F. J. Alvarez, Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses, Brain Res Bull, vol.129, pp.50-65, 2017.

W. B. Anderson, B. A. Graham, N. J. Beveridge, P. A. Tooney, A. M. Brichta et al., Different forms of glycine-and GABAA -receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons, Mol Pain, vol.5, issue.65, pp.1-16, 2009.

L. Andronov, I. Orlov, Y. Lutz, J. Vonesch, and B. P. Klaholz, , 2016.

, ClusterViSu , a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy, Sci Rep, vol.6, pp.1-9, 24084.

P. Annibale, M. Scarselli, M. Greco, and A. Radenovic, Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy, Optical Nanoscopy, issue.9, p.1, 2012.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Identification of clustering artifacts in photoactivated localization microscopy, Nat Methods, vol.8, issue.7, pp.527-528, 2011.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Quantitative Photo Activated Localization Microscopy: Unraveling the effects of photoblinking, PLoS One, vol.6, issue.7, pp.1-8, 2011.

P. F. Apostolides and L. O. Trussell, Rapid, Activity-Independent Turnover of Vesicular Transmitter Content at a Mixed Glycine/GABA Synapse, J Neurosci, vol.33, issue.11, pp.4768-4781, 2013.

J. I. Arellano, R. Benavides-piccione, J. Defelipe, and R. Yuste, Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies, Front Neurosci, vol.1, issue.1, pp.131-143, 2007.

K. R. Aubrey, Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles, Neurochem Int, vol.98, pp.94-102, 2016.

K. R. Aubrey, F. M. Rossi, R. Ruivo, S. Alboni, G. C. Bellenchi et al., The Transporters GlyT2 and VIAAT Cooperate to Determine the Vesicular Glycinergic Phenotype, J Neurosci, vol.27, issue.23, pp.6273-6281, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00153240

K. R. Aubrey and S. Supplisson, Heterogeneous Signaling at GABA and glycine co-releasing terminals, Front Synaptic Neurosci, vol.10, issue.40, pp.1-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913465

G. J. Augustine, F. Santamaria, and K. Tanaka, Local Calcium Signaling in Neurons, Neuron, vol.40, pp.331-346, 2003.

D. Baddeley and J. Bewersdorf, Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images, Ann Rev Biochem, vol.87, issue.1, pp.965-989, 2018.

H. Bannai, S. Lévi, C. Schweizer, T. Inoue, T. Launey et al., Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics, Neuron, vol.62, issue.5, pp.670-682, 2009.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, Multicolor super resolution imaging with photoswithable fluorescent probes, Science, issue.5845, pp.1749-1753, 2007.

S. Battaglia, M. Renner, M. Russeau, E. Côme, S. K. Tyagarajan et al., Activity-dependent inhibitory synapse scaling is determined by gephyrin phosphorylation and subsequent regulation of GABA A receptor diffusion, ENeuro, vol.5, issue.1, pp.203-0217, 2018.

H. Betz and B. Laube, Glycine receptors: Recent insights into their structural organization and functional diversity, J Neurochem, issue.6, pp.1600-1610, 2006.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, issue.5793, pp.1642-1646, 2006.

T. Biederer, P. S. Kaeser, and T. A. Blanpied, Transcellular Nanoalignment of Synaptic Function, Neuron, vol.96, issue.3, pp.680-696, 2017.

S. Bohlhalter, H. Mohler, and J. Fritschy, Inhibitory neurotransmission in rat spinal cord: co-localization of glycine-and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining, Brain Res, vol.642, issue.1-2, pp.59-69, 1994.

C. Bonansco and M. Fuenzalida, Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain, Neural Plast, pp.1-13, 2016.

J. N. Bourne and K. M. Harris, Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP, Hippocampus, vol.21, issue.4, pp.354-373, 2011.

N. Bowery and T. Smart, GABA and glycine as neurotransmitters: A brief history, Br J Pharmacol, vol.147, pp.109-119, 2006.

M. L. Brady and T. C. Jacob, Synaptic Localization of ?5 GABA(A) Receptors via Gephyrin Interaction Regulates Dendritic Outgrowth and Spine Maturation, Dev Neurobiol, vol.75, issue.11, pp.1241-1251, 2015.

M. J. Broadhead, M. H. Horrocks, F. Zhu, L. Muresan, R. Benavides-piccione et al., PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits, Sci Rep, vol.6, pp.1-14, 2016.

J. Brocher, Qualitative and Quantitative Evaluation of Two New Histogram Limiting Binarization Algorithms, Int J Im Process, vol.8, issue.2, pp.30-48, 2014.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, Artifacts in singlemolecule localization microscopy, Histochem Cell Biol, vol.144, pp.123-131, 2015.

V. Burzomato, P. J. Groot-kormelink, L. G. Sivilotti, and M. Beato, Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation, Receptors Channels, vol.9, issue.6, pp.353-361, 2003.

M. Calamai, C. G. Specht, J. Heller, D. Alcor, P. Machado et al., Gephyrin Oligomerization Controls GlyR Mobility and Synaptic Clustering, J Neurosci, vol.29, issue.24, pp.7639-7648, 2009.

Y. Cantaut-belarif, M. Antri, R. Pizzarelli, S. Colasse, I. Vaccari et al., Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord, J Cell Biol, vol.216, issue.9, pp.2979-2989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680683

Y. Cantaut-belarif, M. Antri, I. Vaccari, R. Pizzarelli, S. Colasse et al., Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord, J Cell Biol, vol.216, issue.9, pp.2979-2989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680683

I. Chamma, M. Letellier, C. Butler, B. Tessier, K. H. Lim et al., Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin, Nat Commun, vol.7, issue.10773, pp.1-15, 2016.

I. Chamma, F. Levet, J. Sibarita, M. Sainlos, and O. Thoumine, Nanoscale organization of synaptic adhesion proteins revealed by singlemolecule localization microscopy, Neurophotonics, vol.3, issue.4, p.41810, 2016.

F. A. Chaudhry, R. J. Reimer, E. E. Bellocchio, N. C. Danbolt, K. K. Osen et al., The Vesicular GABA Transporter, VGAT, Localizes to Synaptic Vesicles in Sets of Glycinergic as Well as GABAergic Neurons, J Neurosci, vol.18, issue.23, pp.9733-9750, 1998.

H. Chen, A. H. Tang, and T. A. Blanpied, Subsynaptic spatial organization as a regulator of synaptic strength and plasticity, Curr Opin Neurobiol, vol.51, pp.147-153, 2018.

N. Chéry and Y. De-koninck, Junctional versus Extrajunctional Glycine and GABA A Receptor-Mediated IPSCs in Identified Lamina I Neurons of the Adult Rat Spinal Cord, J Neurosci, vol.19, issue.17, pp.7342-7355, 1999.

D. Choquet, Fast AMPAR trafficking for a high-frequency synaptic transmission, Eur J Neurosci, vol.32, issue.2, pp.250-260, 2010.

D. Choquet and A. Triller, The Dynamic Synapse, Neuron, vol.80, issue.3, pp.691-703, 2013.

C. Coltharp, X. Yang, and J. Xiao, Quantitative analysis of singlemolecule superresolution images, Curr Opin Struct Biol, vol.28, issue.1, pp.112-121, 2014.

J. A. Coull, D. Boudreau, K. Bachand, S. A. Prescott, F. Nault et al., Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain, Nature, vol.424, issue.6951, pp.938-942, 2003.

K. C. Crosby, S. E. Gookin, J. D. Garcia, K. M. Hahm, M. L. Dell'acqua et al., Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse, Cell Rep, vol.26, issue.12, pp.3284-3297, 2019.

C. T. Culiat, L. J. Stubbs, R. P. Woychik, L. B. Russell, D. K. Johnson et al., Deficiency of the beta3 subunit of the type A gammaaminobutyric acid receptor causes cleft palate in mice, Nat Genet, vol.11, issue.3, pp.344-346, 1995.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau et al., Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking, Science, vol.302, issue.5644, pp.442-445, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00002449

A. Dani, B. Huang, J. Bergan, C. Dulac, and X. Zhuang, Super-resolution Imaging of Chemical Synapses in the Brain, Neuron, vol.68, issue.5, pp.843-856, 2010.

E. C. Davenport, V. Pendolino, G. Kontou, T. P. Mcgee, D. F. Sheehan et al., An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABAAReceptors, Cell Rep, vol.21, issue.1, pp.70-83, 2017.

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop et al., Icy: An open bioimage informatics platform for extended reproducible research, Nat Methods, vol.9, issue.7, pp.690-696, 2012.

B. Dejanovic and G. Schwarz, Neuronal Nitric Oxide Synthase-Dependent S-Nitrosylation of Gephyrin Regulates Gephyrin Clustering at GABAergic Synapses, J Neurosci, vol.34, issue.23, pp.7763-7768, 2014.

B. Dejanovic, M. Semtner, S. Ebert, T. Lamkemeyer, F. Neuser et al., Palmitoylation of Gephyrin Controls Receptor Clustering and Plasticity of GABAergic Synapses, Plos One, vol.12, issue.7, pp.723-742, 2014.

N. Durisic, A. G. Godin, C. M. Wever, C. D. Heyes, M. Lakadamyali et al., Stoichiometry of the Human Glycine Receptor Revealed by Direct Subunit Counting, J Neurosci, vol.32, issue.37, pp.12915-12920, 2012.

S. Dutertre, C. M. Becker, and H. Betz, Inhibitory glycine receptors: An update, J Biol Chem, vol.287, issue.48, pp.40216-40223, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02306933

E. Dzyubenko, A. Rozenberg, D. M. Hermann, and A. Faissner, Colocalization of synapse marker proteins evaluated by STED-microscopy reveals patterns of neuronal synapse distribution in vitro, J Neurosci Methods, vol.273, pp.149-159, 2016.

E. Eggermann, I. Bucurenciu, S. P. Goswami, and P. Jonas, Europe PMC Funders Group Nanodomain coupling between Ca2 + channels and sensors of exocytosis at fast mammalian synapses, Nat Rev Neurosci, vol.13, issue.1, pp.7-21, 2013.

U. Endesfelder and M. Heilemann, Art and artifacts in single-molecule localization microscopy: beyond attractive images, Nat Methods, vol.11, issue.3, pp.235-238, 2014.

U. Endesfelder, S. Malkusch, B. Flottmann, J. Mondry, P. Liguzinski et al., Chemically induced photoswitching of fluorescent probes-A general concept for super-resolution microscopy, Molecules, vol.16, issue.4, pp.3106-3118, 2011.

C. Essrich, M. Lorez, J. A. Benson, J. Fritschy, and B. Lüscher, Postsynaptic clustering of major GABA A receptor subtypes requires the ?2 subunit and gephyrin, Nat Neurosci, vol.1, issue.7, pp.563-571, 1998.

C. Ferguson, S. L. Hardy, D. F. Werner, S. M. Hileman, T. M. Delorey et al., New insight into the role of the ?3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout, BMC Neurosci, vol.8, issue.85, pp.1-13, 2007.

M. J. Fischl and R. M. Burger, Glycinergic transmission modulates GABAergic inhibition in the avian auditory pathway, Front Neural Circuits, vol.8, issue.19, pp.1-13, 2014.

F. Fricke, J. Beaudouin, R. Eils, and M. Heilemann, One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy, Sci Rep, vol.5, pp.1-8, 2015.

J. M. Fritschy, P. Panzanelli, and S. K. Tyagarajan, Molecular and functional heterogeneity of GABAergic synapses, Cell Mol Life Sci, vol.69, issue.15, pp.2485-2499, 2012.

Y. Fukata, A. Dimitrov, G. Boncompain, O. Vielemeyer, F. Perez et al., Local palmitoylation cycles define activity-regulated postsynaptic subdomains, J Cell Biol, vol.202, issue.1, pp.145-161, 2013.

Y. Fukata and M. Fukata, Epilepsy and synaptic proteins, Curr Opin Neurobiol, vol.45, pp.1-8, 2017.

Y. Fukazawa and R. Shigemoto, Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression, Curr Opin Neurobiol, vol.22, issue.3, pp.446-452, 2012.

O. Ganeshina, R. W. Berry, R. S. Petralia, D. A. Nicholson, and Y. Geinisman, Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions, Neuroscience, vol.125, issue.3, pp.615-623, 2004.

R. Gao and P. Penzes, Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders, Curr Mol Med, vol.15, issue.2, pp.146-167, 2015.

B. Gasnier, The loading of neurotransmitters into synaptic vesicles, Biochimie, vol.82, pp.327-337, 2000.

E. J. Geiman, W. Zhang, J. Fritschy, and F. J. Alvarez, Glycine and GABAA receptor subunits on renshaw cells: Relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters, J Comp Neurol, vol.444, issue.3, pp.275-289, 2002.

K. Gerrow and A. Triller, Synaptic stability and plasticity in a floating world, Curr Opin Neurobiol, vol.20, issue.5, pp.631-639, 2010.

T. Ghelani and S. J. Sigrist, Coupling the Structural and Functional Assembly of Synaptic Release Sites, Front Neuroanat, vol.12, issue.81, pp.1-20, 2018.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze et al., , 2010.

, Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density, Biophys J, vol.99, issue.4, pp.1303-1310

O. O. Glebov, R. E. Jackson, C. M. Winterflood, D. M. Owen, E. A. Barker et al., Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function, Cell Rep, vol.18, issue.11, pp.2715-2728, 2017.

D. Gonzalez-forero and F. J. Alvarez, Differential Postnatal Maturation of GABAA, Glycine Receptor, and Mixed Synaptic Currents in Renshaw Cells and Ventral Spinal Interneurons, J Neurosci, vol.25, issue.8, pp.2010-2023, 2005.

D. Gonzalez-forero, A. M. Pastor, E. J. Geiman, B. Benitez-temino, and F. J. Alvarez, Regulation of Gephyrin Cluster Size and Inhibitory Synaptic Currents on Renshaw Cells by Motor Axon Excitatory Inputs, J Neurosci, vol.25, issue.2, pp.417-429, 2005.

G. Gouzer, C. G. Specht, L. Allain, T. Shinoe, and A. Triller, , 2014.

, Benzodiazepine-dependent stabilization of GABA A receptors at synapses, Mol Cell Neurosci, vol.63, pp.101-113

A. J. Granger, M. L. Wallace, and B. L. Sabatini, Multi-transmitter neurons in the mammalian central nervous system, Curr Opin Neurobiol, vol.45, pp.85-91, 2017.

F. L. Groeneweg, C. Trattnig, J. Kuhse, R. A. Nawrotzki, and J. Kirsch, Gephyrin: a key regulatory protein of inhibitory synapses and beyond, Histochem Cell Biol, vol.150, issue.5, pp.489-508, 2018.

J. Grudzinska, R. Schemm, S. Haeger, A. Nicke, G. Schmalzing et al., The beta Subunit Determines the Ligand Binding Properties of Synaptic Glycine Receptors, Neuron, vol.45, issue.5, pp.727-739, 2005.

N. Grünewald, A. Jan, C. Salvatico, V. Kress, M. Renner et al., Sequences Flanking the Gephyrin-Binding Site of GlyR? Tune Receptor Stabilization at, Synapses. ENeuro, vol.5, issue.1, pp.1-17, 2018.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J Microsc, vol.198, issue.2, pp.82-87, 2000.

T. Ha and P. Tinnefeld, Photophysics of Fluorescence Probes for Single Molecule Biophysics and Super-Resolution Imaging, Annu Rev Phys Chem, vol.63, issue.2, pp.595-617, 2012.

K. T. Haas, B. Compans, M. Letellier, T. M. Bartol, D. Grillo-bosch et al., , 2018.

, Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency, ELife, vol.7, pp.1-22

S. Hannan, M. Minere, J. Harris, P. Izquierdo, P. Thomas et al., GABAAR isoform and subunit structural motifs determine synaptic and extrasynaptic receptor localisation, Neuropharmacology, 2019.

C. Hanus, M. Ehrensperger, and A. Triller, Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses, J Neurosci, vol.26, issue.17, pp.4586-4595, 2006.

K. M. Harris and J. K. Stevens, Dendritic spines of CA1 pyramical cells in the rat hippocampus serial electron microscopy with reference to their biophysical characteristics, J Neurosci, vol.9, issue.8, pp.2982-2997, 1989.

K. M. Harris and R. J. Weinberg, Ultrastructure of Synapses in the Mammalian Brain, Cold Spring Harb Perspect Biol, vol.4, issue.5, pp.1-30, 2012.

R. J. Harvey, U. B. Depner, H. Wässle, S. Ahmadi, C. Heindl et al., GlyR ?3: An Essential Target for Spinal PGE 2-Mediated Inflammatory Pain Sensitization, Science, vol.304, issue.5672, pp.884-887, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00142904

R. J. Harvey and B. K. Yee, Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain, Nat Rev Drug Discov, vol.12, issue.11, pp.866-885, 2013.

M. Heilemann, S. Linde, . Van-de, M. Sch, R. Kasper et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew Chem Int Ed Engl, vol.47, issue.33, pp.6172-6176, 2008.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann et al., The 2015 super-resolution microscopy roadmap, J Physics D: Appl Phys, vol.48, issue.44, p.443001, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390051

E. A. Heller, W. Zhang, F. Selimi, J. C. Earnheart, M. A. Slimak et al., The Biochemical Anatomy of Cortical Inhibitory Synapses, vol.7, p.39572, 2012.

L. Hennekinne, S. Colasse, A. Triller, and M. Renner, Differential Control of Thrombospondin over Synaptic Glycine and AMPA Receptors in Spinal Cord Neurons, J Neurosci, vol.33, issue.28, pp.11432-11439, 2013.

J. Herweg and G. Schwarz, Splice-specific Glycine Receptor Binding, Folding, and Phosphorylation of the Scaffolding Protein Gephyrin, J Biol Chem, vol.287, issue.16, pp.12645-12656, 2012.

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys J, vol.91, issue.11, pp.4258-4272, 2006.

B. High, A. A. Cole, X. Chen, and T. S. Reese, Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses, Front Synaptic Neurosci, vol.7, issue.9, pp.1-9, 2015.

C. M. Houston, A. M. Hosie, and T. G. Smart, Distinct Regulation of beta2 and beta3 Subunit-Containing Cerebellar Synaptic GABA(A) Receptors by Calcium/Calmodulin-Dependent Protein Kinase II, J Neurosci, vol.28, issue.30, pp.7574-7584, 2008.

C. M. Houston and T. G. Smart, CaMK-II modulation of GABAA receptors expressed in HEK293, NG108-15 and rat cerebellar granule neurons, Eur J Neurosci, vol.24, issue.9, pp.2504-2514, 2006.

M. Hruska, N. Henderson, S. J. Le-marchand, H. Jafri, and M. B. Dalva, Synaptic nanomodules underlie the organization and plasticity of spine synapses, Nat Neurosci, vol.21, issue.5, pp.671-682, 2018.

W. L. Imlach, R. F. Bhola, S. A. Mohammadi, and M. J. Christie, , 2016.

, Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain, Sci Rep, vol.6, issue.37104, pp.1-14

H. Ishibashi, J. Yamaguchi, Y. Nakahata, and J. Nabekura, Dynamic regulation of glycine-GABA co-transmission at spinal inhibitory synapses by neuronal glutamate transporter, J Physiol, vol.591, issue.16, pp.3821-3832, 2013.

I. Izeddin, C. G. Specht, M. Lelek, X. Darzacq, A. Triller et al., Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe, PLoS One, vol.6, issue.1, p.15611, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02081263

P. Jonas, J. Bischofberger, and J. Sandkühler, Co-release of Two Fast Neurotransmitters at a Central Synapse, Science, issue.5375, pp.419-424, 1998.

N. Juge, A. Muroyama, M. Hiasa, H. Omote, and Y. Moriyama, Vesicular inhibitory amino acid transporter is a Cl-/?-aminobutyrate cotransporter, J Biol Chem, vol.284, issue.50, pp.35073-35078, 2009.

K. Kaila, T. J. Price, J. A. Payne, M. Puskarjov, and J. Voipio, Cationchloride cotransporters in neuronal development, plasticity and disease, Nat Rev Neurosci, vol.15, issue.10, pp.637-654, 2014.

V. B. Kasaragod and H. Schindelin, Structure-Function Relationships of Glycine and GABAA Receptors and Their Interplay With the Scaffolding Protein Gephyrin, Front Mol Neurosci, vol.11, issue.317, pp.1-21, 2018.

Y. Kasugai, J. D. Swinny, J. D. Roberts, Y. Dalezios, Y. Fukazawa et al., Quantitative localisation of synaptic and extrasynaptic GABA A receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling, Eur J Neurosci, vol.32, issue.11, pp.1868-1888, 2010.

S. Katsurabayashi, H. Kubota, H. Higashi, N. Akaike, and Y. Ito, Distinct profiles of refilling of inhibitory neurotransmitters into presynaptic terminals projecting to spinal neurones in immature rats, J Physiol, vol.560, issue.2, pp.469-478, 2004.

A. F. Keller, J. A. Coull, N. Chery, P. Poisbeau, Y. Koninck et al., Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn, J Neurosci, vol.21, issue.20, pp.7871-7880, 2001.

R. Khanna, Q. Li, L. Sun, T. J. Collins, and E. F. Stanley, N type Ca2 + channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes, 2006.

P. Legendre, The glycinergic inhibitory synapse, Cell Mol Life Sci, vol.58, issue.5-6, pp.760-793, 2001.

M. Lehmann, G. Lichtner, H. Klenz, and J. Schmoranzer, Novel organic dyes for multicolor localization-based super-resolution microscopy, J Biophotonics, vol.9, issue.1-2, pp.161-170, 2016.

M. Lelek, F. Di-nunzio, R. Henriques, P. Charneau, N. Arhel et al., Superresolution imaging of HIV in infected cells with FlAsH-PALM, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01536166

, Proc Natl Acad Sci U S A, vol.109, issue.22, pp.8564-8569

F. Levet, E. Hosy, A. Kechkar, C. Butler, A. Beghin et al., SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data, Nat Methods, vol.12, issue.11, pp.1065-1071, 2015.

S. Lévi, D. Chesnoy-marchais, W. Sieghart, and A. Triller, Synaptic Control of Glycine and GABAA Receptors and Gephyrin Expression in Cultured Motoneurons, J Neurosci, vol.19, issue.17, pp.7434-7449, 1999.

S. Lévi, L. Roux, N. Eugène, E. Poncer, and J. C. , Benzodiazepine ligands rapidly in fluence GABAA receptor diffusion and clustering at hippocampal inhibitory synapses, Neuropharmacology, vol.88, pp.199-208, 2015.

S. Lévi, S. M. Logan, K. R. Tovar, and A. M. Craig, Gephyrin Is Critical for Glycine Receptor Clustering But Not for the Formation of Functional GABAergic Synapses in Hippocampal Neurons, J Neurosci, vol.24, issue.1, pp.207-217, 2004.

S. Lévi, C. Schweizer, H. Bannai, O. Pascual, C. Charrier et al., Homeostatic Regulation of Synaptic GlyR Numbers Driven by Lateral Diffusion, Neuron, vol.59, issue.2, pp.261-273, 2008.

J. Li, T. Casteels, T. Frogne, P. Collombat, J. Hecksher-sørensen et al., Artemisinins Target GABA(A) Receptor Signaling and Impair alpha Cell Identity, Cell, vol.168, issue.1-2, pp.86-100, 2017.

Q. Li, A. Lau, T. J. Morris, L. Guo, C. B. Fordyce et al., A Syntaxin 1, G?o, and N-Type Calcium Channel Complex at a Presynaptic Nerve Terminal: Analysis by Quantitative Immunocolocalization, J Neurosci, vol.24, issue.16, pp.4070-4081, 2004.

T. P. Li, Y. Song, H. D. Macgillavry, T. A. Blanpied, and S. Raghavachari, Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins, J Neurosci, vol.36, issue.15, pp.4276-4295, 2016.

R. Lim, F. J. Alvarez, and B. Walmsley, GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus, J Physiol, vol.525, issue.2, pp.447-459, 2000.

A. E. Linsalata, X. Chen, C. A. Winters, and T. Reese, Electron Tomography on ?-Aminobutyric Acid-ergic Synapses Reveals a Discontinuous Postsynaptic Network of Filaments, J Comp Neurol, vol.522, issue.4, pp.921-936, 2014.

K. K. Liu, M. F. Hagan, and J. E. Lisman, Gradation (approx. 10 size states) of synaptic strength by quantal addition of structural modules, Philos Trans R Soc Lond B Biol Sci, p.372, 1715.

T. Lu, M. E. Rubio, and L. O. Trussell, Glycinergic Transmission Shaped by the Corelease of GABA in a Mammalian Auditory Synapse, Neuron, vol.57, issue.4, pp.524-535, 2007.

J. W. Lynch, Molecular structure and function of the glycine receptor chloride channel, Physiol Rev, vol.84, issue.4, pp.1051-1095, 2004.

H. D. Macgillavry, Y. Song, S. Raghavachari, and T. A. Blanpied, Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic ampa receptors, Neuron, vol.78, issue.4, pp.615-622, 2013.

M. Maidorn, S. O. Rizzoli, and F. Opazo, Tools and limitations to study the molecular composition of synapses by fluorescence microscopy, Biochem J, vol.473, issue.20, pp.3385-3399, 2016.

S. Malkusch and M. Heilemann, Extracting quantitative information from single-molecule super-resolution imaging data with LAMA-LocAlization Microscopy Analyzer, Sci Rep, vol.6, issue.34486, pp.1-4, 2016.

H. M. Maric, V. B. Kasaragod, T. J. Hausrat, M. Kneussel, V. Tretter et al., Molecular basis of the alternative recruitment of GABA A versus glycine receptors through gephyrin, Nat Commun, vol.5, issue.5767, pp.1-11, 2014.

H. Maric, J. Mukherjee, V. Tretter, S. J. Moss, and H. Schindelin, Gephyrin-mediated ?-Aminobutyric Acid Type A and Glycine Receptor Clustering Relies on a Common Binding Site, J Biol Chem, vol.286, issue.49, pp.42105-42114, 2011.

J. Masch, H. Steffens, J. Fischer, J. Engelhardt, J. Hubrich et al., Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling, Proc Natl Acad Sci U S A, vol.115, issue.34, pp.8047-8056, 2018.

M. Masugi-tokita, E. Tarusawa, M. Watanabe, E. Molnar, K. Fujimoto et al., Number and Density of AMPA Receptors in Individual Synapses in the Rat Cerebellum as Revealed by SDS-Digested Freeze-Fracture Replica Labeling, J Neurosci, vol.27, issue.8, pp.2135-2144, 2007.

J. H. Mcdonald and K. W. Dunn, Statistical tests for measures of colocalization in biological microscopy, J Microsc, vol.252, issue.3, pp.295-302, 2013.

S. L. Mcintire, R. J. Reimer, K. Schuske, R. H. Edwards, and E. M. Jorgensen, Identification and characterization of the vesicular GABA transporter, Nature, vol.389, issue.6653, pp.870-876, 1997.

M. Medelin, V. Rancic, G. Cellot, J. Laishram, P. Veeraraghavan et al., Altered development in GABA co-release shapes glycinergic synaptic currents in cultured spinal slices of the SOD1G93A mouse model of amyotrophic lateral sclerosis, J Physiol, vol.594, issue.13, pp.3827-3840, 2016.

F. J. Meye, M. Soiza-reilly, T. Smit, M. A. Diana, M. K. Schwarz et al., Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse, Nat Neurosci, vol.19, issue.8, pp.1019-1024, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01542371

D. Meyer, T. Bonhoeffer, and V. Scheuss, Balance and stability of synaptic structures during synaptic plasticity, Neuron, vol.82, issue.2, pp.430-443, 2014.

G. Meyer, J. Kirsch, H. Betz, and D. Langosch, Identification of a gephyrin binding motif on the glycine receptor b subunit, Neuron, vol.15, issue.3, pp.563-572, 1995.

M. Missler, T. C. Südhof, and T. Biederer, Synaptic Cell Adhesion, Cold Spring Harb Perspect Biol, vol.4, issue.4, pp.5694-005694, 2012.

K. Mitchell, R. Spike, and A. Todd, An immunocytochemical study of glycine receptor and GABA in laminae I-III of rat spinal dorsal horn, J Neurosci, vol.13, issue.6, pp.2371-2381, 1993.

L. A. Moore and L. O. Trussell, Corelease of Inhibitory Neurotransmitters in the Mouse Auditory Midbrain, J Neurosci, vol.37, issue.39, pp.9453-9464, 2017.

S. J. Moss and T. G. Smart, Constructing inhibitory synapses, Nat Rev Neurosci, vol.2, issue.4, pp.240-250, 2001.

J. Mukherjee, K. Kretschmannova, G. Gouzer, H. Maric, S. Ramsden et al., The residence time of GABAARs at inhibitory synapses is determined by direct binding of the receptor ?1 subunit to gephyrin, J Neurosci, issue.41, pp.14677-14687, 2011.

E. Muller, L. Corronc, A. Triller, P. Legendre, H. Le-corronc et al., Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus, Mol Cell Neurosci, vol.32, issue.3, pp.254-273, 2006.

J. Nabekura, S. Katsurabayashi, Y. Kakazu, S. Shibata, A. Matsubara et al., Developmental switch from GABA to glycine release in single central synaptic terminals, Nat Neurosci, vol.7, issue.1, pp.17-23, 2004.

L. Nahidiazar, A. V. Agronskaia, J. Broertjes, B. Van-den-broek, and K. Jalink, Optimizing imaging conditions for demanding multi-color super resolution localization microscopy, PLoS One, vol.11, issue.7, pp.1-18, 2016.

D. Nair, E. Hosy, J. D. Petersen, A. Constals, G. Giannone et al., Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95, J Neurosci, vol.33, issue.32, pp.13204-13224, 2013.

T. Narahashi, Review Tetrodotoxin: A brief history, Proc Jpn Acad,Ser B, vol.84, issue.5, pp.147-154, 2008.

R. Nawrotzki, M. Islinger, I. Vogel, A. Völkl, and J. Kirsch, Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells, Histochem Cell Biol, vol.137, issue.4, pp.471-482, 2012.

S. B. Nelson and V. Valakh, Excitatory/Inhibitory Balance and Circuit Homeostasis in, Autism Spectrum Disorders. Neuron, vol.87, issue.4, pp.684-698, 2015.

J. Nerlich, T. Kuenzel, C. Keine, A. Korenic, R. Rubsamen et al., Dynamic Fidelity Control to the Central Auditory System: Synergistic Glycine/GABAergic Inhibition in the Cochlear Nucleus, J Neurosci, vol.34, issue.35, pp.11604-11620, 2014.

Q. A. Nguyen and R. A. Nicoll, The GABAAReceptor ? Subunit Is Required for Inhibitory Transmission, Neuron, vol.98, issue.4, pp.718-725, 2018.

P. R. Nicovich, D. M. Owen, and K. Gaus, Turning single-molecule localization microscopy into a quantitative bioanalytical tool, Nat Protoc, vol.12, issue.3, pp.453-461, 2017.

D. Nieves, K. Gaus, and M. Baker, DNA-Based Super-Resolution Microscopy: DNA-PAINT, Genes, vol.9, issue.12, p.621, 2018.

F. Niwa, H. Bannai, M. Arizono, K. Fukatsu, A. Triller et al., Gephyrin-Independent GABAAR Mobility and Clustering during Plasticity, PLoS One, vol.7, issue.4, p.36148, 2012.

Z. Nusser, S. Cull-candy, and M. Farrant, Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude, Neuron, vol.19, issue.3, pp.697-709, 1997.

Z. Nusser, N. Hájos, P. Somogyi, and I. Mody, Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses, Nature, vol.395, issue.6698, pp.172-177, 1998.

D. Nutt, GABAA receptors: subtypes, regional distribution, and function, J Clin Sleep Med, vol.2, issue.2, pp.7-11, 2006.

J. A. O'brien and A. J. Berger, Cotransmission of GABA and Glycine to Brain Stem Motoneurons, J Neurophysiol, vol.82, issue.3, pp.1638-1641, 1999.

J. A. O'brien and A. J. Berger, The Nonuniform Distribution of the GABA(A) Receptor ?1 Subunit Influences Inhibitory Synaptic Transmission to Motoneurons within a Motor Nucleus, J Neurosci, vol.21, issue.21, pp.8482-8494, 2001.

T. G. Oertner and A. Matus, Calcium regulation of actin dynamics in dendritic spines, Cell Calcium, vol.37, issue.5, pp.477-482, 2005.

R. W. Olsen and W. Seighart, International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function, Pharmacol Rev, vol.60, issue.3, pp.243-260, 2008.

S. V. Pageon, P. R. Nicovich, M. Mollazade, T. Tabarin, and K. Gaus, Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data, Mol Biol Cell, vol.27, issue.22, pp.3627-3636, 2016.

T. Papadopoulos and T. Soykan, The Role of Collybistin in Gephyrin Clustering at Inhibitory Synapses: Facts and Open Questions, Front Cell Neurosci, vol.5, issue.11, pp.1-10, 2011.

T. Patriarchi, O. R. Buonarati, and J. W. Hell, Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by ?2 adrenergic receptor/PKA and Ca2+/CaMKII signaling, EMBO J, p.99771, 2018.

A. Patrizio, M. Renner, R. Pizzarelli, A. Triller, and C. G. Specht, Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers, Scientific Reports, vol.7, issue.1, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593747

A. Patrizio, M. Renner, R. Pizzarelli, A. Triller, and C. G. Specht, Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers, Sci Rep, vol.7, issue.1, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593747

F. Pennacchietti, T. J. Gould, and S. T. Hess, The Role of Probe Photophysics in Localization-Based Superresolution Microscopy, Biophys J, vol.113, pp.2037-2054, 2017.

F. Pennacchietti, S. Vascon, T. Nieus, C. Rosillo, S. Das et al., Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation, J Neurosci, vol.37, issue.7, pp.1747-1756, 2017.

K. Perez-de-arce, N. Schrod, S. W. Metzbower, E. Allgeyer, G. K. Kong et al., Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains, vol.88, pp.1165-1172, 2015.

E. M. Petrini, T. Ravasenga, T. J. Hausrat, G. Iurilli, U. Olcese et al., Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP, Nat Commun, vol.5, issue.3921, pp.1-19, 2014.

R. Pizzarelli and E. Cherubini, Alterations of GABAergic Signaling in Autism Spectrum Disorders, Neural Plast, pp.1-12, 2011.

J. Rahman, A. T. Latal, S. Besser, J. Hirrlinger, S. Hulsmann et al., Mixed miniature postsynaptic currents resulting from co-release of glycine and GABA recorded from glycinergic neurons in the neonatal respiratory network, Eur J Neurosci, vol.37, issue.8, pp.1229-1241, 2013.

M. Renner, C. Schweizer, H. Bannai, A. Triller, and S. Lévi, Diffusion Barriers Constrain Receptors at Synapses, PLoS One, vol.7, issue.8, p.43032, 2012.

M. Renner, C. G. Specht, and A. Triller, Molecular dynamics of postsynaptic receptors and scaffold proteins, Curr Opin Neurobiol, vol.18, issue.5, pp.532-540, 2008.

P. C. Rodriguez, L. G. Almeida, and A. Triller, Continuous rearrangement of the postsynaptic gephyrin scaffolding domain: a super-resolution quantified and energetic approach, 2017.

G. W. Ross, H. Petrovitch, R. D. Abbott, C. M. Tanner, J. Popper et al., Association of olfactory dysfunction with risk for future Parkinson's disease, Ann Neurol, vol.63, issue.2, pp.167-173, 2008.

C. V. Rousseau, G. P. Dugue, A. Dumoulin, E. Mugnaini, S. Dieudonne et al., Mixed Inhibitory Synaptic Balance Correlates with Glutamatergic Synaptic Phenotype in Cerebellar Unipolar Brush Cells, J Neurosci, vol.32, issue.13, pp.4632-4644, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542378

M. Russier, I. L. Kopysova, N. Ankri, N. Ferrand, and D. Debanne, GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro, J Physiol, vol.541, issue.1, pp.123-137, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01686300

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat Methods, vol.3, issue.10, pp.793-795, 2006.

C. Sagné, S. El-mestikawy, M. F. Isambert, M. Hamon, J. P. Henry et al., Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases, FEBS Letters, vol.417, issue.2, pp.177-183, 1997.

L. Saiepour, C. Fuchs, A. Patrizi, M. Sassoe-pognetto, R. J. Harvey et al., Complex Role of Collybistin and Gephyrin in GABAA Receptor Clustering, J Biol Chem, vol.285, issue.38, pp.29623-29631, 2010.

T. Saiyed, I. Paarmann, B. Schmitt, S. Haeger, M. Sola et al., Molecular Basis of Gephyrin Clustering at Inhibitory Synapses, J Biol Chem, vol.282, issue.8, pp.5625-5632, 2007.

R. S. Saliba, K. Kretschmannova, and S. J. Moss, Activity-dependent phosphorylation of GABA(A) receptors regulates receptor insertion and tonic current, EMBO J, issue.13, pp.2937-2951, 2012.

C. Salvatico, C. G. Specht, and A. Triller, Synaptic receptor dynamics: From theoretical concepts to deep quantification and chemistry in cellulo, Neuropharmacology, vol.88, pp.2-9, 2015.

A. Santuy, J. Rodríguez, J. Defelipe, and A. Merchán-pérez, Study of the Size and Shape of Synapses in the Juvenile Rat Somatosensory Cortex with 3D Electron Microscopy, ENeuro, vol.5, issue.1, pp.377-0317, 2018.

N. Schaefer, V. Roemer, D. Janzen, and C. Villmann, Impaired Glycine Receptor Trafficking in Neurological Diseases, Front Mol Neurosci, vol.11, pp.1-24, 2018.

N. Scheefhals and H. D. Macgillavry, Functional organization of postsynaptic glutamate receptors, Mol Cell Neurosci, vol.91, pp.82-94, 2018.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, A guide to superresolution fluorescence microscopy, J Cell Biol, vol.190, issue.2, pp.165-175, 2010.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: An opensource platform for biological-image analysis, Nat Methods, vol.9, issue.7, pp.676-682, 2012.

G. Schwarz, R. R. Mendel, and M. W. Ribbe, Molybdenum cofactors, enzymes and pathways, Nature, vol.460, issue.7257, pp.839-847, 2009.

M. Selten, H. Van-bokhoven, and N. Nadif-kasri, Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders, vol.7, pp.1-16, 1000.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multitarget tracing to probe spatiotemporal cartography of cell membrane, Nat Methods, vol.5, issue.8, pp.687-694, 2008.

S. J. Shabel, C. D. Proulx, J. Piriz, and R. Malinow, Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment, Science, vol.345, issue.6203, pp.1494-1498, 2014.

K. Sharma, D. K. Fong, and A. M. Craig, Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation, Mol Cell Neurosci, vol.31, issue.4, pp.702-712, 2006.

M. Sheng and E. Kim, The Postsynaptic Organization of Synapses, Cold Spring Harb Perspect Biol, vol.3, pp.1-20, 2011.

Y. Shinohara, H. Hirase, M. Watanabe, M. Itakura, M. Takahashi et al., Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors, Proc Natl Acad Sci U S A, vol.105, issue.49, pp.19498-19503, 2008.

A. Shivanandan, J. Unnikrishnan, and A. Radenovic, Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy, PLoS One, vol.10, issue.3, p.118767, 2015.

A. N. Shrivastava, A. Triller, and W. Sieghart, GABA(A) receptors: postsynaptic co-localization and cross-talk with other receptors, Fronti Cell Neurosci, vol.5, issue.7, pp.1-12, 2011.

C. Sieben, K. M. Douglass, P. Guichard, and S. Manley, Super-resolution microscopy to decipher multi-molecular assemblies, Curr Opin Struct Biol, vol.49, pp.169-176, 2018.

E. Sigel and M. E. Steinmann, Structure, function, and modulation of GABAA receptors, J Biol Chem, vol.287, issue.48, pp.40224-40231, 2012.

M. Sola, V. N. Bavro, J. Timmins, T. Franz, S. Ricard-blum et al., Structural basis of dynamic glycine receptor clustering by gephyrin, EMBO J, vol.23, issue.13, pp.2510-2519, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00313935

C. G. Specht, I. Izeddin, P. C. Rodriguez, M. Beheiry, . El et al., Quantitative Nanoscopy of Inhibitory Synapses : Counting Gephyrin Molecules and Receptor Binding Sites, vol.79, pp.308-321, 2013.

C. G. Specht and A. Triller, The dynamics of synaptic scaffolds, Bioessays, vol.30, issue.3, pp.1062-1074, 2008.

N. C. Spitzer, How GABA generates depolarization, J Physiol, vol.588, issue.5, pp.757-758, 2010.

T. C. Südhof, The Presynaptic Active Zone, Neuron, vol.75, issue.1, pp.11-25, 2012.

Y. Sugiyama, I. Kawabata, K. Sobue, and S. Okabe, Determination of absolute protein numbers in single synapses by a GFP-based calibration technique, Nat Methods, vol.2, issue.9, pp.677-684, 2005.

A. M. Sydor, K. J. Czymmek, E. M. Puchner, and V. Mennella, Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies, Trends Cell Biol, vol.25, issue.12, pp.730-748, 2015.

T. Takazawa, P. Choudhury, C. Tong, C. M. Conway, G. Scherrer et al., Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation, J Neurosci, vol.37, issue.9, pp.2336-2348, 2017.

T. Takazawa and A. B. Macdermott, Synaptic pathways and inhibitory gates in the spinal cord dorsal horn, Ann N Y Acad Sci, vol.1198, pp.153-158, 2010.

A. H. Tang, H. Chen, T. P. Li, S. R. Metzbower, H. D. Macgillavry et al., A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature, vol.536, issue.7615, pp.210-214, 2016.

E. Tarusawa, K. Matsui, T. Budisantoso, E. Molnar, M. Watanabe et al., Input-Specific Intrasynaptic Arrangements of Ionotropic Glutamate Receptors and Their Impact on Postsynaptic Responses, J Neurosci, vol.29, issue.41, pp.12896-12908, 2009.

P. Thevenaz, U. E. Ruttiman, and M. Unser, A Pyramid Approach to Sub-Pixel Registraion based on Intensity, IEEE Trans. Im Process, vol.7, issue.1, pp.27-41, 1998.

A. J. Todd, C. Watt, R. C. Spike, and W. Sieghart, Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord, J Neurosci, vol.16, issue.3, pp.974-982, 1996.

D. M. Treiman, GABAergic mechanisms in epilepsy, Epilepsia, vol.42, issue.3, pp.8-12, 2001.

V. Tretter, T. C. Jacob, J. Mukherjee, J. Fritschy, M. N. Pangalos et al., The Clustering of GABA(A) Receptor Subtypes at Inhibitory Synapses is Facilitated via the Direct Binding of Receptor ?2 Subunits to Gephyrin, J Neurosci, vol.28, issue.6, pp.1356-1365, 2008.

V. Tretter, B. Kerschner, I. Milenkovic, S. L. Ramsden, J. Ramerstorfer et al., Molecular Basis of the ?-Aminobutyric Acid A Receptor ?3 Subunit Interaction with the Clustering Protein Gephyrin, J Biol Chem, vol.286, issue.43, pp.37702-37711, 2011.

V. Tretter, J. Mukherjee, H. Maric, H. Schindelin, W. Sieghart et al., Gephyrin, the enigmatic organizer at GABAergic synapses, Front Cell Neurosci, vol.6, issue.23, pp.1-16, 2012.

A. Triller, F. Cluzeaud, F. Pfeiffer, H. Betz, and H. Korn, Distribution of glycine receptors at central synapses: an immunoelectron microscopy study, J Cell Biol, vol.101, issue.2, pp.683-688, 1985.

A. Triller and D. Choquet, New Concepts in Synaptic Biology Derived from Single-Molecule Imaging, Neuron, vol.59, issue.3, pp.359-374, 2008.

A. Triller, F. Cluzeaud, and H. Korn, Gamma-Aminobutyric Acidcontaining Terminals Can Be Apposed to Glycine Receptors at Central Synapses, J Cell Biol, vol.104, issue.4, pp.947-956, 1987.

N. X. Tritsch, A. J. Granger, and B. L. Sabatini, Mechanisms and functions of GABA co-release, Nat Rev Neurosci, vol.17, issue.3, pp.139-145, 2016.

B. Turkowyd, D. Virant, and U. Endesfelder, From single molecules to life: microscopy at the nanoscale, Anal Bioanal Chem, vol.408, issue.25, pp.6885-6911, 2016.

S. K. Tyagarajan and J. Fritschy, Gephyrin: a master regulator of neuronal function?, Nat Rev Neurosci, vol.15, issue.3, pp.141-156, 2014.

C. E. Vaaga, M. Borisovska, and G. L. Westbrook, Dual-transmitter neurons: Functional implications of co-release and co-transmission, Curr Opin Neurobiol, vol.29, pp.25-32, 2014.

S. Van-de-linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter et al., Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat Protoc, vol.6, issue.7, pp.991-1009, 2011.

S. Van-de-linde, S. Wolter, M. Heilemann, and M. Sauer, The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging, J Biotechnol, vol.149, issue.4, pp.260-266, 2010.

B. Van-zundert, P. Castro, and L. G. Aguayo, Glycinergic and GABAergic synaptic transmission are differentially affected by gephyrin in spinal neurons, Brain Res, vol.1050, pp.40-47, 2005.

J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker et al., Methods and Applications in Fluorescence -An introduction to optical super-resolution microscopy for the adventurous biologist, Methods Appl Fluoresc, vol.6, issue.2, p.55, 2018.

S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, and X. Zhuang, Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging, Proc Natl Acad Sci, vol.111, issue.23, pp.8452-8457, 2014.

W. Wegner, A. C. Mott, S. G. Grant, H. Steffens, and K. I. Willig, In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex, Sci Rep, vol.8, issue.219, pp.1-11, 2018.

S. M. Wojcik, S. Katsurabayashi, I. Guillemin, E. Friauf, C. Rosenmund et al., A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine, Neuron, vol.50, issue.4, pp.575-587, 2006.

M. Wong, Too Much Inhibition Leads to Excitation in Absence Epilepsy, Epilepsy Currents, vol.10, issue.5, pp.131-133, 2010.

J. Xu, H. Ma, and Y. Liu, Stochastic optical reconstruction microscopy (STORM), Curr Protoc Cytom, vol.81, issue.12, pp.1-12, 2017.

T. Yamasaki, E. Hoyos-ramirez, J. S. Martenson, M. Morimoto-tomita, and S. Tomita, GARLH Family Proteins Stabilize GABAA Receptors at Synapses, vol.93, pp.1138-1152, 2017.

X. Yang and C. G. Specht, Subsynaptic Domains in Super-Resolution Microscopy: The Treachery of Images, Frontiers in Molecular Neuroscience, p.12, 2019.

X. Yang and C. G. Specht, Practical guidelines for two-color SMLM of synaptic proteins in cultured neurons, NeuroMethods: Single Molecule microscopy, 2020.

Z. Yang, E. Taran, T. I. Webb, and J. W. Lynch, Stoichiometry and subunit arrangement of ?1? glycine receptors as determined by atomic force microscopy, Biochemistry, vol.51, issue.26, pp.5229-5231, 2012.

P. Zacchi, R. Antonelli, and E. Cherubini, Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses, Front Cell Neurosci, vol.8, issue.103, pp.1-9, 2014.

F. C. Zanacchi, C. Manzo, A. S. Alvarez, N. D. Derr, M. F. Garcia-parajo et al., A DNA origami platform for quantifying protein copy number in super-resolution, Nat Methods, vol.14, issue.8, pp.789-792, 2017.

H. U. Zeilhofer, H. Möhler, and A. Di-lio, GABAergic analgesia: new insights from mutant mice and subtype-selective agonists, Trends Pharmacol Sci, vol.30, issue.8, pp.397-402, 2009.

L. Zhang and C. J. Mcbain, Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones, Journal Physiol, vol.488, issue.3, pp.661-672, 1995.

, Alexa 647-conjugated goat anti-rat IgG (H+L)

, Invitrogen Cat.No. A21247, vol.RRID, p.141778

, Alexa 647-conjugated donkey anti-rabbit IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2492288

, Alexa 647-conjugated donkey anti-mouse IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2340863

, Alexa 647-conjugated donkey anti-guinea pig IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2340476

, Alexa 647-conjugated donkey anti-rat IgG (H+L)

J. Immunoresearch and C. , , vol.RRID, p.2340694

, Cy3-conjugated goat anti-mouse IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2338692

, Cy3-conjugated goat anti-rabbit IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2338006

, Alexa 488-conjugated donkey anti-rat IgG (H+L)

, Invitrogen Cat.No. A21208, vol.RRID, p.2535794

, Alexa 488-conjugated donkey anti-rat IgG (H+L)

J. Immunoresearch and C. , , vol.RRID, p.2340648

, Alexa 488-conjugated goat anti-mouse IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2338852

, Alexa 488-conjugated goat anti-rabbit IgG (H+L)

, Jackson ImmunoResearch Cat, vol.RRID, p.2338052

, Alexa 568-conjugated goat anti-guinea pig IgG (H+L)

, Invitrogen Cat.No. A11075, vol.RRID, p.2534119

B. Huang, W. Wang, M. Bates, and X. Zhuang, Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy, Science, issue.5864, pp.810-813, 2008.

, framework discussed in this chapter is applicable to synapses and similarly complex 673 structures alike. We also propose that the quality of the reconstructed images and the 674 relevance of the extracted parameters be critically assessed before drawing far-reaching 675

, that the results of these assessments and control experiments should be 676 included where possible in scientific publications

, We thank Manuel Maidorn and Felipe Opazo for the illustrations in Figure 2 [47, p.679

, Our research is funded by grants (to Antoine Triller, IBENS, Paris) 680 from the Agence Nationale de la Recherche, ANR-10-LABX-54) and the European Research Council (ERC, PlastInhib). XY is 682 supported by the China Scholarship Council (CSC)

, Appendix: imaging buffers

, Gloxy buffer: 0.5 mg/ml glucose oxidase, 40 ?g/ml catalase, 0.5 M D-glucose, 50 mM ?-685 mercaptoethylamine (MEA), in PBS pH 7.4

, Sigma-Aldrich), 1 M sodium DL-lactate, 50 687 mM MEA

R. E. Thompson, D. R. Larson, and W. W. Webb, Precise Nanometer Localization 690

, Analysis for Individual Fluorescent Probes, Biophys. J, vol.82, p.2783, 2002.

B. Huang, Super-resolution optical microscopy: multiple choices, Curr. Opin. Chem

, Biol, vol.14, issue.1, pp.10-14, 2010.

I. Izeddin, Super-resolution dynamic imaging of dendritic spines using a low-695 affinity photoconvertible actin probe, PLoS One, vol.6, issue.1, 2011.

S. Van-de-linde, Direct stochastic optical reconstruction microscopy with 697 standard fluorescent probes, Nat. Protoc, vol.6, issue.7, p.698, 2011.

D. Baddeley and J. Bewersdorf, Biological Insight from Super-Resolution, vol.699

, Microscopy: What We Can Learn from Localization-Based Images, Annu. Rev

, Biochem, vol.87, pp.965-89, 2018.

M. J. Rust, M. Bates, and X. Zhuang, Stochastic optical reconstruction miscroscopy 702 (STORM) provides sub-diffraction-limit image resolution, Nat. Methods, vol.3, issue.703, pp.793-795, 2006.

E. Betzig, Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, p.705

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-High Resolution Imaging by 707

, Fluorescence Photoactivation Localization Microscopy, Biophys. J, vol.91, issue.11, pp.4258-4272, 2006.

M. Heilemann, Subdiffraction-resolution fluorescence imaging with 710 conventional fluorescent probes, Angew. Chemie -Int. Ed, vol.47, p.712, 2008.

M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, and T. Dempsey, Multicolor Super-713

, Resolution Imaging with Photo-Switchable Probes Fluorescent, Science (80-. ), vol.714, issue.5845, pp.1749-1753, 2007.

H. Zhong, Applying superresolution localization-based microscopy to neurons, p.716

, Synapse, vol.69, pp.283-294, 2015.

A. M. Sydor, K. J. Czymmek, E. M. Puchner, and V. Mennella, Super-Resolution 718

, Microscopy: From Single Molecules to Supramolecular Assemblies, Trends Cell, vol.719

K. Xu, G. Zhong, and X. Zhuang, Actin, Spectrin, and Associated Proteins Form a 721

, Periodic Cytoskeletal Structure in Axons, 2013.

C. Leterrier, J. Potier, G. Caillol, and C. Debarnot, Nanoscale Architecture, vol.723

, Axon Initial Segment Reveals an Organized and Robust Scaffold, Cell Rep, vol.13, pp.2781-2793, 2015.

J. Bär, O. Kobler, B. Van-bommel, and M. Mikhaylova, Periodic F-actin structures 726 shape the neck of dendritic spines, Sci. Rep, vol.6, p.727, 2016.

A. Loschberger, Super-resolution imaging visualizes the eightfold symmetry of 728 gp210 proteins around the nuclear pore complex and resolves the central channel with 729 nanometer resolution, J. Cell Sci, vol.125, issue.3, pp.570-575, 2012.

A. Szymborska, A. Marco, N. Daigle, V. C. Cordes, J. A. Briggs et al.,

. Ellenberg, Nuclear Pore Scaffold Structure Analyzed by Super-Resolution 732

P. Microscopy and . Averaging, Science (80-. ), vol.341, issue.6146, p.2013

B. R. Jordi-broeken, H. Johnson, D. S. Lidke, S. Liu, and R. P. , , p.735

S. Nieuwenhuizen, K. A. Stallinga, and . Lidke, Resolution improvement by 3D 736 particle averaging in localization microscopy, Mthods Appl Fluoresc, vol.3, p.737, 2015.

A. Dani, B. Huang, J. Bergan, and C. Dulac, Super-resolution Imaging of Chemical 738

, Synapses in the Brain, Neuron, vol.68, issue.5, pp.843-856, 2010.

T. Kuriu, A. Inoue, H. Bito, K. Sobue, and S. Okabe, Differential Control, p.740

, Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms, 741 J. Neurosci, vol.26, issue.29, pp.7693-7706, 2006.

H. D. Macgillavry, Y. Song, S. Raghavachari, and T. A. Blanpied, Nanoscale 743 scaffolding domains within the postsynaptic density concentrate synaptic ampa 744 receptors, Neuron, vol.78, issue.4, pp.615-622, 2013.

D. Nair, E. Hosy, J. D. Petersen, A. Constals, G. Giannone et al.,

, Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically 747

, Organized in Nanodomains Regulated by PSD95, J. Neurosci, vol.33, issue.32, pp.748-13204, 2013.

K. T. Haas, Pre-post synaptic alignment through neuroligin-1 tunes synaptic 750 transmission efficiency, Elife, vol.7, pp.1-22, 2018.

C. G. Specht, Quantitative Nanoscopy of Inhibitory Synapses : Counting 752

, Gephyrin Molecules and Receptor Binding Sites, Neuron, vol.79, issue.2, p.2013

A. T. Pamela, C. Rodriguez, and L. G. Almeida, Continuous rearrangement of the 755 postsynaptic gephyrin scaffolding domain: a super-resolution quantified and energetic 756 approach, 2017.

F. Pennacchietti, Nanoscale Molecular Reorganization of the Inhibitory 758

, Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation, J

. Neurosci, , vol.37, pp.1747-1756, 2017.

M. J. Broadhead, PSD95 nanoclusters are postsynaptic building blocks in 761 hippocampus circuits, Sci. Rep, vol.6, issue.24626, 2016.

E. Dzyubenko, A. Rozenberg, D. M. Hermann, and A. Faissner, Colocalization of 763 synapse marker proteins evaluated by STED-microscopy reveals patterns of neuronal 764 synapse distribution in vitro, J. Neurosci. Methods, vol.273, p.765, 2016.

A. H. Tang, H. Chen, T. P. Li, S. R. Metzbower, H. D. Macgillavry et al.,

. Blanpied, A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature, vol.536, issue.7615, p.767, 2016.

K. P. De-arce, Topographic Mapping of the Synaptic Cleft into Adhesive 769

, Nanodomains Report Topographic Mapping of the Synaptic Cleft into Adhesive, vol.770

. Nanodomains, Neuron, vol.88, pp.1165-1172, 2015.

I. Chamma, Mapping the dynamics and nanoscale organization of synaptic 772 adhesion proteins using monomeric streptavidin, Nat. Commun, vol.7, issue.10773, p.2016

F. Fricke, J. Beaudouin, R. Eils, and M. Heilemann, One, two or three? Probing the 775 stoichiometry of membrane proteins by single-molecule localization microscopy

A. Patrizio, M. Renner, R. Pizzarelli, A. Triller, and C. G. Specht, Alpha subunit-778 dependent glycine receptor clustering and regulation of synaptic receptor numbers, p.779

, Sci. Rep, vol.7, issue.1, pp.1-11, 2017.

P. Jonas, J. Bischofberger, and J. Sandkühler, Corelease of two fast neurotransmitters 781 at a central synapse, vol.281, p.782, 1998.

K. R. Aubrey, Presynaptic control of inhibitory neurotransmitter content in VIAAT 783 containing synaptic vesicles, Neurochem. Int, vol.98, pp.94-102, 2016.

A. Triller, F. Cluzeaud, and H. Korn, Gamma-Aminobutyric Acid-containing, p.785

, Terminals Can Be Apposed to Glycine Receptors at Central Synapses, J. Cell Biol, vol.786, pp.947-956, 1987.

S. Bohlhalter, H. Mohler, and J. Fritschy, Inhibitory neurotransmission in rat spinal 788 cord : co-localization of glycine-and GABAA-receptors at GABAergic synaptic 789 contacts demonstrated by triple immunofluorescence staining, Brain Res, vol.642, pp.59-69, 1994.

A. J. Todd, C. Watt, R. C. Spike, and W. Sieghart, Colocalization of GABA, glycine, 792 and their receptors at synapses in the rat spinal cord, J. Neurosci, vol.16, issue.3, pp.793-974, 1996.

A. Dumoulin, S. Levi, B. Riveau, B. Gasnier, and A. Triller, Formation of mixed 795 glycine and GABAergic synapses in cultured spinal cord neurons, Eur J Neurosci, vol.796, pp.3883-3892, 2000.

A. N. Shrivastava, A. Triller, and W. Sieghart, GABAA Receptors: Post-Synaptic

, Localization and Cross-Talk with Other Receptors, Front. Cell. Neurosci, vol.5, issue.799, pp.1-12, 2011.

G. Meyer, J. Kirsch, H. Betz, and D. Langosch, Identification of a Gephyrin Binding 801

, Motif on the Glycine Receptor ? Subunit, Neuron, vol.15, pp.563-572, 1995.

H. Maric, J. Mukherjee, V. Tretter, S. J. Moss, and H. Schindelin, , p.803

, Acid Type A and Glycine Receptor Clustering Relies on a Common 804

, Binding Site, J. Biol. Chem, vol.286, issue.49, pp.42105-42114, 2011.

W. S. , S. J. Verena-tretter, and J. Mukherjee, , vol.806

. Schindelin, Gephyrin , the enigmatic organizer at GABAergic synapses, Front. Cell

. Neurosci, , vol.6, pp.1-16, 2012.

F. J. Alvarez, Gephyrin and the regulation of synaptic strength and dynamics at 809 glycinergic inhibitory synapses, Brain Res. Bull, 2016.

Y. Cantaut-belarif, Microglia control the glycinergic but not the GABAergic 811 synapses via prostaglandin E2 in the spinal cord, J. Cell Biol, vol.216, issue.9, pp.812-2979, 2017.

M. Russier, I. L. Kopysova, N. Ankri, N. Ferrand, and D. Debanne, GABA and 814 glycine co-release optimizes functional inhibition in rat brainstem motoneurons in 815 vitro, J. Physiol, vol.541, issue.1, pp.123-137, 2002.

M. Maidorn, S. O. Rizzoli, and F. Opazo, Tools and limitations to study the molecular 817 composition of synapses by fluorescence microscopy, Biochem. J, vol.473, pp.818-3385, 2016.

J. Ries, C. Kaplan, E. Platonova, H. Eghlidi, and H. Ewers, A simple , versatile 820 method for GFP-based microscopy via nanobodies, Nat. Methods, vol.9, issue.6, p.821, 2012.

E. Platonova, C. M. Winterflood, A. Junemann, D. Albrecht, J. Faix et al., Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in 823 mammalian cells using nanobody binders, Methods, vol.822, p.824, 2015.

T. Pleiner, Nanobodies : site-specific labeling for super-resolution imaging , 825 rapid epitope-mapping and native protein complex isolation, Elife, vol.4, p.826, 2015.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Identification of clustering artifacts in photoactivated localization microscopy, vol.827

, Methods, vol.8, issue.7, pp.527-528, 2011.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, , p.830

, Photo Activated Localization Microscopy : Unraveling the Effects of Photoblinking, p.831

, PLoS One, vol.6, issue.7, 2011.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, Artifacts in single-molecule 833 localization microscopy, Histochem. Cell Biol, vol.144, p.834, 2015.

S. Van-de-linde, S. Wolter, M. Heilemann, and M. Sauer, The effect of 835 photoswitching kinetics and labeling densities on super-resolution fluorescence 836 imaging, J. Biotechnol, vol.149, issue.4, pp.260-266, 2010.

S. Van-de-linde, I. Krsti?, T. Prisner, S. Doose, M. Heilemann et al., Photoinduced formation of reversible dye radicals and their impact on super-839 resolution imaging, Photochem. Photobiol. Sci, vol.838, issue.4, p.840, 2011.

J. Vogelsang, A Reducing and Oxidizing System Minimizes Photobleaching, p.841

, Blinking of Fluorescent Dyes, Angew. Chemie -Int. Ed, vol.47, pp.5465-5469, 2008.

T. Ha and P. Tinnefeld, Photophysics of Fluorescence Probes for Single Molecule 844

, Biophysics and Super-Resolution Imaging, Annu Rev Phys Chem, vol.63, issue.2, pp.845-595, 2012.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of 847 fluorophores for optimal performance in localization-based super-resolution imaging, vol.848, 2011.

L. Nahidiazar, A. V. Agronskaia, J. Broertjes, B. Van-broek, and K. Jalink, Optimizing imaging conditions for demanding multi-color super resolution 851 localization microscopy, PLoS One, vol.850, issue.7, pp.1-18, 2016.

S. C. Zheng, M. F. Juettea, S. Jockusch, and R. Michael,

Z. Wasserman, R. B. Zhou, and . Altman, Ultra-stable organic fluorophores for 854 single-molecule research, Chem Soc Rev, vol.43, issue.4, p.855, 2014.

M. Y. Natalia, G. Zhegalova, S. He, H. Zhou, and D. M. Kim, Minimization of self-quenching fluorescence on dyes conjugated to biomolecules with 857 multiple labeling sites via asymmetrically charged NIR fluorophores, Contrast Media, vol.856

, Mol Imaging, vol.9, issue.5, pp.355-362, 2014.

J. B. Grimm, Bright photoactivatable fluorophores for single-molecule 860 imaging, Nat. Methods, 2016.

M. Lehmann, G. Lichtner, H. Klenz, and J. Schmoranzer, Novel organic dyes for 862 multicolor localization-based super-resolution microscopy, J. Biophotonics, vol.9, issue.863, pp.161-170, 2016.

M. G. , A. R. , P. Annibale, and M. Scarselli, Identification of the factors 865 affecting co-localization precision for quantitative multicolor localization microscopy, 2012.

K. N. Richter, Glyoxal as an alternative fixative to formaldehyde in 868 immunostaining and super-resolution microscopy, EMBO J, pp.1-21, 2017.

T. A. Stanly, Critical importance of appropriate fixation conditions for faithful 870 imaging of receptor microclusters, Biol. Open, vol.5, issue.9, p.871, 2016.

D. R. Whelan and T. D. Bell, Image artifacts in Single Molecule Localization, vol.872

, Microscopy : why optimization of sample preparation protocols matters, Sci. Rep, vol.873, issue.07924, pp.1-10, 2015.

K. A. Tanaka, Membrane molecules mobile even after chemical fixation, p.875

, Nat. Methods, vol.7, issue.11, pp.865-866, 2010.

I. Brünig, E. Scotti, C. Sidler, and J. M. Fritschy, Intact sorting, targeting, and 877 clustering of ?-aminobutyric acid A receptor subtypes in hippocampal neurons in 878 vitro, J. Comp. Neurol, vol.443, pp.43-55, 2002.

H. R. Arnauld-serge and N. Bertaux, Dynamic multi-target tracing to probe 880 spatiotemporal cartography of cell membrane, Nat. Methods, vol.5, issue.8, p.694, 2008.

M. Lelek, F. D. Nunzio, R. Henriques, P. Charneau, N. Arhel et al., Superresolution imaging of HIV in infected cells with FlAsH-PALM, Proc. Natl, vol.883
URL : https://hal.archives-ouvertes.fr/pasteur-01536166

, Acad. Sci, vol.109, issue.22, pp.8564-8569, 2012.

P. Thevenaz, U. E. Ruttiman, and M. Unser, A Pyramid Approach to Sub-Pixel, vol.886

, Registraion based on Intensity, IEEE Trans. Image Process, vol.7, issue.1, pp.27-41, 1998.

J. Schindelin, Fiji: An open-source platform for biological-image analysis

, Methods, vol.9, issue.7, pp.676-682, 2012.

D. Sage, Quantitative evaluation of software packages for single-molecule 891 localization microscopy, Nat. Methods, vol.12, issue.8, pp.717-724, 2015.

M. Ovesný, P. K?í?ek, J. Borkovec, Z. ?vindrych, and G. M. Hagen, ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data 894 analysis and super-resolution imaging, Bioinformatics, vol.893, issue.16, pp.2389-2390, 2014.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer et al., QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ, vol.897, p.898
URL : https://hal.archives-ouvertes.fr/pasteur-02081312

, Nat. Methods, vol.7, issue.5, pp.339-340, 2010.

P. R. Nicovich, D. M. Owen, and K. Gaus, Turning single-molecule localization 900 microscopy into a quantitative bioanalytical tool, Nat. Protoc, vol.12, issue.3, p.461, 2017.

S. Malkusch, U. Endesfelder, J. Mondry, M. Gelléri, P. J. Verveer et al., Coordinate-based colocalization analysis of single-molecule localization microscopy 904 data, Histochem. Cell Biol, vol.903, pp.1-10, 2012.

M. Georgieva, D. I. Cattoni, J. Fiche, T. Mutin, D. Chamousset et al., Nanometer resolved single-molecule colocalization of nuclear factors by two-color 907 super resolution microscopy imaging, METHODS, vol.906, 2016.

S. Pageon, P. R. Nicovich, M. Mollazade, T. Tabarin, K. Gaus et al.,

, DoC : a combined cluster detection and colocalization analysis for single-molecule 910 localization microscopy data, vol.27, pp.3627-3636, 2016.

S. Malkusch and M. Heilemann, Extracting quantitative information from single-912 molecule super-resolution imaging data with LAMA -LocAlization Microscopy 913

. Analyzer, Sci. Rep, vol.6, 2016.

F. Levet, SR-Tesseler : a method to segment and quantify localization-based 915 super-resolution microscopy data, Nat. Methods, vol.12, issue.11, 2015.

L. Andronov, I. Orlov, Y. Lutz, and J. Vonesch, ClusterViSu , a method for clustering 917 of protein complexes by Voronoi tessellation in super-resolution microscopy

F. D. Chaumont, Icy: An open bioimage informatics platform for extended 920 reproducible research, Nat. Methods, vol.9, issue.7, pp.690-696, 2012.

E. F. Li, A. Lau, T. J. Morris, L. Guo, and C. B. Fordyce, , p.922

, A Syntaxin 1, G?o, and N-Type Calcium Channel Complex at a Presynaptic Nerve 923 Terminal: Analysis by Quantitative Immunocolocalization, J. Neurosci, vol.24, issue.924, pp.4070-4081, 2004.

J. Brocher, Qualitative and Quantitative Evaluation of Two New Histogram Limiting 926

, 927 with 767 subclusters for GlyR-A647 and 874 subclusters for GlyR-Cy3B, from two 1003 independent experiments), Int. J. Image Process, vol.8, issue.2, pp.30-48, 0200.

C. , Dye reversal experiment: two-color dSTORM imaging of gephyrin in spinal cord neurons 1005 (fixed with cold methanol) that were labeled with two different primary antibodies against 1006

, gephyrin, followed by two combinations of secondary antibodies. The antibody combination, p.1007

, rbGPHN-Cy3B/m7a-A647 (n = 174 synapses) gave a significantly higher spatial correlation 1008 of gephyrin clusters in the two channels than the combination with reversed dyes, p.1009

, Subcluster counts per synapse were systematically higher 1011 when clusters were detected with Cy3B than with Alexa, A647/m7a-Cy3B, n = 148), vol.647, p.1012

, 0001 for both combinations, data are shown as mean ± SD), p.0

, Kolgomorov-Smirnov test, p < 0.0001, n = 321 subclusters for rbGPHN-A647 and 403 for 1015 m7a-Cy3B), while the difference was not detected with the other antibody combination (p = 1016 0.425, n = 578 for rbGPHN-Cy3B and 504 for m7a-A647). Data were from three imaging 1017 experiments using two different spinal cord cultures, Subcluster areas detected by rbGPHN-A647 were significantly larger than by m7a-Cy3B 1014, p.100

F. J. Alvarez, Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses, Brain Res. Bull, vol.129, pp.50-65, 2017.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Identification of clustering artifacts in photoactivated localization microscopy, Nat. Methods, vol.8, pp.527-528, 2011.

J. I. Arellano, R. Benavides-piccione, J. Defelipe, and R. Yuste, Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies, Front. Neurosci, vol.1, pp.131-143, 2007.

K. R. Aubrey and S. Supplisson, Heterogeneous signaling at GABA and glycine co-releasing terminals, Front. Synaptic Neurosci, vol.10, p.40, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913465

G. J. Augustine, F. Santamaria, and K. Tanaka, Local calcium signaling in neurons, Neuron, vol.40, pp.331-346, 2003.

D. Baddeley and J. Bewersdorf, Biological insight from super-resolution microscopy: what we can learn from localization-based images, Annu. Rev. Biochem, vol.87, pp.965-989, 2018.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, pp.1642-1645, 2006.

T. Biederer, P. S. Kaeser, and T. A. Blanpied, Transcellular nanoalignment of synaptic function, Neuron, vol.96, pp.680-696, 2017.

J. N. Bourne and K. M. Harris, Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP, Hippocampus, vol.21, pp.354-373, 2011.

M. J. Broadhead, M. H. Horrocks, F. Zhu, L. Muresan, R. Benavides-piccione et al., PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits, Sci. Rep, vol.6, p.24626, 2016.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, Artifacts in single-molecule localization microscopy, Histochem. Cell Biol, vol.144, pp.123-131, 2015.

I. Chamma, M. Letellier, C. Butler, B. Tessier, K. H. Lim et al., Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin, Nat. Commun, vol.7, p.10773, 2016.

I. Chamma, F. Levet, J. Sibarita, M. Sainlos, and O. Thoumine, Nanoscale organization of synaptic adhesion proteins revealed by singlemolecule localization microscopy, Neurophotonics, vol.3, p.41810, 2016.

H. Chen, A. H. Tang, and T. A. Blanpied, Subsynaptic spatial organization as a regulator of synaptic strength and plasticity, Curr. Opin. Neurobiol, vol.51, pp.147-153, 2018.

G. Choii and J. Ko, Gephyrin: a central GABAergic synapse organizer, Exp. Mol. Med, vol.47, 2015.

D. Choquet and A. Triller, The dynamic synapse, Neuron, vol.80, pp.691-703, 2013.

K. C. Crosby, S. E. Gookin, J. D. Garcia, K. M. Hahm, M. L. Dell&apos;acqua et al., Nanoscale subsynaptic domains underlie the organization of the inhibitory synapse, Cell Rep, vol.26, pp.3-3297, 2019.

A. Dani, B. Huang, J. Bergan, C. Dulac, and X. Zhuang, Super-resolution imaging of chemical synapses in the brain, Neuron, vol.68, pp.843-856, 2010.

J. Y. Delgado and P. R. Selvin, A revised view on the role of surface AMPAR mobility in tuning synaptic transmission: limitations, tools, and alternative views, Front. Synaptic Neurosci, vol.10, p.21, 2018.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localizationbased super-resolution imaging, Nat. Methods, vol.8, pp.1027-1036, 2011.

H. Deschout, F. Cella-zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf et al., Precisely and accurately localizing single emitters in fluorescence microscopy, Nat. Methods, vol.11, pp.253-266, 2014.

E. Dzyubenko, A. Rozenberg, D. M. Hermann, and A. Faissner, Colocalization of synapse marker proteins evaluated by STED-microscopy reveals patterns of neuronal synapse distribution in vitro, J. Neurosci. Methods, vol.273, pp.149-159, 2016.

E. Eggermann, I. Bucurenciu, S. P. Goswami, J. , and P. , Europe PMC funders group nanodomain coupling between Ca 2+ channels and sensors of exocytosis at fast mammalian synapses, Nat. Rev. Neurosci, vol.13, pp.7-21, 2013.

U. Endesfelder, S. Malkusch, B. Flottmann, J. Mondry, P. Liguzinski et al., Chemically induced photoswitching of fluorescent probes-A general concept for super-resolution microscopy, Molecules, vol.16, pp.3106-3118, 2011.

Y. Fukata, A. Dimitrov, G. Boncompain, O. Vielemeyer, F. Perez et al., Local palmitoylation cycles define activity-regulated postsynaptic subdomains, J. Cell Biol, vol.202, pp.145-161, 2013.

Y. Fukazawa and R. Shigemoto, Intra-synapse-type and inter-synapsetype relationships between synaptic size and AMPAR expression, Curr. Opin. Neurobiol, vol.22, pp.446-452, 2012.

O. Ganeshina, R. W. Berry, R. S. Petralia, D. A. Nicholson, and Y. Geinisman, Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions, Neuroscience, vol.125, pp.615-623, 2004.

T. Ghelani and S. J. Sigrist, Coupling the structural and functional assembly of synaptic release sites, Front. Neuroanat, vol.12, p.81, 2018.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze et al., Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density, Biophys. J, vol.99, pp.1303-1310, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00661871

O. O. Glebov, R. E. Jackson, C. M. Winterflood, D. M. Owen, E. A. Barker et al., Nanoscale structural plasticity of the active zone matrix modulates presynaptic function, Cell Rep, vol.18, pp.2715-2728, 2017.

F. L. Groeneweg, C. Trattnig, J. Kuhse, R. A. Nawrotzki, and J. Kirsch, Gephyrin: a key regulatory protein of inhibitory synapses and beyond, Histochem. Cell Biol, vol.150, pp.489-508, 2018.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc, vol.198, pp.82-87, 2000.

K. T. Haas, B. Compans, M. Letellier, T. M. Bartol, D. Grillo-bosch et al., Pre-post synaptic alignment through neuroligin-1, 2018.

, tunes synaptic transmission efficiency, vol.7, p.31755

K. M. Harris and J. K. Stevens, Dendritic spines of CA 1 pyramical cells in the rat hippocampus serial electron microscopy with reference to their biophysical characteristics, J. Neurosci, vol.9, pp.2982-2997, 1989.

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J, vol.91, pp.4256-4272, 2006.

B. High, A. A. Cole, X. Chen, R. , and T. S. , Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses, Front. Synaptic Neurosci, vol.7, p.9, 2015.

M. Hruska, N. Henderson, S. J. Le-marchand, H. Jafri, and M. B. Dalva, Synaptic nanomodules underlie the organization and plasticity of spine synapses, Nat. Neurosci, vol.21, pp.671-682, 2018.

P. Jonas, J. Bischofberger, and J. Sandkühler, Corelease of two fast neurotransmitters at a central synapse, Science, vol.281, pp.419-424, 1998.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission Physical Principles and Setup, Proc. Natl. Acad. Sci. U S A, vol.97, pp.8206-8210, 2000.

S. Kowalczyk, A. Winkelmann, B. Smolinsky, B. Förstera, I. Neundorf et al., Direct binding of GABA A receptor b2 and b3 subunits to gephyrin, Eur. J. Neurosci, vol.37, pp.544-554, 2013.

A. E. Linsalata, X. Chen, C. A. Winters, R. , and T. , Electron tomography on g-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments, J. Comp. Neurol, vol.522, pp.921-936, 2014.

K. K. Liu, M. F. Hagan, and J. E. Lisman, Gradation (approx. 10 size states) of synaptic strength by quantal addition of structural modules, Philos. Trans. R. Soc. B Biol. Sci, vol.372, 2017.

H. D. Macgillavry, Y. Song, S. Raghavachari, and T. A. Blanpied, Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic ampa receptors, Neuron, vol.78, pp.615-622, 2013.

M. Maidorn, S. O. Rizzoli, and F. Opazo, Tools and limitations to study the molecular composition of synapses by fluorescence microscopy, Biochem. J, vol.473, pp.3385-3399, 2016.

H. Maric, J. Mukherjee, V. Tretter, S. J. Moss, and H. Schindelin, Gephyrin-mediated g -aminobutyric acid type A and glycine receptor clustering relies on a common binding site, J. Biol. Chem, vol.286, pp.42105-42114, 2011.

J. Masch, H. Steffens, J. Fischer, J. Engelhardt, J. Hubrich et al., Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling, Proc. Natl. Acad. Sci. U S A, vol.115, pp.8047-8056, 2018.

M. Masugi-tokita, E. Tarusawa, M. Watanabe, E. Molnár, K. Fujimoto et al., Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling, J. Neurosci, vol.27, pp.2135-2144, 2007.

L. Nahidiazar, A. V. Agronskaia, J. Broertjes, B. Van-den-broek, J. et al., Optimizing imaging conditions for demanding multicolor super resolution localization microscopy, PLoS One, vol.11, 2016.

D. Nair, E. Hosy, J. D. Petersen, A. Constals, G. Giannone et al., Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95, J. Neurosci, vol.33, pp.13204-13224, 2013.

P. R. Nicovich, D. M. Owen, and K. Gaus, Turning single-molecule localization microscopy into a quantitative bioanalytical tool, Nat. Protoc, vol.12, pp.453-460, 2017.

D. J. Nieves, K. Gaus, and M. A. Baker, DNA-based super-resolution microscopy: DNA-PAINT, Genes, vol.9, p.621, 2018.

Z. Nusser, S. Cull-candy, and M. Farrant, Differences in synaptic GABA A receptor number underlie variation in GABA mini amplitude, Neuron, vol.19, pp.697-709, 1997.

Z. Nusser, N. Hájos, P. Somogyi, and I. Mody, Increased number of synaptic GABA A receptors underlies potentiation at hippocampal inhibitory synapses, Nature, vol.395, pp.172-177, 1998.

T. Patriarchi, O. R. Buonarati, and J. W. Hell, Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by b2 adrenergic receptor/PKA and Ca 2+ /CaMKII signaling, EMBO J, vol.37, p.99771, 2018.

A. Patrizio, M. Renner, R. Pizzarelli, A. Triller, and C. G. Specht, Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers, Sci. Rep, vol.7, p.10899, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593747

F. Pennacchietti, S. Vascon, T. Nieus, C. Rosillo, S. Das et al., Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of gabaergic synaptic potentiation, J. Neurosci, vol.37, pp.1747-1756, 2017.

K. Perez-de-arce, N. Schrod, S. W. Metzbower, E. Allgeyer, G. K. Kong et al., Topographic mapping of the synaptic cleft into adhesive nanodomains, Neuron, vol.88, pp.1165-1172, 2015.

P. C. Rodriguez, L. G. Almeida, and A. Triller, Continuous rearrangement of the postsynaptic gephyrin scaffolding domain: a super-resolution quantified and energetic approach, BioRxiv, p.33, 2017.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, vol.3, pp.793-795, 2006.

A. Santuy, J. Rodríguez, J. Defelipe, and A. Merchán-pérez, Study of the size and shape of synapses in the juvenile rat somatosensory cortex with 3d electron microscopy, vol.5, 2018.

N. Scheefhals and H. D. Macgillavry, Functional organization of postsynaptic glutamate receptors, Mol. Cell. Neurosci, vol.91, pp.82-94, 2018.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, A guide to superresolution fluorescence microscopy, J. Cell Biol, vol.190, pp.165-175, 2010.

M. Sheng, K. , and E. , The postsynaptic organization of synapses, Cold Spring Harb. Perspect. Biol, vol.3, p.5678, 2011.

Y. Shinohara, H. Hirase, M. Watanabe, M. Itakura, M. Takahashi et al., Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors, Proc. Natl. Acad. Sci. U S A, vol.105, pp.19498-19503, 2008.

C. Sieben, K. M. Douglass, P. Guichard, and S. Manley, Super-resolution microscopy to decipher multi-molecular assemblies, Curr. Opin. Struct. Biol, vol.49, pp.169-176, 2018.

C. G. Specht, Fractional occupancy of synaptic binding sites and the molecular plasticity of inhibitory synapses, Neuropharmacology, 2019.

C. G. Specht, I. Izeddin, and M. Dahan, Visualizing the ultrastructures and dynamics of synapses by single-molecule nanoscopy, Nanoscale Imaging of Synapses. Neuromethods, vol.84, pp.75-91, 2014.

C. G. Specht, I. Izeddin, P. C. Rodriguez, M. Beheiry, P. Rostaing et al., Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites, Neuron, vol.79, pp.308-321, 2013.

Y. Sugiyama, I. Kawabata, K. Sobue, and S. Okabe, Determination of absolute protein numbers in single synapses by a GFP-based calibration technique, Nat. Methods, vol.2, pp.677-684, 2005.

A. H. Tang, H. Chen, T. P. Li, S. R. Metzbower, H. D. Macgillavry et al., A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature, vol.536, pp.210-214, 2016.

E. Tarusawa, K. Matsui, T. Budisantoso, E. Molnar, M. Watanabe et al., Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses, J. Neurosci, vol.29, pp.12896-12908, 2009.

B. Turkowyd, D. Virant, and U. Endesfelder, From single molecules to life: microscopy at the nanoscale, Anal. Bioanal. Chem, vol.408, pp.6885-6911, 2016.

S. Van-de-linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter et al., Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protoc, vol.6, pp.991-1009, 2011.

W. Wegner, A. C. Mott, S. G. Grant, H. Steffens, and K. I. Willig, In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex, Sci. Rep, vol.8, p.219, 2018.

X. Yang and C. G. Specht, Practical guidelines for two-color SMLM of synaptic proteins in cultured neurons,'' in Single Molecule Microscopy in Neurobiology

F. C. Zanacchi, C. Manzo, A. S. Alvarez, N. D. Derr, M. F. Garcia-parajo et al., A DNA origami platform for quantifying protein copy number in super-resolution, Nat. Methods, vol.14, pp.789-792, 2017.