K. J. Livak, The average ?Ct value of the control group is subtracted from the sample to derive a ???Ct value. The expression of each gene is evaluated by 2???Ct, according to Livak and Schmittgen, 2001.

, List of primers used in this study

R. Igf-1ea,

/. Igf-1ec,

R. Igf-1,

R. Myogenin and R. Myod,

M. ,

R. Igf-1ea,

/. Igf-1ec,

R. Igf-1,

R. Myogenin and R. Myod,

M. ,

R. Vinculin and R. Skeletal-actin,

R. Vinculin and R. Cox2,

, In order to evaluate the concentration of factors secreted by the cell cultures in every condition, ELISA quantikine kits MG100

, Mouse/Rat IGF-1, DAC00B Human/Mouse Activin A, DGDF80 gdf-8/myostatin, DFN00 from R&D systems are used

, Proteins are denatured with a Bolt kit (Molecular probes, Invitrogen). The running period is 20 min at 200V with the Blot kit, and the transfer period is 20 min at 100V. Membrane of nitrocellulose is incubated with blocking buffer TBS-Tween with 5% not fat milk, Samples are treated with lysis buffer RIPA which contains Tris-Cl 50 Mm pH=7.5, 150Mm NaCl, 1% NP40, 0.5% desoxyclorate de sodium

M. Affolter, J. Montagne, U. Walldorf, J. Groppe, U. Kloter et al., The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development, Dev. Camb. Engl, vol.120, pp.743-753, 1994.

H. J. Andreyev, A. R. Norman, J. Oates, and D. Cunningham, Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies?, Eur J Cancer, vol.34, issue.4, pp.503-512, 1998.

J. M. Argilés, F. J. López-soriano, M. Toledo, A. Betancourt, R. Serpe et al., The cachexia score (CASCO): a new tool for staging cachectic cancer patients, J Cachexia Sarcopenia Muscle, vol.2, issue.2, pp.87-93, 2011.

Z. Aversa, P. Costelli, and M. Muscaritoli, Cancer-induced muscle wasting: latest findings in prevention and treatment, Ther Adv Med Oncol, vol.9, issue.5, pp.369-382, 2017.

B. Klimek, M. Aydogdu, T. Link, M. J. Pons, M. Koniaris et al., Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia, Biochem Biophys Res Commun, vol.391, issue.3, pp.1548-54, 2010.

L. M. Bilezikjian, A. L. Blount, A. M. Leal, C. J. Donaldson, W. H. Fischer et al., Autocrine/paracrine regulation of pituitary function by Activin, inhibin and follistatin, Mol Cell Endocrinol, vol.225, issue.1-2, pp.29-36, 2004.

A. Bonetto, T. Aydogdu, J. X. Zhang, Z. Zhan, R. Puzis et al., JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia, Am J Physiol Endocrinol Metab, vol.1, issue.3, pp.410-431, 2012.

A. Bonetto, F. Penna, V. G. Minero, P. Reffo, G. Bonelli et al., Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumorbearing mice, Curr Cancer Drug Targets, vol.9, issue.5, pp.608-624, 2009.

S. Busquets, M. Toledo, M. Orpí, D. Massa, M. Porta et al., , 2012.

, Myostatin blockage using ActIIBR antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance, J Cachexia Sarcopenia Muscle, vol.3, issue.1, pp.37-43

J. N. Cash, C. A. Rejon, A. C. Mcpherron, D. J. Bernard, and T. B. Thompson, The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding, EMBO J, vol.2, issue.17, pp.2662-76, 2009.

B. Cen, A. Selvaraj, R. C. Burgess, J. K. Hitzler, Z. Ma et al., Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes, Mol. Cell. Biol, vol.23, pp.6597-6608, 2003.

A. Chacon-cabrera, C. Fermoselle, A. J. Urtreger, M. Mateu-jimenez, M. J. Diament et al., Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness, J Cell Physiol, vol.229, issue.11, pp.1660-72, 2014.

J. Chai and A. S. Tarnawski, Serum response factor: discovery,biochemistry, biological roles and implications for tissue injury healing, J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc, vol.53, pp.147-157, 2002.

B. A. Clarke, D. Drujan, M. S. Willis, L. O. Murphy, R. A. Corpina et al., The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle, Cell Metab, vol.6, pp.376-385, 2007.

C. Charvet, C. Houbron, A. Parlakian, J. Giordani, C. Lahoute et al., New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways, Mol. Cell. Biol, vol.26, pp.6664-6674, 2006.

J. L. Chen, K. L. Walton, C. E. Winbanks, K. T. Murphy, R. E. Thomson et al., Elevated expression of Activins promotes muscle wasting and cachexia, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.28, pp.1711-1723, 2014.

E. E. Creemers, E. Sutherland, S. Cohen, J. A. Nathan, and A. L. Goldberg, Muscle wasting in disease: molecular mechanisms and promising therapies, Nat Rev Drug Discov, vol.14, issue.1, pp.58-74, 2015.

S. Cohen, J. J. Brault, S. P. Gygi, D. J. Glass, D. M. Valenzuela et al., During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation, J. Cell Biol, vol.185, pp.1083-1095, 2009.

D. Coletti, V. Moresi, S. Adamo, M. Molinaro, and D. Sassoon, Tumor necrosis factor-alpha gene transfer induces cachexia and inhibits muscle regeneration, Genesis, vol.43, issue.3, pp.120-128, 2005.

L. Collard, G. Herledan, A. Pincini, A. Guerci, V. Randrianarison-huetz et al., Nuclear actin and myocardin-related transcription factors control disuse muscle atrophy through regulation of SRF activity, J. Cell Sci, vol.127, pp.5157-5163, 2014.

P. Costelli, M. Muscaritoli, M. Bossola, F. Penna, P. Reffo et al., IGF-1 is downregulated in experimental cancer cachexia, Am J Physiol Regul Integr Comp Physiol, vol.291, issue.3, pp.674-83, 2006.

D. Jeffrey, S. , S. Michael, E. , A. Swarnali et al., , 2008.

, Chemotherapy-induced muscle wasting: association with NF-?B and cancer cachexia, Basic Applied Myology, vol.18, issue.5, pp.139-148

J. Dopie, K. P. Skarp, E. K. Rajakylä, K. Tanhuanpää, and M. K. Vartiainen, Active maintenance of nuclear actin by importin 9 supports transcription, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.544-552, 2012.

A. Fleige, S. Alberti, L. Gröbe, U. Frischmann, R. Geffers et al., Serum response factor contributes selectively to lymphocyte development, J. Biol. Chem, vol.282, pp.24320-24328, 2007.

Y. S. Gallot, A. C. Durieux, J. Castells, M. M. Desgeorges, B. Vernus et al., Myostatin gene inactivation prevents skeletal muscle wasting in cancer, Cancer Res, vol.15, issue.24, pp.7344-56, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01837578

C. Gauthier-rouviere, M. Vandromme, D. Tuil, N. Lautredou, M. Morris et al., Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts, Mol. Biol. Cell, vol.7, pp.719-729, 1996.

O. Geneste, C. Jw, and R. Treisman, LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics, J. Cell Biol, vol.157, pp.831-838, 2002.

A. Guerci, C. Lahoute, S. Hébrard, L. Collard, D. Graindorge et al., SRF-Dependent Paracrine Signals Produced by Myofibers Control Satellite Cell-Mediated Skeletal Muscle Hypertrophy, Cell Metab, vol.15, pp.25-37, 2012.

D. C. Guttridge, M. W. Mayo, L. V. Madrid, C. Y. Wang, and A. S. Baldwin, NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia, Science, vol.29, issue.5488, pp.2363-2369, 2000.

A. Hakkinen, A. Pakarinen, P. Hannonen, H. Kautiainen, K. Nyman et al., Effects of prolonged combined strength and endurance training on physical fitness, body composition and serum hormones in women with rheumatoid arthritis and in healthy controls, Clin Exp Rheumatol, vol.23, issue.4, pp.505-512, 2005.

H. Q. Han, X. Zhou, W. E. Mitch, and A. L. Goldberg, Myostatin/Activin pathway antagonism: molecular basis and therapeutic potential, Int J Biochem Cell Biol, vol.45, issue.10, pp.2333-2380

J. S. Hansen, S. Rutti, and C. Arous, Circulating follistatin is liver-derived and regulated by the glucagon-to-insulin ratio, J Clin Endocrinol Metab, vol.101, issue.2, pp.550-560, 2016.

W. A. He, E. Berardi, V. M. Cardillo, S. Acharyya, P. Aulino et al., NF-?B-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia, J Clin Invest, vol.123, issue.11, pp.4821-4856, 2013.

H. Hirano and Y. Matsuura, Sensing actin dynamics: structural basis for Gactin-sensitive nuclear import of MAL, Biochem. Biophys. Res. Commun, vol.414, pp.373-378, 2011.

C. Holick, P. A. Newcomb, A. Trentham-dietz, L. Titus-ernstoff, A. J. Bersch et al., Physical activity and survival after diagnosis of invasive breast cancer, Cancer Epidemiol Biomarkers Prev, vol.17, issue.2, pp.379-86, 2008.

M. D. Holmes, W. Y. Chen, D. Feskanich, C. H. Kroenke, and G. A. Colditz, Physical activity and survival after breast cancer diagnosis, vol.25, pp.2479-86, 2005.

M. L. Irwin, A. W. Smith, A. Mctiernan, R. Ballard-barbash, K. Cronin et al., Physical activity and survival after diagnosis of invasive breast cancer, J Clin Oncol, vol.26, issue.24, pp.3958-64, 2008.

F. E. Johansen and P. R. , Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs, Mol. Cell. Biol, vol.13, pp.4640-4647, 1993.

H. Koegel, L. Von-tobel, M. Schäfer, S. Alberti, E. Kremmer et al., Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice, J. Clin. Invest, vol.119, pp.899-910, 2009.

K. Kuwahara, T. Barrientos, G. Pipes, S. Li, and E. N. Olson, , 2005.

, Muscle specific signaling mechanism that links actin dynamics to serum response factor, Mol. Cell. Biol, vol.25, pp.3173-3181

L. N. L'honore-a, M. Vandromme, P. Turowski, G. Carnac, and A. Fernandez, MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration, Mol. Biol. Cell, vol.14, pp.2151-2162, 2003.

C. Lepper, T. A. Partridge, and F. C. , An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Dev. Camb. Engl, vol.138, pp.3639-3646, 2011.

J. Li, X. Zhu, M. Chen, L. Cheng, D. Zhou et al., Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8916-8921, 2005.

J. A. Meyerhardt, E. L. Giovannucci, M. D. Holmes, A. T. Chan, J. A. Chan et al., Influence of pre-and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study, J Clin Oncol, vol.24, issue.22, pp.3527-3561, 2006.

A. Minty and K. L. , Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif, Mol. Cell. Biol, vol.6, pp.2125-2136, 1986.

M. M. Lawson, J. A. , M. S. Hutcheson, D. A. , and K. G. , Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Dev. Camb. Engl, vol.138, pp.3625-3637, 2011.

K. J. Ladner, M. A. Caligiuri, and D. C. Guttridge, Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products, J Biol Chem, vol.278, issue.4, pp.2294-303, 2002.

R. C. Langen, A. M. Schols, M. C. Kelders, J. L. Van-der-velden, E. F. Wouters et al., Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation, Am J Respir Cell Mol Biol, vol.35, issue.6, pp.689-96, 2006.

B. Langley, M. Thomas, A. Bishop, M. Sharma, S. Gilmour et al., Myostatin inhibits myoblast differentiation by downregulating MyoD expression, J Biol Chem, vol.20, issue.51, pp.49831-49871, 2002.

S. J. Lee and A. C. Mcpherron, Regulation of myostatin activity and muscle growth, Proc Natl Acad SciUSA, vol.98, issue.16, pp.9306-9311, 2001.

L. Grand, F. Jones, A. E. Seale, V. Scimè, A. Rudnicki et al., Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells, Cell Stem Cell, vol.4, pp.535-547, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-410, 2001.

M. R. Lundquist, A. J. Storaska, T. C. Liu, S. D. Larsen, T. Evans et al., Redox modification of nuclear actin by MICAL-2 regulates SRF signaling, Cell, vol.156, pp.563-576, 2014.

Y. Luo, J. Yoneda, and H. Ohmori, Cancer usurps skeletal muscle as an energy repository, Cancer Research, vol.74, issue.1, pp.330-340, 2014.

D. M. Guizoni, S. A. Oliveira, F. M. Paula, A. R. Lima, C. Bonomo et al., Influence of late exercise training on myostatin and follistatin expression in soleus muscle of rats with chronic heart failure, The FASEB J, vol.27, issue.1, pp.1085-1093, 2013.

S. Medjkane, C. Perez-sanchez, C. Gaggioli, E. Sahai, and R. Treisman, Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis, Nat Cell, vol.11, issue.3, pp.257-68, 2009.

J. M. Miano, L. X. Fujiwara, and K. , Serum response factor: master egulator of the actin cytoskeleton and contractile apparatus, Am. J. Physiol. Cell Physiol, vol.292, pp.70-81, 2007.

S. C. Miller, H. Ito, H. M. Blau, and F. M. Torti, Tumor necrosis factor inhibits human myogenesis in vitro, Mol Cell Biol, vol.8, issue.6, pp.2295-301, 1988.

F. Miralles, G. Posern, A. Zaromytidou, and R. Treisman, , 2003.

, Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, vol.113, pp.329-342

P. O. Mitchell and G. K. Pavlath, Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells, Am J Physiol Cell Physiol, vol.287, issue.6, pp.1753-62, 2004.

C. Modak and J. Chai, Serum response factor: Look into the gut, World J Gastroenterol, vol.14, issue.18, pp.2195-2201, 2010.

M. H. Mokalled, A. N. Johnson, C. Ee, and E. N. Olson, , 2012.

, MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration, Genes Dev, vol.26, pp.190-202

V. Moresi, A. Pristerà, B. M. Scicchitano, M. Molinaro, L. Teodori et al., Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response, Stem Cells, vol.26, issue.4, pp.997-1008, 2008.

R. M. Munoz, H. Han, T. Tegeler, K. Petritis, V. Hoff et al., Isolation and characterization of muscle fatigue substance with anti-tumor activities, J Cancer, vol.9, issue.4, pp.343-352, 2013.

K. T. Murphy, A. Chee, B. G. Gleeson, T. Naim, K. Swiderski et al., Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice, Am J Physiol Regul Integr Comp Physiol, vol.301, issue.3, pp.716-742, 2011.

O. En and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nat. Rev. Mol. Cell Biol, vol.11, pp.353-365, 2010.

C. S. Padilha, F. H. Borges, C. Mendes-da-silva, L. E. Frajacomo, F. Jordao et al., Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats, Appl Physiol Nutr Metab, vol.42, issue.9, pp.916-923, 2017.

R. Pawlowski, E. K. Rajakyla, V. Mk, and R. Treisman, , 2010.

, An actin regulated importin alpha/beta-dependent extended bipartite NLS directs nuclear import of MRTF-A, EMBO J, vol.29, pp.3448-3458

, PhD in Morphogenesis and Tissue Engineering PhD in Physiology, physiopathology and therapeutics

M. Pelosi, D. Rossi, M. Barberi, L. Musarò, and A. , IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity, Biomed Res Int, p.206026, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01182462

F. Penna, A. Bonetto, M. Muscaritoli, D. Costamagna, V. G. Minero et al., Muscle atrophy in experimental cancer cachexia: is the IGF-1 signaling pathway involved?, Int J Cancer, vol.1, issue.7, pp.1706-1723, 2010.

J. M. Peterson, N. Bakkar, and D. C. Guttridge, NF-B signaling in skeletal muscle health and disease, Curr. Top. Dev. Biol, vol.96, pp.85-119, 2011.

E. Pigna, E. Berardi, P. Aulino, E. Rizzuto, S. Zampieri et al., , 2016.

, Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon, Cancer. Sci Rep, vol.31, p.26991

G. Pipes, C. Ee, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes Dev, vol.20, pp.1545-1556, 2006.

C. Polge, A. E. Heng, M. Jarzaguet, S. Ventadour, A. Claustre et al., Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.25, pp.3790-3802, 2011.

T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments, Cell, vol.112, pp.453-465, 2003.

G. Posern, F. Miralles, S. Guettler, and T. R. , Mutant actins that stabilise Factin use distinct mechanisms to activate the SRF coactivator MAL, EMBO J, vol.23, pp.3973-3983, 2004.

G. Posern and T. R. , Actin together: serum response factor, its cofactors and the link to signal transduction, Trends Cell Biol, vol.16, pp.588-596, 2006.

A. Rashidlamir, A. Hosseini, S. R. Hejazi, K. , M. Anberani et al., The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats, J Cardiovasc Thorac Res, vol.8, issue.4, pp.164-169, 2016.

E. Roan, C. M. Waters, B. Teng, M. Ghosh, and A. Schwingshackl, , 2014.

, The 2-pore domain potassium channel TREK-1 regulates stretchinduced detachment of alveolar epithelial cells, PLoS One, vol.19, issue.2, p.89429

V. Romanello and M. Sandri, Mitochondrial quality control and muscle mass maintenance, Frontiers in Physiology, vol.6, p.422, 2015.

C. Rommel, S. C. Bodine, B. A. Clarke, R. Rossman, L. Nunez et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways, Nat Cell Biol, vol.3, issue.11, pp.1009-1022, 2001.

M. Ruiz-ortega, O. Lorenzo, M. Rupérez, S. König, B. Wittig et al., Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms, Circ Res, vol.23, issue.12, pp.1266-72, 2000.

M. Sadeh, K. Czyewski, and L. Z. Stern, Chronic myopathy induced by repeated bupivacaine injections, J Neurol Sci, vol.67, issue.2, pp.229-267, 1985.

K. Sakuma, M. Akiho, H. Nakashima, H. Akima, and Y. M. , Age related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles, Biochim. Biophys. Acta, vol.1782, pp.453-461, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00562835

P. M. Sanders, R. St, and M. J. Tisdale, Angiotensin II directly induces muscle protein catabolism through the ubiquitinproteasome proteolytic pathway and may play a role in cancer cachexia, Br J Cancer, vol.22, issue.4, pp.425-459, 2005.

H. Schröter, C. G. Mueller, M. K. Nordheim, and A. , , 1990.

, Synergism in ternary complex formation between the dimeric glycoprotein p67SRF, polypeptide p62TCF and the c-fos serum response element, EMBO J, vol.9, pp.1123-1130

M. Schwarzkopf, D. Coletti, D. Sassoon, and G. Marazzi, Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway, Genes Dev, vol.20, issue.24, pp.3440-52, 2006.

P. V. Sepulveda, S. Lamon, A. Hagg, R. E. Thomson, C. E. Winbanks et al., Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy, Sci Rep, vol.11, p.17535, 2015.

A. Sotiropoulos, D. Gineitis, J. Copeland, and T. R. , Signal-regulated activation of serum response factor is mediated by changes in actin dynamics, Cell, vol.98, pp.159-169, 1999.

M. Soulez, C. G. Rouviere, P. Chafey, D. Hentze, M. Vandromme et al., Growth and differentiation of C2 myogenic cells are dependent on serum response factor, Mol. Cell. Biol, vol.16, pp.6065-6074, 1996.

Y. Sun, K. Boyd, W. Xu, J. Ma, C. W. Jackson et al., Acute myeloid leukemiaassociated Mkl1 (MRTF-A) is a key regulator of mammary gland function, Mol. Cell. Biol, vol.26, pp.5809-5826, 2006.

F. S. Tedesco, L. A. Moyle, and E. Perdiguero, Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle, Methods Mol Biol, vol.1556, pp.129-147, 2017.

T. H. Tran, X. Shi, J. Zaia, and A. X. , Heparan Sulfate 6-Oendosulfatases (Sulfs) Coordinate the Wnt Signaling Pathways to Regulate Myoblast Fusion during Skeletal Muscle Regeneration, J. Biol. Chem, vol.287, pp.32651-32664, 2012.

R. Treisman, Identification and purification of a polypeptide that binds to the c-fos serum response element, EMBO J, vol.6, pp.2711-2717, 1987.

A. U. Trendelenburg, A. Meyer, C. Jacobi, J. N. Feige, and D. J. Glass, , 2012.

, TAK-1/p38/nNF?B signaling inhibits myoblast differentiation by increasing levels of Activin A, Skelet Muscle, vol.7, issue.1, p.3

D. Van-gammeren, J. S. Damrauer, R. W. Jackman, and S. C. Kandarian,

, The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy, FASEB J, vol.23, issue.2, pp.362-70

M. K. Vartiainen, S. Guettler, L. B. Treisman, and R. , , 2007.

, Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL, Science, vol.316, pp.1749-1752

M. A. Wallace, D. Gatta, P. A. , A. Mir, B. Kowalski et al., Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation, Front. Physiol, vol.7, p.7, 2016.

Z. Wang, D. Z. Wang, G. Pipes, and E. N. Olson, Myocardin is a master regulator of smooth muscle gene expression, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.7129-7134, 2003.

J. P. White, K. A. Baltgalvis, M. J. Puppa, S. Sato, J. W. Baynes et al., Muscle oxidative capacity during IL-6-dependent cancer cachexia, Am J Physiol Regul Integr Comp Physiol, vol.300, issue.2, pp.201-212, 2011.

C. E. Winbanks, K. L. Weeks, R. E. Thomson, P. V. Sepulveda, C. Beyer et al., Follistatinmediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin, J Cell Biol, vol.25, issue.7, pp.997-1008, 2012.

S. H. Yang, P. Shore, J. H. Willingham-n-lakey, and A. D. Sharrocks, The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1, EMBO J, vol.18, pp.5666-5674, 1999.

P. S. Zammit, L. Heslop, V. Hudon, J. D. Rosenblatt, S. Tajbakhsh et al., Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers, Exp Cell Res, vol.281, pp.39-49, 2002.

P. S. Zammit, J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge et al., Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?, J. Cell Biol, vol.166, pp.347-357, 2004.

B. Zheng, M. Han, M. Bernier, and W. J. , Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression, FEBS J, vol.276, pp.2669-2685, 2009.

X. Zhou, J. L. Wang, J. Lu, Y. Song, K. S. Kwak et al., Reversal of cancer cachexia and muscle wasting by ActIIBR antagonism leads to prolonged survival, Cell, vol.20, issue.4, pp.531-574, 2010.

J. Zhu, Y. Li, A. Lu, B. Gharaibeh, J. Ma et al., Follistatin Improves Skeletal Muscle Healing after Injury and Disease through an Interaction with Muscle Regeneration, Angiogenesis, and Fibrosis, Am J Pathol, vol.179, issue.2, pp.915-930, 2011.

R. List-of-publications-1-baccam-alexandra, B. Martina, M. Francesca, L. Mathias, C. Zhenlin et al.,

, Molecular pathways involved in the crosstalk between cytokines and mechanical cues in cancer cachexia, J Cachexia Sarcopenia Muscle, vol.7, issue.4, pp.501-502, 2016.

H. 2-baccam-alexandra, . Medhi, A. Sviercoich-benoni-alexandra, and . Sergio, Moresi Viviana and Coletti Dario Basking in their Niche: Stem Cells with Myogenic Potential as a Target to Combat Cachexia. Curr Updates Stem Cell ResTher, p.1, 2017.

R. Poster-/-comunicazioni-a-congresso-1-baccam-alexandra, B. Martina, M. Francesca, L. Mathias, C. Zhenlin et al.,

, Molecular pathways involved in the crosstalk between cytokines and mechanical cues in cancer cachexia, 8th International Conference on Cachexia, Sarcopenia and Muscle Wasting, vol.7, pp.501-502, 2015.

H. -baccam-alexandra, B. Medhi, R. Alexandra, B. Martina, P. Francesca et al., Coletti Dario Mechanisms involved in the cross-talk between humoral and mechanical cues underlying muscle wasting in cachexia, Molecular pathways involved in the crosstalk between cytokines and mechanical cues in cancer cachexia. 1rd day of muscle exercice, vol.201, 2017.