, Table 8.2: Natural convection of air in a 3D differentially heated cavity. Comparison between sequential and DDM algorithms for uniform grids of 40 × 40 × 40 points

F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), vol.14, pp.615-628, 2010.

R. Aldbaissy, F. Hecht, G. Mansour, and T. Sayah, A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity, Calcolo, vol.55, issue.4, p.44, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972178

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math, vol.81, issue.4, pp.497-520, 1999.

F. Ascione, N. Bianco, R. F. De-masi, F. Rossi, and G. P. Vanoli, Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season, Applied Energy, vol.113, pp.990-1007, 2014.

S. N. Atluri and S. Shen, The meshless local Petrov-Galerkin (MLPG) method. Crest, 2002.

C. Barreneche, L. Navarro, A. Gracia, A. I. Fernández, and L. F. Cabeza, In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications, Renewable energy, vol.85, pp.281-286, 2016.

A. Bejan, Analysis of melting by natural convection in an enclosure, International Journal of Heat and Fluid Flow, vol.10, issue.3, pp.245-252, 1989.

A. Bejan, Convection heat transfer, 2013.

Y. Belhamadia, A. Fortin, and E. Chamberland, Anisotropic mesh adaptation for the solution of the Stefan problem, Journal of Computational Physics, vol.194, issue.1, pp.233-255, 2004.

Y. Belhamadia, A. Fortin, and E. Chamberland, Three-dimensional anisotropic mesh adaptation for phase change problems, Journal of Computational Physics, vol.201, issue.2, pp.753-770, 2004.

Y. Belhamadia, A. S. Kane, and A. Fortin, An enhanced mathematical model for phase change problems with natural convection, International Journal of Numerical Analysis and Modeling, vol.3, issue.2, pp.192-206, 2012.

O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy et al., Melting driven by natural convection A comparison exercise: first results, International Journal of Thermal Sciences, vol.38, issue.1, pp.5-26, 1999.

A. Bhattacharya, A. Kiran, S. Karagadde, and P. Dutta, An enthalpy method for modeling eutectic solidification, Journal of Computational Physics, vol.262, pp.217-230, 2014.

W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification, Annual review of materials research, vol.32, issue.1, pp.163-194, 2002.

H. Borouchaki, M. J. Castro-diaz, P. L. George, F. Hecht, and B. Mohammadi, Anisotropic adaptive mesh generation in two dimensions for CFD, 5th Inter. Conf. on Numerical Grid Generation in Computational Field Simulations, 1996.

G. Brandeis and B. D. Marsh, The convective liquidus in a solidifying magma chamber: a fluid dynamic investigation, Nature, vol.339, issue.6226, p.613, 1989.

A. D. Brent, V. R. Voller, and K. J. Reid, Enthalpy-porosity technique for modeling convectiondiffusion phase change: Application to the melting of a pure metal, Numerical Heat Transfer, vol.13, pp.297-318, 1988.

Y. Cao and A. Faghri, A numerical analysis of phase change problem including natural convection, ASME Journal of Heat Transfer, vol.112, pp.812-815, 1990.

Y. Cao, A. Faghri, and W. S. Chang, A numerical analysis of Stefan problems for generalized multidimensional phase-change structures using the enthalpy transforming model, International Journal of Heat and Mass Transfer, vol.32, issue.7, pp.1289-1298, 1989.

M. Castro-diaz, F. Hecht, and B. Mohammadi, Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations, Int. J. Numer. Methods Fluids, vol.25, pp.475-491, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00074019

M. M. Cerimele, D. Mansutti, and F. Pistella, Numerical modelling of liquid/solid phase transitions: Analysis of a gallium melting test, Computers & fluids, vol.31, issue.4, pp.437-451, 2002.

C. Chabot and L. Gosselin, Solid-liquid phase change around a tube with periodic heating and cooling: Scale analysis, numerical simulations and correlations, International Journal of Thermal Sciences, vol.112, pp.345-357, 2017.

S. Chandrasekhar, Hydrodynamic and hydromagnetic stability. Courier Corporation, 2013.

F. M. Chiesa and R. I. Guthrie, Natural convective heat transfer rates during the solidification and melting of metals and alloy systems, Journal of Heat Transfer, vol.96, issue.3, pp.377-384, 1974.

I. Danaila and F. Hecht, A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates, J. Comput. Physics, vol.229, pp.6946-6960, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00461150

I. Danaila, R. Moglan, F. Hecht, and S. L. Masson, A Newton method with adaptive finite elements for solving phase-change problems with natural convection, J. Comput. Physics, vol.274, pp.826-840, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358437

J. A. Dantzig, Modelling liquid-solid phase changes with melt convection, International Journal for Numerical Methods in Engineering, vol.28, issue.8, pp.1769-1785, 1989.

A. Davaille and C. Jaupart, Thermal convection in lava lakes, Geophysical Research Letters, vol.20, issue.17, pp.1827-1830, 1993.

G. De-vahl and . Davis, Natural convection of air in a square cavity: a benchmark numerical solution, International Journal for numerical methods in fluids, vol.3, issue.3, pp.249-264, 1983.

L. A. Diaz and R. Viskanta, Visualization of the solid-liquid interface morphology formed by natural convection during melting of a solid from below, International Communications in Heat and Mass Transfer, vol.11, issue.1, pp.35-43, 1984.

C. Dobrzynski, MMG3D: User Guide, INRIA, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681813

B. Dudley, BP statistical review of world energy, 2016.

C. M. Elliott, Error analysis of the enthalpy method for the Stefan problem, IMA journal of numerical analysis, vol.7, issue.1, pp.61-71, 1987.

B. R. Esfahani, S. C. Hirata, S. Berti, and E. Calzavarini, Basal melting driven by turbulent thermal convection, Physical Review Fluids, vol.3, issue.5, p.53501, 2018.

N. R. Eyres, D. R. Hartree, J. Ingham, R. J. Sarjant, and J. B. Wagstaff, The calculation of variable heat flow in solids, Phil. Trans. R. Soc. Lond. A, vol.240, issue.813, pp.1-57, 1946.

M. Fabbri and V. R. Voller, The phase-field method in the sharp interface limit: a comparison between model potential, Journal of Computational Physics, vol.130, pp.256-265, 1997.

B. Favier, J. Purseed, and L. Duchemin, Rayleigh-Bénard convection with a melting boundary, Journal of Fluid Mechanics, vol.858, pp.437-473, 2019.

P. J. Frey and P. L. George, Maillages. Hermès, 1999.

D. K. Gartling, Finite element analysis of convective heat transfer problems with change of phase, Computer Methods in Fluids, pp.257-284, 1980.

C. Gau and R. Viskanta, Melting and solidification of a metal system in a rectangular cavity, International Journal of Heat and Mass Transfer, vol.27, issue.1, pp.113-123, 1984.

C. Gau, R. Viskanta, and C. Ho, Flow visualization during solid-liquid phase change heat transfer II, International Communications in Heat and Mass Transfer, vol.10, issue.3, pp.183-190, 1983.

B. Gebhart and J. C. Mollendorf, A new density relation for pure and saline water, Deep Sea Res, vol.24, pp.831-848, 1977.

P. L. George and H. Borouchaki, Delaunay triangulation and meshing, 1998.

F. Giangi and M. Stella, Melting of a pure metal on a vertical wall: numerical simulation, Numerical Heat Transfer: Part A: Applications, vol.38, pp.193-208, 2000.

M. Giangi, T. A. Kowalewski, F. Stella, and E. Leonardi, Natural convection during ice formation: numerical simulation vs. experimental results, Computer Assisted Mechanics and Engineering Sciences, vol.7, pp.321-342, 2000.

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, 1986.

D. Gobin and P. L. Quéré, Melting from an isothermal vertical wall. Synthesis of numerical comparison exercise, Computer Assisted Mechanics and Engineering Sciences, vol.7, issue.3, pp.289-306, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01175159

W. Gong, K. Johannes, and F. Kuznik, Numerical simulation of melting with natural convection based on lattice Boltzmann method and performed with CUDA enabled GPU, Communications in Computational Physics, vol.17, issue.5, pp.1201-1224, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01290479

Z. Gong and A. S. Mujumdar, Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below, International Journal of Heat and Mass Transfer, vol.41, issue.17, pp.2573-2580, 1998.

S. Grossmann and D. Lohse, Scaling in thermal convection: a unifying theory, Journal of Fluid Mechanics, vol.407, pp.27-56, 2000.

S. C. Gupta, A moving grid numerical scheme for multi-dimensional solidification with transition temperature range, Computer methods in applied mechanics and engineering, vol.189, issue.2, pp.525-544, 2000.

J. N. Hale and R. Viskanta, Solid-liquid phase-change heat transfer and interface motion in materials cooled or heated from above or below, International Journal of Heat and Mass Transfer, vol.23, issue.3, pp.283-292, 1980.

N. Hannoun, V. Alexiades, and T. Z. Mai, Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side, Numerical Heat Transfer: Part B: Fundamentals, vol.44, issue.3, pp.253-276, 2003.

N. Hannoun, V. Alexiades, and T. Z. Mai, A reference solution for phase change with convection, International Journal for Numerical Methods in Fluids, vol.48, issue.11, pp.1283-1308, 2005.

F. Hecht, New developments in Freefem++, Journal of Numerical Mathematics, vol.20, pp.251-266, 2012.

F. Hecht and B. Mohammadi, Mesh Adaptation by Metric Control for Multi-scale Phenomena and Turbulence, vol.97, p.859, 1997.

F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuke, FreeFem++ (manual). www.freefem.org, 2007.

C. J. Ho and C. H. Chu, Periodic melting within a square enclosure with an oscillatory surface temperature, International journal of heat and mass transfer, vol.36, issue.3, pp.725-733, 1993.

C. Ho and R. Viskanta, Inward solid-liquid phase-change heat transfer in a rectangular cavity with conducting vertical walls, International journal of heat and mass transfer, vol.27, issue.7, pp.1055-1065, 1984.

M. J. Hosseini, M. Rahimi, and R. Bahrampoury, Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system, International Communications in Heat and Mass Transfer, vol.50, pp.128-136, 2014.

P. Jany and A. Bejan, Scaling theory of melting with natural convection in an enclosure, International Journal of Heat and Mass Transfer, vol.31, issue.6, pp.1221-1235, 1988.

S. Kalnaes and B. Jelle, Phase change materials and products for building applications: a state-of-theart review and future research opportunities, Energy and Buildings, vol.94, pp.150-176, 2015.

A. C. Kheirabadi and D. Groulx, The Effect of the Mushy-Zone Constant on Simulated Phase Change Heat Transfer, Proceedings of CHT-15, ICHMT International Symposium on Advances in Computational Heat Transfer, Ichmt Digital Library Online, 2015.

A. König-haagen, E. Franquet, E. Pernot, and D. Brüggemann, A comprehensive benchmark of fixedgrid methods for the modeling of melting, International Journal of Thermal Sciences, vol.118, pp.69-103, 2017.

T. Kousksou, M. Mahdaoui, A. Ahmed, and A. A. Msaad, Melting over a wavy surface in a rectangular cavity heated from below, Energy, vol.64, pp.212-219, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02153525

A. Kowalewski and D. Gobin, Phase change with convection: modelling and validation, 2004.

T. A. Kowalewski and M. Rebow, Freezing of water in differentially heated cubic cavity, International Journal of Computational Fluid Dynamics, vol.11, pp.193-210, 1999.

S. Laizet and E. Lamballais, High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy, Journal of Computational Physics, vol.228, issue.16, pp.5989-6015, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00459942

G. Lamé and B. P. Clapeyron, Mémoire sur la solidification par refroidissement d'un globe liquide, Annales Chimie Physique, vol.47, pp.250-256, 1831.

P. and L. Queré, Accuratte solutions to the square thermally driven cavity at high Rayleigh number, Computational Fluids, vol.20, pp.24-41, 1991.

P. , L. Quéré, and M. Behnia, From onset of unsteadiness to chaos in a differentially heated square cavity, Journal of fluid mechanics, vol.359, pp.81-107, 1998.

P. , L. Quéré, and T. A. De-roquefortt, Computation of natural convection in two-dimensional cavities with Chebyshev polynomials, Journal of Computational Physics, vol.57, issue.2, pp.210-228, 1985.

P. , L. Quéré, and D. Gobin, A note on possible flow instabilities in melting from the side, International journal of thermal sciences, vol.38, issue.7, pp.595-600, 1999.

C. H. Li, A finite-element front-tracking enthalpy method for Stefan Problems, IMA Journal of Numerical Analysis, vol.3, pp.87-107, 1983.

C. Liu and D. Groulx, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system, International Journal of Thermal Sciences, vol.82, pp.100-110, 2014.

K. Luo, F. Yao, H. Yi, and H. Tan, Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials, Applied Thermal Engineering, vol.86, pp.238-250, 2015.

Z. Ma and Y. Zhang, Solid velocity correction schemes for a temperature transforming model for convection phase change, International Journal For Numerical Methods Heat Fluid Flow, vol.16, issue.11, pp.204-225, 2006.

S. Madruga and J. Curbelo, Dynamic of plumes and scaling during the melting of a Phase Change Material heated from below, International Journal of Heat and Mass Transfer, vol.126, pp.206-220, 2018.

W. V. Malkus, The heat transport and spectrum of thermal turbulence, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.225, pp.196-212, 1161.

K. Mathura and D. J. Krishna, Influence of Mushy Zone Constant on Thermohydraulics of a PCM, 2017. International Conference on Recent Advancement in Air Conditioning and Refrigeration, vol.109, pp.10-12, 2016.

T. Michalek, A. T. Kowalewski, and B. Sarler, Natural convection for anomalous density variation of water: numerical benchmark. Progress in Computational Fluid Dynamics, an International Journal, vol.5, issue.3-5, pp.158-170, 2005.

T. Michalek and T. A. Kowalewski, Simulations of the water freezing process -Numerical benchmarks, Task Quarterly, vol.7, issue.3, pp.389-408, 2003.

, Ministère de la transitionécologique et solidaire. Chiffres clés de l'énergie,édition 2018. Service de la donnée et desétudes statistiques, 2018.

R. Moglan, Modeling and numerical simulation of flow and heat phenomena in a telecommunication outdoor cabinet, 2013.

B. Mohammadi and O. Pironneau, Applied Shape Design for Fluids, 2000.

K. Morgan, R. Lewis, and O. Zienkiewicz, An improved algrorithm for heat conduction problems with phase change, International Journal for Numerical Methods in Engineering, vol.12, pp.1191-1195, 1978.

K. Wittigand and P. A. Nikrityuk, Three-dimensionality of fluid flow in the benchmark experiment for a pure metal melting on a vertical wall, IOP Conference Series: Materials Science and Engineering, vol.27, p.12054, 2012.

R. Nourgaliev, H. Luo, B. Weston, A. Anderson, S. Schofield et al., Fullyimplicit orthogonal reconstructed Discontinuous Galerkin method for fluid dynamics with phase change, Journal of Computational Physics, vol.305, pp.964-996, 2016.

M. Okada, Analysis of heat transfer during melting from a vertical wall, International Journal of Heat and Mass Transfer, vol.27, pp.2057-2066, 1984.

A. P. Omojaro and C. Breitkopf, Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus, vol.53, pp.2223-2240, 2017.

O. Pironneau, J. Liou, and T. Tezduyar, Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equations with time-dependent domains, Comput. Methods Appl. Mech. Engrg, vol.100, pp.117-141, 1992.

C. Polashenski, D. Perovich, and Z. Courville, The mechanisms of sea ice melt pond formation and evolution, Journal of Geophysical Research: Oceans, vol.117, issue.C1, 2012.

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 1994.

M. A. Rady and A. K. Mohanty, Natural convection during melting and solidification of pure metals in a cavity, Numerical Heat Transfer, Part A Applications, vol.29, issue.1, pp.49-63, 1996.

A. Rakotondrandisa, I. Danaila, and L. Danaila, Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting, International Journal of Heat and Fluid Flow, vol.76, pp.57-71, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02011547

P. J. Roache, Verification and Validation in Computational Science and Engineering, 1998.

M. E. Rose, A method for calculating solutions of parabolic equations with a free boundary, Mathematics of Computation, pp.249-256, 1960.

L. Rubinstein, On the solution of Stefan's problem, Bull. Acad. Sci. URSS. Sér. Géograph. Géophys.(Izvestia Akad. Nauk SSSR), vol.11, pp.37-54, 1947.

T. J. Scanlon and M. T. Stickland, A numerical analysis of buoyancy-driven melting and freezing, International Journal of Heat and Mass Transfer, vol.47, pp.429-436, 2004.

T. M. Shih, C. H. Tan, and B. C. Hwang, Effect of grid staggering on numerical schemes, International Journal for Numerical Methods in Fluids, vol.9, issue.2, pp.193-212, 1989.

W. Shyy, H. S. Udaykurnar, M. M. Rao, and R. W. Smith, Computational fluid dynamics with moving boundaries, 1996.

I. Singer-loginova and H. M. Singer, The phase field technique for modeling multiphase materials, Reports on progress in physics, vol.71, issue.10, p.106501, 2008.

E. M. Sparrow, P. V. Patankar, and S. Ramadhyani, Analysis of melting in the presence of natural convection in the melt region, Journal of Heat Transfer, vol.99, issue.4, pp.520-526, 1977.

J. Stefan, Uber einige probleme der theorie der warmeletung, Sitzer. Wien. Akad. Math. Naturw, vol.98, pp.473-484, 1889.

J. Stefan, Über die Theorie der Eisbildung, insbesondereüber die Eisbildung im Polarmeere, Annalen der Physik, vol.278, issue.2, pp.269-286, 1891.

F. Stella and M. Giangi, Modelling Methodologies for Convection-Diffusion Phase-Change Problems, Phase change with convection: modelling and validation, pp.219-272, 2004.

C. R. Swaminathan and V. R. Voller, Towards a general numerical scheme for solidification systems, International journal of heat and mass transfer, vol.40, issue.12, pp.2859-2868, 1997.

R. Temam, Navier-Stokes equations and nonlinear functional analysis, 1983.

R. T. Tenchev, J. A. Mackenzie, T. J. Scanlon, and M. T. Stickland, Finite element moving mesh analysis of phase change problems with natural convection, International Journal of Heat and Fluid Flow, vol.26, issue.4, pp.597-612, 2005.

S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous incompressible, multifluid flows, Journal of Computational Physics, vol.100, pp.25-37, 1992.

G. M. Vasil and M. R. Proctor, Dynamic bifurcations and pattern formation in melting-boundary convection, Journal of Fluid Mechanics, vol.686, pp.77-108, 2011.

G. Vergez, I. Danaila, S. Auliac, and F. Hecht, A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation, Comput. Phys. Comm, vol.209, pp.144-162, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277660

R. Viskanta, Natural convection in melting and solidification, Natural Convection: Fundamentals and Applications, pp.845-877, 1985.

V. R. Voller, An overview of numerical methods for solving phase change problems, Advances in Numerical Heat Transfer, pp.341-375, 1996.

V. R. Voller, M. Cross, and N. C. Markatos, An enthalpy method for convection/diffusion phase change, Int. J. Numer. Meth. Eng, vol.24, pp.271-284, 1987.

V. R. Voller, P. Felix, and C. R. Swaminathan, Cyclic phase change with fluid flow. Int. Journ. of Num. Methods for Heat and Fluid Flow, vol.6, pp.57-64, 1996.

V. R. Voller and C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, vol.30, pp.1709-1719, 1987.

S. Wakashima and T. S. Saitoh, Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method, International Journal of Heat and Mass Transfer, vol.47, issue.4, pp.853-864, 2004.

S. Wang, A. Faghri, and T. L. Bergman, A comprehensive numerical model for melting with natural convection, International Journal of Heat and Mass Transfer, vol.53, 1986.

S. Wang, A. Faghri, and T. L. Bergman, Numerical modeling of alternate melting and solidification, Numerical Heat Transfer, vol.58, issue.6, pp.393-418, 2010.

J. Woodfield, M. Alvarez, B. Gamez-vargas, and R. Ruiz-baier, Stability and finite element approximation of phase change models for natural convection in porous media, Journal of Computational and Applied Mathematics, vol.360, pp.117-137, 2019.

L. S. Yao and J. Prusa, Melting and freezing, Advances in Heat transfer, vol.19, pp.1-95, 1989.

Y. Zhang and I. Danaila, Existence and numerical modelling of vortex rings with elliptic boundaries, Applied Mathematical Modelling, vol.37, pp.4809-4824, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02011557

N. Zhu, Z. Ma, and S. Wang, Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Conversion and Management, vol.50, pp.3169-3181, 2009.

A. G. Zimmerman and J. Kowalski, Une discrétisation spatiale deséquations utilisant deséléments finis de Taylor-Hood,éléments finis P2 pour la vitesse etéléments finis P1 pour la pression, est appliquée, avec un schéma d'intégration en temps implicite d'ordre deux (GEAR). Le sytème d'équations non-linéaires est résolu par un algorithme de Newton. Les méthodes numériques sont implémentées avec le logiciel libre FreeFem++ (www.freefem.org), disponible pour tout système d'exploitation. Les programmes sont distribués sous forme de logiciel libre, sous la forme d'une forme de toolbox simple d'utilisation, permettantà l'utilisateur de rajouter d'autres configurations numériques pour des problèmes avec changement de phase. Nous présentons dans ce manuscrit des cas de validation du code de calcul, Monolithic Simulation of Convection-Coupled Phase-Change: Verification and Reproducibility, vol.124, pp.177-197, 2017.

. Mots-clefs-;-navier-stokes, . Boussinesq, . Carman-kozeny, and . Freefem++, Abstract In this thesis we develop a numerical simulation tool for computing two and three-dimensional liquid-solid phase-change systems involving natural convection. It consists of solving the incompressible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh adaptivity. A single-domain approach is applied by solving the same set of equations over the whole domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero the velocity in the solid phase through an artificial mushy region. Model equations are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete equations are solved using a Newton algorithm. The numerical method is implemented with the finite elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code new numerical algorithms for similar problems with phase-change. We present several validations, by simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and finally, a water freezing case. Keywords : Navier-Stokes, Boussinesq, enthalpy-porosity method, single-domain method, Carman-Kozeny, finite-elements