M. W. Deininger, J. W. Tyner, and E. Solary, Turning the tide in myelodysplastic/myeloproliferative neoplasms, Nat. Rev. Cancer, vol.17, pp.425-440, 2017.

D. A. Arber, The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, pp.2391-2405, 2016.

R. Itzykson, Prognostic score including gene mutations in chronic myelomonocytic leukemia, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.31, pp.2428-2436, 2013.

J. Merlevede, Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents, Nat. Commun, vol.7, 2016.

M. Ball, A. F. List, and E. Padron, When clinical heterogeneity exceeds genetic heterogeneity: thinking outside the genomic box in chronic myelomonocytic leukemia, Blood, vol.128, pp.2381-2387, 2016.

R. Itzykson, Clonal architecture of chronic myelomonocytic leukemias, Blood, vol.121, pp.2186-2198, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00923316

E. Padron, GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia, Blood, vol.121, p.5068, 2013.

M. M. Patnaik and A. Tefferi, Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk stratification, and management, Am. J. Hematol, vol.91, pp.631-642, 2016.

T. De-witte, Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel, Blood, vol.129, pp.1753-1762, 2017.

E. Solary and R. Itzykson, How I treat chronic myelomonocytic leukemia, Blood, vol.130, pp.126-136, 2017.

F. Facchetti, Neoplasms derived from plasmacytoid dendritic cells, Mod. Pathol, vol.29, pp.98-111, 2016.

H. K. Müller-hermelink, H. Stein, G. Steinmann, and K. Lennert, Malignant lymphoma of plasmacytoid T-cells. Morphologic and immunologic studies characterizing a special type of T-cell, Am. J. Surg. Pathol, vol.7, pp.849-862, 1983.

F. Facchetti, Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin, Am. J. Pathol, vol.133, p.15, 1988.

Y. Chen, J. Chou, R. P. Ketterling, L. Letendre, and C. Li, Histologic and Immunohistochemical Study of Bone Marrow Monocytic Nodules in 21 Cases With Myelodysplasia, Am. J. Clin. Pathol, vol.120, pp.874-881, 2003.

W. Vermi, Nodal and extranodal tumor-forming accumulation of plasmacytoid monocytes/interferon-producing cells associated with myeloid disorders, Am. J. Surg. Pathol, vol.28, pp.585-595, 2004.

A. Orazi, Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology, Mod. Pathol, vol.19, pp.1536-1545, 2006.

N. L. Harris and Z. Demirjian, Plasmacytoid T-zone cell proliferation in a patient with chronic myelomonocytic leukemia. Histologic and immunohistologic characterization, Am. J. Surg. Pathol, vol.15, pp.87-95, 1991.

F. Vitte, Specific Skin Lesions in Chronic Myelomonocytic Leukemia: A Spectrum of Myelomonocytic and Dendritic Cell Proliferations. A Study of 42 Cases, Am. J. Surg. Pathol, vol.36, pp.1302-1316, 2012.

N. Kadowaki, S. Antonenko, J. Y. Lau, .. Liu, and Y. , Natural Interferon ?/?-Producing Cells Link Innate and Adaptive Immunity, J. Exp. Med, vol.192, pp.219-226, 2000.

M. Guilliams, Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat. Rev. Immunol, vol.14, pp.571-578, 2014.

C. Waskow, FMS-like tyrosine kinase 3 is required for dendritic cell development in peripheral lymphoid tissues, Nat. Immunol, vol.9, p.676, 2008.

Y. Chen, A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors, J. Exp. Med, vol.210, p.2515, 2013.

B. Cisse, Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development, Cell, vol.135, pp.37-48, 2008.

D. Sichien, IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, vol.45, pp.626-640, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438483

A. Dzionek, BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood, J. Immunol, vol.165, pp.6037-6046, 2000.

F. P. Siegal, The nature of the principal type 1 interferon-producing cells in human blood, Science, vol.284, pp.1835-1837, 1999.

J. A. Villadangos and L. Young, Antigen-Presentation Properties of Plasmacytoid Dendritic Cells, Immunity, vol.29, pp.352-361, 2008.

J. Tel, Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities, Blood, vol.120, pp.3936-3944, 2012.

G. Hoeffel, Antigen Crosspresentation by Human Plasmacytoid Dendritic Cells, Immunity, vol.27, pp.481-492, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00360697

E. Segura, M. Durand, and S. Amigorena, Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells, J. Exp. Med, vol.210, p.1035, 2013.

M. D. Sharma, Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase, J. Clin. Invest, vol.117, pp.2570-2582, 2007.

M. T. Pallotta, Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells, Nat. Immunol, vol.12, pp.870-878, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664558

T. Ito, Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand, J. Exp. Med, vol.204, pp.105-115, 2007.

A. Ray, Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells, Leukemia, vol.29, pp.1441-1444, 2015.

W. Vermi, M. Soncini, L. Melocchi, S. Sozzani, and F. Facchetti, Plasmacytoid dendritic cells and cancer, J. Leukoc. Biol, vol.90, pp.681-690, 2011.

W. Zou, Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells, Nat. Med, vol.7, pp.1339-1346, 2001.

S. Wei, Plasmacytoid Dendritic Cells Induce CD8+ Regulatory T Cells In Human Ovarian Carcinoma, Cancer Res, vol.65, pp.5020-5026, 2005.

C. Conrad, Plasmacytoid Dendritic Cells Promote Immunosuppression in Ovarian Cancer via ICOS Costimulation of Foxp3+ T-Regulatory Cells, Cancer Res, vol.72, pp.5240-5249, 2012.

S. Demoulin, M. Herfs, P. Delvenne, and P. Hubert, Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms, J. Leukoc. Biol, vol.93, pp.343-352, 2013.

J. R. Cubillos-ruiz, ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis, Cell, vol.161, pp.1527-1538, 2015.

D. Chauhan, Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target, Cancer Cell, vol.16, pp.309-323, 2009.

N. B. Mami, M. Mohty, T. Aurran-schleinitz, D. Olive, and B. Gaugler, Blood dendritic cells in patients with chronic lymphocytic leukaemia, Immunobiology, vol.213, pp.493-498, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00483520

M. Hishizawa, Depletion and impaired interferon-?-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals, Br. J. Haematol, vol.125, pp.568-575, 2004.

M. Ratta, Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6, Blood, vol.100, pp.230-237, 2002.

M. K. Brimnes, I. M. Svane, and H. E. Johnsen, Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma, Clin. Exp. Immunol, vol.144, p.76, 2006.

D. Saulep-easton, Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia, Leukemia, vol.28, p.2005, 2014.

L. Saft, E. Björklund, E. Berg, E. Hellström-lindberg, and A. Porwit, Bone marrow dendritic cells are reduced in patients with high-risk myelodysplastic syndromes, Leuk. Res, vol.37, p.84, 2013.

A. Pardanani, CD123 immunostaining patterns in systemic mastocytosis: differential expression in disease subgroups and potential prognostic value, Leukemia, vol.30, pp.914-918, 2016.

A. Tzankov, Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow: Summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) organized by the European Bone Marrow Working Group, Ann. Hematol, vol.96, pp.765-777, 2016.

A. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

P. See, Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, p.3009, 2017.

T. Matsui, CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions, J. Immunol, vol.182, pp.6815-6823, 2009.

L. Zitvogel, L. Galluzzi, O. Kepp, M. J. Smyth, and G. Kroemer, Type I interferons in anticancer immunity, Nat. Rev. Immunol. advance online publication, 2015.

J. Kiladjian, S. Giraudier, and B. Cassinat, Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone, Leukemia, vol.30, pp.776-781, 2016.

C. Alfaro, Interleukin-8 in cancer pathogenesis, treatment and follow-up, Cancer Treat. Rev, vol.60, pp.24-31, 2017.

A. Sinclair, CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells, Blood, vol.128, p.371, 2016.

D. Reynaud, IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development, Cancer Cell, vol.20, p.661, 2011.

R. S. Welner, Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells, Cancer Cell, vol.27, p.671, 2015.

A. Tobler, Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia, Blood, vol.82, pp.2517-2525, 1993.

A. M. Abdul-aziz, MIF-Induced Stromal PKC?/IL8 Is Essential in Human Acute Myeloid Leukemia, Cancer Res, vol.77, pp.303-311, 2017.

C. Schinke, IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells, Blood, vol.125, p.3144, 2015.

D. Kingston, The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis, Blood, vol.114, pp.835-843, 2009.

E. Esashi, The Signal Transducer STAT5 Inhibits Plasmacytoid Dendritic Cell Development by Suppressing Transcription Factor IRF8, Immunity, vol.28, pp.509-520, 2008.

J. W. Vardiman, N. L. Harris, and R. D. Brunning, The World Health Organization (WHO) classification of the myeloid neoplasms, Blood, vol.100, pp.2292-2302, 2002.

J. W. Vardiman, The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes, Blood, vol.114, pp.937-951, 2009.

D. A. Arber, The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, pp.2391-2405, 2016.

G. S. Murthy, I. Dhakal, and P. Mehta, Incidence and survival outcomes of chronic myelomonocytic leukemia in the United States, Leuk. Lymphoma, vol.0, pp.1-7, 2016.

K. J. Phekoo, The incidence and outcome of myeloid malignancies in 2,112 adult patients in southeast England, Haematologica, vol.91, pp.1400-1404, 2006.

A. G. Dinmohamed, The use of medical claims to assess incidence, diagnostic procedures and initial treatment of myelodysplastic syndromes and chronic myelomonocytic leukemia in the Netherlands, Leuk. Res, vol.39, pp.177-182, 2015.

S. A. Srour, Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12, Br. J. Haematol, vol.174, pp.382-396, 2016.

M. A. El-fattah, Clinical Prognostic Factors and Survival Outcome Of Chronic Myelomonocytic Leukemia: Reviewing 3,686 Patients, Clin. Lymphoma Myeloma Leuk, vol.16, pp.119-121, 2016.

M. M. Patnaik, Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome, Blood Cancer J, vol.5, p.270, 2015.

R. Itzykson, Prognostic score including gene mutations in chronic myelomonocytic leukemia, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.31, pp.2428-2436, 2013.

T. Nösslinger, Dysplastic versus proliferative CMML -a retrospective analysis of 91 patients from a single institution, Leuk. Res, vol.25, pp.741-747, 2001.

U. Germing, C. Strupp, M. Aivado, and N. Gattermann, New prognostic parameters for chronic myelomonocytic leukemia?, Blood, vol.100, pp.731-733, 2002.

E. Padron, An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies, Blood Cancer J, vol.5, p.333, 2015.

M. M. Patnaik, Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome, Am. J. Hematol, vol.90, pp.411-416, 2015.

C. C. Mason, Age-related mutations and chronic myelomonocytic leukemia, Leukemia, vol.30, pp.906-913, 2016.

J. J. Fuster, Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice, Science, vol.355, pp.842-847, 2017.

S. Jaiswal, Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease, N. Engl. J. Med, vol.377, pp.111-121, 2017.

N. Droin, Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia, Blood, vol.115, pp.78-88, 2010.

N. Droin, Myeloid-Derived Suppressive Cells Belonging to the Leukemic Clone Account for Immunosuppression In CMML, Blood, vol.116, pp.3997-3997, 2010.

L. Ziegler-heitbrock, Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

D. Selimoglu-buet, Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia, Blood, vol.125, pp.3618-3626, 2015.

C. Talati, Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis, Blood, vol.129, pp.1881-1883, 2017.

M. M. Patnaik, Flow cytometry based monocyte subset analysis accurately distinguishes chronic myelomonocytic leukemia from myeloproliferative neoplasms with associated monocytosis, Blood Cancer J, vol.7, p.584, 2017.

D. Selimoglu-buet, Accumulation of classical monocytes defines a subgroup of MDS that frequently evolves into CMML, Blood, vol.130, pp.832-835, 2017.

J. M. Bennett, The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia: Proposals by the French -American -British Cooperative Leukaemia Group, Br. J. Haematol, vol.87, pp.746-754, 1994.

N. Cervera, Gene mutations differently impact the prognosis of the myelodysplastic and myeloproliferative classes of chronic myelomonocytic leukemia, Am. J. Hematol, vol.89, pp.604-609, 2014.

E. Schuler, Refined medullary blast and white blood cell count based classification of chronic myelomonocytic leukemias, Leuk. Res, vol.38, pp.1413-1419, 2014.

J. E. Goasguen, Morphological evaluation of monocytes and their precursors, Haematologica, vol.94, p.994, 2009.

E. Padron, A Multi-Institution Phase 1 Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML). Clin. Cancer Res, 2016.

S. Niyongere, Comprehensive Inflammatory Cytokine Profiling Identifies IL-8/CXCL8 As Elevated, Associated with Proliferative Features, and Independently Prognostic in Chronic Myelomonocytic Leukemia (CMML), Blood, vol.128, pp.109-109, 2016.

F. Ahmed, Therapy related CMML: a case report and review of the literature, Int. J. Hematol, vol.89, pp.699-703, 2009.

K. Takahashi, Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia, Blood, vol.122, pp.2807-2811, 2013.

S. Subari, Patients With Therapy-Related CMML Have Shorter Median Overall Survival Than Those With De Novo CMML: Mayo Clinic Long-Term Follow-Up Experience, Clin. Lymphoma Myeloma Leuk, vol.15, pp.546-549, 2015.

M. F. Zahid, Spectrum of autoimmune diseases and systemic inflammatory syndromes in patients with chronic myelomonocytic leukemia, Leuk. Lymphoma, vol.0, pp.1-6, 2016.

J. Hadjadj, Immune thrombocytopenia in chronic myelomonocytic leukemia, Eur. J. Haematol, vol.93, pp.521-526, 2014.

D. Peker, A close association of autoimmune-mediated processes and autoimmune disorders with chronic myelomonocytic leukemia: observation from a single institution, Acta Haematol, vol.133, pp.249-256, 2015.

M. W. Saif, J. L. Hopkins, and S. D. Gore, Autoimmune Phenomena in Patients with Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia, Leuk. Lymphoma, vol.43, pp.2083-2092, 2002.

M. A. Hamidou, Prevalence of rheumatic manifestations and antineutrophil cytoplasmic antibodies in haematological malignancies. A prospective study, Rheumatology, vol.39, pp.417-420, 2000.

E. Grignano, Autoimmune and inflammatory diseases associated with chronic myelomonocytic leukemia: A series of 26 cases and literature review, Leuk. Res, vol.47, pp.136-141, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388084

J. Fraison, Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia, Leuk. Res, vol.43, pp.13-17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01278608

S. A. Wang, Systemic Mastocytosis with Associated Clonal Hematological Non-Mast Cell Lineage Disease (SM-AHNMD): Clinical Significance and Comparison of Chomosomal Abnormalities in SM and AHNMD Components, Am. J. Hematol, vol.88, p.219, 2013.

K. Sotlar, Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD), J. Pathol, vol.220, pp.586-595, 2010.

M. M. Stoecker and E. Wang, Systemic Mastocytosis With Associated Clonal Hematologic Nonmast Cell Lineage Disease: A Clinicopathologic Review, Arch. Pathol. Lab. Med, vol.136, pp.832-838, 2012.

J. R. Edelbroek, Langerhans cell histiocytosis first presenting in the skin in adults: frequent association with a second haematological malignancy, Br. J. Dermatol, vol.167, pp.1287-1294, 2012.

W. Shon, Atypical generalized eruptive histiocytosis clonally related to chronic myelomonocytic leukemia with loss of Y chromosome, J. Cutan. Pathol, vol.40, pp.725-729, 2013.

A. Singla, S. Girnius, K. A. Wikenheiser-brokamp, F. X. Mccormack, and N. Gupta, Co-existing NRAS and BRAF Mutations in a Patient with Erdheim-Chester Disease and Chronic Myelomonocytic Leukemia, A3. FELLOWS CASE CONFERENCE A7939-A7939, 2016.

M. Papo, High prevalence of myeloid neoplasms in adults with non-Langerhans cell histiocytosis, Blood, vol.130, pp.1007-1013, 2017.

B. H. Durham, Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells, Blood, vol.130, pp.176-180, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02299522

N. Droin, Eosinophil-rich tissue infiltrates in chronic myelomonocytic leukemia patients, Leuk. Lymphoma, vol.58, pp.2875-2879, 2017.

E. Such, Cytogenetic risk stratification in chronic myelomonocytic leukemia, Haematologica, vol.96, p.375, 2011.

E. A. Wassie, Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study, Am. J. Hematol, vol.89, pp.1111-1115, 2014.

A. Kohlmann, Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.28, pp.3858-3865, 2010.

D. Haase, New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients, Blood, vol.110, pp.4385-4395, 2007.

G. Tang, Prognostic impact of acquisition of cytogenetic abnormalities during the course of chronic myelomonocytic leukemia, Am. J. Hematol, vol.90, pp.882-887, 2015.

J. Merlevede, Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents, Nat. Commun, vol.7, 2016.

M. Ball, A. F. List, and E. Padron, When clinical heterogeneity exceeds genetic heterogeneity: thinking outside the genomic box in chronic myelomonocytic leukemia, Blood, vol.128, pp.2381-2387, 2016.

M. Meggendorfer, SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML), Blood, vol.120, pp.3080-3088, 2012.

R. Itzykson, Clonal architecture of chronic myelomonocytic leukemias, Blood, vol.121, pp.2186-2198, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00923316

E. Pronier, Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors, Blood, vol.118, pp.2551-2555, 2011.

K. Moran-crusio, Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation, Cancer Cell, vol.20, p.11, 2011.

R. Itzykson and E. Solary, An evolutionary perspective on chronic myelomonocytic leukemia, Leukemia, vol.27, pp.1441-1450, 2013.

H. Makishima, Dynamics of clonal evolution in myelodysplastic syndromes, Nat. Genet, vol.49, pp.204-212, 2017.

M. Xie, Age-related cancer mutations associated with clonal hematopoietic expansion, Nat. Med, vol.20, p.1472, 2014.

G. Genovese, Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence, N. Engl. J. Med, vol.371, p.2477, 2014.

S. Jaiswal, Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes, N. Engl. J. Med, vol.371, p.2488, 2014.

M. W. Deininger, J. W. Tyner, and E. Solary, Turning the tide in myelodysplastic/myeloproliferative neoplasms, Nat. Rev. Cancer, vol.17, pp.425-440, 2017.

E. Padron, GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia, Blood, vol.121, p.5068, 2013.

K. Geissler, Chronic myelomonocytic leukemia patients with RAS pathway mutations show high in vitro myeloid colony formation in the absence of exogenous growth factors, Leukemia, vol.30, p.2280, 2016.

J. Akutagawa, Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras, Leukemia, vol.30, pp.1335-1343, 2016.

K. Geissler, In vitro and in vivo effects of JAK2 inhibition in chronic myelomonocytic leukemia, Eur. J. Haematol, vol.97, pp.562-567, 2016.

D. Subirá, Immunophenotype in chronic myelomonocytic leukemia: is it closer to myelodysplastic syndromes or to myeloproliferative disorders?, Transl. Res, vol.151, pp.240-245, 2008.

C. Lacronique-gazaille, A simple method for detection of major phenotypic abnormalities in myelodysplastic syndromes: expression of CD56 in CMML, Haematologica, vol.92, pp.859-860, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00451224

D. Reynaud, IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development, Cancer Cell, vol.20, p.661, 2011.

R. S. Welner, Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells, Cancer Cell, vol.27, p.671, 2015.

M. H. Raaijmakers, Bone progenitor dysfunction induces myelodysplasia and secondary leukemia, Nature, vol.464, p.852, 2010.

A. Kode, Leukemogenesis Induced by an Activating ?-catenin mutation in Osteoblasts, Nature, vol.506, p.240, 2014.

L. Dong, Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment, Nature, vol.539, pp.304-308, 2016.

N. A. Zambetti, Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia, Cell Stem Cell, vol.19, pp.613-627, 2016.

O. Lopez-villar, Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q|[minus]| syndrome, Leukemia, vol.23, pp.664-672, 2009.

L. Pleyer, P. Valent, and R. Greil, Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?, Int. J. Mol. Sci, vol.17, 2016.

S. Chen, Massive parallel RNA sequencing of highly purified mesenchymal elements in lowrisk MDS reveals tissue-context-dependent activation of inflammatory programs, Leukemia, vol.30, pp.1938-1942, 2016.

E. Such, Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia, Blood, vol.121, pp.3005-3015, 2013.

M. M. Patnaik, ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients, Leukemia, vol.28, pp.2206-2212, 2014.

C. Elena, Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia, Blood, vol.128, p.1408, 2016.

V. Gelsi-boyer, ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia, Br. J. Haematol, vol.151, pp.365-375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00580698

V. Grossmann, Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance, Leukemia, vol.25, pp.877-879, 2011.

R. R. Laborde, SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML, Leukemia, vol.27, p.2100, 2013.

M. M. Patnaik, DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia, Am. J. Hematol, vol.92, pp.56-61, 2017.

M. M. Patnaik, Mayo prognostic model for WHO-defined chronic myelomonocytic leuk mia: ASXL1 and spliceosome component mutations and outcomes, Leukemia, vol.27, pp.1504-1510, 2013.

B. D. Cheson, Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia, Blood, vol.108, pp.419-425, 2006.

M. R. Savona, An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults, Blood, vol.125, pp.1857-1865, 2015.

M. Duchmann, Validation of response assessment according to international consortium for MDS/MPN criteria in chronic myelomonocytic leukemia treated with hypomethylating agents, Blood Cancer J, vol.7, p.562, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01655936

E. Solary and R. Itzykson, How I treat chronic myelomonocytic leukemia, Blood, vol.130, pp.126-136, 2017.

A. Symeonidis, Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation, Br. J. Haematol, vol.171, pp.239-246, 2015.

H. K. Duong, Peripheral Blood Progenitor Cell Mobilization for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation, Biol. Blood Marrow Transplant, vol.20, pp.1262-1273, 2014.

S. Park, Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire, Eur. J. Haematol, vol.90, pp.355-364, 2013.

P. Sharma, Allogeneic hematopoietic stem cell transplant in adult patients with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes, Leuk. Lymphoma, vol.58, pp.872-881, 2017.

P. Kongtim, Treatment with Hypomethylating Agents before Allogeneic Stem Cell Transplant Improves Progression Free Survival for Patients with Chronic Myelomonocytic Leukemia, Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant, vol.22, p.47, 2016.

H. Itonaga, Impacts of graft-versus-host disease on outcomes after allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia: A nationwide retrospective study, Leuk. Res, vol.41, pp.48-55, 2016.

T. Witte and . De, Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel, Blood, vol.129, pp.1753-1762, 2017.

T. Witte and . De, Use of hematopoietic cell transplantation for patients with myelodysplastic syndrome and chronic myelomonocytic leukemia, 2017.

E. Wattel, A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group, Blood, vol.88, pp.2480-2487, 1996.

B. Xicoy, Response to erythropoietic-stimulating agents in patients with chronic myelomonocytic leukemia, Eur. J. Haematol, vol.97, pp.33-38, 2016.

A. Aribi, Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia, Cancer, vol.109, pp.713-717, 2007.

P. W. Wijermans, Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML), Leuk. Res, vol.32, pp.587-591, 2008.

T. Braun, Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial, Blood, vol.118, pp.3824-3831, 2011.

R. Costa, Activity of azacitidine in chronic myelomonocytic leukemia, Cancer, vol.117, pp.2690-2696, 2011.

L. Adès, Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine, Leuk. Res, vol.37, pp.609-613, 2013.

E. Wong, Treatment of chronic myelomonocytic leukemia with azacitidine, Leuk. Lymphoma, vol.54, pp.878-880, 2013.

L. Fianchi, High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study, Leuk. Lymphoma, vol.54, pp.658-661, 2013.

S. Subari, Hypomethylating agents are effective in shrinking splenomegaly in patients with chronic myelomonocytic leukemia, Leuk. Lymphoma, vol.57, pp.1714-1715, 2016.

K. Meldi, Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia, J. Clin. Invest, vol.125, p.1857, 2015.

K. B. Chiappinelli, Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses, Cell, vol.162, p.974, 2015.

H. Yang, Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents, Leukemia, vol.28, p.1280, 2014.

N. L. Harris and Z. Demirjian, Plasmacytoid T-zone cell proliferation in a patient with chronic myelomonocytic leukemia. Histologic and immunohistologic characterization, Am. J. Surg. Pathol, vol.15, pp.87-95, 1991.

H. P. Horny, Evidence for a lymphotropic nature of circulating plasmacytoid monocytes: findings from a case of CD56+ chronic myelomonocytic leukemia, Eur. J. Haematol, vol.54, pp.209-216, 1995.

W. Mongkonsritragoon, L. Letendre, J. Qian, and C. Li, Nodular lesions of monocytic component in myelodysplastic syndrome, Am. J. Clin. Pathol, vol.110, pp.154-162, 1998.

K. N. Naresh and J. Pavlu, Plasmacytoid dendritic cell nodules in bone marrow biopsies of chronic myelomonocytic leukemia, Am. J. Hematol, vol.85, pp.893-893, 2010.

P. Ji and L. C. Peterson, Plasmacytoid dendritic cells in chronic myelomonocytic leukemia, Blood, vol.123, pp.3220-3220, 2014.

H. Wang and A. L. Feldman, Exuberant nodal proliferation of mature plasmacytoid dendritic cells in a patient with chronic myelomonocytic leukemia, Blood, vol.130, pp.1387-1387, 2017.

F. Facchetti, W. Vermi, A. Santoro, and F. Vergoni, Neoplasms Derived From Plasmacytoid Monocytes/Interferon-Producing Cells: Variability of CD56 and Granzyme B Expression, Am. J. Surg. Pathol, vol.27, pp.1489-92, 2003.

T. Petrella and F. Facchetti, Tumoral aspects of plasmacytoid dendritic cells: What do we know in, Autoimmunity, vol.43, pp.210-214, 2009.

F. Facchetti, Neoplasms derived from plasmacytoid dendritic cells, Mod. Pathol, vol.29, pp.98-111, 2016.

L. Brunetti, Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: A shared clonal origin, Leukemia, 2017.

Z. Hu and T. Sun, Blastic plasmacytoid dendritic cell neoplasm associated with chronic myelomonocytic leukemia, Blood, vol.128, pp.1664-1664, 2016.

Y. Chen, J. Chou, R. P. Ketterling, L. Letendre, and C. Li, Histologic and Immunohistochemical Study of Bone Marrow Monocytic Nodules in 21 Cases With Myelodysplasia, Am. J. Clin. Pathol, vol.120, pp.874-881, 2003.

K. Beiske, R. Langholm, T. Godal, and P. F. Marton, T-zone lymphoma with predominance of 'plasmacytoid T-cells' associated with myelomonocytic leukaemia-a distinct clinicopathological entity, J. Pathol, vol.150, pp.247-255, 1986.

K. Beiske, A. Munthe-kaas, C. D. Davies, P. F. Marton, and T. Godal, Single cell studies on the immunological marker profile of plasmacytoid T-zone cells, Lab. Investig. J. Tech. Methods Pathol, vol.56, pp.381-393, 1987.

F. Facchetti, Leukemia-associated lymph node infiltrates of plasmacytoid monocytes (socalled plasmacytoid T-cells). Evidence for two distinct histological and immunophenotypical patterns, Am. J. Surg. Pathol, vol.14, pp.101-112, 1990.

C. H. Koo, Additional evidence that 'plasmacytoid T-cell lymphoma' associated with chronic myeloproliferative disorders is of macrophage/monocyte origin, Am. J. Clin. Pathol, vol.93, pp.822-827, 1990.

W. Vermi, Nodal and extranodal tumor-forming accumulation of plasmacytoid monocytes/interferon-producing cells associated with myeloid disorders, Am. J. Surg. Pathol, vol.28, pp.585-595, 2004.

A. Orazi, Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology, Mod. Pathol, vol.19, pp.1536-1545, 2006.

C. Bénet, Histologic and Immunohistologic Characterization of Skin Localization of Myeloid DisordersA Study of 173 Cases, Am. J. Clin. Pathol, vol.135, pp.278-290, 2011.

F. Vitte, Specific Skin Lesions in Chronic Myelomonocytic Leukemia: A Spectrum of Myelomonocytic and Dendritic Cell Proliferations. A Study of 42 Cases, Am. J. Surg. Pathol, vol.36, pp.1302-1316, 2012.

R. A. Mathew, Cutaneous manifestations in CMML: Indication of disease acceleration or transformation to AML and review of the literature, Leuk. Res, vol.36, pp.72-80, 2012.

J. H. Cho-vega, L. J. Medeiros, V. G. Prieto, F. L. Vega, and . Cutis, Am. J. Clin. Pathol, vol.129, pp.130-142, 2008.

H. Agis, A comparative study on demographic, hematological, and cytogenetic findings and prognosis in acute myeloid leukemia with and without leukemia cutis, Ann. Hematol, vol.81, pp.90-95, 2002.

K. Lennert and W. Remmele,

, Acta Haematol, vol.19, pp.99-113, 1958.

K. Lennert, E. Kaiserling, and H. K. Müller-hermelink, T-associated plasma-cells, The Lancet, vol.305, pp.1031-1032, 1975.

H. K. Müller-hermelink, E. Kaiserling, and K. Lennert, Pseudofollikuläre Nester von Plasmazellen (eines besonderen Typs?) in der paracorticalen Pulpa menschlicher Lymphknoten, Virchows Arch. B Cell Pathol. Zell-Pathol, vol.14, pp.47-56, 1973.

C. S. Papadimitriou, S. N. Stephanaki-nikou, and D. Malamou-mitsi, Comparative immunostaining of T-associated plasma cells and other lymph-node cells in paraffin sections, Virchows Arch. B Cell Pathol. Zell-Pathol, vol.43, pp.31-36, 1983.

A. C. Feller, K. Lennert, H. Stein, H. Bruhn, and H. Wuthe, Immunohistology and aetiology of histiocytic necrotizing lymphadenitis, Histopathology, vol.7, pp.825-839, 1983.

E. F. Prasthofer, J. T. Prchal, W. E. Grizzle, and C. E. Grossi, Plasmacytoid T-cell lymphoma associated with chronic myeloproliferative disorder, Am. J. Surg. Pathol, vol.9, pp.380-387, 1985.

H. K. Müller-hermelink, H. Stein, G. Steinmann, and K. Lennert, Malignant lymphoma of plasmacytoid T-cells. Morphologic and immunologic studies characterizing a special type of T-cell, Am. J. Surg. Pathol, vol.7, pp.849-862, 1983.

F. Facchetti, C. De-wolf-peeters, J. J. Van-den-oord, R. De-vos, and V. J. Desmet, Plasmacytoid T cells: A cell population normally present in the reactive lymph node: An immunohistochemical and electronmicroscopic study, Hum. Pathol, vol.19, pp.1085-1092, 1988.

R. Vollenweider and K. Lennert, Plasmacytoid T-cell clusters in non-specific lymphadenitis, Virchows Arch. B Cell Pathol. Zell-Pathol, vol.44, pp.1-14, 1983.

H. Horny, A. C. Feller, H. Horst, and K. Lennert, Immunocytology of plasmacytoid T cells: marker analysis indicates a unique phenotype of this enigmatic cell, Hum. Pathol, vol.18, pp.28-32, 1987.

F. Facchetti, Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin, Am. J. Pathol, vol.133, p.15, 1988.

G. Grouard, The Enigmatic Plasmacytoid T Cells Develop into Dendritic Cells with Interleukin (IL)-3 and CD40-Ligand, J. Exp. Med, vol.185, p.1101, 1997.

U. O'doherty, Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature, Immunology, vol.82, p.487, 1994.

J. Olweus, Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin, Proc. Natl. Acad. Sci, vol.94, pp.12551-12556, 1997.

J. Abb, H. Abb, and F. Deinhardt, Phenotype of human alpha-interferon producing leucocytes identified by monoclonal antibodies, Clin. Exp. Immunol, vol.52, p.179, 1983.

K. Sandberg, A. E. Gobl, K. Funa, and G. V. Alm, Characterization of the Blood Mononuclear Leucocytes Producing Alpha Interferon after Stimulation with Herpes Simplex Virus in Vitro, by Means of Combined Immunohistochemical Staining and in Situ RNA-RNA Hybridization, Scand. J. Immunol, vol.29, pp.651-658, 1989.

L. Rönnblomo, U. Ramstedt, and G. V. Alm, Properties of human natural interferon-producing cells stimulated by tumor cell lines, Eur. J. Immunol, vol.13, pp.471-476, 1983.

P. Fitzgerald-bocarsly, Human natural interferon-alpha producing cells, Pharmacol. Ther, vol.60, pp.39-62, 1993.

K. Sandberg, P. Matsson, and G. V. Alm, A distinct population of nonphagocytic and low level CD4+ null lymphocytes produce IFN-alpha after stimulation by herpes simplex virus-infected cells, J. Immunol, vol.145, pp.1015-1020, 1990.

K. Sandberg, M. Eloranta, A. Johannisson, and G. V. Alm, Flow Cytometric Analysis of Natural Interferon-? Producing Cells, Scand. J. Immunol, vol.34, pp.565-576, 1991.

J. J. Ferbas, J. F. Toso, A. J. Logar, J. S. Navratil, and C. R. Rinaldo, CD4+ blood dendritic cells are potent producers of IFN-alpha in response to in vitro HIV-1 infection, J. Immunol, vol.152, pp.4649-4662, 1994.

H. Svensson, A. Johannisson, T. Nikkilä, G. V. Alm, and B. Cederblad, The Cell Surface Phenotype of Human Natural Interferon-? Producing Cells as Determined by Flow Cytometry, Scand. J. Immunol, vol.44, pp.164-172, 1996.

F. P. Siegal, The nature of the principal type 1 interferon-producing cells in human blood, Science, vol.284, pp.1835-1837, 1999.

F. Couwenberg, F. A. Vyth-dreese, and H. Spits, Expression of pT mRNA in a Committed Dendritic Cell Precursor in the Human Thymus, Blood, vol.94, pp.2647-2657, 1999.

M. Rissoan, Subtractive hybridization reveals the expression of immunoglobulinlike transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells, Blood, vol.100, pp.3295-3303, 2002.

H. Spits, F. Couwenberg, A. Q. Bakker, K. Weijer, and C. H. Uittenbogaart, Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC) 2 but not into pre-DC1, J. Exp. Med, vol.192, pp.1775-1784, 2000.

C. Asselin-paturel, Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology, Nat. Immunol, vol.2, pp.1144-1150, 2001.

K. Shortman and Y. Liu, Mouse and human dendritic cell subtypes, Nat. Rev. Immunol, vol.2, pp.151-161, 2002.

T. Ito, H. Kanzler, O. Duramad, W. Cao, and Y. Liu, Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells, Blood, vol.107, pp.2423-2431, 2006.

B. Blom, S. Ho, S. Antonenko, and Y. Liu, Generation of interferon ?-producing predendritic cell (Pre-DC) 2 from human CD34+ hematopoietic stem cells, J. Exp. Med, vol.192, pp.1785-1796, 2000.

M. R. Shurin, C. Esche, and M. T. Lotze, FLT3: Receptor and Ligand. Biology and Potential Clinical Application, Cytokine Growth Factor Rev, vol.9, pp.37-48, 1998.

B. Pulendran, Flt3-Ligand and Granulocyte Colony-Stimulating Factor Mobilize Distinct Human Dendritic Cell Subsets In Vivo, J. Immunol, vol.165, pp.566-572, 2000.

W. Chen, Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors, Blood, vol.103, pp.2547-2553, 2004.

K. Weijer, Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo, Blood, vol.99, pp.2752-2759, 2002.

R. Schotte, The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development, Blood, vol.101, pp.1015-1023, 2003.

R. Schotte, M. Nagasawa, K. Weijer, H. Spits, and B. Blom, The ETS Transcription Factor Spi-B Is Required for Human Plasmacytoid Dendritic Cell Development, J. Exp. Med, vol.200, pp.1503-1509, 2004.

L. Chicha, D. Jarrossay, and M. G. Manz, Clonal Type I Interferon-producing and Dendritic Cell Precursors Are Contained in Both Human Lymphoid and Myeloid Progenitor Populations, J. Exp. Med, vol.200, pp.1519-1524, 2004.

F. Ishikawa, The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways, Blood, vol.110, pp.3591-3660, 2007.

A. Encabo, Selective generation of different dendritic cell precursors from CD34+ cells by interleukin-6 and interleukin-3, Stem Cells Dayt. Ohio, vol.22, pp.725-740, 2004.

S. Demoulin, P. Roncarati, P. Delvenne, and P. Hubert, Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor cells: Use of interleukin-3, Exp. Hematol, vol.40, pp.268-278, 2012.

J. Lee, Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow, J. Exp. Med, vol.212, pp.385-399, 2015.

J. Lee, Clonal analysis of human dendritic cell progenitor using a stromal cell culture, J. Immunol. Methods, vol.425, p.21, 2015.

H. Tsujimura, T. Tamura, and K. Ozato, Cutting Edge: IFN Consensus Sequence Binding Protein/IFN Regulatory Factor 8 Drives the Development of Type I IFN-Producing Plasmacytoid Dendritic Cells, J. Immunol, vol.170, pp.1131-1135, 2003.

T. Marafioti, Novel markers of normal and neoplastic human plasmacytoid dendritic cells, Blood, vol.111, pp.3778-3792, 2008.

B. Cisse, Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development, Cell, vol.135, pp.37-48, 2008.

H. S. Li, The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development, Blood, vol.120, p.4363, 2012.

E. Esashi, The Signal Transducer STAT5 Inhibits Plasmacytoid Dendritic Cell Development by Suppressing Transcription Factor IRF8, Immunity, vol.28, pp.509-520, 2008.

M. Swiecki and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells, Nat. Rev. Immunol, vol.15, pp.471-485, 2015.

M. Guilliams, Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat. Rev. Immunol, vol.14, pp.571-578, 2014.

A. Dzionek, BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood, J. Immunol, vol.165, pp.6037-6046, 2000.

Y. Liu and . Ipc, Professional Type 1 Interferon-Producing Cells and Plasmacytoid Dendritic Cell Precursors, Annu. Rev. Immunol, vol.23, pp.275-306, 2005.

V. Soumelis and Y. Liu, From plasmacytoid to dendritic cell: Morphological and functional switches during plasmacytoid pre-dendritic cell differentiation, Eur. J. Immunol, vol.36, pp.2286-2292, 2006.

M. Gilliet, W. Cao, and Y. Liu, Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases, Nat. Rev. Immunol, vol.8, pp.594-606, 2008.

E. Latz, TLR9 signals after translocating from the ER to CpG DNA in the lysosome, Nat. Immunol, vol.5, pp.190-198, 2004.

P. Ahmad-nejad, Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments, Eur. J. Immunol, vol.32, pp.1958-1968, 2002.

S. Bauer, Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition, Proc. Natl. Acad. Sci, vol.98, pp.9237-9242, 2001.

H. Hemmi, A Toll-like receptor recognizes bacterial DNA, Nature, vol.408, pp.740-745, 2000.

N. Kadowaki, Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens, J. Exp. Med, vol.194, pp.863-870, 2001.

J. M. Lund, Recognition of single-stranded RNA viruses by Toll-like receptor 7, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.5598-5603, 2004.

F. Heil, Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8, Science, vol.303, pp.1526-1529, 2004.

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. Reis-e-sousa, Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science, vol.303, pp.1529-1531, 2004.

K. Honda, Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction, Nature, vol.434, pp.1035-1040, 2005.

C. Guiducci, Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation, J. Exp. Med, vol.203, 1999.

T. Kim, Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15181-15186, 2010.

H. K. Lee, J. M. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki, Autophagy-dependent viral recognition by plasmacytoid dendritic cells, Science, vol.315, pp.1398-1401, 2007.

J. Henault, Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes, Immunity, vol.37, pp.986-997, 2012.

C. Ghirelli, R. Zollinger, and V. Soumelis, Systematic cytokine receptor profiling reveals GM-CSF as a novel TLR-independent activator of human plasmacytoid predendritic cells, Blood, vol.115, pp.5037-5040, 2010.

N. Kadowaki, S. Antonenko, J. Y. Lau, and Y. J. Liu, Natural interferon alpha/beta-producing cells link innate and adaptive immunity, J. Exp. Med, vol.192, pp.219-226, 2000.

C. Asselin-paturel, Type I interferon dependence of plasmacytoid dendritic cell activation and migration, J. Exp. Med, vol.201, pp.1157-1167, 2005.

O. Duramad, IL-10 regulates plasmacytoid dendritic cell response to CpG-containing immunostimulatory sequences, Blood, vol.102, pp.4487-4492, 2003.

L. Li, Splenic stromal microenvironment negatively regulates virus-activated plasmacytoid dendritic cells through TGF-beta, J. Immunol. Baltim. Md, vol.180, pp.2951-2956, 1950.

W. Cao, Plasmacytoid dendritic cell-specific receptor ILT7-Fc?RI? inhibits Toll-like receptor-induced interferon production, J. Exp. Med, vol.203, pp.1399-1405, 2006.

J. T. Schroeder, TLR9-and FcepsilonRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression, J. Immunol. Baltim. Md, vol.175, pp.5724-5731, 1950.

D. S. Green, T. Lum, and J. A. Green, IgG-derived Fc down-regulates virus-induced plasmacytoid dendritic cell (pDC) IFN? production, Cytokine, vol.26, pp.209-216, 2004.

A. Fuchs, M. Cella, T. Kondo, and M. Colonna, Paradoxic inhibition of human natural interferonproducing cells by the activating receptor NKp44, Blood, vol.106, pp.2076-2082, 2005.

A. Dzionek, BDCA-2, a Novel Plasmacytoid Dendritic Cell-specific Type II C-type Lectin, Mediates Antigen Capture and Is a Potent Inhibitor of Interferon ?/? Induction, J. Exp. Med, vol.194, pp.1823-1834, 2001.

W. Cao, BDCA2/Fc?RI? Complex Signals through a Novel BCR-Like Pathway in Human Plasmacytoid Dendritic Cells, PLoS Biol, vol.5, p.248, 2007.

I. Hirsch, C. Caux, U. Hasan, N. Bendriss-vermare, and D. Olive, Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer, Trends Immunol, vol.31, pp.391-397, 2010.

I. B. Bekeredjian-ding, Plasmacytoid Dendritic Cells Control TLR7 Sensitivity of Naive B Cells via Type I IFN, J. Immunol, vol.174, pp.4043-4050, 2005.

G. Jego, Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6, Immunity, vol.19, pp.225-234, 2003.

J. Shaw, Y. Wang, T. Ito, K. Arima, and Y. Liu, Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70, Blood, vol.115, pp.3051-3057, 2010.

F. Gerosa, The Reciprocal Interaction of NK Cells with Plasmacytoid or Myeloid Dendritic Cells Profoundly Affects Innate Resistance Functions, J. Immunol, vol.174, pp.727-734, 2005.

A. Benlahrech, Human NK Cell Up-regulation of CD69, HLA-DR, Interferon ? Secretion and Cytotoxic Activity by Plasmacytoid Dendritic Cells is Regulated through Overlapping but Different Pathways, Sensors, vol.9, pp.386-403, 2009.

S. Hanabuchi, Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL), Blood, vol.107, pp.3617-3623, 2006.

M. Kuwana, J. Kaburaki, T. M. Wright, Y. Kawakami, and Y. Ikeda, Induction of antigen-specific human CD4+ T cell anergy by peripheral blood DC2 precursors, Eur. J. Immunol, vol.31, pp.2547-2557, 2001.

T. Ito, Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand, J. Exp. Med, vol.204, pp.105-115, 2007.

M. Ogata, Plasmacytoid dendritic cells have a cytokine-producing capacity to enhance ICOS ligand-mediated IL-10 production during T-cell priming, Int. Immunol, vol.25, pp.171-182, 2013.

T. S. Mathan, C. G. Figdor, and S. I. Buschow, Human Plasmacytoid Dendritic Cells: From Molecules to Intercellular Communication Network, Front. Immunol, vol.4, 2013.

J. A. Villadangos and L. Young, Antigen-Presentation Properties of Plasmacytoid Dendritic Cells, Immunity, vol.29, pp.352-361, 2008.

G. Hoeffel, Antigen Crosspresentation by Human Plasmacytoid Dendritic Cells, Immunity, vol.27, pp.481-492, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00360697

E. Martin-gayo, E. Sierra-filardi, A. L. Corbi, and M. L. Toribio, Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development, Blood, vol.115, pp.5366-5375, 2010.

W. Chen, X. Liang, A. J. Peterson, D. H. Munn, and B. R. Blazar, The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation, J. Immunol. Baltim. Md, vol.181, p.5396, 1950.

J. Faget, ICOS-Ligand Expression on Plasmacytoid Dendritic Cells Supports Breast Cancer Progression by Promoting the Accumulation of Immunosuppressive CD4+ T Cells, Cancer Res, vol.72, pp.6130-6141, 2012.

F. Spadaro, IFN-? enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing, Blood, vol.119, pp.1407-1417, 2012.

T. Luft, Type I IFNs Enhance the Terminal Differentiation of Dendritic Cells, J. Immunol, vol.161, pp.1947-1953, 1998.

P. Blanco, A. K. Palucka, M. Gill, V. Pascual, and J. Banchereau, Induction of Dendritic Cell Differentiation by IFN-? in Systemic Lupus Erythematosus, Science, vol.294, pp.1540-1543, 2001.

S. M. Santini, Type I Interferon as a Powerful Adjuvant for Monocyte-Derived Dendritic Cell Development and Activity in Vitro and in Hu-Pbl-Scid Mice, J. Exp. Med, vol.191, p.1777, 2000.

R. L. Paquette, Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells, J. Leukoc. Biol, vol.64, pp.358-367, 1998.

T. Ito, Differential Regulation of Human Blood Dendritic Cell Subsets by IFNs, J. Immunol, vol.166, pp.2961-2969, 2001.

B. Pérez-cabezas, TLR-activated conventional DCs promote ?-secretase-mediated conditioning of plasmacytoid DCs, J. Leukoc. Biol, vol.92, pp.133-143, 2012.

B. Pérez-cabezas, Ligation of Notch receptors in human conventional and plasmacytoid dendritic cells differentially regulates cytokine and chemokine secretion and modulates Th cell polarization, J. Immunol. Baltim. Md, vol.186, pp.7006-7015, 1950.

J. Fonteneau, Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells, J. Virol, vol.78, pp.5223-5232, 2004.

R. Cantisani, Surface molecules on stimulated plasmacytoid dendritic cells are sufficient to cross-activate resting myeloid dendritic cells, Hum. Immunol, vol.72, pp.1018-1021, 2011.

D. Piccioli, Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation, Blood, vol.113, pp.4232-4239, 2009.

T. J. Kemp, B. D. Elzey, and T. S. Griffith, Plasmacytoid Dendritic Cell-Derived IFN-? Induces TNF-Related Apoptosis-Inducing Ligand/Apo-2L-Mediated Antitumor Activity by Human Monocytes Following CpG Oligodeoxynucleotide Stimulation, J. Immunol, vol.171, pp.212-218, 2003.

G. P. Dunn, C. M. Koebel, and R. D. Schreiber, Interferons, immunity and cancer immunoediting, Nat. Rev. Immunol, vol.6, pp.836-848, 2006.

L. Zitvogel, L. Galluzzi, O. Kepp, M. J. Smyth, and G. Kroemer, Type I interferons in anticancer immunity, Nat. Rev. Immunol. advance online publication, 2015.

Z. Von-marschall, Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis, J. Natl. Cancer Inst, vol.95, pp.437-448, 2003.

R. K. Singh, Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.4562-4566, 1995.

I. C. Oliveira, P. J. Sciavolino, T. H. Lee, and J. Vilcek, Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.9049-9053, 1992.

I. Gresser, The antitumor effects of interferon: A personal history, Biochimie, vol.89, pp.723-728, 2007.

M. Shigeno, Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation, Oncogene, vol.22, pp.1653-1662, 2003.

M. Chawla-sarkar, Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis, Apoptosis Int. J. Program. Cell Death, vol.8, pp.237-249, 2003.

C. Preudhomme, Imatinib plus Peginterferon Alfa-2a in Chronic Myeloid Leukemia, N. Engl. J. Med, vol.363, pp.2511-2521, 2010.

M. A. Essers, IFN alpha activates dormant haematopoietic stem cells in vivo, Nature, vol.458, pp.904-915, 2009.

I. Treilleux, Dendritic Cell Infiltration and Prognosis of Early Stage Breast Cancer, Clin. Cancer Res, vol.10, pp.7466-7474, 2004.

S. I. Labidi-galy, Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer, Cancer Res, vol.71, pp.5423-5434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849783

R. K. O'donnell, Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response, Cancer Lett, vol.255, pp.145-152, 2007.

E. Hartmann, Identification and Functional Analysis of Tumor-Infiltrating Plasmacytoid Dendritic Cells in Head and Neck Cancer, Cancer Res, vol.63, pp.6478-6487, 2003.

T. O. Jensen, Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma, Cancer, vol.118, pp.2476-2485, 2012.

C. Aspord, M. Leccia, J. Charles, and J. Plumas, Plasmacytoid Dendritic Cells Support Melanoma Progression by Promoting Th2 and Regulatory Immunity through OX40L and ICOSL, Cancer Immunol. Res, vol.1, pp.402-415, 2013.

V. Sisirak, Impaired IFN-? Production by Plasmacytoid Dendritic Cells Favors Regulatory Tcell Expansion That May Contribute to Breast Cancer Progression, Cancer Res, vol.72, pp.5188-5197, 2012.

G. Gerlini, Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes, Clin. Immunol, vol.125, pp.184-193, 2007.

A. Faith, Plasmacytoid Dendritic Cells from Human Lung Cancer Draining Lymph Nodes Induce Tc1 Responses, Am. J. Respir. Cell Mol. Biol, vol.36, pp.360-367, 2007.

I. Perrot, Dendritic Cells Infiltrating Human Non-Small Cell Lung Cancer Are Blocked at Immature Stage, J. Immunol, vol.178, pp.2763-2769, 2007.

W. Zou, Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells, Nat. Med, vol.7, pp.1339-1346, 2001.

W. Vermi, Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas, J. Pathol, vol.200, pp.255-268, 2003.

J. Wenzel, Type I Interferon-Associated Recruitment of Cytotoxic Lymphocytes: A Common Mechanism in Regressive Melanocytic Lesions, Am. J. Clin. Pathol, vol.124, pp.37-48, 2005.

H. J. Bontkes, J. J. Ruizendaal, D. Kramer, C. J. Meijer, and E. Hooijberg, Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles, Gynecol. Oncol, vol.96, pp.897-901, 2005.

M. M. Koeneman, TOPical Imiquimod treatment of high-grade Cervical intraepithelial neoplasia (TOPIC trial): study protocol for a randomized controlled trial, BMC Cancer, vol.16, p.132, 2016.

M. Van-seters, Treatment of vulvar intraepithelial neoplasia with topical imiquimod, N. Engl. J. Med, vol.358, pp.1465-1473, 2008.

M. Hishizawa, Depletion and impaired interferon-?-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals, Br. J. Haematol, vol.125, pp.568-575, 2004.

D. Chauhan, Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target, Cancer Cell, vol.16, pp.309-323, 2009.

A. Ray, A novel agent SL-401 induces anti-myeloma activity by targeting plasmacytoid dendritic cells, osteoclastogenesis and cancer stem-like cells, Leukemia, 2017.

N. Boissel, Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate, Leukemia, vol.18, pp.1656-1661, 2004.

M. Mohty, Imatinib and plasmacytoid dendritic cell function in patients with chronic myeloid leukemia, Blood, vol.103, pp.4666-4668, 2004.

L. Ma, Circulating myeloid and lymphoid precursor dendritic cells are clonally involved in myelodysplastic syndromes, Leukemia, vol.18, pp.1451-1456, 2004.

Y. Jing, Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood, Hum. Immunol, vol.70, pp.777-784, 2009.

A. Panda, Age-Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response, J. Immunol, vol.184, pp.2518-2527, 2010.

M. Shodell, F. P. Siegal, and . Circulating, Interferon-Producing Plasmacytoid Dendritic Cells Decline During Human Ageing, Scand. J. Immunol, vol.56, pp.518-521, 2002.

L. Saft, E. Björklund, E. Berg, E. Hellström-lindberg, and A. Porwit, Bone marrow dendritic cells are reduced in patients with high-risk myelodysplastic syndromes, Leuk. Res, vol.37, pp.266-273, 2013.

Å. R. Derolf, Dendritic Cells in Bone Marrow at Diagnosis and after Chemotherapy in Adult Patients with Acute Myeloid Leukaemia, Scand. J. Immunol, vol.80, pp.424-431, 2014.

M. Rickmann, Monitoring dendritic cell and cytokine biomarkers during remission prior to relapse in patients with FLT3-ITD acute myeloid leukemia, Ann. Hematol, vol.92, p.1079, 2013.

M. Mohty, Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment, Blood, vol.98, pp.3750-3756, 2001.

B. Chaudhary, Y. S. Khaled, B. J. Ammori, and E. Elkord, Neuropilin 1: function and therapeutic potential in cancer, Cancer Immunol. Immunother, vol.63, pp.81-99, 2014.

I. Bekeredjian-ding, Tumour-derived prostaglandin E2 and transforming growth factor-? synergize to inhibit plasmacytoid dendritic cell-derived interferon-?, Immunology, vol.128, pp.439-450, 2009.

V. Sisirak, Breast cancer-derived transforming growth factor-? and tumor necrosis factor-? compromise interferon-? production by tumor-associated plasmacytoid dendritic cells, Int. J. Cancer, vol.133, pp.771-778, 2013.

C. Ghirelli, Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes, Cancer Res, vol.75, pp.2775-2787, 2015.

W. Cao, Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction, J. Exp. Med, vol.206, pp.1603-1614, 2009.

Y. Shigematsu, Overexpression of the transmembrane protein BST-2 induces Akt and Erk phosphorylation in bladder cancer, Oncol. Lett, vol.14, pp.999-1004, 2017.

T. Yokoyama, Plasma membrane proteomics identifies bone marrow stromal antigen 2 as a potential therapeutic target in endometrial cancer, Int. J. Cancer, vol.132, pp.472-484, 2013.

T. Ohtomo, Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells, Biochem. Biophys. Res. Commun, vol.258, pp.583-591, 1999.

S. Gong, E. S. Osei, D. Kaplan, Y. H. Chen, and H. Meyerson, CD317 is over-expressed in B-cell chronic lymphocytic leukemia, but not B-cell acute lymphoblastic leukemia, Int. J. Clin. Exp. Pathol, vol.8, p.1613, 2015.

C. Kuang, BST2 confers cisplatin resistance via NF-?B signaling in nasopharyngeal cancer, Cell Death Dis, vol.8, p.2874, 2017.

Q. T. Pham, The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma, Anticancer Res, vol.37, pp.2853-2860, 2017.

S. Mukai, Overexpression of Transmembrane Protein BST2 is Associated with Poor Survival of Patients with Esophageal, Gastric, or Colorectal Cancer, Ann. Surg. Oncol, vol.24, pp.594-602, 2017.

D. Cai, Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis, BMC Cancer, vol.9, p.102, 2009.

N. Woodman, Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer, Int. J. Oncol, vol.49, pp.265-275, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330137

J. Ishikawa, Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth, Genomics, vol.26, pp.527-534, 1995.

E. Erikson, In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans, Proc. Natl. Acad. Sci. U. S. A, vol.108, p.13688, 2011.

C. Conrad, Plasmacytoid Dendritic Cells Promote Immunosuppression in Ovarian Cancer via ICOS Costimulation of Foxp3+ T-Regulatory Cells, Cancer Res, vol.72, pp.5240-5249, 2012.

I. Chevolet, Peritumoral indoleamine 2,3-dioxygenase expression in melanoma: an early marker of resistance to immune control?, Br. J. Dermatol, vol.171, pp.987-995, 2014.

I. Chevolet, Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma, J. Transl. Med, vol.13, 2015.

L. Mercier and I. , Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment, Cancer Res, vol.73, pp.4629-4640, 2013.

G. Stary, Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells, J. Exp. Med, vol.204, pp.1441-1451, 2007.

J. Tel, Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities, Blood, vol.120, pp.3936-3944, 2012.

M. L. Kalb, A. Glaser, G. Stary, F. Koszik, and G. Stingl, TRAIL+ Human Plasmacytoid Dendritic Cells Kill Tumor Cells In Vitro: Mechanisms of Imiquimod-and IFN-?-Mediated Antitumor Reactivity, J. Immunol, vol.188, pp.1583-1591, 2012.

J. Tel, Tumoricidal activity of human dendritic cells, Trends Immunol, vol.35, pp.38-46, 2014.

B. Jahrsdörfer, Granzyme B produced by human plasmacytoid dendritic cells suppresses Tcell expansion, Blood, vol.115, pp.1156-1165, 2010.

J. J. Karrich, IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which impairs their capacity to induce T-cell proliferation, Blood, vol.121, pp.3103-3111, 2013.

Y. Shao, Unusual presentation of direct intraperitoneal metastases complicated with massive ascites from plasmacytoid variant of bladder cancer and adenocarcinoma of colon: A case report and literature review, Medicine (Baltimore), vol.96, 2017.

A. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

P. See, Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, p.3009, 2017.

T. Matsui, CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions, J. Immunol, vol.182, pp.6815-6823, 2009.

L. E. Tavera-mendoza, T. Wang, J. H. White, C. P19ink4d, and . Death, Cell Cycle, vol.5, pp.596-598, 2006.

A. L. Carcagno, E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation, PLoS ONE, vol.6, 2011.

M. J. Aman, Type-I interferons are potent inhibitors of interleukin-8 production in hematopoietic and bone marrow stromal cells, Blood, vol.82, pp.2371-2378, 1993.

J. Decalf, Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients, J. Exp. Med, vol.204, pp.2423-2437, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01402312

M. Drosten, H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences, Cancer Res, vol.77, pp.707-718, 2017.

B. H. Lee, FLT3 Mutations Confer Enhanced Proliferation and Survival Properties to Multipotent Progenitors in a Murine Model of Chronic Myelomonocytic Leukemia, Cancer Cell, vol.12, pp.367-380, 2007.

L. M. Kelly, FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model, Blood, vol.99, pp.310-318, 2002.

R. Grundler, C. Miething, C. Thiede, C. Peschel, and J. Duyster, FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model, Blood, vol.105, pp.4792-4799, 2005.

C. M. Lau, Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses, J. Exp. Med, vol.213, pp.415-431, 2016.

J. Lee, Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors, Nat. Immunol, vol.18, pp.877-888, 2017.

H. J. Mckenna, P. De-vries, K. Brasel, S. D. Lyman, and D. E. Williams, Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells, Blood, vol.86, pp.3413-3420, 1995.

C. Brashem-stein, D. A. Flowers, and I. D. Bernstein, Regulation of colony forming cell generation by flt-3 ligand, Br. J. Haematol, vol.94, pp.17-22, 1996.

L. S. Rusten, S. D. Lyman, O. P. Veiby, and S. E. Jacobsen, The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro, Blood, vol.87, pp.1317-1325, 1996.

P. Tsapogas, C. J. Mooney, G. Brown, and A. Rolink, The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis, Int. J. Mol. Sci, vol.18, 2017.

E. Solary, O. A. Bernard, A. Tefferi, F. Fuks, and W. Vainchenker, The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases, Leukemia, vol.28, pp.485-496, 2014.

S. D. Lyman, Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells, Blood, vol.83, pp.2795-2801, 1994.

E. Chklovskaia, Mechanism of flt3 ligand expression in bone marrow failure: translocation from intracellular stores to the surface of T lymphocytes after chemotherapy-induced suppression of hematopoiesis, Blood, vol.93, pp.2595-2604, 1999.

A. Solanilla, Expression of Flt3-ligand by the endothelial cell, Leukemia, vol.14, p.153, 2000.

M. Lisovsky, Flt3-ligand production by human bone marrow stromal cells, Leukemia, vol.10, pp.1012-1018, 1996.

J. M. Bertho, Bone marrow stromal cells spontaneously produce Flt3-ligand: Influence of ionizing radiations and cytokine stimulation, Int. J. Radiat. Biol, vol.84, pp.659-667, 2008.

A. Solanilla, CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells, Blood, vol.95, pp.3758-3764, 2000.

S. P. Dormady, O. Bashayan, R. Dougherty, X. Zhang, and R. S. Basch, Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment, J. Hematother. Stem Cell Res, vol.10, pp.125-140, 2001.

H. Zwierzina, Endogenous FLT-3 ligand serum levels are associated with disease stage in patients with myelodysplastic syndromes, Leukemia, vol.13, pp.553-557, 1999.

S. D. Lyman, Plasma/serum levels of flt3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia, Blood, vol.86, pp.4091-4096, 1995.

A. Wodnar-filipowicz, Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia, Blood, vol.88, pp.4493-4499, 1996.

T. Sato, FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo, Blood, vol.117, p.3286, 2011.

Y. Gazitt and Q. Liu, High steady-state plasma levels of flt3-ligand in the peripheral blood is a good predictor for poor mobilization of CD34+ PBSC in patients undergoing high-dose chemotherapy and stem cell rescue, J. Hematother. Stem Cell Res, vol.9, pp.285-293, 2000.

J. H. Haidar, Serum Flt3 ligand variation as a predictive indicator of hematopoietic stem cell mobilization, J. Hematother. Stem Cell Res, vol.11, pp.533-538, 2002.

P. Bojko, D. Pawloski, and W. Stelberg, Flt3 ligand and thrombopoietin serum levels during peripheral blood stem cell mobilization with chemotherapy and recombinant human glycosylated granulocyte colony-stimulating factor (rhu-G-CSF, lenograstim) and after high-dose chemotherapy, Ann. Hematol, vol.81, pp.522-528, 2002.

C. Desterke, FLT3-Mediated p38-MAPK Activation Participates in the Control of Megakaryopoiesis in Primary Myelofibrosis, Cancer Res, vol.71, pp.2901-2915, 2011.

S. Y. Kordasti, CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS), Blood, vol.110, pp.847-850, 2007.

I. Gañán-gómez, Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes, Leukemia, vol.29, pp.1458-1469, 2015.

C. Riether, C. M. Schürch, and A. F. Ochsenbein, Regulation of hematopoietic and leukemic stem cells by the immune system, Cell Death Differ, vol.22, pp.187-198, 2015.

J. Tel, Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients, Cancer Res, vol.73, pp.1063-1075, 2013.

J. Tel, Preclinical exploration of combining plasmacytoid and myeloid dendritic cell vaccination with BRAF inhibition, J. Transl. Med, vol.14, 2016.

O. Goodyear, Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia, Blood, vol.116, pp.1908-1918, 2010.

J. Frikeche, Impact of the hypomethylating agent 5-azacytidine on dendritic cells function, Exp. Hematol, vol.39, pp.1056-1063, 2011.