Skip to Main content Skip to Navigation

De l'étude fondamentale d’hydrates d’acide fort par spectroscopie de vibration et de relaxation à l'application de leur super-conductivité protonique pour le développement d'une micropile à combustible

Abstract : Fuel cells (FC) using hydrogen possess very good energy performance and produce no greenhouse gases. It presents itself today as a clean and efficient solution. This alternative could then become a possible substitute for fossil fuels and palliate for the intermittency ofcertain renewable energies.There are various types of FC, mainly distinguished by the nature of the electrolyte that composes their proton exchange membrane. Using strong acid clathrate hydrates as solid electrolyte represents an alternative for which very little is known nowadays. These systems are nanoporous crystalline solids consisting of a water host network forming nanometric cavities encapsulating guest molecules. In the case of strong acid clathrate hydrates, the confinement of acidic species within the aqueous cages generates proton excess that isdelocalized along their aqueous network. At room temperature, these clathrate hydrates have then excellent proton conductivity, which is higher than that of the FCs membranes currently used. The objective of this PhD was to develop an electrolyte based on hexafluorophosphoricacid clathrate hydrate (one of the best-known conductors of this class of system) on the basisof a fundamental physico-chemical approach, and to develop a miniaturized FC assemblyincorporating this new electrolyte.At a fundamental level, it was necessary to understand the driving factors responsible for the super-protonic conductivity of these systems and in particular, the relationship between the conductivity and the hydration number (i.e. water to acid molar ratio in the clathrate). The microscopic mechanisms have been studied by means of Raman spectroscopy and imaging, supplemented by nuclear magnetic resonance, X-ray diffraction and electrochemical impedance spectroscopy experiments. A set of results concerning the structure (clathrate type, phase transition and thermodynamic stability), the dynamics (vibrational modes, proton diffusion and kinetics) and the chemistry (inclusion of fluorinated impurities) has thus been obtained. As a selective and microscopic probe, the Raman scattering technique provided unique information. It allowed to probe the acid-cages interactions, to propose an experimental protocol monitoring the hydration number and also,to reveal, for the first time, a microstructuration of the clathrate hydrate only observed abovea hydration threshold. These physico-chemical properties have been correlated with the conductivity measurements, making it possible to understand the impact of the hydration number and of the chemical impurities onto the electrochemical performances of the solid electrolyte. All these results led to an original technological development. A new micro-fuel cell using hexafluorophosphoric acid hydrates as the electrolyte has been designed. This development offers a FC with performances comparable to the FCs currently available and operating from room temperature to negative temperatures.
Complete list of metadatas

Cited literature [106 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Saturday, November 2, 2019 - 1:03:34 AM
Last modification on : Tuesday, May 26, 2020 - 3:11:07 AM
Long-term archiving on: : Monday, February 3, 2020 - 12:36:42 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02343174, version 1



Sarah Desplanche. De l'étude fondamentale d’hydrates d’acide fort par spectroscopie de vibration et de relaxation à l'application de leur super-conductivité protonique pour le développement d'une micropile à combustible. Chimie-Physique [physics.chem-ph]. Université de Bordeaux, 2018. Français. ⟨NNT : 2018BORD0171⟩. ⟨tel-02343174⟩



Record views


Files downloads