X. Y. Cao, A. Halder, Y. Y. Tang, C. Y. Hou, H. Z. Wang et al., Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices, Mat Chem Front, vol.2, pp.1944-1986, 2018.

M. Chhowalla, D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors, Nat Rev Mater, vol.1, 2016.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials, Nat Nanotechnol, vol.9, pp.768-779, 2014.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello et al., Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat Nanotechnol, vol.9, pp.780-793, 2014.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner et al., Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, vol.3, pp.301-306, 2009.

Y. P. Dan, Y. Lu, N. J. Kybert, Z. T. Luo, and A. T. Johnson, Intrinsic Response of Graphene Vapor Sensors, Nano Lett, vol.9, pp.1472-1475, 2009.

Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films, ACS Nano, vol.4, 1963.

M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials, Nano Lett, vol.13, pp.3664-3670, 2013.

X. Wang, L. J. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett, vol.8, pp.323-327, 2008.

Z. Lin, A. Mccreary, N. Briggs, S. Subramanian, K. H. Zhang et al., , p.3, 2016.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

D. Jariwala, T. J. Marks, and M. C. Hersam, Mixed-dimensional van der Waals heterostructures, Nat Mater, vol.16, pp.170-181, 2017.

L. Lin, B. Deng, J. Y. Sun, H. L. Peng, and Z. F. Liu, Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene, Chem Rev, vol.118, pp.9281-9343, 2018.

J. N. Coleman, M. Lotya, A. O'neill, S. D. Bergin, P. J. King et al., Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, vol.331, pp.568-571, 2011.

Y. Ehernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat Nanotechnol, vol.3, pp.563-568, 2008.

A. Ciesielski and P. Samori, Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation, Advanced Materials, vol.28, pp.6030-6051, 2016.

K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat Mater, vol.13, pp.624-630, 2014.

P. G. Karagiannidis, S. A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde et al., Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks, ACS nano, vol.11, pp.2742-2755, 2017.

C. Knieke, A. Berger, M. Voigt, R. N. Taylor, J. Rohrl et al., Scalable production of graphene sheets by mechanical delamination, Carbon, vol.48, pp.3196-3204, 2010.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo et al., Production and processing of graphene and 2d crystals, Mater Today, vol.15, pp.564-589, 2012.

S. Yang, A. G. Ricciardulli, S. Liu, R. Dong, M. R. Lohe et al., Ultrafast Delamination of Graphite into High-Quality Graphene Using Alternating Currents, Angew Chem Int Edit, vol.56, pp.6669-6675, 2017.

A. Ejigu, I. A. Kinloch, E. Prestat, and R. A. Dryfe, A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors, Journal of Materials Chemistry A, vol.5, pp.11316-11330, 2017.

H. Li, Z. Y. Yin, Q. Y. He, H. Li, X. Huang et al., Fabrication of Single-and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature, Small, vol.8, pp.63-67, 2012.

T. Mosciatti, S. Haar, F. Liscio, A. Ciesielski, E. Orgiu et al., Polymer-Graphene Thin-Film Transistor with Tunable Transport Regimes, ACS Nano, vol.9, pp.2357-2367, 2015.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat Nanotechnol, vol.3, pp.563-568, 2008.

A. M. Abdelkader, A. J. Cooper, R. A. Dryfe, and I. A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite, Nanoscale, vol.7, pp.6944-6956, 2015.

K. Parvez, Z. S. Wu, R. J. Li, X. J. Liu, R. Graf et al., Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc, vol.136, pp.6083-6091, 2014.

C. Y. Su, A. Y. Lu, Y. P. Xu, F. R. Chen, A. N. Khlobystov et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano, vol.5, pp.2332-2339, 2011.

V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid Exfoliation of Layered Materials, Science, vol.340, p.1420, 2013.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene, Nano Lett, vol.8, pp.902-907, 2008.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine structure constant defines visual transparency of graphene, Science, vol.320, pp.1308-1308, 2008.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol.321, pp.385-388, 2008.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat Nanotechnol, vol.6, pp.147-150, 2011.

F. N. Xia, H. Wang, and Y. C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat Commun, p.5, 2014.

Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, vol.317, pp.932-934, 2007.

Y. Zhang, L. Y. Zhang, and C. W. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications, Accounts Chem Res, vol.46, pp.2329-2339, 2013.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat Photonics, vol.4, pp.611-622, 2010.

H. A. Li, Y. Li, A. Aljarb, Y. M. Shi, and L. J. Li, Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability, Chem Rev, vol.118, pp.6134-6150, 2018.

H. Tetlow, J. P. De-boer, I. J. Ford, D. D. Vvedensky, J. Coraux et al., Growth of epitaxial graphene: Theory and experiment, Phys Rep, vol.542, pp.195-295, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00989219

V. Stengl, J. Henych, M. Slusna, and P. Ecorchard, Ultrasound exfoliation of inorganic analogues of graphene, Nanoscale Res Lett, p.9, 2014.

E. Varrla, C. Backes, K. R. Paton, A. Harvey, Z. Gholamvand et al., Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation, Chem Mater, vol.27, pp.1129-1139, 2015.

V. Leon, M. Quintana, M. A. Herrero, J. L. Fierro, A. De-la-hoz et al., Few-layer graphenes from ball-milling of graphite with melamine, Chem Commun, vol.47, pp.10936-10938, 2011.

R. F. Frindt, Single Crystals of MoS2 Several Molecular Layers Thick, Journal of Applied Physics, vol.37, pp.1928-1929, 1966.

R. F. Joensen and S. Roy, Morrison Single-layer MoS2, Mater. Res. Bull, vol.21, pp.457-61, 1986.

X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology, vol.10, pp.269-272, 1999.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh et al., The chemistry of twodimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, vol.5, pp.263-275, 2013.

J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Advances in Physics, vol.18, pp.193-335, 1969.

J. D. Zhou, J. H. Lin, X. W. Huang, Y. Zhou, Y. Chen et al., Z. A library of atomically thin metal chalcogenides. Nature, vol.556, p.355, 2018.

G. Y. Lu, T. R. Wu, Q. H. Yuan, H. S. Wang, H. M. Wang et al., Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy, Nat Commun, p.6, 2015.

E. Golias, M. Krivenkov, A. Varykhalov, J. Sanchez-barriga, and O. Rader, Band Renormalization of Blue Phosphorus on Au, vol.18, issue.111, pp.6672-6678, 2018.

M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, vol.26, pp.992-1005, 2014.

S. S. Chen, Q. Z. Wu, C. Mishra, J. Y. Kang, H. J. Zhang et al., Thermal conductivity of isotopically modified graphene, Nat Mater, vol.11, pp.203-207, 2012.

S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney et al., Graphene-based composite materials, Nature, vol.442, pp.282-286, 2006.

M. Wilson, Electrons in atomically thin carbon sheets behave like massless particles, Phys Today, vol.59, pp.21-23, 2006.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater, vol.6, pp.183-191, 2007.

Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol, vol.7, pp.699-712, 2012.

M. A. Py and R. R. Haering, Structural Destabilization Induced by Lithium Intercalation in Mos2 and Related-Compounds, Can J Phys, vol.61, pp.76-84, 1983.

P. Ganal, W. Olberding, T. Butz, and G. Ouvrard, Soft Chemistry Induced Host Metal Coordination Change from Octahedral to Trigonal Prismatic in 1t-Tas2, Solid State Ionics, vol.59, pp.313-319, 1993.

J. F. Yang, B. Parakash, J. Hardell, and Q. F. Fang, Tribological properties of transition metal dichalcogenide based lubricant coatings, Front Mater Sci, vol.6, pp.116-127, 2012.

S. Bertolazzi, M. Gobbi, Y. D. Zhao, C. Backes, and P. Samori, Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides, Chem Soc Rev, vol.47, pp.6845-6888, 2018.

A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim et al., Emerging Photoluminescence in Monolayer MoS2, Nano Lett, vol.10, pp.1271-1275, 2010.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys Rev Lett, p.105, 2010.

, The crystal structure of molybdenite, J. Am. Chem. Soc, vol.45, pp.1466-1471, 1923.

L. Chen, Y. Hernandez, X. L. Feng, and K. Mullen, From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis, Angew Chem Int Edit, vol.51, pp.7640-7654, 2012.

A. Narita, X. L. Feng, Y. Hernandez, S. A. Jensen, M. Bonn et al., Synthesis of structurally well-defined and liquid-phaseprocessable graphene nanoribbons, Nature Chemistry, vol.6, pp.126-132, 2014.

C. Backes, T. M. Higgins, A. Kelly, C. Boland, A. Harvey et al., Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation, Chem Mater, vol.29, pp.243-255, 2017.

G. Eda, H. E. Unalan, N. Rupesinghe, G. A. Amaratunga, and M. Chhowalla, Field emission from graphene based composite thin films, Appl Phys Lett, p.93, 2008.

E. Kymakis, E. Stratakis, M. M. Stylianakis, E. Koudoumas, and C. Fotakis, Spin coated graphene films as the transparent electrode in organic photovoltaic devices, Thin Solid Films, vol.520, pp.1238-1241, 2011.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang et al., Graphene-based liquid crystal device, Nano Lett, vol.8, pp.1704-1708, 2008.

P. Cataldi, I. S. Bayer, F. Bonaccorso, V. Pellegrini, A. Athanassiou et al., Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplatelet-Bio-Based Composites, Adv Electron Mater, vol.1, 2015.

F. Torrisi, T. Hasan, W. P. Wu, Z. P. Sun, A. Lombardo et al., Inkjet-Printed Graphene Electronics, ACS Nano, vol.6, pp.2992-3006, 2012.

J. T. Li, F. Ye, S. Vaziri, M. Muhammed, M. C. Lemme et al., Efficient Inkjet Printing of Graphene, Advanced Materials, vol.25, pp.3985-3992, 2013.

J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. Mceuen, Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots, Nano Lett, vol.5, pp.287-290, 2005.

C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, and D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials, vol.21, p.2889, 2009.

G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi et al., Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets, Acs Appl Mater Inter, vol.6, pp.7084-7089, 2014.

A. Harvey, X. Y. He, I. J. Godwin, C. Backes, D. Mcateer et al., Production of Ni(OH)(2) nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications, Journal of Materials Chemistry A, vol.4, pp.11046-11059, 2016.

M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-Dimensional Transition Metal Carbides, ACS Nano, vol.6, pp.1322-1331, 2012.

M. Yi and Z. G. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A, vol.3, pp.11700-11715, 2015.

M. V. Bracamonte, G. I. Lacconi, S. E. Urreta, and L. E. Torres, On the Nature of Defects in Liquid-Phase Exfoliated Graphene, J Phys Chem C, vol.118, pp.15455-15459, 2014.

F. Bonaccorso, A. Bartolotta, J. N. Coleman, and C. Backes, 2D-Crystal-Based Functional Inks, Advanced Materials, vol.28, pp.6136-6166, 2016.

X. Y. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. Van-wees et al., Dispersion of graphene in ethanol using a simple solvent exchange method, Chem Commun, vol.46, pp.7539-7541, 2010.

Z. H. Tang, Q. Y. Wei, and B. C. Guo, A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process, Chem Commun, vol.50, pp.3934-3937, 2014.

A. Ciesielski and P. Samori, Graphene via sonication assisted liquid-phase exfoliation, Chem Soc Rev, vol.43, pp.381-398, 2014.

A. Capasso, A. E. Castillo, H. Sun, A. Ansaldo, V. Pellegrini et al., Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach, Solid State Commun, vol.224, pp.53-63, 2015.

J. N. Coleman, Liquid Exfoliation of Defect-Free Graphene, Accounts Chem Res, vol.46, pp.14-22, 2013.

A. O'neill, U. Khan, and J. Coleman, Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size, Chem Mater, vol.24, pp.2414-2421, 2012.

S. Paria and K. C. Khilar, A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface, Adv Colloid Interfac, vol.110, pp.75-95, 2004.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, J. Am. Chem. Soc, vol.131, pp.3611-3620, 2009.

W. Z. Bao, X. H. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, High mobility ambipolar MoS2 fieldeffect transistors: Substrate and dielectric effects, Appl Phys Lett, p.102, 2013.

G. X. Wang, B. Wang, J. Park, Y. Wang, B. Sun et al., Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon, vol.47, pp.3242-3246, 2009.

P. Li, S. H. Bae, Q. Y. Zan, N. H. Kim, and J. H. Lee, One-step process for the exfoliation and surface modification of graphene by electrochemical method, Adv Mater Res-Switz, p.743, 2010.

K. Parvez, R. J. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel et al., Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics, ACS Nano, vol.7, pp.3598-3606, 2013.

K. S. Rao, J. Sentilnathan, H. W. Cho, J. J. Wu, and M. Yoshimura, Soft Processing of Graphene Nanosheets by Glycine-Bisulfate Ionic-Complex-Assisted Electrochemical Exfoliation of Graphite for Reduction Catalysis, Adv Funct Mater, vol.25, pp.298-305, 2015.

F. W. Zeng, Z. H. Sun, X. G. Sang, D. Diamond, K. T. Lau et al., Situ One-Step Electrochemical Preparation of Graphene Oxide Nanosheet-Modified Electrodes for Biosensors, vol.4, pp.1587-1591, 2011.

A. Ambrosi and M. Pumera, Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications, Chem-Eur J, vol.22, pp.153-159, 2016.

N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim et al., Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation, ACS Nano, vol.8, pp.6902-6910, 2014.

M. A. Anwar, A. K. Zainal, T. Kurniawan, Y. P. Asmara, W. S. Harun et al., Electrochemical Exfoliation of Pencil Graphite Core by Salt Electrolyte, IOP Conference Series: Materials Science and Engineering, vol.469, p.12105, 2019.

S. T. Hossain and R. G. Wang, Electrochemical Exfoliation of Graphite: Effect of Temperature and Hydrogen Peroxide Addition, Electrochim Acta, vol.216, pp.253-260, 2016.

Z. Y. Lin, Y. Liu, U. Halim, M. N. Ding, Y. Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics, Nature, vol.562, p.254, 2018.

J. M. Munuera, J. I. Paredes, S. Villar-rodil, M. Ayan-varela, A. Pagan et al., High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types, Carbon, vol.94, pp.729-739, 2015.

T. C. Achee, W. M. Sun, J. T. Hope, S. G. Quitzau, C. B. Sweeney et al., High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation, Sci Rep, vol.8, 2018.

A. Ambrosi and M. Pumera, Exfoliation of layered materials using electrochemistry, Chem Soc Rev, vol.47, pp.7213-7224, 2018.

Y. C. Yang, H. S. Hou, G. Q. Zou, W. Shi, H. L. Shuai et al., Electrochemical exfoliation of graphene-like two-dimensional nanomaterials, Nanoscale, vol.11, pp.16-33, 2019.

A. J. Cooper, N. R. Wilson, I. A. Kinloch, and R. A. Dryfe, Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations, Carbon, vol.66, pp.340-350, 2014.

K. S. Rao, J. Senthilnathan, Y. F. Liu, and M. Yoshimura, Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite, Sci Rep, 2004.

M. K. Kumar, S. Shanthini, and C. Srivastava, Electrochemical exfoliation of graphite for producing graphene using saccharin, Rsc Advances, vol.5, pp.53865-53869, 2015.

N. Parveen, M. O. Ansari, and M. H. Cho, Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance, Rsc Advances, vol.5, pp.17384-17385, 2015.

T. Kuila, P. Khanra, N. H. Kim, J. K. Lim, and J. H. Lee, Effects of sodium hydroxide on the yield and electrochemical performance of sulfonated poly(ether-ether-ketone) functionalized graphene, Journal of Materials Chemistry A, issue.1, pp.9294-9302, 2013.

S. K. Sahoo, A. Mallik, and . Simple, Fast and Cost-Effective Electrochemical Synthesis of Few Layer Graphene Nanosheets, Nano, p.10, 2015.

M. Coros, F. Pogacean, M. C. Rosu, C. Socaci, G. Borodi et al., Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods, vol.6, pp.2651-2661, 2016.

B. Gurzeda, P. Florczak, M. Kempinski, B. Peplinska, P. Krawczyk et al., Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid, Carbon, vol.100, pp.540-545, 2016.

J. M. Munuera, J. I. Paredes, S. Villar-rodil, M. Ayan-varela, A. Martinez-alonso et al., Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes, Nanoscale, vol.8, pp.2982-2998, 2016.

S. Yang, S. Bruller, Z. S. Wu, Z. Y. Liu, K. Parvez et al., Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene, J. Am. Chem. Soc, vol.137, pp.13927-13932, 2015.

C. H. Chen, S. W. Yang, M. C. Chuang, W. Y. Woon, and C. Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation, Nanoscale, vol.7, pp.15362-15373, 2015.

J. M. Munuera, J. I. Paredes, M. Enterria, A. Pagan, S. Villar-rodil et al., Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications, Acs Appl Mater Inter, vol.9, pp.24085-24099, 2017.

X. You, N. Liu, C. J. Lee, and J. J. Pak, An electrochemical route to MoS2 nanosheets for device applications, Mater Lett, vol.121, pp.31-35, 2014.

A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry, ACS Nano, vol.10, pp.11442-11448, 2016.

A. M. Abdelkader, I. A. Kinloch, and R. A. Dryfe, Continuous Electrochemical Exfoliation of Micrometer-Sized Graphene Using Synergistic Ion Intercalations and Organic Solvents, Acs Appl Mater Inter, vol.6, pp.1632-1639, 2014.

Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication, Angew Chem Int Edit, vol.50, pp.11093-11097, 2011.

Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication, Angewandte Chemie, vol.50, pp.11093-11100, 2011.

Z. Y. Xia, G. Giambastiani, C. Christodoulou, M. V. Nardi, N. Koch et al., Synergic Exfoliation of Graphene with Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes, vol.79, pp.439-446, 2014.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta et al., Phaseengineered low-resistance contacts for ultrathin MoS2 transistors, Nat Mater, vol.13, p.13, 2014.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen et al., Photoluminescence from Chemically Exfoliated MoS2, Nano Lett, vol.11, pp.5111-5116, 2011.

Z. Y. Lin, Y. Liu, U. Halim, M. N. Ding, Y. Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics, Nature, vol.562, pp.254-258, 2018.

F. W. Li, M. Q. Xue, X. L. Zhang, L. Chen, G. P. Knowles et al., Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation, Adv Energy Mater, vol.8, 2018.

I. Hamberg and C. G. Granqvist, Evaporated Sn-Doped In2o3 Films -Basic Optical-Properties and Applications to Energy-Efficient Windows, Journal of Applied Physics, vol.60, pp.123-159, 1986.

T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond Sci Tech, vol.20, pp.35-44, 2005.

C. G. Granqvist, Transparent conductors as solar energy materials: A panoramic review, Sol Energ Mat Sol C, vol.91, pp.1529-1598, 2007.

J. X. Geng and H. Jung, Porphyrin Functionalized Graphene Sheets in Aqueous Suspensions: From the Preparation of Graphene Sheets to Highly Conductive Graphene Films, J Phys Chem C, vol.114, pp.8227-8234, 2010.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan et al., Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes, ACS Nano, vol.7, pp.1811-1816, 2013.

A. G. Ricciardulli, S. Yang, X. L. Feng, and P. W. Blom, Solution-Processable High-Quality Graphene for Organic Solar Cells, Acs Appl Mater Inter, vol.9, pp.25412-25417, 2017.

L. H. Hu, F. Y. Wu, C. T. Lin, A. N. Khlobystov, and L. J. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity, Nat Commun, p.4, 2013.

R. L. Liu, L. Wan, S. Q. Liu, L. X. Pan, D. Q. Wu et al., An Interface-Induced Co-Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for High-Performance Supercapacitors, Adv Funct Mater, vol.25, pp.526-533, 2015.

X. M. Li, T. T. Yang, Y. Yang, J. Zhu, L. Li et al., Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application, Adv Funct Mater, vol.26, pp.1322-1329, 2016.

L. Li, X. M. Li, M. D. Du, Y. C. Guo, Y. C. Li et al., Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper, Chem Mater, vol.28, pp.3360-3366, 2016.

D. J. Finn, M. Lotya, G. Cunningham, R. J. Smith, D. Mccloskey et al., Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications, J Mater Chem C, vol.2, pp.925-932, 2014.

C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials, Chem Soc Rev, vol.47, pp.4860-4908, 2018.

M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger et al., Visibility of dichalcogenide nanolayers, Nanotechnology, p.22, 2011.

P. Blake, E. W. Hill, A. H. Castro-neto, K. S. Novoselov, D. Jiang et al., Making graphene visible, Appl Phys Lett, p.91, 2007.

H. Li, J. M. Wu, X. Huang, G. Lu, J. Yang et al., Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy, ACS Nano, vol.7, pp.10344-10353, 2013.

A. Ciesielski, S. Haar, M. El-gemayel, H. F. Yang, J. Clough et al., Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach, Angew Chem Int Edit, vol.53, pp.10355-10361, 2014.

D. M. Sim, M. Kim, S. Yim, M. J. Choi, J. Choi et al., Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption, ACS Nano, vol.9, pp.12115-12123, 2015.

C. Backes, R. J. Smith, N. Mcevoy, N. C. Berner, D. Mccloskey et al., Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets, Nat Commun, p.5, 2014.

D. R. Cummins, U. Martinez, A. Sherehiy, R. Kappera, A. Martinez-garcia et al., Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction, Nat Commun, p.7, 2016.

S. J. Tan, I. Abdelwahab, Z. J. Ding, X. X. Zhao, T. S. Yang et al., Chemical Stabilization of 1T ' Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity, J. Am. Chem. Soc, vol.139, pp.2504-2511, 2017.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat Nanotechnol, vol.8, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers, Phys Rev Lett, p.97, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev B, vol.61, pp.14095-14107, 2000.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Raman scattering from highfrequency phonons in supported n-graphene layer films, Nano Lett, vol.6, pp.2667-2673, 2006.

A. C. Ferrari, J. C. Scardaci, V. Casiraghi, C. Lazzeri, M. Mauri et al., The Raman Fingerprint of Graphene, Phys. Rev. Lett, pp.187401-187404, 2006.

C. Backes, K. R. Paton, D. Hanlon, S. Yuan, M. I. Katsnelson et al., Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets, Nanoscale, vol.8, pp.4311-4323, 2016.

F. Ricciardella, S. Vollebregt, T. Polichetti, M. Miscuglio, B. Alfano et al., Effects of graphene defects on gas sensing properties towards NO2 detection, vol.9, pp.6085-6093, 2017.

E. Mercado, A. Goodyear, J. Moffat, M. Cooke, and R. S. Sundaram, A Raman metrology approach to quality control of 2D MoS2 film fabrication, J Phys D Appl Phys, p.50, 2017.

H. Li, Q. Zhang, C. C. Yap, B. K. Tay, T. H. Edwin et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Adv Funct Mater, vol.22, pp.1385-1390, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00922188

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone et al., Anomalous Lattice Vibrations of Single-and Few-Layer MoS2, ACS Nano, vol.4, pp.2695-2700, 2010.

M. Calandra, Chemically exfoliated single-layer MoS2: Stability, lattice dynamics, and catalytic adsorption from first principles, Phys Rev B, p.88, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004297

J. Bohr, Adhesive tape exfoliation: Why it works for graphene, Europhys Lett, vol.109, 2015.

Y. D. Zhao, J. S. Qiao, Z. H. Yu, P. Yu, K. Xu et al., High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs, p.29, 2017.

X. K. Cai, Y. T. Luo, B. Liu, and H. M. Cheng, Preparation of 2D material dispersions and their applications, Chem Soc Rev, vol.47, pp.6224-6266, 2018.

L. Liu, Z. G. Shen, M. Yi, X. J. Zhang, and S. L. Ma, A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces, Rsc Advances, vol.4, pp.36464-36470, 2014.

M. Yi and Z. G. Shen, Fluid dynamics: an emerging route for the scalable production of graphene in the last five years, vol.6, pp.72525-72536, 2016.

J. N. Coleman, Liquid Exfoliation of Defect-Free Graphene, Acc. Chem. Res, vol.46, pp.14-22, 2013.

A. Ambrosi and M. Pumera, Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications, Chem. Eur. J, vol.22, pp.153-159, 2016.

M. Sevilla, G. A. Ferrero, and A. B. Fuertes, Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite, Chem.Eur. J, vol.22, pp.17351-17358, 2016.

J. L. Liu, H. P. Yang, S. G. Zhen, C. K. Poh, A. Chaurasia et al., A Green Approach to the Synthesis of High-Quality Graphene Oxide Flakes via Electrochemical Exfoliation of Pencil Core, RSC Adv, vol.3, pp.11745-11750, 2013.

A. M. Abdelkader, I. A. Kinloch, and R. A. Dryfe, High-Yield Electro-Oxidative Preparation of Graphene Oxide, Chem. Commun, vol.50, pp.8402-8404, 2014.

J. L. Liu, H. P. Yang, S. G. Zhen, C. K. Poh, A. Chaurasia et al., A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core, vol.3, pp.11745-11750, 2013.

J. Y. Cao, P. He, M. A. Mohammed, X. Zhao, R. J. Young et al., Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide, J. Am. Chem. Soc, vol.139, pp.17446-17456, 2017.

A. Ciesielski and P. Samorì, Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation, Adv. Mater, vol.28, pp.6030-6051, 2016.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo et al., Production and Processing of Graphene and 2d Crystals, Mater. Today, vol.15, pp.564-589, 2012.

K. Parvez, Z. S. Wu, R. J. Li, X. J. Liu, R. Graf et al., Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc, vol.136, pp.6083-6091, 2014.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. F. Li, B. Zhang et al., Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires, Nano Lett, vol.12, pp.5679-5683, 2012.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Lett, vol.11, pp.2396-2399, 2011.

P. Yu, Z. M. Tian, S. E. Lowe, J. C. Song, Z. R. Ma et al., Mechanically-Assisted Electrochemical Production of Graphene Oxide, Chem. Mater, vol.28, pp.8429-8438, 2016.

C. T. Hsieh and J. H. Hsueh, Electrochemical Exfoliation of Graphene Sheets from a Natural Graphite flask in the presence of sulfate ions at different temperatures, RSC Adv, vol.6, pp.96015-96015, 2016.

A. Ejigu, I. A. Kinloch, E. Prestat, and R. A. Dryfe, A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors, J. Mater. Chem. A, vol.5, pp.11316-11330, 2017.

A. Ejigu, B. Miller, I. A. Kinloch, and R. A. Dryfe, Optimisation of electrolytic solvents for simultaneous electrochemical exfoliation and functionalisation of graphene with metal nanostructures, Carbon, vol.128, pp.257-266, 2018.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci, vol.102, pp.10451-10453, 2005.

C. Valles, C. Drummond, H. Saadaoui, C. A. Furtado, M. He et al., Solutions of Negatively Charged Graphene Sheets and Ribbons, J. Am. Chem. Soc, vol.130, pp.15802-15804, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00682016

K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials, vol.13, p.624, 2014.

M. Zhou, T. Tian, X. F. Li, X. D. Sun, J. Zhang et al., Production of Graphene by Liquid-Phase Exfoliation of Intercalated Graphite, Int J Electrochem Sc, vol.9, pp.810-820, 2014.

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi et al., Solution-phase exfoliation of graphite for ultrafast photonics, Phys Status Solidi B, vol.247, pp.2953-2957, 2010.

D. Briggs and J. C. Riviere, Practical Surface Analysis: By Auger and X-ray Photoelectron Spectroscopy, 1983.

M. C. Hsiao, S. H. Liao, M. Y. Yen, C. C. Teng, S. H. Lee et al., Preparation and Properties of a Graphene Reinforced Nanocomposite Conducting Plate, J. Mater. Chem, vol.20, pp.8496-8505, 2010.

S. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chem. Mater, vol.20, pp.6592-6594, 2008.

A. Kovtun, D. Jones, S. Dell'elce, E. Treossi, A. Liscio et al., Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy, Carbon, vol.143, pp.268-275, 2019.

A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies, J. Phys. Chem. C, pp.115-17009, 2011.

A. C. Ferrari and J. Robertson, Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, pp.14095-14107, 2000.

L. G. Cancado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete et al., Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Lett, vol.11, pp.3190-3196, 2011.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett, vol.12, pp.3925-3930, 2012.

J. Annett and G. L. Cross, Self-Assembly of Graphene Ribbons by Spontaneous Self-Tearing and Peeling from a Substrate, Nature, vol.535, pp.271-275, 2016.

A. Lherbier, S. M. Dubois, X. Declerck, Y. M. Niquet, S. Roche et al., Transport Properties of Graphene Containing Structural Defects, Phys. Rev. B, p.86

D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee et al., High-Quality Graphene via Microwave Reduction of Solution-Exfoliated Graphene Oxide, Science, vol.353, pp.1413-1416, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01688227

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The Chemistry of Graphene Oxide, Chem. Soc. Rev, vol.39, pp.228-240, 2010.

R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi et al., Dual Path Mechanism in the Thermal Reduction of Graphene Oxide, J. Am. Chem. Soc, vol.133, pp.17315-17321, 2011.

L. Liu, C. L. Tan, J. W. Chai, S. X. Wu, A. Radko et al., Writing" Graphene from Graphene Oxide, Small, vol.10, pp.3555-3559, 2014.

J. Chen, R. L. Shepherd, J. M. Razal, X. Huang, W. M. Zhang et al., Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures, ACS Appl. Mater. Interfaces, vol.5, pp.7676-7681, 2013.

A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla et al., Structural Evolution during the Reduction of Chemically Derived Graphene Oxide, Nat. Chem, vol.2, pp.581-587, 2010.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao et al., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors, ACS Nano, vol.2, pp.463-470, 2008.

S. Wang, P. K. Ang, Z. Q. Wang, A. L. Tang, J. T. Thong et al., High Mobility, Printable, and Solution-Processed Graphene Electronics, Nano Lett, vol.10, pp.92-98, 2010.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Lett, vol.11, pp.2396-2399, 2011.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol, vol.5, pp.574-578, 2010.

Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat Mater, vol.10, pp.443-449, 2011.

X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper, J Am Chem Soc, vol.133, pp.2816-2819, 2011.

N. Petrone, C. R. Dean, I. Meric, A. M. Van-der-zande, P. Y. Huang et al., Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene, Nano Lett, vol.12, pp.2751-2756, 2012.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat Mater, vol.8, pp.203-207, 2009.

A. Ciesielski, S. Haar, M. El-gemayel, H. Yang, J. Clough et al., Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach, Angew. Chem. Int. Ed, vol.53, pp.10355-10361, 2014.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.10451-10453, 2005.

M. El-gemayel, S. Haar, F. Liscio, A. Schlierf, G. Melinte et al., Leveraging the Ambipolar Transport in Polymeric Field-Effect Transistors via Blending with Liquid-Phase Exfoliated Graphene, Adv. Mater, vol.26, p.4814, 2014.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2, Nano Lett, vol.11, pp.5111-5116, 2011.

J. N. Coleman, M. Lotya, A. O'neill, S. D. Bergin, P. J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, vol.331, pp.568-571, 2011.

X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li et al., Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion, Nano Lett, vol.15, pp.5956-5960, 2015.

Y. Qi, N. Wang, Q. Xu, H. Li, P. Zhou et al., A green route to fabricate MoS2 nanosheets in water-ethanol-CO2, Chem. Commun, vol.51, pp.6726-6729, 2015.

Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication, Angew. Chem. Int. Ed, vol.50, pp.11093-11097, 2011.

X. You, N. Liu, C. J. Lee, and J. J. Pak, An electrochemical route to MoS2 nanosheets for device applications, Mater. Lett, vol.121, pp.31-35, 2014.

M. Chhowalla and G. A. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultralow friction and wear, Nature, vol.407, pp.164-167, 2000.

P. D. Fleischauer and R. Bauer, Chemical and structural effects on the lubrication properties of sputtered MoS2 films, Tribol. Trans, vol.31, pp.239-250, 1988.

D. Yang, S. J. Sandoval, W. M. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Structure of singlemolecular-layer MoS2, Phys. Rev. B, vol.43, pp.12053-12056, 1991.

M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat. Nanotechnol, vol.10, pp.313-318, 2015.

J. Kim, J. S. Kim, T. Kim, H. Choi, J. Lee et al., Phase conversion of chemically exfoliated molybdenum disulfide, Curr. Appl. Phys, vol.17, pp.60-65, 2017.

D. Y. Xu, Y. Z. Zhu, J. P. Liu, Y. Li, W. C. Peng et al., Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites, Nanotechnology, p.385604, 2016.

E. L. Chng, Z. Sofer, and M. Pumera, MoS2 exhibits stronger toxicity with increased exfoliation, Nanoscale, vol.6, pp.14412-14418, 2014.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc, vol.135, pp.10274-10277, 2013.

A. Ambrosi, Z. Sofer, and M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2, vol.11, pp.605-612, 2015.

M. El-garah, S. Bertolazzi, S. Ippolito, M. Eredia, I. Janica et al., MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions, vol.9, pp.33-39, 2018.

L. Jiang, S. Zhang, S. A. Kulinich, X. Song, J. Zhu et al., Optimizing hybridization of 1T and 2H phases in MoS2 monolayers to improve capacitances of supercapacitors, Mater. Res. Lett, vol.3, pp.177-183, 2015.

D. R. Cummins, U. Martinez, A. Sherehiy, R. Kappera, A. Martinez-garcia et al., Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction, Nat. Commun, vol.7, p.11857, 2016.

K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand et al., Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts, ACS Nano, vol.9, pp.6018-6030, 2015.

C. A. Papageorgopoulos and W. Jaegermann, Li intercalation across and along the van der Waals surfaces of MoS2 (0001), Surf. Sci, vol.338, pp.83-93, 1995.

D. Voiry, A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev, vol.44, pp.2702-2712, 2015.

E. Westphal and J. R. Pliego, Absolute solvation free energy of Li + and Na + ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study, J. Chem. Phys, p.74508, 2005.

S. Bertolazzi, S. Bonacchi, G. J. Nan, A. Pershin, D. Beljonne et al., Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols, Advanced Materials, p.29, 2017.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore et al., Effect of disorder on Raman scattering of single-layer MoS2, Phys. Rev. B, p.91, 2015.

S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne et al., Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols, Adv. Mater, vol.29, p.1606760, 2017.

A. G. Kelly, T. Hallam, C. Backes, A. Harvey, A. S. Esmaeily et al., Allprinted thin-film transistors from networks of liquid-exfoliated nanosheets, vol.356, pp.69-72, 2017.

K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand et al., Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts, ACS Nano, vol.9, pp.6018-6030, 2015.

S. L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì, Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors, Chem. Soc. Rev, vol.45, pp.118-151, 2016.

R. {radisavljevic, B. Radenovic, A. Brivio, J. Giacometti, V. Kis et al., Single-layer MoS2 transistors, Nat. Nanotechnol, vol.6, pp.147-150, 2011.

B. Radisavljevic and A. Kis, Measurement of mobility in dual-gated MoS2 transistors, Nat. Nanotechnol, vol.8, pp.147-148, 2013.

B. Radisavljevic and A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2, Nature Materials, vol.12, pp.815-820, 2013.

M. S. Fuhrer and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nature Nanotechnology, issue.8, p.146, 2013.

S. Y. Cho, S. J. Kim, Y. Lee, J. S. Kim, W. B. Jung et al., Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers, ACS Nano, vol.9, pp.9314-9321, 2015.

M. Makarova, Y. Okawa, and M. Aono, Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S-C Dissociation, J Phys Chem C, vol.116, pp.22411-22416, 2012.

J. S. Kim, H. W. Yoo, H. O. Choi, and H. T. Jung, Tunable Volatile Organic Compounds Sensor by Using Thiolated Ligand Conjugation on MoS2, Nano Lett, vol.14, pp.5941-5947, 2014.

M. Jeong, S. Kim, and S. Y. Ju, Preparation and characterization of a covalent edge-functionalized lipoic acid-MoS2 conjugate, Rsc Advances, vol.6, pp.36248-36255, 2016.

C. Tsai, H. Li, S. Park, J. Park, H. S. Han et al., Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution, Nat Commun, vol.8, 2017.

A. Caron, N. Redon, F. Thevenet, B. Hanoune, and P. Coddeville, Performances and limitations of electronic gas sensors to investigate an indoor air quality event, Build Environ, vol.107, pp.19-28, 2016.

Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, Monitoring of Vital Signs with Flexible and Wearable Medical Devices, Advanced Materials, vol.28, pp.4373-4395, 2016.

E. N. Carmona, V. Sberveglieri, A. Ponzoni, V. Galstyan, D. Zappa et al., Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors, vol.238, pp.1224-1230, 2017.

Y. Efremenko and V. M. Mirsky, Virtual sensor array consisting of a single sensor element with variable affinity: An application for analysis of fish freshness, pp.652-657, 2017.

W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi et al., Intrinsic Structural Defects in Monolayer Molybdenum Disulfide, Nano Lett, vol.13, pp.2615-2622, 2013.

H. P. Komsa and A. V. Krasheninnikov, Native defects in bulk and monolayer MoS2 from first principles, Phys Rev B, p.91, 2015.

J. Y. Noh, H. Kim, and Y. S. Kim, Stability and electronic structures of native defects in single-layer MoS2, Phys Rev B, p.89, 2014.

R. R. Chianelli, A. F. Ruppert, S. K. Behal, B. H. Kear, A. Wold et al., The Reactivity of Mos2 Single-Crystal Edge Planes, J Catal, vol.92, pp.56-63, 1985.

C. Gonzalez, B. Biel, and Y. J. Dappe, Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy, Nanotechnology, p.27, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01490962

A. B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro -and photoelectrocatalytic hydrogen evolution, Energ Environ Sci, vol.5, pp.5577-5591, 2012.

B. G. Hinnemann, P. Bonde, B. Jørgensen, K. P. Nielsen, J. Horch et al., Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution, J. Am. Chem. Soc, pp.5308-5309, 2005.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Norskov, S. Helveg et al., One-dimensional metallic edge states in MoS2, Phys Rev Lett, vol.87, 2001.

T. Y. Wang, D. L. Gao, J. Q. Zhuo, Z. W. Zhu, P. Papakonstantinou et al., Size-Dependent Enhancement of Electrocatalytic Oxygen-Reduction and Hydrogen-Evolution Performance of MoS2 Particles, Chem-Eur J, vol.19, pp.11939-11948, 2013.

J. F. Xie, J. J. Zhang, S. Li, F. Grote, X. D. Zhang et al., Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution, J. Am. Chem. Soc, vol.135, pp.1680-1680, 2013.

D. Y. Chung, S. K. Park, Y. H. Chung, S. H. Yu, D. H. Lim et al., Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction, Nanoscale, vol.6, pp.2131-2136, 2014.

J. Benson, M. X. Li, S. B. Wang, P. Wang, and P. Papakonstantinou, Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots, Acs Appl Mater Inter, vol.7, pp.14113-14122, 2015.

C. Gonzalez, B. Biel, and Y. J. Dappe, Adsorption of small inorganic molecules on a defective MoS2 monolayer, Phys Chem Chem Phys, vol.19, pp.9485-9499, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01533715

N. N. Yu, L. Wang, M. Li, X. T. Sun, T. J. Hou et al., Molybdenum disulfide as a highly efficient adsorbent for non-polar gases, Phys Chem Chem Phys, vol.17, pp.11700-11704, 2015.

Y. M. Zeng, S. W. Lin, D. D. Gu, and X. G. Li, Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations, Nanomaterials-Basel, vol.8, 2018.

Y. H. Kim, K. Y. Kim, Y. R. Choi, Y. S. Shim, J. M. Jeon et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles, Journal of Materials Chemistry A, vol.4, pp.6070-6076, 2016.

D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar et al., Sensing Behavior of Atomically Thin-Layered MoS2 Transistors, ACS Nano, vol.7, pp.4879-4891, 2013.

X. Chen, N. C. Berner, C. Backes, G. S. Duesberg, and A. R. Mcdonald, Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols, Angew Chem Int Edit, vol.55, pp.5803-5808, 2016.

Y. G. Yao, L. Tolentino, Z. Z. Yang, X. J. Song, W. Zhang et al., High-Concentration Aqueous Dispersions of MoS2, Adv Funct Mater, vol.23, pp.3577-3583, 2013.

D. M. Sim, H. J. Han, S. Yim, M. J. Choi, J. Jeon et al., Long-Term Stable 2H-MoS2 Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS2, Acs Omega, vol.2, pp.4678-4687, 2017.

X. B. Fan, P. T. Xu, Y. C. Li, D. K. Zhou, Y. F. Sun et al., Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets, J. Am. Chem. Soc, vol.138, pp.5143-5149, 2016.

T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, and S. Horch, Chorkendorff, I. Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts, Science, vol.317, pp.100-102, 2007.

H. Li, G. Lu, Y. L. Wang, Z. Y. Yin, C. X. Cong et al., Mechanical Exfoliation and Characterization of Single-and Few-Layer Nanosheets of WSe2, TaS2, and TaSe2, vol.9, 1974.

J. F. Xie, H. Zhang, S. Li, R. X. Wang, X. Sun et al., Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution, Advanced Materials, vol.25, p.5807, 2013.

H. Yuan, X. H. Liu, L. M. Ma, P. W. Gong, Z. G. Yang et al., High efficiency shear exfoliation for producing high-quality, few-layered MoS2 nanosheets in a green ethanol/water system, Rsc Advances, vol.6, pp.82763-82773, 2016.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan et al., Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions, Advanced Materials, vol.23, p.3944, 2011.

C. Backes, N. C. Berner, X. Chen, P. Lafargue, P. Laplace et al., Functionalization of Liquid-Exfoliated Two-Dimensional 2H-MoS2, Angew Chem Int Edit, vol.54, pp.2638-2642, 2015.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. S. Li et al., Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, J. Am. Chem. Soc, vol.135, pp.10274-10277, 2013.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. W. Chen et al., Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction, Nano Lett, vol.13, pp.6222-6227, 2013.

D. Mcateer, Z. Gholamvand, N. Mcevoy, A. Harvey, E. O'malley et al., Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes, ACS Nano, vol.10, pp.672-683, 2016.

K. C. Santosh, R. C. Longo, R. M. Wallace, and K. Cho, Surface oxidation energetics and kinetics on MoS2 monolayer, Journal of Applied Physics, p.117, 2015.

M. Z. Cai, D. Thorpe, D. H. Adamson, and H. C. Schniepp, Methods of graphite exfoliation, J Mater Chem, vol.22, pp.24992-25002, 2012.

D. A. Boyd, W. H. Lin, C. C. Hsu, M. L. Teague, C. C. Chen et al., Single-step deposition of high-mobility graphene at reduced temperatures, Nat. Commun, p.6, 2015.

F. Schwierz, Graphene transistors, Nat. Nanotechnol, vol.5, pp.487-496, 2010.

Y. C. Mei, M. A. Loth, M. Payne, W. M. Zhang, J. Smith et al., High Mobility Field-Effect Transistors with Versatile Processing from a Small-Molecule Organic Semiconductor, Adv. Mater, vol.25, pp.4352-4357, 2013.

R. Nouchi and Y. Kubozono, Anomalous hysteresis in organic field-effect transistors with SAMmodified electrodes: Structural switching of SAMs by electric field, Org. Electron, vol.11, pp.1025-1030, 2010.

H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn et al., A high-mobility electron-transporting polymer for printed transistors, Nature, vol.457, pp.679-680, 2009.

S. R. Forrest, Exciton formation statistics under electrical injection in organic semiconductor thin films, J. Lumin, vol.110, pp.378-383, 2004.

A. C. Arias, J. D. Mackenzie, I. Mcculloch, J. Rivnay, and A. Salleo, Materials and Applications for Large Area Electronics: Solution-Based Approaches, Chem. Rev, vol.110, pp.3-24, 2010.

S. Basu, F. Adriyanto, and Y. H. Wang, Blending effect of 6,13-bis (triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric, Nanotechnology, p.25, 2014.

J. Huang, D. R. Hines, B. J. Jung, M. S. Bronsgeest, A. Tunnell et al., Polymeric semiconductor/graphene hybrid fieldeffect transistors, Org. Electron, vol.12, pp.1471-1476, 2011.

A. Kumari, I. Singh, N. Prasad, S. K. Dixit, P. K. Rao et al., Improving the efficiency of a poly(3-hexylthiophene)-CuInS2 photovoltaic device by incorporating graphene nanopowder, J. Nanophotonics, vol.8, p.83092, 2014.

T. Mosciatti, S. Haar, F. Liscio, A. Ciesielski, E. Orgiu et al., Polymer-Graphene Thin-Film Transistor with Tunable Transport Regimes, Acs Nano, vol.9, pp.2357-2367, 2015.

T. J. Ha, D. Akinwande, and A. Dodabalapur, Hybrid graphene/organic semiconductor field-effect transistors, Appl. Phys. Lett, p.101, 2012.

X. Huang, X. Y. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev, vol.41, pp.666-686, 2012.

R. Bkakri, O. E. Kusmartseva, F. V. Kusmartsev, M. Song, and A. Bouazizi, Degree of phase separation effects on the charge transfer properties of P3HT:Graphene nanocomposites, J. Lumin, vol.161, pp.264-270, 2015.

D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol, vol.3, pp.101-105, 2008.

E. Orgiu, N. Crivillers, J. Rotzler, M. Mayor, and P. Samori, Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs, J Mater Chem, vol.20, pp.10798-10800, 2010.

L. Ying, B. B. Hsu, H. M. Zhan, G. C. Welch, P. Zalar et al., Regioregular Pyridal[2,1,3]thiadiazole pi-Conjugated Copolymers, J. Am. Chem. Soc, vol.133, pp.18538-18541, 2011.

R. P. Kurta, L. Grodd, E. Mikayelyan, O. Y. Gorobtsov, I. A. Zaluzhnyy et al., Local structure of semicrystalline P3HT films probed by nanofocused coherent X-rays, Phys. Chem. Chem. Phys, vol.17, pp.7404-7410, 2015.

J. P. Rabe and S. Buchholz, Commensurability and Mobility in 2-Dimensional Molecular-Patterns on Graphite, vol.253, pp.424-427, 1991.

C. E. Hamilton, J. R. Lomeda, Z. Z. Sun, J. M. Tour, and A. R. Barron, High-Yield Organic Dispersions of Unfunctionalized Graphene, Nano Lett, vol.9, pp.3460-3462, 2009.

S. Haar, A. Ciesielski, J. Clough, H. F. Yang, R. Mazzaro et al., A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids, vol.11, pp.1691-1702, 2015.

J. Y. Na, B. Kang, D. H. Sin, K. Cho, and Y. D. Park, Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives, Sci Rep, p.5, 2015.

H. W. Luo, C. M. Yu, Z. T. Liu, G. X. Zhang, H. Geng et al., Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci Adv, vol.2, 2016.

M. Eredia, A. Ciesielski, P. Samorì-in-muellen, and K. Feng, Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach, pp.173-193, 2016.

M. Eredia, S. Bertolazzi, T. Leydecker, M. E. Garah, I. Janica et al., Morphology and Electronic Properties of Electrochemically Exfoliated Graphene, vol.8, pp.3347-3355, 2017.

T. Mosciatti, P. Greco, T. Leydecker, M. Eredia, F. Biscarini et al., Asymmetric Injection in Organic Transistors via Direct SAM Functionalization of Source and Drain Electrodes, vol.2, pp.3502-3508, 2017.

A. Aliprandi, T. Moreira, C. Anichini, M. Stoeckel, M. Eredia et al., Hybrid Copper-Nanowire-Reduced-Graphene-Oxide Coatings: A "Green Solution" Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics, vol.29, p.1703225, 2017.

T. Leydecker, M. Eredia, F. Liscio, S. Milita, G. Melinte et al., Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances, Carbon, vol.130, pp.495-502, 2018.

M. E. Garah, S. Bertolazzi, S. Ippolito, M. Eredia, I. Janica et al., MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions, vol.9, pp.33-39, 2018.

S. Janica, A. Buffa, M. Miko?ajczak, D. Eredia, A. Pakulski et al., Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets, Nanoscale, vol.10, pp.23182-23190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985436

A. Aliprandi, M. Eredia, C. Anichini, W. Baaziz, O. Ersen et al., Persian waxing of graphite: towards green large-scale production of graphene, Chem. Commun, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02126149

, CONFERENCES PRESENTATIONS

S. Haar, M. Eredia, M. E. Gemayel, F. Richard, M. Gobbi et al., Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unravelling the Role of the Length of Fatty Acids, pp.1-5, 2015.

M. Eredia, S. Bertolazzi, A. Ciesielski, and P. Samorì, Graphene via electrochemical exfoliation: towards application in electronics, Graphene, pp.19-22, 2016.

M. Eredia, S. Bertolazzi, T. Leydecker, M. E. Garah, I. Janica et al., Morphology and electronic properties of electrochemically exfoliated graphene, 1st European Conference on Chemistry of Two-Dimensional Materials (Chem2DMat), pp.22-26, 2017.

M. Eredia, S. Bertolazzi, T. Leydecker, M. E. Garah, I. Janica et al., Morphology and electronic properties of electrochemically exfoliated graphene

F. Samorì, , 2017.

M. Eredia, S. Bertolazzi, T. Leydecker, A. Ciesielski, and P. Samorì, An in-depth study on the electronic properties of electrochemically exfoliated graphene, pp.25-29, 2017.

, Materials innovation for the global circular economy and sustainable society, M. Eredia, VI World Materials Summit (e-MRS), pp.18-21, 2017.