B. A. Ruggeri, F. Camp, and S. Miknyoczki, Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery, Biochem Pharmacol, vol.87, issue.1, pp.150-61, 2014.

V. Ntziachristos, C. Bremer, and R. Weissleder, Fluorescence imaging with nearinfrared light: new technological advances that enable in vivo molecular imaging, Eur Radiol, vol.13, issue.1, pp.195-208, 2003.

J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr Opin Chem Biol, vol.7, issue.5, pp.626-660, 2003.

A. Koenig, Whole body small animal examination with a diffuse optical tomography instrument. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.571, pp.56-59, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00331928

A. Koenig, Fluorescence diffuse optical tomography for free-space and multifluorophore studies, J Biomed Opt, vol.15, issue.1, p.16016, 2010.

A. Koenig, In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography, J Biomed Opt, vol.13, issue.1, p.11008, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00313764

B. R. Smith and S. S. Gambhir, Nanomaterials for In Vivo Imaging, Chem Rev, vol.117, issue.3, pp.901-986, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-74, 2011.

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, issue.21, pp.1182-1188, 1971.

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, issue.6801, pp.249-57, 2000.

P. C. Brooks, Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, vol.79, issue.7, pp.1157-64, 1994.

M. Aumailley, Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1, FEBS Lett, vol.291, issue.1, pp.50-54, 1991.

E. Garanger, New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors, Mol Ther, vol.12, issue.6, pp.1168-75, 2005.

E. Garanger, Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands, Org Biomol Chem, vol.4, issue.10, pp.1958-65, 2006.

D. Boturyn, Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis, J Am Chem Soc, vol.126, issue.18, pp.5730-5739, 2004.

M. Keramidas, Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model, Br J Surg, vol.97, issue.5, pp.737-780, 2010.

X. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat Biotechnol, vol.21, issue.7, pp.803-809, 2003.

X. Wang, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J Biomed Opt, vol.11, issue.2, p.24015, 2006.

S. Manohar, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics, Opt Express, vol.15, pp.12277-85, 2007.

R. A. Kruger, Photoacoustic angiography of the breast, Med Phys, vol.37, issue.11, pp.6096-100, 2010.

S. A. Ermilov, Laser optoacoustic imaging system for detection of breast cancer, J Biomed Opt, vol.14, issue.2, p.24007, 2009.

M. Heijblom, Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express, vol.20, pp.11582-97, 2012.

T. Kitai and M. Toi,

N. Rinsho, , vol.70, pp.326-356, 2012.

M. Heijblom, The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies, Eur Radiol, vol.26, issue.11, pp.3874-3887, 2016.

J. Jose, Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography, J Biomed Opt, vol.16, issue.9, p.96021, 2011.

Y. Zhou, Handheld photoacoustic microscopy to detect melanoma depth in vivo, Opt Lett, vol.39, issue.16, pp.4731-4735, 2014.

G. C. Langhout, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging, Int J Biomed Imaging, p.163652, 2014.

M. Petri, Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study, J Wound Care, vol.25, issue.2, pp.89-91, 2016.

F. Knieling, Multispectral Optoacoustic Tomography for Assessment of Crohn's Disease Activity, N Engl J Med, vol.376, issue.13, pp.1292-1294, 2017.

L. J. Rich and M. Seshadri, Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging, Radiology, vol.275, issue.1, pp.110-118, 2015.

J. Joseph, Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects, J Nucl Med, vol.58, issue.5, pp.807-814, 2017.

A. Gothelf, P. Hojman, and J. Gehl, Change in Hemoglobin Levels due to Anesthesia in Mice: An Important Confounder in Studies on Hematopoietic Drugs, Biol Proced Online, vol.11, pp.325-355, 2009.

S. Kai, The volatile anesthetic isoflurane differentially suppresses the induction of erythropoietin synthesis elicited by acute anemia and systemic hypoxemia in mice in an hypoxia-inducible factor-2-dependent manner, Eur J Pharmacol, vol.732, pp.43-52, 2014.

K. Masamoto and K. Tanishita, Oxygen transport in brain tissue, J Biomech Eng, vol.131, issue.7, p.74002, 2009.

D. Giavarina, Understanding Bland Altman analysis, Biochem Med (Zagreb), vol.25, issue.2, pp.141-51, 2015.

A. B. Attia, C. J. Ho, P. Chandrasekharan, G. Balasundaram, H. C. Tay et al., Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma, J. Biophoton, vol.9, issue.7, pp.671-679, 2016.

N. C. Burton, M. Patel, S. Morscher, W. H. Driessen, J. Claussen et al., Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization, Neuroimage, vol.65, pp.522-528, 2013.

R. A. Cairns, I. S. Harris, and T. W. Mak, Regulation of cancer cell metabolism, Nat. Rev. Cancer, vol.11, issue.2, pp.85-95, 2011.

M. A. Davies, P. Liu, S. Mcintyre, K. B. Kim, N. Papadopoulos et al., Prognostic factors for survival in melanoma patients with brain metastases, Cancer, vol.117, issue.8, pp.1687-1696, 2011.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill et al., A theoretical and experimental study of light absorption and scattering by in vivo skin, Phys. Med. Biol, vol.25, issue.4, pp.695-709, 1980.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser, Cancer Res, vol.69, issue.20, pp.7926-7934, 2009.

D. J. Grootendorst, J. Jose, M. W. Wouters, H. Van-boven, J. Van-der-hage et al., First experiences of photoacoustic imaging for detection of melanoma metastases in resected human lymph nodes, Lasers Surg. Med, vol.44, issue.7, pp.541-549, 2012.

M. Heijblom, D. Piras, F. M. Van-den-engh, M. Van-der-schaaf, J. M. Klaase et al., The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies, Eur. Radiol, vol.26, issue.11, pp.3874-3887, 2016.

G. C. Karakousis and B. J. Czerniecki, Diagnosis of melanoma, PET Clin, vol.6, issue.1, pp.1-8, 2011.

J. W. Kim and C. V. Dang, Cancer's molecular sweet tooth and the Warburg effect, Cancer Res, vol.66, issue.18, pp.8927-8930, 2006.

L. Klumpp, E. C. Sezgin, F. Eckert, and S. M. Huber, Ion channels in brain metastasis, Int. J. Mol. Sci, vol.17, issue.9, 2016.

G. C. Langhout, D. J. Grootendorst, O. E. Nieweg, M. W. Wouters, J. A. Van-der-hage et al., Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging, Int. J. Biomed. Imaging, p.163652, 2014.

G. P. Luke, S. Y. Nam, and S. Y. Emelianov, Optical wavelength selection for improved spectroscopic photoacoustic imaging, Photoacoustics, vol.1, issue.2, pp.36-42, 2013.

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion, Int. J. Oncol, vol.30, issue.1, pp.45-54, 2007.

D. Mccormack, M. Al-shaer, B. S. Goldschmidt, P. S. Dale, C. Henry et al., Photoacoustic detection of melanoma micrometastasis in sentinel lymph nodes, J. Biomech. Eng, vol.131, issue.7, p.74519, 2009.

B. Muz, P. De-la-puente, F. Azab, and A. K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia (Auckl.), vol.3, pp.83-92, 2015.

V. Neuschmelting, N. C. Burton, H. Lockau, A. Urich, S. Harmsen et al., Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation, Photoacoustics, vol.4, issue.1, pp.1-10, 2016.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica et al., Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging, J. Biomed. Opt, vol.11, issue.3, pp.110-118, 2006.

L. J. Rich and M. Seshadri, Photoacoustic monitoring of tumor and normal tissue response to radiation, Sci. Rep, vol.6, p.21237, 2016.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen et al., Growth of melanoma brain tumors monitored by photoacoustic microscopy, J. Biomed. Opt, vol.15, issue.4, p.40510, 2010.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, Photoacoustic imaging in oncology: translational preclinical and early clinical experience, Radiology, vol.280, issue.2, pp.332-349, 2016.

L. V. Wang and S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, vol.335, issue.6075, pp.1458-1462, 2012.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica et al., Noninvasive laserinduced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat. Biotechnol, vol.21, issue.7, pp.803-806, 2003.

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact, Opt. Lett, vol.28, pp.1739-1741, 2003.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J. Biomed. Opt, vol.11, issue.2, p.24015, 2006.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol, vol.24, issue.7, pp.848-851, 2006.

Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, Handheld photoacoustic microscopy to detect melanoma depth in vivo, Opt. Lett, vol.39, issue.16, pp.4731-4734, 2014.

J. Lavaud, , p.1

F. Ballieux, L. M. Boon, and M. Vikkula, Blue bleb rubber nevus syndrome, Handb Clin Neurol, vol.132, pp.223-253, 2015.

X. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat Biotechnol, vol.21, issue.7, pp.803-809, 2003.

G. P. Luke, S. Y. Nam, and S. Y. Emelianov, Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics, pp.36-42, 2013.

X. Wang, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J Biomed Opt, vol.11, issue.2, p.24015, 2006.

Z. Li, The surgery for blue rubber bleb nevus syndrome, Ann Med Surg, vol.5, pp.93-99, 2016.

J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr Opin Chem Biol, vol.7, issue.5, pp.626-660, 2003.

V. Ntziachristos, C. Bremer, and R. Weissleder, Fluorescence imaging with nearinfrared light: new technological advances that enable in vivo molecular imaging, Eur Radiol, vol.13, issue.1, pp.195-208, 2003.

A. Koenig, Whole body small animal examination with a diffuse optical tomography instrument. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.571, pp.56-59, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00331928

A. Koenig, Fluorescence diffuse optical tomography for free-space and multifluorophore studies, J Biomed Opt, vol.15, issue.1, p.16016, 2010.

A. Koenig, In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography, J Biomed Opt, vol.13, issue.1, p.11008, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00313764

M. Yu and J. Zheng, Clearance Pathways and Tumor Targeting of Imaging Nanoparticles, ACS Nano, vol.9, issue.7, pp.6655-74, 2015.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-74, 2011.

F. Jolesz, Intraoperative Imaging and Image-Guided Therapy, p.893, 2014.

Q. R. Tummers, The Value of Intraoperative Near-Infrared Fluorescence Imaging Based on Enhanced Permeability and Retention of Indocyanine Green: Feasibility and False-Positives in Ovarian Cancer, PLoS One, vol.10, issue.6, p.129766, 2015.

D. Holt, Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation, PLoS One, vol.9, issue.7, p.103342, 2014.

N. Kosaka, Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green, Int J Cancer, vol.129, issue.7, pp.1671-1678, 2011.

S. Yamamoto, Intraoperative detection of sentinel lymph nodes in breast cancer patients using ultrasonography-guided direct indocyanine green dye-marking by real-time virtual sonography constructed with three-dimensional computed tomography-lymphography, Breast, vol.22, issue.5, pp.933-940, 2013.

B. Madajewski, Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease, Clin Cancer Res, vol.18, pp.5741-51, 1920.

N. L. Martirosyan, Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor, J Neurosurg, vol.115, issue.6, pp.1131-1139, 2011.

K. Gotoh, A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation, J Surg Oncol, vol.100, issue.1, pp.75-84, 2009.

T. Ishizawa, Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, vol.115, pp.2491-504, 2009.

G. Barabino, Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept, Eur J Surg Oncol, vol.42, issue.12, pp.1931-1937, 2016.

G. Barabino, Improving Surgical Resection of Metastatic Liver Tumors With Near-Infrared Optical-Guided Fluorescence Imaging, Surg Innov, vol.23, issue.4, pp.354-363, 2016.

J. Yokoyama, Impact of indocyanine green fluorescent image-guided surgery for parapharyngeal space tumours, J Craniomaxillofac Surg, vol.42, issue.6, pp.835-843, 2014.

O. T. Okusanya, Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research, Technol Cancer Res Treat, vol.14, issue.2, pp.213-233, 2015.

E. Garanger, New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors, Mol Ther, vol.12, issue.6, pp.1168-75, 2005.

Z. H. Jin, Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging, vol.5, pp.188-97, 2006.

V. Josserand, Electrochemotherapy guided by intraoperative fluorescence imaging for the treatment of inoperable peritoneal micro-metastases, J Control Release, vol.233, pp.81-88, 2016.

M. Keramidas, Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model, Br J Surg, vol.97, issue.5, pp.737-780, 2010.

E. Mery, Intraoperative fluorescence imaging of peritoneal dissemination of ovarian carcinomas. A preclinical study, Gynecol Oncol, vol.122, issue.1, pp.155-62, 2011.

I. Atallah, Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma, Head Neck, vol.38, issue.1, pp.246-55, 2016.

A. Bellanger, The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone, J Pathol, 2017.

A. Dutour, Targeted imaging of alpha(v)beta(3) expressing sarcoma tumor cells in vivo in pre-operative setting using near infrared: a potential tool to reduce incomplete surgical resection, Bone, vol.62, pp.71-79, 2014.

C. H. Wenk, Near-infrared optical guided surgery of highly infiltrative fibrosarcomas in cats using an anti-alphavss3 integrin molecular probe, Cancer Lett, vol.334, issue.2, pp.188-95, 2013.

X. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat Biotechnol, vol.21, issue.7, pp.803-809, 2003.

X. Wang, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J Biomed Opt, vol.11, issue.2, p.24015, 2006.

J. Yao and L. V. Wang, Recent progress in photoacoustic molecular imaging, Curr Opin Chem Biol, vol.45, pp.104-112, 2018.

G. P. Luke, S. Y. Nam, and S. Y. Emelianov, Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics, pp.36-42, 2013.

S. Wang, Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications. Theranostics, vol.6, pp.2394-2413, 2016.

J. B. Kruskal, Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology, vol.243, pp.703-714, 2007.

A. Rawashdeh and W. , Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling. Theranostics, vol.7, pp.1499-1510, 2017.

J. B. Kruskal, Hepatic colon cancer metastases in mice: dynamic in vivo correlation with hypoechoic rims visible at US. Radiology, vol.215, pp.852-859, 2000.

J. G. Mannheim, Comparison of small animal CT contrast agents, Contrast Media Mol Imaging, vol.11, issue.4, pp.272-84, 2016.

G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nature Biomedical Engineering, issue.1, p.10, 2017.

T. Desmettre, J. M. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Surv Ophthalmol, vol.45, issue.1, pp.15-27, 2000.

A. Miyata, Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging, PLoS One, vol.9, issue.11, p.112667, 2014.

S. K. Lyons, Imaging Mouse Models of Cancer, Cancer J, vol.21, issue.3, pp.152-64, 2015.

K. Politi and W. Pao, How genetically engineered mouse tumor models provide insights into human cancers, J Clin Oncol, vol.29, issue.16, pp.2273-81, 2011.

M. Singh, C. L. Murriel, and L. Johnson, Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes, Cancer Res, vol.72, issue.11, pp.2695-700, 2012.

R. A. Kruger and . Photoacoustic-ultrasound, Med Phys, vol.21, issue.1, pp.127-158, 1994.

R. A. Kruger and P. Liu, Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn, Med Phys, vol.21, issue.7, pp.1179-84, 1994.

S. Zackrisson, S. M. Van-de-ven, and S. S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging, Cancer Res, vol.74, issue.4, pp.979-1004, 2014.

G. Morgan, National cancer institute conference on treating tobacco dependence at cancer centers, J Oncol Pract, vol.7, issue.3, pp.178-82, 2011.

A. J. Sasco, M. B. Secretan, and K. Straif, Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer, vol.45, pp.3-9, 2004.

V. J. Cogliano, Preventable exposures associated with human cancers, J Natl Cancer Inst, vol.103, issue.24, pp.1827-1866, 2011.

S. Gandini, Tobacco smoking and cancer: a meta-analysis, Int J Cancer, vol.122, issue.1, pp.155-64, 2008.

L. Faou and A. L. , Characteristics of smokers seeking smoking cessation services: the CDT programme

, Rev Mal Respir, vol.22, issue.5, pp.739-50, 2005.

S. S. Hecht, F. Kassie, and D. K. Hatsukami, Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers, Nat Rev Cancer, vol.9, issue.7, pp.476-88, 2009.

G. Corrao, A meta-analysis of alcohol consumption and the risk of 15 diseases, Prev Med, vol.38, issue.5, pp.613-622, 2004.

P. Boffetta and M. Hashibe, Alcohol and cancer, vol.7, issue.2, pp.149-56, 2006.

D. M. Parkin, L. Boyd, and L. C. Walker, The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010, Br J Cancer, vol.16, issue.2, pp.77-81, 2011.

. Inca, Nutrition et prévention primaire des cancers : actualisation des données, collection État des lieux et des connaissances, 2015.

L. Schistosomes, . Flukes, and . Helicobacter, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, IARC Monogr Eval Carcinog Risks Hum, vol.61, pp.1-241, 1994.

R. L. Siegel, K. D. Miller, and A. , Cancer statistics, vol.65, pp.5-29, 2015.

G. B. Hamra, Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect, vol.122, pp.906-917, 2014.

J. Lissowska, Family history and lung cancer risk: international multicentre case-control study in Eastern and Central Europe and meta-analyses. Cancer Causes Control, vol.21, pp.1091-104, 2010.

N. Petrucelli, M. B. Daly, T. P. Pal-;-m, and . Adam, BRCA1-and BRCA2-Associated Hereditary Breast and Ovarian Cancer, 1993.

R. A. Weinberg, How cancer arises, Sci Am, vol.275, issue.3, pp.62-70, 1996.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer. Cell, vol.100, pp.57-70, 2000.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-74, 2011.

M. Serrano, Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell, vol.88, issue.5, pp.593-602, 1997.

G. Evan and T. Littlewood, A matter of life and cell death, Science, vol.281, issue.5381, pp.1317-1339, 1998.

N. E. Sharpless and R. A. Depinho, The INK4A/ARF locus and its two gene products, Curr Opin Genet Dev, vol.9, issue.1, pp.22-30, 1999.

N. Dyson, The regulation of E2F by pRB-family proteins, Genes Dev, vol.12, issue.15, pp.2245-62, 1998.

S. Paul and E. Regulier,

, Ann Biol Clin, vol.59, issue.4, pp.393-402, 2001.

J. Folkman, What is the evidence that tumors are angiogenesis dependent?, J Natl Cancer Inst, vol.82, issue.1, pp.4-6, 1990.

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, issue.6801, pp.249-57, 2000.

W. Risau and I. Flamme, Vasculogenesis. Annu Rev Cell Dev Biol, vol.11, pp.73-91, 1995.

R. Kerbel and J. Folkman, Clinical translation of angiogenesis inhibitors, Nat Rev Cancer, vol.2, issue.10, pp.727-766, 2002.

C. W. Pugh and P. J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system, Nat Med, vol.9, issue.6, pp.677-84, 2003.

J. Folkman, Angiogenesis inhibitors generated by tumors, Mol Med, vol.1, issue.2, pp.120-122, 1995.

J. J. Feige and S. Bailly,

, Bull Acad Natl Med, vol.184, issue.3, pp.537-581, 2000.

J. Folkman, Role of angiogenesis in tumor growth and metastasis, Semin Oncol, vol.29, issue.6, pp.15-23, 2002.

J. Folkman, Angiogenesis: an organizing principle for drug discovery?, Nat Rev Drug Discov, vol.6, issue.4, pp.273-86, 2007.

N. Ferrara and W. J. Henzel, Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells, Biochem Biophys Res Commun, vol.161, issue.2, pp.851-859, 1989.

N. Ferrara, H. P. Gerber, and J. Lecouter, The biology of VEGF and its receptors, Nat Med, vol.9, issue.6, pp.669-76, 2003.

Z. J. Liu, VEGF-A and alphaVbeta3 integrin synergistically rescue angiogenesis via N-Ras and PI3-K signaling in human microvascular endothelial cells, FASEB J, vol.17, issue.13, pp.1931-1934, 2003.

G. P. Van-nieuw-amerongen, Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro, Arterioscler Thromb Vasc Biol, vol.23, issue.2, pp.211-218, 2003.

T. Asahara, Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo, Circulation, vol.92, issue.9, pp.365-71, 1995.

P. Vaupel, D. K. Kelleher, and M. Hockel, Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy, Semin Oncol, vol.28, issue.2, pp.29-35, 2001.

E. J. Hall, Radiobiology for the Radiologist, 2007.

A. Y. Isa, Hypoxia in head and neck cancer, Br J Radiol, vol.79, issue.946, pp.791-799, 2006.

J. M. Simon,

, Bull Cancer, vol.94, pp.160-165, 2007.

J. A. Loncaster, Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix, Cancer Res, vol.61, issue.17, pp.6394-6403, 2001.

C. C. Wykoff, Hypoxia-inducible expression of tumor-associated carbonic anhydrases, Cancer Res, vol.60, issue.24, pp.7075-83, 2000.

M. Kunkel, Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, vol.97, pp.1015-1039, 2003.

P. J. Hoskin, GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON, Br J Cancer, vol.89, issue.7, pp.1290-1297, 2003.

D. G. Stupack and D. A. Cheresh, A Bit-role for integrins in apoptosis, Nat Cell Biol, vol.6, issue.5, pp.388-397, 2004.

P. Van-lint and C. Libert, Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation, J Leukoc Biol, vol.82, issue.6, pp.1375-81, 2007.

A. John and G. Tuszynski, The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis, Pathol Oncol Res, vol.7, issue.1, pp.14-23, 2001.

B. Lelongt and P. Ronco, Role of matrix metalloproteinases in kidney development and glomerulopathy: lessons from transgenic mice, Nephrol Dial Transplant, vol.17, pp.28-31, 2002.

P. C. Brooks, Cell adhesion molecules in angiogenesis, Cancer Metastasis Rev, vol.15, issue.2, pp.187-94, 1996.

E. L. George, Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin, Development, vol.119, issue.4, pp.1079-91, 1993.

X. D. Yang, Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors, Proc Natl Acad Sci, vol.90, issue.22, pp.10494-10502, 1993.

E. Dejana, Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis, J Clin Invest, vol.98, issue.9, pp.1949-53, 1996.

P. C. Brooks, R. A. Clark, and D. A. Cheresh, Requirement of vascular integrin alpha v beta 3 for angiogenesis, Science, vol.264, issue.5158, pp.569-71, 1994.

C. C. Kumar, Integrin alpha v beta 3 as a therapeutic target for blocking tumorinduced angiogenesis, Curr Drug Targets, vol.4, issue.2, pp.123-154, 2003.

H. Jin and J. Varner, Integrins: roles in cancer development and as treatment targets, Br J Cancer, vol.90, issue.3, pp.561-566, 2004.

Y. A. Rovensky, Cellular and molecular mechanisms of tumor invasion, Biochemistry (Mosc), vol.63, issue.9, pp.1029-1072, 1998.

B. Gao, T. M. Saba, and M. F. Tsan, Role of alpha(v)beta(3)-integrin in TNF-alphainduced endothelial cell migration, Am J Physiol Cell Physiol, vol.283, issue.4, pp.1196-205, 2002.

D. A. Lauffenburger, Making connections count, Nature, vol.383, issue.6599, pp.390-391, 1996.

Y. Takada, X. Ye, and S. Simon, The integrins, Genome Biol, vol.8, issue.5, p.215, 2007.

A. Tolomelli, Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators, Cancers, issue.9, 2017.

P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nat Med, vol.6, issue.4, pp.389-95, 2000.

S. M. Weis and D. A. Cheresh, alphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med, vol.1, p.6478, 2011.

A. Byron, Anti-integrin monoclonal antibodies, J Cell Sci, vol.122, pp.4009-4020, 2009.

O. Schnell, Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography, Neuro Oncol, vol.11, issue.6, pp.861-70, 2009.

A. M. Montgomery, R. A. Reisfeld, and D. A. Cheresh, Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen, Proc Natl Acad Sci, vol.91, pp.8856-60, 1994.

P. C. Brooks, Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3, Cell, vol.85, issue.5, pp.683-93, 1996.

E. Petitclerc, Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival, Cancer Res, vol.59, issue.11, pp.2724-2754, 1999.

N. Chattopadhyay and A. Chatterjee, Studies on the expression of alpha(v)beta3 integrin receptors in non-malignant and malignant human cervical tumor tissues, J Exp Clin Cancer Res, vol.20, issue.2, pp.269-75, 2001.

B. P. Eliceiri, Integrin and growth factor receptor crosstalk, Circ Res, vol.89, issue.12, pp.1104-1114, 2001.

R. Soldi, Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2, EMBO J, vol.18, issue.4, pp.882-92, 1999.

T. V. Byzova, A mechanism for modulation of cellular responses to VEGF: activation of the integrins, Mol Cell, vol.6, issue.4, pp.851-60, 2000.

M. D. Pierschbacher and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, vol.309, issue.5963, pp.30-33, 1984.

J. P. Xiong, Crystal structure of the extracellular segment of integrin alpha Vbeta3, Science, vol.294, issue.5541, pp.339-384, 2001.

M. A. Buerkle, Inhibition of the alpha-nu integrins with a cyclic RGD peptide impairs angiogenesis, growth and metastasis of solid tumours in vivo, Br J Cancer, vol.86, issue.5, pp.788-95, 2002.

J. Haier, Inhibition of tumor progression and neoangiogenesis using cyclic RGDpeptides in a chemically induced colon carcinoma in rats, Clin Exp Metastasis, vol.19, issue.8, pp.665-72, 2002.

M. Ogawa, Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo alpha(v)beta3 integrin related tumor imaging, Nucl Med Biol, vol.30, issue.1, pp.1-9, 2003.

S. M. Paul, How to improve R&D productivity: the pharmaceutical industry's grand challenge, Nat Rev Drug Discov, vol.9, issue.3, pp.203-217, 2010.

J. Mestre-ferrandiz, J. S. , and A. Towse, Van Dyke, T. and T. Jacks, Cancer modeling in the modern era: progress and challenges, Cell, vol.86, issue.2, pp.135-179, 2002.

M. C. Bibby, Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages, Eur J Cancer, vol.40, issue.6, pp.852-859, 2004.

M. Singh and L. Johnson, Using genetically engineered mouse models of cancer to aid drug development: an industry perspective, Clin Cancer Res, vol.12, issue.18, pp.5312-5340, 2006.

B. A. Teicher, Tumor models for efficacy determination, Mol Cancer Ther, vol.5, issue.10, pp.2435-2478, 2006.

E. A. Sausville, Respecting cancer drug transportability: a basis for successful lead selection, J Natl Cancer Inst, vol.98, issue.16, pp.1098-1107, 2006.

B. A. Ruggeri, F. Camp, and S. Miknyoczki, Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery, Biochem Pharmacol, vol.87, issue.1, pp.150-61, 2014.

O. J. Becher and E. C. Holland, Genetically engineered models have advantages over xenografts for preclinical studies, Cancer Res, vol.66, issue.7, pp.3358-3367, 2006.

K. P. Olive and D. A. Tuveson, The use of targeted mouse models for preclinical testing of novel cancer therapeutics, Clin Cancer Res, vol.12, issue.18, pp.5277-87, 2006.

M. Kucherlapati, Tumor progression in Apc(1638N) mice with Exo1 and Fen1 deficiencies, Oncogene, vol.26, issue.43, pp.6297-306, 2007.

J. A. Engelman, Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers, Nat Med, vol.14, issue.12, pp.1351-1357, 2008.

J. I. Johnson, Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials, Br J Cancer, vol.84, issue.10, pp.1424-1455, 2001.

T. Voskoglou-nomikos, J. L. Pater, and L. Seymour, Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models, Clin Cancer Res, vol.9, issue.11, pp.4227-4266, 2003.

C. Abate-shen, A new generation of mouse models of cancer for translational research, Clin Cancer Res, vol.12, issue.18, pp.5274-5280, 2006.

J. P. Gillet, Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance, Proc Natl Acad Sci U S A, vol.108, issue.46, pp.18708-18721, 2011.

J. P. Gillet, S. Varma, and M. M. Gottesman, The clinical relevance of cancer cell lines, J Natl Cancer Inst, issue.105, pp.452-460, 2013.

R. H. Shoemaker, The NCI60 human tumour cell line anticancer drug screen, Nat Rev Cancer, vol.6, issue.10, pp.813-836, 2006.

J. Barretina, The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, issue.7391, pp.603-610, 2012.

J. C. Holmberg, An in vitro model for the study of human implantation, Am J Reprod Immunol, vol.67, issue.2, pp.169-78, 2012.

D. A. Haber and J. Settleman, Cancer: drivers and passengers, Nature, vol.446, issue.7132, pp.145-151, 2007.

D. W. Mcmillin, J. M. Negri, and C. S. Mitsiades, The role of tumour-stromal interactions in modifying drug response: challenges and opportunities, Nat Rev Drug Discov, vol.12, issue.3, pp.217-245, 2013.

D. Gao, Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition, Cancer Res, vol.72, issue.6, pp.1384-94, 2012.

P. A. Smith, An orthotopic model of metastatic nasopharyngeal carcinoma and its application in elucidating a therapeutic target that inhibits metastasis, Genes Cancer, vol.2, issue.11, pp.1023-1056, 2011.

E. Chan, Mouse orthotopic models for bladder cancer research, BJU Int, vol.104, issue.9, pp.1286-91, 2009.

D. Sano and J. N. Myers, Xenograft models of head and neck cancers, Head Neck Oncol, vol.1, p.32, 2009.

M. Loi, The use of the orthotopic model to validate antivascular therapies for cancer, Int J Dev Biol, vol.55, issue.4-5, pp.547-55, 2011.

B. Rubio-viqueira, An in vivo platform for translational drug development in pancreatic cancer, Clin Cancer Res, vol.12, issue.15, pp.4652-61, 2006.

X. Dong, Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy, Clin Cancer Res, vol.16, issue.5, pp.1442-51, 2010.

Y. S. Derose, Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes, Nat Med, vol.17, issue.11, pp.1514-1534, 2011.

M. Hidalgo, Patient-derived xenograft models: an emerging platform for translational cancer research, Cancer Discov, vol.4, issue.9, pp.998-1013, 2014.

P. Flechsig, Loss of matrix metalloproteinase-13 attenuates murine radiationinduced pulmonary fibrosis, Int J Radiat Oncol Biol Phys, vol.77, issue.2, pp.582-90, 2010.

J. Freimuth, Application of magnetic resonance imaging in transgenic and chemical mouse models of hepatocellular carcinoma, Mol Cancer, vol.9, p.94, 2010.

W. Zhong, In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring, Br J Cancer, vol.101, issue.12, pp.2015-2037, 2009.

K. Hoyt, Determination of breast cancer response to bevacizumab therapy using contrast-enhanced ultrasound and artificial neural networks, J Ultrasound Med, vol.29, issue.4, pp.577-85, 2010.

J. Tannenbaum and B. T. Bennett, Russell and Burch's 3Rs then and now: the need for clarity in definition and purpose, J Am Assoc Lab Anim Sci, vol.54, issue.2, pp.120-152, 2015.

F. H. Attix, . Introduction, . To, . Physics, and . Radiation-dosimetry, , 2004.

M. Mahesh, The Essential Physics of Medical Imaging, Third Edition, Med Phys, issue.7, p.40, 2013.

J. L. Links, Medical Imaging Signals and Systems, 2006.

E. Whaites, Essentials of Dental Radiography and Radiology, 2002.

J. Hsieh, Computed tomography : principles, design, artifacts and recent advances, 2015.

C. J. Garvey and R. Hanlon, Computed tomography in clinical practice, BMJ, vol.324, issue.7345, pp.1077-80, 2002.

M. J. Paulus, High resolution X-ray computed tomography: an emerging tool for small animal cancer research, Neoplasia, vol.2, issue.1-2, pp.62-70, 2000.

F. Hyafil, Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography, Nat Med, vol.13, issue.5, pp.636-677, 2007.

J. Li, A novel functional CT contrast agent for molecular imaging of cancer, Phys Med Biol, vol.55, issue.15, pp.4389-97, 2010.

R. Popovtzer, Targeted gold nanoparticles enable molecular CT imaging of cancer, Nano Lett, vol.8, issue.12, pp.4593-4599, 2008.

T. Reuveni, Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study, Int J Nanomedicine, vol.6, pp.2859-64, 2011.

D. Kim, Y. Y. Jeong, and S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano, vol.4, issue.7, pp.3689-96, 2010.

T. F. Massoud and S. S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes Dev, vol.17, issue.5, pp.545-80, 2003.

P. G. Newman and G. S. Rozycki, The history of ultrasound, Surg Clin North Am, vol.78, issue.2, pp.179-95, 1998.

S. Pochon, BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis, Invest Radiol, vol.45, issue.2, pp.89-95, 2010.

S. Wang, J. A. Hossack, and A. L. Klibanov, Targeting of microbubbles: contrast agents for ultrasound molecular imaging, J Drug Target, vol.26, pp.420-434, 2018.

B. R. Smith and S. S. Gambhir, Nanomaterials for In Vivo Imaging, Chem Rev, vol.117, issue.3, pp.901-986, 2017.

O. Shimomura, Bioluminescence: Chemical Principles and Methods World Scientific, 2012.

L. Y. Brovko, N. A. Romanova, and N. N. Ugarova, Bioluminescent Assay of Bacterial Intracellular AMP, ADP, and ATP with the Use of a Coimmobilized Three-Enzyme Reagent (Adenylate Kinase, Pyruvate Kinase, and Firefly Luciferase), Analytical Biochemistry, vol.220, issue.2, pp.410-414, 1994.

D. T. Amaral, A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations, Photochem Photobiol Sci, vol.15, issue.9, pp.1148-1154, 2016.

O. Shimomura, Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris, Biochemistry, vol.17, issue.6, pp.994-1002, 1978.

M. P. Hall, Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, ACS Chem Biol, vol.7, issue.11, pp.1848-57, 2012.

P. E. Andreotti, Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma, Cancer Res, vol.55, issue.22, pp.5276-82, 1995.

J. Zhang and H. Li, Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay, Oncol Lett, vol.9, issue.5, pp.2374-2380, 2015.

Y. Zhang,

. Zhong-nan-da-xue-xue-bao-yi-xue-ban, , vol.38, pp.1223-1230, 2013.

T. Fehm, Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay, BMC Cancer, vol.12, p.308, 2012.

A. Honig, Microtubule-associated protein tau correlates with estrogen receptor status but not with in vitro paclitaxel sensitivity in primary breast cancer, Eur J Gynaecol Oncol, vol.35, issue.5, pp.503-510, 2014.

K. Neuber, Treosulfan in the treatment of metastatic melanoma: from chemosensitivity testing to clinical trials. Recent Results Cancer Res, vol.161, pp.159-79, 2003.

M. Doerler, Does chemosensitivity-assay-directed therapy have an influence on the prognosis of patients with malignant melanoma stage IV? A retrospective study of 14 patients with malignant melanoma stage IV, Eur J Med Res, vol.12, issue.10, pp.497-502, 2007.

L. Gong, 3-Bromopyruvic acid, a hexokinase II inhibitor, is an effective antitumor agent on the hepatoma cells : in vitro and in vivo findings, Anticancer Agents Med Chem, vol.14, issue.5, pp.771-777, 2014.

K. Hochgrafe and E. M. Mandelkow, Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration, Mol Neurobiol, vol.47, issue.3, pp.868-82, 2013.

N. Papon, Illuminating fungal infections with bioluminescence, PLoS Pathog, vol.10, issue.7, p.1004179, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01160160

S. Krappmann, Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence, Virulence, vol.6, issue.8, pp.727-736, 2015.

G. Siciliano and P. Alano, Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol, vol.6, p.391, 2015.

S. M. Coleman and A. Mcgregor, A bright future for bioluminescent imaging in viral research, Future Virol, vol.10, issue.2, pp.169-183, 2015.

M. Aswendt, J. Adamczak, and A. Tennstaedt, A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke, Front Cell Neurosci, vol.8, p.226, 2014.

S. Roura, C. Galvez-monton, and A. Bayes-genis, Bioluminescence imaging: a shining future for cardiac regeneration, J Cell Mol Med, vol.17, issue.6, pp.693-703, 2013.

P. E. De-almeida, J. R. Van-rappard, and J. C. Wu, In vivo bioluminescence for tracking cell fate and function, Am J Physiol Heart Circ Physiol, vol.301, issue.3, pp.663-71, 2011.

M. A. Hossain, T. Chowdhury, and A. Bagul, Imaging modalities for the in vivo surveillance of mesenchymal stromal cells, J Tissue Eng Regen Med, vol.9, issue.11, pp.1217-1241, 2015.

T. Katsumata, Bioluminescence imaging of beta cells and intrahepatic insulin gene activity under normal and pathological conditions, PLoS One, vol.8, issue.4, p.60411, 2013.

J. Virostko, Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model, PLoS One, vol.8, issue.3, p.57784, 2013.

K. M. Chan, S. P. Raikwar, and N. Zavazava, Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence, Immunol Res, vol.39, issue.1-3, pp.261-70, 2007.

H. Yin, Enhancing pancreatic Beta-cell regeneration in vivo with pioglitazone and alogliptin, PLoS One, vol.8, issue.6, p.65777, 2013.

C. P. Klerk, Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals, Biotechniques, vol.43, issue.1, pp.7-13, 2007.

R. B. Luwor, S. S. Stylli, and A. H. Kaye, Using bioluminescence imaging in glioma research, J Clin Neurosci, vol.22, issue.5, pp.779-84, 2015.

Y. Wang, Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer, Cold Spring Harb Protoc, issue.2, pp.135-179, 2015.

S. T. Gammon, Preclinical anatomical, molecular, and functional imaging of the lung with multiple modalities, Am J Physiol Lung Cell Mol Physiol, vol.306, issue.10, pp.897-914, 2014.

A. C. O'farrell, Non-invasive molecular imaging for preclinical cancer therapeutic development, Br J Pharmacol, vol.169, issue.4, pp.719-754, 2013.

C. Germain-genevois, O. Garandeau, and F. Couillaud, Detection of Brain Tumors and Systemic Metastases Using NanoLuc and Fluc for Dual Reporter Imaging, Mol Imaging Biol, vol.18, issue.1, pp.62-71, 2016.

M. Lupu, 23Na MRI longitudinal follow-up of PDT in a xenograft model of human retinoblastoma, Photodiagnosis Photodyn Ther, vol.6, pp.214-234, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00435259

X. Wu, Noninvasive evaluation of antiangiogenic effect in a mouse tumor model by DCE-MRI with Gd-DTPA cystamine copolymers, Mol Pharm, vol.7, issue.1, pp.41-49, 2010.

P. L. Ryan, Photonic monitoring in real time of vascular endothelial growth factor receptor 2 gene expression under relaxin-induced conditions in a novel murine wound model, Ann N Y Acad Sci, vol.1041, pp.398-414, 2005.

E. Angst, Bioluminescence imaging of angiogenesis in a murine orthotopic pancreatic cancer model, Mol Imaging Biol, vol.12, issue.6, pp.570-575, 2010.

J. J. Hawes and K. M. Reilly, Bioluminescent approaches for measuring tumor growth in a mouse model of neurofibromatosis, Toxicol Pathol, vol.38, issue.1, pp.123-153, 2010.

N. Craft, Bioluminescent imaging of melanoma in live mice, J Invest Dermatol, vol.125, issue.1, pp.159-165, 2005.

P. C. Black, Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis, BJU Int, vol.106, issue.11, pp.1799-804, 2010.

L. Sun, Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications, Nanoscale, vol.6, issue.15, pp.8878-83, 2014.

J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr Opin Chem Biol, vol.7, issue.5, pp.626-660, 2003.

J. Klohs, A. Wunder, and K. Licha, Near-infrared fluorescent probes for imaging vascular pathophysiology, Basic Res Cardiol, vol.103, issue.2, pp.144-51, 2008.

G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nature Biomedical Engineering, issue.1, p.10, 2017.

V. Ntziachristos, C. Bremer, and R. Weissleder, Fluorescence imaging with nearinfrared light: new technological advances that enable in vivo molecular imaging, Eur Radiol, vol.13, issue.1, pp.195-208, 2003.

M. Bohmer and J. Enderlein, Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology, Chemphyschem, vol.4, issue.8, pp.793-808, 2003.

A. L. Antaris, A small-molecule dye for NIR-II imaging, Nat Mater, vol.15, issue.2, pp.235-277, 2016.

G. Hong, Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat Med, vol.18, issue.12, pp.1841-1847, 2012.

J. T. Robinson, In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake, J Am Chem Soc, vol.134, issue.25, pp.10664-10673, 2012.

A. L. Antaris, A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging, Nat Commun, vol.8, p.15269, 2017.

S. Diao, Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm, Angew Chem Int Ed Engl, vol.54, issue.49, pp.14758-62, 2015.

Y. Sun, Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery, Chem Sci, vol.8, issue.5, pp.3489-3493, 2017.

S. Bhattacharyya, Synthesis and biological evaluation of panitumumab-IRDye800 conjugate as a fluorescence imaging probe for EGFR-expressing cancers, MedChemComm, vol.5, issue.9, pp.1337-1346, 2014.

W. F. Cheong, S. A. Prahl, and A. J. Welch, A Review Of the Optical Properties of Biological Tissues, IEEE Journal of Quantum Electronics, issue.12, p.26, 1990.

C. Darne, Y. Lu, and E. M. Sevick-muraca, Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update, Phys Med Biol, vol.59, issue.1, pp.1-64, 2014.

E. E. Graves, A submillimeter resolution fluorescence molecular imaging system for small animal imaging, Med Phys, vol.30, issue.5, pp.901-912, 2003.

S. Patwardhan, Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice, Opt Express, vol.13, issue.7, pp.2564-77, 2005.

R. Bourayou, Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain, J Biomed Opt, vol.13, issue.4, p.41311, 2008.

N. Deliolanis, Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections, Opt Lett, vol.32, issue.4, pp.382-386, 2007.

A. Garofalakis, Three-dimensional in vivo imaging of green fluorescent proteinexpressing T cells in mice with noncontact fluorescence molecular tomography, Mol Imaging, vol.6, issue.2, pp.96-107, 2007.

X. Guo, A combined fluorescence and microcomputed tomography system for small animal imaging, IEEE Trans Biomed Eng, vol.57, issue.12, pp.2876-83, 2010.

V. Ntziachristos, B. Chance, and A. Yodh, Differential diffuse optical tomography, Opt Express, vol.5, issue.10, pp.230-272, 1999.

A. Ale, FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography, Nat Methods, vol.9, issue.6, pp.615-635, 2012.

M. Nahrendorf, Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors, Arterioscler Thromb Vasc Biol, vol.29, issue.10, pp.1444-51, 2009.

A. Rawashdeh and W. , Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling. Theranostics, vol.7, pp.1499-1510, 2017.

A. Koenig, Fluorescence diffuse optical tomographic (fDOT) system for small animal studies, 29th Annual International Conference of the IEEE, 2007.

A. Koenig, In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography, J Biomed Opt, vol.13, issue.1, p.11008, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00313764

A. Koenig, Whole body small animal examination with a diffuse optical tomography instrument. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.571, pp.56-59, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00331928

A. Koenig, Fluorescence diffuse optical tomography for free-space and multifluorophore studies, J Biomed Opt, vol.15, issue.1, p.16016, 2010.

L. Herve, Noncontact fluorescence diffuse optical tomography of heterogeneous media, Appl Opt, vol.46, issue.22, pp.4896-906, 2007.

A. Garofalakis, In vivo validation of free-space fluorescence tomography using nuclear imaging, Opt Lett, vol.35, issue.18, pp.3024-3030, 2010.

F. Stuker, Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors, IEEE Trans Med Imaging, vol.30, issue.6, pp.1265-73, 2011.

D. Silva and A. , Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination, Appl Opt, vol.48, issue.10, pp.151-62, 2009.

R. B. Schulz, Hybrid system for simultaneous fluorescence and x-ray computed tomography, IEEE Trans Med Imaging, vol.29, issue.2, pp.465-73, 2010.

X. Yang, Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging, Rev Sci Instrum, vol.81, issue.5, p.54304, 2010.

F. Leblond, Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography, Opt Lett, vol.36, pp.3723-3728, 2011.

M. Solomon, Multimodal fluorescence-mediated tomography and SPECT/CT for small-animal imaging, J Nucl Med, vol.54, issue.4, pp.639-685, 2013.

R. Weissleder and M. J. Pittet, Imaging in the era of molecular oncology, Nature, vol.452, issue.7187, pp.580-589, 2008.

I. J. Fox, A tricarbocyanine dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation, Proc Staff Meet Mayo Clin, vol.32, issue.18, pp.478-84, 1957.

J. Caesar, The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function, Clin Sci, vol.21, pp.43-57, 1961.

D. Holt, Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation, PLoS One, vol.9, issue.7, p.103342, 2014.

N. Kosaka, Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green, Int J Cancer, vol.129, issue.7, pp.1671-1678, 2011.

S. Yamamoto, Intraoperative detection of sentinel lymph nodes in breast cancer patients using ultrasonography-guided direct indocyanine green dye-marking by real-time virtual sonography constructed with three-dimensional computed tomography-lymphography, Breast, vol.22, issue.5, pp.933-940, 2013.

B. Madajewski, Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease, Clin Cancer Res, vol.18, pp.5741-51, 1920.

N. L. Martirosyan, Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor, J Neurosurg, vol.115, issue.6, pp.1131-1139, 2011.

K. Gotoh, A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation, J Surg Oncol, vol.100, issue.1, pp.75-84, 2009.

T. Ishizawa, Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, vol.115, pp.2491-504, 2009.

G. Barabino, Improving Surgical Resection of Metastatic Liver Tumors With Near-Infrared Optical-Guided Fluorescence Imaging, Surg Innov, vol.23, issue.4, pp.354-363, 2016.

G. Barabino, Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept, Eur J Surg Oncol, vol.42, issue.12, pp.1931-1937, 2016.

Q. R. Tummers, The Value of Intraoperative Near-Infrared Fluorescence Imaging Based on Enhanced Permeability and Retention of Indocyanine Green: Feasibility and False-Positives in Ovarian Cancer, PLoS One, vol.10, issue.6, p.129766, 2015.

J. Yokoyama, Impact of indocyanine green fluorescent image-guided surgery for parapharyngeal space tumours, J Craniomaxillofac Surg, vol.42, issue.6, pp.835-843, 2014.

O. T. Okusanya, Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research, Technol Cancer Res Treat, vol.14, issue.2, pp.213-233, 2015.

V. Kalchenko, Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing, J Biomed Opt, vol.11, issue.5, p.50507, 2006.

D. Boturyn, Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis, J Am Chem Soc, vol.126, issue.18, pp.5730-5739, 2004.

E. Garanger, New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors, Mol Ther, vol.12, issue.6, pp.1168-75, 2005.

Z. H. Jin, In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer, vol.6, p.41, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176674

Z. H. Jin, In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4). Mol Imaging, vol.6, pp.43-55, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169559

Z. H. Jin, Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging, vol.5, pp.188-97, 2006.

A. Dutour, Targeted imaging of alpha(v)beta(3) expressing sarcoma tumor cells in vivo in pre-operative setting using near infrared: a potential tool to reduce incomplete surgical resection, Bone, vol.62, pp.71-79, 2014.

V. Josserand, Electrochemotherapy guided by intraoperative fluorescence imaging for the treatment of inoperable peritoneal micro-metastases, J Control Release, vol.233, pp.81-88, 2016.

M. Keramidas, Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model, Br J Surg, vol.97, issue.5, pp.737-780, 2010.

I. Atallah, Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma, Head Neck, vol.38, issue.1, pp.246-55, 2016.

A. Bellanger, The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone, J Pathol, 2017.

C. H. Wenk, Near-infrared optical guided surgery of highly infiltrative fibrosarcomas in cats using an anti-alphavss3 integrin molecular probe, Cancer Lett, vol.334, issue.2, pp.188-95, 2013.

M. Keramidas, Noninvasive and Quantitative Assessment of In Vivo Fetomaternal Interface Angiogenesis Using RGD-Based Fluorescence, Biomed Res Int, p.309082, 2014.

M. Funovics, R. Weissleder, and C. H. Tung, Protease sensors for bioimaging, Anal Bioanal Chem, vol.377, issue.6, pp.956-63, 2003.

V. Ntziachristos, Fluorescence molecular imaging, Annu Rev Biomed Eng, vol.8, pp.1-33, 2006.

J. Rao, A. Dragulescu-andrasi, and H. Yao, Fluorescence imaging in vivo: recent advances, Curr Opin Biotechnol, vol.18, issue.1, pp.17-25, 2007.

D. S. Av, Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging, J Biomed Opt, vol.21, issue.8, p.80901, 2016.

T. Nagaya, Fluorescence-Guided Surgery. Front Oncol, vol.7, p.314, 2017.

A. G. Bell, The Photophone. Science, 1880, vol.1, pp.130-134

T. Bowen, Radiation-Induced Thermoacoustic Imaging, 1983.

X. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat Biotechnol, vol.21, issue.7, pp.803-809, 2003.

J. Joseph, Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects, J Nucl Med, vol.58, issue.5, pp.807-814, 2017.

A. Becker, Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasoundoptoacoustic approach, Eur Radiol, vol.28, issue.2, pp.602-609, 2018.

R. A. Kruger, Photoacoustic angiography of the breast, Med Phys, vol.37, issue.11, pp.6096-100, 2010.

S. E. Bohndiek, Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments, PLoS One, vol.8, issue.9, p.75533, 2013.

L. Li, Single-impulse Panoramic Photoacoustic Computed Tomography of Smallanimal Whole-body Dynamics at High Spatiotemporal Resolution, p.1, 2017.

T. F. Fehm, Volumetric optoacoustic imaging feedback during endovenous laser therapy -an ex vivo investigation, J Biophotonics, vol.9, issue.9, pp.934-975, 2016.

A. Hariri, The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, vol.9, pp.10-20, 2018.

S. Zackrisson, S. Van-de-ven, and S. S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging, Cancer Res, vol.74, issue.4, pp.979-1004, 2014.

B. Cox, Quantitative spectroscopic photoacoustic imaging: a review, J Biomed Opt, vol.17, issue.6, p.61202, 2012.

G. P. Luke, S. Y. Nam, and S. Y. Emelianov, Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics, pp.36-42, 2013.

X. Wang, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J Biomed Opt, vol.11, issue.2, p.24015, 2006.

L. J. Rich and M. Seshadri, Photoacoustic monitoring of tumor and normal tissue response to radiation, vol.6, p.21237, 2016.

L. J. Rich, Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer, Theranostics, vol.8, issue.8, pp.2064-2078, 2018.

J. Yao and L. V. Wang, Recent progress in photoacoustic molecular imaging, Curr Opin Chem Biol, vol.45, pp.104-112, 2018.

N. C. Burton, Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization, Neuroimage, vol.65, pp.522-530, 2013.

H. Wang, In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes, Nanoscale, vol.6, issue.23, pp.14270-14279, 2014.

N. Beziere, Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT), Biomaterials, vol.37, pp.415-439, 2015.

R. K. Kannadorai, S. K. Udumala, and Y. W. Sidney, Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody, J Biomed Opt, vol.21, issue.12, p.126002, 2016.

C. Gao, Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging, Cancer Biol Med, vol.13, issue.3, pp.349-359, 2016.

F. Liu, Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy, Int J Nanomedicine, vol.13, pp.5139-5158, 2018.

Y. Li, Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imagingguided chemo-photothermal synergistic therapy, J Control Release, vol.258, pp.95-107, 2017.

T. Temma, Preclinical evaluation of a novel cyanine dye for tumor imaging with in vivo photoacoustic imaging, J Biomed Opt, vol.19, issue.9, p.90501, 2014.

J. Chen, Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging, Nanoscale Res Lett, vol.11, issue.1, p.85, 2016.

N. Beziere and V. Ntziachristos, Optoacoustic imaging of naphthalocyanine: potential for contrast enhancement and therapy monitoring, J Nucl Med, vol.56, issue.2, pp.323-331, 2015.

K. Sano, Indocyanine Green-Labeled Polysarcosine for in Vivo Photoacoustic Tumor Imaging, Bioconjug Chem, vol.28, issue.4, pp.1024-1030, 2017.

Z. Shi, Self-Assembled Metal-Organic Nanoparticles for Multimodal Imaging-Guided Photothermal Therapy of Hepatocellular Carcinoma, J Biomed Nanotechnol, vol.14, issue.11, pp.1934-1943, 2018.

T. Guan, From Detection to Resection: Photoacoustic Tomography and Surgery Guidance with Indocyanine Green Loaded Gold Nanorod@liposome Core-Shell Nanoparticles in Liver Cancer, Bioconjug Chem, vol.28, issue.4, pp.1221-1228, 2017.

M. Capozza, Photoacoustic imaging of integrin-overexpressing tumors using a novel ICG-based contrast agent in mice. Photoacoustics, vol.11, pp.36-45, 2018.

K. Sano, In vivo photoacoustic imaging of cancer using indocyanine greenlabeled monoclonal antibody targeting the epidermal growth factor receptor, Biochem Biophys Res Commun, vol.464, issue.3, pp.820-825, 2015.

S. Uthaman, Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors, J Biomed Mater Res B Appl Biomater, vol.104, issue.4, pp.825-859, 2016.

G. Wang, Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy, ACS Appl Mater Interfaces, vol.8, issue.8, pp.5608-5625, 2016.

C. Zhang, Photoacoustic and Fluorescence Imaging of Cutaneous Squamous Cell Carcinoma in Living Subjects Using a Probe Targeting Integrin alphavbeta6, vol.7, p.42442, 2017.

S. Gao, Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy, Biomaterials, vol.112, pp.324-335, 2017.

N. Beztsinna, Photoacoustic imaging of tumor targeting with riboflavinfunctionalized theranostic nanocarriers, Int J Nanomedicine, vol.12, pp.3813-3825, 2017.

C. W. Kimbrough, Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1, J Surg Res, vol.193, issue.1, pp.246-54, 2015.

K. Okumura, Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model, Eur Radiol Exp, vol.2, issue.1, p.5, 2018.

R. Nagaoka, Visualization of murine lymph vessels using photoacoustic imaging with contrast agents. Photoacoustics, vol.9, pp.39-48, 2018.

J. F. Lovell, Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents, Nat Mater, vol.10, issue.4, pp.324-356, 2011.

P. Rong, Fluorescence Dye Loaded Nano-graphene for Multimodal Imaging Guided Photothermal Therapy, vol.6, pp.1894-1901, 2016.

Q. Chen, A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging, Adv Mater, vol.27, issue.43, pp.6820-6827, 2015.

P. Huang, Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy, Adv Mater, vol.26, issue.37, pp.6401-6409, 2014.

Y. Zhou, A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging, Theranostics, vol.6, issue.5, pp.688-97, 2016.

P. Amit, J. L. Jathoul, O. Ogunlade, B. Treeby, B. Cox et al., Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter, Nature Photonics, vol.22, 2015.

H. J. Knox, A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia, Nat Commun, vol.8, issue.1, p.1794, 2017.

T. Zhang, Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer, Nanomedicine (Lond), vol.10, issue.4, pp.573-87, 2015.

Z. Sheng, Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy, Biomaterials, vol.34, issue.21, pp.5236-5279, 2013.

J. Ge, Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice, Adv Mater, vol.27, issue.28, pp.4169-77, 2015.

K. A. Homan, Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging, ACS Nano, vol.6, issue.1, pp.641-50, 2012.

A. Ray, Lifetime-based photoacoustic oxygen sensing in vivo, J Biomed Opt, vol.17, issue.5, p.57004, 2012.

L. Nie, In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars, Small, vol.10, issue.8, pp.1585-93, 1441.

M. Chen, Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy, Adv Mater, vol.26, issue.48, pp.8210-8216, 2014.

W. H. Chen, Multifunctional theranostic nanoplatform for cancer combined therapy based on gold nanorods, vol.4, pp.2247-59, 2015.

W. Li, Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy, Biomaterials, vol.45, pp.18-26, 2015.

J. Zhong, Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods, Nanomedicine, vol.11, issue.6, pp.1499-509, 2015.

Y. S. Zhang, Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy, Theranostics, issue.3, pp.532-575, 2013.

T. Sun, Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies, Adv Healthc Mater, vol.3, issue.8, pp.1283-91, 2014.

A. Topete, Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells, ACS Nano, vol.8, issue.3, pp.2725-2763, 2014.

J. Song, Ultrasmall Gold Nanorod Vesicles with Enhanced Tumor Accumulation and Fast Excretion from the Body for Cancer Therapy, Adv Mater, vol.27, issue.33, pp.4910-4917, 2015.

L. Cheng, PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy, Adv Mater, vol.26, issue.12, pp.1886-93, 2014.

M. Yang, Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging, Biomaterials, vol.69, pp.30-37, 2015.

J. Liu, Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor, ACS Nano, vol.9, issue.1, pp.696-707, 2015.

T. Liu, Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy, ACS Nano, vol.9, issue.1, pp.950-60, 2015.

Z. Sheng, Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy, ACS Nano, vol.8, issue.12, pp.12310-12332, 2014.

S. Wang, A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy, Adv Mater, vol.27, issue.17, pp.2775-82, 2015.

N. Lewinski, V. Colvin, and R. Drezek, Cytotoxicity of nanoparticles, vol.4, pp.26-49, 2008.

K. Yang, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles, Adv Mater, vol.24, issue.14, pp.1868-72, 2012.

L. S. Lin, Multifunctional Fe(3)O(4)@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy, ACS Nano, vol.8, issue.4, pp.3876-83, 2014.

K. Pu, Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging, Adv Mater, vol.27, issue.35, pp.5184-90, 2015.

J. Lin, Multimodal-Imaging-Guided Cancer Phototherapy by Versatile Biomimetic Theranostics with UV and gamma-Irradiation Protection, Adv Mater, vol.28, issue.17, pp.3273-3282, 2016.

G. Tian, Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging, Small, vol.10, pp.4160-70, 1920.

Y. Jin, Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer, Biomaterials, vol.35, issue.22, pp.5795-804, 2014.

R. Zhang, Engineering Melanin Nanoparticles as an Efficient Drug-Delivery System for Imaging-Guided Chemotherapy, Adv Mater, vol.27, issue.34, pp.5063-5072, 2015.

L. Cheng, Organic stealth nanoparticles for highly effective in vivo nearinfrared photothermal therapy of cancer, ACS Nano, vol.6, issue.6, pp.5605-5618, 2012.

D. Chen, Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals, Chem Commun (Camb), vol.48, issue.47, pp.5898-900, 2012.

J. Jose, Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography, J Biomed Opt, vol.16, issue.9, p.96021, 2011.

Y. Zhou, Handheld photoacoustic microscopy to detect melanoma depth in vivo, Opt Lett, vol.39, issue.16, pp.4731-4735, 2014.

G. C. Langhout, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging, Int J Biomed Imaging, p.163652, 2014.

C. Kim, Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes, J Biomed Opt, vol.15, issue.4, p.46010, 2010.

T. N. Erpelding, Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system, Radiology, vol.256, issue.1, pp.102-112, 2010.

V. S. Dogra, Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer, AJR Am J Roentgenol, vol.202, issue.6, pp.552-560, 2014.

K. S. Valluru, B. K. Chinni, and N. A. Rao, Photoacoustic imaging: opening new frontiers in medical imaging, J Clin Imaging Sci, p.24, 2011.

V. S. Dogra, Multispectral Photoacoustic Imaging of Prostate Cancer: Preliminary Ex-vivo Results, J Clin Imaging Sci, issue.3, p.41, 2013.

K. S. Valluru and J. K. Willmann, Clinical photoacoustic imaging of cancer. Ultrasonography, vol.35, pp.267-80, 2016.

A. Aguirre, Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization, Transl Oncol, vol.4, issue.1, pp.29-37, 2011.

U. Alqasemi, Recognition algorithm for assisting ovarian cancer diagnosis from coregistered ultrasound and photoacoustic images: ex vivo study, J Biomed Opt, vol.17, issue.12, p.126003, 2012.

P. D. Kumavor, Co-registered pulse-echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue, J Biophotonics, issue.6, pp.475-84, 2013.

K. Peng, Detection of cervical cancer based on photoacoustic imaging-the invitro results, Biomed Opt Express, vol.6, issue.1, pp.135-178, 2015.

J. Staley, Growth of melanoma brain tumors monitored by photoacoustic microscopy, J Biomed Opt, vol.15, issue.4, p.40510, 2010.

E. I. Galanzha, In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser, Cancer Res, vol.69, issue.20, pp.7926-7960, 2009.

D. Mccormack, Photoacoustic detection of melanoma micrometastasis in sentinel lymph nodes, J Biomech Eng, vol.131, issue.7, p.74519, 2009.

C. P. Favazza, In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus, J Biomed Opt, vol.16, issue.1, p.16015, 2011.

M. Petri, Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study, J Wound Care, vol.25, issue.2, pp.89-91, 2016.

F. Knieling, Multispectral Optoacoustic Tomography for Assessment of Crohn's Disease Activity, N Engl J Med, vol.376, issue.13, pp.1292-1294, 2017.

S. Manohar, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics, Opt Express, vol.15, pp.12277-85, 2007.

S. A. Ermilov, Laser optoacoustic imaging system for detection of breast cancer, J Biomed Opt, vol.14, issue.2, p.24007, 2009.

M. Heijblom, The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies, Eur Radiol, vol.26, issue.11, pp.3874-3887, 2016.

M. Heijblom, Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express, vol.20, pp.11582-97, 2012.

T. Kitai and M. Toi,

N. Rinsho, , vol.70, pp.326-356, 2012.

T. Kitai, Photoacoustic mammography: initial clinical results, Breast Cancer, vol.21, issue.2, pp.146-53, 2014.

J. Lavaud, Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging, Int J Pharm, vol.532, issue.2, pp.704-709, 2017.

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, issue.21, pp.1182-1188, 1971.

P. C. Brooks, Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, vol.79, issue.7, pp.1157-64, 1994.

M. Aumailley, Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1, FEBS Lett, vol.291, issue.1, pp.50-54, 1991.

E. Garanger, Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands, Org Biomol Chem, vol.4, issue.10, pp.1958-65, 2006.

I. Atallah, Role of near-infrared fluorescence imaging in head and neck cancer surgery: from animal models to humans, Eur Arch Otorhinolaryngol, 2014.

S. Dufort, Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization, Small, vol.11, issue.2, pp.215-236, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115895

L. Guilleminault, Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system, J Control Release, vol.196, pp.344-54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01769891

J. B. Yameogo, Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles, Eur J Pharm Biopharm, 2014.

L. J. Rich and M. Seshadri, Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging, Radiology, vol.275, issue.1, pp.110-118, 2015.

A. Gothelf, P. Hojman, and J. Gehl, Change in Hemoglobin Levels due to Anesthesia in Mice: An Important Confounder in Studies on Hematopoietic Drugs, Biol Proced Online, vol.11, pp.325-355, 2009.

S. Kai, The volatile anesthetic isoflurane differentially suppresses the induction of erythropoietin synthesis elicited by acute anemia and systemic hypoxemia in mice in an hypoxia-inducible factor-2-dependent manner, Eur J Pharmacol, vol.732, pp.43-52, 2014.

K. Masamoto and K. Tanishita, Oxygen transport in brain tissue, J Biomech Eng, vol.131, issue.7, p.74002, 2009.

D. Giavarina, Understanding Bland Altman analysis, Biochem Med (Zagreb), vol.25, issue.2, pp.141-51, 2015.

S. Hu, K. Maslov, and L. V. Wang, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed, Opt Lett, vol.36, issue.7, pp.1134-1140, 2011.

P. Shao, Mosaic acquisition and processing for optical-resolution photoacoustic microscopy, J Biomed Opt, vol.17, issue.8, pp.80503-80504, 2012.

J. Laufer, Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration, Phys Med Biol, vol.52, issue.1, pp.141-68, 2007.

Y. Jiang, Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study, J Biomed Opt, vol.17, issue.3, p.36012, 2012.

M. Yu and J. Zheng, Clearance Pathways and Tumor Targeting of Imaging Nanoparticles, ACS Nano, vol.9, issue.7, pp.6655-74, 2015.

F. Jolesz, Intraoperative Imaging and Image-Guided Therapy, p.893, 2014.

E. Mery, Intraoperative fluorescence imaging of peritoneal dissemination of ovarian carcinomas. A preclinical study, Gynecol Oncol, vol.122, issue.1, pp.155-62, 2011.

S. Wang, Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications. Theranostics, vol.6, pp.2394-2413, 2016.

J. B. Kruskal, Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology, vol.243, pp.703-714, 2007.

J. B. Kruskal, Hepatic colon cancer metastases in mice: dynamic in vivo correlation with hypoechoic rims visible at US. Radiology, vol.215, pp.852-859, 2000.

J. G. Mannheim, Comparison of small animal CT contrast agents, Contrast Media Mol Imaging, vol.11, issue.4, pp.272-84, 2016.

T. Desmettre, J. M. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Surv Ophthalmol, vol.45, issue.1, pp.15-27, 2000.

A. Miyata, Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging, PLoS One, vol.9, issue.11, p.112667, 2014.