
SNOMED CT structure obtained with the ELK reasoner. Then, either an equiv-
alent SNOMED CT concept was found or, failing that, the parent concepts of
this DL expression were recovered. We finally checked automatically if some of
these SNOMED CT disease concepts were anchored to ICD-10 concepts.
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Figure 4.5 – The derivation stage: identifying SNOMED CT concepts of diseases
that can be used as a bridge between ICD-10 and ICD-O3 concepts. For each
pair of SNOMED CT concepts anchored to ICD-O3 concepts, a DL-query was
performed to retrieve the expression corresponding to the disease. The equiva-
lent concept of this DL expression was searched and if it did not exist, parent
concepts were used.
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Evaluation of the derivation stage

For the evaluation of the derivation stage, we carried out a qualitative and
quantitative analyses of the integration results.
For a quantitative analysis, we calculated the number of derivations found for
each ICD-10 concept according to the following cardinalities:

— 1-1 derivations: an ICD-10 concept derived with a single pair of ICD-O3
morphology and topography concepts.

— 1-N derivations: an ICD-10 concept derived with more than one pair of
ICD-O3 morphology and topography concepts.

— 1-0 derivations: an ICD-10 concept which could not be derived with any
pair of ICD-O3 morphology and topography concepts.

We also calculated the coverage of ICD-10 and ICD-O3 concepts involved in
the derivation.
For a qualitative analysis, we compared our results with a gold standard, an
ICD conversion file provided by the National Cancer Institute within the SEER
(Surveillance, Epidemiology, and End Results) program 2. Within this file, only
the correspondences between ICD-10 and ICD-O3 concepts that participated in
1-1 anchors were used for the integration assessment. We thus calculated the
overlap of our results with the 23,694 correspondences available in the SEER
program conversion file.

4.5 Results

4.5.1 Anchoring stage

Coverage of ICD-10 and ICD-O3 concepts involved in anchors

Figure 4.6 shows the distribution of ICD-10 and ICD-O3 concepts according
to the resource used to establish anchors (i.e., the SNCTmt or the NCI Mt). By
considering the two resources (i.e., anchors obtained by the SNCTmt, anchors
obtained by the NCI Mt, anchors obtained by the SNCTmt and the NCI Mt), we
found that more than 88.0% of ICD-10 and ICD-O3 concepts could be mapped to
SNOMED CT concepts. For ICD-O3 morphology concepts, the coverage reaches
99.0% (1025/1032). It is noteworthy that for 28.0% of ICD-10 concepts, only
one resource provided an anchor to a SNOMED CT concept.

2. Available at: http://seer.cancer.gov/tools/conversion/

http://seer.cancer.gov/tools/conversion/
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Figure 4.6 – Number of ICD-10 and ICD-O3 concepts involved in anchors,
according to the mapping resource used to establish these anchors. The size of
circles is proportional to the coverage percentage.

Filtering step

Table 4.2 shows the impact of the filtering process steps, according to each
resource used to establish the anchors.

The filtering according to the hierarchy has nearly no impact on the distribu-
tion of the ICD-10 and ICD-O3 concepts in the anchors proposed by the SNCTmt.
In contrast, in those recovered from the NCI Mt, the number of concepts involved
in 1-N anchors decreases; a tendency which is particularly pronounced for ICD-
O3 morphology concepts (from 465 to 150) and to a lesser extent for ICD-10
concepts (from 115 to 48). This diminution is accompanied by an increase in
the number of ICD-O3 morphology concepts (from 539 to 847) and ICD-10
concepts (from 516 to 572) participating in 1-1 anchors. As an example, within
the NCI Mt, the ICD-O3 morphology concept 9684/3-Malignant lymphoma, im-
munoblastic, NOS is anchored to the SNOMED CT concepts 109966003-Diffuse
non-Hodgkin’s lymphoma, immunoblastic (disorder) and 450909005-Plasmablastic
lymphoma (morphologic abnormality). The anchor between the ICD-O3 morphol-
ogy concept (9684/3) and the concept of disease (109966003) was eliminated
thanks to the filtering based on the hierarchy. The cardinality of the anchor in
which this ICD-O3 concept is involved dropped from 1-N to 1-1. This step thus
succeeds in reducing the number of 1-N anchors. On the other hand, some 1-1
and 1-N anchors were eliminated for 11 ICD-10 concepts, 7 ICD-O3 morphology
concepts and 29 ICD-03 topography concepts (thus resulting in additional 1-0
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anchors).

Table 4.2 – Distribution of ICD-10 and ICD-O3 concepts within anchors ob-
tained by the SNCTmt and the NCI Mt after each filtering step

Steps Cardinality ICD-10 ICD-O3
of anchors Topography Morphology

SNCTmt NCI Mt SNCTmt NCI Mt SNCTmt NCI Mt
Initial 1-0 136 221 43 46 23 28

1-1 79 516 4 132 960 539
1-N 637 115 283 152 49 465

Filtering by 1-0 136 232 44 75 24 35
hierarchy 1-1 79 572 4 125 959 847

1-N 637 48 282 130 49 150
Filtering by 1-0 186 537 72 91
tumor 1-1 159 288 912 838
behavior 1-N 507 27 48 103

The filtering according to the tumor behavior globally leads to a decrease
in the number of concepts involved in 1-1 and 1-N anchors, except for ICD-10
concepts with an increasing number of 1-1 anchors coming from the SNCTmt
(from 79 to 159). This step results in the elimination of many anchors, in
particular for 305 ICD-10 concepts participating in anchors obtained within
the NCI Mt. As an illustration, the anchor between the ICD-10 concept C47.3-
Malignant neoplasm of peripheral nerves of thorax and the SNOMED CT concept
188325002-Malignant neoplasm of peripheral nerve of thorax (disorder) was deleted.
According to the SNOMED CT hierarchy, this concept is described as being a
tumor which can be primary or not, contrary to the ICD-10 concept which is
exclusively primary. Although both concepts have the same label, they do not
describe the same tumor behavior and, thus, cannot be mapped to each other
(case of naming conflict).

Disambiguation step

The number of disambiguated concepts (i.e., whose cardinality of anchors
was initially 1-N and became 1-1), respectively mapped through the SNCTmt
and the NCI Mt, are 289 and 14 for ICD-10 concepts, 127 and 59 for ICD-O3
topography concepts, and finally 43 and 41 for ICD-O3 morphology concepts (Ta-
ble 4.3). An example of disambiguation is the ICD-10 concept C50.1-Malignant
neoplasm of the central portion of the breast, which was initially mapped to the
three following SNOMED CT concepts: 93745008-Primary malignant neoplasm
of central portion of female breast (disorder), 708921005-Carcinoma of central
portion of breast (disorder) and 448436006-Sarcoma of central portion of female
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breast (disorder). The disambiguation process was able to detect that among
these three concepts, the concept 93745008 being the most general, it was a valid
mapping for C50.1. That typically corresponded to the detection and correction
of scaling conflicts induced by the manual mapping process.

Table 4.3 – Disambiguation of anchors coming from the SNCTmt and the NCI
Mt. 1-0 anchors do not appear because their number is not changed by the
disambiguation step.

Cardinality ICD-10 ICD-O3
of anchors Topography Morphology

SNCTmt NCI Mt SNCTmt NCI Mt SNCTmt NCI Mt
Before* 1-1 159 288 4 125 912 838

Steps 1-N 507 27 282 130 48 103
After* 1-1 448 302 131 184 957 879

1-N 218 13 155 71 3 62
Total 666 315 292 255 960 941

Pooled anchors of the SNCTmt and the NCI Mt resulted in the increase of
ICD-10 and ICD-O3 participation in anchors. More precisely, the remaining
anchors involved 706 ICD-10 concepts, 969 ICD-O3 morphology concepts and
289 ICD-O3 topography concepts. At the end of the disambiguation process,
57.2% (487/852) of ICD-10 concepts, 38.5% (127/330) of ICD-O3 topography
concepts and 87.3% (901/1032) of ICD-O3 morphology concepts participated in
1-1 anchors.

4.5.2 Derivation stage

Quantitative analysis

Table 4.4 presents the number of ICD-10 concepts which could be derived
with one or multiple pairs of ICD-O3 topography and morphology concepts and
those which could not be derived at all. ICD-10 concepts were mainly derived to
multiple pairs of ICD-O3 topography and morphology concepts (22.5% for 1-N
derivations against 1.3% for 1-1 derivations). An example of 1-1 derivation is
D13.2-Benign neoplasm of duodenum (ICD-10 concept) with 8850/0-Lipoma, NOS
(ICD-O3 morphology concept) combined to C17.0-Duodenum (ICD-O3 topogra-
phy concept). This kind of derivation overcame open conflicts and corresponded
to a complex mapping. Of note, there were more 1-1 derivations between ICD-
10 concepts and pairs of ICD-O3 concepts for the category “Haematological
malignancy”, probably because haematological tumors are very specific lesions.
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Table 4.4 – Distribution of ICD-10 concepts derived with 0, 1 or many pairs
of ICD-O3 topography and morphology concepts. *N is the number of ICD-10
concepts of each category

ICD-10 concepts N* Cardinality of ICD-10 concepts Total
derived with pairs of ICD-O3

topography and morphology concepts
1-0 1-1 1-N

Benign tumor 180 57 31.6% 0 0.0% 34 18.9% 91 50.5%
Haematological malignancy 92 24 26.1% 10 10.9% 20 21.7% 54 58.7%
Unpredictable tumor 86 29 33.7% 0 0.0% 20 23.2% 49 57.0%
Tumor in situ 66 26 39.4% 1 1.5% 14 21.2% 41 62.1%
Primary malignant 388 133 34.3% 0 0.0% 99 25.5% 232 59.8%
Secondary malignant 39 14 35.9% 0 0.0% 5 12.8% 19 48.7%
Multiple tumors 1 1 100.0% 0 0.0% 0 0.0% 1 100.0%
Total 852 284 33.3% 11 1.3% 192 22.5% 487 57.1%

Overall, by combining 1-1 and 1-N derivations, we found that 23.8% (203/852)
of ICD-10 concepts could be derived with 38.5% (127/330) of ICD-O3 topogra-
phy concepts and 86.0% (892/1032) of ICD-O3 morphology concepts.

Qualitative analysis

We found 63,142 ICD-O3 pairs which could be derived with ICD-10 concepts
after the derivation process. Among them, 57,505 pairs were each derived with
one ICD-10 concept and 5,637 pairs were each derived with multiple ICD-10
concepts. A total of 17,474 ICD-O3 pairs were common with the 23,694 pairs
described in the SEER conversion file and for 11,932 of them, our integration
process found the same ICD-10 concept as the SEER conversion file. This
corresponds to a recall of 0.5; a precision of 0.68 and an F-measure of 0.58.
As an example, C15.9-Esophagus, NOS and 8504/2-Noninfiltrating intracystic
carcinoma were derived with D00.1-Carcinoma in situ of esophagus both in the
SEER conversion file and according to our derivation process.

For the remaining ICD-O3 pairs, our derivation process found different ICD-
10 concepts than the SEER conversion file proposes. The ICD-O3 pair formed
by C00.0-External upper lip and 8856/0-Intramuscular lipoma illustrates such
cases. Our process resulted in derivations with D10.0-Benign neoplasm of lip and
D17.0-Benign lipomatous neoplasm of skin and subcutaneous tissue of head, face and
neck while the SEER conversion file describes a derivation with D17.9-Benign
lipomatous neoplasm, unspecified.
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4.6 Conclusions

4.6.1 Findings

Our study consisted in integrating two biomedical terminologies that focus
on diagnostic coding in the field of oncology. The difference of clinical notions
represented in ICD-10 and ICD-O3 could not result in 1-1 mappings between
their concepts because they are disjoint (i.e., open conflicts). Thus, we did not
perform an alignment of these two terminologies but their integration by linking
concepts through non-hierarchical relations. Thus, we implemented a seman-
tically enriched integration process, by proposing a method for establishing
appropriate transversal relations between ICD-10 and ICD-O3 concepts that
resolves cases of open conflicts. We finally identified complex mappings between
ICD-10 pre-coordinated concepts (diseases) and ICD-O3 post-coordinated ex-
pressions (combinations of topography and morphology). Even if they describe
disjoint concepts, these terminologies are organized according to a coherent main
classes that was used in our study for their integration as a context (Co) for each
of their concept. We chose SNOMED CT as a support knowledge resource for
this semantic integration not only because its domain coverage includes those of
ICD-10 and ICD-O3 but also because it benefits from ontological characteristics
which allowed logical inferences over its structure. Logical definitions (Df) in
are based on OWL-EL, which is a “trimmed down version of OWL that trades some
expressive power for the efficiency of reasoning”. This is the reason why we chose
ELK for reasoning over the structure of SNOMED CT, which has previously
been shown to be sufficient to express this knowledge resource [202]. In our
work, reasoning and DL-queries enabled to retrieve links that were not explicitly
stated within the SNOMED-CT structure. Moreover, although built expressions
based on ICD-O3 combinations could refer to anonymous classes (because not
explicitly described within SNOMED CT), we were able to classify them and
link them to an ICD-10 code.

Anchoring stage

By using the SNCTmt and the NCI Mt, we were able to obtain a high coverage
of ICD-10 and ICD-O3 concepts within anchors. Thanks to the combined use of
the two resources, we indeed found anchors for more than 88% of ICD-10 and
ICD-O3 concepts. The highest coverage (99%) concerned ICD-O3 morphology
codes, which can be explained by the fact that ICD-O3 morphology concepts
were used as support for the representation of SNOMED CT histological le-
sions [203]. It is noteworthy that, although the overlap is important between
anchors obtained by the SNCTmt and the NCI Mt, it was useful to make use of
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both of these resources because some anchors were found in only one of them,
especially for ICD-10 concepts (19% for the SNCTmt and 9% for the NCI Mt).

The main benefit from the anchoring stage was not to create anchors but
rather to improve their quality by detecting and resolving semantic conflicts
induced by the original mapping strategy. Although ICD-10 and ICD-O3 are
poorly structured, we successfully made corrections and reconciled proposed
anchors by using their structure at the filtering and disambiguation steps. These
steps can thus be qualified as alignment repair processes [37]. The filtering
step indeed enabled to delete anchors involving concepts that do not describe
the same clinical notion, mainly corresponding to naming conflicts in NCI Mt
and confounding conflicts in SNCTmt. The disambiguation step managed to
exclude anchors when a hierarchical relationship existed between SNOMED CT
concepts involved in multiple anchors, due to scaling conflicts induced by man-
ual mapping in most cases, so that only the most relevant anchor was retained.
Thus, these processes highlighted and succeeded in solving the limitations of
the morphosyntactic method used by the NCI Mt for establishing mappings and
those of the manual method used for creating the SNCTmt. It is important to
note that these two methods are the most commonly used in the literature to
create mappings, like in systems described previously such as AROMA [204],
ServOMap [18] and Onagui [205]. Thus, our methodology may be applied to
improve the quality of mappings created by any such application. Indeed, our
method is independent of strategies used for creating mappings, because it is
only based on the structure of SNOMED CT, ICD-10 and ICD-O3.

Derivation stage

— Derivation strategy: In the derivation process, we looked for equivalent,
and parent if necessary, concepts of the DL expression corresponding to a
pair of ICD-O3 concepts. ICD-10 represents nosologic entities and an ICD-
10 concept can represent one or more entities. The notions represented by
a combination of ICD-O3 concepts may correspond exactly to the nosologic
entity represented by the ICD-10 concept, in which case an equivalence can
be found. In contrast, the ICD-O3 combination may represent a nosologic
entity which is part of a group of entities represented by an ICD-10 concept.
In this situation, subsumption relations are thus of interest.

— Derivation coverage: We were able to derive 86% of the ICD-O3 morphol-
ogy concepts, 36% of the ICD-O3 topography concepts and 24% of the
ICD-10 concepts. The coverage of ICD-10 concepts is correlated with the
coverage of ICD-03 topography concepts because ICD-10 concepts related
to cancer diagnoses are grouped according to the anatomical localization
of the tumor. Thus, the absence of anchors for a given ICD-O3 topography
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automatically implies the absence of anchors for the ICD-10 concepts in-
volving this anatomical localization. Conversely, the coverage of ICD-O3
morphology concepts is high. This can be explained by the facts that: i) the
same histological lesion may exist for different anatomical localizations,
and ii) the description of histological lesions in ICD-O3 is more precise
than in ICD-10. This difference in the level of precision also explains the
numerous 1-N derivations.

— Derivation quality: The derivation stage enabled to find an ICD-10 con-
cept for 74% (17,474/23,694) of ICD-O3 pairs of the SEER conversion file.
Moreover, our integration process correctly and automatically generated
50% of the correspondences between an ICD-10 concept and a pair of
ICD-O3 concepts described in the SEER conversion file.

A potential explanation of the divergences observed between our derivation
process and correspondences proposed by the SEER is that its conversion
file is based on rules of cancer registries. Conversely, our derivation process
intends to relate ICD-O3 combinations to ICD-10 concepts based on their
semantics. As a result, our process can find multiple derivations for a single
combination whereas the SEER proposes only one of them. For instance, in
the SEER conversion file and according to our derivation process, the ICD-
O3 pair C75.3-Pineal gland and 9769/1-Immunoglobulin deposition disease
was integrated with D47.9-Neoplasm of uncertain or unknown behaviour of
lymphoid, haematopoietic and related tissue, unspecified (according to the
rule 4.1 of cancer registries for recording an haematopoietic disease [206]).
However, our derivation process also proposed D44.5-Neoplasm of uncertain
behavior of pineal gland for this pair. Although the later derivation is
significant, it has not been retained by the SEER. This finding highlights
that our process does not depend on specific conversion rules, but only on
the semantics provided by SNOMED-CT.

Another consequence of our process was the derivation of pairs that are
not medically relevant. An example of such irrelevant combinations is the
ICD-O3 pair C50.2-Upper-inner quadrant of breast and 8153/1-Gastrinoma,
NOS which was integrated with the ICD-10 concept D48.6-Neoplasm of
uncertain or unknown behaviour of Breast. Indeed, “gastrinoma” is a specific
morphologic abnormality of the digestive tract so this tumor cannot appear
with breast as a primary site. Confronting derivation results with data
from cancer registries is a perspective that would allow keeping only the
ICD-O3 pairs that are effectively used in practice to record health data.
However, it is necessary to underline that our derivation process takes the
imperfect but informative coding that may exist in real data (i.e., coding
error).
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4.6.2 Integration process and evaluation limitations

Our integration of ICD-10 and ICD-O3 concepts remains incomplete. The
main limitation of our methods concerns 1-N and 1-0 anchors, which were not
derived. For 1-N anchors, the disambiguation process needs to be improved.
Some 1-N concepts were still present after the disambiguation of results ob-
tained by the SNCTmt and the NCI Mt but others were also created when
pooling anchors coming from these two resources. In many cases, this is a
consequence of concepts that are incorrectly represented as siblings within
the SNOMED CT structure. As an example, the ICD-O3 morphology concept
8831/0-Histiocytoma, NOS was involved in a 1-1 anchor with 128741006-Deep
histiocytoma (morphologic abnormality) according to the SNCTmt and in a 1-1
anchor with 302843004-Histiocytoma (morphologic abnormality) according to the
NCI Mt. By pooling the anchors of the two resources, 8831/0-Histiocytoma, NOS
finally participated in a 1-N anchor because the two concepts 128741006-Deep
histiocytoma (morphologic abnormality) and 302843004-Histiocytoma (morphologic
abnormality) are erroneously described as siblings in SNOMED CT (typical case
of scaling conflict). Indeed, they must clearly be related through a subsump-
tion relationship. Other hierarchical and transversal semantic links must be
sought by the disambiguation process because SNOMED CT apparently does not
contain appropriate links between some of its concepts. Therefore, a potential
strategy for improving the disambiguation process would be to search for such
semantic links in other knowledge resources. As an example, the Foundational
Model of Anatomy (FMA) [207] may be a good candidate to identify relations be-
tween SNOMED CT concepts which are anchored to a given ICD-O3 topography
concept.

4.6.3 Comparison with previous works

The most similar previous work compared to our study is the one realized by
Jouhet et al. [193], who also tried to integrate ICD-10 and ICD-O3 thanks to a
support knowledge resource, namely the NCI thesaurus. If we compare their
results with ours, we derived 888 ICD-O3 morphology concepts against 860 for
them. By contrast, as our model only considers 1-1 anchors for the derivation
stage, the high proportion of 1-N anchors for ICD-O3 topography concepts leads
to a lower coverage of ICD-O3 topography concepts (127) and ICD-10 concepts
(203) involved in derivations compared to the coverage obtained by Jouhet et
al., being respectively 278 and 302. Thus, one of our prospects is the fusion of
our results with those obtained by Jouhet et al. We would like to check if the
use of the NCI thesaurus could improve our semantic integration. In particular,
for concepts having no anchors with any SNOMED CT concept, such concepts
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could be mapped to NCI thesaurus concepts. Finally, we believe that merging the
results of both studies will highlight complementarities of the NCI thesaurus and
the SNOMED CT. We chose SNOMED CT because it has been used to support
the semantic integration of various biomedical knowledge resources in previous
works. For instance, Brown et al. [208] used it to align the Veterans Benefits
Administration (VBA) disability code set and the International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9CM). In this work, authors
used a morphosyntactic method and compared two approaches. The first one was
a direct alignment of VBA and ICD-9CM without using any other resource, while
the second approach used the SNOMED CT as a support knowledge resource.
The use of SNOMED CT increased the alignment coverage, which illustrates that
SNOMED CT is able to cover various clinical domains of medicine. This work
differs from ours in that authors did not use the structure of the SNOMED CT
to find semantic links between disjoint concepts or to ensure the quality of the
mapping process. Finally, the repair process performed in this study was made
manually by domain experts in a consensual way. Another example is the work
of Bakhshi-Raiez et al. [209], who used SNOMED CT to align APACHE II and
APACHE IV, which are two versions of a classification system used to encode the
reasons for intensive care admission. Firstly, authors manually created mappings
between SNOMED CT concepts and those of APACHE II and IV. Then, authors
used the SNOMED CT structure to retrieve SNOMED CT concepts which had
hierarchical links (especially the part_of relationship) with already mapped
concepts. Thus, the common SNOMED CT concepts mapped to APACHE II and
IV concepts constituted the bridges between the two classifications. As in our
study, authors used the structure of SNOMED CT to establish anchors between
two knowledge resources but they did not have to realize a semantic integration
of disjoint concepts. A challenge raised by the integration of ICD-10 and ICD-O3
was to align pre-coordinated concepts with post-coordinated expressions. To
address this issue, Dhombres et al. [119] have implemented a strategy requiring
that one of the two knowledge resources to be aligned must have sophisticated
labels and the other one must be able to carry out post-coordination. Because
ICD-10 and ICD-O3 do not have these two characteristics, we could not follow
such a strategy and we had to propose an alternative one.

4.6.4 Integration process advantages

An analytical reading of our semantic integration process gives the possibility
to understand and correct our methodological choices but also to indirectly ob-
serve limitations in the structure of SNOMED CT, ICD-10 and ICD-O3. Indeed,
the anchoring and derivation stages are based on the SNOMED CT structure and,
in particular, on the subsumption relations existing within SNOMED CT. Our
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method was able to identify some limitations and specificities of the SNOMED CT
structure already described in the literature, such as the “absence of differ-
ence in the description between children and parents” [179, 210]. For example,
SNOMED CT does not consider 109271004-Melanocytic nevus of lip (disorder) as
being a benign tumor, erroneously. Although being correct, its anchor with the
ICD-10 concept D22.0-Melanocytic naevi of lip was deleted during the filtering
step (by tumor behavior) because it corresponded to a confounding conflict
between the two concepts. Another example is the anchor of the ICD-O3 mor-
phology concept 8151/3-Insulinoma, malignant with the SNOMED CT concept
20955008-Insulinoma, malignant (morphologic abnormality). Although this an-
chor is correct, it was erroneously derived with some ICD-10 concepts of benign
tumors because the SNOMED CT concept 20955008 is a descendant of 3898006-
Neoplasm, benign (morphologic abnormality) and 86049000-Malignant neoplasm,
primary (morphologic abnormality). This inconsistency illustrates an uncontrolled
use of the subsumption relationship in SNOMED CT, which is called is_a over-
loading [179].

Other knowledge resource-related problems were encountered during the
semantic integration process. Indeed, from the beginning of the process, we iden-
tified concepts that did not participate in anchors. The concepts which could not
be mapped are mainly ICD-O3 topography concepts with codes (.8) describing an
overlapping anatomical site (e.g., C63.8-Overlapping lesion of male genital organs),
as well as ICD-10 and ICD-O3 concepts which use the category “other” for un-
listed diagnoses or histological lesions. The ICD-10 concept C45.7-Mesothelioma
of other sites is such an example. ICD-10 enumerates three anatomical sites for
mesothelioma (C45.0-Mesothelioma of pleura, C45.1-Mesothelioma of peritoneum
and C45.2-Mesothelioma of pericardium), and C45.7 encodes for all mesothelioma
that are not pleura, peritoneum and pericardium mesothelioma [25, 26]. This
representation is made because of the epidemiologic objectives of ICD-10 and
ICD-O3. The objectives of SNOMED CT being different, it does not include
such concepts. To address this issue, we could look for structural proximities
between the concepts belonging to the “other” category and concepts already
anchored, like ServOMap [18] and SAMBO [111] do. For these particular con-
cepts, we could indeed search for their parent concepts having anchors with a
SNOMED CT concept and some of the direct descendants of this SNOMED CT
concept, which are not already anchored, could be mapped to the ICD-10 /
ICD-O3 concept belonging to the “other” category.

4.6.5 Focus on semantic conflicts

In conclusion, we presented in this chapter an automatic detection and cor-
rection of naming, scaling and confounding conflicts based on the similarities
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established between their interpretants (D) (contexts (Co) and formal definitions
(Df)) followed by a resolution of open conflicts using an automatic semantic
approach. This approach is punctuated by manual interventions, in particular
for the similarities between the contexts during the filtering step and for the
detection of the appropriate transversal relations in SNOMED CT.

For a more automatic process taking into account all the lessons learned from
the previous implemented processes, we present in the next chapter a generic
process that can automatically take into account the specificity of any kind of
knowledge resources and then perform an automatic mapping process that can
overcome any type of semantic conflicts.



Any fool can know. The point is to
understand.

Albert Einstein

Chapter5
Conclusions and perspectives

In this chapter, we summarize the global findings presented in this document
and the general perspectives induced by the implemented processes. The short-
term perspectives of each implementation have been previously presented at the
end of each chapter.

Our work addressed two major aspects in using support knowledge resources:

— a semantic aspect by allowing the resolution of different types of semantic
conflicts. Indeed, SNOMED CT was used as a support for the integration
of ICD-10 and ICD-O3 (chapter 4).

— a practical aspect by allowing the sharing of information across different
information systems. This was the usage objective in the alignment of
TLAB and LOINC (chapter 2), as well as the integration of RxNorm and
SNOMED CT (chapter 3). Indeed, it was not LOINC and SNOMED CT
themselves but their models that were used as supports to fill the gap
respectively between TLAB and LOINC, and RxNorm and SNOMED CT
on the other hand.

We firstly present the main outcomes of our work and the recommendations
induced by our implementations. We then introduce the research lines that we
envisage to explore in the coming years.

5.1 Findings

In this work, we detected and sometimes corrected semantic conflicts in the
frame of different applications:

— finding equivalent mappings within the alignment process of TLAB and
LOINC,

115
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— organizing the entities of RxNorm and SNOMED CT into a coherent way
thanks to an integration process based on their definitional features,

— linking distinct but complementary entities of ICD-10 and ICD-O3 in a
semantically-enriched integration process.

From the analysis of techniques described in the literature and that we
implemented, we found two emerging aspects:

— comparing the models of knowledge resources to be integrated as the first
step of the alignment or integration processes is a helpful strategy and can
be seen as a “best practice rule” to improve the existing mapping efforts.

— using background knowledge seems to be the most appropriate solution
to detect and correct semantic conflicts. Specifically, this background
knowledge can be a model (as shown within the alignment of TLAB and
LOINC, and within the integration of RxNorm and SNOMED CT) or a
knowledge resource (as illustrated within the integration of ICD-10 and
ICD-O3).

While in the literature and/or our implementations, such background knowledge
may be a domain expert, a model or an ontology, we believe that support ontolo-
gies constitute the best option for achieving a semantically-enriched integration
process. In practice, such a support ontology must provide:

— synonyms for entities of knowledge resources to be linked,

— relationships between distinct hierarchies,

— hierarchy and formal definitions for entities.

These requirements imply that:

— the support ontology must cover the knowledge domains of resources to
be integrated,

— the structure of the support ontology must not contain errors.

In practice, it is difficult to find ontologies with a structure free from any
inconsistencies. However, the enhancement of the integration process we pro-
pose gives the possibility to find limitations or errors in the structure of the
resources to be integrated and of the support ontology itself. Indeed, when using
SNOMED CT as a support for integrating ICD-10 and ICD-O3, their structures
have indirectly been audited [35]. Thus, using an ontology as a support in
an integration process can help to identify inconsistencies in all the involved
knowledge resources.
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5.2 Recommendations

According to the remaining semantic conflicts observed during the alignment
and integration processes we implemented (chapters 2 and 3), and the proposed
strategy based on the framework of Alekovsky et al. [30] to semantically enrich
the integration process (chapter 4), we propose a general integration process that
consists in the two stages of anchoring and derivation as follows:

— the anchoring. This stage consists in finding equivalence relations between
the entities of the resources to be integrated and those of the support
ontology. It is composed of the five following steps:

1. representing the entities using the <R,T,D> triplet,

2. computing lexical and/or structural similarities between the entities
of the resources to be integrated and those of the support ontology,

3. eliminating mappings between entities that belong to disjoint contexts
(Co),

4. disambiguating multiple mappings using the structure of the support
ontology, i.e., choosing the entities of the support ontology that exhibit
the more general formal definition (Df),

5. stating equivalences between the entities of the resources to be inte-
grated and those of the support ontology.

— the derivation. This stage consists in finding the appropriate relations
between the anchored entities. It comprises three steps:

1. identifying indirect equivalence or hierarchical relations between the
entities of the knowledge resources,

2. identifying the relations relating the context of the entities (Co) (hi-
erarchical context) in the support ontology (e.g., manually or via
SPARQL Protocol and RDF Query Language (SPARQL 1) queries),

3. inferring the relation (through queries over logical definitions (Df))
between the entities related through their contexts. These queries
must be realized from the most precise to the most general transversal
relations that have been found.

5.3 Challenges and opportunities

Firstly, performing a semantic enrichment of the integration process gave
the possibility to indirectly improve the quality of knowledge resources. One

1. https://www.w3.org/TR/rdf-sparql-query/
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typical error, known as “is_a overloading”, has been encountered when per-
forming the semantically-enriched integration process. Already identified in
SNOMED CT [179] and in the NCI thesaurus [211], the “is_a overloading” re-
sults from erroneous heritage described within defined concepts. Thus, in our
framework, cases of “is_a overloading” correspond to contradictions between
the hierarchy (Co) and the formal definitions (Df) [35] and/or textual definitions
(Dn).

Secondly, the solution we proposed is obviously limited by the possibility to
find the appropriate support ontology. Some authors attempted to automatically
find such support ontologies [185] by using online ontology search engines.
Others proposed a strategy to perform the selection of the support ontology
in an arbitrary set of ontologies [212, 213]. However, as in the processes we
implemented, the selection of a support ontology or its discovery among an
arbitrary set of ontologies is still a key issue. Indeed, it remains an intuitive task
for experts in knowledge engineering to select the support ontology or to consti-
tute the appropriate pool of candidate support ontologies. Nonetheless, we can
notice that some knowledge resources are becoming references in their domain
(e.g., the FMA for human anatomy, the Gene Ontology for gene functions). In
these cases, the use of these resources as a support should be favoured in their
corresponding domains.

Finally, some limitations in the use of a support ontology can be mentioned.
Sometimes, the detection and correction of certain semantic conflicts need some
information that is not described in the structure of the support ontology. For
example, confounding conflicts can also be consecutive to the evolution of
knowledge and consequently related to the versioning of knowledge resources.
In this case, an external model that manages the versioning of the support
ontology would be necessary to find and resolve such conflicts. Thus, it could
highlight a lack of coherence in mappings between entities from a version
to another one. In addition, if no existing ontology contains the appropriate
transversal relation between two complementary concepts, such link can be
sought using background knowledge other than ontologies [214, 215] (e.g., using
scientific articles to find the appropriate relation between genes and diseases
and standardize them into a new artefact). This strategy can also be used to
enrich the description of knowledge resources.
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5.4 Perspectives

5.4.1 Strategies to be explored

The use of machine learning techniques

In our implemented processes, we mainly used traditional lexical (non-
vectorial) methods to perform natural language processing. However, as previ-
ously noticed in chapter 2, machine learning and deep learning are taking more
and more place in the strategies of natural language processing [216–218]. The
application of machine learning algorithms using as features some entities from
knowledge resources that make use of non-vectorial methods (like the UMLS) is
a strategy recently used in the medical domain [219–221].

To obtain better similarities between labels (L), the integration of a machine
learning step in the processes of the creation of mappings is a perspective to
be explored in future work. For example, in section 2.4.3, the lexical mapping
of tokens followed by the validation of mappings between labels sharing the
highest number of tokens in common could be replaced by machine learning
algorithms with the expectation of better results.

The use of multiple ontologies as a support

When a knowledge resource covers multiple domains, it is more likely to be
less accurate than a resource created specifically for the domains it should cover.
As described in section 4.6.2, when the support ontology does not fully cover a
specific domain, the use of another support for allowing a better anchoring step
must be considered. The additional ontology must be specific to the anchored
domain. In future works, we thus intend to study the benefit of using a specific
support if a poor coverage is obtained during the anchoring step. In particular,
to compensate the specific and questionable way in which SNOMED CT repre-
sents anatomy, we plan to use the FMA as a support ontology to improve the
integration of ICD-O3 topography and SNOMED CT anatomy. We expect that
the use of such additional ontology results in a better derivation.

The use of textual definitions

Our work was mainly based on similarities between labels (L) and interpre-
tants (D). For interpretants, the characteristics we used are: the contexts (Co),
the formal definitions (Df) and the post-coordinated expressions (Dc). We did
not use textual definitions (Dn) available in knowledge resources. Thus, this can
be another subject of future works.
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Indeed, existing techniques explored the creation of formal definitions (Df)
from textual definitions (Dn). Proposed techniques, like in [222, 223], depend
on the source of textual definitions or the learning algorithm that may affect the
quality of the resulting formal definitions. Confronting such a created formal
definition permits to check its quality, which means going through an auditing
process. Furthermore, for entities described by different types of definiens (Df,
Dn, Dc, and Co), each type of interpretant must not give a contradictory defi-
nition. If they do not correspond exactly to the same definition, they must at
least provide complementary definitions. Confronting the intended definition
contained in the textual definition (Dn) to the stated formal definition (Df) (or a
formal definition (Df) provided by an external knowledge resource) can allow
the auditing process of knowledge resources but also improve the quality of the
anchoring step.

5.4.2 Operationalization of the <R,T,D> triplet

We used the <R,T,D> triplet to have a solid scientific background to explore
our implemented works. Nevertheless, through all the implemented processes,
we manually identified the context (Co) and other descriptions of each entity
in the manipulated knowledge resources. If the triplet influences properly our
way of thinking and exploring the mapping results, the knowledge entities were
not automatically annotated using the triplet. Thus, to facilitate future work
using our methodological approach, it is important to perform the operational-
ization of the triplet and the standardization of the use of support ontologies to
semantically enrich the integration process.

The operationalization of the <R,T,D> triplet is under development. To this
end, we would like to use a specific standard developed in the ERIAS (Equipe de
Recherche en Informatique Appliquée en Santé) team, called K-WARE (Knowl-
edge warehouse) [224]. K-WARE is a meta-model that integrates all the formats
used in the representation of knowledge resources (e.g., RDF, SKOS, OWL, CSV).
By integrating knowledge resources in K-WARE, the problematic of translation
(or morphing) is thus already taken into account. Based on K-WARE, the steps de-
fined for the anchoring and the derivation stages could be automatized. The first
step of anchoring can be realized by an automatized annotation of knowledge
resources using the <R,T,D> triplet formalism. The second step can be realized
through the use of tools implementing morphosyntactic and/or structural tech-
niques (e.g., ServoMap). The other steps can be achieved by automatically taking
into account the triplet structure of each entity and the mapping obtained be-
forehand. Thus, we hope to build an enriched K-WARE that is able to participate
in international scientific campaigns such as OAEI to test the effectiveness and
the generalizability of our findings. Participating in such campaigns can also
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help to improve the proposed process.

5.4.3 The integration of omics data

In addition to the generalization of the semantically-enriched integration
process, we are also interested in the integration of omics data in the frame of
personalized medicine. The interpretation of gene roles in diseases, and action
in medicinal products can be better described. As previously said, for now,
the mapping of knowledge resources representing genes, biological pathways,
medicinal products and diseases is limited to simple matrix tables or specific
mapping relations.

We plan to explore existing mappings, like those available in DisGeNET [225]
or MalaCards [226], to semantically enrich the integration process they im-
plemented. DisGenet is an open-access database that describes gene-disease
associations using a specific proximity score (which is computed according to
their simultaneous occurrence in PubMed articles) and the Semanticscience
Integrated Ontology (SIO) 2 [227]. SIO is an upper-level ontology describing
main associations between genes and diseases through 15 relations that are
organized hierarchically. In MalaCards, the gene-disease (and/or disease-drugs)
associations are represented as simple matrix tables [226].

Thus, the various omics databases differ in the precision of their mapping
relations and covered scope. Consequently, they can be used to perform a
semantically-enriched integration process (each bringing their mapping rela-
tions and scopes). A preliminary step will be a review of all the characteristics
of available omics databases. Then, based on these characteristics, we will be
able to describe a process for (1) the refinement of the relation between genes
and diseases, and (2) the semantically-enriched integration with biological path-
ways and medicinal products. Thereafter, when many genes (or even biological
pathways) are linked to a disease (or a medicinal product), tools like GSAn [228]
can be used to choose the more appropriate set of genes (or set of biological
pathways) for explaining these diseases (or medicinal products).

2. https://raw.githubusercontent.com/micheldumontier/semanticscience/
master/ontology/sio/release/sio-release.owl
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RÉSUMÉ. En cancérologie, la réutilisation des données est confrontée à l’hétérogénéité des 

terminologies. Il est ainsi nécessaire de mettre en correspondance ces dernières. L’utilisation 

d’une troisième terminologie comme support est une approche classique pour l’alignement 

de deux terminologies peu structurées. Le but de notre étude était d’utiliser la SNOMED CT 

comme support de connaissances afin d’aligner la CIMO3 et la CIM10, en utilisant deux 

approches complémentaires exploitant d’une part des mappings proposés par la SNOMED 

CT elle-même et d’autre part le NCI Metathésaurus. Nous avons retrouvé des mappings avec 

la SNOMED CT pour plus de 90% des codes CIMO3 et CIM10. Grâce à la structure de la 

SNOMED CT, nous avons filtré les mappings inconsistants et obtenu des mappings cohérents 

pour 1028/1362 codes CIMO3 et 487/852 codes CIM10. Le processus utilisant la structure 

de la SNOMED CT pour les alignements est tributaire de la définition logique des concepts 

dans la SNOMED CT. Une perspective est de prendre en compte la spécificité de ces 

définitions logiques afin d’améliorer le processus. 

ABSTRACT. In oncology, the reuse of data is confronted with the heterogeneity of 

terminologies. It is necessary to dispose of mappings between these distinct terminologies. 

The semantic integration by using a third terminology as a support is a conventional 

approach for the alignment of two terminologies that are not very well structured. The aim of 

our study was to use SNOMED CT to integrate ICD-O3 and ICD10. We used two 

complementary resources, namely RF2 and the NCI Metathesaurus, and found mappings 

with SNOMED CT for over than 90% of ICD-O3 and ICD10 codes. Thanks to the structure 

of SNOMED CT, we filtered inconsistent mappings and obtained consistent mappings for 

1028/1362 ICD-O3 codes and for 487/852 ICD10 codes. The process using the structure of 

SNOMED CT for establishing alignments is dependent of logical definitions of concepts in 

SNOMED CT. The main perspective is to take into account the specificity of these logical 

definitions to improve this process. 

MOTS-CLÉS : alignement d’ontologies, interopérabilité sémantique, ontologie pivot. 

KEYWORDS: ontology alignment, semantic interoperability, support ontology. 



 

 

1. Introduction 

L’utilisation secondaire des données est un enjeu majeur en santé, notamment en 

cancérologie. En effet, la stratégie qui soutient la recherche et les politiques de santé 

pour le cancer est basée sur la surveillance des cas de cancer par les registres de 

cancer (Institut National du Cancer, France, 2015). Ces registres réutilisant des 

données provenant de différentes sources codées avec des terminologies différentes, 

leur intégration sémantique est un défi. La Classification Internationale des Maladies 

pour l’Oncologie (CIMO3) est la terminologie utilisée par les registres de cancer 

partout dans le monde (Fritz et al., 2008). La Classification statistique Internationale 

des Maladies et des problèmes de santé connexes (CIM10) est la terminologie 

exploitée par les sources de production de soin en France, notamment dans le cadre 

du Programme de Médicalisation du Système d’Information (PMSI). Au niveau 

international, cette dernière est également utilisée pour l’enregistrement des causes 

de morbidité et de mortalité (OMS, 2009). L’intégration sémantique entre la CIM10 

et la CIMO3 est ainsi une nécessité pour permettre l’utilisation des données de ces 

différentes sources par les registres.  

Cet article décrit une méthodologie exploitant la structure de la SNOMED CT 

pour effectuer des alignements automatiques entre la CIM10 et la CIMO3 en se 

basant sur un schéma général défini dans (Safar et al., 2007). Le processus 

d’alignement se fait ainsi en deux phases : (i) la phase d’ancrage qui vise à retrouver 

des mappings entre les codes de la CIM10 et les concepts de la SNOMED CT, ainsi 

qu’entre les concepts de la CIMO3 et ceux de la SNOMED CT ; (ii) la phase de 

dérivation qui consiste à retrouver les relations existant dans la SNOMED CT entre 

les concepts ancrés à des codes CIM10 ou CIMO3 afin de créer un pont entre les 

codes CIM10 et les codes CIMO3 (Figure 1). 

 

Figure 1. Approche conceptuelle pour l’intégration de la CIM10 et de la CIMO3 en 

s’appuyant sur la SNOMED CT 



 

3. Matériel 

3.1. Les terminologies à aligner : la CIM10 et la CIMO3 

La CIM10 est une classification mono-axiale représentant des entités 

nosologiques sous la forme de codes alphanumériques (OMS, 2009). Il existe 852 

codes allant de C00 à D48 décrivant les pathologies tumorales. 

La CIMO3 est une classification bi-axiale décrivant d’une part les lésions 

histologiques des tumeurs sous forme de codes morphologiques et, d’autre part, 

leur(s) localisation(s) anatomique(s) sous forme de codes topographiques (Fritz et 

al., 2008). Les 1032 codes morphologiques comportent cinq chiffres. Les 330 codes 

topographiques sont des codes alphanumériques de quatre caractères. 

3.2. La terminologie pivot : la SNOMED CT 

La SNOMED CT est une terminologie multiaxiale dont tous les concepts sont 

organisés selon une hiérarchie sémantique à partir de 19 concepts de haut niveau 

(IHTSDO, 2015). Le fichier fourni par la SNOMED CT, le Release File 2 (RF2),  

contient les différents composants de la SNOMED CT permettant notamment d’en 

construire une version OWL. Le RF2 contient également des tables de 

correspondance avec d’autres terminologies biomédicales, en particulier avec la 

CIM10 et la CIMO3. La version utilisée dans notre étude est celle du 31 janvier 

2016. 

3.3. Une ressource complémentaire : le NCI Metathésaurus 

Le NCI Metathésaurus (NCI Mt) est une base multi-terminologique élaborée par 

le National Cancer Institute américain selon le modèle du Metathésaurus de l’UMLS 

(Schuyler et al., 1993). Le NCI Mt contient plus de 75 terminologies biomédicales, 

notamment la CIM10 et la SNOMED CT. Elle intègre également des terminologies 

spécifiques du domaine de la cancérologie, comme la CIMO3. Le NCI Mt regroupe, 

selon une approche morphosyntaxique, les concepts des différentes terminologies, 

censés représenter la même notion sous un seul concept avec un  numéro unique CUI 

(Concept Unique Identifier). La version du NCI Mt que nous avons utilisée est celle 

de juin 2013. 

4. Méthodes 

4.1. La phase d’ancrage 

La phase d’ancrage a consisté en trois étapes : l’identification des mappings 

candidats, le filtrage des mappings incohérents et la désambiguïsation des mappings 

multiples. 



 

Deux approches ont été utilisées pour la sélection des mappings candidats. Nous 

avons tout d’abord exploité les tables de correspondance du RF2 en ne sélectionnant 

que les correspondances décrites comme non obsolètes. La seconde approche, basée 

sur le NCI Mt, s’est attachée à identifier les CUI incluant à la fois un code 

SNOMED CT et un code CIM10 ou CIMO3. Après avoir calculé les couvertures des 

codes CIM10 et CIMO3 par la SNOMED CT, nous avons comparé les résultats 

obtenus par les deux approches.  

Le processus de filtrage consiste à supprimer les mappings candidats 

inconsistants en fonction de critères auxquels devraient répondre les codes 

SNOMED CT impliqués dans les mappings: d’après le niveau hiérarchique, pour 

permettre aux concepts de décrire les mêmes notions cliniques, et le comportement 

tumoral.  Les concepts de hauts niveau dans la SNOMED CT pour le type 

hierarchique sont ainsi  (i) pour les codes CIM10 64572001-Disease (disorder), (ii) 

pour les codes CIMO3 morphologiques 416939005-Proliferative mass (morphologic 

abnormality) et (iii) pour les codes CIMO3 topographiques 91723000-Anatomical 

structure (body structure). Les concepts de haut niveau pour le comportement 

tumoral est représenté dans le (tableau 1). 

Le processus de désambiguïsation, effectué après filtrage, a pour but de choisir 

un seul ancrage pour les cas où un code CIM10 ou CIMO3 est mis en 

correspondance avec plusieurs codes SNOMED CT. Seuls les ancrages de 

cardinalités 1-1 (un code CIM10 ou CIMO3 mappé à un code SNOMED CT) ont été 

utilisés dans la phase de dérivation 

Comportement tumoral  Concept SNOMED CT de haut niveau 

CIM10 Malin primitif 372087000-Primary malignant neoplasm (disorder) 

Malin secondaire 128462008-Secondary malignant neoplastic disease (disorder) 

302817000-Malignant tumor of unknown origin or ill-defined 

site (disorder) 

Hémopathies malignes 269475001-Malignant tumor of lymphoid, hemopoietic AND/OR 

related tissue (disorder) 

Tumeurs multiples 363500001-Multiple malignancy (disorder) 

Tumeur in situ 109355002-Carcinoma in situ (disorder) 

127330008-Melanoma in situ by body site (disorder) 

Tumeur bénigne 20376005-Benign neoplastic disease (disorder) 

Tumeur imprévisible 118616009-Neoplastic disease of uncertain behavior (disorder) 

CIMO3 Morphologique bénin 3898006-Neoplasm, benign (morphologic abnormality) 

Morphologique 

indéterminé 

6219000-Neoplasm, uncertain whether benign or malignant 

(morphologic abnormality) 

Morphologique in situ 127569003-In situ neoplasm (morphologic abnormality) 

Morphologique malin 

primitif 

86049000-Malignant neoplasm, primary (morphologic 

abnormality) 

Morphologique 

secondaire 

14799000-Neoplasm, metastatic (morphologic abnormality) 

Morphologique 

incertain 

6219000-Neoplasm, malignant, uncertain whether primary or 

metastatic (morphologic abnormality) 

Tableau 1. Concepts SNOMED CT de haut niveau associés aux codes CIM10 et aux 

codes CIMO3 morphologiques selon le comportement tumoral  



 

4.2. La phase de dérivation 

Pour la réalisation de la dérivation, nous avons recherché tous les codes 

SNOMED CT équivalents ou parents de la classe anonyme correspondant à la 

combinaison de codes SNOMED CT ancrés à un couple de codes morphologique et 

topographique CIMO3 ; puis nous avons recherché les codes SNOMED CT ancrés à 

des codes CIM10.  

5. Résultats 

5.1. Couverture des codes CIM10 et CIMO3 dans les mappings candidats 

La figure 4 présente la répartition des codes CIM10 et CIMO3 en fonction de 

l’approche utilisée pour établir les mappings candidats. Globalement, le 

chevauchement des codes CIMO3 mappé à au moins un code SNOMED CT est 

assez élevé. Pour la CIM10, il est plus nuancé. On retrouve par ailleurs des 

mappings uniquement grâce au NCI Mt pour 9% des codes CIM10, 1,5% des codes 

CIMO3 topographiques et 1,6% des codes CIMO3 morphologiques. Il existe 

également des mappings uniquement retrouvés via le RF2 pour 19% des codes 

CIM10, 2,4% des codes CIMO3 topographiques et 2% des codes CIMO3 

morphologiques. Enfin, on note que 59 codes CIM10,  36 codes topographiques et 7 

codes morphologiques ne peuvent avoir de mappings quelle que soit l’approche 

utilisée. 

Figure 4. Répartition des codes CIM10 et des codes CIMO3 en fonction de 

l’approche suivie pour établir les mappings candidats 

5.2. Processus de filtrage et de désambiguïsation de la phase d’ancrage 

Le tableau 2 représente l’impact du processus de filtrage et de désambiguïsation 

à chaque étape d’après le nombre de codes CIM10 et CIMO3 impliqués dans les 

mappings de cardinalités 1-0, 1-1 et 1-N.  

 

 



 

Etapes Cardi-

nalités 

CIMO3 CIM10 

Topographique Morphologique 

  RF2 NCI RF2 NCI RF2 NCI 

Identification des 

mappings candidats 

1-0 43 46 23 28 136 221 

1-1 4 132 960 539 79 516 

1-N 283 152 49 465 637 115 

Filtrage selon le type 

hiérarchique 

1-0 1 29 1 7 0 11 

1-1 4 125 959 847 79 572 

1-N 282 130 49 150 637 48 

Filtrage selon le 

comportement 

tumoral 

1-0   48 56 50 305 

1-1   912 838 159 288 

1-N   48 103 507 27 

Désam- 

biguïsa- 

tion 

Supprimés  44 75 72 91 186 537 

Validés 1-1 131 184 957 879 448 302 

A traiter 1-N 155 71 3 62 218 13 

Tableau 2. Nombre de codes CIM10 et CIMO3 impliqués dans des mappings à 

chaque étape du processus de filtrage et de désambiguïsation. 

5.3. Phase de dérivation 

On retrouve que 203/437 codes CIM10 désambiguïsés peuvent être dérivés avec 

127/127 codes CIMO3 topographiques désambiguïsés et 888/901 codes CIMO3 

morphologiques désambiguïsés. Un exemple d’alignement de cardinalités 1-1 est le 

code CIM10 d’hémopathie maligne C91-Leucémie lymphoïde avec la combinaison 

de codes CIMO3 C42.1-Moelle osseuse et 9820/3-Leucémie lymphoïde, SAI. 

6. Discussion 

La CIM10 et la CIMO3 n’ont pas la même structure et ne représente pas les 

même notions clinique d’où l’intérêt de rechercher des liens sémantiques entres les 

codes CIM10 et CIMO3 par une approche utilisant une troisième ressource termino-

ontologique de support plutôt que de procéder à des mappings direct entre ces codes. 

Nous avons utilisé deux approches existantes (RF2 et NCI Mt) pour la mise en 

évidence de nos ancrages, cependant les autres méthodes, tels que AROMA (David 

et al., 2006), et applications de mappings tels que ServOMap (Diallo et al., 2014) 

peuvent être utilisées pour la création des ancrages. Le choix de la SNOMED CT 

comme ressource termino-ontologique de support semble être judicieux selon notre 

étude puisque nous avons mis en évidence une couverture globalement élevée des 

codes CIM10 et CIMO3 (Nikiema et al., 2016). Le NCI thésaurus a été utilisé 

comme alternative à la SNOMED CT pour l’alignement de la CIM10 et de la 

CIMO3 dans (Jouhet et al., 2014). Une perspective serait de comparer la qualité des 

alignements obtenus dans notre étude avec ceux de (Jouhet et al., 2014).  

Le processus de filtrage et de désambiguïsation des ancres nous ont permis 

d’améliorer la qualité des ancres trouvés mais également de gérer les contradictions 

entre les différentes approches (RF2 et NCI Mt). Cependant ces processus ainsi que 

la phase dérivation est tributaire de la qualité des définitions logique des concepts de 



 

la SNOMED CT. On retrouve alors le code CIMO3 morphologique malin primitif 

8151/3-insulinome malin se retrouve aligner à des codes CIM10 de tumeur bénigne 

car il est ancré à 20955008-Insulinome malin (morphologic abnormality) qui est 

décrit dans la SNOMED CT comme descendant 3898006-tumeur bénigne 

(morphologic abnormality). Cet exemple met en évidence une utilisation incontrôlée 

de la relation is_a dans la SNOMED CT, appelée is_a overloading (Bondenreider et 

al., 2007). Nous avons ainsi décelé, grâce à nos choix méthodologiques, des pistes à 

explorer pour l’intégration sémantique de tous les codes CIMO3 et CIM10 via la 

SNOMED CT en prenant en compte les spécificités de ces trois ressources termino-

ontologiques. De plus, ce travail nous a menés indirectement à analyser la qualité de 

la structure de la SNOMED CT et ainsi à participer à l’audit de cette ressource 

termino-ontologique. 
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a b s t r a c t

In oncology, the reuse of data is confronted with the heterogeneity of terminologies. It is necessary to
semantically integrate these distinct terminologies. The semantic integration by using a third terminol-
ogy as a support is a conventional approach for the integration of two terminologies that are not very
structured. The aim of our study was to use SNOMED CT for integrating ICD-10 and ICD-O3. We used
two complementary resources, mapping tables provided by SNOMED CT and the NCI Metathesaurus,
in order to find mappings between ICD-10 or ICD-O3 concepts and SNOMED CT concepts. We used the
SNOMED CT structure to filter inconsistent mappings, as well as to disambiguate multiple mappings.
Based on the remaining mappings, we used semantic relations from SNOMED CT to establish links
between ICD-10 and ICD-O3. Overall, the coverage of ICD-O3 and ICD10 codes was over 88%. Finally,
we obtained an integration of 24% (203/852) of ICD-10 concepts with 86% (888/1032) of ICD-O3 morphol-
ogy concepts combined to 39% (127/330) of ICD-O3 topography concepts. Comparing our results with the
23,684 ICD-O3 pairs mapped to ICD-10 concepts in the SEER conversion file, we found 17,447 pairs of
ICD-O3 concepts in common among which 11,932 pairs were integrated with the same ICD-10 concept
as the SEER conversion file. The automated process leverages logical definitions of SNOMED CT concepts.
While the low quality of some of these definitions impacted negatively the integration process, the iden-
tification of such situations made it possible to indirectly audit the structure of SNOMED CT.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Secondary use of biomedical data is a major issue because,
nowadays, it supports health systems’ improvement and a better
understanding of diseases and treatments. Indeed, patient infor-
mation collected for care delivery can also be used for research
and billing purposes as well as certification and accreditation of
health facilities, evidence-based medicine and business applica-
tions [1]. Secondary use hence opens perspectives for applying
data mining approaches to the biomedical domain. These
approaches are promising to ‘‘greatly expand the capacity to gener-
ate new knowledge” and ‘‘help translate personalized medicine initia-
tives into clinical practice by offering the opportunity to use analytical
capabilities that can integrate systems biology (e.g., genomics) with
EHR data” [2]. Through the identification of cancer cases by reg-
istries, oncology is an area where the secondary use of health data
is particularly important [3]. Indeed, the goal of cancer registries is

to track all cases of cancer occurring in a defined population. The
cancer data are continuously and systematically collected from
various healthcare facilities (hospital, pathology laboratory, etc.).
The collected data consist of sociodemographic information about
the patients, as well as clinical and histopathological characteris-
tics of the cancer that is being studied. Cancer registries thus allow
follow-up of patients diagnosed with cancer and provide statistical
results on the outcomes of the corresponding disease (mortality,
results of therapy, etc.) [4]. The collected data are also used for epi-
demiological research on cancer incidence and determinants, as
well as for supporting evidence for health policies on diagnosis,
prevention and cancer treatment [5]. Therefore, cancer monitoring
requires the concomitant use of data coming from different sources
with the difficulty that these data are potentially encoded accord-
ing to different terminological resources [6]. Indeed, for encoding
data, cancer registries use the third edition of the International
Classification of Diseases for Oncology (ICD-O3) [7], while, in
France for instance, the medical data in hospitals are encoded
(for billing purpose through the PMSI ‘‘Programme de Médicalisa-
tion du Systéme d’Information” [8]) according to the tenth revision
of the International statistical Classification of Diseases and related
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health problems (ICD-10). In addition, morbidity and mortality
causes are internationally recorded using ICD-10 [9]. The
achievement of the objectives of cancer registries thus requires,
among other things, the joint use of ICD-10 and ICD-O3, making
their semantic integration essential in France and all around the
world.

ICD-10 and ICD-O3 are knowledge resources called terminolo-
gies. A terminology is the product of a science that aims to make
an inventory of a given domain’s concepts and the terms that des-
ignate them [10]. On the other hand, an ontology is defined as ‘‘a
formal and explicit specification of a shared conceptualization”
according to Studer et al. [11]. In the biomedical domain, the
notions of terminology and ontology are frequently confused. To
provide a general framework applicable to alignment methods
whatever the level of structuring of knowledge resources to be
aligned, we will use the term of termino-ontological resource
(TOR). As described by Jouhet et al., ICD-10 and ICD-O3 exhibit
structural heterogeneities. As a result, it is not possible to find
equivalences between concepts of these two terminologies. In this
context, linking ICD-10 and ICD-O3 requires a true reconciliation of
the concepts they describe. The notion of reconciliation in our study
consists in identifying any type of relation that can exist between
two concepts (equivalent and subsumption relations and, in case
of disjunction, the appropriate non-hierarchical relation). In the
remaining part of this paper, we will use the term integration in
order to denote this reconciliation process between all the con-
cepts coming from different TORs.

In Section 2, existing approaches for aligning distinct TORs are
presented. Then, a description of the characteristics of ICD-10
and ICD-O3 is provided before the justification of our methodolog-
ical choices for performing their semantic integration. Lastly, our
analytical framework is featured. In Sections 3 and 4, we present
the materials that we used and the methods that we developed
for the semantic integration of ICD-10 and ICD-O3. Finally, we pre-
sent and discuss our results in Sections 5 and 6.

2. Background

2.1. Related work

In the literature, to carry out an alignment between two TORs,
authors generally proceed to the identification of mappings. Map-
pings are formal expressions of correspondences (equivalence,
subsumption and disjunction) between two concepts [12]. Several
methods have been proposed for establishing mappings in order to
perform the alignment of TORs. Saitwal et al. grouped these tech-
niques into four methodological approaches: (i) manual
approaches, (ii) morphosyntactic approaches, (iii) approaches
based on semantic features of concepts (subsumption, roles, etc.)
and the structure of TORs to be aligned and, finally, (iv) approaches
using a third TOR as background knowledge [13].

The various methodological approaches mentioned above have
been used individually or combined and their utilization often led
to the development of softwares for implementing these
approaches. Some electronic tools have been developed to serve
as support for the manual creation of mappings between TOR con-
cepts. Examples of manual approaches followed in the biomedical
domain include the work of Giannangelo et al., who created map-
pings between concepts of ICD-10 and SNOMED CT (Systematized
Nomenclature of Medicine-Clinical Terms) [14], and the work of
Souvignet et al., who established mappings between concepts
and relations of PS-CAST (Patient Safety Categorical Structure), an
ontology made by the WHO (World Health Organization), and
BFO (Basic Formal Ontology), an upper level ontology [15]. Map-
pings were validated by multiple experts in a consensual way in

[14] while the logical consistency of mappings was checked using
the OWL DL reasoner Hermit in [15].

Beyond the biomedical domain, the international Ontology
Alignment Evaluation Initiative (OAEI) evaluates and compares
systems and algorithms that combine several automated mapping
techniques. OAEI is a benchmarking initiative started in 2004 with
the participation of four systems. During the 2015 campaign, 22
systems participated [16]. As Shvaiko et al. have shown by an
analysis of the algorithms of systems participating in the OAEI
campaigns, most systems begin the creation of mappings with
morphosyntactic approaches, i.e., by searching for string and
linguistic similarities between concept labels [17]. This is the
case in SAMBO [18], QODI [19], AgreementMaker [20] and
ServOMap [21].

SAMBO, ServOMap and QODI also use the structure of the two
input TORs for finding additional mappings, based on initial map-
pings which have been discovered at the lexical level. In SAMBO,
mappings are created between two concepts which lie in a similar
position with respect to is_a (i.e., subsumption) or part_of relation-
ships according to the mappings identified morphosyntactically.
ServOMap establishes similarity between concepts having the
same structural proximity (i.e., parents, siblings and descendants)
according to already mapped concepts. QODI calculates similarity
measures according to paths between concepts. Authors select a
specific path between two concepts in a first ontology. Then, they
compare this path with different possible paths present in the sec-
ond ontology. The comparison is based on the similarity between:
(i) source concepts of each path, (ii) datatype properties, (iii) labels
of the concepts located between the source concept and the last
concept within each path, and on a penalty for path length differ-
ence. It is important to notice that the use of the structure to find
mappings between two TORs requires that the latter have a fairly
high level structure.

Some mapping tools use additional knowledge resources for the
creation of mappings according to similarity measures between
concepts in this resource. AgreementMaker [20] uses Wordnet
[22], a lexical database for English, and UBERON [23], a multi-
species anatomy ontology. SAMBO uses also two external
resources. The first resource used by SAMBO is the UMLS (Unified
Medical Language System) Metathesaurus�, a multi-terminological
system containing more than 200 biomedical terminologies, for
finding similarities between concepts of TORs which are included
in this resource. The second resource used by SAMBO is PubMed
for calculating similarity measures based on the co-occurrence of
TOR concepts to be mapped in a set of PubMed abstracts.

In addition with the four approaches described in [13], another
approach for aligning TORs is to leverage the post-coordination
principle. Post-coordination is the combination of concepts to
express a notion which is not already described in a TOR [24].
Within a given TOR or in different TORs, a notion can be repre-
sented thanks to both pre-coordinated concepts (e.g., Breast cancer)
and post-coordinated expressions (e.g., Breast +Malignant neo-
plasm). For creating a bridge between pre-coordinated concepts
and post-coordinated expressions within a unique TOR, the strat-
egy proposed by Dolin et al. consists in providing a canonical form
to pre-coordinated concepts and post-coordinated expressions
through Health Level 7 Reference Information Model (HL7 RIM)
[25]. For the creation of mappings between pre-coordinated con-
cepts and post-coordinated expressions existing in different TORs,
Dhombres et al. proposed a method that was carried out to
increase the coverage of HPO (Human Phenotype Ontology) con-
cepts mapped to SNOMED CT concepts [26]. Authors developed
an algorithm for identifying each term that represents a clinical
notion within HPO concept labels (e.g., the HPO label ‘‘abnormality
of the lip” contains ‘‘abnormality” as disorder and ‘‘lip” as anatomical
structure). These terms were then mapped to SNOMED CT concepts
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according to a morphosyntactic method. The resulting SNOMED CT
concepts were combined (through post-coordination) to represent
some disorders that correspond to the HPO concept (e.g., still for
the HPO concept ‘‘abnormality of the lip”, the corresponding post-
coordination expression proposed by authors is the following:
64572001-Disease (disorder) + 363698007-Finding site (attribute)
+ 48477009-Lip structure (body structure)). This method was thus
able to find mappings between pre-coordinated concepts from
HPO with post-coordinated expressions in SNOMED CT. Note that
this method requires the concept label to be interpretable with a
sophisticated syntax and a structure allowing the automatic
post-coordination of TORs to be aligned.

Thus, in the literature, approaches which aim at creating auto-
matically mappings, whatever the strategy used, are mainly con-
cerned with finding similarity measures between concepts
coming from two different TORs and mostly rely on their labels.
These approaches try to identify equivalences or subsumption rela-
tions between concepts, which corresponds to alignment [12].
However, it is sometimes not possible to find such mappings when
TORs represent concepts from disjoint semantic categories. In this
case, because they cannot be aligned (no direct mappings exist
between concepts), TORs need to be integrated by reconciling their
concepts [27,28]. In this frame, our goal is to provide an integration
process of ICD-10 and ICD-O3 for a true reconciliation of their con-
cepts, which depends neither on a great structuration of the TORs
to be integrated, nor on the expressivity of their concept labels.

2.2. Characteristics of ICD-10 and ICD-O3

2.2.1. ICD-10
ICD-10 is a classification maintained by the WHO for represent-

ing nosologic entities through alphanumeric codes. The nosologic
entities are autonomous in their determinism. They are also con-
sistent in their clinical manifestations and organized according to
their similarities and contrasts. Consequently, ICD-10 concepts
are disjoint. Chapter II of ICD-10 is dedicated to tumors, in which
852 alphanumeric codes range from C00 to D48:

� C00-C97: concepts of malignant neoplasms.
– C00-C75: concepts of malignant neoplasms, stated or pre-

sumed to be primary, of specified sites, except for lymphoid,
haematopoietic and related tissues.

– C76-C80: concepts of malignant neoplasms of ill-defined,
secondary and unspecified sites.

– C81-C96: concepts of malignant neoplasms, stated or
presumed to be primary, of lymphoid, haematopoietic and
related tissues.

– C97: concept of malignant neoplasms of independent
(primary) multiple sites.

� D00-D09: concepts of in situ neoplasms.
� D10-D36: concepts of benign neoplasms.
� D37-D48: concepts of neoplasms having an uncertain or
unknown behavior.

The classification of tumors is mainly made by site, and in very
large groups, depending on the behavior of the tumor.

2.2.2. ICD-O3
ICD-O3 is a biaxial classification describing, on the one hand,

histological lesions of tumors concepts (morphology), and on the
other hand, their anatomical location(s) concepts (topography).
The 1032morphology codes start with the letter ‘‘M-” followed five
digits between M-8000/0 and M-9989/3. The first four digits repre-
sent the specific histologic term. The fifth digit, behind the slash (/),
indicates the behavior of the tumor, i.e. whether it is primary
malignant (/3), secondary malignant (/6), benign (/0), in situ (/2),

with an uncertain or unknown behavior (/9) or undetermined
behavior (/1). The 330 topography codes are composed of four
characters and range from C00.0 to C80.9.

2.3. Methodological choice for the semantic integration of ICD-10 and
ICD-O3

ICD-10 and ICD-O3 are two classifications that differ by:

� The clinical concepts that they describe: ICD-10 represents dis-
eases whereas ICD-O3 describes histological lesions and
anatomical sites.

� Their structure: ICD-10 is mono-axial while ICD-O3 is biaxial.

Each ICD-10 concept is used independently to record health
data and expresses a diagnosis as a whole, thus corresponding to
a pre-coordinated concept. In contrast, an ICD-O3morphology con-
cept must be associated to an ICD-O3 topography concept in order
to express the complete diagnosis to be recorded. There are no
combination rules in ICD-O3. Thus, all combinations of ICD-03
topography and morphology concepts are potentially allowed.
ICD-O3 concepts thus need to be combined for finding mappings
with ICD-10 concepts. The link between ICD-10 and ICD-O3 can
be made by describing a cancer disease (coded in ICD-10) in terms
of its manifestation (ICD-03 morphology concept) and its localiza-
tion (ICD-O3 topography concept). The semantic integration of
ICD-10 and ICD-O3 thus requires the creation of a link between
ICD-10 pre-coordinated concepts and post-coordinated expres-
sions corresponding to a combination of ICD-O3 morphology and
topography concepts.

Because ICD-10 and ICD-O3 are large, their manual reconcilia-
tion would be a long and tedious task [29]. On the other hand, mor-
phosyntactic approaches exploiting the concept labels do not take
into account the ‘‘pre-coordinated” and ‘‘post-coordinated” charac-
teristics of ICD-10 and ICD-O3. Finally ICD-10 and ICD-O3 are not
described in a formal language. They are not ontologies but just
classifications describing disjoint concepts. Thus, integrating them
on the basis of their semantic features cannot take into account
post-coordination issues. As a result, based on the classification
proposed by Saitwal et al. [13], we propose to use background
knowledge available in a support TOR in order to create a method
for integrating ICD-O3 and ICD-10. The method using a TOR as a
support resource for TORs’ integration is particularly relevant
when they are weakly structured or limited to simple classification
hierarchies [30]. Indeed, this method allows to compensate this
weakness by articulating concepts of TORs to be integrated accord-
ing to the support TOR, making it possible to automatically find
correspondences or to analyze their quality.

2.4. Analytical framework

In order to integrate ICD-10 and ICD-O3 by using a support TOR,
we have defined a conceptual framework based on the general pat-
terns described by Safar et al. [30]. It consists in two stages (Fig. 1):
(1) the anchoring stage, which aims to generate candidate map-
pings (called anchors) between concepts of the TORs to be inte-
grated and concepts of the support TOR, (2) the derivation stage,
which consists of identifying links between the concepts partici-
pating in the anchors within the support TOR so that concepts from
the TORs to be integrated can be related to each other.

To implement this framework, it was first necessary to select an
appropriate support TOR. The latter must be able to describe the
appropriate relations between the notions of tumor diseases, histo-
logical lesions and anatomical localizations. Its structure must also
allow logical inference because ICD-10 and ICD-O3 are large.
Indeed, the automatic deduction of relations and constraints
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existing between the concepts of the support TOR has to be possi-
ble, without these relations and constraints being specifically
expressed by TOR creators [31]. The external resource, which is
the most commonly used support TOR within the biomedical
domain, is the UMLS Metathesaurus. For instance, it was exploited
to align GALEN (Generalised Architecture for Languages, Ency-
clopaedias and Nomenclatures in medicine) and TAMBIS (Trans-
parent Access to Bioinformatics Information Sources) [32],
MedDRA and SNOMED CT [33], as well as CCC (Clinical Care Clas-
sification) and NANDA-I (North American Nursing Diagnosis
Association-International) [34]. Another biomedical TOR, which
has been used as a support for aligning the ATC (Anatomical Ther-
apeutic Chemical) and the MeSH (Medical Subject Headings), is
RxNorm [35]. In the specific domain of oncology, the external
resource which is often used is the NCI Metathesaurus [36,37],
while Jouhet et al. have exploited the NCI thesaurus [38].

3. Materials

3.1. Support TOR: SNOMED CT

For our study, we chose SNOMED CT for integrating ICD-10 and
ICD-O3 (Fig. 1). SNOMED CT is one of the most descriptive biomed-
ical knowledge resources exhibiting ontological characteristics
[39]. SNOMED CT is based on three types of components: (i) con-
cepts which represent a clinical meaning and have a unique identi-
fier (SCTID), (ii) descriptions which represent labels of these
concepts and (iii) relations which are binary links between con-
cepts [40]. SNOMED CT is described in description logics (DL)
[41] with over 300,000 concepts organized according to a hierar-
chy rooted by 19 high-level classes, among which Clinical finding
(which has Disease among its descendants) and Body structure
(which has Proliferative mass and Anatomical structure among its
descendant concepts) are of special interest for this work. Each
SNOMED CT concept has at least one subsumption relation with
another SNOMED CT concept.

SNOMED CT also associates logical definitions to most of its
concepts. This logical definition of is composed of other SNOMED
CT concepts and relations [42]. In SNOMED CT, it is thus possible
to describe a tumor thanks to the semantic link Associated morphol-
ogy relating to a concept describing its histologic lesion as well as
the semantic link Finding site relating to a concept describing its
anatomical location [43]. Since 2002, SNOMED CT has introduced
a particular relation that accompanies other relations, called
role_group. This relation has been introduced for better describing
diseases which have several sites or morphological abnormalities.
More precisely, the role_group relation enables to describe the
morphological lesion which is associated with each anatomical site
[44,45]. For example, according to the Manchester syntax [46], the

logical definition of the concept Tetralogy of Fallot (which is a car-
diac malformation characterized by different anomalies, which
affect multiple anatomical sites) is:

Ventricular septal defect AND Right ventricular hypertrophy
AND Pulmonic valve stenosis AND

Overriding aorta AND Congenital abnormality of ventricles
and ventricular septum
AND role_group SOME (Associated morphology SOME
Congenital failure of fusion AND
Finding site SOME Interventricular septum structure AND
Occurrence SOME Congenital)

AND role_group SOME (Associated morphology SOME
Stenosis AND
Finding site SOME Pulmonary valve structure)

AND role_group SOME (Associated morphology SOME
Overriding structures AND
Finding site SOME Thoracic aorta structure)

AND role_group SOME (Associated morphology SOME
Hypertrophy AND
Finding site SOME Entire right ventricle)

AND role_group SOME (Associated morphology SOME
Developmental anomaly AND
Finding site SOME Aortic structure AND
Occurrence SOME Congenital)

3.2. Mapping resources for integrating ICD-10 and ICD-O3

The SNOMED CT mapping tables (SNCTmt). SNOMED CT provides
a file which contains, among others, mapping tables between
SNOMED CT concepts and ICD-10 as well as ICD-O3 concepts
[47]. These mappings have been established manually and their
purpose was to find, for a given SNOMED CT code, the correspond-
ing ICD-10 code(s) or ICD-O3 code(s).

The NCI Metathesaurus (NCI Mt). The NCI Mt is a multi-
terminology database integrating around 100 biomedical TORs
related to cancer [48]. ICD-10, ICD-O3 and SNOMED CT used in this
study are included within the NCI Mt. Like in the UMLS Metathe-
saurus, each concept in the NCI Mt has a unique identifier, named
Concept Unique Identifier (CUI), which clusters the codes from dis-
tinct TORs supposed to represent the same notion. This clustering
has been performed according to a morphosyntactic approach [49].

4. Methods

For the integration process, a preliminary stage has been per-
formed to recover the exhaustive list of ICD-10 codes ‘‘from C00
to D48”, as well as the ICD-O3 codes from the NCI Mt. This list

Fig. 1. Analytical framework: description of general patterns used to integrate ICD-10 and ICD-O3 using a support TOR. Two stages for this semantic integration: (1) the
anchoring stage generates candidate mappings between ICD-10 and ICD-O3 concepts and the support TOR, (2) the derivation stage identifies links between the concepts of
the support TOR which participate in the anchors.
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has been rid of ICD-10 and ICD-O3 header codes (e.g., C00-C97
Malignant neoplasms) because, in practice, they are not used for
diagnostic coding.

Then, we exploited the structure of SNOMED CT to which we
applied the ELK reasoner [50]. A reasoner is an algorithm that
can infer logical consequences from explicit assertions. We chose
to use ELK because it has been described efficient for performing
a quick and efficient ranking of SNOMED CT [50,51]. Thus, we used
the ELK reasoner trough the OWLAPI 3.5.0 at the anchoring and
derivation stages.

4.1. Anchoring stage

The anchoring stage consists of three steps: identifying candi-
date mappings for anchoring, filtering anchors and disambiguating
multiple anchors (Fig. 2). For the two last steps, we used ELK to
infer the whole SNOMED CT structure so that subsumption rela-
tions which are not explicitly stated between some SNOMED CT
concepts are also available.

4.1.1. Identifying candidate mappings
Two resources were used for the selection of candidate map-

pings. We first used the SNCTmt by selecting only the anchors
described as not obsolete. The second mapping resource, namely
the NCI Mt, was exploited to identify the CUI including both a
SNOMED CT code (SCTID) and an ICD-10 or ICD-O3 code (Fig. 3).

4.1.2. Filtering anchors
To eliminate inconsistent anchors, two sub-steps were per-

formed: (i) a filtering according to the SNOMED CT hierarchy and
(ii) a filtering according to the tumor behavior.

The filtering according to the hierarchy aimed to remove the
anchors which involved concepts that do not represent the same
general clinical notions. Thus, the anchors were considered as
inconsistent in the following cases:

� for ICD-10 concepts (which represent diseases): if the mapped
SNOMED CT concept was not a descendant of the concept
64572001-Disease (disorder),

� for ICD-O3 morphology concepts (which represent histologic
lesions): if the mapped SNOMED CT concept was not a descen-
dant of the concept 416939005-Proliferative mass (morphologic
abnormality),

� for ICD-O3 topography concepts (which represent anatomical
localizations): if the mapped SNOMED CT concept was not a
descendant of the concept 91723000-Anatomical structure (body
structure).

The filtering according to the tumor behavior was applied only
to anchors in which ICD-10 concepts and ICD-O3 morphology con-
cepts participated. This step consisted in the reconciliation of the
different classes of tumor behavior found in the structure of the
ICD-10 or within the ICD-03 morphology axis with those repre-
sented in SNOMED CT. In practice, all anchors involving concepts
that do not describe the same kind of tumor behavior were
removed. For that, we have identified the high-level SNOMED CT
concepts that correspond to classes of tumor behavior which are
represented within the ICD-10 structure and within the morphol-
ogy axis of ICD-O3. The list of high-level SNOMED CT concepts cho-
sen for each class is presented in Table 1. Some classes of tumor
behavior in ICD-10 have multiple corresponding SNOMED CT con-
cepts because these classes represent distinct notions that are not
grouped together within SNOMED CT (e.g., the high-level SNOMED
CT concepts chosen for the ICD-10 class ‘‘Tumor in situ” are
109355002-Carcinoma in situ (disorder) and 127330008-Melanoma
in situ by body site (disorder)).

4.1.3. Disambiguating multiple anchors
The objective of the disambiguation process is to propose the

best anchor(s) when several SNOMED CT concepts are mapped to
a single ICD-10 or ICD-O3 concept. For that, we examined the

Fig. 2. The three steps of the anchoring stage: (1) the identification of candidate mappings, (2) the filtering step, which consists in deleting anchors involving concepts that do
not describe the same clinical notions, (3) the disambiguation step for excluding anchors involving a unique ICD-10/ICD-O3 concept and multiple SNOMED CT concepts.
⁄Deleted anchors are erroneous mappings. ⁄⁄Excluded anchors are correct mappings which do not denote equivalences.
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existence of subsumption relations between these SNOMED CT
concepts. We then kept only the anchor(s) involving the SNOMED
CT concept(s) being the most generic (i.e., situated at the highest
level in the hierarchy).

Disambiguation does not reduce the number of ICD-10 or ICD-
O3 concepts involved in anchors but only the number of SNOMED
CT concepts mapped to them. The same disambiguation process
was applied to the anchors of each resource (first step), and to
the pooling of anchors obtained at the first step (second step).

More precisely, we first addressed the disambiguation of the
anchors coming from the SNCTmt independently from those com-
ing from the NCI Mt. This step was intended to harmonize anchors
within each of these two resources. At the second step, the disam-
biguated anchors obtained from the two resources were pooled
and a second disambiguation was performed, when needed.
Indeed, pooling anchors lead to two situations. Given an ICD-10/
ICD-O3 concept:

� Anchor(s) retrieved by the two resources was (were) the same
or only one resource retrieved the anchor(s). In this situation,
no additional disambiguation was needed.

� Anchors retrieved by the two resources were different (distinct
SNOMED-CT concepts). In this situation, the disambiguation
process was performed over pooled anchors. Thus, if one of
the SNOMED CT concepts involved in the multiple anchors
was more general than others, this step allowed to transform
an 1–N anchor into an 1–1 anchor.

4.1.4. Evaluation of steps of the anchoring stage
In order to evaluate the methods used during the anchoring

stage, we first estimated the coverage of ICD-10 and ICD-O3 con-

cepts within anchors and compared the results obtained through
the SNCTmt and the NCI Mt. Then, to assess the impact of each step
of the anchoring stage, we calculated the number of anchors
obtained for each ICD-10 and ICD-O3 concept and having the fol-
lowing cardinalities before and after each step:

� 1–1 anchors: an ICD-10 or ICD-O3 concept mapped to a single
SNOMED CT concept.

� 1–N anchors: an ICD-10 or ICD-O3 concept mapped to more
than one SNOMED CT concept.

� 1–0 anchors: an ICD-10 or ICD-O3 concept which could not be
mapped to any SNOMED CT concept.

4.2. Derivation stage

4.2.1. Derivation method
This step consisted in identifying the relations existing

between SNOMED CT concepts participating in the anchors in
order to deduce correspondences between ICD-10 concepts and
combinations of an ICD-O3 morphology concept and an ICD-O3
topography concept (Fig. 4). Only 1–1 anchors obtained at the
end of the anchoring stage were used for the derivation stage.
Therefore, each possible pair of anchored ICD-O3 morphology
and topography concepts corresponds to a unique pair of
SNOMED CT concepts. For each of these SNOMED CT concept
pairs, we looked for the SNOMED CT concepts of disease (equiv-
alent concept or, failing that, parent concepts) that have the
appropriate semantic link with each element of the pair (i.e., a
finding_site relationship with anatomical structures and an asso-
ciated_morphology relationship with histological lesions). Toward
this end, we automatically generated DL-queries which were

Table 1
High-level SNOMED CT concepts corresponding to classes of tumor behaviors in ICD-10 and ICD-O3.

Classes of tumor behavior Corresponding high-level SNOMED CT concept(s)

ICD-10 Primary malignant 372087000-Primary malignant neoplasm (disorder)
(C00-C75)
Secondary malignant 128462008-Secondary malignant neoplastic disease (disorder)
(C76-C80) 302817000-Malignant tumor of unknown origin or ill-defined site (disorder)
Haematological 269475001-Malignant tumor of lymphoid, hemopoietic
malignancy (C81-C96) AND/OR related tissue (disorder)
Multiple tumors (C97) 363500001-Multiple malignancy (disorder)
Tumor in situ 109355002-Carcinoma in situ (disorder)
(D00-D09) 127330008-Melanoma in situ by body site (disorder)
Benign tumor 20376005-Benign neoplastic disease (disorder)
(D10-D36)
Unpredictable tumor 118616009-Neoplastic disease of uncertain behavior (disorder)
(D37-D48)

ICD-O3 Benign (/0) 3898006-Neoplasm, benign (morphologic abnormality)
Undetermined 86251006-Neoplasm, uncertain whether benign or
behavior (/1) malignant (morphologic abnormality)
Uncertain or unknown 6219000-Neoplasm, malignant, uncertain whether primary
tumor behavior (/9) or metastatic (morphologic abnormality)
In situ morphology (/2) 127569003-In situ neoplasm (morphologic abnormality)
Primary malignant 86049000-Malignant neoplasm, primary (morphologic abnormality)
morphology (/3)
Secondary malignant 14799000-Neoplasm, metastatic (morphologic abnormality)
morphology (/6)

Fig. 3. Identifying candidate mappings within the NCI Metathesaurus.
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executed over the inferred SNOMED CT structure obtained with
the ELK reasoner. Then, either an equivalent SNOMED CT con-
cept was found or, failing that, the parent concepts of this DL
expression were recovered. We finally checked automatically if
some of these SNOMED CT disease concepts were anchored to
ICD-10 concepts.

4.2.2. Evaluation of the derivation stage
For the evaluation of the derivation stage, we carried out a qual-

itative and quantitative analyses of the integration results.
For quantitative analysis, we calculated the number of deriva-

tions found for each ICD-10 concept according to the following
cardinalities:

� 1–1 derivations: an ICD-10 concept derived with a single pair of
ICD-O3 morphology and topography concepts.

� 1–N derivations: an ICD-10 concept derived with more than one
pair of ICD-O3 morphology and topography concepts.

� 1–0 derivations: an ICD-10 concept which could not be
derived with any pair of ICD-O3 morphology and topography
concepts.

We also calculated the coverage of ICD-10 and ICD-O3 concepts
involved in the derivation.

For qualitative analysis, we compared our results with a gold
standard, an ICD conversion file provided by the National Cancer
Institute within the SEER (Surveillance, Epidemiology, and End
Results) program.2 Within this file, only the correspondences
between ICD-10 and ICD-O3 concepts that participated in 1–1
anchors were used for the integration assessment. We thus calcu-
lated the overlap of our results with the 23,694 correspondences
available in the SEER program conversion file.

5. Results

5.1. Anchoring stage

5.1.1. Coverage of ICD-10 and ICD-O3 concepts involved in anchors
Fig. 5 shows the distribution of ICD-10 and ICD-O3 concepts

according to the resource used to establish anchors (i.e., the
SNCTmt or the NCI Mt). By considering the two resources (i.e.,
anchors obtained by the SNCTmt, anchors obtained by the NCI
Mt, anchors obtained by the SNCTmt and the NCI Mt), we found
that more than 88.0% of ICD-10 and ICD-O3 concepts could be
mapped to SNOMED CT concepts. For ICD-O3 morphology con-
cepts, the coverage reaches 99.0% (1025/1032). It is noteworthy
that for 28.0% of ICD-10 concepts, only one resource provided an
anchor to a SNOMED CT concept.

5.1.2. Filtering step
Table 2 shows the impact of the filtering process steps,

according to each resource used to establish the anchors. The fil-
tering according to the hierarchy has nearly no impact on the
distribution of the ICD-10 and ICD-O3 concepts in the anchors
proposed by the SNCTmt. In contrast, in those recovered from
the NCI Mt, the number of concepts involved in 1–N anchors
decreases; a tendency which is particularly pronounced for
ICD-O3 morphology concepts (from 465 to 150) and to a lesser
extent for ICD-10 concepts (from 115 to 48). This diminution
is accompanied by an increase in the number of ICD-O3
morphology concepts (from 539 to 847) and ICD-10 concepts
(from 516 to 572) participating in 1–1 anchors. As an example,
within the NCI Mt, the ICD-O3 morphology concept 9684/
3-Malignant lymphoma, immunoblastic, NOS is anchored to the
SNOMED CT concepts 109966003-Diffuse non-Hodgkin’s lym-
phoma, immunoblastic (disorder) and 450909005-Plasmablastic
lymphoma (morphologic abnormality). The anchor between the

Fig. 4. The derivation stage: identifying SNOMED CT concepts of diseases that can be used as a bridge between ICD-10 and ICD-O3 concepts. For each pair of SNOMED CT
concepts anchored to ICD-O3 concepts, a DL-query was performed to retrieve the expression corresponding to the disease. The equivalent concept of this DL expression was
searched and if it did not exist, parent concepts were used.

2 Available at: http://seer.cancer.gov/tools/conversion/.
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ICD-O3 morphology concept (9684/3) and the concept of disease
(109966003) was eliminated thanks to the filtering based on the
hierarchy. The cardinality of the anchor in which this ICD-O3
concept is involved dropped from 1–N to 1–1. This step thus
succeeds in reducing the number of 1–N anchors. On the other
hand, some 1–1 and 1–N anchors were eliminated for 11 ICD-
10 concepts, 7 ICD-O3 morphology concepts and 29 ICD-03
topography concepts (thus resulting in additional 1–0 anchors).

The filtering according to the tumor behavior globally leads to a
decrease in the number of concepts involved in 1–1 and 1–N
anchors, except for ICD-10 concepts with an increasing number
of 1–1 anchors coming from the SNCTmt (from 79 to 159). This
step results in the elimination of many anchors, in particular for
305 ICD-10 concepts participating in anchors obtained within the
NCI Mt. As an illustration, the anchor between the ICD-10 concept
C47.3-Malignant neoplasm of peripheral nerves of thorax and the
SNOMED CT concept 188325002-Malignant neoplasm of peripheral
nerve of thorax (disorder) was deleted. According to the SNOMED
CT hierarchy, this concept is described as being a tumor which
can be primary or not, contrary to the ICD-10 concept which is
exclusively primary. Although both concepts have the same label,
they do not describe the same tumor behavior and, thus, cannot
be mapped to each other.

5.1.3. Disambiguation step
The number of disambiguated concepts (i.e., whose cardinality

of anchors was initially 1–N and became 1–1), respectively
mapped through the SNCTmt and the NCI Mt, are 289 and 14 for
ICD-10 concepts, 127 and 59 for ICD-O3 topography concepts,
and finally 43 and 41 for ICD-O3 morphology concepts (Table 3).
An example of disambiguation is the ICD-10 concept C50.1-Malig-
nant neoplasm of the central portion of the breast, which was initially
mapped to the three following SNOMED CT concepts: 93745008-
Primary malignant neoplasm of central portion of female breast
(disorder), 708921005-Carcinoma of central portion of breast (disor-
der) and 448436006-Sarcoma of central portion of female breast (dis-
order). The disambiguation process was able to find that, among
these three concepts, the concept 93745008 being the most gen-
eral, it was the valid mapped concept for C50.1.

Pooled anchors of the SNCTmt and the NCI Mt resulted in the
increase of ICD-10 and ICD-O3 participation in anchors. More pre-
cisely, the remaining anchors involved 706 ICD-10 concepts, 969
ICD-O3 morphology concepts and 289 ICD-O3 topography con-
cepts. At the end of the disambiguation process, 57.2% (487/852)
of ICD-10 concepts, 38.5% (127/330) of ICD-O3 topography con-
cepts and 87.3% (901/1032) of ICD-O3morphology concepts partic-
ipated in 1–1 anchors.

Table 2
Distribution of ICD-10 and ICD-O3 concepts within anchors obtained by the SNCTmt and the NCI Mt after each filtering step.

Steps Cardinality of anchors ICD-10 ICD-O3

Topography Morphology

SNCTmt NCI Mt SNCTmt NCI Mt SNCTmt NCI Mt

Initial 1–0 136 221 43 46 23 28
1–1 79 516 4 132 960 539
1-N 637 115 283 152 49 465

Filtering by 1–0 136 232 44 75 24 35
hierarchy 1–1 79 572 4 125 959 847

1-N 637 48 282 130 49 150

Filtering by 1–0 186 537 72 91
tumor 1–1 159 288 912 838
behavior 1-N 507 27 48 103

Fig. 5. Number of ICD-10 and ICD-O3 concepts involved in anchors, according to the mapping resource used to establish these anchors. The size of circles is proportional to
the coverage percentage.

J.N. Nikiema et al. / Journal of Biomedical Informatics 74 (2017) 46–58 53



5.2. Derivation stage

5.2.1. Quantitative analysis
Table 4 presents the number of ICD-10 concepts which could be

derived with one or multiple pairs of ICD-O3 topography and mor-
phology concepts and those which could not be derived at all. ICD-
10 concepts were mainly derived to multiple pairs of ICD-O3
topography and morphology concepts (22.5% for 1–N derivations
against 1.3% for 1–1 derivations). An example of 1–1 derivation
is D13.2-Benign neoplasm of duodenum (ICD-10 concept) with
8850/0-Lipoma, NOS (ICD-O3 morphology concept) combined to
C17.0-Duodenum (ICD-O3 topography concept). Of note, there are
more 1–1 derivations between ICD-10 concepts and pairs of ICD-
O3 concepts for the category ‘‘Haematological malignancy”, proba-
bly because haematological tumors are very specific lesions.

Overall, by combining 1–1 and 1–N derivations, we found that
23.8% (203/852) of ICD-10 concepts could be derived with 38.5%
(127/330) of ICD-O3 topography concepts and 86.0% (892/1032)
of ICD-O3 morphology concepts.

5.2.2. Qualitative analysis
We found 63,142 ICD-O3 pairs which could be derived with

ICD-10 concepts after the derivation process. Among them,
57,505 pairs were each derived with one ICD-10 concept and
5637 pairs were each derived with multiple ICD-10 concepts. A
total of 17,474 ICD-O3 pairs were common with the 23,694 pairs
described in the SEER conversion file and for 11,932 of them, our
integration process found the same ICD-10 concept as the SEER
conversion file. This corresponds to a recall of 0.5; a precision of
0.68 and an F-measure of 0.58. As an example, C15.9-Esophagus,
NOS and 8504/2-Noninfiltrating intracystic carcinoma were derived
with D00.1-Carcinoma in situ of esophagus both in the SEER conver-
sion file and according to our derivation process.

For the remaining ICD-O3 pairs, our derivation process found
different ICD-10 concepts than the SEER conversion file proposes.
The ICD-O3 pair formed by C00.0-External upper lip and 8856/0-
Intramuscular lipoma illustrates such cases. Our process resulted
in derivations with D10.0-Benign neoplasm of lip and D17.0-Benign
lipomatous neoplasm of skin and subcutaneous tissue of head, face

and neck while the SEER conversion file describes a derivation with
D17.9-Benign lipomatous neoplasm, unspecified.

6. Discussion

6.1. Findings

Our study consisted in integrating two biomedical terminolo-
gies that focus on diagnostic coding in the field of oncology. The
difference of clinical notions represented in ICD-10 and ICD-O3
could not result in 1–1 mappings between their concepts because
they are disjoint. Thus, we did not perform an alignment of these
two terminologies but their integration by linking concepts
through non-hierarchical relations. For this, we proposed a method
for establishing appropriate semantic relations between ICD-10
pre-coordinated concepts (diseases) and ICD-O3 post-coordinated
expressions (combinations of topography and morphology). Even
if they describe disjoint concepts, these terminologies are orga-
nized according to a coherent structure that was used in our study
for their integration. We chose SNOMED CT as a support TOR for
this semantic integration not only because its domain coverage
includes those of ICD-10 and ICD-O3 but also because it benefits
from ontological characteristics which allowed logical inferences
over its structure. Logical definitions in SNOMED CT are based on
OWL-EL, explaining the choice of ELK for reasoning over its struc-
ture. OWL-EL is a ‘‘trimmed down version of OWL that trades some
expressive power for the efficiency of reasoning”. This reasoner has
been shown to be sufficient to express SNOMED CT [52]. In our
work, reasoning and DL-queries enabled to retrieve links that were
not explicitly stated within the SNOMED-CT structure. Moreover,
although built expressions based on ICD-O3 combinations could
refer to anonymous classes (because not explicitly described
within the SNOMED-CT), we were able to classify them and link
them with an ICD-10 code.

6.1.1. Anchoring stage
By using the SNCTmt and the NCI Mt, we were able to obtain a

high coverage of ICD-10 and ICD-O3 concepts within anchors.
Thanks to the combined use of the two resources, we indeed found

Table 3
Disambiguation of anchors coming from the SNCTmt and the NCI Mt. 1–0 anchors do not appear because their number is not changed by the disambiguation step.

Cardinality of anchors ICD-10 ICD-O3

Topography Morphology

SNCTmt NCI Mt SNCTmt NCI Mt SNCTmt NCI Mt

Before 1–1 159 288 4 125 912 838
Steps disambiguation 1–N 507 27 282 130 48 103

After 1–1 448 302 131 184 957 879
disambiguation 1–N 218 13 155 71 3 62

Total 666 315 292 255 960 941

Table 4
Disambiguation of anchors coming from the SNCTmt and the NCI Mt. 1–0 anchors do not appear because their number is not changed by the disambiguation stage.

ICD-10 concepts N⁄ Cardinality of ICD-10 concepts derived with pairs of ICD-O3 topography and
morphology concepts

Total

1–0 1–1 1–N

Benign tumor 180 57 31.6% 0 0.0% 34 18.9% 91 50.5%
Haematological malignancy 92 24 26.1% 10 10.9% 20 21.7% 54 58.7%
Unpredictable tumor 86 29 33.7% 0 0.0% 20 23.2% 49 57.0%
Tumor in situ 66 26 39.4% 1 1.5% 14 21.2% 41 62.1%
Primary malignant 388 133 34.3% 0 0.0% 99 25.5% 232 59.8%
Secondary malignant 39 14 35.9% 0 0.0% 5 12.8% 19 48.7%
Multiple tumors 1 1 100.0% 0 0.0% 0 0.0% 1 100.0%
Total 852 284 33.3% 11 1.3% 192 22.5% 487 57.1%

54 J.N. Nikiema et al. / Journal of Biomedical Informatics 74 (2017) 46–58



anchors for more than 88% of ICD-10 and ICD-O3 concepts. The
highest coverage (99%) concerned ICD-O3 morphology codes,
which can be explained by the fact that ICD-O3 morphology con-
cepts were used as support for the representation of SNOMED CT
histological lesions [53]. It is noteworthy that, although the overlap
is important between anchors obtained by the SNCTmt and the NCI
Mt, it was useful to make use of both of these resources because
some anchors were found in only one of them, especially for ICD-
10 concepts (19% for the SNCTmt and 9% for the NCI Mt).

The main benefit from the anchoring stage was not to create
anchors but rather to improve their quality. Although ICD-10 and
ICD-O3 are poorly structured, we successfully made corrections
and reconciled proposed anchors, by using their structure at the fil-
tering and disambiguation steps. These steps can thus be qualified
as alignment repair processes [54]. The filtering step indeed
enabled to delete anchors involving concepts that do not describe
the same clinical notion. The disambiguation step managed to
exclude anchors when a hierarchical relationship existed between
SNOMED CT concepts involved in multiple anchors, so that only
the most relevant anchor was kept. Thus, these processes high-
lighted and succeeded in solving the limitations of the morphosyn-
tactic method used by the NCI Mt for establishing mappings and
those of the manual method used for creating the SNCTmt. It is
important to note that these two methods are the most commonly
used in the literature to create mappings, like in systems described
previously such as AROMA [55], ServOMap [21] and Onagui [56].
Thus, our methodology may be applied to improve the quality of
mappings created by any such application. Indeed, our method is
independent of strategies used for creating mappings, because it
is only based on the structure of SNOMED CT, ICD-10 and ICD-O3.

6.1.2. Derivation stage
6.1.2.1. Derivation strategy. In the derivation process, we looked for
equivalent, and parent if necessary, concepts of the DL expression
corresponding to a pair of ICD-O3 concepts. ICD-10 represents noso-
logic entities and an ICD-10 concept can represent one ormore enti-
ties. The notions represented by a combination of ICD-O3 concepts
may correspond exactly to the nosologic entity represented by the
ICD-10 concept, in which case an equivalence can be found. In con-
trast, the ICD-O3 combination may represent a nosologic entity
which is part of a groupof entities representedbyan ICD-10 concept.
In this situation, subsumption relations are thus of interest.

6.1.2.2. Derivation coverage. Wewere able to derive 86% of the ICD-
O3 morphology concepts, 36% of the ICD-O3 topography concepts
and 24% of the ICD-10 concepts. The coverage of ICD-10 concepts
is correlated with the coverage of ICD-03 topography concepts
because ICD-10 concepts related to cancer diagnoses are grouped
according to the anatomical localization of the tumor. Thus, the
absence of anchors for a given ICD-O3 topography automatically
implies theabsenceof anchors for the ICD-10concepts involving this
anatomical localization. Conversely, the coverage of ICD-O3 mor-
phology concepts is high. This can be explained by the facts that:
(i) the same histological lesion may exist for different anatomical
localizations, and (ii) the description of histological lesions in ICD-
O3 ismore precise than in ICD-10. This difference in the level of pre-
cision also explains the numerous 1–N derivations.

6.1.2.3. Derivation quality. The derivation stage enabled to find an
ICD-10 concept for 74% (17,474/23,694) of ICD-O3 pairs of the SEER
conversion file. Moreover, our integration process correctly and
automatically generated 50% of the correspondences between an
ICD-10 concept and a pair of ICD-O3 concepts described in the
SEER conversion file.

A potential explanation of the divergences observed between
our derivation process and correspondences proposed by the SEER

is that its conversion file is based on rules of cancer registries. Con-
versely, our derivation process intends to relate ICD-O3 combina-
tions to ICD-10 concepts based on their semantics. As a result,
our process can find multiple derivations for a single combination
whereas the SEER proposes only one of them. For instance, in the
SEER conversion file and according to our derivation process, the
ICD-O3 pair C75.3-Pineal gland and 9769/1-Immunoglobulin deposi-
tion disease was integrated with D47.9-Neoplasm of uncertain or
unknown behavior of lymphoid, haematopoietic and related tissue,
unspecified (according to the rule 4.1 of cancer registries for record-
ing an haematopoietic disease [57]). However, our derivation pro-
cess also proposed D44.5-Neoplasm of uncertain behavior of pineal
gland for this pair. Although the later derivation is significant, it
has not been retained by the SEER. This finding highlights that
our process does not depend on specific conversion rules, but only
on the semantics provided by SNOMED-CT.

Another consequence of our process was the derivation of pairs
that are not medically relevant. An example of such irrelevant
combinations is the ICD-O3 pair C50.2-Upper-inner quadrant of
breast and 8153/1-Gastrinoma, NOS which was integrated with
the ICD-10 concept D48.6-Neoplasm of uncertain or unknown behav-
ior of Breast. Indeed, ‘‘gastrinoma” is a specific morphologic abnor-
mality of the digestive tract so this tumor cannot appear with
breast as a primary site. Confronting derivation results with cancer
registries’ data is a perspective that would make it possible to keep
only the ICD-O3 pairs which are effectively used in practice to
record health data. However, it is necessary to underline that our
derivation process enable to take into account the imperfect but
informative coding that may exist in real data (i.e., coding error).

6.2. Integration process and evaluation limitations

Our integration of ICD-10 and ICD-O3 concepts remains incom-
plete. The main limitation of our methods concerns 1–N and 1–0
anchors, which were not derived. For 1–N anchors, the disam-
biguation process needs to be improved. Some 1–N concepts were
still present after the disambiguation of results obtained by the
SNCTmt and the NCI Mt but others were also created when pooling
anchors coming from these two resources. In many cases, this is a
consequence of concepts that are incorrectly represented as sib-
lings within the SNOMED CT structure. As an example, the ICD-
O3 morphology concept 8831/0-Histiocytoma, NOS was involved
in a 1–1 anchor with 128741006-Deep histiocytoma (morphologic
abnormality) according to the SNCTmt and in a 1–1 anchor with
302843004-Histiocytoma (morphologic abnormality) according to
the NCI Mt. By pooling the anchors of the two resources, 8831/0-
Histiocytoma, NOS finally participated in a 1–N anchor because
the two concepts 128741006-Deep histiocytoma (morphologic
abnormality) and 302843004-Histiocytoma (morphologic abnormal-
ity) are erroneously described as siblings in SNOMED CT. Indeed,
they must clearly be related through a subsumption relationship.
Other hierarchical and non-hierarchical semantic links must be
sought by the disambiguation process because SNOMED CT appar-
ently does not contain appropriate links between some of its con-
cepts. Therefore, a potential strategy for improving the
disambiguation process would be to search for such semantic links
in other knowledge resources. As an example, the Foundational
Model of Anatomy (FMA) [58] may be a good candidate to identify
relations between SNOMED CT concepts which are anchored to a
given ICD-O3 topography concept.

6.3. Comparison with previous works

The most similar previous work compared to our study is the
one realized by Jouhet et al. [38], who also tried to integrate ICD-
10 and ICD-O3 thanks to a support TOR, namely the NCI thesaurus.
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If we compare their results with ours, we derived 888 ICD-O3 mor-
phology concepts against 860 for them. By contrast, as our model
only considers 1–1 anchors for the derivation stage, the high pro-
portion of 1–N anchors for ICD-O3 topography concepts leads to
a lower coverage of ICD-O3 topography concepts (127) and ICD-
10 concepts (203) involved in derivations compared to the cover-
age obtained by Jouhet et al., being respectively 278 and 302. Thus,
one of our prospects is the fusion of our results with those obtained
by Jouhet et al. We would like to check if the use of the NCI the-
saurus could improve our semantic integration. In particular, for
concepts having no anchors with any SNOMED CT concept, such
concepts could be mapped to NCI thesaurus concepts. Finally, we
believe that merging the results of both studies will highlight
complementarities of the NCI thesaurus and the SNOMED CT. We
chose SNOMED CT because it has been used to support the seman-
tic integration of various biomedical TORs in previous works. For
instance, Brown et al. [59] used it to align the Veterans Benefits
Administration (VBA) disability code set and the International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9CM). In this work, authors used a morphosyntactic method
and compared two approaches. The first one was a direct align-
ment of VBA and ICD-9CM without using any other resource, while
the second approach used the SNOMED CT as a support TOR. The
use of SNOMED CT increased the alignment coverage, which illus-
trates that SNOMED CT is able to cover various clinical domains of
medicine. This work differs from ours in that authors did not use
the structure of the SNOMED CT to find semantic links between
disjoint concepts or to ensure the quality of the mapping process.
Finally, the repair process performed in this study was made man-
ually by domain experts in a consensual way. Another example is
the work of Bakhshi-Raiez et al. [60], who used SNOMED CT to
align APACHE II and APACHE IV, which are two versions of a clas-
sification system used to encode the reasons for intensive care
admission. Firstly, authors manually created mappings between
SNOMED CT concepts and those of APACHE II and IV. Then, authors
used the SNOMED CT structure to retrieve SNOMED CT concepts
which had hierarchical links (especially the part_of relationship)
with already mapped concepts. Thus, the common SNOMED CT
concepts mapped to APACHE II and IV concepts constituted the
bridges between the two classifications. As in our study, authors
used the structure of SNOMED CT to establish anchors between
two TORs but they did not have to realize a semantic integration
of disjoint concepts. A challenge raised by the integration of ICD-
10 and ICD-O3 was to align pre-coordinated concepts with post-
coordinated expressions. To address this issue, Dhombres et al.
[26] have implemented a strategy requiring that one of the two
TORs to be aligned must have sophisticated labels and the other
one must be able to carry out post-coordination. Because ICD-10
and ICD-O3 do not have these two characteristics, we could not fol-
low such a strategy and we had to propose an alternative one.

6.4. Integration process advantages

An analytical reading of our semantic integration process gives
the possibility to understand and correct our methodological
choices but also to indirectly observe limitations in the structure
of SNOMED CT, ICD-10 and ICD-O3. Indeed, the anchoring and
derivation stages are based on the SNOMED CT structure, and in
particular, on the subsumption relations existing within SNOMED
CT. Our method enabled to identify some limitations and specifici-
ties of the SNOMED CT structure that were already described in the
literature, such as the ‘‘absence of difference in the description
between children and parents” [61,41]. For example, SNOMED CT
does not consider 109271004-Melanocytic nevus of lip (disorder)
as being a benign tumor, erroneously. Although being correct, its
anchor with the ICD-10 concept D22.0-Melanocytic naevi of lip

was deleted during the filtering step (by tumor behavior). Another
example is the anchor of the ICD-O3 morphology concept 8151/3-
Insulinoma, malignant with the SNOMED CT concept 20955008-
Insulinoma, malignant (morphologic abnormality). Although this
anchor is correct, it was erroneously derived with some ICD-10
concepts of benign tumors because the SNOMED CT concept
20955008 is a descendant of 3898006-Neoplasm, benign (morpho-
logic abnormality) and 86049000-Malignant neoplasm, primary
(morphologic abnormality). This inconsistency illustrates an uncon-
trolled use of the subsumption relationship in SNOMED CT, which
is called is_a overloading [41].

Other TOR-related problems were encountered during the
semantic integration process. Indeed, from the beginning of the
process, we identified concepts that did not participate in anchors.
The concepts which could not be mapped are mainly ICD-O3
topography concepts with codes (.8) describing an overlapping
anatomical site (e.g., C63.8-Overlapping lesion of male genital
organs), as well as ICD-10 and ICD-O3 concepts which use the cat-
egory ‘‘other” for unlisted diagnoses or histological lesions. The
ICD-10 concept C45.7-Mesothelioma of other sites is such an exam-
ple. ICD-10 enumerates three anatomical sites for mesothelioma
(C45.0-Mesothelioma of pleura, C45.1-Mesothelioma of peritoneum
and C45.2-Mesothelioma of pericardium), and C45.7 encodes for all
mesothelioma that are not pleura, peritoneum and pericardium
mesothelioma [7,9]. This representation is made because of the
epidemiologic objectives of ICD-10 and ICD-O3. The objectives of
SNOMED CT being different, it does not include such concepts. To
address this issue, we could look for structural proximities
between the concepts belonging to the ‘‘other” category and con-
cepts already anchored, like ServOMap [21] and SAMBO [18] do.
For these particular concepts, we could indeed search for their par-
ent concepts having anchors with a SNOMED CT concept and some
of the direct descendants of this SNOMED CT concept, which are
not already anchored, could be mapped to the ICD-10/ ICD-O3 con-
cept belonging to the ‘‘other” category.

7. Conclusion

Our study set up a model for integrating ICD-10 pre-
coordinated concepts and ICD-O3 post-coordinated expressions.
This integration was based on a support TOR, SNOMED CT, which
describes the semantic relations existing between clinical notions
represented in ICD-10 and ICD-O3. Our methods constitute a repair
process, which can be used by systems creating mappings based on
manual and morphosyntactic approaches. We also indirectly con-
ducted an audit of SNOMED CT, ICD-10 and ICD-O3. The semantic
integration process may be improved, especially by taking into
account the specificities of used TORs, by using other support TORs
and by combining our results with those obtained in previous
works.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbi.2017.08.013.
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Abstract 

Objectives: To compare the representation of medicinal products 
in RxNorm and SNOMED CT and assess the consequences on in-
teroperability. Methods: To compare the two models, we manu-
ally establish equivalences between the types and definitional fea-
tures of medicinal products entities in RxNorm and SNOMED CT. 
We highlight their similarities and differences. Results: Both 
models share major definitional features including ingredient (or 
substance), strength and dose form. SNOMED CT is more rigor-
ous and better aligned with international standards. In contrast, 
RxNorm contains implicit knowledge, simplifications and ambi-
guities, but its model is simpler. Conclusions: Since their models 
are largely compatible, medicinal products from RxNorm and 
SNOMED CT are expected to be interoperable. However, specific 
aspects of the alignment between the two models require particu-
lar attention. 
Keywords:  
RxNorm; SNOMED CT; medicinal products. 

Background 

Drug terminologies, such as RxNorm and the medicinal product 
hierarchy of SNOMED CT (Systematized Nomenclature of Med-
icine-Clinical Terms), support multiple use cases, including elec-
tronic prescription, drug information exchange, medication rec-
onciliation, and analytics (including pharmacovigilance) (1,2). A 
formal representation of medicinal products is needed for the 
principled development and maintenance of such drug terminolo-
gies, as well as for precisely aligning existing drug terminologies 
(3). 
Many definitional characteristics of medicinal products are simi-
lar among drug terminologies. For example, clinical drugs are 
generally defined in terms of ingredient, strength and dose form. 
However, the level of formality and the formalism used for rep-
resenting medicinal products may differ among terminologies. 
Some attributes may also be specific to some terminologies (es-
pecially for country-dependent attributes, such as packaging in-
formation). 
In addition to existing drug terminologies, international standards 
have been developed for the representation of medicinal products, 
such as IDMP (Identification of Medicinal Products). IDMP (4), 
a collection of recommendations from the International Standards 
Organization (ISO).  

Interoperability among drug terminologies is especially important 
for exchanging drug information internationally. For example, a 
medication list established with RxNorm in the U.S. could be 
made available to any electronic health record (EHR) system in 
the world, in which drugs are represented using SNOMED CT. 
To fully support this use case, however, the models of medicinal 
products in RxNorm and SNOMED CT must be compatible, such 
that one can be accurately translated into the other. 
We focus on RxNorm and SNOMED CT, because RxNorm is the 
standard drug terminology in the U.S. and SNOMED CT is the 
largest clinical terminology in the world, supported by a consor-
tium of over 40 countries. While the RxNorm model has been an-
alyzed (5,6), and reused to create others standards (7,8) and to 
integrate drug terminologies worldwide (8), there has not been a 
detailed comparison between RxNorm and SNOMED CT. More-
over, the SNOMED CT model for medicinal products is particu-
larly interesting, because it was recently updated, in part to com-
ply with IDMP requirements (9). 
In this investigation, we compare the representation of medicinal 
products in RxNorm and SNOMED CT. The objective of our 
work is to analyze their similarities and differences and the con-
sequences of these differences on interoperability between the 
two terminologies. 

Methods and results 

In this section, we describe the models of RxNorm and SNOMED 
CT with focus on their definitional characteristics. Then we iden-
tify similarities and differences between the two models. 

The SNOMED CT model for medicinal products 

The SNOMED CT, the largest clinical terminology in the world, 
is an international clinical terminology based on a formal concept 
model (10). SNOMED CT recently published a new model for the 
representation of medicinal products integrating requirements 
from IDMP (9). The model was developed to support interna-
tional usage. Therefore, it is restricted to generic drugs and does 
not represent packaging information or branded drugs, which tend 
to be country-specific. 
In accordance with requirements from IDMP, clinical drugs are 
represented in a closed worldview. This means that characteristics 
used to define clinical drugs must be sufficient and what is not 
stated is false. In contrast, in the open worldview, what is not 



stated is potentially true. For example, the representation of a clin-
ical drug containing Atorvastatin must clearly state that this prod-
uct only contains the substance Atorvastatin as its active ingredi-
ent (i.e., without any other active ingredient). In the open 
worldview, products containing Atorvastatin could also contain 
other active ingredients, e.g., Amlodipine. 
As shown in Figure 1, the representation of medicinal products in 
SNOMED CT is based on a model with six (6) entities, arranged 
in a subclass hierarchy: 

• Two medicinal product entities, in open and closed 
worldview (e.g., open worldview: 108655000 | Product 
containing cetirizine (medicinal product) and closed 
worldview: 775140005 | Product containing only 
cetirizine (medicinal product)). 

• Two medicinal product form entities, in open and 
closed worldview, (e.g., open worldview: 768065006 | 
Product containing cetirizine in oral dose form (medic-
inal product form) and closed worldview: 778701007 | 
Product containing only cetirizine in oral dose form 
(medicinal product form)). 

• One medicinal product precisely entity in closed 
worldview only (optional entity, currently not repre-
sented in SNOMED CT – hypothetical example: 
Product containing only cetirizine hydrochloride 
(medicinal product)). 

• One clinical drug entity, in closed worldview only 
(e.g., 320818006 | Product containing precisely cetiriz-
ine hydrochloride 10 milligram/1 each conventional re-
lease oral tablet (clinical drug)). 

The representation of SNOMED CT entities is based on "defini-
tional roles" and related "types of values" in SNOMED CT (Fig-
ure 1):  

• Substance is the type of values for the active ingredi-
ent, precise active ingredient and basis of strength 
roles, for example 372523007 | Cetirizine (substance) 
and 108656004 | Cetirizine hydrochloride (substance). 
(The basis of strength is the substance in reference to 
which strength is defined.) 

• Unit of measure is the type of values for the strength 
unit roles, for example, 258684004 | milligram (quali-
fier value). 

• Number is the type of values for the strength value 
roles, for example, 3445001 | 10 (qualifier value). 

• Pharmaceutical dose form is the type of values for the 
manufactured dose form role, for example, 421026006 | 
Conventional release oral tablet (dose form). 

• Unit of presentation is the type of values for the unit 
of presentation role, for example, 732936001 | Tablet 
(unit of presentation). 

 

Figure 1– SNOMED CT model for the representation of medicinal products showing the six types of entities defined in the model, 
along with their definitional features and examples from the SNOMED CT terminology 
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Closed-worldview are “closed” with respect to their active ingre-
dient(s). More specifically, medicinal product and medicinal 
product form entities are closed with respect to their active ingre-
dient(s), while medicinal product precisely and clinical drug enti-
ties are closed with respect to their precise active ingredient(s). 
There are no hierarchical relations among substances. However, 
there is a "modification of" relation between a modified substance 
(e.g., ester or salt) and the corresponding base substance (e.g., be-
tween Atorvastatin calcium and Atorvastatin). Modified sub-
stances can be further modified. 
IDMP requires that dose forms be defined in reference to a list of 
dose forms from the European Directorate for Quality in Medi-
cines (EDQM). EDQM distinguishes between dose forms and 
units of presentation. Units of presentation are used to express the 
strength and quantity in countable entities, while dose forms cor-
respond to the physical structure of the medicinal product. 
In accordance with requirements from IDMP, strength units in 
SNOMED CT are aligned with the international standard for units 
of measure, UCUM (Unified Code for Units of Measure). 
Finally, depending on the unit of presentation, strength can be 
represented as concentration strength, presentation strength or 
both. 

The RxNorm model 

Created in 1992, RxNorm is a normalized terminology for clinical 
drugs in the U.S. RxNorm represents both generic drugs and 
branded drugs, as well as packs (11). The full model of RxNorm 
contains ten entities, five for generic drug entities and five for 
branded drugs entities. For comparison with SNOMED CT, we 
only present RxNorm generic drug entities and also omit packs. 
The simplified RxNorm model for generic drug entities includes 
four entities (Figure 2): 

• Ingredient, including base ingredient (IN), precise 
ingredient (PIN), and multi-ingredient (MIN) (e.g., IN: 

Cetirizine [RxCUI = 20610], PIN: cetirizine hydrochlo-
ride [RxCUI = 203150], MIN: Cetirizine / 
Pseudoephedrine [RxCUI = 352367]) 

• Clinical drugs component (SCDC), combining 
ingredient and strength (e.g., cetirizine hydrochloride 
10 MG [RxCUI = 1011480]) 

• Clinical drugs form (SCDF), combining ingredient and 
dose form (e.g., Cetirizine Oral Tablet [RxCUI = 
371364]) 

• Clinical drug (SCD), combining ingredient, strength 
and dose form (e.g., cetirizine hydrochloride 10 MG 
Oral Tablet [RxCUI = 1014678]) 

The representation of these entities relies on three mandatory and 
two optional definitional features: 

• Mandatory definitional features: 
− ingredient (IN/PIN/MIN) (e.g., IN: Cetirizine 

[RxCUI = 20610], PIN: cetirizine hydrochloride 
[RxCUI = 203150], MIN: Cetirizine / 
Pseudoephedrine [RxCUI = 352367]) 

− dose form (DF) (e.g., Oral Tablet [RxCUI = 
317541]) 

− strength (e.g., 10 MG) 
• Optional definitional features (see below for examples): 

− quantity factor (QF) 
− qualitative distinction (QD) 

Strength in RxNorm is normalized. In its units of measure (e.g., 
for volume, weight, surface), RxNorm uses one unit for each type 
quantity (e.g., milligram for weight rather than gram or mi-
crogram). 
The representation of dose forms in RxNorm is not based on a 
specific standard (12). It is also important to note that the SCDs 

 

Figure 2– Simplified RxNorm model for the representation of generic medicinal products showing the four types of entities defined in 
the model, along with their definitional features and examples from the RxNorm terminology 
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and SCDCs refer to the basis of strength substance (e.g., cetirizine 
hydrochloride), while SCDFs refer to the base ingredient (e.g., 
cetirizine). Of note, ingredients in RxNorm can (purposely) be 
understood as either the substance contained in a medicinal prod-
uct as active ingredient (e.g., “cetirizine the substance”) or the 
class of all medicinal products containing this substance as active 
ingredient. Precise ingredients (PINs) generally correspond to 
modified forms of the corresponding base ingredients (INs). PINs 
cannot be further modified.  
In addition, RxNorm does not explicitly have a notion of 
"worldview" (i.e., open or closed worldview) for its entities. 
While clinical drugs implicitly refer to a closed worldview, ingre-
dients, clinical drug components and clinical drug forms can be 
understood in both open and closed worldview, leaving it to que-
ries to distinguish between the two. 
Finally, the Quantity Factor (QF) is a number followed by a unit 
of measure corresponding to vial sizes or patch durations (e.g., 
"12H"). RxNorm does not explicitly state whether strength is ex-
pressed as presentation strength or concentration strength. Presen-
tation strength can be derived from concentration strength by mul-
tiplying the concentration strength by the quantity factor. (For ex-
ample, if the concentration strength is 1MG/ML and the QF is 
2ML, the presentation strength is 2MG/2ML). The Qualitative 
Distinction (QD) corresponds to some qualitative characteristic of 
a drug outside the main definitional features (e.g., "sugar free" 
and “abuse-deterrent”). QD and QF are optional modifiers used 
in RxNorm to define medicinal products when it is clinically rel-
evant to identify such distinctions (12). 

Comparison of the RxNorm and SNOMED CT models 

To compare the two models, we manually establish equivalences 
between their entities and between their definitional features, 
based on our analysis of the two models. 
First, we need to disambiguate the notion of ingredient in 
RxNorm (IN,PIN, MIN), because, as mentioned earlier, it can be 
understood as either a substance or a class of medicinal products. 
Therefore, as shown in Figure 3, ingredients in RxNorm corre-
spond to SNOMED CT medicinal products (in open and closed 
worldview) or to SNOMED CT substances, which are active in-
gredients of SNOMED CT medicinal products. In practice, 
RxNorm ingredients are often associated with multiple SNOMED 
CT entities, typically with one substance entity and one medicinal 
product entity. Disambiguation consists in identifying which 
SNOMED CT entity comes from the substance hierarchy (and 
treating it as a value for the definitional feature “active ingredi-
ent”), while the SNOMED CT entity corresponding to an entity 
from the medicinal product hierarchy is marked as an asserted 
equivalence for the RxNorm medicinal product entity. 
RxNorm does not formally have the notion of "unit of presenta-
tion". Units of presentation are implicitly represented through 
dose forms in RxNorm, whereas the two notions are represented 
separately in SNOMED CT. For example, in SNOMED CT, tab-
let is the logical "unit of presentation" of the conventional release 
oral tablet, while the two are conflated in the RxNorm dose form 
“Oral Tablet”. Therefore, RxNorm dose forms generally corre-
spond to pairs of a pharmaceutical dose form and a unit of presen-
tation in SNOMED CT. 
In addition, there are no materialized entities for SCDCs in 
SNOMED CT. Instead, strength and basis of strength substance 
are associated as part of the definition of a clinical drug in 

 

Figure 3– Correspondence between the RxNorm and SNOMED CT models 
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SNOMED CT. Therefore, SCDCs cannot be related to entities in 
SNOMED CT, but their defining features are represented as part 
of clinical drug entities. 
SCDs in RxNorm are equivalent to clinical drugs in SNOMED 
CT as they essentially share the same definitional features. The 
quantity factor in RxNorm has no direct equivalent in SNOMED 
CT, but QF information is implicitly represented in the presenta-
tion strength. In contrast, qualitative distinctions are absent from 
the SNOMED CT model. 
While RxNorm only represents one level of modification (be-
tween PIN and IN), SNOMED CT can represent arbitrary levels 
of modification among substances. 
Both RxNorm and SNOMED CT have the notion of concentration 
strength and presentation strength. However, RxNorm empha-
sizes concentration strength (from which presentation strength 
can be calculated using the quantity factor), whereas SNOMED 
CT explicitly represent both presentation strength and concentra-
tion strength when necessary. 
Finally, RxNorm normalizes all quantities to one unit (per type of 
quantity), whereas SNOMED CT uses units that are most clini-
cally appropriate (following IDMP requirements). For example, 
RxNorm uses 0.001 milligram and SNOMED CT 1 microgram. 
This difference merely reflects differences in editorial guidelines, 
as conversion between the two is trivial. 

Discussion 

Findings. Not surprisingly, the models used by RxNorm and 
SNOMED CT for representing medicinal products are fairly sim-
ilar and essentially compatible. Both models share major defini-
tional features including ingredient (or substance), strength and 
dose form. Only the qualitative distinction feature of RxNorm has 
no correspondence at all in SNOMED CT. 
SNOMED CT is more rigorous and better aligned with interna-
tional standards. In SNOMED CT, differences tend to be made 
explicit, e.g., between a substance and the class of medicinal 
products containing this substance as an ingredient, or between 
the class of all medicinal products containing only a given active 
ingredient and the class of all medicinal products containing at 
least this active ingredient . SNOMED CT also offers more flex-
ibility with relations among substances, as opposed to a fixed pre-
cise ingredient to base ingredient relationship in RxNorm. This 
precision comes at the price of a more complex model, and pos-
sibly a steeper learning curve. In contrast, RxNorm contains im-
plicit knowledge, simplifications and ambiguities, but its model 
is simpler. 
With features, such as explicit closed worldview for clinical drug 
entities, use of standard dose forms from EDQM, use of UCUM 
units, and use of clinically appropriate strength values, SNOMED 
CT shows better compliance with international standards (namely 
IDMP) than RxNorm does. 
Consequences on alignment. Since their models are largely com-
patible, medicinal products from RxNorm and SNOMED CT are 
expected to be interoperable. However, specific aspects of the 
alignment between the two models require particular attention.  
The values of ingredient can be aligned rather trivially (after dis-
ambiguation between the two meanings of RxNorm ingredients, 
substance and class of medicinal products containing this sub-
stance as an ingredient).  

Strength entities require minimal attention, specifically for con-
verting RxNorm “fixed unit” into the clinically appropriate unit 
used in SNOMED CT. Simple arithmetic is also required to con-
vert concentration strength and quantity factor in RxNorm to 
presentation strength in SNOMED CT wherever appropriate.  
In contrast, aligning dose forms requires more analysis, as 
RxNorm dose forms generally correspond to pairs of a pharma-
ceutical dose form and a unit of presentation in SNOMED CT. 
The absence of correspondence for qualitative distinction in 
SNOMED CT may lead to multiple clinical drugs in RxNorm 
mapping to a single clinical drug in SNOMED CT. For example, 
the distinction between Cholestyramine Resin 4000 MG Powder 
for Oral Suspension [RxCUI = 848943] and its sugar-free form 
Sugar-Free Cholestyramine Resin 4000 MG Powder for Oral 
Suspension [RxCUI = 1801279] in RxNorm is lost in SNOMED 
CT. This issue is unlikely to result in clinically significant align-
ment errors. 
The absence of materialization of the clinical drug component 
(SCDC) entity in SNOMED CT does not create an alignment is-
sue, because SCDCs are essentially navigational entities in 
RxNorm. They are not crucial to any of the main use cases for 
RxNorm or SNOMED CT. 
Future work. In future work, we plan to translate RxNorm into 
the SNOMED CT model for medicinal products. The resulting 
alignment would make RxNorm entities directly compatible with 
SNOMED CT’s. One benefit of this alignment would be to assess 
interoperability between RxNorm and SNOMED CT, potentially 
enriching SNOMED CT with clinical drugs currently specific to 
RxNorm. Additionally, this alignment would offer an opportunity 
for quality assurance by identifying cases where alignment is ex-
pected, but cannot be inferred (e.g., because of a difference in ba-
sis of strength substance for a given clinical drug between 
RxNorm and SNOMED CT). 

Conclusion 

In this investigation, we examined the similarities and differences 
between the representation of medicinal products in RxNorm and 
SNOMED CT. We established that both models share major def-
initional features including ingredient (or substance), strength and 
dose form. Because of subtle differences between the two models, 
specific aspects of their alignment require particular attention.  
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AppendixD
Templates for RxNorm translation

D.1 template of medicinal product in open world

Figure D.1 – template of medicinal product in open world view for medicinal
product with single and multiple ingredients
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D.2 template of medicinal product in closed world:
single ingredient

Figure D.2 – template of medicinal product in closed world view for medicinal
product with single ingredient



D.3. template of medicinal product in closed world: multiple ingredients 175

D.3 template of medicinal product in closed world:
multiple ingredients

Figure D.3 – template of medicinal product in closed world view for medicinal
product with multiple ingredients

D.4 template of medicinal product form

Figure D.4 – template of medicinal product form
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AppendixE
Translation examples of RxNorm
concepts

E.1 Instantiated ingredient IN

Figure E.1 – Example of IN translation
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178 APPENDIX E. Translation examples of RxNorm concepts

E.2 Instantiated DF and SCDF

Figure E.2 – Example of DF and SCDF translation

E.3 Instantiated SCD

Figure E.3 – template of medicinal product in closed world view for medicinal
product with multiple ingredients
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Integrating heterogeneous biomedical knowledge through a model based on sup-
port ontologies

Abstract

Dans le domaine de la santé, il existe un nombre très important de sources de connais-
sances, qui vont de simples terminologies, classifications et vocabulaires contrôlés à des
représentations très formelles, que sont les ontologies. Cette hétérogénéité des sources de
connaissances pose le problème de l’utilisation secondaire des données, et en particulier
de l’exploitation de données hétérogènes dans le cadre de la médecine personnalisée
ou translationnelle. En effet, les données à utiliser peuvent être codées par des sources
de connaissances décrivant la même notion clinique de manière différente ou décrivant
des notions distinctes mais complémentaires. Pour répondre au besoin d’utilisation
conjointe des sources de connaissances encodant les données de santé, nous avons étudié
trois processus permettant de répondre aux conflits sémantiques (difficultés résultant
de leur mise en relation) : (1) l’alignement qui consiste à créer des relations de mappings
(équivalence et/ou subsumption) entre les entités des sources de connaissances, (2)
l’intégration qui consiste à créer des mappings et à organiser les autres entités dans
une même structure commune cohérente et, enfin, (3) l’enrichissement sémantique de
l’intégration qui consiste à créer des mappings grâce à des relations transversales en
plus de celles d’équivalence et de subsumption. Dans un premier travail, nous avons
aligné la terminologie d’interface du laboratoire d’analyses du CHU de Bordeaux à
la LOINC. Deux étapes principales ont été mises en place : (i) le prétraitement des
libellés de la terminologie locale qui comportaient des troncatures et des abréviations,
ce qui a permis de réduire les risques de survenue de conflits de nomenclature, (ii) le
filtrage basé sur la structure de la LOINC afin de résoudre les différents conflits de
confusion. Deuxièmement, nous avons intégré RxNorm à la sous-partie de la SNOMED
CT décrivant les connaissances sur les médicaments afin d’alimenter la SNOMED CT
avec les entités de RxNorm. Ainsi, les médicaments dans RxNorm ont été décrits en
OWL grâce à leurs éléments définitionnels (substance, unité de mesure, dose, etc.). Nous
avons ensuite fusionné cette représentation de RxNorm à la structure de la SNOMED
CT, résultant en une nouvelle source de connaissances. Nous avons ensuite comparé les
équivalences inférées (entre les entités de RxNorm et celles de la SNOMED CT) grâce à
cette nouvelle structure avec les équivalences préétablies de manière morphosyntaxique
par RxNorm. Notre méthode a résolu des conflits de nomenclature mais était confrontée
à certains conflits de confusion et d’échelle permettant ainsi de mettre en évidence
des éléments d’amélioration dans RxNorm et la SNOMED CT. Finalement, nous avons
réalisé une intégration sémantiquement enrichie de la CIM10 et de la CIMO3 en utili-
sant la SNOMED CT comme support. La CIM10 décrivant des diagnostics et la CIMO3
décrivant cette notion suivant deux axes différents (celui des lésions histologiques et
celui des localisations anatomiques), nous avons utilisé la structure de la SNOMED CT
pour retrouver des relations transversales entre les concepts de la CIM10 et de la CIMO3
(résolution de conflits ouverts). Au cours du processus, la structure de la SNOMED CT a
également été utilisée pour supprimer les mappings erronés (conflits de nomenclature
et de confusion) et désambiguïser les cas de mappings multiples (conflits d’échelle).

Keywords: semantic integration, biomedical terminology, support ontology
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Integrating heterogeneous biomedical knowledge through a model based on sup-
port ontologies

Abstract

In the biomedical domain, there are almost as many knowledge resources in health
as there are application fields. These knowledge resources, described according to
different representation models and for different contexts of use, raise the problem of
complexity of their interoperability, especially for actual public health problematics
such as personalized medicine, translational medicine and the secondary use of medical
data. Indeed, these knowledge resources may represent the same notion in different
ways or represent different but complementary notions. For being able to use knowledge
resources jointly, we studied three processes, which can overcome semantic conflicts
(difficulties encountered when relating distinct knowledge resources): the alignment, the
integration and the semantic enrichment of the integration. The alignment consists in
creating a set of equivalence or subsumption mappings between entities from knowledge
resources. The integration aims not only to find mappings but also to organize all
knowledge resource entities into a unique and coherent structure. Finally, the semantic
enrichment of integration consists in finding all the required mapping relations between
entities of distinct knowledge resources (equivalence, subsumption, transversal and,
failing that, disjunction relations). In this frame, we firstly realized the alignment of
laboratory tests terminologies: LOINC and the local terminology of Bordeaux hospital.
We pre-processed the noisy labels of the local terminology to reduce the risk of naming
conflicts. Then, we suppressed erroneous mappings (confounding conflicts) using the
structure of LOINC. Secondly, we integrated RxNorm to SNOMED CT. We constructed
formal definitions for each entity in RxNorm by using their definitional features (active
ingredient, strength, dose form, etc.) according to the design patterns proposed by
SNOMED CT. We then integrated the constructed definitions into SNOMED CT. The
obtained structured was classified and the inferred equivalences between RxNorm and
SNOMED CT were compared to morphosyntactic mappings. Our process resolved
some cases of naming conflicts but was confronted to confounding or scaling conflicts
highlighting the needs of improvement in RxNorm and SNOMED CT. Finally, we
performed a semantically enriched integration of ICD-10 and ICD-O3 using SNOMED
CT as support. As ICD-10 describes diagnoses and ICD-O3 describes this notion
according to two different axes (i.e., histological lesions and anatomical structures), we
used the SNOMED CT structure to identify transversal relations between their entities
(resolution of open conflicts). During the process, the structure of the SNOMED CT
was also used to suppress erroneous mappings (naming and confusion conflicts) and
disambiguate multiple mappings (scale conflicts).

Keywords: semantic integration, biomedical terminology, support ontology
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