, Une campagne pour changer la représentation du cancer fr, 2018.

N. Papavramidou, T. Papavramidis, and T. Demetriou, Ancient Greek and GrecoRoman Methods in Modern Surgical Treatment of Cancer, Annals of Surgical Oncology, vol.17, pp.1068-9265, 2010.

E. Weiderpass, Journal of Preventive Medicine and Public Health = Yebang Uihakhoe Chi 43, vol.459471, pp.1975-8375, 2010.

. Qu, est-ce que le cancer? | Fondation contre le Cancer, 2018.

B. W. Stewart, P. Kleihues, and I. A. For-research-on-cancer, World cancer report, 2003.

~. Hodgkin, , 2018.

. Who-|-cancer, , 2018.

, Cancer Facts &, 2018.

, Brain Tumor Statistics | American Brain Tumor Association, 2018.

M. B. Spine, Brain tumors: overview of types, diagnosis, treatment options | Cincinnati, OH Mayeld Brain & Spine, 2018.

, Brain metastases -Symptoms and causes en, 2018.

A. Giese, R. Bjerkvig, M. Berens, and M. Westphal, Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment. en, Journal of Clinical Oncology, vol.21, pp.1527-7755, 2003.

K. Ichimura, Y. Narita, and C. E. Hawkins, Diusely inltrating astrocytomas: pathology, molecular mechanisms and markers. en, Acta Neuropathologica, vol.129, pp.1432-0533, 2015.

O. Rapalino, T. Batchelor, R. G. González, and . En, Handbook of Clinical Neurology, vol.253, p.274, 2016.

P. Wesseling, M. V. Bent, and A. Perry, Oligodendroglioma: pathology, molecular mechanisms and markers. en, Acta Neuropathologica, vol.129, pp.1432-0533, 2015.

S. A. Grimm and M. C. Chamberlain, Anaplastic astrocytoma. en. CNS Oncology, vol.5, pp.2045-0915, 2016.

A. Omuro and L. M. Deangelis, Glioblastoma and other malignant gliomas: a clinical review. eng, JAMA, vol.310, pp.1538-3598, 2013.

S. V. Ellor, T. A. Pagano-young, and N. G. Avgeropoulos, Glioblastoma: Background, Standard Treatment Paradigms, and Supportive Care Considerations. en. The Journal of Law, Medicine & Ethics, vol.42, pp.1748-720, 2014.

S. Bauer, R. Wiest, L. Nolte, and M. Reyes, A survey of MRI-based medical image analysis for brain tumor studies, Physics in Medicine and Biology, vol.58, pp.1361-6560, 2013.

W. R. Shapiro and J. R. Shapiro, Biology and treatment of malignant glioma. eng, Oncology, vol.12, pp.890-9091, 1998.

A. Durand, WHO grade II and III meningiomas: a study of prognostic factors. eng, Journal of Neuro-Oncology, vol.95, pp.1573-7373, 2009.

W. L. Bi and I. F. Dunn, Current and emerging principles in surgery for meningioma

, Chinese Clinical Oncology, vol.6, pp.2304-3873, 2017.

R. R. Langley and I. J. Fidler, The Biology of Brain Metastasis. en, Clinical Chemistry, vol.59, pp.1530-8561, 2013.

T. R. Geiger and D. S. Peeper, Metastasis mechanisms. en, Biochimica et Biophysica Acta (BBA) -Reviews on Cancer, vol.1796, 2009.

M. Preusser, Brain metastases: pathobiology and emerging targeted therapies. eng

, Acta Neuropathologica, vol.123, pp.1432-0533, 2012.

A. Perkins and G. Liu, Primary Brain Tumors in Adults: Diagnosis and Treatment, American family physician, p.93, 2016.

L. M. Deangelis, Brain tumors, New England Journal of Medicine, vol.344, p.114123, 2001.

S. R. Chandana, S. Movva, M. Arora, and T. Singh, Primary brain tumors in adults, American family physician, vol.77, 2008.

A. H. Jacobs, Imaging in Neurooncology. NeuroRx, vol.2, pp.1545-5343, 2005.

A. Zani, G. Biella, A. M. Proverbio, and . En, The Cognitive Electrophysiology of Mind and Brain 417422, 2003.

J. L. Holtrop and B. P. Sutton, High spatial resolution diusion weighted imaging on clinical

, T MRI scanners using multislab spiral acquisitions, Journal of Medical Imaging, vol.3, pp.2329-4302, 2016.

K. Li, An improved coverage and spatial resolution-using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: A novel dynamic contrast-enhanced technique for cerebral tumors. en. Magnetic Resonance in Medicine 68, 2012.

J. Hu, A high spatial resolution 1H magnetic resonance spectroscopic imaging technique for breast cancer with a short echo time. Magnetic resonance imaging 26, 2008.

M. C. Mabray, R. F. Barajas, and S. Cha, Modern Brain Tumor Imaging. Brain Tumor Research and Treatment 3, 823, pp.2288-2405, 2015.

L. C. Hygino-da-cruz, I. G. Vieira, and R. C. Domingues, Diusion MR Imaging: An Important Tool in the Assessment of Brain Tumors. en. Neuroimaging Clinics of North America 21, 2011.

, Brain Tumors, 2018.

A. Horská and P. B. Barker, Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging, Neuroimaging clinics of North America, vol.20, pp.1052-5149, 2010.

, A history full of revolutions en, 2018.

E. F. Wijdicks, The First CT Scan of the Brain: Entering the Neurologic Information Age. en. Neurocritical Care. issn: 1541-6933

, , 2017.

T. Flohr, B. Ohnesorge, and . En, Multi-slice and Dual-source CT in Cardiac Imaging 4169, 2007.

J. R. Fink, M. Muzi, M. Peck, and K. A. Krohn, Continuing Education: Multi-modality Brain Tumor Imaging MRI, PET, and PET/MRI, Society of Nuclear Medicine, vol.56, 2015.

A. L. Luiten and . En, Magnetic Resonance Imaging, vol.17, 1999.

A. Drevelegas, N. Papanikolaou, and . En, Imaging of Brain Tumors with Histological Correlations, p.1333, 2011.

S. Mori and J. Zhang, Principles of Diusion Tensor Imaging and Its Applications to Basic Neuroscience Research, Neuron, vol.51, pp.896-6273, 2006.

G. Jahng, K. Li, L. Ostergaard, and F. Calamante, Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques, Korean Journal of Radiology, vol.15, pp.1229-6929, 2014.

H. Girouard and C. Iadecola, Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. eng, Journal of Applied Physiology, vol.100, 1985.

R. W. Pak, Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors. eng, Journal of Cerebral Blood Flow and Metabolism: Ocial Journal of the International Society of Cerebral Blood Flow and Metabolism, vol.37, pp.1559-7016, 2017.

A. Berger, Positron emission tomography, BMJ : British Medical Journal, vol.326, 2003.

E. Salmon, C. Bernard-ir, and R. Hustinx, Pitfalls and Limitations of PET/CT in Brain Imaging. en, Seminars in Nuclear Medicine, vol.45, 2015.

M. D. Krieger, P. T. Chandrasoma, C. Zee, and M. L. Apuzzo, Role of stereotactic biopsy in the diagnosis and management of brain tumors. en, Seminars in Surgical Oncology, vol.14, pp.1098-2388, 1325.

M. Rahman, G. J. Murad, and J. Mocco, Early history of the stereotactic apparatus in neurosurgery, Neurosurgical Focus, vol.27, 2009.

, Frame and Frameless Stereotactic Brain Biopsy en-US, 2015.

R. A. Brown and J. A. Nelson, Invention of the N-localizer for stereotactic neurosurgery and its use in the Brown-Roberts-Wells stereotactic frame. eng, Neurosurgery, vol.70, 2012.

A. O. Heper, An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. en, Surgical Neurology, vol.64, 2005.

J. Yuen, A sequential comparison on the risk of haemorrhage with dierent sizes of biopsy needles for stereotactic brain biopsy. eng. Stereotactic and Functional Neurosurgery 92, 2014.

, How Neurosurgeons Perform a Stereotactic Brain Biopsy en, 2018.

F. W. Kreth, The Risk of Haemorrhage after Image Guided Stereotactic Biopsy of Intra-Axial Brain Tumours A Prospective Study. en, Acta Neurochirurgica, vol.143, 2001.

M. H. Ross and W. Pawlina, Histology: a text and atlas: with correlated cell and molecular biology 5th ed. OCLC: ocm60516651, 2006.

M. Titford, The long history of hematoxylin. en, Biotechnic & Histochemistry, vol.80, pp.1473-7760, 2005.

J. K. Chan, The Wonderful Colors of the HematoxylinEosin Stain in Diagnostic Surgical Pathology. en, International Journal of Surgical Pathology, vol.22, 1940.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, Hematoxylin and Eosin Staining of Tissue and Cell Sections. en. Cold Spring Harbor Protocols, pp.1559-6095, 2008.

S. Ritz, . Histology, . Tissue, and . Staining, , p.78

S. Mitra, M. Kumar, V. Sharma, and D. Mukhopadhyay, Squash preparation: A reliable diagnostic tool in the intraoperative diagnosis of central nervous system tumors, Journal of Cytology / Indian Academy of Cytologists, vol.27, pp.970-9371, 2010.

H. S. Lee and T. Tihan, The Basics of Intraoperative Diagnosis in, Neuropathology. en. Surgical Pathology Clinics, vol.8, 2015.

N. Ghosal, A. S. Hegde, G. Murthy, and S. V. Furtado, Smear preparation of intracranial lesions: A retrospective study of 306 cases. en, Diagnostic Cytopathology, vol.39, 2011.

D. A. Novis and R. J. Zarbo, Interinstitutional comparison of frozen section turnaround time

, A College of American Pathologists Q-Probes study of 32868 frozen sections in 700 hospitals

, Archives of Pathology & Laboratory Medicine, vol.121, 1997.

A. R. Dikondwar, Utility and challenges in intraoperative consultation of spinal lesions by crush smear cytology, Asian Journal of Neurosurgery, vol.11, pp.1793-5482, 2016.

H. Jaafar, Intra-Operative Frozen Section Consultation: Concepts, Applications and Limitations, MJMS 13, 412. issn, pp.1394-195, 2006.

L. J. Dinardo, J. Lin, L. S. Karageorge, and C. N. Powers, Accuracy, utility, and cost of frozen section margins in head and neck cancer surgery. eng. The Laryngoscope 110, 2000.

P. Chand, S. Amit, R. Gupta, and A. Agarwal, Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections, Journal of Cytology / Indian Academy of Cytologists, vol.33, pp.970-9371, 2016.

C. Watts, N. Sanai, and . En, Handbook of Clinical Neurology, vol.5169, 2016.

M. Shakarami, A. Suratgar, and H. Talebi, Estimation of intra-operative brain shift based on constrained Kalman lter. en, ISA Transactions, vol.55, 2015.

M. H. Reinges, Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. en, Acta Neurochirurgica, vol.146, pp.1-6268, 2004.

M. S. Berger, C. G. Hadjipanayis, . Surgery, . Intrinsic, . Tumors et al., Neurosurgery, vol.61, pp.1524-4040, 2007.

E. Mandonnet, P. A. Winkler, and H. Duau, Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. en, Acta Neurochirurgica, vol.152, 2010.

J. Pallud and E. Dezamis, Functional and oncological outcomes following awake surgical resection using intraoperative cortico-subcortical functional mapping for supratentorial gliomas located in eloquent areas. en, Neurochirurgie, vol.63, 2017.

M. Tamura, Strategy of Surgical Resection for Glioma Based on Intraoperative Functional Mapping and Monitoring, Neurologia medico-chirurgica, vol.55, pp.470-8105, 2015.

U. H. Weidle, J. Niewöhner, and G. Tiefenthaler, The BloodBrain Barrier Challenge for the Treatment of Brain Cancer, Secondary Brain Metastases, and Neurological Diseases

, Cancer Genomics -Proteomics, vol.12, pp.1790-6245, 2015.

R. Rampling, J. Papanastassiou, V. The, . Future-manage-ment, . Of et al., Neurosurgery, and Psychiatry, vol.75, 2004.

F. Vase, N. Mackinnon, D. L. Farkas, and B. Kateb, Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics, 2017.

A. C. Lipson, P. C. Gargollo, and P. M. Black, Intraoperative magnetic resonance imaging: considerations for the operating room of the future, Journal of Clinical Neuroscience, vol.8, pp.967-5868, 2001.

P. L. Kubben, Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review, The lancet oncology, vol.12, p.10621070, 2011.

M. S. Eljamel and S. O. Mahboob, The eectiveness and cost-eectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, uorescein, ultrasound and MRI. eng. Photodiagnosis and Photodynamic Therapy 16, vol.3543, pp.1873-1597, 2016.

J. Coburger, Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. eng, Acta Neurochirurgica, vol.157, 2015.

W. A. Hall and C. L. Truwit, Intraoperative MR-guided neurosurgery, en. Journal of Magnetic Resonance Imaging, vol.27, p.15222586, 2008.

T. Garzon-muvdi, C. Kut, X. Li, and K. L. Chaichana, Intraoperative imaging techniques for glioma surgery. en, Future Oncology, vol.13, pp.1744-8301, 2017.

A. M. Silas, J. B. Kruskal, R. A. Kane, . Ultrasound, and . English,

, Radiologic Clinics 39, 429448, pp.1557-8275, 2001.

A. K. Petridis, M. Anokhin, J. Vavruska, M. Mahvash, and M. Scholz, The value of intraoperative sonography in low grade glioma surgery. en, Clinical Neurology and Neurosurgery, vol.131, 2015.

V. M. Gerganov, A. Samii, M. Giordano, M. Samii, and R. Fahlbusch, Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas, Journal of Clinical Neuroscience, vol.18, pp.967-5868, 2011.

E. Belykh, Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions, Frontiers in Surgery, vol.3, pp.2296-875

M. Behbahaninia, Intraoperative uorescent imaging of intracranial tumors: A review

, Clinical Neurology and Neurosurgery, vol.115, 2013.

G. E. Moore and W. T. Peyton, The clinical use of uorescein in neurosurgery; the localization of brain tumors. eng, Journal of Neurosurgery, vol.5, 1948.

R. Luscan, ICG cine-angiography demonstrates choroidal reperfusion after vortex vein occlusion in AMD. eng, pp.1773-0597, 2015.

M. Saito, Quantitative Blood Flow Assessment by Multiparameter Analysis of Indocyanine Green Video Angiography

T. H. Degett, H. S. Andersen, and I. Gögenur, Indocyanine green uorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. eng. Langenbeck's Archives of Surgery 401, vol.767775, pp.1435-2451, 2016.

I. Y. Eyüpoglu, Intraoperative vascular DIVA surgery reveals angiogenic hotspots in tumor zones of malignant gliomas, eng. Scientic Reports, vol.5, pp.2045-2322, 2015.

J. T. Liu, D. Meza, and N. Sanai, Trends in Fluorescence Image-guided Surgery for Gliomas, Neurosurgery, vol.75, pp.148-396, 2014.

W. Stummer, Intraoperative detection of malignant gliomas by 5-aminolevulinic acidinduced porphyrin uorescence. eng, Neurosurgery, vol.42, pp.148-396, 1998.

W. Stummer, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. en. The Lancet Oncology, vol.7, 2006.

S. R. Kantelhardt, Multiphoton excitation uorescence microscopy of 5-aminolevulinic acid induced uorescence in experimental gliomas. en. Lasers in Surgery and Medicine 40, pp.1096-9101, 2008.

W. Stummer, The Fear of 5-ALAIs It Warranted? en, World Neurosurgery, vol.81, 2014.

A. Croce and G. Bottiroli, Autouorescence spectroscopy and imaging: a tool for biomedical research and diagnosis, European Journal of Histochemistry, vol.58, pp.2038-8306, 2014.

M. Monici, Biotechnology Annual Review, pp.11007-11009, 2005.

A. Chorvatova, D. Chorvat, L. Marcu, P. French, and D. Elson, Fluorescence Lifetime Spectroscopy and Imaging, p.4784, 2014.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications. en. Photochemistry and Photobiology, vol.68, pp.1751-1097, 1998.

G. Bottiroli, A. C. Croce, and . In, Comprehensive Series in Photochemical & Photobiological Sciences, 2007.

S. J. Shin, . Kanomata, and P. P. Rosen, Mammary carcinoma with prominent cytoplasmic lipofuscin granules mimicking melanocytic dierentiation. en, Histopathology, vol.37, pp.1365-2559, 2000.

Y. Matsumoto, Lipofuscin pigmentation in pleomorphic adenoma of the palate. English. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 92, pp.2212-4411, 2001.

R. Patil, Advances in Imaging: Brain Tumors to Alzheimer's Disease. The Bangkok medical journal 10, vol.8397, pp.2228-9674, 2015.

K. Tilbury, C. Lien, S. Chen, and P. J. Campagnola, Dierentiation of Col I and Col III Isoforms in Stromal Models of Ovarian Cancer by Analysis of Second Harmonic Generation Polarization and Emission Directionality, Biophysical Journal, vol.106, pp.6-3495, 2014.

J. Leppert, Multiphoton Excitation of Autouorescence for Microscopy of Glioma Tissue. en, Neurosurgery, vol.58, pp.1524-4040, 2006.

L. Giannoni, F. Lange, and I. Tachtsidis, Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments, Journal of Optics, vol.20, pp.2040-8986, 2018.

O. Miyamoto, R. N. Auer, . Hypoxia, and . En, Neurology, vol.54, pp.1526-632, 2000.

M. Lukina, M. Shirmanova, T. Sergeeva, and E. Zagaynova, Metabolic Imaging in the Study of Oncological Processes (Review), 2016.

Z. Liu, Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. eng. Science Advances 4, eaap9302, pp.2375-2548, 2018.

W. H. Koppenol, P. L. Bounds, C. V. Dang, and . Otto, Warburg's contributions to current concepts of cancer metabolism. en, Nature Reviews Cancer, vol.11, 2011.

Q. Liu, Compact point-detection uorescence spectroscopy system for quantifying intrinsic uorescence redox ratio in brain cancer diagnostics, Journal of Biomedical Optics, vol.16, pp.1083-3668, 2011.

M. C. Skala, In vivo multiphoton microscopy of NADH and FAD redox states, uorescence lifetimes, and cellular morphology in precancerous epithelia, Proceedings of the National Academy of Sciences, vol.104, p.1949419499, 2007.

M. Ranji, Fluorescence spectroscopy and imaging of myocardial apoptosis. eng, Journal of Biomedical Optics, vol.11, pp.1083-3668, 2006.

R. Drezek, Autouorescence Microscopy of Fresh Cervical-Tissue Sections Reveals Alterations in Tissue Biochemistry with Dysplasia ¶. en. Photochemistry and Photobiology 73, vol.636641, pp.1751-1097, 2001.

Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, Diagnostic potential of laser-induced autouorescence emission in brain tissue, Journal of Korean Medical Science, vol.12, 1997.

A. C. Croce, Diagnostic Potential of Autouorescence for an Assisted Intraoperative Delineation of Glioblastoma Resection Margins ¶. en, Photochemistry and Photobiology, vol.77, pp.1751-1097, 2003.

D. Evers, B. Hendriks, G. Lucassen, and T. Ruers, Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy, Future Oncology, vol.8, 2012.

W. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-jansen, In Vivo Brain Tumor Demarcation Using Optical Spectroscopy ¶. en, Photochemistry and Photobiology, vol.73, pp.31-8655, 2001.

S. A. Toms, Intraoperative optical spectroscopy identies inltrating glioma margins with high sensitivity. eng. Neurosurgery 61, 327335; discussion 335336, pp.1524-4040, 2007.

S. S. Nazeer, A. Saraswathy, A. K. Gupta, and R. S. Jayasree, Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and uorophores: study on neoplastic human brain lesions. en, Journal of Biomedical Optics, vol.18, pp.1083-3668, 2013.

S. S. Nazeer, A. Saraswathy, A. K. Gupta, and R. S. Jayasree, Fluorescence spectroscopy to discriminate neoplastic human brain lesions: a study using the spectral intensity ratio and multivariate linear discriminant analysis, Laser Physics, vol.24, pp.1555-6611, 2014.

D. A. Haidar, B. Leh, M. Zanello, and R. Siebert, Spectral and lifetime domain measurements of rat brain tumors. eng, Biomedical Optics Express, vol.6, pp.2156-7085, 2015.

M. Y. Berezin and S. Achilefu, Fluorescence Lifetime Measurements and Biological Imaging, Chemical reviews, vol.110, 2010.

L. Chen, W. R. Lloyd, C. Chang, D. Sud, and M. Mycek, Fluorescence lifetime imaging microscopy for quantitative biological imaging. eng, Methods in Cell Biology, vol.114, pp.91-679, 2013.

L. Marcu, Fluorescence Lifetime Spectroscopy of Glioblastoma Multiforme ¶. en. Photochemistry and Photobiology 80, p.17511097, 2007.

D. Elson, L. Marcu, P. French, L. Marcu, P. French et al., Fluorescence Lifetime Spectroscopy and Imaging, p.322, 2014.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, The Phasor Approach to Fluorescence Lifetime Imaging Analysis. English, Biophysical Journal, vol.94, pp.6-3495, 2008.

S. R. Kantelhardt, In vivo multiphoton tomography and uorescence lifetime imaging of human brain tumor tissue. en, Journal of Neuro-Oncology, vol.127, pp.1573-7373, 2016.

P. V. Butte, Intraoperative delineation of primary brain tumors using time-resolved uorescence spectroscopy. en, Journal of Biomedical Optics, vol.15, p.10833668, 2010.

Y. Sun, Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery, Journal of Biomedical Optics, vol.15, pp.1083-3668, 2010.

P. V. Butte, Fluorescence lifetime spectroscopy for guided therapy of brain tumors, S125S135. issn, vol.54, pp.1053-8119, 2011.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy, Neoplasia, pp.1522-8002, 2000.

H. J. Böhringer, Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. en. Lasers in Surgery and Medicine 38, vol.588597, pp.1096-9101, 2006.

P. A. Valdés, D. W. Roberts, F. Lu, and A. Phd-&-golby, Optical technologies for intraoperative neurosurgical guidance. en, Neurosurgical Focus, vol.40, 2016.

H. Matz, Intraoperative Applications of OCT in Ophthalmic Surgery, Biomedical Engineering / Biomedizinische Technik, vol.57, pp.13-5585, 2012.

E. Zagaynova, N. Gladkova, N. Shakhova, G. Gelikonov, and V. Gelikonov, Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology. en, Journal of Biophotonics, vol.1, p.18640648, 2008.

M. Terashima, H. Kaneda, and T. Suzuki, The Role of Optical Coherence Tomography in Coronary Intervention. en, The Korean Journal of Internal Medicine, vol.27, p.6648, 2005.

C. Kut, Detection of Human Brain Cancer Inltration ex vivo and in vivo Using Quantitative Optical Coherence Tomography, Science translational medicine, vol.7, pp.1946-6234, 2015.

C. S. Carignan and Y. Yagi, Optical endomicroscopy and the road to real-time, in vivo pathology: present and future, Diagnostic Pathology, vol.7, pp.1746-1596, 2012.

Y. Fan, Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. eng, Bioscience Trends, vol.12, pp.1881-7823, 1223.

P. A. Valdés, -aminolevulinic acidinduced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative uorescence-guided resection to identify regions of increasing malignancy, Neuro-Oncology, vol.13, pp.1522-8517, 2011.

M. Minsky, Memoir on inventing the confocal scanning microscope, en. Scanning, vol.10, pp.1932-8745

, Confocal Microscopy -Introduction, 2018.

B. A. Flusberg, Fiber-optic uorescence imaging, Nature methods, vol.2, 2005.

D. Loterie, Digital confocal microscopy through a multimode ber, EN. Optics Express, vol.23, pp.1094-4087, 2015.

L. Fu and M. Gu, Fibre-optic nonlinear optical microscopy and endoscopy. en, Journal of Microscopy, vol.226, pp.1365-2818, 2007.

K. B. Sung, Near real time in vivo bre optic confocal microscopy: sub-cellular structure resolved. en, Journal of Microscopy, vol.207, pp.1365-2818, 2002.

D. Bird and M. Gu, Two-photon uorescence endoscopy with a micro-optic scanning head. en, Optics Letters, vol.28, pp.1539-4794, 2003.

H. Xie, Y. Pan, and G. K. Fedder, Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror, Sensors and Actuators A: Physical. Micromechanics section of Sensors and Actuators, vol.103, 2002.

L. Fu and M. Gu, Double-clad photonic crystal ber coupler for compact nonlinear optical microscopy imaging, Optics Letters, vol.31, pp.1539-4794, 2006.

W. Piyawattanametha, Fast-scanning two-photon uorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror, Optics Letters, vol.31, pp.1539-4794, 2006.

J. Wang, A Confocal Endoscope for Cellular Imaging. Engineering, vol.1, pp.2095-8099, 2015.

A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, Design and demonstration of a miniature catheter for a confocal microendoscope, en. Applied Optics, vol.43, pp.1539-4522, 2004.

M. Kyrish, Needle-based uorescence endomicroscopy via structured illumination with a plastic, achromatic objective. en, Journal of Biomedical Optics, vol.18, pp.1083-3668, 2013.

L. Yang, Five-lens, easy-to-implement miniature objective for a uorescence confocal microendoscope. en, Optics Express, vol.24, pp.1094-4087, 2016.

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, Tunable liquid-lled lens integrated with aspherical surface for spherical aberration compensation. en, Optics Express, vol.18, pp.1094-4087, 2010.

J. M. Jabbour, Optical axial scanning in confocal microscopy using an electrically tunable lens, Biomedical Optics Express, vol.5, pp.2156-7085, 2014.

M. Kim, Miniature objective lens with variable focus for confocal endomicroscopy

, Biomedical Optics Express, vol.5, pp.2156-7085, 2014.

L. S. Cheong, Embedded Computing for Fluorescence Confocal Endomicroscopy Imaging. en, Journal of Signal Processing Systems, vol.55, pp.1939-8115, 2009.

P. S. Thong, Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing. en, Journal of Biomedical Optics, vol.17, p.10833668, 2012.

P. Sharma, Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: nal results of an international multicenter, prospective, randomized, controlled trial, Gastrointestinal endoscopy, vol.74, pp.16-5107, 2011.

E. I. Liem, Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies, JMIR Research Protocols, vol.7, pp.1929-0748, 2018.

J. Tan, M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. Mclaren, Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. eng. BJOG: an international journal of obstetrics and gynaecology 116, 2009.

A. Zehri, Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities. en, Surgical Neurology International, vol.5, pp.2152-7806, 2014.

T. Sankar, Miniaturized Handheld Confocal Microscopy for Neurosurgery. en. Neurosurgery 66, pp.1524-4040, 2010.

V. Pavlov, Intraoperative Probe-Based Confocal Laser Endomicroscopy in Surgery and Stereotactic Biopsy of Low-Grade and High-Grade Gliomas: A Feasibility Study in Humans. eng, Neurosurgery, vol.79, pp.1524-4040, 2016.

N. Sanai, Intraoperative Confocal Microscopy for Brain Tumors: A Feasibility Analysis in Humans: en. Operative Neurosurgery 68, ons282ons290, pp.2332-4252, 2011.

N. Sanai, Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid uorescence in low-grade gliomas, Journal of neurosurgery, vol.115, p.740748, 2011.

P. E. Paull, B. J. Hyatt, W. Wassef, and A. H. Fischer, Confocal Laser Endomicroscopy: A Primer for Pathologists. en, Archives of Pathology & Laboratory Medicine, vol.135, pp.1543-2165, 2011.

Y. Sako, Comparison of two-photon excitation laser scanning microscopy with UVconfocal laser scanning microscopy in three-dimensional calcium imaging using the uorescence indicator Indo-1. en, Journal of Microscopy, vol.185, pp.1365-2818, 1997.

M. Gu, H. Bao, and H. Kang, Fibre-optical microendoscopy. en, Journal of Microscopy, vol.254, pp.1365-2818, 1318.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, pp.1087-0156, 2003.

V. E. Centonze and J. G. White, Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophysical journal, vol.75, p.20152024, 1998.

H. Bao, A. Boussioutas, J. Reynolds, S. Russell, and M. Gu, Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon uorescence endomicroscopy. eng, Journal of Biomedical Optics, vol.14, 2009.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-desce, and J. Mertz, Coherent scattering in multi-harmonic light microscopy. eng, Biophysical Journal, vol.80, pp.6-3495, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01920233

G. Thomas, J. Van-voskuilen, H. C. Gerritsen, and H. Sterenborg, Advances and challenges in label-free nonlinear optical imaging using two-photon excitation uorescence and second harmonic generation for cancer research. en, Journal of Photochemistry and Photobiology B: Biology, vol.141, 2014.

R. M. Williams, W. R. Zipfel, and W. W. Webb, Interpreting Second-Harmonic Generation Images of Collagen I Fibrils, Biophysical Journal, vol.88, pp.6-3495, 2005.

M. Both, Second harmonic imaging of intrinsic signals in muscle bers in situ. eng, Journal of Biomedical Optics, vol.9, 2004.

R. M. Brown, A. C. Millard, and P. J. Campagnola, Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. eng, Optics Letters, vol.28, pp.146-9592, 2003.

O. Nadiarnykh, R. B. Lacomb, M. A. Brewer, and P. J. Campagnola, Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy, BMC Cancer, vol.10, pp.1471-2407, 2010.

M. W. Conklin, Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma, The American Journal of Pathology, vol.178, 2011.

D. G. Ouzounov, Delivery of nanojoule femtosecond pulses through large-core microstructured bers. eng, Optics Letters, vol.27, 2002.

S. Tai, Two-photon uorescence microscope with a hollow-core photonic crystal ber. eng, Optics Express, vol.12, pp.1094-4087, 2004.

L. Fu, A. Jain, H. Xie, C. Craneld, and M. Gu, Nonlinear optical endoscopy based on a double-clad photonic crystal ber and a MEMS mirror, EN. Optics Express, vol.14, 2006.

W. J. Wadsworth, Supercontinuum generation in photonic crystal bers and optical ber tapers: a novel light source. en, Journal of the Optical Society of America B, vol.19, pp.1520-8540, 2002.

J. C. Knight, APPLIED OPTICS: New Ways to Guide Light, Science, vol.296, p.10959203, 2002.

M. Lelek, Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope. EN, Optics Express, vol.15, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169745

T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, Routes to ber delivery of ultra-short laser pulses in the 25 fs regime. en, Optics Express, vol.17, pp.1094-4087, 1240.

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, Pulse compression and ber delivery of 45 fs Fourier transform limited pulses at 830 nm. en, Optics Letters, vol.36, pp.1539-4794, 2011.

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, Characterization, comparison, and choice of a commercial double-clad ber for nonlinear endomicroscopy. eng, Journal of Biomedical Optics, vol.19, pp.1560-2281, 2014.

H. Hamzeh, C. Lefort, F. Pain, and D. Abi-haidar, Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy. eng, Optics Letters, vol.40, pp.1539-4794, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218491

A. Ibrahim, Characterization of ber ultrashort pulse delivery for nonlinear endomicroscopy. en, Optics Express, vol.24, 2016.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-hogiu, and L. Marcu, Two photon excited uorescence lifetime measurements through a double-clad photonic crystal ber for tissue micro endoscopy, Journal of biophotonics, vol.5, 2012.

, Jenlab: Multiphoton Tomography, 2018.

K. Konig and I. Riemann, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. eng, Journal of Biomedical Optics, vol.8, pp.1083-3668, 2003.

K. Koenig, Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulses in, p.191201, 2002.

G. Ducourthial, Development of a real-time exible multiphoton microendoscope for label-free imaging in a live animal, Scientic Reports, vol.5, pp.2045-2322, 2015.

Y. Zhao, M. Sheng, L. Huang, and S. Tang, Design of a ber-optic multiphoton microscopy handheld probe, Biomedical Optics Express, vol.7, pp.2156-7085, 2016.

M. Brusatori, Intraoperative Raman Spectroscopy. en, Neurosurgery Clinics of North America, vol.28, 2017.

S. L. Jacques, Optical properties of biological tissues: a review. eng, Physics in Medicine and Biology, vol.58, 2013.

H. R. Eggert and V. Blazek, Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm. eng, Neurosurgery, vol.21, pp.148-396, 1987.

F. Bevilacqua, In vivo local determination of tissue optical properties: applications to human brain. eng, Applied Optics, vol.38, pp.3-6935, 1999.

A. N. Yaroslavsky, Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. eng, Physics in Medicine and Biology, vol.47, pp.31-9155, 2002.

S. C. Gebhart, W. C. Lin, and A. Mahadevan-jansen, In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. en, Physics in Medicine & Biology, vol.51, pp.31-9155, 2006.

P. V. Zee, M. Essenpreis, and D. T. Delpy, Optical properties of brain tissue in Photon Migration and Imaging in Random Media and Tissues 1888 (International Society for Optics and Photonics, p.454466, 1993.

W. Cheong, S. Prahl, and A. Welch, A review of the optical properties of biological tissues

, IEEE Journal of Quantum Electronics, vol.26, 1990.

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, . Properties, . Skin et al., Journal of Innovative Optical Health Sciences 04, 938, pp.1793-7205, 2011.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-engels, Changes in tissue optical properties due to radio-frequency ablation of myocardium. eng, Medical & Biological Engineering & Computing, vol.41, 2003.

M. Solonenko, In vivo reectance measurement of optical properties, blood oxygenation and motexan lutetium uptake in canine large bowels, kidneys and prostates. eng, Physics in Medicine and Biology, vol.47, pp.31-9155, 2002.

M. Zanello, Multimodal optical analysis of meningioma and comparison with histopathology. en, Journal of Biophotonics, 2016.

R. Cicchi, Time-and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. eng, Optics Express, vol.18, pp.1094-4087, 2010.

G. Papayan, N. Petrishchev, and M. Galagudza, Autouorescence spectroscopy for NADH and avoproteins redox state monitoring in the isolated rat heart subjected to ischemiareperfusion. en. Photodiagnosis and Photodynamic Therapy 11, 2014.

A. Taddeucci, Optical properties of brain tissue. en, Journal of Biomedical Optics, vol.1, p.10833668, 1996.

J. R. Barrio, G. L. Tolman, N. J. Leonard, R. D. Spencer, and G. Weber, Flavin 1, N 6 -ethenoadenine dinucleotide: dynamic and static quenching of uorescence, Proceedings of the National Academy of Sciences of the United States of America 70, 941943. issn, pp.27-8424, 1973.

A. Ibrahim, Spectral and uorescence lifetime endoscopic system using a double-clad photonic crystal ber. en, Optics Letters, vol.41, pp.1539-4794, 2016.

S. Palmer, Optical redox ratio and endogenous porphyrins in the detection of urinary bladder cancer: A patient biopsy analysis. eng, Journal of Biophotonics. issn, pp.1864-0648, 2016.

M. Zanello, Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls, Scientic Reports, vol.7, pp.2045-2322, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744018

R. Farbiszewski, E. Skrzydlewska, and A. Roszkowska, Formaldehyde-induced modication of hemoglobin in vitro. eng, Acta Biologica Hungarica, vol.49, pp.236-5383, 1998.

G. Filippidis, Eect of liquid-nitrogen and formalin-based conservation in the in vitro measurement of laser-induced uorescence from peripheral vascular tissue. eng, Journal of Photochemistry and Photobiology. B, Biology, vol.47, pp.1011-1344, 1998.

S. K. Majumder, N. Ghosh, and P. Gupta, N2 laser excited autouorescence spectroscopy of formalin-xed human breast tissue. eng, Journal of Photochemistry and Photobiology. B, Biology, vol.81, pp.1011-1344, 2005.

M. G. Xu, E. D. Williams, E. W. Thompson, and M. Gu, Eect of handling and xation processes on uorescence spectroscopy of mouse skeletal muscles under two-photon excitation. eng, Applied Optics, vol.39, 2000.

T. Gabrecht, S. Andrejevic-blant, and G. Wagnières, Blue-Violet Excited Autouorescence Spectroscopy and Imaging of Normal and Cancerous Human Bronchial Tissue after Formalin Fixation. en, Photochemistry and Photobiology, vol.83, pp.1751-1097

T. Gabrecht, S. Andrejevic-blant, and G. Wagnières, Blue-violet excited autouorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin xation. eng, Photochemistry and Photobiology, vol.83, pp.31-8655, 2007.

H. Wang, Dierentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide uorescence lifetime in live cells. eng, Journal of Biomedical Optics, vol.13, pp.1083-3668, 2008.

M. C. Skala, In vivo multiphoton uorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. eng, Journal of Biomedical Optics, vol.12, pp.1083-3668, 2007.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, Conformational dependence of intracellular NADH on metabolic state revealed by associated uorescence anisotropy. eng, The Journal of Biological Chemistry, vol.280, 2005.

P. Uehlinger, Optimalisation de la photothérapie dynamique et de la photodétection de cancers précoces par spectroscopie résolue en temps de luminophores endogènes et exogènes. fre, 2004.

T. A. Wilson, M. A. Karajannis, and D. H. Harter, Glioblastoma multiforme: State of the art and future therapeutics. eng, Surgical Neurology International, vol.5, pp.2229-5097, 2014.

J. Lin, R. Jandial, A. Nesbit, B. Badie, and M. Chen, Current and emerging treatments for brain metastases, vol.29, 2015.

D. Kuhnt, Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-eld intraoperative MRI guidance. eng, Neuro-Oncology, vol.13, pp.1523-5866, 2011.

K. Uluç, G. C. Kujoth, and M. K. Ba³kaya, Operating microscopes: past, present, and future. eng, Neurosurgical Focus, vol.27, 2009.

G. Unsgaard, Intra-operative 3D ultrasound in neurosurgery, Acta Neurochirurgica, vol.148, pp.1-6268, 2006.

W. Stummer, Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. eng, Journal of Neurosurgery, vol.114, pp.1933-0693, 2011.

K. K. Kolste, Macroscopic optical imaging technique for wide-eld estimation of uorescence depth in optically turbid media for application in brain tumor surgical guidance

. Eng, Journal of Biomedical Optics, vol.20, 2015.

S. Andersson-engels, C. A. Klinteberg, . Svanberg, and S. Svanberg, In vivo uorescence imaging for tissue diagnostics, Physics in Medicine and Biology, vol.42, pp.1361-6560, 1997.

G. Bottiroli, Brain tissue autouorescence: an aid for intraoperative delineation of tumor resection margins. eng. Cancer detection and prevention 22, 1998.

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning uorescence microscopy. en, Science, vol.248, pp.1095-9203, 1990.

O. Assayag, Large eld, high resolution full-eld optical coherence tomography: a preclinical study of human breast tissue and cancer assessment. eng, Technology in Cancer Research & Treatment, vol.13, pp.1533-0338, 2014.

M. Ji, Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. eng, Science Translational Medicine, vol.5, pp.1946-6242, 2013.

A. Saraswathy, R. Jayasree, K. Baiju, A. K. Gupta, and V. M. Pillai, Optimum Wavelength for the Dierentiation of Brain Tumor Tissue Using Autouorescence Spectroscopy. en. Photomedicine and Laser Surgery 27, pp.1557-8550, 2009.

O. Warburg, F. Wind, E. Negelein, . The, . Of et al.,

, The Journal of General Physiology, vol.8, 1927.

V. Gogvadze, S. Orrenius, and B. Zhivotovsky, Mitochondria in cancer cells: what is so special about them? eng, Trends in Cell Biology, vol.18, pp.1879-3088, 2008.

E. Baraghis, Two-photon microscopy of cortical NADH uorescence intensity changes: correcting contamination from the hemodynamic response. eng, Journal of Biomedical Optics, vol.16, pp.1560-2281, 2011.

B. Wang, K. Koenig, I. Riemann, R. Krieg, and K. Halbhuber, Intraocular multiphoton microscopy with subcellular spatial resolution by infrared femtosecond lasers, en. Histochemistry and Cell Biology, vol.126, pp.1432-119, 2006.

W. Becker, V. Shcheslavskiy, A. Periasamy, K. König, and P. T. So, Fluorescence lifetime imaging with near-infrared dyes in, p.85880, 2013.

P. V. Butte, Diagnosis of meningioma by time-resolved uorescence spectroscopy. eng, Journal of Biomedical Optics, vol.10, pp.1083-3668, 2005.

W. H. Yong, Distinction of brain tissue, low grade and high grade glioma with timeresolved uorescence spectroscopy, Frontiers in bioscience : a journal and virtual library 11, 12551263. issn, pp.1093-9946, 2006.

J. H. Lee, D. H. Kim, W. K. Song, M. Oh, and D. Ko, Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy. en, Journal of Biomedical Optics, vol.20, pp.1083-3668, 2015.

E. Bélanger, Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. eng, Journal of Biomedical Optics, vol.17, pp.1560-2281, 2012.

S. R. Kantelhardt, Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo, Neuro-oncology, vol.9, p.103112, 2007.

G. Thomas, Estimating the risk of squamous cell cancer induction in skin following nonlinear optical imaging. eng, Journal of Biophotonics, vol.7, 2014.

F. Fischer, Assessing the risk of skin damage due to femtosecond laser irradiation. eng, Journal of Biophotonics, vol.1, 2008.

M. Zanello, Spectral and Lifetime Measurements of the Endogenous Fluorescence Variation of Freshly Resected Human Samples over Time -Measuring Endogenous Fluorescence Changes at Dierent Moment after Tumor or Epileptic Cortex Excision: in, 2016.

D. N. Louis, The 2016 World Health Organization Classication of Tumors of the Central Nervous System: a summary. eng, Acta Neuropathologica, vol.131, pp.1432-0533, 2016.

J. A. Ramos-vara and M. A. Miller, When Tissue Antigens and Antibodies Get Along: Revisiting the Technical Aspects of ImmunohistochemistryThe Red, Brown, and Blue Technique. en, Veterinary Pathology, vol.51, pp.1544-2217, 2014.

D. L. Commins, R. D. Atkinson, and M. E. Burnett, Review of meningioma histopathology. en. Neurosurgical Focus, vol.23, 2007.

Q. T. Ostrom, CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. eng, Neuro-Oncology, vol.15, pp.1523-5866, 2013.

I. R. Whittle, C. Smith, P. Navoo, D. Collie, . Meningiomas et al., Lancet, vol.363, 2004.

S. Q. Sun, A. H. Hawasli, J. Huang, M. R. Chicoine, and A. H. Kim, An evidence-based treatment algorithm for the management of WHO Grade II and III meningiomas. eng. Neurosurgical Focus 38, 2015.

J. B. Heald, T. A. Carroll, and R. J. Mair, Simpson grade: an opportunity to reassess the need for complete resection of meningiomas. eng, Acta Neurochirurgica, vol.156, 2014.

D. Simpson, The recurrence of intracranial meningiomas after surgical treatment. eng, Neurosurgery, and Psychiatry, vol.20, 1957.

M. E. Sughrue, Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas. eng, Journal of Neurosurgery, vol.113, pp.1933-0693, 2010.

E. Avella, F. Volpin, R. Manara, R. Scienza, and A. P. Della, Indocyanine green videoangiography (ICGV)-guided surgery of parasagittal meningiomas occluding the superior sagittal sinus (SSS). eng, Acta neurochirurgica, vol.155, 2013.

J. F. Cornelius, Impact of 5-aminolevulinic acid uorescence-guided surgery on the extent of resection of meningiomaswith special regard to high-grade tumors. eng. Photodiagnosis and Photodynamic Therapy 11, 2014.

E. Gay, Intraoperative and postoperative gamma detection of somatostatin receptors in bone-invasive en plaque meningiomas. eng, Neurosurgery, vol.57, pp.1524-4040, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00391007

F. Prada, From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma SurgeryPictorial Essay and Literature Review. en. BioMed Research International, vol.113, pp.2314-6141, 2015.

J. Soleman, A. Fathi, S. Marbacher, and J. Fandino, The role of intraoperative magnetic resonance imaging in complex meningioma surgery. eng. Magnetic Resonance Imaging 31, pp.1873-5894, 2013.

G. Sun, Functional Neuronavigation-Guided Transparieto-Occipital Cortical Resection of Meningiomas in Trigone of Lateral Ventricle, en. World Neurosurgery, vol.84, 2015.

E. Uhl, Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. eng, Neurosurgery, vol.64, pp.1524-4040, 2009.

A. Motekallemi, The current status of 5-ALA uorescence-guided resection of intracranial meningiomasa critical review. en, Neurosurgical Review, vol.38, pp.1437-2320, 2015.

D. R. Sell and V. M. Monnier, Isolation, purication and partial characterization of novel uorophores from aging human insoluble collagen-rich tissue. eng, Connective Tissue Research, vol.19, pp.300-8207, 1989.

B. Chance and B. Hess, Spectroscopic evidence of metabolic control, vol.129, pp.36-8075, 1959.

S. Huang, A. A. Heikal, and W. W. Webb, Two-photon uorescence spectroscopy and microscopy of NAD(P)H and avoprotein. eng, Biophysical Journal, vol.82, pp.6-3495, 2002.

Z. Hong, Optical diagnosis of gallbladder cancers via two-photon excited uorescence imaging of unstained histological sections. en. Lasers in Medical Science 30, pp.1435-604, 2015.

X. Wu, Label-Free Detection of Breast Masses Using Multiphoton Microscopy. en, PLoS ONE, vol.8, pp.1932-6203, 2013.

J. Yan, Preclinical study of using multiphoton microscopy to diagnose liver cancer and dierentiate benign and malignant liver lesions. en, Journal of Biomedical Optics, vol.17, p.10833668, 2012.

M. Strupler, Second harmonic imaging and scoring of collagen in brotic tissues, EN. Optics Express, vol.15, pp.1094-4087, 2007.

J. Xu, Identifying the neck margin status of ductal adenocarcinoma in the pancreatic head by multiphoton microscopy. en, Scientic Reports, vol.7, pp.2045-2322, 2017.

J. Xu, Multiphoton microscopy for label-free identication of intramural metastasis in human esophageal squamous cell carcinoma, EN. Biomedical Optics Express, vol.8, pp.2156-7085, 2017.

Y. Rivenson, Deep learning-based virtual histology staining using auto-uorescence of label-free tissue, p.22

T. W. Bocklitz, Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool, BMC Cancer, vol.16, pp.1471-2407, 2016.

S. L. Hervey-jumper and M. S. Berger, Maximizing safe resection of low-and high-grade glioma. eng, Journal of Neuro-Oncology, vol.130, pp.1573-7373, 2016.

S. D. Ferguson, Neurosurgical management of brain metastases. en. Clinical & Experimental Metastasis 34, pp.1573-7276, 2017.

J. Pallud, Individual Variability of the Human Cerebral Cortex Identied Using Intraoperative Mapping, en. World Neurosurgery, vol.109, 2018.

J. Pallud, Direct electrical bipolar electrostimulation for functional cortical and subcortical cerebral mapping in awake craniotomy, Practical considerations. eng. Neuro-Chirurgie, vol.63, 2017.

P. Theer, M. T. Hasan, and W. Denk, Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplier. eng, Optics Letters, vol.28, 2003.

N. Takahashi, Two-photon uorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and cells. eng, Nature Communications, vol.6, pp.2041-1723, 2015.

C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular uorophores with data from 690 to 1050 nm. en, Journal of the Optical Society of America B, vol.13, pp.1520-8540, 1996.

V. K. Ramanujan, J. Zhang, E. Biener, and B. Herman, Multiphoton uorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis. en, Journal of Biomedical Optics, vol.10, p.10833668, 2005.

P. I. Bastiaens and A. Squire, Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell, Trends in cell biology, vol.9, p.4852, 1999.

Y. Chen and A. Periasamy, Characterization of two-photon excitation uorescence lifetime imaging microscopy for protein localization. en. Microscopy Research and Technique 63, vol.72, pp.1059-910, 2004.

E. B. Van-munster and T. W. Gadella, Fluorescence lifetime imaging microscopy (FLIM)

. Eng, Advances in Biochemical Engineering/Biotechnology, vol.95, 2005.

S. W. Perry, R. M. Burke, and E. B. Brown, Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research. en, Annals of Biomedical Engineering, vol.40, pp.1573-9686, 2012.

L. Yan, C. T. Rueden, J. G. White, and K. W. Eliceiri, Applications of combined spectral lifetime microscopy for biology, Biotechniques, vol.41, p.249, 2006.

A. Keikhosravi, J. S. Bredfeldt, A. K. Sagar, K. W. Eliceiri, and . En, Methods in Cell Biology 531546, 2014.

P. P. Provenzano, Collagen reorganization at the tumor-stromal interface facilitates local invasion, BMC medicine, vol.4, p.1, 2006.

H. Wallrabe, Segmented cell analyses to measure redox states of autouorescent NAD(P)H, FAD & Trp in cancer cells by FLIM, Scientic Reports, vol.8, pp.2045-2322, 2018.

V. Jyothikumar, Y. Sun, and A. Periasamy, Investigation of tryptophan-NADH interactions in live human cells using three-photon uorescence lifetime imaging and Förster resonance energy transfer microscopy. eng, Journal of Biomedical Optics, vol.18, 2013.

I. Georgakoudi, NAD(P)H and Collagen as in Vivo Quantitative Fluorescent Biomarkers of Epithelial Precancerous Changes, p.7

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native uorescence spectroscopy with selective excitation wavelength. en, Journal of Biomedical Optics, vol.15, p.10833668, 2010.

P. Lasch, W. Haensch, D. Naumann, and M. Diem, Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. en. Biochimica et Biophysica Acta (BBA) -Molecular Basis of Disease 1688, 2004.

D. Sebiskveradze, Automation of an algorithm based on fuzzy clustering for analyzing tumoral heterogeneity in human skin carcinoma tissue sections. en. Laboratory Investigation 91, 799811, pp.1530-0307, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00596034

C. Petibois and G. Déléris, Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology. eng, Trends in Biotechnology, vol.24, pp.167-7799, 2006.

T. Luo, Y. Lu, S. Liu, D. Lin, and J. Qu, PhasorFLIM as a Screening Tool for the Dierential Diagnosis of Actinic Keratosis, Bowen's Disease, and Basal Cell Carcinoma. en, Analytical Chemistry, vol.89, pp.1520-6882, 2017.

F. Fereidouni, D. Gorpas, D. Ma, H. Fatakdawala, and L. Marcu, Rapid uorescence lifetime estimation with modied phasor approach and Laguerre deconvolution: a comparative study, Methods and Applications in Fluorescence, vol.5, 2017.

D. A. Hardesty and N. Sanai, The Value of Glioma Extent of Resection in the Modern Neurosurgical Era, Frontiers in Neurology, vol.3, pp.1664-2295

, , 2012.

A. Giuliani, DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. eng, Journal of Synchrotron Radiation, vol.16, pp.1600-5775, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01479318

F. Poulon, Comparison between fresh and xed human biopsies using spectral and lifetime measurements: Fluorescence analysis using one and two photon excitations in (IEEE, 2015.

F. Jamme, Deep UV autouorescence microscopy for cell biology and tissue histology: Deep UV autouorescence microscopy. en, Biology of the Cell, vol.105, 2013.

B. Pradère, Two-photon optical imaging, spectral and uorescence lifetime analysis to discriminate urothelial carcinoma grades. en, Journal of Biophotonics, 2018.

A. Pradhan, Steady state and time-resolved uorescence properties of metastatic and non-metastatic malignant cells from dierent species, Journal of Photochemistry and Photobiology B: Biology, vol.31, pp.1011-1344, 1995.

E. Stuntz, Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. en, Scientic Reports, vol.7, pp.2045-2322, 2017.

, Glioblastoma multiforme, 2018.

, Meningioma, 2018.

, Metastases to CNS -General, 2018.

M. Pekmezci and A. Perry, Neuropathology of brain metastases, Surgical Neurology International, vol.4, pp.2229-5097, 2013.

L. B. Rorke, Pathologic diagnosis as the gold standard, Cancer, vol.79, pp.1097-0142

J. M. Bruner, L. Inouye, G. N. Fuller, and L. A. Langford, Diagnostic discrepancies and their clinical impact in a neuropathology referral practice. eng, Cancer, vol.79, pp.8-543, 1997.

, Intraobserver reproducibility in assigning brain tumors to classes in the World Health Organization diagnostic scheme. The Childhood Brain Tumor Consortium. eng, Journal of Neuro-Oncology, vol.7, 1989.

H. Takei, S. Z. Powell, and . En, Methods of Cancer Diagnosis, Therapy, and Prognosis 3351, 2011.

A. A. Heikal, Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies, Biomarkers in medicine, vol.4, pp.1752-0363, 2010.

A. Varone, Endogenous two-photon uorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues. eng, Cancer Research, vol.74, pp.1538-7445, 2014.

S. Wu, Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging, Biomedical Optics Express, vol.9, pp.2156-7085, 2018.

S. Palmer, K. Litvinova, E. U. Rafailov, and G. Nabi, Detection of urinary bladder cancer cells using redox ratio and double excitation wavelengths autouorescence, Biomedical Optics Express, vol.6, pp.2156-7085, 2015.

J. Adur, H. F. Carvalho, C. L. Cesar, and V. H. Casco, Nonlinear optical microscopy signal processing strategies in cancer. eng, Cancer Informatics, vol.13, pp.1176-9351, 2014.

S. Lin, Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging, EN. Optics Letters, vol.31, pp.1539-4794, 2006.

R. Cicchi, Nonlinear laser imaging of skin lesions. eng, Journal of Biophotonics, vol.1, pp.1864-0648, 2008.

N. Liu, Label-free imaging characteristics of colonic mucinous adenocarcinoma using multiphoton microscopy, en. Scanning, vol.35, pp.1932-8745

L. Jiang, Label-free imaging of brain and brain tumor specimens with combined twophoton excited uorescence and second harmonic generation microscopy, Laser Physics Letters, vol.14, pp.1612-202, 2017.

K. B. Pointer, Association of collagen architecture with glioblastoma patient survival. eng, Journal of Neurosurgery, vol.126, 2017.

V. Senner, S. Ratzinger, S. Mertsch, S. Grässel, and W. Paulus, Collagen XVI expression is upregulated in glioblastomas and promotes tumor cell adhesion. en, FEBS Letters, vol.582, 2008.

P. Lasch, W. Haensch, D. Naumann, and M. Diem, Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. eng, Biochimica Et Biophysica Acta, vol.1688, pp.6-3002, 2004.

S. M. Ali, Raman spectroscopic analysis of human skin tissue sections ex-vivo : evaluation of the eects of tissue processing and dewaxing. en, Journal of Biomedical Optics, vol.18, 2012.

I. Georgakoudi and K. P. Quinn, Optical Imaging Using Endogenous Contrast to Assess Metabolic State. en, Annual Review of Biomedical Engineering, vol.14, pp.1545-4274, 2012.

C. A. Alonzo, Two-photon excited uorescence of intrinsic uorophores enables labelfree assessment of adipose tissue function, en. Scientic Reports, vol.6, pp.2045-2322, 2016.

M. Baker and . In, , 2016.

M. Gu, H. C. Bao, and J. L. Li, Cancer-cell microsurgery using nonlinear optical endomicroscopy. eng, Journal of Biomedical Optics, vol.15, pp.1560-2281, 2010.

H. Bao, A. Boussioutas, M. Aleixandria, R. Busuttil, M. Gu et al., Journal of Innovative Optical Health Sciences 05, pp.1793-7205, 2012.

Y. Chang, Two-photon uorescence correlation spectroscopy through a dual-clad optical ber. eng, Optics Express, vol.16, pp.1094-4087, 2008.

Y. Chang, Two-photon in vivo ow cytometry using a ber probe, Proceedings of SPIEthe International Society, vol.7173, 2009.

W. Liang, G. Hall, B. Messerschmidt, M. Li, and X. Li, Nonlinear optical endomicroscopy for label-free functional histology in vivo, en. Light: Science & Applications, vol.6, 2017.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, Eect of pulse duration on two-photon excited uorescence and second harmonic generation in nonlinear optical microscopy. eng, Journal of Biomedical Optics, vol.11, 2006.

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, Optical coherence tomography endoscopic probe based on a tilted MEMS mirror, EN. Biomedical Optics Express, vol.7, pp.2156-7085, 2016.

J. Liu, M. J. Droller, and J. Liao, New Optical Imaging Technologies for Bladder Cancer: Considerations and Perspectives, The Journal of urology, vol.188, pp.22-5347, 2012.

M. Hsu, M. Gupta, L. Su, and J. C. Liao, Intraoperative Optical Imaging and Tissue Interrogation During Urologic Surgery, Current opinion in urology, vol.24, 2014.

K. Wu, Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. eng, Urology, vol.78, pp.1527-9995, 2011.

O. Aboumarzouk, Laser-induced autouorescence spectroscopy: Can it be of importance in detection of bladder lesions? en, Photodiagnosis and Photodynamic Therapy, vol.12, 2015.

, References and links

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury et al., Collagen and myosin characterization by orientation field second harmonic microscopy, Opt. Express, vol.16, issue.20, pp.16151-16165, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00672471

M. Monici, Cell and tissue autofluorescence research and diagnostic applications, Biotechnol. Annu. Rev, vol.11, pp.227-256, 2005.

S. Huang, A. A. Heikal, and W. W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein, Biophys. J, vol.82, issue.5, pp.2811-2825, 2002.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo et al., Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy, Scanning, vol.33, issue.1, pp.53-56, 2011.

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode, Opt. Express, vol.14, issue.17, pp.7810-7820, 2006.

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy, J. Biomed. Opt, vol.19, issue.7, p.76005, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063851

H. Hamzeh, C. Lefort, F. Pain, and D. Abi-haidar, Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy, Opt. Lett, vol.40, issue.5, pp.808-811, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218491

H. Choi, S. Chen, D. Kim, P. T. So, and M. L. Culpepper, Design of a nonlinear endomicroscope biopsy probe, p.69, 2006.

F. Braud, T. Mansuryan, G. Ducourthial, R. Habert, A. Kudlinski et al., Double clad photonic crystal fiber for high resolution nonlinear endomicroscopy

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier et al., Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal, Sci. Rep, vol.5, p.18303, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01648086

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks et al., Very High Numerical Aperture Fibers, Photonics Technol. Lett. IEEE, vol.16, pp.843-845, 2004.

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm, Opt. Lett, vol.36, issue.2, pp.292-294, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00688265

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle et al., Clinical two-photon microendoscopy, Microsc. Res. Tech, vol.70, issue.5, pp.398-402, 2007.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol, vol.21, issue.11, pp.1369-1377, 2003.

H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, Second harmonic generation imaging via nonlinear endomicroscopy, Opt. Express, vol.18, issue.2, pp.1255-1260, 2010.

A. Kudlinski and A. D. Abi-haidar,

, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, vol.75014

, ps. A motorized filter wheel (FW102C, Thorlabs, Newton, USA) was placed in the collection path, allowing us to select the emission band. We used five filters (Semrock, 2016.

, USA) is placed in the collection path to remove the reflective signal due to the laser to the fluorescent signal. A beam splitter sends 70% of the fluorescent signal to the spectrometer and the remaining 30% into the PMT for lifetime measurements. System 2 (DC-PCF fiber probe): in this configuration, only one fiber is used [as shown in Fig. 1(b)], to perform the excitation and the collection. We compared a commercial multi-mode fiber (QP600-1-UV-VIS, multi-mode, core ?600 ?m, Ocean Optics) and our, System 1 (bi-fiber probe): this customized bi-fiber system [as shown in Fig. 1(a)] uses a first fiber (HCG M0200T

K. W. Li, C. Nelson, I. Suk, and G. I. Jallo, Neurosurg. Focus, vol.19, p.1, 2005.

D. G. Ouzounov, D. R. Rivera, W. W. Webb, J. Bentley, and C. Xu, Opt. Lett, vol.38, p.3103, 2013.

D. G. Ouzounov, D. R. Rivera, W. O. Williams, J. A. Stupinski, T. L. Southard et al., Biomed. Opt. Express, vol.4, p.1494, 2013.

A. Ibrahim, F. Poulon, R. Habert, C. Lefort, A. Kudlinski et al., Opt. Express, vol.24, p.12515, 2016.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. Duval et al., J. Biomed. Opt, vol.17, p.108001, 2012.

D. A. Haidar, B. Leh, M. Zanello, and R. Siebert, Biomed. Opt. Express, vol.6, p.1219, 2015.

M. Zanello, F. Poulon, P. Varlet, F. Chretien, F. Andreiuolo et al., J. Biophoton, 2016.

S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker et al., Rev. Sci. Instrum, vol.76, p.83104, 2005.

N. Boens, W. Qin, N. Basari?, J. Hofkens, M. Ameloot et al., Anal. Chem, vol.79, p.2137, 2007.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, Proc. SPIE, vol.4259, p.102, 2001.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black et al., J. Biomed. Opt, vol.10, p.64026, 2005.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul et al., Photochem. Photobiol, vol.80, p.98, 2004.

M. Y. Berezin and S. Achilefu, Chem. Rev, vol.110, p.2641, 2010.

A. S. Kristoffersen, S. R. Erga, B. Hamre, and ?. Frette, J. Fluoresc, vol.24, p.1015, 2014.

A. Mayevsky and G. G. Rogatsky, AJP Cell Physiol, vol.292, p.615, 2006.

M. A. Yaseen, S. Sakad?i?, W. Wu, W. Becker, K. A. Kasischke et al., Biomed. Opt. Express, vol.4, p.307, 2013.

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. Mckhann, J. Histochem. Cytochem, vol.27, p.44, 1979.

A. A. , Biomark. Med, vol.4, p.241, 2010.

S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J, vol.82, p.2811, 2002.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, J. Biomed. Opt, vol.11, p.64026, 2006.

Y. Pu, W. Wang, Y. Yang, and R. R. Alfano, Appl. Opt, vol.52, p.1293, 2013.

R. L. Siegel, K. D. Miller, and A. , CA. Cancer J. Clin, vol.67, issue.1, pp.7-30, 2017.

M. Rouprêt, European Association of Urology Guidelines on Upper Urinary Tract Urothelial Cell Carcinoma: 2015 Update, Eur. Urol, vol.68, issue.5, pp.868-879, 2015.

M. Babjuk, EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013, Eur. Urol, vol.64, issue.4, pp.639-653, 2013.

M. Brausi, Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies, Eur. Urol, vol.41, issue.5, pp.523-531, 2002.

J. Cornu, Oncologic control obtained after exclusive flexible ureteroscopic management of upper urinary tract urothelial cell carcinoma, World J. Urol, vol.28, issue.2, pp.151-156, 2010.

S. Daneshmand, M. L. Quek, and J. L. Huffman, Endoscopic management of upper urinary tract transitional cell carcinoma: long-term experience, Cancer, vol.98, issue.1, pp.55-60, 2003.

A. K. Smith, Inadequacy of biopsy for diagnosis of upper tract urothelial carcinoma: implications for conservative management, Urology, vol.78, issue.1, pp.82-86, 2011.

F. X. Keeley, D. A. Kulp, M. Bibbo, P. A. Mccue, and D. H. Bagley, Diagnostic accuracy of ureteroscopic biopsy in upper tract transitional cell carcinoma, J. Urol, vol.157, issue.1, pp.33-37, 1997.

A. M. Batlle, Porphyrins, porphyrias, cancer and photodynamic therapy--a model for carcinogenesis, J. Photochem. Photobiol. B, vol.20, issue.1, pp.5-22, 1993.

K. Gono, Appearance of enhanced tissue features in narrow-band endoscopic imaging, J. Biomed. Opt, vol.9, issue.3, pp.568-577, 2004.

E. V. Zagaynova, Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation, Phys. Med. Biol, vol.53, issue.18, pp.4995-5009, 2008.

J. Bonnal, A. Rock, A. Gagnat, S. Papadopoulos, B. Filoche et al., Confocal laser endomicroscopy of bladder tumors associated with photodynamic diagnosis: an ex vivo pilot study, Urology, vol.80, issue.5, pp.1162-1163, 2012.

H. Hamzeh, C. Lefort, F. Pain, and D. Abi-haidar, Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy, Opt. Lett, vol.40, issue.5, p.808, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218491

A. Ibrahim, F. Poulon, R. Habert, C. Lefort, A. Kudlinski et al., Characterization of fiber ultrashort pulse delivery for nonlinear endomicroscopy, Opt. Express, vol.24, issue.12, p.12515, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01656576

G. , Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal, Sci. Rep, vol.5, issue.1, 2016.

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, Optical coherence tomography endoscopic probe based on a tilted MEMS mirror, Biomed. Opt. Express, vol.7, issue.9, p.3345, 2016.

M. Zanello, Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls, Sci. Rep, vol.7, p.41724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744018

A. Ustione and D. W. Piston, A simple introduction to multiphoton microscopy, J. Microsc, vol.243, issue.3, pp.221-226, 2011.

L. Marcu, Fluorescence lifetime techniques in medical applications, Ann. Biomed. Eng, vol.40, issue.2, pp.304-331, 2012.

A. Ibrahim, Spectral and fluorescence lifetime endoscopic system using a double-clad photonic crystal fiber, Opt. Lett, vol.41, issue.22, pp.5214-5217, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-02025030

S. Palmer, K. Litvinova, E. U. Rafailov, and G. Nabi, Detection of urinary bladder cancer cells using redox ratio and double excitation wavelengths autofluorescence, Biomed. Opt. Express, vol.6, issue.3, pp.977-986, 2015.

C. Schäfauer, Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study, J. Urol, vol.190, issue.1, pp.271-277, 2013.

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans, Nature, vol.454, issue.7205, pp.784-788, 2008.

S. M. Zhuo, J. X. Chen, T. Luo, X. S. Jiang, and S. S. Xie, Multiphoton microscopy of unstained bladder mucosa based on two-photon excited autofluorescence and second harmonic generation, Laser Phys. Lett, vol.6, issue.1, pp.80-83, 2009.

R. Yadav, Multiphoton Microscopy of Prostate and Periprostatic Neural Tissue: A Promising Imaging Technique for Improving Nerve-Sparing Prostatectomy, J. Endourol, vol.23, issue.5, pp.861-867, 2009.

R. Cicchi, Time-and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ, Opt. Express, vol.18, issue.4, pp.3840-3849, 2010.

P. A. Humphrey, H. Moch, A. L. Cubilla, T. M. Ulbright, and V. E. Reuter, The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours, Eur. Urol, vol.70, issue.1, pp.106-119, 2016.

D. A. Haidar, B. Leh, M. Zanello, and R. Siebert, Spectral and lifetime domain measurements of rat brain tumors, Biomed. Opt. Express, vol.6, issue.4, pp.1219-1233, 2015.

M. Zanello, A. Ibrahim, F. Poulon, P. Varlet, B. Devaux et al.,

, Accepted Article and Lifetime Measurements of the Endogenous Fluorescence Variation of Freshly Resected Human Samples over Time -Measuring Endogenous Fluorescence Changes at Different Moment after Tumor or Epileptic Cortex Excision, pp.13-17, 2016.

M. C. Skala, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proc. Natl. Acad. Sci. U. S. A, vol.104, issue.49, pp.19494-19499, 2007.

M. C. Skala, Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues, Cancer Res, vol.65, issue.4, pp.1180-1186, 2005.

A. Varone, Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues, Cancer Res, vol.74, issue.11, pp.3067-3075, 2014.

M. Jain, Multiphoton microscopy: a potential intraoperative tool for the detection of carcinoma in situ in human bladder, Arch. Pathol. Lab. Med, vol.139, issue.6, pp.796-804, 2015.

S. Palmer, K. Litvinova, A. Dunaev, J. Yubo, D. Mcgloin et al., Optical redox ratio and endogenous porphyrins in the detection of urinary bladder cancer: A patient biopsy analysis, J. Biophotonics, vol.10, issue.8, pp.1062-1073, 2017.

O. Warburg, F. Wind, and E. Negelein, The metabolism of tumors in the body, J. Gen. Physiol, vol.8, issue.6, p.519, 1927.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman et al., Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proc. Natl. Acad. Sci. U. S. A, vol.100, issue.12, pp.7075-7080, 2003.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. So, Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra, J. Biomed. Opt, vol.10, issue.2, p.24016, 2005.

K. Alhallak, L. G. Rebello, T. J. Muldoon, K. P. Quinn, and N. Rajaram, Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism, Biomed. Opt. Express, vol.7, issue.11, pp.4364-4374, 2016.