, High-precision mid-infrared spectrometer: application to the spectroscopy of methanol, Chapter

G. Appendix, Line-center frequencies and uncertainties of rovibrational lines of trioxane

G. Appendix, Line-center frequencies and uncertainties of rovibrational lines of trioxane 29 128 226 017, vol.8, pp.243-439

T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency metrology, Nature, vol.416, p.233, 2002.

A. Peters, K. Y. Chung, and S. Chu, Measurement of gravitational acceleration by dropping atoms, Nature, vol.400, p.849, 1999.

R. Bouchendira, P. Cladé, S. Guellati-khélifa, F. Nez, and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Physical Review Letters, vol.106, p.80801, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00547525

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers et al., Improved limit on a temporal variation of m p /m e from comparisons of Yb + and Cs atomic clocks, Physical Review Letters, vol.113, p.210802, 2014.

R. Godun, P. Nisbet-jones, J. Jones, S. King, L. Johnson et al., Frequency ratio of two optical clock transitions in 171 Yb + and constraints on the time variation of fundamental constants, Physical Review Letters, vol.113, p.210801, 2014.

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky et al., New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clocks, Phys. Rev. Lett, vol.100, p.140801, 2008.

T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams et al., Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance, Phys. Rev. Lett, vol.98, p.70801, 2007.

J. Guéna, M. Abgrall, D. Rovera, P. Rosenbusch, M. E. Tobar et al., Improved tests of local position invariance using 87 Rb and 133 Cs fountains, Phys. Rev. Lett, vol.109, p.80801, 2012.

M. Abgrall, B. Chupin, L. De, J. Sarlo, P. Guéna et al., Atomic fountains and optical clocks at SYRTE: Status and perspectives, Comptes Rendus Physique, vol.16, pp.461-470, 2015.

B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof et al., An optical lattice clock with accuracy and stability at the 10 ?18 level, Nature, vol.506, p.71, 2014.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das et al., Frequency ratio of Yb and Sr clocks with 5×10 ?17 uncertainty at 150 seconds averaging time, Nature Photonics, vol.10, p.258, 2016.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet et al.,

N. Lee, C. Quintin, A. Lisdat, S. Al-masoudi, C. Dörscher et al., Test of special relativity using a fiber network of optical clocks, Phys. Rev. Lett, vol.118, p.221102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01491475

J. J. Harrison, P. F. Bernath, and G. Kirchengast, Spectroscopic requirements for ACCURATE, a microwave and infrared-laser occultation satellite mission, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.112, pp.2347-2354, 2011.

M. Guinet, D. Mondelain, C. Janssen, and C. Camy-peyret, Laser spectroscopic study of ozone in the 100 ? 000 band for the SWIFT instrument, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.111, pp.961-972, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00997598

E. Herbst and E. F. Van-dishoeck, Complex organic interstellar molecules, Annual Review of Astronomy and Astrophysics, vol.47, pp.427-480, 2009.

E. Hinds, Testing time reversal symmetry using molecules, Physica Scripta, vol.34, 1997.

J. J. Hudson, D. M. Kara, I. Smallman, B. E. Sauer, M. R. Tarbutt et al., Improved measurement of the shape of the electron, Nature, vol.473, p.493, 2011.

V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature, vol.562, pp.355-360, 2018.

W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy et al., Precision measurement of the electron's electric dipole moment using trapped molecular ions, Physical Review Letters, vol.119, p.153001, 2017.

S. K. Tokunaga, C. Stoeffler, F. Auguste, A. Shelkovnikov, C. Daussy et al., Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy, Molecular Physics, vol.111, pp.2363-2373, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00864548

B. Darquié, C. Stoeffler, A. Shelkovnikov, C. Daussy, A. Amy-klein et al., Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy, Chirality, vol.22, pp.870-884, 2010.

M. Quack and J. Stohner, Influence of parity violating weak nuclear potentials on vibrational and rotational frequencies in chiral molecules, Physical Review Letters, vol.84, p.3807, 2000.

A. Cournol, M. Manceau, M. Pierens, L. Lecordier, D. B. Tran et al., A new experiment to test parity symmetry in cold chiral molecules using vibrational spectroscopy, Quantum Electronics, vol.49, p.288, 2019.

L. Moretti, A. Castrillo, E. Fasci, M. D. De-vizia, G. Casa et al., Determination of the Boltzmann constant by means of precision measurements of H 18 2 O line shapes at 1.39 µm, Phys. Rev. Lett, vol.111, p.60803, 2013.

S. Mejri, P. Sow, O. Kozlova, C. Ayari, S. Tokunaga et al., Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia, Metrologia, vol.52, p.314, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159864

J. Fischer, B. Fellmuth, C. Gaiser, T. Zandt, L. Pitre et al., , vol.55, p.1, 2018.

C. Daussy, M. Guinet, A. Amy-klein, K. Djerroud, Y. Hermier et al., Direct determination of the Boltzmann constant by an optical method, Physical Review Letters, vol.98, p.250801, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00126269

V. Q. Tran, J. Karr, A. Douillet, J. C. Koelemeij, and L. Hilico, Two-photon spectroscopy of trapped HD + ions in the lamb-dicke regime, Physical Review A, vol.88, p.33421, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858308

J. Biesheuvel, J. Karr, L. Hilico, K. Eikema, W. Ubachs et al., Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD +, Nature communications, vol.7, p.10385, 2016.

J. Karr, S. Patra, J. C. Koelemeij, J. Heinrich, N. Sillitoe et al., Hydrogen molecular ions: new schemes for metrology and fundamental physics tests, Journal of Physics: Conference Series, vol.723, p.12048, 2016.

J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, and S. Schiller, Vibrational spectroscopy of HD + with 2-ppb accuracy, Physical Review Letters, vol.98, p.173002, 2007.

F. Cozijn, P. Dupré, E. Salumbides, K. Eikema, and W. Ubachs, Sub-doppler frequency metrology in HD for tests of fundamental physics, Physical Review Letters, vol.120, p.153002, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01768123

B. P. Schmidt, Nobel lecture: Accelerating expansion of the universe through observations of distant supernovae, Reviews of Modern Physics, vol.84, p.1151, 2012.

A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-klein, Stability of the proton-to-electron mass ratio, Physical Review Letters, vol.100, p.150801, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00263674

J. Bagdonaite, W. Ubachs, M. Murphy, and J. Whitmore, Constraint on a varying proton-electron mass ratio 1.5 billion years after the big bang, Physical Review Letters, vol.114, p.71301, 2015.

J. Bagdonaite, P. Jansen, C. Henkel, H. L. Bethlem, K. M. Menten et al., A stringent limit on a drifting proton-to-electron mass ratio from alcohol in the early universe, Science, vol.339, pp.46-48, 2013.

F. Bielsa, A. Douillet, T. Valenzuela, J. Karr, and L. Hilico, Narrow-line phaselocked quantum cascade laser in the 9.2 µm range, Optics letters, vol.32, pp.1641-1643, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00129020

F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio et al., Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference, Opt. Lett, vol.37, pp.4811-4813, 2012.

A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford et al., Coherent phase lock of a 9 µm quantum cascade laser to a 2 µm thulium optical frequency comb, Optics letters, vol.37, pp.4083-4085, 2012.

P. L. Sow, S. Mejri, S. K. Tokunaga, O. Lopez, A. Goncharov et al., A widely tunable 10-µm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy, Applied Physics Letters, vol.104, p.264101, 2014.

M. G. Hansen, E. Magoulakis, Q. Chen, I. Ernsting, and S. Schiller, Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1 × 10 ?13 -level frequency instability, Optics letters, vol.40, pp.2289-2292, 2015.

I. Galli, M. Siciliani-de-cumis, F. Cappelli, S. Bartalini, D. Mazzotti et al., Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy, Applied Physics Letters, vol.102, p.121117, 2013.

M. Lamperti, B. Alsaif, D. Gatti, M. Fermann, P. Laporta et al., Absolute spectroscopy near 7.8 µm with a comb-locked extendedcavity quantum-cascade-laser, Scientific reports, vol.8, p.1292, 2018.

E. Vicentini, A. Gambetta, N. Coluccelli, E. Fasci, A. Castrillo et al., Rovibrational fine structure and transition dipole moment of CF 3 H by frequency-comb-assisted saturated spectroscopy at 8.6 µm, Journal of Quantitative Spectroscopy and Radiative Transfer, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01896857

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall et al., Quantum cascade laser frequency stabilization at the sub-Hz level, Nature Photonics, vol.9, p.456, 2015.

G. Insero, S. Borri, D. Calonico, P. C. Pastor, C. Clivati et al., Measuring molecular frequencies in the 1-10 µm range at 11-digits accuracy, Scientific reports, vol.7, p.12780, 2017.

O. Acef, CO 2 /OsO 4 lasers as frequency standards in the 29 THz range, IEEE transactions on instrumentation and measurement, vol.46, pp.162-165, 1997.

V. Bernard, P. Durand, T. George, H. Nicolaisen, A. Amy-klein et al., Spectral purity and long-term stability of CO 2 lasers at the Hertz level, IEEE journal of quantum electronics, vol.31, pp.1913-1918, 1995.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko et al., Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K, Physical Review Letters, vol.119, p.243601, 2017.

O. Lopez, F. Kéfélian, H. Jiang, A. Haboucha, A. Bercy et al., Frequency and time transfer for metrology and beyond using telecommunication network fibres, Comptes Rendus Physique, vol.16, pp.531-539, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176012

B. Chanteau, O. Lopez, W. Zhang, D. Nicolodi, B. Argence et al., Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy, New Journal of Physics, vol.15, p.73003, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01587027

J. L. Mchale, Molecular spectroscopy, 2017.

J. J. Harrison, N. D. Allen, and P. F. Bernath, Infrared absorption cross sections for methanol, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.113, pp.2189-2196, 2012.

I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.203, pp.3-69, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765945

I. V. Hertel and C. Schulz, Atoms, Molecules and Optical Physics, vol.1, 2015.

C. J. Foot, Atomic physics, vol.7, 2005.

C. J. Bordé, On the theory of linear absorption line shapes in gases, Comptes Rendus Physique, vol.10, pp.866-882, 2009.

C. J. Bordé, J. Hall, C. Kunasz, and D. Hummer, Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach, Physical Review A, vol.14, p.236, 1976.

V. Letokhov, High-Resolution Laser Spectroscopy, pp.95-171, 1976.

F. Riehle, Frequency standards: basics and applications, 2006.

J. Rutman and F. Walls, Characterization of frequency stability in precision frequency sources, Proceedings of the IEEE, vol.79, pp.952-960, 1991.

E. Rubiola, Phase noise and frequency stability in oscillators, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00344308

W. J. Riley, Handbook of frequency stability analysis, 2008.

A. Clairon, S. Ghezali, G. Santarelli, L. S. Laurent-ph, M. Bahoura et al., Preliminary accuracy evaluation of a cesium fountain frequency standard, 1996.

D. Chambon, S. Bize, M. Lours, F. Narbonneau, H. Marion et al., Design and realization of a flywheel oscillator for advanced time and frequency metrology, Review of Scientific Instruments, vol.76, p.94704, 2005.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin et al., , p.243

, Bibliography in atomic fountains at LNE-SYRTE, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.59, pp.391-409, 2012.

S. Bize, Y. Sortais, M. Santos, C. Mandache, A. Clairon et al., Highaccuracy measurement of the 87 Rb ground-state hyperfine splitting in an atomic fountain, Europhysics Letters), vol.45, p.558, 1999.

C. Fertig and K. Gibble, Measurement and cancellation of the cold collision frequency shift in an 87 Rb fountain clock, Physical Review Letters, vol.85, p.1622, 2000.

Y. Ovchinnikov and G. Marra, Accurate rubidium atomic fountain frequency standard, Metrologia, vol.48, p.87, 2011.

A. Goncharov, A. Amy-klein, O. Lopez, F. D. Burck, and C. Chardonnet, Absolute frequency measurement of the iodine-stabilized Ar + laser at 514.6 nm using a femtosecond optical frequency comb, Applied Physics B, vol.78, pp.725-731, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00003120

T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo et al., Compact iodine-stabilized laser operating at 531 nm with stability at the 10 ?12 level and using a coin-sized laser module, Optics express, vol.23, pp.20749-20759, 2015.

J. Ye, L. S. Ma, and J. L. Hall, Molecular iodine clock, Physical Review Letters, vol.87, p.270801, 2001.

J. Jiang, A. Onae, H. Matsumoto, and F. Hong, Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrierenvelope offset frequency control, Optics express, vol.13, pp.1958-1965, 2005.

A. Amy-klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez et al., Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard, Applied Physics B, vol.78, pp.25-30, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00003119

M. Takamoto, F. Hong, R. Higashi, and H. Katori, An optical lattice clock, Nature, vol.435, p.321, 2005.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Single-ion atomic clock with 3 × 10 ?18 systematic uncertainty, Physical Review Letters, vol.116, p.63001, 2016.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, Cryogenic optical lattice clocks, Nature Photonics, vol.9, p.185, 2015.

T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom et al., Systematic evaluation of an atomic clock at 2 × 10 ?18 total uncertainty, Nature communications, vol.6, p.6896, 2015.

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke et al., Direct comparison of a Ca + single-ion clock against a Sr lattice clock to verify the absolute frequency measurement, Optics express, vol.20, pp.22034-22041, 2012.

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, Frequency ratio of 199 Hg and 87 Sr optical lattice clocks beyond the SI limit, Physical Review Letters, vol.114, p.230801, 2015.

. Bibliography,

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat et al., Comparing a mercury optical lattice clock with microwave and optical frequency standards, New Journal of Physics, vol.18, p.113002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414967

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe et al., Frequency ratio measurement of 171 Yb and 87 Sr optical lattice clocks, Optics express, vol.22, pp.7898-7905, 2014.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich et al., 1.5 µm lasers with sub-10 mHz linewidth, Phys. Rev. Lett, vol.118, p.263202, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02020129

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero et al., Crystalline optical cavity at 4 K with thermalnoise-limited instability and ultralow drift, Optica, vol.6, pp.240-243, 2019.

S. A. Diddams, The evolving optical frequency comb, J. Opt. Soc. Am. B, vol.27, pp.51-62, 2010.

R. Holzwarth, T. Udem, T. W. Hänsch, J. Knight, W. Wadsworth et al., Optical frequency synthesizer for precision spectroscopy, Physical Review Letters, vol.85, p.2264, 2000.

J. Ye and S. T. Cundiff, Femtosecond optical frequency comb: principle, operation and applications, 2005.

A. Schliesser, N. Picqué, and T. W. Hänsch, Mid-infrared frequency combs, Nature Photonics, vol.6, p.440, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01805327

S. T. Cundiff, J. Ye, and J. L. Hall, Optical frequency synthesis based on modelocked lasers, Review of Scientific Instruments, vol.72, p.3749, 2001.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch et al., Frequency ratio of Al + and Hg + single-ion optical clocks; metrology at the 17th decimal place, Science, vol.319, pp.1808-1812, 2008.

J. Millo, R. Boudot, M. Lours, P. Bourgeois, A. Luiten et al., Ultra-low-noise microwave extraction from fiber-based optical frequency comb, Optics letters, vol.34, pp.3707-3709, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438099

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli et al., Dual photo-detector system for low phase noise microwave generation with femtosecond lasers, Optics letters, vol.39, pp.1204-1207, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00995893

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer et al., Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link, Physical Review Letters, vol.110, p.230801, 2013.

D. Mondelain, T. Sala, S. Kassi, D. Romanini, M. Marangoni et al., Broadband and highly sensitive comb-assisted cavity ring down spectroscopy of CO near 1.57 µm with sub-MHz frequency accuracy, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.154, pp.35-43, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252150

J. Mandon, G. Guelachvili, and N. Picqué, Fourier transform spectroscopy with a laser frequency comb, Nature Photonics, vol.3, p.99, 2009.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi et al., Cavity-enhanced dual-comb spectroscopy, Nature Photonics, vol.4, p.55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00409826

I. Coddington, N. Newbury, and W. Swann, Dual-comb spectroscopy, Optica, vol.3, pp.414-426, 2016.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, A phase-stable dual-comb interferometer, Nature communications, vol.9, p.3035, 2018.

G. G. Ycas, F. Quinlan, S. Osterman, G. Nave, and S. A. Diddams, An optical frequency comb for infrared spectrograph calibration, vol.7735, p.77352, 2010.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas et al., Demonstration of a near-IR linereferenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy, Nature communications, vol.7, p.10436, 2016.

R. A. Mccracken, J. M. Charsley, and D. T. Reid, A decade of astrocombs: recent advances in frequency combs for astronomy, Optics express, vol.25, pp.15058-15078, 2017.

R. A. Mccracken, É. Depagne, R. B. Kuhn, N. Erasmus, L. A. Crause et al., Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm, Optics Express, vol.25, pp.6450-6460, 2017.

E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi et al., Broadband near-infrared astronomical spectrometer calibration and onsky validation with an electro-optic laser frequency comb, Optics express, vol.26, pp.34830-34841, 2018.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini et al., High-precision wavelength calibration of astronomical spectrographs with laser frequency combs, Monthly Notices of the Royal Astronomical Society, vol.380, pp.839-847, 2007.

T. Q. Bui, B. J. Bjork, P. B. Changala, O. H. Heckl, B. Spaun et al., OD + CO ? D + CO 2 branching kinetics probed with time-resolved frequency comb spectroscopy, Chemical Physics Letters, vol.683, pp.91-95, 2017.

T. Q. Bui, B. J. Bjork, P. B. Changala, T. L. Nguyen, J. F. Stanton et al., Direct measurements of DOCO isomers in the kinetics of OD + CO, Science advances, vol.4, p.4777, 2018.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. Raupach et al., A clock network for geodesy and fundamental science, Nature communications, vol.7, p.12443, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01789204

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach et al., Comparison between frequency standards in Europe and the USA at the 10 ?15 uncertainty level, Metrologia, vol.43, p.109, 2005.

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida et al., Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, vol.51, p.253, 2014.

N. Chiodo, N. Quintin, F. Stefani, F. Wiotte, E. Camisard et al., Cascaded optical fiber link using the internet network for remote clocks comparison, Optics Express, vol.23, pp.33927-33937, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270704

S. M. Raupach, A. Koczwara, and G. Grosche, Brillouin amplification supports 1 × 10 ?20 uncertainty in optical frequency transfer over 1400 km of underground fiber, Physical Review A, vol.92, p.21801, 2015.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. Hänsch et al., Optical-frequency transfer over a single-span 1840 km fiber link, Physical Review Letters, vol.111, p.110801, 2013.

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours et al., Long-distance frequency transfer over an urban fiber link using optical phase stabilization, J. Opt. Soc. Am. B, vol.25, pp.2029-2035, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00295894

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt et al., Optical frequency transfer via 146 km fiber link with 10 ?19 relative accuracy, Optics letters, vol.34, pp.2270-2272, 2009.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo et al., High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link, Applied Physics B, vol.117, pp.979-986, 2014.

C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura et al., A coherent fiber link for very long baseline interferometry, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.62, pp.1907-1912, 2015.

C. Clivati, G. Cappellini, L. F. Livi, F. Poggiali, M. S. De-cumis et al., Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination, Optics express, vol.24, pp.11865-11875, 2016.

A. Yamaguchi, N. Shiga, S. Nagano, Y. Li, H. Ishijima et al., Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87 Sr, Applied Physics Express, vol.5, p.22701, 2012.

W. Yang, D. Li, S. Zhang, and J. Zhao, Hunting for dark matter with ultra-stable fibre as frequency delay system, Scientific reports, vol.5, p.11469, 2015.

L. M. Krauss, Axions and atomic clocks, 2019.

B. M. Roberts, P. Delva, A. Al-masoudi, A. Amy-klein, C. Baerentsen et al., , 2019.

S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin et al., Demonstration of a HeNe/CH 4 -based optical molecular clock, Optics Letters, vol.30, pp.570-572, 2005.

M. Gubin, A. Kireev, A. Konyashchenko, P. Kryukov, A. Shelkovnikov et al., Femtosecond fiber laser based methane optical clock, Applied Physics B, vol.95, pp.661-666, 2009.

A. Amy-klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez et al., Absolute frequency measurement of a SF 6 two-photon line by use of a femtosecond optical comb and sum-frequency generation, Optics letters, vol.30, pp.3320-3322, 2005.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford et al., Laser phase and frequency stabilization using an optical resonator, Applied Physics B, vol.31, pp.97-105, 1983.

E. D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, American journal of physics, vol.69, pp.79-87, 2001.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso et al., Frequency stabilization of quantumcascade lasers by use of optical cavities, Optics letters, vol.27, pp.2164-2166, 2002.

E. Fasci, N. Coluccelli, M. Cassinerio, A. Gambetta, L. Hilico et al., Narrow-linewidth quantum cascade laser at 8.6 µm, Optics letters, vol.39, pp.4946-4949, 2014.

M. Siciliani-de-cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov et al., Microcavitystabilized quantum cascade laser, Laser & Photonics Reviews, vol.10, pp.153-157, 2016.

S. Kassi, T. Stoltmann, M. Casado, M. Daëron, and A. Campargue, Lamb dip CRDS of highly saturated transitions of water near 1.4 µm, The Journal of chemical physics, vol.148, p.54201, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01765927

D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta et al., High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb, Optics express, vol.19, pp.17520-17527, 2011.

R. Santagata, D. B. Tran, B. Argence, O. Lopez, S. K. Tokunaga et al., Highprecision methanol spectroscopy with a widely tunable SI-traceable frequencycomb-based mid-infrared QCL, vol.6, pp.411-423, 2019.

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti et al., Ultra-stable, widely tunable and absolutely linked mid-IR coherent source, Optics Express, vol.17, pp.9582-9587, 2009.

A. Gambetta, E. Vicentini, N. Coluccelli, Y. Wang, T. T. Fernandez et al., Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer, APL Photonics, vol.3, p.46103, 2018.

S. Borri, G. Insero, G. Santambrogio, D. Mazzotti, F. Cappelli et al., High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers, Applied Physics B, vol.125, p.18, 2019.

L. Consolino, F. Cappelli, M. S. De-cumis, and P. Natale, QCL-based frequency metrology from the mid-infrared to the THz range: a review, Nanophotonics, vol.8, pp.181-204, 2018.

N. F. Ramsey, A molecular beam resonance method with separated oscillating fields, Physical Review, vol.78, p.695, 1950.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell, Applied Physics B, vol.59, pp.333-343, 1994.

P. Durand, G. Nogues, V. Bernard, A. Amy-klein, and C. Chardonnet, Slowmolecule detection in Doppler-free two-photon spectroscopy, Europhysics Letters), vol.37, p.103, 1997.

B. Chanteau, Transfert à très haute résolution d'une référence de réquence ultrastable par lien optique et application à la stabilisation d'un laser moyen-infrarouge, 2013.

T. Lee and C. Yang, Question of parity conservation in weak interactions, Physical Review, vol.104, p.254, 1956.

C. Wu, E. Ambler, R. Hayward, D. Hoppes, and R. P. Hudson, Experimental test of parity conservation in beta decay, Physical review, vol.105, p.1413, 1957.

M. Bouchiat and C. Bouchiat, I. Parity violation induced by weak neutral currents in atomic physics, Journal de Physique, vol.35, pp.899-927, 1974.
URL : https://hal.archives-ouvertes.fr/jpa-00208216

M. Bouchiat and C. Bouchiat, Parity violation induced by weak neutral currents in atomic physics. Part II, Journal de Physique, vol.36, pp.493-509, 1975.
URL : https://hal.archives-ouvertes.fr/jpa-00208279

L. Barkov and M. Zolotorev, Measurement of optical activity of bismuth vapor, JETP Letters, vol.28, pp.50-53, 1978.

R. Conti, P. Bucksbaum, S. Chu, E. Commins, and L. Hunter, Preliminary observation of parity nonconservation in atomic thallium, Physical Review Letters, vol.42, p.343, 1979.

P. Bucksbaum, E. Commins, and L. Hunter, Observations of parity nonconservation in atomic thallium, Physical Review D, vol.24, p.1134, 1981.

M. Bouchiat, J. Guena, L. Hunter, and L. Pottier, Observation of a parity violation in cesium, Physics Letters B, vol.117, pp.358-364, 1982.

C. Wood, S. Bennett, D. Cho, B. Masterson, J. Roberts et al., Measurement of parity nonconservation and an anapole moment in cesium, Science, vol.275, pp.1759-1763, 1997.

Y. Yamagata, A hypothesis for the asymmetric appearance of biomolecules on earth, Journal of Theoretical Biology, vol.11, pp.495-498, 1966.

D. Rein, Some remarks on parity violating effects of intramolecular interactions, Journal of molecular evolution, vol.4, pp.15-22, 1974.

E. Gajzago and G. Marx, Energy difference of mirror molecules, ATOMKI (At. Kut. Intez.) Kozlem, vol.16, issue.2, pp.177-184, 1974.

V. S. Letokhov, On difference of energy levels of left and right molecules due to weak interactions, Physics Letters A, vol.53, pp.275-276, 1975.

N. Saleh, S. Zrig, T. Roisnel, L. Guy, R. Bast et al., A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations, Physical Chemistry Chemical Physics, vol.15, pp.10952-10959, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00835254

M. Wormit, M. Olejniczak, A. Deppenmeier, A. Borschevsky, T. Saue et al., Strong enhancement of parity violation effects in chiral uranium compounds, Physical Chemistry Chemical Physics, vol.16, pp.17043-17051, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082891

N. Saleh, R. Bast, N. Vanthuyne, C. Roussel, T. Saue et al., An oxorhenium complex bearing a chiral cyclohexane-1-olato-2-thiolato ligand: Synthesis, stereochemistry, and theoretical study of parity violation vibrational frequency shifts, Chirality, vol.30, pp.147-156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01638364

F. De-montigny, R. Bast, A. S. Gomes, G. Pilet, N. Vanthuyne et al., Chiral oxorhenium (V) complexes as candidates for the experimental observation of molecular parity violation: a structural, synthetic and theoretical study, Physical Chemistry Chemical Physics, vol.12, pp.8792-8803, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00760991

P. Schwerdtfeger, A. Kühn, R. Bast, J. K. Laerdahl, F. Faglioni et al., The vibrational spectrum of camphor from ab initio and density functional theory and parity violation in the C-C*-CO bending mode, Chemical physics letters, vol.383, pp.496-501, 2004.

R. Bast and P. Schwerdtfeger, Parity-violation effects in the CF stretching mode of heavy-atom methyl fluorides, Physical Review Letters, vol.91, p.23001, 2003.

S. Nahrwold, R. Berger, and P. Schwerdtfeger, Parity violation in nuclear magnetic resonance frequencies of chiral tetrahedral tungsten complexes NWXYZ, The Journal of chemical physics, vol.140, p.24305, 2014.

R. Berger, M. Quack, and J. Stohner, Parity violation in fluorooxirane, Angewandte Chemie International Edition, vol.40, pp.1667-1670, 2001.

P. Schwerdtfeger, J. K. Laerdahl, and C. Chardonnet, Calculation of parityviolation effects for the cf stretching mode of chiral methyl fluorides, Physical Review A, vol.65, p.42508, 2002.

. Bibliography,

R. G. Viglione, R. Zanasi, P. Lazzeretti, and A. Ligabue, Theoretical determination of parity-violating vibrational frequency differences between the enantiomers of the CHFClBr molecule, Physical Review A, vol.62, p.52516, 2000.

M. Quack, J. Stohner, and M. Willeke, High-resolution spectroscopic studies and theory of parity violation in chiral molecules, Annu. Rev. Phys. Chem, vol.59, pp.741-769, 2008.

A. Macdermott, T. Fu, G. Hyde, R. Nakatsuka, and A. Coleman, Electroweak parity-violating energy shifts of amino acids: The "Conformation problem, Origins of Life and Evolution of Biospheres, vol.39, pp.407-437, 2009.

I. Gonzalo, P. Bargueño, R. P. De-tudela, and S. Miret-artés, Towards the detection of parity symmetry breaking in chiral molecules, Chemical Physics Letters, vol.489, pp.127-129, 2010.

C. Medcraft, R. Wolf, and M. Schnell, High-resolution spectroscopy of the chiral metal complex [CpRe(CH 3 )(CO)(NO)]: a potential candidate for probing parity violation, Angewandte Chemie International Edition, vol.53, pp.11656-11659, 2014.

S. Eibenberger, J. Doyle, and D. Patterson, Enantiomer-specific state transfer of chiral molecules, Physical Review Letters, vol.118, p.123002, 2017.

J. Eills, J. W. Blanchard, L. Bougas, M. G. Kozlov, A. Pines et al., Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy, Physical Review A, vol.96, p.42119, 2017.

M. Quack, On the measurement of the parity violating energy difference between enantiomers, Chemical physics letters, vol.132, pp.147-153, 1986.

P. Dietiker, E. Miloglyadov, M. Quack, A. Schneider, and G. Seyfang, Infrared laser induced population transfer and parity selection in 14 NH 3 : A proof of principle experiment towards detecting parity violation in chiral molecules, The Journal of chemical physics, vol.143, p.244305, 2015.

C. Fábri, L. Horn?, and M. Quack, Tunneling and parity violation in trisulfane (HSSSH): an almost ideal molecule for detecting parity violation in chiral molecules, ChemPhysChem, vol.16, pp.3584-3589, 2015.

D. Antypas, A. Fabricant, L. Bougas, K. Tsigutkin, and D. Budker, Towards improved measurements of parity violation in atomic ytterbium, Hyperfine Interactions, vol.238, p.21, 2017.

O. Kompanets, A. Kukudzhanov, V. Letokhov, and L. Gervits, Narrow resonances of saturated absorption of the asymmetrical molecule CHFClBr and the possibility of weak current detection in molecular physics, Optics Communications, vol.19, pp.414-416, 1976.

E. Arimondo, P. Glorieux, and T. Oka, Observation of inverted infrared lamb dips in separated optical isomers, Optics Communications, vol.23, pp.369-372, 1977.

P. Lazzeretti, R. Zanasi, and F. Faglioni, Energetic stabilization of d-camphor via weak neutral currents, Physical Review E, vol.60, p.871, 1999.

C. Daussy, T. Marrel, A. Amy-klein, C. Nguyen, C. J. Bordé et al., Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy, Physical Review Letters, vol.83, p.1554, 1999.

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFClBr, The European Physical Journal D-Atomic, vol.20, pp.219-225, 2002.

P. Schwerdtfeger, T. Saue, J. N. Van-stralen, and L. Visscher, Relativistic secondorder many-body and density-functional theory for the parity-violation contribution to the C-F stretching mode in CHFClBr, Physical Review A, vol.71, p.12103, 2005.

C. Stoeffler, B. Darquié, A. Shelkovnikov, C. Daussy, A. Amy-klein et al., High resolution spectroscopy of methyltrioxorhenium: towards the observation of parity violation in chiral molecules, Physical Chemistry Chemical Physics, vol.13, pp.854-863, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00531115

N. R. Hutzler, H. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chemical reviews, vol.112, pp.4803-4827, 2012.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti et al., Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection, Physical Review Letters, vol.107, p.270802, 2011.

I. Ricciardi, E. De-tommasi, P. Maddaloni, S. Mosca, A. Rocco et al., Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy, Optics express, vol.20, pp.9178-9186, 2012.

J. Guena, P. Rosenbusch, P. Laurent, M. Abgrall, D. Rovera et al., Demonstration of a dual alkali Rb/Cs fountain clock, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.57, pp.647-653, 2010.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic et al., Cold atom clocks and applications, Journal of Physics B: Atomic, molecular and optical physics, vol.38, p.449, 2005.

B. Argence, E. Prevost, T. Lévèque, R. L. Goff, S. Bize et al., Prototype of an ultra-stable optical cavity for space applications, Optics express, vol.20, pp.25409-25420, 2012.

H. Jiang, Development of ultra-stable laser sources and long-distance optical link via telecommunication networks, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00537971

J. Mcferran, D. Magalhaes, C. Mandache, J. Millo, W. Zhang et al., Laser locking to the 199 Hg 1 S 0 -3 P 0 clock transition with 5.4 × 10 ?15 / ? ? fractional frequency instability, Optics letters, vol.37, pp.3477-3479, 2012.

Y. and L. Coq, Optical frequency combs and optical frequency measurements (HDR thesis, 2014.

D. Xu, E. Cantin, F. Frank, N. Quintin, F. Meynadier et al., Two-branch fiber link for international clock networks, IEEE Transactions on Instrumentation and Measurement, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02190842

D. Xu, W. Lee, F. Stefani, O. Lopez, A. Amy-klein et al., Studying the fundamental limit of optical fiber links to the 10 ?21 level, Optics express, vol.26, pp.9515-9527, 2018.

W. Lee, F. Stefani, A. Bercy, O. Lopez, A. Amy-klein et al., Hybrid fiber links for accurate optical frequency comparison, Applied Physics B, vol.123, p.161, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01789189

F. Kéfélian, O. Lopez, H. Jiang, C. Chardonnet, A. Amy-klein et al., High-resolution optical frequency dissemination on a telecommunications network with data traffic, Optics letters, vol.34, pp.1573-1575, 2009.

F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli et al., High resolution frequency standard dissemination via optical fiber metropolitan network, Review of Scientific Instruments, vol.77, p.64701, 2006.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, vol.288, pp.635-639, 2000.

M. Collombon, Résonance noire à trois photons sur un nuage d'ions calcium confinés, 2019.

V. Bernard, C. Daussy, G. Nogues, L. Constantin, P. Durand et al., CO 2 laser stabilization to 0.1-Hz level using external electrooptic modulation, IEEE Journal of Quantum Electronics, vol.33, pp.1282-1287, 1997.

O. Pfister, F. Guernet, G. Charton, C. Chardonnet, F. Herlemont et al., CO 2 -laser sideband spectroscopy at ultrahigh resolution, J. Opt. Soc. Am. B, vol.10, pp.1521-1525, 1993.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson et al., Quantum cascade laser, Science, vol.264, pp.553-556, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00156810

C. Daussy, F. Ducos, G. Rovera, and O. Acef, Performances of OsO 4 /stabilized CO 2 lasers as optical frequency standards near 29 THz, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.47, pp.518-521, 2000.

M. Razeghi, Technology of quantum devices, 2010.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Quantum Cascade Lasers, Physics Today, vol.55, p.34, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01727640

L. Tombez, J. D. Francesco, S. Schilt, G. D. Domenico, J. Faist et al., Frequency noise of free-running 4.6 µm distributed feedback quantum cascade lasers near room temperature, Optics letters, vol.36, pp.3109-3111, 2011.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli et al., Observing the intrinsic linewidth of a quantumcascade laser: beyond the schawlow-townes limit, Physical Review Letters, vol.104, p.83904, 2010.

L. B. Mercer, 1/f frequency noise effects on self-heterodyne linewidth measurements, Journal of Lightwave Technology, vol.9, pp.485-493, 1991.

J. Tourrenc, Caractérisation et modélisation du bruit d'amplitude optique, du bruit de fréquence et de la largeur de raie de vcsels monomode, 2005.

G. D. Domenico, S. Schilt, and P. Thomann, Simple approach to the relation between laser frequency noise and laser line shape, Applied optics, vol.49, pp.4801-4807, 2010.

N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. D. Domenico et al., Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum, Applied Optics, vol.51, pp.4582-4588, 2012.

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, Optical spectrum analyzer with quantum-limited noise floor, Physical Review Letters, vol.111, p.93604, 2013.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, Laser line shape and spectral density of frequency noise, Physical Review A, vol.71, p.43809, 2005.

R. W. Boyd, Nonlinear optics, 2003.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals, vol.64, 2013.

D. A. Roberts, Dispersion equations for nonlinear optical crystals: KDP, AgGaSe 2 , and AgGaS 2, Applied optics, vol.35, pp.4677-4688, 1996.

J. Zondy, Private communication, 2010.

J. Zondy, D. Touahri, and O. Acef, Absolute value of the d 36 nonlinear coefficient of AgGaS 2 : prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider, J. Opt. Soc. Am. B, vol.14, pp.2481-2497, 1997.

B. Vincent, Stabilisation en fréquence de lasers á CO 2 en dessous du Hertz: application à la métrologie des fréquences dans la région spectrale de 30 THz, p.13, 1997.

F. Stefani, O. Lopez, A. Bercy, W. Lee, C. Chardonnet et al.,

A. Pottie and . Amy-klein, Tackling the limits of optical fiber links, J. Opt. Soc. Am. B, vol.32, pp.787-797, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090057

B. Alsaif, M. Lamperti, D. Gatti, P. Laporta, M. Fermann et al.,

, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.211, pp.172-178, 2018.

J. Mcmanus, P. Kebabian, and M. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy, Applied Optics, vol.34, pp.3336-3348, 1995.

J. B. Mcmanus, M. S. Zahniser, and D. D. Nelson, Dual quantum cascade laser trace gas instrument with astigmatic herriott cell at high pass number, Applied Optics, vol.50, pp.74-85, 2011.

L. Menzel, A. Kosterev, R. Curl, F. Tittel, C. Gmachl et al., Spectroscopic detection of biological NO with a quantum cascade laser, Applied Physics B, vol.72, pp.859-863, 2001.

S. Viciani, A. Montori, A. Chiarugi, and F. D'amato, A portable quantum cascade laser spectrometer for atmospheric measurements of carbon monoxide, Sensors, vol.18, p.2380, 2018.

M. A. De-araújo, R. Silva, E. Lima, D. P. Pereira, and P. C. De-oliveira, Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis, Applied optics, vol.48, pp.393-396, 2009.

A. R. Inc, Astigmatic multi-pass IR absorption cells, owner's manual models AMAC-36, AMAC-76, AMAC-100, 2001.

W. T. Silfvast, Laser fundamentals, 2004.

W. Batrla, H. Matthews, K. Menten, and C. Walmsley, Detection of strong methanol masers towards galactic H II regions, Nature, vol.326, p.49, 1987.

H. Singh, Y. Chen, A. Staudt, D. Jacob, D. Blake et al., Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds, Nature, vol.410, p.1078, 2001.

W. , of the Intergovernmental Panel on Climate Change (IPCC), "AR4 climate change, Synthesis report, 2007.

J. C. Pearson, A. M. Daly, and R. M. Lees, Unraveling torsional bath interactions with the CO stretching state in methanol, Journal of Molecular Spectroscopy, vol.318, pp.70-77, 2015.

L. Coudert, C. Gutlé, T. Huet, J. Grabow, and S. Levshakov, Spin-torsion effects in the hyperfine structure of methanol, The Journal of chemical physics, vol.143, p.44304, 2015.

B. Lankhaar, G. C. Groenenboom, and A. Van-der-avoird, Hyperfine interactions and internal rotation in methanol, The Journal of chemical physics, vol.145, p.244301, 2016.

S. Y. Tochitsky and R. Butcher, Precise measurements of line broadening and line shifts in low-pressure gases using a heterodyne CO 2 laser spectrometer: applications to C 2 H 4 and CH 3 OH, J. Opt. Soc. Am. B, vol.15, pp.1392-1398, 1998.

Z. Sun, R. M. Lees, and L. Xu, Saturation-dip measurements for the ? 8 CO stretching band of CH 3 OH with a CO 2 -laser-microwave-sideband spectrometer, J. Opt. Soc. Am. B, vol.23, pp.2398-2417, 2006.

Z. X. Jiu, D. L. Zuo, L. Miao, Z. H. Cheng, and C. C. Qi, Pulsed CH 3 OH terahertz laser emission pumped by a TEA CO 2 laser, Journal of Infrared, Millimeter, and Terahertz Waves, vol.31, pp.885-891, 2010.

M. Daprà, C. Henkel, S. Levshakov, K. Menten, S. Muller et al., Testing the variability of the proton-to-electron mass ratio from observations of methanol in the dark cloud core L1498, Monthly Notices of the Royal Astronomical Society, vol.472, pp.4434-4443, 2017.

G. Moruzzi, Microwave, Infrared, and Laser Transitions of Methanol Atlas of Assigned Lines from 0 to 1258 cm ?1 : 0, 2018.

L. Xu, R. Lees, P. Wang, L. Brown, I. Kleiner et al., New assignments, line intensities, and HITRAN database for CH 3 OH at 10 µm, Journal of Molecular Spectroscopy, vol.228, pp.453-470, 2004.

R. Lees, L. Xu, J. Johns, B. Winnewisser, and M. Lock, Rotation-torsionvibration term-value mapping for CH 3 OH: Torsion-mediated doorways and corridors for intermode population transfer, Journal of Molecular Spectroscopy, vol.243, pp.168-181, 2007.

I. Mukhopadhyay, R. Lees, W. Lewis-bevan, and J. Johns, Fourier transform spectroscopy of the CO-stretching band of C-13 methanol in the torsional ground state, The Journal of chemical physics, vol.102, pp.6444-6455, 1995.

P. Jansen, I. Kleiner, L. Xu, W. Ubachs, and H. L. Bethlem, Sensitivity of transitions in internal rotor molecules to a possible variation of the proton-toelectron mass ratio, Physical Review A, vol.84, p.62505, 2011.

Z. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, Sub-Doppler spectroscopy of the C-O stretching fundamental band of methanol by use of microwave sidebands of CO 2 laser lines, J. Opt. Soc. Am. B, vol.17, pp.2068-2080, 2000.

G. Moruzzi and F. Strumia, High-resolution FIR and IR spectroscopy of CH 3 OH, Infrared Physics, vol.24, pp.257-260, 1984.

R. Lees, I. Mukhopadhyay, and J. Johns, Assignment of IR transitions and FIR laser lines from torsionally excited CH 3 OH, Optics communications, vol.55, pp.127-130, 1985.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. Lees, I. Mukhopadhyay et al., Fourier spectrum of CH 3 OH between 950 and 1100 cm ?1, Infrared Physics, vol.29, pp.583-606, 1989.

I. Mukhopadhyay and R. Lees, High-resolution spectroscopy of methanol: Coriolis resonance and far infrared laser identification, Optics communications, vol.97, pp.194-198, 1993.

Z. Sun, T. Mizuochi, M. Kaneko, Y. Moriwaki, F. Matsushima et al., Sub-Doppler spectroscopy by use of microwave sidebands of CO 2 laser lines applied to the CO stretching fundamental band of methanol, Molecules, vol.8, pp.92-102, 2003.

Z. Sun, S. Ishikuro, Y. Moriwaki, F. Matsushima, S. Tsunekawa et al., Sub-Doppler measurements of ? CO = 1 ? 0, K=0, A/E lines of methanol with microwave sidebands of CO 2 laser lines, Journal of Molecular Spectroscopy, vol.211, pp.162-166, 2002.

F. Rohart, S. Mejri, P. L. Sow, S. K. Tokunaga, C. Chardonnet et al., Absorption-lineshape recovery beyond the detection-bandwidth limit: Application to the precision spectroscopic measurement of the boltzmann constant, Physical Review A, vol.90, p.42506, 2014.

F. Rohart, Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.187, pp.490-504, 2017.

R. Arndt, Analytical line shapes for lorentzian signals broadened by modulation, Journal of Applied Physics, vol.36, pp.2522-2524, 1965.

J. Hall and C. J. Bordé, Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts, Applied Physics Letters, vol.29, pp.788-790, 1976.

C. Chardonnet, Spectroscopie de saturation de haute précision et sensibilité en champ laser fort: applications aux molécules OsO 4 , SF 6 et CO 2 et à la métrologie des fréquences, p.13, 1989.

. Bibliography,

P. Cérez and R. Felder, Gas-lens effect and cavity design of some frequencystabilized He-Ne lasers: author's reply to comments, Applied optics, vol.22, pp.3313-3314, 1983.

E. N. Bazarov, G. A. Gerasimov, V. P. Gubin, S. Y. Otrokhov, A. I. Sazonov et al., Frequency shifts of a narrow resonance of oso4 in an external interferometer due to self-focusing of radiation, Soviet Journal of Quantum Electronics, vol.21, p.695, 1991.

A. Clairon, O. Acef, C. Chardonnet, and C. J. Bordé, State-of-the-art for high accuracy frequency standards in the 28 THz range using saturated absorption resonances of OsO 4 and CO 2, Frequency standards and Metrology, pp.212-221, 1989.

J. Hall, C. J. Bordé, and K. Uehara, Direct optical resolution of the recoil effect using saturated absorption spectroscopy, Physical Review Letters, vol.37, p.1339, 1976.

O. Acef, Metrological properties of co2oso4 optical frequency standard, Optics Communications, vol.134, pp.479-486, 1997.

N. Vanhaecke and O. Dulieu, Precision measurements with polar molecules: the role of the black body radiation, Molecular Physics, vol.105, pp.1723-1731, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00513112

R. Forber, J. Tenenbaum, and M. Feld, Laser Stark saturation spectroscopy in methyl alcohol, International Journal of Infrared and Millimeter Waves, vol.1, pp.527-560, 1980.

J. Johns, A. Mckellar, T. Oka, and M. Römheld, Collision-induced Lamb dips in laser Stark spectroscopy, The Journal of Chemical Physics, vol.62, pp.1488-1496, 1975.

H. Cottin, M. Gazeau, J. Doussin, and F. Raulin, An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm, Journal of photochemistry and photobiology A: Chemistry, vol.135, pp.53-64, 2000.

H. Cottin, Y. Bénilan, M. Gazeau, and F. Raulin, Origin of cometary extended sources from degradation of refractory organics on grains: polyoxymethylene as formaldehyde parent molecule, Icarus, vol.167, pp.397-416, 2004.

D. Dangoisse, J. Wascat, and J. Colmont, Assignment of laser lines in an optically pumped submillimeter and near millimeter laser:(H 2 CO) 3, International Journal of Infrared and Millimeter Waves, vol.2, pp.1177-1191, 1981.

A. Pagies, G. Ducournau, and J. Lampin, Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser, Apl Photonics, vol.1, p.31302, 2016.

M. Mi?ica, S. Eliet, M. Vanwolleghem, R. Motiyenko, A. Pienkina et al., High-resolution THz gain measurements in optically pumped ammonia, Optics express, vol.26, pp.21242-21248, 2018.

A. Stair and J. R. Nielsen, Vibrational spectra of sym-trioxane, The Journal of Chemical Physics, vol.27, pp.402-407, 1957.

T. Oka, K. Tsuchiya, S. Iwata, and Y. Morino, Microwave spectrum of s-trioxane, Bulletin of the Chemical Society of Japan, vol.37, pp.4-7, 1964.

J. Bellet, J. Colmont, and J. Lemaire, Millimeter wave study of the ground state and several excited vibrational states of trioxane, Journal of Molecular Spectroscopy, vol.34, pp.190-205, 1970.

. Bibliography,

J. Gadhi, G. Wlodarczak, D. Boucher, and J. Demaison, The submillimeter-wave spectrum of trioxane, Journal of Molecular Spectroscopy, vol.133, pp.406-412, 1989.

J. Colmont, Assignment method of the rotational spectrum of a slightly asymmetric molecule: application to the 13 C and 18 O species of the molecule of trioxane, Journal of Molecular Spectroscopy, vol.80, pp.166-177, 1980.

J. Colmont, Assignment of the microwave spectrum of trioxane in the ? 19 (E)=? 20 (E)=1 state, Journal of Molecular Structure, vol.62, pp.85-94, 1980.

H. Klein, S. Belov, and G. Winnewisser, Terahertz spectrum of trioxane, Zeitschrift für Naturforschung A, vol.51, pp.123-128, 1996.

J. Henninot, H. Bolvin, J. Demaison, and B. Lemoine, The infrared spectrum of trioxane in a supersonic slit jet, Journal of Molecular Spectroscopy, vol.152, pp.62-68, 1992.

B. M. Gibson, N. C. Koeppen, and B. J. Mccall, Rotationally-resolved spectroscopy of the ? 16 band of 1, 3, 5-trioxane, Journal of Molecular Spectroscopy, vol.317, pp.47-49, 2015.

P. A. ,

J. Reid and D. Labrie, Second-harmonic detection with tunable diode laserscomparison of experiment and theory, Applied Physics B, vol.26, pp.203-210, 1981.

J. M. Supplee, E. A. Whittaker, and W. Lenth, Theoretical description of frequency modulation and wavelength modulation spectroscopy, Applied Optics, vol.33, pp.6294-6302, 1994.

S. Schilt, L. Thevenaz, and P. Robert, Wavelength modulation spectroscopy: combined frequency and intensity laser modulation, Applied optics, vol.42, pp.6728-6738, 2003.

J. Colmont, Étude en ondes millimétriques des variétés isotopiques en 13 c et 18 o de la molécule de trioxane: Structure de la molécule, Journal of Molecular Structure, vol.21, pp.387-396, 1974.

J. Van-veldhoven, AC trapping and high-resolution spectroscopy of ammonia molecules, 2006.

G. Gunther-mohr, R. White, A. Schawlow, W. Good, and D. Coles, Hyperfine structure in the spectrum of 14 NH 3 . I. Experimental results, Physical Review, vol.94, p.1184, 1954.

J. Gordon, Hyperfine structure in the inversion spectrum of 14 NH 3 by a new highresolution microwave spectrometer, Physical Review, vol.99, p.1253, 1955.

J. T. Hougen, Reinterpretation of molecular beam hyperfine data for 14 NH 3 and 15 NH 3, The Journal of Chemical Physics, vol.57, pp.4207-4217, 1972.

S. G. Kukolich and S. Wofsy, 14 NH 3 hyperfine structure and quadrupole coupling, The Journal of Chemical Physics, vol.52, pp.5477-5481, 1970.

D. J. Ruben and S. G. Kukolich, Beam maser measurements of distortion effects on quadrupole coupling in 14 NH 3, The Journal of Chemical Physics, vol.61, pp.3780-3784, 1974.

M. Ouhayoun, C. J. Bordé, and J. Bordé, Vibrational dependence of the hyperfine quadrupole constant in 14 NH 3 observed by saturated absorption spectroscopy, Molecular Physics, vol.33, pp.597-600, 1977.

C. Salomon, C. Chardonnet, A. Van-lerberghe, C. Bréant, and C. J. Bordé, Première observation de la structure hyperfine magnétique dans le spectre infrarouge de l'ammoniac, Journal de Physique Lettres, vol.45, pp.1125-1129, 1984.

C. J. Bordé, J. Bordé, C. Bréant, C. Chardonnet, A. Van-lerberghe et al., Internal dynamics of simple molecules revealed by the superfine and hyperfine structures of their infrared spectra, Laser Spectroscopy VII, pp.108-114, 1985.

C. Lemarchand, M. Triki, B. Darquié, C. J. Bordé, C. Chardonnet et al., Progress towards an accurate determination of the boltzmann constant by Doppler spectroscopy, New Journal of Physics, vol.13, p.73028, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00548188

C. Lemarchand, Mesure de la constante de Boltzmann par spectroscopie laser: vers une contribution au futur Système International d'unités, 2012.

W. Gordy, Microwave Spectroscopy, 1957.

W. Weber, Hyperfine structure in excited vibrational states of 14 nh 3 studied by laser-Stark spectroscopy, J. Opt. Soc. Am. B, vol.2, pp.829-836, 1985.

V. ?pirko, The inversional dependence of hyperfine quadrupole coupling in 14 nh 3, Molecular Physics, vol.38, pp.1761-1766, 1979.

J. P. Gordon, H. J. Zeiger, and C. H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH 3s, Physical Review, vol.95, p.282, 1954.

W. Hüttner and W. Majer, The ? 2 = 1 inversional dependence of the quadrupole coupling in 14 NH 3, Molecular Physics, vol.52, pp.631-636, 1984.

J. Karhu, M. Vainio, M. Metsälä, and L. Halonen, Frequency comb assisted twophoton vibrational spectroscopy, Optics Express, vol.25, pp.4688-4699, 2017.

M. G. Hansen, I. Ernsting, S. V. Vasilyev, A. Grisard, E. Lallier et al., Robust, frequency-stable and accurate mid-ir laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs, Optics express, vol.21, pp.27043-27056, 2013.

S. Tokunaga, R. Hendricks, M. Tarbutt, and B. Darquié, High-resolution midinfrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules, New Journal of Physics, vol.19, p.53006, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01348950

S. Truppe, H. Williams, M. Hambach, L. Caldwell, N. Fitch et al., Molecules cooled below the Doppler limit, Nature Physics, vol.13, p.1173, 2017.

I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg et al., Sisyphus laser cooling of a polyatomic molecule, Physical Review Letters, vol.118, p.173201, 2017.

C. Cheng, A. P. Van-der-poel, P. Jansen, M. Quintero-pérez, T. E. Wall et al., Molecular fountain, Physical Review Letters, vol.117, p.253201, 2016.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, Optoelectrical cooling of polar molecules to submillikelvin temperatures, Physical Review Letters, vol.116, p.63005, 2016.

. Bibliography,

K. Bielska, S. Wójtewicz, P. Morzy?ski, P. Ablewski, A. Cygan et al., Absolute frequency determination of molecular transition in the Doppler regime at kHz level of accuracy, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.201, pp.156-160, 2017.

D. Simpson, W. Winiwarter, G. Börjesson, S. Cinderby, A. Ferreiro et al., Inventorying emissions from nature in europe, Journal of Geophysical Research: Atmospheres, vol.104, pp.8113-8152, 1999.

S. E. Bisschop, P. Schilke, F. Wyrowski, A. Belloche, C. Brinch et al., Dimethyl ether in its ground state, ? = 0, and lowest two torsionally excited states, ? 11 = 1 and ? 15 = 1, in the high-mass star-forming region G327. 3-0.6, Astronomy & Astrophysics, vol.552, p.122, 2013.

M. Koerber, S. E. Bisschop, C. Endres, M. Kleshcheva, R. Pohl et al., Laboratory rotational spectra of the dimethyl ether 13C-isotopologues up to 1.5 THz, Astronomy & Astrophysics, vol.558, p.112, 2013.

H. L. Bethlem, M. Kajita, B. Sartakov, G. Meijer, and W. Ubachs, Prospects for precision measurements on ammonia molecules in a fountain, The European Physical Journal Special Topics, vol.163, pp.55-69, 2008.

P. Jansen, H. L. Bethlem, and W. Ubachs, Perspective: Tipping the scales: Search for drifting constants from molecular spectra, The Journal of chemical physics, vol.140, p.10901, 2014.

E. Rubiola, On the measurement of frequency and of its sample variance with high-resolution counters, Review of scientific instruments, vol.76, p.54703, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00107484

S. T. Dawkins, J. J. Mcferran, and A. N. Luiten, Considerations on the measurement of the stability of oscillators with frequency counters, Ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol.54, pp.918-925, 2007.

E. N. Bazarov, G. A. Gerasimov, V. P. Gubin, A. I. Sazonov, N. I. Starostin et al., Stabilized CO 2 /OsO 4 laser with a frequency reproducibility of 10 12, Quantum Electronics, vol.17, pp.1421-1424, 1987.