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Université Claude Bernard Lyon 1 Rapporteur

Amir-Kian Kashani-Poor
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Université Paris-Sorbonne Président

 





Abstract

This thesis focuses on various applications of topological string theory based on different
types of Calabi-Yau (CY) manifolds. The first type considered is the toric CY manifold,
which is intimately related to spectral problems of difference operators. The particular
example considered in the thesis closely resembles the Harper-Hofstadter model in con-
densed matter physics. We first study the non-perturbative sectors in this model, and
then propose a new way to compute them using topological string theory. In the second
part of the thesis, we consider partition functions on elliptically fibered CY manifolds.
These exhibit interesting modular behavior. We show that for geometries which do not
lead to non-abelian gauge symmetries, the topological string partition functions can be
reconstructed based solely on genus zero Gromov-Witten invariants. Finally, we discuss
ongoing work regarding the relation of the topological string partition functions on the
so-called Higgsing trees in F-theory.
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Chapter 1

Introduction

1.1 String theory as a candidate for a “theory
of everything”

The Standard Model of fundamental particles is one of the most successful theories in
physics. Based on the quantum theory of gauge fields, it provides an extremely precise
account of the behavior of nature at length scales down to at least l ≈ 1 TeV−1. With the
discovery of the long-anticipated Higgs particles at the LHC in 2012, it seems that finally
the dust has settled.

However, the Standard Model in fact is still far from a microscopically complete theory
to describe our world. As is well known, it can only incorporate three out of four funda-
mental forces in nature. In other words, gravity, the fundamental interaction that plays a
crucial role in our daily life, is still left untouched. Gravity is known to be best described
by Einstein’s theory of General Relativity. Therefore, one might be tempted to simply
unify these two successful theories. However, naive attempts to construct a field theory
model for gravity fail for the following reason. According to our current understanding,
the Standard Model is an effective theory. This means that we first start from a very high
energy, say the Planck scale, then lower the energy level down to the energy scale accessible
to large colliders. Through this procedure, high energy modes in the system are integrated
out, and if the outcome can be absorbed into redefinition of certain parameters, it is still
under control. We call this type of theories renormalizable. Nevertheless, when we try to
describe gravity by a spin 2 particle going under the name of graviton, we found that more
and more new interactions are generated hence it is NOT renormalizable. More severely, at
the Planck energy scale, quantum fluctuations become so violent that any possible smooth
spacetime structure, a central ingredient to Einstein’s theory of gravity, cannot exist. This
hints at the fact that there is some serious issue trying to reconcile them naively, and to
create a logically self-consistent theory we are forced to go beyond the present framework
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1.1. STRING THEORY AS A CANDIDATE FOR A “THEORY OF EVERYTHING”

and embrace new ideas.
The most promising candidate, for a so-called “theory of everything”, is string theory.

It underwent several stages of development and we first discuss its earliest form, known
as the Bosonic String Theory. It starts with the basic assumption that the most funda-
mental object in our universe is the string, and particles are merely possible excitations
of its modes of vibration. Among its excited spectrum, gauge fields as well as graviton
naturally appear. Hence instead of considering particles moving in a spacetime which is
more intuitive to our mind, we should consider that strings, either open or closed, vibrate
and sweep out worldsheets, giving rise to all the fundamental forces. Why the problem
of non-renormalizability is cured when we consider strings? To answer this question, let’s
first go back to the field-theoretic description. The divergence in a field theory of gravi-
tons occurs when all the interaction vertices are coincident. However in string theory the
interaction is dictated by summing over Riemann surfaces of different genera,

Z(gs) =
∑
g

Zg g2g−2
s , (1.1.1)

when we compute scattering amplitudes. The interaction no longer happens at a definite
point but is in some sense smeared out in spacetime, thus avoiding possible singularity at
coincident points.

However, there were other problems remaining unsolved. For example, fermions are
missing in this picture. For another, it has so-called tachyons which have negative mass
squares, rendering the ground state unstable.

Another revolutionary idea is supersymmetry. It postulates the existence of a symmetry
with infinitesimal generator Qα interchanging bosons and fermions. Note that all possible
symmetries of the S-matrix in a quantum field theory of dimension larger than two, whose
conserved charges transform as Lorentz tensors, are classified in [44] to be either Poincaré
symmetry or internal symmetries. However, supersymmetry does not violate this theorem
since Qα transforms as a spinor. Intuitively, the algebra is the “square root” of the Poincaré
algebra, as can be seen from the anti-commutation relation in four dimensions,

{Qα, Qα̇} = 2σµαα̇Pµ , (1.1.2)

where Pµ is the energy-momentum tensor.
After adding the ingredient of supersymmetry to bosonic string theory, Superstring

Theory was born. In this set-up, the worldsheet action of the string enjoys superconformal
symmetry, which create both bosonic and fermionic vibration modes. A consistency con-
dition, known as the GSO projection [68], was imposed and unstable taychonic states are
gone.

Nevertheless, issues are still present. For example, in order that a superstring theory
is self-consistent, we must demand that it lives in ten dimensional spacetime, which is
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1.1. STRING THEORY AS A CANDIDATE FOR A “THEORY OF EVERYTHING”

much higher than our universe. Where do the extra six dimensions come from? One
possible solution is that the extra dimensions are so tiny that any current experiment
cannot detect them. That is to say, the ten dimensional spacetime must be compactified
on a six dimensional manifold X. The desire to get a supersymmetric four dimensional
theory constrains possible types of X. For instance, if we want to obtain a four dimensional
system with N = 1 supersymmetry from a ten dimensional N = (1, 0) superstring theory,
the compactified X must be a Calabi-Yau manifold, which by definition is a complex Kähler
manifold with vanishing first Chern class1.

Another potential problem is that even after projecting out inconsistent ones, there does
not remain a unique “theory of everything”, but several possibilities. More specifically,
string theorists found that there are five plausible candidates, known as type IIA, type
IIB, type I, E8 × E8 heterotic and SO(32) heterotic superstrings. At low energies, they
reduce to five different ten dimensional supergravity theories. How to show which one is
more fundamental than another?

Heterotic SO(32)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Type IIA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Type I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Heterotic E8 ⇥ E8
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M theory
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T duality
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T duality
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Type IIB
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S duality
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S duality
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S1/Z2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1.1: Web of some superstring dualities.

A significant breakthrough in the 90’s was the discovery that in fact those five theories
are equally fundamental [186]. In other words, although they look quite different, they are
related to each other via various kinds of dualities. Consider the whole space of coupling
constants. When we approach a certain corner and certain coupling becomes small, one of
them becomes the most appropriate description. Switching from one corner to another is
implemented by dualities. In the center of this space, where the coupling becomes strong,
[186] proposed that there exists a theory called M-theory, living in eleven dimensions. Its

1Due to Yau’s theorem [189] for each Kähler class, it has a unique Kähler metric with zero Ricci
curvature.
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1.2. TOPOLOGICAL STRING THEORY AS A BRIDGE BETWEEN
MATHEMATICS AND PHYSICS

low energy effective theory is the unique eleven-dimensional N = 1 supergravity. An
incomplete list of the intricate relations among the five theories can be found in Figure 1.1.

1.2 Topological string theory as a bridge be-
tween mathematics and physics

The idea of dualities is extremely profound. For example, the T-duality between type IIA
and type IIB superstrings leads ultimately to the notion of mirror symmetry. Mathemati-
cally, this predicts that for each Calabi-Yau threefold X, there exists a mirror Calabi-Yau
threefold X̃ which satisfies the following relations

h1,1(X) = h2,1(X̃) ,
h2,1(X) = h1,1(X̃) .

(1.2.1)

The nomenclature arises from the fact that the Hodge diamond of X̃ is a mirror reflec-
tion through the dashed axis of the Hodge diamond of X, see Figure 1.2.

0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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Figure 1.2: Mirror reflection on the Hodge diamond.

The prediction of mirror symmetry is that the type IIA superstring compactified on X
should be identical to type IIB superstring compactified on X̃. This is very astonishing at
first glance, since the properties of X and X̃ can be drastically different. In the 90’s string
theorists considered a particular example, i.e. quintic hypersurface in CP4 and constructed
its mirror Calabi-Yau threefold [77]. Exploring the idea of mirror symmetry, [37] found an
unexpected way to count rational curves on the quintic hypersurface, which were originally
very hard to determine. Many mathematicians, who were at first dubious about string
theory which is by no means rigorous, were astonished by this result and began to devote
themselves to this area. Shortly afterwards, string theory led to lots of fruitful interactions
between mathematics and physics.

Now let’s move on to Topological String Theory. Type A/Type B topological string
theory can be regarded as a simplification of type II A/II B superstring theory compact-
ified on a Calabi-Yau threefold. This is achieved through a “topological twisting” in the
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1.2. TOPOLOGICAL STRING THEORY AS A BRIDGE BETWEEN
MATHEMATICS AND PHYSICS

worldsheet theory, so that a spinorial symmetry is still present even when the worldsheet
is not flat. This remaining symmetry can be utilized to construct topological theories,
invariant under continuous deformations of the metric on the worldsheet. If we couple this
“topological twisted” theory to gravity, we obtain topological string theory.

The massless fields in four dimensions after compactification are organized into the
vector multiplets, hypermultiplets, and a gravity multiplet. Among various terms involving
the vector multiplets and the gravity multiplet after the compactification, topological string
has access to the kinetic terms of the fields in the vector multiplets and the couplings of
the scalars in the vector multiplets to the gravity multiplet. The former are encoded in
the genus zero free energy F0, while the latter are given by higher genera free energies Fg
with g ≥ 1.

Mirror symmetry introduced above, predicts, in particular, the equivalence of type A
topological string theory on X and type B topological string on X̃. From this point of view,
the physicist’s way of counting the number of rational curves on the quintic hypersurface,
which is encoded in F0 of type A topological string, is via mirror symmetry equal to
the Fg of type B topological string on the mirror quintic, which is much easier to solve.
Furthermore, topological string theory generalizes this to higher genera, and the number of
rational curves are generalized to the genus g Gromov-Witten invariants [78, 184], encoded
in the genus g free energy Fg of type B topological string. Mathematically, Gromov-
Witten invariants are enumerative invariants of the manifold, well-defined but notoriously
difficult to compute in most cases. However, by exploring various dualities, physicists
developed various powerful methods to compute them and left mathematicians with lots
of conjectures. For instance, see [69, 70, 190, 123, 129, 157, 147, 148, 156].

Initially formulated between compact Calabi-Yau manifolds, mirror symmetry was later
extended to non-compact cases. In some sense, it has a even richer relationship with other
areas of mathematics and physics, Chern-Simons theory, matrix models, knot theory and
integrable systems etc. To name a few, [185, 69, 53, 5, 4, 82].

Now let’s introduce some topics that are discussed in detail in this thesis. In [122],
it was pointed out that the non-compact Calabi-Yau manifolds can be used to engineer
supersymmetric gauge theories. This is in a sense just the superstring compactification
mentioned above, although the compactified manifold is non-compact hence not regarded
to be small. In 2002, Nikita Nekrasov [154] employed localization techniques to compute
the free energy of N = 2 gauge theories in four and five dimensions, and conjectured the
following relation between two partition functions,

Z(gs) = ZNek(ε1, ε2)|−ε1=ε2=gs . (1.2.2)

where ε1, ε2 are two formal rotation parameters introduced to perform equivariant local-
ization. The left-hand side refers to the Calabi-Yau manifolds that engineer the supersym-
metric gauge theories, and the right hand side is the famous Nekrasov partition function.
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1.2. TOPOLOGICAL STRING THEORY AS A BRIDGE BETWEEN
MATHEMATICS AND PHYSICS

The conjecture was proved for a large class of geometries in [113, 114].
Later, it was gradually realized that the full Nekrasov partition function, before spe-

cializing −ε1 = ε2 = gs, contains more information than Z(gs). In [3], it was proposed
that we can use it to define a refinement of topological string theory for those Calabi-Yau
manifolds, known as the Refined Topological String Theory. However even until today, we
still do not know how to define the refinement from the worldsheet perspective. Aside from
the limit ε1 = −ε2 = gs where we recover ordinary topological string theory, we are also
interested in the so-called Nekrasov-Shatashvili [155] limit,

ε1 = 0, ε2 = i~ . (1.2.3)

The Nekrasov-Shatashvili limit of refined topological string theory is intimately related
to quantization problem in spectral theory. This deep connection benefits both com-
munities: on the one hand, our knowledge in topological string theories can help us to
solve the spectrum of certain class of difference operators. On the other hand, we at-
tempt to define non-perturbative topological string theory from the spectral determinant
of the corresponding operator. The current literature on this topic is quite vast: see
[72, 40, 142, 120, 80, 94, 62, 168, 32, 71] for a partial list and [141] for an excellent review.
In chapter 5, our objective is to explore some of these fascinating ideas by focusing on a
concrete spectral problem.

To discuss the next topic, let’s first go back to Figure 1.1. From there we learn in
particular that type IIB theory is self-dual under S-duality. In particular, if we combine
the scalar field C0 with the dilaton φ into the axio-dilaton field τ = C0 + ie−φ, the type IIB
superstring is invariant under the SL(2,Z) transform

τ → aτ + b

cτ + d
,

a b

c d

 ∈ SL(2,Z) . (1.2.4)

Note that this is the same redundancy present in specifying the complex structure moduli
of a torus. If we want to construct background solutions with varying axio-dilaton field,
we can as well consider a family of tori, allowed to be singular at certain loci, fibered over
spacetime. This line of reasoning ultimately leads to F-Theory [173]. From its very con-
struction F-theory is tightly connected to geometries having an elliptic fibration structure.
Roughly speaking, F-theory can be regarded as an auxiliary twelve-dimensional theory
that when compactified on an elliptically fibered Calabi-Yau manifold leads to Type IIB
string theory compactified on the base of the fibration with the axio-dilaton profile given
by the complex structure of the elliptic fiber.

If we take the base B of the elliptic fibration to be complex two dimensional, F-theory
compactification gives rise to six dimensional quantum field theories. In the work of Kuni-
hiko Kodaira [132, 133], the possible singular types of an elliptic fiber for a complex surface
are systematically classified. With the help of his results, in [98, 49, 97] authors proposed
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1.2. TOPOLOGICAL STRING THEORY AS A BRIDGE BETWEEN
MATHEMATICS AND PHYSICS

that by choosing the suitable bases, all six dimensional superconformal field theories can
be engineered. Furthermore, via F-theory and M-theory duality, this provides new insight
to address the topological string partition function on those Calabi-Yau manifolds which
are the total spaces of elliptic fibration over B. This will be the topic from chapter 5 to 7.

After all the discussions on non-perturbative results and topological string partition
functions to all genera, we hope that this thesis can serve as a small stepping stone towards
a better understanding of topological string theory at the level of perturbative expansion,
or even beyond that.

The thesis is organized as follows. We first present a gentle introduction to topological
string theory in chapter 2 and 3. In chapter 2, we concentrate on the topological field
theories, which can be seen as the genus zero part of topological string theory. Next
we discuss the coupling to gravity and introduce some basics of topological strings in
chapter 3. We also discuss some explicit constructions of mirror Calabi-Yau manifolds. In
chapter 4 we focus on the non-perturbative aspects of the Harper-Hofstadter Hamiltonian
such as instantons and resurgence, then propose a new way to determine non-perturbative
contributions using topological string theory. After that, we switch gears and move on
to the topic of elliptic genera and topological strings on elliptically fibered Calabi-Yau
manifolds. Chapter 5 is a quick review of the existing literature, preparing the reader for
the next two chapters. In chapter 6, we discuss the geometries without codimension-one
singular fibers, and prove that their partition functions can be reconstructed using solely
genus zero Gromov-Witten invariants. Geometries with codimension-one singular fibers is
the subject in chapter 7, where in particular we are searching for the Higgsing tree pattern
in the corresponding partition functions. We conclude in chapter 8 and propose some
future directions.
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Chapter 2

Topological Field Theory

In this and the next chapter, our goal is to partially answer the question: what is topological
string theory? In order to achieve that, we need to first introduce the necessary theoretical
backgrounds. Section 2.1 is a quick summary of two dimensionalN = (2, 2) supersymmetry
which is the correct language to describe actions of the string worldsheet. Section 2.2
quickly introduces the notion of a topological field theory (TQFT) and in particular, of
Witten type. In section 2.3, we first present a powerful way to produce TQFTs, known as
topological twisting, then apply it to the low energy effective theory of the worldsheet. It
turns out that there are two possibilities to do the twisting which are both of importance,
so we devote subsections 2.3.1 and 2.3.2 to each of them in turn. Section 2.4 serves as
an interlude, introducing some basics of moduli space of complex structures in order to
answer a question raised at the end of subsection 2.3.2. Useful references for this chapter
include [103, 174, 145, 136, 183, 76].

2.1 Two dimensional N = (2, 2) supersymme-
try

Considering superstrings propagating inside a target space leads to the notion of super-
symmetric nonlinear sigma model mapping a two dimensional worldsheet to a manifold X.
In this thesis we consider models having N = (2, 2) supersymmetry. Let’s first introduce
some rudiments of two dimensional N = (2, 2) supersymmetry, following closely chapter
12 of [103].

We start by constructing the supersymmetry algebra. It necessarily contains the
Poincaré algebra,

H, P, M , (2.1.1)

corresponding to the Hamiltonian, momentum and angular momentum respectively. More-
over, supersymmetry gives us fermionic Noether charges. As the name suggests, we have
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2.1. TWO DIMENSIONAL N = (2, 2) SUPERSYMMETRY

four supercharges:
Q+, Q−, Q+, Q− , (2.1.2)

where the subscript + or − means left or right chiralities and the bar means complex
conjugation. Since the supersymmetry is extended, we naturally have R-symmetries acting
on supercharges. Here, we have two U(1) R-symmetries, whose Noether charges are denoted
by FL and FR. For convenience, we recombine them into vector and axial R-symmetries,

FV = FL + FR, FA = FL − FR . (2.1.3)

Altogether, they form the N = (2, 2) supersymmetry algebra. More importantly, they
satisfy the following (anti-) commutation relations:

{Q±,Q±} = H ± P , (2.1.4)

Q2
+ = Q2

− = Q
2
+ = Q

2
− = 0 , (2.1.5)

{Q+, Q−} = {Q+, Q−} = 0 , (2.1.6)
{Q−, Q+} = {Q+, Q−} = 0 , (2.1.7)

[iM,Q±] = ∓Q± , [iM,Q±] = ∓Q± , (2.1.8)
[iFV , Q±] = −iQ± ,

[
iFV , Q±

]
= iQ± , (2.1.9)

[iFA, Q±] = ∓iQ± ,
[
iFA, Q±

]
= ±iQ± . (2.1.10)

In principle, we could have central charges on the right hand side of Eqs. (2.1.6) and
(2.1.7),

{Q+, Q−} = Z , {Q+, Q−} = Z∗ ,

{Q−, Q+} = Z̃ , {Q+, Q−} = Z̃∗ ,
(2.1.11)

if Z and Z̃ commute with everything else. However, they are necessary zero in the presence
of FV and FA. For example, the super Jacobi identity gives

− 2Z = {Q+, [Q−, iFV ]} − {Q−, [iFV , Q+]}+ [iFV , {Q−, Q−}] = 0 . (2.1.12)

Next, let’s turn to field theories. In order to write down actions that are manifestly
N = (2, 2) supersymmetric, it’s best to use the language of N = (2, 2) superspace. Su-
perspace has spacetime coordinates x0, x1 as bosonic coordinates, as well as four fermionic
coordinates

θ+ , θ− , θ
+
, θ
−
. (2.1.13)

Similar to ordinary fields that are functions of spacetime, superfields are functions on
the superspace. Due to the anti-commutativity of Grassmann variables, a superfield F can
be expanded in θ± and θ

± with a finite number of terms,

F(xµ, θ±, θ
±) = f0(xµ) + θ+f+(xµ)

+ θ−f−(xµ) + θ
+
f+(xµ)

+ θ+θ−f+−(xµ) + · · · ,
(2.1.14)
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2.1. TWO DIMENSIONAL N = (2, 2) SUPERSYMMETRY

The action of four supercharges (2.1.2) can be represented as differential operators
acting on superfields,

Q± = ∂

∂θ±
+ iθ±∂± ,

Q± = − ∂

∂θ
± − iθ±∂± ,

(2.1.15)

where ∂± are partial derivatives with respect to x± = x0 ± x1. Based on this fact, if our
Lagrangian can be written as integration of superfields over the whole superspace, it is
automatically N = (2, 2) supersymmetric.

On the other hand, the U(1)A and U(1)V R-symmetries act on a superfield by

eiαFV : F(xµ, θ±, θ±)→ eiαqVF(xµ, e−iαθ±, eiαθ
±) ,

eiβFA : F(xµ, θ±, θ±)→ eiβqAF(xµ, e∓iβθ±, e±iβθ
±) .

(2.1.16)

The qV and qA are real numbers known as vector R-charge and axial R-charge of F .
It turns out that often we do not need the most general form of the superfield (2.1.14).

In practice, we impose some constraints on F to remove some degrees of freedom. To
achieve that, we first define another set of operators called covariant derivatives,

D± = ∂

∂θ±
− iθ±∂± ,

D± = − ∂

∂θ
± + iθ±∂± .

(2.1.17)

Notice that they just differ from (2.1.15) by signs.
Then a chiral superfield Φ is defined to be

D±Φ = 0 . (2.1.18)

Its complex conjugate gives the anti-chiral superfield Φ which is annihilated by D±. In
terms of components (2.1.14), we can write

Φ = φ+ θαψα + θ+θ−F . (2.1.19)

This means that we have a scalar field φ, two Weyl fermions ψ± and an auxiliary field
F which is not dynamical. The supersymmetric transformations are found by first acting
supercharges on Φ then expanding in components,

δφ = ε+ψ− − ε−ψ+ ,

δψ± = ±2iε∓∂±φ+ ε±F ,

δF = −2iε+∂−ψ+ − 2iε−∂+ψ− .

(2.1.20)

Now we can construct an N = (2, 2) nonlinear sigma model that describes the mapping
of the worldsheet into the n dimensional Calabi-Yau target space X. We simply choose n
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2.1. TWO DIMENSIONAL N = (2, 2) SUPERSYMMETRY

copies of chiral superfields Φi, which serve as holomorphic coordinates on X. Given the
Kähler potential K(z, z) of X, the action can be written in the following form1:

Skin =
∫
d4x

∫
d4θ K(Φi, Φ̄ī) , (2.1.21)

with d4θ = dθ+dθ−dθ
−
dθ

+. As we mentioned earlier, Skin is manifestly N = (2, 2) super-
symmetric. This can also be verified directly using the transformation rules . Skin is also
known as the D-term action.

Apart from it, we can also add an F-term. To start with, we choose a holomorphic
function W (φi) on X (therefore X must be non compact for W to be non trivial). Then
an F-term looks as follows,

SF = 1
2(
∫
d4x

∫
d2θW (Φi) + c.c.) , (2.1.22)

where we only integrate over half of the four θ: d2θ = dθ−dθ+. Thanks to the constraints
(2.1.18), it’s easy to verify that the Lagrangian is still supersymmetric. The W (Φi) is
also called a superpotential. In general, the total Lagrangian is a sum of two terms Eqs.
(2.1.21) and (2.1.22).

Next, we would like to know if the two U(1) R-symmetries are preserved or not. Let’s
start our discussion from the classical level. Since their actions (2.1.16) only change the
overall phase hence do not mix the D-term and F-term, we can treat Eqs. (2.1.21) and
(2.1.22) separately.

First let’s discuss the D-term. Since θ4 is invariant under both R rotations, Skin is
invariant under both both symmetries if both charges of the Kähler potential K(Φi, Φ̄ī)
vanish. Often this is possible just by demanding the qV and qA of Φi to be zero.

However, if we look at the F-term, the situation is different. Because θ2 has U(1)A
R-charge 0, setting qA of Φi to zero is still consistent. However, θ2 has U(1)V R-charge
2, the superpotential must have qV = 2 if we want to preserve the U(1)V symmetry. For
general W this is impossible to achieve2.

To summarize, the lesson we draw is as follows. Classically, U(1)A is always a good
symmetry by assigning qA to zero for all the chiral fields Φi. On the other hand, U(1)V is
a symmetry only for very special types of W .

This finishes our discussion at the classical level. What could go wrong in the quantum
world? At the quantum level, it’s a well-known fact that a chiral symmetry could be
anomalous. A detailed analysis requires a full chapter of its own3, so here we only quote

1Although Kähler potential is not globally well-defined and under change of coordinates it picks a
purely holomorphic piece and a purely anti-holomorphic piece, it can be easily shown that these extra
terms vanish after superspace integration, so Skin is well-defined.

2However, it’s possible that some discrete symmetry is still preserved.
3For instance, [28] is a good review on this topic.
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2.2. TOPOLOGICAL FIELD THEORIES OF WITTEN TYPE

the final result in chapter 13 of [103]: to make sure that the U(1)A is not anomalous, the
target space must obey

c1(X) = 0 . (2.1.23)

In other words, X must be a Calabi-Yau manifold.
Another useful subclass of superfields is the twisted chiral superfield U , satisfying

D+U = D−U = 0 . (2.1.24)

We can repeat the whole story, introducing the Kähler and superpotential and writing
down the D-term and F-term. The only difference is that in the latter case, we integrate
over d2θ̃ = dθ̄−dθ+ instead of d2θ.

2.2 Topological field theories of Witten type
There exist many definitions of a topological field theory (TQFT). In the mathematics
literature, it was M. Atiyah who first axiomatized the topological field theories [14], inspired
by works in two dimensional conformal field theories. Being physicists, we prefer to use
less rigorous but more physical definitions, which are given below.

Let’s first set the stage. We put our physical system on a manifold X with a given
metric g, which is usually not flat. In physics, we are interested in partition function Z,
physical operators Oi as well as various correlation functions

〈O1(x1) · · · On(xn)〉g , (2.2.1)

where we use the subscript g to emphasis that they are computed in that given metric.
A TQFT simply means that all these quantities are independent of g therefore should be
topological.

In the physics literature, there are roughly speaking two types of TQFTs: one is known
as the Schwarz type, where there is no explicit dependence on g in the Lagrangian and
physical operators. Therefore, it’s natural to expect that the theory should be topological.
Examples of this sort include, e.g., Chern-Simons theory in three dimensions [182].

In this chapter, we are interested in the second kind of TQFT, known as the Witten type
or cohomological type. In this set-up, the Lagrangian and operators do depend explicitly
on the metric, but as soon as we pass into the cohomology, the g dependence drops out.

Formally speaking, a TQFT of Witten type has a special fermionic symmetry, whose
Noether charge is denoted as Q. The anti-commutator of Q with operators generates the
symmetry transformation

δOi = i {Q,Oi} . (2.2.2)

The first condition we impose is the following:

Q2 = 0 . (2.2.3)
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2.2. TOPOLOGICAL FIELD THEORIES OF WITTEN TYPE

This may look strange at the first sight, but for readers familiar with algebraic topology,
this hints at the possibility of defining cohomology. We also assume that the vacuum |vac〉
of our system is invariant under the symmetry hence annihilated by Q.

The next condition we impose concerns with the deformation invariance. Recall that
the energy momentum tensor is defined as

Tµν := δS

δgµν
. (2.2.4)

We suppose that there exists another operator Gµν such that

Tµν = {Q,Gµν} . (2.2.5)

The final assumption is that the physical operators Oi of interest are all metric-independent
and invariant under this symmetry, i.e., annihilated by Q:

{Q,Oi} = 0 . (2.2.6)

Now a short computation shows why the correlation functions are supposed to be indepen-
dent of g,

δ

δgµν
〈O1 · · · On〉 = δ

δgµν

(∫
DφO1 · · · OneiS[φ]

)
= i

∫
DφO1 · · · On

δS

δgµν
eiS[φ]

= i〈O1 · · · On{Q,Gµν}〉
= i〈QO1 · · · OnGµν〉+ i〈O1 · · · OnGµν Q〉
= 0 ,

(2.2.7)

where in the third equality we used our assumption (2.2.5), while in the fourth equality we
used (2.2.6) and in the final one we used the invariance of our vacuum.

The reason why it is also called a cohomological TQFT is clear: since the operator Q
squares to zero, an observable which is Q of another observable (Q-exact) is also annihilated
by Q (Q-closed). Furthermore, repeating the argument for the energy-momentum tensor,
it is easy to verify that the correlation function vanishes if any of the operators is Q-exact.
Thus, as far as correlation functions are concerned, the physical operators are in one-to-one
correspondence with the elements in the Q-cohomology,

HQ = {Q− closed operators}
{Q− exact operators} . (2.2.8)

Up to now, we only discussed the definitions and some consequences of a TQFT. Beau-
tiful as it is, we still haven’t shown how to construct a TQFT in practice. Below we will
introduce the powerful topological twisting method first introduced in [180] and show two
possible ways to construct a TQFT out of an N = (2, 2) supersymmetric non-linear sigma
model [181, 171].
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2.3. TOPOLOGICAL TWISTING

2.3 Topological twisting
Before discussing topological properties, there are in fact issues with the non-linear sigma
model itself when placed on a curved Riemann surface Σ, i.e., the Lagrangian is not nec-
essarily supersymmetric. Under supersymmetry transformation, the D–term action gives
a total differential, which integrate to zero on a flat space, but may not integrate to zero
on a curved Σ. Another way to look at this problem is to write down the variation of the
action under a supersymmetric transformation (2.1)

δS =
∫

Σ
(∇µε+G

µ
− −∇µε−G

µ
+ −∇µε+G

µ
− +∇µε−G

µ
+)
√
h d2x . (2.3.1)

Here ε± and ε± are the variational parameters that are spinors on Σ. If Σ is flat, they can
be chosen to be constant spinors the above equation tells us that the Lagrangian is su-
persymmetric. However, for a curved Σ, covariantly constant spinors (satisfying equations
∇µε± = ∇µε± = 0) may simply not exist4! In other words, we can still formulate a the-
ory with equal amount of bosonic and fermionic degrees of freedom on a curved Riemann
surface, but the supersymmetric invariance of the action of may no longer be preserved.

Still, we would like to preserve a fermionic symmetry on Σ, out of the original su-
persymmetry. One possible solution is topological twisting. Naively, if we can somehow
change the spinor to the scalar, then it’s possible to find at least one non-trivial covariantly
constant solution, namely the constant hence preserve the modified symmetry. Motivated
by this observation, our next goal is to learn how to change a spinor into a scalar by the
twisting procedure5.

From now on, we consider the Euclidean version of the theory obtained by performing
the Wick rotation x0 = −ix2. We also define complex coordinate z = x1 + ix2. Then the 2d
Lorentz group becomes the Euclidean rotation group SO(2)E = U(1)E with the generator

ME = iM . (2.3.2)

Accordingly, the commutation relations Eqs. (2.1.8), (2.1.9) and (2.1.10) in the super-
symmetry algebra become

[ME, Q±] = ∓Q± , [ME, Q±] = ∓Q± , (2.3.3)
[FV , Q±] = −Q± ,

[
FV , Q±

]
= Q± , (2.3.4)

[FA, Q±] = ∓Q± ,
[
FA, Q±

]
= ±Q± . (2.3.5)

We assume that the theory preserves both U(1)V and U(1)A R-symmetries under which
the R-charges are all integral. From the last part of section 2.1, that is possible if there is

4This can be proved from computing the dimension of H0(Σ, S) or H0(Σ, S), where S(S) is the spinor
(anti-spinor) bundle

5This idea first appeared in Edward Witten’s seminar work [180], where he found that the topological
twisted N = 2 supersymmetry in four dimensions gives a physical realization of Donaldson theory
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2.3. TOPOLOGICAL TWISTING

U(1)V U(1)A ME L MA
E L MB

E L

Q− -1 1 1 S 0 C 2 K

Q+ 1 1 -1 S 0 C 0 C

Q− 1 -1 1 S 2 K 0 C

Q+ -1 -1 -1 S -2 K -2 K

Table 2.1: Before and after twisting. C, S and K mean the trivial, spinor and canonical
line bundles respectively. The “bar” means conjugate line bundle.

no superpotential W and the target space X is Calabi-Yau. Twisting simply means that
we redefine the Euclidean rotation by mixing ME with R-symmetry charges. There are
two possible ways to define it,

A− twist : MA
E = ME + FV , (2.3.6)

B − twist : MB
E = ME + FA . (2.3.7)

Another useful point of view is to regard the twisting as modifying the Lagrangian by
adding either the U(1)V or the U(1)A R-symmetry current into the spin connection, as
elucidated in chapter 3 of [145].

Whichever way we choose, the consequence of topological twisting is to change the
flavor index to the spinor index, thus change the spin of various fields. For example, if we
consider a chiral superfield Φ whose R-charges are both trivial

Φ = φ+ θ+ψ+ + θ−ψ− + θ
+
ψ+ + · · · . (2.3.8)

Then we know that the Weyl fermion ψ+ has ME charge −1, U(1)V charge qV = −1 and
U(1)R charge qR = −1. The fact that ME charge is −1 means exactly that it is a anti-
spinor, or a section of the anti-spinor bundle S over Σ. Now let’s see how does it change
under two twists. If we perform the A-twist, it has M ′

E charge −1−1 = −2 and it becomes
a vector field or an anti-holomorphic one-form; If we perform the B-twist, it has M ′

E charge
also equal to −1− 1 = −2 and still becomes an anti-holomorphic one-form.

More dramatically, we consider another Weyl fermion ψ−. After the A-twist it has M ′
E

charge 1− 1 = 0 and becomes a scalar field. Namely we successfully change a spinor to a
scalar which is our goal! Similarly, we can show that after the B-twist, it is the fermion
ψ+ that becomes a scalar. For sake of completeness, the result for all possible cases after
the twisting is shown in Table 2.1.

Now comes the magic: after either twisting, the modified theory has a fermionic sym-
metry and turns out to satisfy all the conditions of a TQFT! Let’s spell out all the details
in turn.
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2.3.1 A-Model

The field theory obtained from an A-twist is dubbed the A-model6. From Table 2.1, Q+

and Q− become scalars after the A-twist. We choose the fermionic symmetry charge to be

QA = Q+ +Q− . (2.3.9)

Again from Table 2.1 we know that the Weyl fermions ψ− and ψ+ become scalars, while
ψ− and ψ+ which were spinors and anti-spinors are now holomorphic and anti-holomorphic
one-forms. We rename the fields to make this point manifest,

χi := ψi− , χ
ī := ψ

ī

+ ,

ρīz := ψ
ī

− , ρ
i
z̄ := ψi+ .

(2.3.10)

The modified action can be obtained, as mentioned in the previous subsection, by adding
a U(1)V R–symmetry current into the spin connection of the D-term action (2.1.21). It
turns out to be

SA =
∫
d2z

(
gij̄
(
hµν∂µφ

i∂νφ
j̄ − iρjzDz̄χ

i + iρiz̄Dzχ
j̄
)
−Rikjlρ

i
z̄χ

jρkzχ
l
)
. (2.3.11)

Moreover, the symmetry transformation can simply be obtained from the most general
supersymmetric transformation laws (2.1.20) by setting ε− = ε̄+ = 0 and ε+ = ε̄− = ε,

δφi = εχi , δφ
ī = εχi ,

δχi = 0 , δρīz = −2iε∂zφ
ī − εχj̄Γīj̄m̄ρm̄z ,

δχi = 0 , δρiz = 2iε∂zφi − εχjΓijkρkz .

(2.3.12)

Now we need to show that A-model indeed satisfies all the conditions of a TQFT. The
assumption of a symmetric vacuum is satisfied, because there is no spontaneous symmetry
breaking. The fermionic symmetry charge QA squares to zero since all the supercharges
do and Q+, Q− anti-commute.7 The most non trivial part is to show that the energy-
momentum tensor is QA-exact. In fact, after some computations [183], it turns out that
even the action itself is QA-exact up to a topological term,

SA =
∫

Σ
d2z {QA, V }+

∫
Σ
φ∗(ω) , (2.3.13)

where
V = gij̄

(
ρīz∂z̄φ

j + ∂zφ
īρjz̄
)

(2.3.14)

and
∫

Σ φ
∗(ω) is the pull back of the Kähler form of X, depending only on the cohomology

class of ω and homotopy type of φ. Therefore, it’s invariant under continuous deformation
of the worldsheet metric g and we know that the condition (2.2.5) is satisfied.

6The preface “A” actually has nothing to do with the word “axial”. The nomenclature will be explained
in section 3.1 of chapter 3.

7Thanks to the absence of central charges (2.1.12). This remark holds also for the B-model below.
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In fact, for non-linear sigma models, we are also interested in the dependence on the
moduli of target space X. (2.3.13) shows us that when passing to cohomology, our theory
only depends on the Kähler moduli (i.e. cohomology class of ω) but not the complex
structure moduli.

The remaining step is to find the cohomology classes of operators. This can be done by,
e.g., direct computations using the symmetry transformations (2.3.12). Let’s use another
approach, starting from a simple observation. The action of QA on a given combination

wi1,···ipj̄1···j̄q(φ)χi1 · · ·χipχj̄1 · · ·χj̄q , (2.3.15)

is
(∂kwi1,···ipj̄1···j̄qχ

k + ∂k̄wi1,···ipχ
k̄)χi1 · · ·χipχj̄1 · · ·χj̄q . (2.3.16)

This means that if we identify χi with dzi and χī with dz ī, QA can be identified with
the exterior derivative d. As a result, the QA-cohomology is nothing but the de Rham
cohomology of the target space X,

{physical operators} ' {HQA} ' HdR(X) , (2.3.17)

which gives the set of operators a very nice geometrical interpretation.
Next let’s study the correlation functions. A general correlation function for a given

set of operators Oi takes the form

〈O1 · · · Ol〉 =
∫
DφDρDχO1 · · · Ol e−SA . (2.3.18)

Precisely due to its topological nature, the correlation functions are invariant under con-
tinuous deformations so that we can deform the theory to an easy-to-compute point. The
upshot is that the computation of them only receives contributions at the vicinities of the
fixed loci of QA

8. From (2.3.12), it’s clear that the fixed loci are given by

∂z̄φ
i = ∂zφ

ī = 0 . (2.3.19)

Namely, holomorphic maps φ : Σ → X. In the literature, they are known as worldsheet
instantons. If we denote the homology class of the image φ(Σ) by d ∈ H2(X,Z), the
bosonic part of the action at the fixed loci can be written as

Sφ =
∫

Σ
gij̄(∂zφi∂z̄φ

j̄ + ∂z̄φ
i∂zφ

j̄) d2z ,

= 2
∫

Σ
gij̄∂z̄φ

i∂zφ
j̄
d2z +

∫
Σ
φ∗w =

∫
Σ
φ∗ω = ω · d .

(2.3.20)

This shows that the bosonic part of the action at fixed loci just measures the volume of
the image of Σ. We can decompose the homology class β in terms of a basis {Ci} of the

8This is an example of the famous Localization phenomenon. See, e.g., [159] for more detailed discus-
sions.
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second homology group H2(X,Z), and rewrite the above as ∑
i
niti, with

ti =
∫
Ci
ω , i = 1, · · · , b2(X) . (2.3.21)

However, when we set out to compute those correlation functions, we will find that
most of them vanish. This is due to the two U(1) R-symmetries which impose selection
rules for them. Working out all the details [183], we find that the correlation functions
must be zero unless

l∑
i=1

pi =
l∑

i=1
qi = dimX(1− g) + c1(X) · β , (2.3.22)

where pi and qi are holomorphic and anti-holomorphic degrees of the operators Oi(i =
1, · · · , l), and g is the genus of Σ. If X is a Calabi-Yau manifold, c1(X) is zero and the
right hand side can be reduced to

l∑
i=1

pi =
l∑

i=1
qi = dimX(1− g) . (2.3.23)

In order to have non-trivial correlation functions, we have to demand g = 0, i.e., the
worldsheet Σ is a sphere.

Now let’s give some explicit examples. Suppose further that X is a threefold. We choose
physical operators Oi of type (1,1), corresponding to a d-closed form ωi whose Poincaré
dual is denoted by Di. From (2.3.22), the correlation functions vanish unless we consider
three-point functions. In addition, it is shown in chapter 16 of [103] that

C123 = 〈O1O2O3〉 = (D1 ∩D2 ∩D3) +
∑

d∈H2(X,Z)
I0,3,d(ω1, ω2, ω3)Qd , (2.3.24)

where the first term is the classical intersection number of the three divisors and in the
second term Qd means e−ω·d = e−

∑
i
niti . The coefficient I0,3,d(ω1, ω2, ω3) counts the num-

ber of holomorphic maps of genus zero worldsheet Σ into a two-cycle of homology class d
such that the three insertion points x1, x2, x3 of the three operators O1,O2,O3 are mapped
into the divisors D1, D2, D3 respectively. It is named as the quantum intersection product
in [172], which generalizes the classical intersection relation.

The number I0,3,d can be simplified further to be

I0,3,d(ω1, ω2, ω3) = rd
0

∫
d
ω1

∫
d
ω2

∫
d
ω3 , (2.3.25)

where rd
0 counts the number of holomorphic maps from a sphere into the homology class

d in X, known as the genus zero Gromov–Witten (GW) invariants. They can be collected
in the so-called A–model pre-potential

F0(t) =
∑

d∈H2(X,Z)
rd

0Q
d . (2.3.26)
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2.3. TOPOLOGICAL TWISTING

As a byproduct, we also see that the correlation functions and free energies depend only
on the Kähler moduli of X.

Suppose we choose {Oi} such that the corresponding {ωi} are a set of basis in H2(X,Z).
Dually, we can choose a set of two-cycles {Sj} in H2(X,R) such that,∫

Sj
ωi = δij . (2.3.27)

Without lost of generality, we can choose {Sj} as the basis to expand our β (2.3.21) and
find ∫

β
ωi =

∑
j

nj

∫
Sj
ωi = ni . (2.3.28)

Then it’s possible to rewrite (2.3.24) in a more elegant form9,

〈O1O2O3〉 = (D1 ∩D2 ∩D3)− ∂3F0

∂t1∂t2∂t3
. (2.3.29)

If instead we know all the three-point correlation functions in terms of ti, we can
integrate the above equation to get the prepotential F0(t).

2.3.2 B-Model

The field theory obtained from a B-twist is dubbed the B-model. Firstly, notice that the
target space must be Calabi-Yau in order to be free of the chiral anomaly. Thus in the
case of the B-model we will always assume X to be a Calabi-Yau. From Table 2.1, Q+ and
Q− become scalars after the B-twist. We choose the fermionic symmetry charge to be

QB = Q+ +Q− . (2.3.30)

From Table 2.1, we know that the fermions ψ+ and ψ− become scalars, while ψ− and ψ+

which were spinors and anti-spinors are now holomorphic and anti-holomorphic one-forms.
We rename the fields to make this point manifest,

ρiz = ψi− , ρiz̄ = ψi+ ,

ηi = −(ψī+ + ψ
ī

−) , gījθj = ψ
ī

− − ψ
ī

+ .
(2.3.31)

The symmetry transformation can be obtained from the most general transformation
rules (2.1) by setting ε+ = ε− = 0 and ε̄+ = ε̄− = ε,

δρiµ = ±2iε∂µφi ,
δφi = 0, δθi = 0 ,

δφ
ī = εηī, δηī = 0 .

(2.3.32)

9It’s also customary to redefine F0 to absorb the first term in the right hand side.
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Now let’s check the B-model satisfies all the conditions of a TQFT. We can just mimic the
argument for the A-model. The assumption of a symmetric vacuum is satisfied, because
there is no spontaneous symmetry breaking. The fermionic symmetry charge QB squares
to zero since all the supercharges do and Q+, Q− anti-commute. The energy-momentum
tensor is QB-exact because the action is QB-exact up to an extra term,

L =
∫

Σ
d2z {QB, V }+

∫
Σ
W , (2.3.33)

with
V = gij̄

(
ρiz∂z̄φ

j̄ + ρiz̄∂zφ
j̄
)
, (2.3.34)

and
W =

(
−θiDρi −

i

2Rīijj̄g
kj̄ρiρjηīθk

)
. (2.3.35)

Here D is the exterior derivative on Σ. W has no dependence on the worldsheet metric g,
so the condition (2.2.5) is satisfied. Moreover, it can be shown [183] that under a change
of the Kähler metric, δW = {QB, H} for certain H. Therefore, our theory is independent
of the Kähler moduli of X. But it depends on the complex structure moduli since the
complex structure of X plays a role in the symmetry transformations (2.3.32).

The physical operators can be constructed from φi, φ
ī
, ηī and θi and are identified with

the QB-cohomology. Again, we try to map them to geometric quantities on X. It’s useful
to observe the following: it can be shown that a given combination

ω
j1···jq
ī1···̄ip (φ) ηī1 · · · ηīpθj1 · · · θjq (2.3.36)

is QB-closed if and only if the corresponding anti-holomorphic p-form with values in ∧qTX

ω
j1···jq
ī1···̄ip (φ) dz ī1 · · · dz īp ∂

∂zj1
· · · ∂

∂zjq
(2.3.37)

is ∂ closed.
That is to say, if we make the identification,

ηī ←→ dz ī ,

θi ←→
∂

∂zi
,

(2.3.38)

the QB-cohomology is nothing but the Dolbeault cohomology with values in the vector
bundle ∧∗TX ,

{physical operators} '
n⊕

p,q=0
H0,p(X,∧qTX) , (2.3.39)

where n is the dimension of X.
A general correlation function for a given set of operators {Oi} takes the form

〈O1 · · · Ol〉 =
∫
DφDηDθ e−SBO1 · · · Ol . (2.3.40)
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We can repeat the same story in A-model, deform the system and evaluate it at the fixed
loci of QB. From (2.3.32) we read off the fixed loci

∂µφ
i = 0 , (2.3.41)

i.e., a constant map φ : Σ→ X. Therefore, the path integral in the correlation function is
reduced to an integral over X. Here we see an important difference between A-model and
B-model: the fixed loci is just the Calabi-Yau manifold X itself, which is much simpler
than the moduli space of all holomorphic maps, appeared as the fixed loci in A-model.10

Again, before carrying out the actual computation, we can use R-symmetries to de-
rive selection rules for the correlation function. They turn out to impose the following
constraints [183]

l∑
i=1

pi =
l∑

i=1
qi = dimX(1− g) (2.3.42)

for l physical operators Oi(i = 1, · · · , l). Once more, in order to have non-trivial correlation
functions, the worldsheet must have genus 0.

Now let’s specialize X to be a Calabi-Yau threefold. In particular this means that the
line bundle H3,0(X) is trivial and generated by a nowhere vanishing section Ω. Then let’s
consider physical operators corresponding to µa ∈ H0,1(X,TX)

µa = (µa)kj̄dz̄ j̄
∂

∂zk
. (2.3.43)

In the mathematical literature, µa is known as the Beltrami differential, which can be used
to infinitesimally deform the complex structure11. Taking θ zero modes into account [183],
the correlation function is found to be

〈O1O2O3〉 =
∫
X
〈µ1 ∧ µ2 ∧ µ3,Ω〉 ∧ Ω =

∫
X

(µ1)iī(µ2)j
j̄
(µ3)kk̄Ωijkdz

īdz j̄dzk̄ ∧ Ω , (2.3.44)

where Ω = ∑Ωijk dz
idzjdzk is the nowhere–vanishing holomorphic top form on X12. From

here we can also see that the correlation functions depend on the complex structure moduli
but not the Kähler moduli of X.

In fact, it is also possible to define a pre-potential F0 such that the three point function
is its third derivative. To show that, we need some preliminary knowledge on the moduli
space of complex structures on X.

10Indeed, as we shall see in the next chapter 3, B-model geometries are much easier to solve, and by
using the so-called mirror symmetry we obtain for free the A-model solutions.

11For instance, this can be done by deforming the holomorphic one-form: dz → dz + εµzz̄dz̄.
12This is because the canonical line bundle of a Calabi-Yau manifold is trivial.
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2.4 Interlude: moduli space of complex struc-
tures

Recalled that our target space X is a Calabi-Yau threefold. By definition, the moduli space
of complex structures MX encodes all possible complex deformations on X. A point on
MX corresponds to a fixed complex structure on X, where there is a nowhere vanishing
holomorphic top form Ω which generates H3,0(X).

What will happen if we start to move on MX , i.e., vary the complex structure? First
of all Ω will still be closed since the exterior derivative does not depend on the complex
structure. However, it is no-longer holomorphic and we need to define a new holomorphic
form Ω′. In other words, we have a line bundle L onMX , where the one-dimensional space
above each point is generated by the Ω determined by that complex structure. Moreover,
we can define a metric on it,

h = |Ω|2 = i
∫
X

Ω ∧ Ω̄ . (2.4.1)

Ω∧ Ω̄ is a (3, 3) form so this integral is not trivially zero. Also since Ω is defined up to non-
zero scaling at each point, we can always multiply Ω by a nowhere vanishing holomorphic
function ef on MX , hence h→ |ef |2 h. Equivalently, if we consider the function

K = − log |Ω|2 = − log
∫
X

Ω ∧ Ω̄, (2.4.2)

then K transforms as a Kähler potential K → K − f − f̄ . This means that the quantity
gab̄ = ∂a∂̄b̄K is globally well-defined, because both f and f̄ are annihilated by ∂∂̄ operator.
In fact, gab̄ defines a Hermitian metric onMX , and the above argument shows nothing but
the fact that MX is Kähler.

The next question is: can we characterize how does Ω change when we start to move
on MX? As a subspace, H3,0(X) is always contained in H3(X,C). Moreover, the vector
spaces H3(X,C) over each point of MX can be glued together to form a vector bundle
H13 on MX , which contains the line sub-bundle L defined above. The question is then
translated to the following: can we study how L varies inside the vector bundle H, namely
how the Hodge decomposition varies on X? In the mathematical literature, this is also
known as the “variation of Hodge structure”(VHS).

The best way to study the position of L is to parametrize it by suitable coordinates.
This leads naturally to the concept of “period”. First of all, there is also a Hermitian metric
on H similar to that defined on L:

(µ, ν) = i
∫
X
µ ∧ ν̄, ∀µ, ν ∈ H3(X,C) (2.4.3)

13This vector bundle is known as the “Hodge bundle”, and we can be give a flat connection called the
Gauss-Manin connection on it.
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It’s easy to verify that it is indeed Hermitian. Furthermore, since the wedge product is
anti-symmetric on H3(X,Z), we can find a “symplectic-basis” of real and integral three-
forms αa, βb, a = b = 1, · · ·h3(X)/2, such that (αa, αb) = (βa, βb) = 0, while (αa, βb) = iδba.
The basis is unique up to an Sp(h3,Z) transformation. The Poincaré duals of αa, βb are
denoted as Aa, Bb.

We can expand ω in terms of the basis above,

Ω = qaαa − pbβb , (2.4.4)

where a, b = 1, · · · , h3(X)/2 = h2,1(X) + 1 and the minus sign is introduced for later
convenience. If we move on MX , the basis (αa, βb) is unchanged since it does not depend
on the complex structure, but (qa, pb) depend on the complex structure and are non-trivial
functions on MX . They are the coordinates to parametrize the VHS that we alluded to
before. In fact, they even over-determine the point onMX , because it turns out thatMX

has dimensions h2,1(X) only. 14

Still we haven’t explained why we call them periods. This is due to the following simple
fact,

qa =
∫
Aa

Ω, pb =
∫
Bb

Ω, (2.4.5)

where we have used the definition of the Poincaré dual. This means that we can express
the VHS in terms of integration of Ω over three cycles. In this sense, it is quite similar
to integrate one-forms over one-cycles on an elliptic curve, which gives them the name
“period”.

Furthermore, it can be proved that qa alone determine the complex structure [36]. In
other words, locally we can try to solve pb as functions of qa. Then we are left with only
one redundant variable. Since Ω is only defined up to an overall scale, we can just regard qa

as homogeneous coordinates thus they determine the points on MX without redundancy.
Next let’s introduce the famous “Griffith transversality” relation:∫

X
Ω ∧ ∂Ω

∂pa
= 0. (2.4.6)

This is due to the fact that Ω will only pick up a (2, 1) piece to the first order of variation,

∂aΩ = (3, 0) form + (2, 1) form ,

= kaΩ + χa ,
(2.4.7)

where ka are holomorphic functions on MX . As a consequence,

(qaαa − pbβb, αc − ∂cpbβb) = qc − qa∂cpa = 0, (2.4.8)

where ∂c := ∂
∂qc

. This means that pc = qa∂cpa = ∂c(qapa)− pc. If we define

F0 := 1
2paq

a, (2.4.9)

14This can be seen from computing the dimension of the tangent space at any smooth point.
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then we obtain
pc = ∂cF0 , (2.4.10)

hence qc is the derivative of the function F0. Summing with qc on both sides of (2.4.9), we
find 2F0 = qc∂cF0 and F0 is homogeneous of degree 2 in the variables qc.

Finally, we can also express the metric in terms of F0,

h = i
∫
X

Ω ∧ Ω̄ = i
∫
X

(qaαa − pbβb) ∧ (q̄aαa − p̄bβb) ,

= i(q̄āpa − qap̄ā) = i(q̄a∂aF0 − qa∂̄aF̄0),
(2.4.11)

where we have used the (2.4.10).
In short, we find an important function F0 which encapsulates many, if not all, geometric

structures ofMX . The next claim is, the F0 is exactly the prepotential that we are looking
for.

To show that, we need to understand (2.4.7) in more detail. Actually the χa are in
one-to-one correspondence with the Beltrami differential (2.3.43) by contraction with Ω,

µa = (µa)kj̄dz̄ j̄
∂

∂zk
←→ χa = (µa)kj̄Ωkmndz

j̄ ∧ dzm ∧ dzn . (2.4.12)

Consider the following expression∫
M

Ω ∧ ∂1∂2∂3Ω . (2.4.13)

Taking (2.4.12) into account, the ∂1∂2∂3Ω in the integrand can be decomposed into four
pieces,

∂1∂2∂3Ω = (3, 0) form + (2, 1) form + (1, 2) form + (0, 3) form , (2.4.14)

where the (0, 3) form is exactly (µ1)iī(µ2)j
j̄
(µ3)k

k̄
Ωijkdz

īdz j̄dzk̄ and is the only piece that
contributes to the integral (2.4.13). Namely, (2.4.13) is the same as the three-point function
(2.3.44).

On the other hand, from Eqs. (2.4.4) and (2.4.10) we can write it in another form,∫
M

Ω ∧ ∂1∂2∂3Ω =
∫
M

(qaαa − pbβb) ∧ (−∂1∂2∂3∂cF0 β
c)

= −qc∂c∂1∂2∂3F0

= −
(
∂1∂2∂3(qc∂cF0)− 3∂1∂2∂3F0

)
= −

(
∂1∂2∂3(2F0)− 3∂1∂2∂3F0

)
= ∂1∂2∂3F0 .

(2.4.15)

In the third equality, we use the fact that F0 is homogeneous of degree 2 in qa. This proves
our claim at the end of subsection 2.3.2,

〈O1O2O3〉 = ∂3F0

∂t1∂t2∂t3
. (2.4.16)
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Chapter 3

Topological String Theory: Coupling
to Gravity

After all these preliminaries, we are finally able to define topological string theory in section
3.1. Furthermore, in subsection 3.1.2 we discuss briefly a recent generalization of ordinary
topological string theory. In section 3.2, we introduce the important notion of mirror
symmetry. It states that the A model topological string theory on a Calabi-Yau threefold
X is equivalent to type B topological string theory on a mirror Calabi-Yau threefold X̃.
We first discuss Batyrev’s construction of mirror pairs in subsection 3.2.1, then we extend
to non compact situation in subsection 3.2.2. Useful references for this chapter are, for
example, [103, 152, 174, 145].

3.1 Topological string theory
In the discussion above, we always assume that in the topological nonlinear sigma models
the worldsheet metric g is fixed, even though after topological twisting we argue that the
models are independent of continuous deformation of the metric. An immediate drawback
of A and B models is that according to the selection rules Eqs. (2.3.22) and (2.3.41), Σ
must be a sphere to allow for non trivial correlation functions. From a string theorist point
of view, this is not at all satisfactory. In string theory, we are all familiar with summation
over all possible genera in a scattering diagram. Therefore, it would better if the worldsheet
Σ of higher genus also plays a role. In other words, we are interested in making the metric
on Σ dynamical and coupling the topological sigma model to gravity. Then we should
integrate over the space of all possible metrics on Σ in the path integral, just like what we
did in ordinary string theory.

The theory constructed from A–twisted and B–twisted topological nonlinear sigma
models are called type A and type B topological string theories respectively. As their names
suggest, they are related to type IIA and type IIB superstring theories. In fact, the moduli
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space of type A (type B) topological string are identified with the vector multiplet moduli
space of the type IIA (type IIB) superstring compactified on the Calabi–Yau threefold.

At first glance, this may seem trivial: since the theory is topological, the integrand
should be independent of the metric and naively we would simply get∫

Dg Z[g] = Vol(G)Z[g0] , (3.1.1)

where the Vol(G) is formally the volume of the “gauge group” which generates the space
of metrics. However, even at the level of physical rigor, there are several issues with this
line of reasoning:

• The topological symmetry could be anomalous at the quantum level invalidating the
conclusion that all the configurations in a gauge group orbit are equivalent.

• Although our theory is invariant under continuous deformation of the metric, there
could be metric configurations that cannot be reached from a given metric by con-
tinuous changes.

Let’s be more careful when talking about the integration over the space of all possible
metrics. First of all, just like in ordinary string theory, the two-dimensional sigma models
become conformal when we integrate the metric in the path integral, making the energy-
momentum tensor traceless. Notice that this has nothing to do with topological twisting.
This also means that we can divide the integration over the space of metrics into two steps:
we first integrate over all conformally equivalent metrics, then integrate over the quotient
space. As we shall see below, since the two-dimensional conformal group is rather large,
the quotient is actually finite dimensional.

The first step could in principle leads to problems. From the study of bosonic strings, on
a curved worldsheet, there is the notorious conformal anomaly, with coefficient proportional
to the central charge. In ordinary string theory, the central charge is canceled by choosing
the correct dimension. In our situation, this is done automatically by topological twisting.
As detailed in [138], topological twisting amounts to adding a conserved current into the
Lagrangian, and the energy-momentum tensor is modified such that the new central charge
is zero. The upshot is that a topological nonlinear sigma model coupled to gravity is free
of conformal anomaly.

The more interesting part is the second step. By construction, the quotient space is
the space of conformally equivalence classes. Since we can associate to each equivalence
class a complex structure, it is the same as the moduli space of complex structures on Σ,
denoted as Mg, where g is the genus of Σ1. It’s a known fact that M0 consists of one
point and M1 is the fundamental domain of a torus, while for g > 1, Mg has complex

1This can be proved by computing the dimension of the tangent space at a given point, which turns
out to be dimH1(Σ, TΣ).
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Figure 3.1: Some possible degenerations of genus two stable curves.

dimension 3g − 3 and is non-compact. They can be compactified, by adding new points
that have mild singularities, corresponding to the so-called “stable curve”.

• Its only singularities are simple nodes.

• It has a finite number of automorphisms. This means that its genus zero part should
have at least three nodal points and genus one part should have at least one nodal
point2.

The passage to its boundary can be represented figuratively, e.g., for genus two, as Figure
3.1. The space Mg is the famous Deligne–Mumford compactification of the moduli space
Mg of Riemann surfaces [52]. Moreover, if we consider correlation functions, we need
to consider the complex structure of Riemann surfaces having n marked points, whose
compactification leads to Mg,n.

Note that by borrowing ideas from bosonic string theory, we bypass the first issue and
find that the second issue does not occur. We also understand better the space that we
integrate over. Now let’s look at what quantities to integrate. Recall the first condition
(2.2.5) of a TQFT. For the sake of reader’s convenience, let’s record it here,

Tµν = δS

δgµν
= {Q,Gµν} . (3.1.2)

In addition, the energy-momentum tensor Tµν is traceless because the theory is confor-
mal. Therefore, the only nonzero components of Tµν are Tzz and Tz̄z̄ and they satisfy

Tzz = {Q,Gzz}, Tz̄z̄ = {Q,Gz̄z̄} . (3.1.3)

Since Tµν has axial charge 0 and Q axial charge 1, the G’s have axial charge −1. They
can be used to define a measure on the moduli space ofMg. The tangent space toMg at

2Recall that the automorphic group of a sphere is PSL(2,C) and that of a torus can be identified with
itself, acting by translations. While for g > 1, it is finite.
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a given point Σ corresponds to a choice of Beltrami differential (2.3.43) on the Riemann
surface Σ. Let µi denote a basis. For genus one there is only one while for higher genera
there are 3g − 3 of them, which correspond the dimension of Mg. Let’s start from the
genus one case.

Similar to the genus zero case (2.3.29), the genus one free energy F1 can be defined
through one point function. The measure is given by 〈Gzz(µ1)Gz̄z̄(µ1)〉, where

Gzz(µ) :=
∫

Σ
Gzzµ

z
z̄d

2z . (3.1.4)

Then we insert one observable in the Kähler class of axial charge (1,1) at one point to
cancel the (−1,−1) axial charge from the insertion of (Gzz, Gz̄z̄),

∂iF1 =
∫
M1,1

dmdm〈Gzz(µ1)Gz̄z̄(µ1)Oi〉 , (3.1.5)

This can be integrated to be

F1 = 1
2

∫ d2τ

τ2
Tr(−1)FFLFRqHLqHR . (3.1.6)

For higher genera, the measure on Mg is defined as

3g−3∏
i=1

(
dmidmi

∫
Σ
Gzz(µi)zz̄

∫
Σ
Gz̄z̄(µi)z̄z

)
. (3.1.7)

The G’s contribute to the axial charge (3 − 3g, 3 − 3g) which saturates the axial charge
anomaly, hence the measure is not, a priori, zero.

The genus g > 1 free energy Fg is defined by

Fg =
∫
Mg

3g−3∏
i=1

(
dmidmi

∫
Σ
Gzz(µi)zz̄

∫
Σ
Gz̄z̄(µi)z̄z

)
, (3.1.8)

where dmi are the dual one-forms to the µi.
Given a set of operators {Oi}, the old selection selection rules Eqs. (2.3.23) or (2.3.42)

are modified to be [103],

l∑
i=1

pi =
l∑

i=1
qi = (dimX − 3)(1− g) + l (3.1.9)

In particular, the extra 3(g− 1) + l in the right-hand side is the contribution ofMg,n. One
particular nice feature topological string theory arises when the Calabi-Yau manifold X

has complex dimensions three. Inserting dimX = 3, we see that the g-dependence drops
out! For example the new selection rules are trivially satisfied if all the (pi, qi) are equal
to (1, 1). From now on, we will always assume the target space X to be a Calabi-Yau
threefold.
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One of the central tasks in topological string theory is to understand the structure of
the free energies Fg. We first focus on the type A topological string. The type B case will
be discussed in the next subsection 3.1.1. Similar to the pre-potential (2.3.26), they also
have the following expansion

Fg =
∑

d∈H2(X,Z)
rd
gQ

d , (3.1.10)

where similar to (2.3.25), rd
g are known as the genus g Gromov-Witten invariants. They

count, in a mathematically rigorous way, the “number” of holomorphic maps from the
genus g worldsheet Σ into the homology class d ∈ H2(X,Z) of X. In fact, due to the
possible non trivial isomorphism group of Σ, rd

g are often rational numbers rather than
simply integers.

Furthermore, we can package all the Fg into a single free energy,

F(gs, t) =
∞∑
g=0
Fg(t)g2g−2

s , (3.1.11)

where gs is a formal parameter. In connection with ordinary string theory, gs can be
identified with the vev of the self-dual part of the gravi-photon field strength 3.

Later, it was shown by Rajesh Gopakumar and Cumrun Vafa [69, 70] that we can
actually carry out a partial resummation over the genus g and rewrite (3.1.11) as

F(gs, t) =
∞∑
w=1

∞∑
g=0

∑
d∈H2(X,Z)

Id
g

w

(
2 sin wgs2

)2g−2
Qwd . (3.1.12)

with integer numbers Id
g known as the Gopakumar-Vafa (GV) invariants. In the M-theory

picture, they are certain traces over the Hilbert space of five dimensional BPS states in
the spacetime after compactification.

If we perform a Laurent expansion in gs, we can find relations between these two types
of invariants. For instance4, we have

F0(t) =
∑

d∈H2(X,Z)
rd

0Q
d =

∑
d∈H2(X,Z)

∞∑
w=1

Id
0
w3 Q

wd . (3.1.13)

3.1.1 Holomorphic anomaly

In this part, we will discuss the type B topological string theory. Let’s first say a few words
about the genus zero case, which is already quite interesting.

The B model pre-potential is closely related to the moduli space of complex structures
F0, as detailed in the section 2.4 of the first chapter, which is much easier to determine

3For more details, we refer the reader to [11].
4The 1/w3 contribution for genus zero GW invariants was first noticed by [37] and proved rigorously

in [139]. It is also known as the Aspinwall-Morrison formula [13].
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than the A model. In particular, the periods (pa, qb) defined in (2.4.5) satisfy certain
differential equations known as the Picard-Fuchs (PF) equations. Instead of showing how
to find them5, we choose to explain the heuristic idea which is in fact very simple. Recall
from (2.4.7), we obtain a (2, 1) piece when we take the derivative of Ω with respect to qa.
If we take further derivatives, we can also generate H1,2 and H0,3 pieces in turn. Since the
dimension of H3 is finite, some linear combinations of them, after carefully choosing the
derivatives, must be zero in the cohomology, i.e., LΩ = dη for a moduli dependent linear
operator L. Therefore, after integrating over corresponding closed three cycle, we obtain
L ◦ F = 0 for F equal to either pa or qb. Accidentally, this also proves that they should
satisfy the same PF equations.

To summarize, for the genus zero case, we only need to consider the holomorphic
structure as well as their variation in MX , and essentially everything reduces to a set of
linear partial differential equations. However, for higher genera, it was first pointed out in
[25] that the partition function does not remain holomorphic anymore.

To understand this point, let’s first see why in the genus zero case the anti-holomorphic
part decouples. Recall that we have two types of topological twisting on a given Calabi-Yau
manifold, giving rise to A and B models. We also denote their conjugate twisting by A
and B. If we consider the B model for example, the B observables are all cohomologically
trivial. In more details, since we known that the correlation functions can be obtained
from t-derivatives of the perturbed partition function Z[t] at t = 0, in which we added the
following term into the Lagrangian,

t
ā
∫

Σ
d2θ̄ Ōa = t

ā
∫

Σ
Ō(2)
a , (3.1.14)

where O(2)
a is the coefficient of θ̄+θ̄− term in the expansion of Ō. Up to a possible minus

sign depending on whether Ō(2)
a is bosonic or fermionic, this is equal to {Q̄+, [Q̄−, Ō(0)

a ]}
[103].

Using the nilpotency of Q−, we find

{Q̄+, [Q̄−, Ō(0)
a ]} = {Q̄+ + Q̄−, [Q̄−, Ō(0)

a ]}
= {QB, [Q̄−, Ō(0)

a ]} .
(3.1.15)

Clearly this means the insertion is QB-exact and naively decouples from all the correlation
functions. From the worldsheet perspective, the dependence on t

ā comes from inserting B
observables, so we know that F0 must be holomorphic.

However, why after coupling to gravity, B observables can contribute non-trivially in
higher genera? Let’s first consider some heuristic idea. The crucial difference is that now
we have to integrate over the compactified moduli space Mg mentioned earlier. Recall

5From a computational point of view, if we only consider the toric geometry, their PF operators can
be constructed just from its polytope [105].
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that we have the following insertions (3.1.4) in the path integral,

Gzz(µi) :=
∫
d2z Gzzµ

z
z̄ , (3.1.16)

with µ the Beltrami differential (2.3.43). During the process of commuting QB with oper-
ators until it hits the vacuum, we need to compute the commutator of QB and G++(µi).
The result turns out to be non-zero,

{QB, Gzz(µi)} = T · µi . (3.1.17)

From the very definition of energy-momentum tensor Tµν = δS
δgµν

, we have

T · µi = δS

δmi
, (3.1.18)

so the anti-commutator is expressed as a total derivative of the action along certain direc-
tion in Mg.

More precisely, the computation carried out in [25] shows the following result,

∂Fg
∂tā

=
∫
Mg

3g−3∏
i=1

dmidm̄i
∑
j,k

∂2

∂mj∂m̄k

〈∏
l 6=j

∫
µl ·G

∏
l 6=k

∫
µ̄l · Ḡ

∫ Ō(2)
a

〉
, (3.1.19)

where Fg is the genus g free energy. Note that the final integrand is a total derivative, so
if Mg has no boundary, this would just be zero due to Stokes theorem. However exactly
because of compactification, the moduli space does have boundaries. More precisely, as
discussed above, those boundaries correspond to genus g surfaces that have nodal singular-
ities. Some examples of genus two curves are shown in Figure 3.1. In general, this happens
in two ways: a non-separating cycle of the surface can be pinched, leaving a single surface
of genus g − 1, see process (a) in Figure 3.1, or a separating cycle of the surface can be
pinched, splitting it up into two surfaces of genus g1 and g2 = g − g1, see process (b) in
Figure 3.1.

By carefully analyzing the boundary contributions to the integral for these two types
of boundaries, [25] shows that we get,

∂Fg
∂t̄i

= 1
2C

jk
ī

DjDkFg−1 +
g−1∑
r=1

DjFrDkFg−r

 , g > 2 . (3.1.20)

where Cjk

ī = C īj̄k̄g
jj̄gkk̄ with gjj̄, C īj̄k̄ the two-point, three-point function on the sphere

and Di is the covariant derivative6.
Finally, we would like to make some remark concerning this set of holomorphic anomaly

equations7. A particularly nice feature is that it is recursive. This means that in principle
6This is related to the fact that actually Fg is not a function but a section of the line bundle L2g−2

on MX .
7They first term in the right-hand side comes from the degeneration process appeared in figure (a),

while the second term comes from the degeneration process appeared in figure (b).
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we are able to determine the left-hand side inductively in terms of right-hand side which
consists of free energies of strictly lower genera. However, note that the left-hand side only
involves anti-holomorphic derivative. This means that we can always add a holomorphic
piece f(ti) to Fg without violating the equality. This ambiguity is known as the holomorphic
ambiguity. One possible way to determine f(ti) is to impose sufficiently many boundary
conditions at special points ofMX [84]. We will work out one example explicitly in chapter
4.

3.1.2 Refined topological string theory

Finally, we introduce the notion of refined topological string theory. Since presenting all
the details would lead us too far, we choose to be brief and only list some important results.

As mentioned in the introduction, for a non-compact Calabi-Yau manifold X there
exists a refinement of ordinary topological string theory, whose partition function is denoted
by Z(ε1, ε2). If we take the log of Z(ε1, ε2), we get the refined free energy Fref(ε1, ε2, t). It
admits the following expansion,

Fref(ε1, ε2, t) =
∞∑

g,n=0
(ε1ε2)g−1(ε1 + ε2)2nF g,n

ref (t) . (3.1.21)

Note that by setting ε1 = −ε2 = gs, we indeed recover (3.1.11) after identifying F g,0
ref (t)

to be Fg(t). In the next chapter, we are instead interested in a sort of opposite limit, by
taking ε1 to be zero. This is known as the Nekrasov-Shatashvili limit [155].

There also exists a formula similar to (3.1.12),

F (ε1,2, t) =
∑

gL,R≥0

∑
w≥1

∑
d∈H2(X,Z)

nd
gL,gR

w

(2 sin wεL
2 )2gL(2 sin wεR

2 )2gR

2 sin w(εR+εL)
2 2 sin w(εR−εL)

2

Qwd , (3.1.22)

where εL/R = ε1±ε2
2 . The integer numbers nd

gL,gR
are called the refined GV invariants

[102, 116]. They encode the numbers of BPS states of the M-theory compactification on
X with five dimensional Ω-background (R4 × S1)ε1,ε2 , where the parameters ε1, ε2 describe
how the R4 is twisted along S1.

Last but not least, in B type topological string theory, there exists a refined version of
holomorphic anomalies [109, 107],

∂̄īF (n,g) = 1
2C

jk

ī

DjDkF (n,g−1) +
∑
m,h

′
DjF (m,h)DkF (n−m,g−h)

 ,

n+ g > 1.
(3.1.23)

where the prime in the sum means (m,h) 6= (0, 0). Direct integration method of the refined
holomorphic anomaly equations can also be found in [109, 107].
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3.2 Mirror symmetry
Mirror symmetry is an extremely vast subject enjoying rich mathematical and physical
structures. [45] is a thorough monograph dedicated to mirror symmetry, aimed primarily
at mathematicians. [103] and [12] are two monographs written by both mathematicians
and physicists, which contain surely much more than we can cover in this thesis. Rather,
we choose to take a more down-to-earth approach and focus on the construction of mirror
pairs of toric Calabi-Yau threefolds.

3.2.1 Batyrev’s Construction

Before we start, it is necessary to review some basic knowledge of toric geometry. For
convenience of the reader, a brief introduction can be found in appendix B, which also sets
all our conventions. Even though there are several ways to construct a toric variety, we
will start from the polytope. The reason is that this will allow for an elegant description
of the mirror pairs, first found by Batyrev [16].

In order to describe his proposal, we need to single out a subclass of polytopes known
as reflexive polytopes.

Definition 1. An integral polytope ∆ is reflexive if

• For each codimension 1 face F ⊂ ∆, there exists an nF ∈ N such that F = {m ∈
∆|〈m,nF 〉 = −1},

• 0 ∈ int(∆).

If we take the convex hull of the nF in NR, we get a dual polytope named as the polar
polytope ∆∗. Note that comparing with the definition of a normal fan in Appendix B, we
see that the nF correspond exactly to the one dimensional rays of the fan for CP∆.

Theorem 1. Recall that CP∆ is the toric variety defined by ∆.

• A polytope ∆ is reflexive if and only if CP∆ is Gorenstein and Fano.

• A polytope ∆ is reflexive if and only if ∆∗ is reflexive, and we clearly have (∆∗)∗ = ∆.

Proof. [16]. 2

The Gorenstein condition means that the geometry has at worst Gorenstein singular-
ities. Thus even we may not have a good notion of top degree holomorphic differential
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form, we can still define the canonical line bundle. The Fano condition means that the
anti-canonical line bundle is ample. This in particular demands the anti-canonical divisor
intersects effective curves with non-negative values8.

Now we can describe how to construct mirror pairs of Calabi-Yau hypersurfaces inside
four dimensional toric varieties. Suppose we are given a reflexive polytope ∆ embedded in
a four dimensional space. Denoting its only inner point by α0 and integral points lying on
∆ by αi (i = 1, . . . , s), we consider the zero locus of the Laurent polynomial9

f∆ = t0 −
∑
i 6=0

ti Y
α1
i

1 . . . Y
α4
i

4 , αi ∈ Z4 , (3.2.1)

inside the algebraic torus (C∗)4 ⊂ P∆. Its closure Z∆ in P∆ defines a hypersurface. Note
that by rescaling the four coordinates Yi and adjusting the overall normalization we can
set five of the parameters ti to one.

In general, P∆ and hence Z∆ are singular. As mentioned above, [16] shows that Z∆ can
be resolved into a non singular Calabi-Yau manifold if and only if P∆ has only Gorenstein
singularities. According to Theorem 1, this is equivalent to ∆ being reflexive, which is
exactly our assumption. We will still denote the resolved hypersurface by Z∆.

Theorem 1 also tells us that ∆∗ is reflexive as well, so we can just apply the same
construction to ∆∗. We choose the inner and integer points to be α∗i (i = 0, · · · , s∗),
construct the hypersurface and resolve it into a smooth manifold Z∆∗ .

The pair of hypersurfaces (Ẑ∆, Ẑ∆∗) forms a mirror pair, thanks to the following com-
binatorial identities for the Hodge numbers first observed in [16],

h1,1(Z∆∗) = h2,1(Z∆)
= l(∆)− 5−

∑
codimF=1

l′(F ) +
∑

codimF=2
l′(F )l′(F ∗)

h1,1(Z∆) = h2,1(Z∆∗)
= l(∆∗ )− 5−

∑
codimF ∗=1

l′(F ∗) +
∑

codimF ∗=2
l′(F ∗) l′(F ) ,

(3.2.2)

where F stands for the face of ∆ and F ∗ means its dual face. If a k dimensional F is
specified by vertices m1, · · ·mk, then F ∗ is a 3 − k dimensional face in ∆∗ defined by
{ν ∈ ∆∗|(ν,m1) = (ν,mk) = 0}. l(P ) and l′(P ) for any convex set P are the number of
integral points on P and in its interior respectively.

Therefore, each reflexive pair of polytopes gives us automatically a mirror pair of Calabi-
Yau manifolds. In fact, for low dimensions we can even list out all of them. It was found
that there are 16 reflexive polytopes in two dimensions, 4319 reflexive polytopes in three
dimensions, 473,800,776 reflexive polytopes in four dimensions, etc10.

8This is a useful criterion since it’s not difficult to compute those numbers in toric geometry.
9More invariantly, this is a generic section of the anti-canonical bundle OX∆(

∑
iDi).

10Their integral points, vertices, Picard and Hodge numbers can be found on the website [1].
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Most of those toric geometries are singular. As mentioned above, by blowing up at the
singular point we are guaranteed to make Z∆ smooth. Now comes an important remark.
Because of the way we define the dual polytope ∆∗, there is a very convenient way to
smoothen our geometry. Recalled that ∆∗ has a unique interior point p. Note that the
face fan of ∆∗, defined as the fan whose top dimensional cones are generated by the rays
connecting p to the points on all the faces of ∆∗, coincides with the normal fan of ∆.
Desingularization of ∆ is the same as star triangulations of ∆∗ with regard to p. The same
mechanism also works for ∆.

Moreover, as we mentioned in the appendix B, for threefolds we can have different
ways to resolve singularities, related to each other by flops. In terms of toric geometries, it
means that the rays in the fan have different ways to combine into two-dimensional cones.
This naturally explains why we have different possible triangulations of ∆∗. Note that GW
invariants are reshuffled under different choices of triangulations.

Example 1. As an example, let’s consider perhaps the most famous mirror pair of Calabi-
Yau manifolds: the quintic hypersurface in CP4 and its mirror. The mirror manifold
constructed by [75] lives in the space CP4/Z3

5, where Z3
5 is the group of automorphism

(λ1, · · · , λ5),
5∏
i=1

λi = 1, λ5
i = 1, 1 ≤ i ≤ 5 , (3.2.3)

acting on CP4 by coordinate multiplication.
The mirror quintic is also a quintic hypersurface

ψ
5∏
i=1

xi −
5∑
i=1

tix
5
i = 0 . (3.2.4)

It’s easy to verify that the equation is invariant under all the Z3
5 action so the mirror quintic

is well-defined. As mentioned before, five of the parameters are redundant, so there is only
one parameter ψ which parametrizes the moduli space of complex structure.

We start from the fan of CP4. The toric data can be presented as follows,

−1 −1 −1 −1 1
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


(3.2.5)

We refer readers to appendix B for our convention. Here we just point out that the last
column represents the single relation among five edges in a four dimensional space.

From our correspondence between polytopes and fans (theorem 4 in appendix B), we can
find out the polytope ∆ for CP4, represented schematically as the right figure in Figure 3.2.
We use the anti-canonical divisor to obtain a projective embedding of CP4. The points on
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Figure 3.2: Dual polytopes and their face fans.

and inside ∆ are exactly all the possible quintic monomials. Summing them up, we get the
quintic hypersurface. It’s not difficult to see that this coincides with Z∆.

Next, we take the dual polytope ∆∗, schematically depicted as the left figure of Figure
3.2. Precisely due to its definition, it’s the same as the convex set formed by the end points
of the five edges of fan for CP4. Moreover, based on our theorem 5 in appendix B, we readily
see that CP∆∗ must be an orbifold. The five end points exhaust all the integral points lying
on ∆∗ 11, together with a unique inner point which is the origin. As mentioned in section
B.2 of the appendix B, the CP∆∗ itself can be represented as a hypersurface inside CP5,
defined by

5∏
i=1

yi = y5
0 . (3.2.6)

The variables Yi can be related to yi by the map

[1, Y1, Y2, Y3, Y4,
1

Y1Y2Y3Y4
] = [1, y1

y0
,
y2

y0
,
y3

y0
,
y4

y0
,
y5

y0
] . (3.2.7)

According to the Batyrev construction, the mirror hypersurface Z∆∗ in CP∆∗ should take
the following form,

t0y0 −
5∑
i=1

tiyi = 0. (3.2.8)

This is precisely the mirror quintic, provided that we reparametrize the coordinates

y0 =
5∏
i=1

xi, yi = x5
i , 1 ≤ i ≤ 5 (3.2.9)

to identify CP∆∗ with CP4/Z3
5. Plugging them into (3.2.8), we recover (3.2.4).

3.2.2 Local Mirror Symmetry

Although originally mirror symmetry was formulated in terms of compact Calabi-Yau
threefolds (hypersurfaces inside toric varieties), it was later extended to the non-compact

11This can be checked explicitly using computer software such as [170].
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case, dubbed “local mirror symmetry” [39]. In this set-up, we consider X itself to be a
three dimensional toric variety. As we will discuss shortly, this means that X must be
non-compact. It can be studied from decompactifying a compact hypersurface, or start
directly from its fan, which is the approach adopted here.

Let the set of 1-cones Σ(1) of X be {να} for α = 1, · · · , nΣ + 3. The Calabi-Yau
condition implies that there are nΣ vectors `(i)

α such that

nΣ+3∑
α=1

`(i)
α =

nΣ+3∑
α=1

`(i)
α να = 0 , i = 1, . . . , nΣ . (3.2.10)

From the above constraints, some entries of `(i)
α must be negative. They are responsible

for the non-compactness of X 12. Furthermore, we can rotate Σ in such a way that all the
{να} lie on a hyperplane

vα = (1,mα, nα), α = 1, . . . , nΣ + 3 . (3.2.11)

Hence it is enough to just write down its planar support, which is the convex set NΣ with
vertices given by

v′α = (mα, nα), α = 1, . . . , nΣ + 3 . (3.2.12)

Base on the above information, we can write down its mirror Calabi-Yau manifold X̃,
whose proof can be found in [104],

uv = W (x, y) , (3.2.13)

for u, v ∈ C∗, x, y ∈ C , where

W (x, y) =
nΣ+3∑
α=1

aαe
mαx+nαy . (3.2.14)

Note that the directions u and v only enter in the left-hand side and do not carry
much geometric information. In fact, all the geometry can be reduced to the curve CΣ :
W (x, y) = 0. CΣ is also known as the mirror curve.

The moduli space of CΣ is parametrized by the coefficients aα, modulo the C∗ actions
on ex, ey and the overall C∗ rescaling. Furthermore, even after modulo this group action,
not all the remaining coefficients correspond to the complex structure. It can be shown
that only those corresponding to inner points of NΣ contribute13.

12This can be seen, e.g., from presenting X as the vacua of a gauged linear sigma model.
13This was in particular emphasized in [110, 111].
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Figure 3.3: “Amoeba” of the mirror curve (3.2.16).

Example 2. We choose our example to be the local Calabi-Yau threefold X = O(K) →
F0

14. The toric data of its fan is given by

1 0 0 −2 −2
1 1 0 1 0
1 −1 0 1 0
1 0 1 0 1
1 0 −1 0 1


(3.2.15)

Again, we refer to appendix B for our convention. Note that if we get rid of the first
coordinate, we recover the fan for F0. This just means that there exists a projective map
π : X → F0, as it should be.

According to our general recipe, we can immediately write down the mirror curve CΣ,

W (x, y) = ex +me−x + ey + e−y − u = 0 , (3.2.16)

where we use our freedom to set three of the coefficients in (3.2.14) to one. Moreover, since
the parameter m corresponds to a vertex on the boundary of NΣ, it does not contribute to
the true moduli. Only u parametrizes the moduli space of complex structures MCΣ. This
also means that CΣ is a genus one curve. Another way to see this is to consider its tropical
limit, which is the shape in red in Figure 3.3.

14Its toric diagram is Figure B.5 in the appendix B.
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Chapter 4

Resurgence and Quantum Mirror
Curve: A Case Study

Historically, the spectral problem for electrons on a two-dimensional square lattice in a
uniform magnetic field was originally considered by Harper in 1955 [89], where an elegant
difference equation was derived. More than 20 years later, in 1976 Hofstadter derived a
recursive equation which allowed him to plot the spectrum as a function of the magnetic
field, now known as the Hofstadter butterfly [100]. Due to the magnetic effect, the electron
spectrum shows a rich structure. Recently, a novel link between a two-dimensional electron
lattice system and a Calabi-Yau geometry was found in [93]. It was pointed out in [93]
that the Hofstadter’s spectral problem is related to another spectral problem appearing
in the mirror geometry of the toric Calabi-Yau manifold known as local F0 [72]. The
interesting point of this relation is that the magnetic effect is interpreted as a kind of
quantum deformation of the Calabi-Yau geometry.

Let’s briefly summarize the content of this chapter. Our central goal is a more quan-
titative understanding of this relation as well as of the non-perturbative and resurgent
structure of the spectrum. We here focus on the band structure of the Harper-Hofstadter
problem in the weak magnetic limit. In this regime, we can treat the magnetic flux per-
turbatively. The perturbative expansion of the energy spectrum can explain the position
(the center) of the band for each Landau level. However, it does not explain the width of
bands because the band width is non-perturbative in the weak magnetic flux limit. Such
non-perturbative corrections are caused by quantum mechanical tunneling effects. We will
demonstrate that the non-perturbative band width is explained by instanton effects in the
path integral formalism. This was observed long ago in [63] (see also [178] for the WKB
approach to the problem). Nevertheless, here we will focus on the resurgent properties in-
timately related to these instantons, or the multi-instanton contributions which we discuss
in some details.

Moreover, we have a very efficient way to compute the perturbative expansion of the
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energy spectrum around the trivial saddle [167, 81], but this efficient way is not applicable
for the computation of semi-classical expansion around the other nontrivial saddles. To our
knowledge, there are no systematic ways to compute the semi-classical expansions around
the instanton saddles in the Harper-Hofstadter model. We employ several approaches to
extract this information. One is a brute force numerical approach, which we use as a
check. The second is a path-integral approach, where we find the exact saddle of the
path-integral action and the one-loop fluctuation. The instanton analysis is performed
only to the leading-order in perturbation theory, and is not easily extended to perturbative
corrections around the instanton saddles.

To extract higher corrections around instanton saddles, we propose a rather unconven-
tional approach. We use the connection with a toric Calabi-Yau threefold, local F0, and
find that the non-perturbative band width is captured by the free energy of the refined
topological string on this geometry. Using this remarkable connection, we can efficiently
compute the semi-classical fluctuation around the 1-instanton saddle by using a string
theory technique, called the refined holomorphic anomaly equations [25, 135, 109]. Our
approach here is conceptually very similar to the previous works [42] on certain quantum
mechanical systems1. We would like to emphasize that here we have a realistic electron
system where string theory techniques can be applied.

The structure of this chapter is as follows. In section 4.1 we quickly review the eigen-
value problem of the Harper-Hofstadter model and its exact solutions when the magnetic
flux φ is 2π times a rational number. In section 4.2, we make a trans-series ansatz for
the energy in the small φ limit. We then compute the leading order contribution in the
1-instanton sector for the ground state energy by a path integral calculation, and find
that it agrees with the numerical results. In section 4.3, we perform further path integral
calculations in the 2-instanton sector. The imaginary part of the instanton–anti-instanton
sector is extracted numerically using the well-known relation to the large order growth of
the perturbative energy. Inspired by [41, 42, 61], we also find in section 4.4 the fluctuations
in the 1-instanton and instanton–anti-instanton sector can be computed from topological
string on local F0.

This chapter is mostly based on the article Instantons in the Hofstadter butterfly: dif-
ference equation, resurgence and quantum mirror curves [55] by Jie Gu, Yasuyuki Hatsuda,
Tin Sulejemanpasic and the author, with various changes for pedagogical reasons.

4.1 The Harper-Hofstadter problem
To prepare for the other sections, we quickly review in this section the classic results on
the Harper-Hofstadter model [89, 100], including the formulation of its eigenvalue problem,

1In fact, the results in [42] correspond to the special case, the midpoint of each sub-band in our analysis.
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and the exact solutions when the magnetic flux is 2π times a rational number. We make
the careful distinction that there are two Bloch angles in this case while only one of them
can be turned on if the value of the magnetic flux is generic.

4.1.1 The eigenvalue problem of the Harper-Hofstadter equation

The Harper-Hofstadter model describes an electron in a two dimensional lattice potential
with a uniform magnetic flux in the perpendicular direction. Let the lattice spacing be a,
and suppose the electron momentum has components kx and ky in the two directions. The
energy of the electron before turning on the magnetic flux is, up to a normalization

E = −1
2(eikxa + e−ikxa + eikya + e−ikya) + 2 . (4.1.1)

We have chosen for later convenience a particular normalization so that the energy vanishes
for zero electron momentum. In this convention, the energy forms a single band 0 ≤ E ≤ 4.

After we turn on the magnetic flux, quantum mechanically we get the Hamiltonian
operator by replacing the momentum ~k by the operator2 ~π := ~p − ~A. Notice that ~p is
the canonical momentum. Upon the gauge transformation ~A→ ~A+ ~∇Λ, the Hamiltonian
is only invariant up to a canonical transformation ~p → ~p + ~∇Λ. Under such a canonical
transformation, the state of the Hilbert space transforms as |Ψ〉 → eiΛ(x,y) |Ψ〉. Notice that
the momentum ~π generally depends on the coordinates. Indeed this is reflected in the fact
that the commutator

[πx, πy] = iFxy(x, y) (4.1.2)

where Fxy(x, y) = ∂xAy − ∂yAx is the xy component of the field-strength tensor of ~A, i.e.
the magnetic field through the xy-plane at the point (x, y). Henceforth, we consider the
case where the magnetic field is uniform: Fxy(x, y) = B.

Replacing3 x = πxa, y = πya, we have that the lattice Hamiltonian becomes

H = −1
2(eix + e−ix + eiy + e−iy) + 2 . (4.1.3)

with the commutation relation
[x, y] = iφ, (4.1.4)

where φ = Ba2 is the flux of the magnetic field through the plaquette. We will also use
the exponentiated notation

Tx = eix , Ty = e−iy (4.1.5)

with the commutation relation
TxTy = eiφTyTx (4.1.6)

2We work in ~ = c = 1 units.
3Despite the notation, x and y are not the original coordinates of the system, but are proportional to

the magnetic translation operators.
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so that the Hamiltonian can be written as

H = −1
2(Tx + T−1

x + Ty + T−1
y ) + 2 . (4.1.7)

We regard x and y as the canonical operators, and can now look at eigenstates |ψ〉 in
the x-representation, i.e. define ψ(x) = 〈x|ψ〉 where |x〉 is an eigenstate of x with eigenvalue
x, so that

H |ψ〉 = E |ψ〉 ⇒ −1
2 (ψ(x+ φ) + ψ(x− φ))− cos(x)ψ(x) = (E − 2)ψ(x) (4.1.8)

which is a difference equation.

4.1.2 Symmetries and θ-angles

The Hamiltonian (4.1.3) clearly commutes with the symmetry operators4

T̃y = ei 2πx
φ , T̃x = e−i 2πy

φ , (4.1.9)

each of which generates a group Z. The labelling above is because

T̃y y T̃†y = y − 2π , T̃x x T̃†x = x − 2π . (4.1.10)

But we generally have
T̃xT̃y = e−i 4π2

φ T̃yT̃x . (4.1.11)

Since for a generic value of φ ∈ R the operators commute up to a phase, we can say that
the physical symmetry group Z× Z acts projectively.

Let us first choose
φ = 2π/Q , Q ∈ Z . (4.1.12)

In this case the two operators commute, and the symmetry Z × Z is no longer acting
projectively. Now we can project to simultaneous eigenstates of the operators T̃x and T̃y,
i.e. we can demand that

T̃x |Ψ〉 = eiθx |Ψ〉 , T̃y |Ψ〉 = eiθy |Ψ〉 (4.1.13)

The angles θx and θy are Bloch angles for the x and y translations. Notice however that
they can only be defined in this way if 2π/φ ∈ Z.

Next, we consider the more general case that

φ/(2π) = P/Q ∈ Q , (4.1.14)

4Similar operators also play an important role in the context of quantum mechanics associated with
toric Calabi-Yau threefolds [93].
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where P,Q are coprime integers. Then we have that

T̃xT̃y = e−i 2πQ
P T̃yT̃x . (4.1.15)

Clearly, if P 6= 1, the generators T̃x, T̃y must be supplemented by the generator5 IP = ei 2π
P ,

and the Z× Z must be centrally extended by ZP .
What about θ-angles? In this case we have that [(T̃x)P , (T̃y)P ] = 0, and we can define

θx, θy angles by the simultaneous eigenstate of (T̃x)P and (T̃y)P . Alternatively, in this case
we also have [(T̃x), (T̃y)P ] = 0, so we could equally define the two θ-angles as eigenstates of
these two operators. Finally if P = n2 is a perfect square, we have that [(T̃x)n, (T̃y)n] = 0
and we can define θ-angels accordingly as well. In most cases we will only consider P = 1.
Then, all these definitions of θ-angles coincide, and we are back to the scenario (4.1.12).

Finally if φ/2π is irrational, then

T̃xT̃y = eiαT̃yT̃x , (4.1.16)

where α/(2π) = −2π/φ is irrational as well. The additional generator Iα = eiα generates
the group Z, so the Z×Z is centrally extended by Z. In this case we are allowed only one
θ-angle, which we can get as an eigenstate of either T̃x or T̃y but not both simultaneously.

4.1.3 Exact solutions for rational magnetic flux

It is well-known that the eigenvalue problem (4.1.8) can be solved exactly if the rationality
condition (4.1.14) is satisfied [100]. Let us set

φ = 2πP/Q (4.1.17)

where P,Q are two coprime integers and Q > 0. The underlying reason of the exact
solvability is that in the case of (4.1.17) we can project onto simultaneous eigenstates of
the powers T̃P

x and T̃P
y , as these two operators commute. This will allow, as we shall see, for

a finite-dimensional representation of the operators Tx and Ty, in which the Hamiltonian
(4.1.7) is written, and give us an algebraic equation for the eigenvalue problem. Note that
in this case Tx,Ty are also shift operators, as

Tx y T†x = y − 2πP/Q , Ty x T†y = x − 2πP/Q . (4.1.18)

Recall that in this case we can define θ-angles as eigenvalues of T̃P
x = TQ

y and T̃P
y = TQ

x .
Now let us for the moment choose θx = θy = 0 mod 2π, i.e.

(T(0)
x )Q = (T(0)

y )Q = 1 , (4.1.19)

5IP is equivalent to e− 2πiQ
P because there always exists an integer k such that e− 2πiQ

P k = IP
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In other words we impose periodic boundary conditions on physical states under the shift
x → x − 2πP and y→ y − 2πP . The algebra (4.1.6), which now reads

T(0)
x T(0)

y = e
2πiP
Q T(0)

y T(0)
x (4.1.20)

has a finite dimensional representation in terms of the clock and shift matrices

T(0)
x =



1 0 0 . . . 0
0 q 0 . . . 0
0 0 q2 . . . 0
... ... ... ...
0 0 0 . . . qb−1


, T(0)

y =



0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
... ... ... ...
0 0 . . . 1 0


, (4.1.21)

where q = eiφ = e
2πiP
Q . Note also that (T(0)

x )Q = (T(0)
y )Q = IQ×Q, as it should.

Now let us introduce the twisted boundary condition through the replacement (T(0)
x ,T(0)

y )→
(Tx,Ty) = (T(0)

x ei θx
Q ,T(0)

y ei θy
Q ). Then we have that

(Tx)Q = eiθx1, (Ty)Q = eiθy1 , (4.1.22)

while the algebra (4.1.6) is intact. Alternatively, the twisted boundary condition is equiv-
alent to a deformation of the Hamiltonian. Using the notation kx = θx/Q, ky = θy/Q, we
can write the Hamiltonian operator depending on kx and ky as

H(kx, ky) = −1
2(eikxT(0)

x + e−ikxT(0)−1
x + eikyT(0)

y + e−ikyT(0)−1
y ) + 2, (4.1.23)

while keeping the boundary condition periodic. Now we are finally ready to write the
eigenvalue equation for the operator (4.1.3). Plugging the matrix representation of T(0)

x

and T(0)
y into (4.1.23), the Hamiltonian becomes

2− cos(kx) −1
2e−iky 0 . . . 0 −1

2eiky

−1
2eiky 2− cos

(
kx + 2πP

Q

)
−1

2e−iky . . . 0 0
... ... ... ... ...
0 0 0 . . . −1

2e−iky

−1
2e−iky 0 0 . . . −1

2eiky 2− cos
(
kx + 2π(Q−1)P

Q

)


(4.1.24)

so that the characteristic equation det(H − E IQ×Q) = 0 is given by

FP/Q(E, kx, ky) = det



M0 −e−iky 0 . . . 0 0 −eiky

−eiky M1 −e−iky . . . 0 0 0
... ... ... ... ... ...
0 0 0 . . . −eikx MQ−2 −e−iky

−e−iky 0 0 . . . 0 −eiky MQ−1


= 0 ,

(4.1.25)
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with
Mn = 2(2− E)− 2 cos(2πnP/Q+ kx) . (4.1.26)

As in [91], it is straightforward to check that

FP/Q(E, kx, ky) = FP/Q(E, kx, 0)− 2 cos(Qky) + 2 . (4.1.27)

Using the symmetry under the mapping (kx, ky) 7→ (ky,−kx, ), one finds that the equation
(4.1.25) can be simplified to

FP/Q(E, 0, 0) + 4 = 2(cos(θx) + cos(θy)) , (4.1.28)

with the Bloch angels θx = Qkx, θy = Qky. It is then a simple job to get eigen-energy E

by solving (4.1.28).
We notice that the equation (4.1.28) depends on the value of P only through the

polynomial FP/Q(E, 0, 0). Note (4.1.28) indicates that the minimal ranges for the Bloch
angles θx, θy are

0 ≤ θx < 2π , 0 ≤ θy < 2π , (4.1.29)

as they should. By varying the values of θx, θy, the eigen-energies E(θx, θy) form bands.
The two edges of a energy band correspond to (θx, θy) = (0, 0), (π, π). If we turn off one
Bloch angle, the energy band width is reduced to its one half. We reproduce in Figure 4.1
the famous plot of the Hofstadter butterfly, which is a plot of the energy bands as a function
of the magnetic flux φ when φ/2π is rational.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

ϕ/2π

E

Figure 4.1: The Hofstadter butterfly plots energy levels Ekx,ky (N,φ) with 0 ≤ kx, ky ≤
2π/Q against magnetic flux φ ∈ 2πQ for the Harper-Hofstadter model. We take φ/2π to be
P/Q for any coprime pairs of positive integers such that P ≤ Q and Q ≤ 30.
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4.2 Trans-series expansion and one-instanton
sector

4.2.1 Why trans-series expansion?

We are interested in the energy spectrum of the Harper-Hofstadter model in the weak
flux limit φ → 0. As discussed in section 4.1, with generic values of φ, we should use
the Hamiltonian operator (4.1.3) for the twisted boundary condition with only one Bloch
angle. Throughout this part, however, we consider the weak flux limit with the specific
form

φ = 2π
Q
, Q→∞, (4.2.1)

for which we can introduce two distinct Bloch angles θx and θy simultaneously.
We want to understand the spectral behavior in the limit given in (4.2.1). To do so, it

is useful to treat φ as a continuous parameter even in the specific case (4.2.1). Since the
Hamiltonian is a Laurent polynomial of eix and eiy, we can use the Mathematica package
BenderWu [167, 81] to compute its perturbative energy6. The first few orders are as follows

Epert(N) = 2N + 1
2 φ− 2N2 + 2N + 1

16 φ2 + 2N3 + 3N2 + 3N + 1
384 φ3 +O(φ4) , (4.2.2)

where N is the Landau level of the eigen-energy. We note the agreement with earlier
studies [22, 64].

The perturbative energy (4.2.2) or even its Borel resummation cannot be the full answer.
First of all, the higher order terms of the perturbative series have the same sign, and thus
its Borel transform of the perturbative series has poles on the positive axis, leading to
ambiguity in the Borel resummation. This ambiguity is an indication that the energy
receives non-perturbative corrections. We discuss the ambiguity in detail in section 4.3.2.
Second, the perturbative series clearly does not depend on Bloch angles, thus by itself
cannot explain the energy bands. As a result, the band spectrum should have the trans-
series expansion, with the explicit dependence of θx and θy in instanton sectors. The
trans-series expansion of the spectrum should take the following form:

E(θx,θy)(N) = Epert(N) + E1-inst
(θx,θy)(N) + E2-inst

(θx,θy)(N) + · · · (φ→ 0) . (4.2.3)

The leading perturbative contribution is given by (4.2.2). The k-instanton sector is expo-

6The Hamiltonians considered in [81] consist of operators ex and ey with [x, y] = i~. To translate it into
our case here, one has to identify ~ = −φ. See subsection 4.4 for detail. This package can compute the
perturbative spectrum for difference operators of the exponential-polynomial type. We have furthermore
updated the BenderWu package version 2.2 with a function BWDifferenceArray, which allows of mixed
inclusion of terms ex, ep, eix, eip. The package is available on Wolfram Package site.
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nentially suppressed by a factor e−kA/φ with a constant A7. The reason why it is called a
trans-series is due to the presence of exponentially small terms. One may wonder why those
terms are important, given that they are invisible in the semi-classical analysis. However,
as we shall see below, they are crucial to understanding the non-perturbative phenomena.

In other words, our goal in this part is to reveal this trans-series structure in the
spectrum. In particular, we will show explicit forms for a few instanton sectors. In the
subsequent subsections, we will first compute the leading (1-loop) order contribution to
the 1-instanton for the ground state energy by an honest path integral computation, and
then compare them with the prediction from the numerical analysis. We further argue that
the quantum fluctuations in the one-instanton sector for any energy level can be read off
from the topological string theory on local F0. In the next section, we will investigate the
2-instanton sector.

4.2.2 Path integral in one-instanton sector

The problem of instantons in the Harper/Hofstadter problem was first discussed in [63]
where the authors computed the one-instanton and its one-loop determinant numerically.
Here we will re-derive these instanton solutions and compute analytically the one-loop
fluctuations in the instanton sectors of the ground state energy.

To begin with, let’s reproduce the Hamiltonian operator (4.1.3) for convenience

H(x, y) := − cos x − cos y + 2 , [x, y] = iφ . (4.2.4)

The cosine potential has infinitely many degenerate vacua located at

x = 2πnx , y = 2πny , nx, ny ∈ Z . (4.2.5)

Classically we have complete freedom of whether to identify different vacua as physically
equivalent. This is not possible quantum mechanically for generic values of φ as we shall
see.

Treating φ as the Planck constant, the above Hamiltonian can be associated with the
Euclidean path integral

Z = tr e−
β
φ

H(x,y) =
∫
DxDy exp

[
−1
φ

∫ β/2

−β/2
dt (H(x, y)− iẋy)

]
. (4.2.6)

with boundary conditions for x and y to be specified momentarily. The partition function
above is related to the eigen-energies E(N) with levels N = 0, 1, 2, . . . of the Hamiltonian
H by

Z =
∞∑
N=0

e−βE(N)/φ , (4.2.7)

7More precisely, beyond the one-instanton order, in general logarithmic corrections of the form log` φ
also appear. Therefore, the full trans-series expansion consists of three kinds of trans-monomials: φ, e−A/φ

and log φ.
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so that the ground state energy E(0) can be obtained through the Euclidean path integral
in the large β limit.

Before we continue we should emphasize that the action of the above path integral is
similar to that of the phase-space quantum mechanical system where x is identified with
a coordinate, and y is identified with a momentum. The difference is that here we do not
have a purely Gaussian dependence on the “momentum” y. For this reason we cannot
integrate it out. Still one may hope to analyze the problem semi-classically. But there are
several issues here. Firstly the semi-classics of path-integrals is to this day not a completely
understood subject, but it has become clear recently that the correct interpretation of it
is via the Picard-Lefschetz (PL) theory [187, 188, 88, 21, 20, 18, 17, 134, 19, 153]. The PL
theory analysis is by far not a straightforward matter, and requires the identification of
saddles which contribute in the semi-classical expansion. As we shall see all such saddles of
the action above will be on complex x, y trajectories. We do not a priori know whether such
saddles should contribute. To determine it we should compute the so-called intersection
number of the co-thimble (we refer the reader to the cited literature for details). This is a
difficult task way beyond our current understanding. We will find some instanton solutions
and argue that they must contribute on physical grounds. We will check quantitatively
their contribution against numerics and find exact agreement.

Secondly it is not clear whether a continuum limit of the above path-integral exists.
The path-integral is typically obtained by slicing the Boltzmann weight into N pieces, and
inserting a complete set of states in between. This amounts to a lattice discretization of
the path-integral, with a lattice spacing ε = β/N . Upon integration over the momentum,
the resulting path-integral has a Gaussian suppression factors e−(... ) (xi+1−xi)

2

ε . As we take
the continuum limit ε→ 0 the path of x is forced to be smoother and smoother. No such
smoothness seems to be justified in the continuum-limit of the phase-space path integral
above. Still as we shall see the semiclassical analysis passes many non-trivial checks against
the numerical brute-force calculation.

The boundary conditions of the path integral can be made strictly periodic. This
amounts to saying that values of coordinates (x, y) and (x+ 2πnx, y+ 2πny) are physically
distinct for any nx, ny ∈ Z. In this case the above Lagrangian has a shift symmetry which
takes x→ x+ 2πnx and y → y + 2πny, with nx,y ∈ Z.

Now let us consider the values of x and x + 2π to be physically equivalent. In other
words we are gauging the shift symmetry of the scenario above, projecting the full Hilbert
space down to eigenstates of a shift symmetry operator. Without a θx-term, the projection
will be to singlets of the shift operator. Gauging the symmetry amounts to saying that the
boundary conditions must be relaxed to include periodicity of x(t) up to a 2π shift, i.e.
x(t + β) = x(t) + 2πmx, where mx is to be summed over. The integers mx can be viewed
as holonomies of the Z-valued gauge field which we have to sum over in order to project
to a subspace of singlets under the shift symmetry x→ x+ 2π.
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Notice however that after gauging the x-shift symmetry, shifting y to y + 2πny we get
an additional phase in the partition function

e
i
φ

(2π)2nymx . (4.2.8)

The above is only unity if φ = 2π/Q, where Q ∈ Z. Hence if we insist that x ∼ x+ 2π (i.e.
x-shift symmetry is gauged) and that y → y+ 2π is a global symmetry we must have that8

φ = 2π/Q. This is of course evident from the Hilbert space picture, but it is satisfying
to see it in the path-integral. Incidentally we can say that there is a ’t Hooft anomaly
between the two (Z)x and (Z)y shift symmetries, so that the system must break at least
one of the two to saturate the anomaly.

Since we are assuming that φ = 2π/Q, we can insert the two θ-angles by introducing the
terms θy ẏ

2π and θx ẋ
2π . The path integral can be treated by the saddle-point approximation if

φ is small. The main contribution comes from the perturbative saddle for which x = y = 0
at any time t. This solution does not break the translational symmetry on the time-circle,
and all its modes are Gaussian. The perturbative partition function can be expanded in
powers of φ using the Feynman diagrams. The result will be the perturbative partition
function which we denote as Z0. In turn this is related to the perturbative energies as
follows

Z0 =
∞∑
N=0

e−βEpert(N)/φ . (4.2.9)

where Epert(N) is the perturbative energy at level N .
On the other hand, the contributions of the partition function can be classified by their

topological winding number, i.e.

Z(β, θ) = Z0 + Z1 + Z−1 + Z2 + Z−2 · · · = Z0

1 +
∞∑
n6=0

Ẑn

 , Ẑn = Zn/Z0 , (4.2.10)

where Z0 is the expansion around the trivial saddle point (i.e. the perturbative vacuum),
and it is responsible for perturbative contributions Epert(0)

Z0 ≈ Ce−βEpert(0)/φ , β →∞ , (4.2.11)

while Zn6=0 come from different instanton sectors (n counts the instanton number). The
constant C above may be UV divergent, and may be removed by the appropriate definition
of the path integral measure. Further all Zn-s are UV divergent. However all the UV
divergences are the same, and so Ẑn is UV finite. The constant C therefore factorizes, and
is of no physical consequence as it cancels in the observables.

8From the point of view of the Hilbert space this means that if x→ x+ 2π is a gauge symmetry, the
operator which shifts y→ y + 2π, given by ei2πx/φ, is not a gauge invariant operator unless 2π/φ ∈ Z, and
even though it commutes with the Hamiltonian, it is not a valid generator of the symmetry transformation.
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The dilute instanton gas approximation makes now the following assumption: the multi-
instanton contributions factorize to 1-instanton contributions. So

Ẑn =
∑

m−m̄=n

Ẑm
1
m!

Ẑm̄
−1
m̄! . (4.2.12)

Summing over n we simply have

Z(β, θ) ≈ Zdilute instanton gas = Z0 eẐ1+Ẑ−1 . (4.2.13)

Now the Ẑ±1 is given by

Ẑ±1 = −
∫ β/2

−β/2
dt Ke−A/φ±iθ = −βKe−A/φ±iθ (4.2.14)

where K is the measure of the 1-instanton configurations, including the perturbative correc-
tions, and θ is the relevant θ-angle coupling to the instantons9. Therefore the 1-instanton
correction to the ground state energy is given by

E1-inst
θ (0) = EI + EĪ = 2φKe−A/φ cos θ . (4.2.15)

To get this correction we need to compute K.
Let us first consider the partition function Z(β, θ) in the trivial vacuum given by x =

y = 0 by expanding in x and y up to quadratic terms and performing the Gaussian integral
to get

Z0(β) ≈ 1
(det O0)1/2 , (4.2.16)

with
O0 = −∂2

t + 1 , (4.2.17)

Now we consider the 1-instanton sector. For this purpose, we need to solve for the
1-instanton configuration. The equations of motion for the partition function (4.2.6) is

iẋ− sin y = 0 , (4.2.18a)
iẏ + sin x = 0 . (4.2.18b)

We solve these equations in the appendix C.1 to give the 1-instanton solution

x1(t) = 2 cos−1

− √
2 tanh(t− t0)√

1 + tanh2(t− t0)

 , y1(t) = cos−1
(

1 + 2
cosh 2(t− t0)

)
, (4.2.19)

where t0 is a free parameter interpreted as the center of the instanton. Note that x1(t)
starts from 0 in t = −∞ and reaches 2π in t = +∞, and thus it indeed has topological

9In the Harper-Hofstadter problem we will have two types of instantons which tunnel in x- and y-
directions respectively. So we may have two θ-angles: θ = θx or θ = θy coupling to the tunneling events
x→ x+ 2π and y → y + 2π. Recall that these θ angles can only be defined when 2π/φ ∈ Z.
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Figure 4.2: The x- and y-profiles of 1-instanton in the Harper-Hofstadter model. The value
of y is purely imaginary.

charge 1, while y1(t) is always imaginary and its imaginary value reaches the maximum
cos−1(3) at t = t0. This means that we are considering the instanton tunneling in the x-
direction. We call it an x-instanton. We plot x1(t) and −iy1(t) in Figure 4.2. The profile of
an anti-instanton is obtained by simply the time-reversal transformation10. We also notice
that the Hamiltonian is constant

cos y1 + cosx1 = 2 , (4.2.20)

as it should be, with the help of the e.o.m. (4.2.18a), which will be of use later.
There exists in fact another type of 1-instanton due to the fact that the Hamiltonian

function is also periodic in y. In the example of the Harper-Hofstadter model, one can
easily find the new instanton due to the symmetry of the theory under the map

(x(t), y(t))→ (−y(t), x(t)) . (4.2.21)

Applying this map to the instanton solution (4.2.19), we get a new instanton solution with
the x- and y-profiles exchanged (up to a minus sign). We call it a y-instanton, since it has
a non-trivial topological charge in the y-direction, but a trivial topological charge in the
x-direction. This instanton does not couple to θx. Instead it couples to the θy-angle.11

Let us compute the action of the 1-instanton configuration (4.2.19), in the limit β →∞.
The action of the instanton is computed analytically in appendix C.1 and it reads

A = 8C , (4.2.22)

where C is the Catalan’s constant.
Now we compute the one-loop partition function in the 1-instanton sector, by perform-

ing the expansion
x = x1 + δx , y = y1 + δy , (4.2.23)

10The time reversal transformation takes T : (x(t), y(t)) → (x(−t),−y(−t)). In addition we have a
parity transformation which takes P : (x(t), y(t))→ (−x(t),−y(t)).

11We remind the reader that both θx and θy are only possible if the 2π/φ ∈ Z, which we assume here.
However much of the results will hold for generic φ, as we shall comment later.
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and keeping only terms up to quadratic orders. Using the conservation law (4.2.20) as well
as the e.o.m. (4.2.18), we have

Z1(β) ≈ e−A/φ+i θ
∫
D(δx)D(δy) exp

[
− 1

2φ

∫ β/2

−β/2
dt
(
cosx1 · δx2 + cos y1 · δy2 − 2i δẋδy

)]
.

(4.2.24)
We can first integrate out δy. However notice that in doing so we will get a nontrivial factor
in front of the path-integral, because the coefficient of δy2 is not a constant. To avoid this,
let us first replace δỹ = √cos y1δy and δx̃ = δx/

√cos y1.12 Notice that this replacement
keeps the measure invariant i.e. D(δx̃)D(δỹ) = D(δx)D(δy). Upon integrating out the δỹ,
we get

Z1(β) ≈e−A/φ+iθ

×
∫
D(δx̃) exp

− 1
2φ

∫ β/2

−β/2
dt


[
∂t
(
δx̃
√cos y1

)]2
cos y1

+ cosx1 cos y1δx̃
2


 (4.2.25)

=e−A/φ+i θ
√

det Õ

where the operator Õ is

Õ = −√cos y1∂t
1

cos y1
∂t
√cos y1 + cos y1 cosx1 . (4.2.26)

The operator Õ has a zero mode given by ψ0(t) = N−1 ẋ1(t)√cos y1
, as can be checked. Here

N =
√

(ẋ1/
√cos y1, ẋ1/

√cos y1) (4.2.27)

is the normalization factor. So the above expression of the one loop weight of the instanton
cannot be correct. The zero mode originates from the time-translation symmetry of the
theory. In other words, field fluctuations which only change the location of the instanton
do not change the action, and the modes in this direction must be treated exactly (i.e.
beyond the Gaussian approximation).

To find the measure of the instanton we must first separate out the zero mode, which
we denote by t0. We will get that

Z1 = e−A/φ+iθ
∫

dt0
µ√

det′ Õ
, (4.2.28)

where the prime indicates that the zero mode has been excluded from the determinant.
The µ above is the measure of the instanton moduli t0 (or the moduli space metric). It is
given by (see appendix C.2)

µ =
√
N2

2πφ , (4.2.29)

12Note that cos y1 > 0, because y1 is purely imaginary on the instanton trajectory.
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so that the one-loop instanton contribution to the partition function is given by

Z1(β) ≈
∫ dt0√

2πφ

√
(ẋ1/

√
cos y1(t), ẋ1/

√
cos y1(t)) e−A/φ+i θ

(det′O)1/2 . (4.2.30)

The contribution is of course divergent, as the functional determinant is infinite in the
continuum. We therefore normalize it with respect to the perturbative partition function.
The normalized 1-instanton partition function is given by

Ẑ1(β) = Z1(β)
Z0(β) ≈ e−A/φ+i θβ

√
(ẋ1/
√cos y1, ẋ1/

√cos y1)
√

2πφ

(
det O0

det′ Õ

)1/2

. (4.2.31)

Comparing with (4.2.14), we find that the prefactor K entering formula (4.2.15) is given
by13

K =

√
(ẋ1/
√cos y1, ẋ1/

√cos y1)
√

2πφ

(
det O0

det′ Õ

)1/2

. (4.2.32)

As we show in the appendix C.3, the ratio of determinants is given by

det′ Õ
det O0

= ẋ1(−β/2)ẋ1(β/2)
sinh β cos y1(−β/2)

∫ β/2

−β/2
dt ẋ2

1(t)
cos y1(t)

∫ t

−β/2
dt′ cos y1(t′)

ẋ2
1(t′)

∫ β/2

t
dt′′ cos y1(t′′)

ẋ2
1(t′′) .

(4.2.33)
Note that in obtaining the above result, we have used Dirichlet boundary conditions for the
space of function acted on by the operators O and O0. Since we will only be interested in
the limit β →∞, the boundary conditions will not matter. However if one is interested in
computing the instanton contributions to higher energy levels, a computation with periodic
boundary conditions is necessary.

Further since we only care about the limit β → ∞, we can make convenient approx-
imations. We notice that the 1-instanton configuration (C.1.6), (C.1.7) has the following
asymptotic form

ẋ1(t) ∼ A±e∓ωt , cos y1(t) ∼ 1 +B±e∓2ωt , t→ ±∞ , (4.2.34)

where
A± = 2

√
2 , B± = 4 , ω = 1 . (4.2.35)

Besides, the integrand of the integral over t is small when t is close to ±β/2, so the integral
over t is saturated away from them. So regarding the two integrals over t′ and t′′, only the
−β

2 � t� β
2 region is important. The two integrals can be approximated by

∫ t

−β/2
dt′ cos y1(t′)

ẋ2
1(t′) ∼

∫ t

−β/2
dt′ e

−2ωt′

A2
−
∼ eωβ

2ωA2
−
,

∫ β/2

t
dt′′ cos y1(t′′)

ẋ2
1(t′′) ∼

∫ β/2

t
dt′′ e

2ωt′′

A2
+
∼ eωβ

2ωA2
+
.

(4.2.36)

13A possible minus sign can be absorbed into the θ angle
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Pulling these two integrals out of the integral of t, the latter becomes (ẋ1/
√cos y1, ẋ1/

√cos y1).
Apply (4.2.34) in the remaining part of the determinant evaluation, we find in the end

det′ Õ
det O0

=
(ẋ1/
√cos y1, ẋ1/

√cos y1)
16 . (4.2.37)

we get that the factor K in (4.2.32) is given by

K = 4
(

1
2πφ

)1/2

. (4.2.38)

The anti-instanton partition function is the same but with the opposite topological charge.
Therefore using (4.2.15), the leading order 1-instanton correction to the ground state energy
given by x-instanton coupled to θx is

EIx(0) + EĪx(0) = 8 cos θx
(
φ

2π

)1/2

e−A/φ . (4.2.39)

Since we have two kinds of instantons coupled to θx and θy respectively, the full 1-instanton
correction is finally given by

E1-inst
(θx,θy)(0) = EIx(0) + EĪx(0) + EIy(0) + EĪy(0)

= 8(cos θx + cos θy)
(
φ

2π

)1/2

e−A/φ .
(4.2.40)

We can check that it indeed agrees with the numerical results [55].

4.3 Two-instanton sector

4.3.1 Two-instanton calculation

Now we wish to go beyond the dilute instanton gas approximation, and compute the
contributions of the two-instanton sector to the leading order in semi-classics. Recall that
we have two types of instantons, which we will call Ix and Iy, where Ix is a tunneling event
in x, i.e. it takes x→ x+ 2π, while Iy is a tunneling event in y → y + 2π.

We will consider all kinds of two-instanton events, ranging from “pure” correlations

[IxĪx], [ĪxIx], [Iy Īy], [ĪyIy],
[IxIx], [IyIy], [ĪxĪx], [Īy Īy],

(4.3.1)

to “mixed” ones
[IxIy], [IyIx], [ĪxĪy], [Īy Īx],
[ĪxIy], [Iy Īx], [IxĪy], [ĪyIx] .

(4.3.2)
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Before computing their interactions, we should stress that the contribution of such events
has long been subject to debates. Particularly tricky is the instanton–anti-instanton contri-
bution [IĪ], which is a priori ill-defined. This is because when instanton and anti-instanton
are close to each other the configuration is indistinguishable from the perturbative vacuum,
and it is not clear how such configurations should be taken into account (see [19] for an
incomplete list of references on the topic).

If we naively superpose the well-separated instanton and anti-instanton, where we label
their separation by τ , the action will be an increasing function of τ . Such a configuration
spends most of the time in one of the vacua (say x = 0) and then tunnels to the other
vacuum (x = 2π), lingering there for the time τ , and then returns back to the original
(x = 0) vacuum. The action of such a configuration is approximately

S2 ≈ 2A+B e−τ (4.3.3)

where the exponential contribution is the “classical” interaction14 of the instanton–anti-
instanton pair. The contribution of such a class of configurations to the partition function
would then be15 ∫

dt0
∫

dτK2 e−
2A
φ

(
e−

B
φ
e−τ − 1

)
, (4.3.4)

where φ is the coupling constant, t0 is the “center of mass” location of the pair, and
K is the one-loop measure of the individual (anti-)instantons. The integral over t0 will
simply produce one power of β, while the rest of the expression will be related to the IĪ
contribution to the energy. The integral over their separation is, however, an awkward
operation. As can be seen from path integral calculations [55], the interaction constant B
is negative, so the integral is saturated by its lower limit τ ∼ 0, where the approximations
of the above expression are invalid, and where the notion of the instanton–anti-instanton
is ill defined.

Bogomolny [29] and Zinn-Justin [192, 195] argued long ago that the ill-defined IĪ am-
plitude is connected with the ambiguity of the Borel sum of the perturbation theory. They
correctly argued that the definition of the IĪ amplitude must be ambiguous in the same
way that the perturbation theory is. A prescription which is now dubbed the Bogomolny–
Zinn-Justin (BZJ) prescription, is to take the coupling φ to be negative, so that the above
integral is saturated away from τ ∼ log(1/φ) � 1, where the approximations are valid.
The above integral over τ is then performed to produce a correction to the energy

EIĪ
0 = φK2e−2A/φ(−γE − log(B/φ)− Γ(0, B/φ)) , (4.3.5)

14The term “classical” is used to reflect the 1/φ dependence of the interaction, but it is a bit of a
misnomer, because an instanton–anti-instanton event is in fact a large-quantum fluctuation, and is in no
way classical.

15The subtracted unity is to control the IR divergence due to the uncorrelated instantons. Since
uncorrelated instantons have already been taken into account by the instanton gas approximation it should
be subtracted here to avoid double counting.
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where γE is the Euler’s constant, and Γ(•, •) the incomplete gamma function. The last
term is exponentially small when φ < 0 so it is normally dropped. Further the expression is
ambiguous if we now send φ from negative to positive values in the upper or lower complex
half-plane, because of the appearance of the log. Moreover the ambiguity is exactly canceled
by the ambiguity in the Borel sum of the perturbation theory. This was one of the great
successes of resurgence in quantum mechanics and our understanding of its relationship
with path-integrals.

The BZJ prescription, however revolutionary, causes some unease. Perhaps the most
uncomfortable aspect is that it requires dropping a factor which is exponentially small
when φ < 0, but becomes exponentially large when the correct limit φ > 0 is taken. In
recent years it became increasingly evident that at the heart of the correct interpretation
of the BZJ result is the Picard-Lefschetz theory – a generalization of the steepest decent
method to multi-integral (or indeed path-integral) cases. In fact it was only recently that a
resolution of this puzzle was proposed by the interpretation of the instanton–anti-instanton
pair as a saddle point at infinity [19], which establishes a concrete method for a systematic
calculation of the semi-classical expansion in path integrals. The procedure is roughly as
follows (We refer the reader to [19] for details.):

1) Consider an instanton–anti-instanton configuration for the case of finite time β.

2) Note that if the instanton and the anti-instanton are at opposite ends of a temporal
circle, the configuration becomes a saddle point. Since the action can be decreased
by bringing the pair closer together, the saddle point in question is “unstable”.

3) Treat the saddle point with Picard-Lefschetz theory, i.e. instead of integrating over
a cycle of real instanton–anti-instanton separation, replace the cycle with the Lef-
schetz thimble integral (i.e. the “steepest decent cycle”), along which the action is
monotonically increasing.

4) Note that the imaginary part of the thimble integral is ambiguous depending on
whether Im φ is greater or smaller than zero, and that the ambiguity cancels the
Borel sum ambiguity of the path-integral, while the real part is identical to the BZJ
result above, provided that we drop the incomplete-gamma term.

In particular the ambiguity, which comes from the imaginary part, is given by

Im EIxĪx
0 = ±πφK2 e−2A/φ = ±8 e−2A/φ (4.3.6)

where we used our result (4.2.38). We would like to point out that the ambiguity does
not contain the interaction term for the ground-state energy, i.e. it is independent of the
constant B which parametrizes the instanton–anti-instanton interactions. This is in fact
clarified by the thimble integration procedure in [19], summarized above. The ambiguity
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comes from the vicinity of the critical point at infinity, which, for a finite temporal extent,
is the instanton–anti-instanton pair at opposing ends of the temporal circle. Since the
saddle is “unstable” with regards to the perturbations in the real field space, the proper
thimble integration will force us to integrate along the direction of imaginary separation16,
inducing an imaginary factor in the result. This is the ambiguity, and in this case it is
saturated in the vicinity of the IĪ saddle. When we take β → ∞, this vicinity of the IĪ
saddle moves to infinity, where the instanton and anti-instanton are decorrelated, and all
dependence on the interactions vanishes.

4.3.2 Large order growth and ambiguity of energy

According to the resurgence theory, the large order growth of the perturbative energy
expansion is controlled by the ambiguity (imaginary part) of energy, which receives con-
tributions from instanton sectors with topological charge zero (see for instance [54]). The
first such sector is the instanton–anti-instanton sector [IĪ] including all four events listed
in the first line of (4.3.1). The imaginary energy correction from this sector is

ImEIĪ(N, φ) = ± e−2A/φ(S(N)/2) · φbN
∞∑
n=0

a(1,1)
n (N)φn

where S(N) is the Stoke’s constant, related to the ambiguity of the lateral Borel resumma-
tion of the perturbative expansion, and bN is the leading exponent of φ in the instanton–
anti-instanton sector. Let us denote the perturbative expansion by

Epert(N) =
∞∑
n=1

a(0)
n (N)φn (4.3.7)

The resurgent analysis then suggests the following relation

a(0)
n (N) = S(N)

2π
(n− bN − 1)!

(2A)n−bN

1 + a
(1,1)
1 (N)2A
n− bN − 1 + a

(1,1)
2 (N)(2A)2

(n− bN − 1)(n− bN − 2) + · · ·
 .

(4.3.8)
We will use this relation to compute numerically the imaginary part of EIĪ .

We start with the ground state with N = 0. We compute a(0)
n up to n = 320 using the

BenderWu package. With the help of (4.3.8), we found that

b0 = 0 , (4.3.9)

and we also extracted the following numerical values of A and S(0)

2Anum = 14.6554495068355 . . . , Snum
(0) = 63.9999999999999 . . . . (4.3.10)

16The contour IĪ separation parameter τ along the thimble eventually bends and becomes parallel to
the real axis in the complex τ -plane, which gives the real contribution.
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4.3. TWO-INSTANTON SECTOR

In this process, it is convenient to use the Richardson transformation to accelerate the
convergence (see for instance [146] for details). It is easy to check that these numerical
estimations reproduce the exact values

2A = 16C, S(0) = 64 , (4.3.11)

so that in the leading order, we have

ImEIĪ(0, φ) = ±32e−16C/φ , (4.3.12)

which can be checked to agree with the path integral calculation.
As in the 1-instanton sector, once the analytic values of S(0) and A are fixed, numerically

we can go beyond the leading order and further extract the values of a(1,1)
n (0) using (4.3.8).

For instance, we find

a
(1,1)
1 (0) = −13

48 , a
(1,1)
2 (0) = 115

4608 ,

a
(1,1)
3 (0) = − 12209

3317760 , a
(1,1)
4 (0) = − 355687

637009920 , · · ·
(4.3.13)

These coefficients should give the perturbative fluctuation around the instanton–anti-
instanton saddle.

We repeat the same computation for higher energy levels. Observing the general struc-
ture (4.3.8), we find that

bN = −2N , S(N) = 28N+6

(N !)2 . (4.3.14)

In addition, we extract the coefficients a(1,1)
n (N) for various energy levels N and fit them

as functions of N . As a result, we find the fluctuation around the [IĪ] saddle point to be

logPIĪfluc := log
( ∞∑
n=0

a(1,1)
n (N)φn

)

=− 6N2 + 18N + 13
48 φ− 20N3 + 66N2 + 100N + 27

2304 φ2

− 210N4 + 900N3 + 2190N2 + 1980N + 653
184320 φ3 +O(φ4).

(4.3.15)

From these data, we could construct the [IĪ] contribution to the imaginary part of the
eigen-energy

ImEIĪ(N, φ) =± i e−2A/φ(S(N)/2) · φbN
∞∑
n=0

a(1,1)
n (N)φn = ±i e−2A/φ28N+5

(N !)2 φ
−2N · PIĪfluc .

Before we conclude this section, we point out that there is an interesting empirical
relation between PIĪfluc and P1-inst

fluc

PIĪfluc
(P1-inst

fluc )2 =
(

1
φ

∂Epert

∂N

)−1

. (4.3.16)
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which indicates that we can can cast the 1-instanton fluctuation and [IĪ] fluctuation as

P1-inst
fluc = 1

φ

∂Epert(N)
∂N

e−A(N,φ) , (4.3.17)

PIĪfluc = 1
φ

∂Epert(N)
∂N

e−2A(N,φ) . (4.3.18)

where the function A(N, φ) is nothing else but the “non-perturbative” A-function appear-
ing in the Zinn-Justin–Jentschura exact quantization conditions [193, 194] in conventional
quantum mechanics. In our example, the first few terms of A(N, φ) read

A(N, φ) =
(
ν2

16 + 11
192

)
φ+

(
5ν3

1152 + 49
4608

)
φ2

+
(

7ν4

12288 + 77ν2

24576 + 889
2949120

)
φ3 +O(φ4) .

(4.3.19)

where ν = N + 1/2.

4.4 Instanton fluctuation from topological string

4.4.1 An application of the topological string/spectral theory
correspondence

Here we reveal an interesting connection between the fluctuation parts P1-inst
fluc ,PIĪfluc and

topological string theory.
Before our analysis, we would like to remind the reader that the Harper-Hofstadter

model is closely related to a Calabi-Yau threefold called the canonical bundle of F0, also
known as local F0 in the string theory community, as first pointed out in [93]. According
to local mirror symmetry, all the Gromov-Witten invariants of local F0 are encoded in an
algebraic curve, called mirror curve which is defined in section 3.2.2. Actually its equation
was already worked out in example 2 in the last chapter17.

ex + e−x + ey + e−y = u . (4.4.1)

Clearly the Hamiltonian of the Harper-Hofstadter model (4.1.3) can be obtained by rotating
(x, y) in complex plane to (ix, iy), and promoting them to operators satisfying the commu-
tation relation (4.1.4). Then the free parameter u is related to the energy by u = 4− 2E.
One can obtain another QM model by promoting x and y without the rotation, i.e., one
considers the Hamiltonian

HF0 = −1
2
(
ex + e−x + ey + e−y

)
+ 2 , (4.4.2)

17We have set one coefficient of the curve equation, the so-called mass parameter, to be 1. This mass
parameter corresponds to anisotropy of the 2d lattice.
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with
[x, y] = i~ , ~ ∈ R+ . (4.4.3)

We choose a normalization of HF0 slightly different from that in the literature to match the
normalization of (4.1.3) we use in this paper. Motivated by topological string considera-
tions [4, 3], this QM model has been thoroughly studied, both its spectrum [118, 72, 119,
176, 168, 71, 73] and its wave functions [144, 143, 191] (see also [121, 163]). This has led
to exciting development of non-perturbative completion of topological string theory and
topological string / spectral theory duality [72, 142, 120, 141, 40, 32, 30, 31], which in turn
inspired a new procedure to solve non-perturbatively QM models [41, 42, 61], as well as
the discovery of a new class of exactly solvable deformed QM models [74].

We would like to point out that on the one hand, the Hamiltonian (4.4.2) and that of
the Harper-Hofstadter model are rather different in nature. The former is confining and
has a discrete spectrum, while the Harper-Hofstadter Hamiltonian is periodic and thus has
a rich band structure. On the other hand, the spectra of the two Hamiltonians are closely
related in the semi-classical regime. In fact, the perturbative eigen-energies of HF0 was
computed in [42], also using the BenderWu package [167, 81], and it is easy to check that
they are related to the perturbative eigen-energies of H(0, 0) by the map

~→ −φ . (4.4.4)

We will see in later sections that many results [42] also apply for the Harper-Hofstadter
model as well with appropriate modification.

The large order growth of the perturbative energy of HF0 has been analyzed in detail in
[42], and it is incorporated in the leading non-perturbative correction18 to the perturbative
series. It is revealed in [42] that this non-perturbative correction can be obtained from the
refined free energies in the Nekrasov-Shatashvili limit of topological string theory on the
Calabi-Yau threefold local F0. We will demonstrate that we can obtain the 1-instanton
correction (and the instanton–anti-instanton correction) of the Harper-Hofstadter model
from their data by applying the map ~→ −φ. This is not obvious at first glance because the
1-instanton correction here is the half order of the non-perturbative correction in [42]. This
is a consequence of the fact that the 1-instanton sector and the instanton–anti-instanton
sector are closely interrelated, as suggested in [92].

Let us quickly review the results of [42] concerning the spectrum of HF0 . The pertur-
bative eigen-energy can be computed also by using the BenderWu package [167, 81], and

18This is what is called the 1-instanton correction in [42]. We refer to it as the “instanton–anti-instanton”
correction because of the similarity to the Harper-Hofstadter model. More precisely, the situation in [42]
corresponds to the special Bloch angles (θx, θy) = (π/2, π/2), which is just the midpoint (or the Van
Hove singularity) of each subband. At this point, the one-instanton correction vanishes, and the leading
non-perturbative correction starts from the two-instanton order.
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4.4. INSTANTON FLUCTUATION FROM TOPOLOGICAL STRING

the first few terms read

Epert
F0 (ν, ~) = −ν~− 4ν2 + 1

32 ~2 − 4ν3 + 3ν
768 ~3 − 16ν4 + 72ν2 + 13

49152 ~4 +O(~5) , (4.4.5)

with
ν = N + 1/2 . (4.4.6)

Indeed, this agrees with the perturbative energy of the Harper-Hofstadter model (4.2.2)
by the replacement (4.4.4). Note we have adapted the series of Epert

F0 (ν, ~) to be consistent
with the normalization of HF0 used in this paper. To formulate the results of the formal
“instanton–anti-instanton” correction, we need some terminology from topological string
theory on a local Calabi-Yau manifold and its mirror curve.

The coefficient u in the equation of mirror curve (4.4.1) parametrizes the complex
structure moduli space of the curve. The moduli space has several singular points, one of
which of particular interest is called the conifold singularity and it is located at u = 4, as
it corresponds to the semi-classical limit EF0 = 0 of the QM model HF0 . Let us introduce

z = 1
u2 . (4.4.7)

Then the classical periods of the mirror curve are

∂ztc = − 2
πz

K(1− 16z) ,

∂zt
D
c = 2

z
√

1− 16z
K
( 16

16z − 1

)
,

(4.4.8)

of which tc can serve as a good local coordinate on the moduli space near the conifold
singularity. Here K is the complete elliptic integral of the first kind. Furthermore, for the
topological string theory on a local Calabi-Yau threefold X, an important quantity is the
refined free energy F(t, ε1, ε2) defined in (3.1.23). In the application to the spectrum of
HF0 , one is in particular interested in the so-called Nekrasov-Shatashvili limit [155]

FNS(t, ~) = lim
ε1→0

iε1Fref(t, ε1, i~) . (4.4.9)

In this limit, we also need to promote x and y to be operators with commutation relation
[x, y] = i~. Then the mirror curve also becomes an operator, dubbed quantum mirror
curve. In particular, we notice that this gives us exactly (4.4.2) for local F0 geometry. This
observation marks the starting point of the whole story involving topological string theory.

The free energy in the NS limit enjoys a genus expansion

FNS(t, ~) =
∞∑
n=0

FNS
n (t)~2n . (4.4.10)

Near the conifold singularity, the NS free energies FNS
n are functions of tc with at most

logarithmic singularity, and we will use the notation

FNS(t, ~) = FC(tc, ~) =
∞∑
n=0

FC
n (tc)~2n . (4.4.11)
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They can be computed recursively by the so-called refined holomorphic anomaly equations
[25, 135, 109] in the NS limit, as explained in detail in [41, 42, 61]. For local F0, the first
few NS free energies are

FC
0 (tc) = 1

2t
2
c

(
log

(
tc
16

)
− 3

2

)
− t3c

48 + 5t4c
4608 −

7t5c
61440 + 733t6c

44236800 +O(t7c) .

FC
1 (tc) = − 1

24 log tc −
11tc
192 + 49t2c

9216 −
77t3c

73728 + 2213t4c
8847360 −

607t5c
9437184 +O(t6c) ,

FC
2 (tc) = − 7

5760t2c
− 889tc

2949120 + 181981t2c
707788800 −

16157t3c
113246208 + 2194733t4c

32614907904 +O(t5c) .

(4.4.12)
We stress that these results are obtained purely in the framework of topological string
theory. We do not need any knowledge of the corresponding quantum mechanics. Our goal
is to relate these quantities to the eigen-energy in quantum mechanics.

It turns out, the formal “instanton–anti-instanton” correction to the eigen-energy of
HF0 , which controls the asymptotic growth of the coefficients of Epert

F0 (ν, ~), is given by [42]

EIĪ
F0(ν, ~) = ±i 2f (1)e16C/~∂E

pert
F0 (ν, ~)
∂ν

exp
(
−2
~
∂FC(tc, ~)

∂tc

) ∣∣∣∣
tc→~ν

, (4.4.13)

where C is the Catalan’s constant, and f (1) a free constant. tc = ~ν is the all-order
WKB quantization condition, which is an all-order generalization of the famous “Bohr-
Sommerfeld” quantization and bridges the topological string theory and spectral theory19.
The exponential factor is e16C/~ = e2A/~, and this indeed corresponds to the 2-instanton
sector in our terminology. Using the NS free energies of local F0, one can write down the
terms in the exponential

−1
~
∂FC

∂tc

∣∣∣∣
tc→~ν

= ν − ν log
(
ν

16

)
+ 1

24ν −
7

2880ν3 +O(ν−5)

− ν log ~+ 12ν2 + 11
192 ~− 20ν3 + 49ν

4608 ~2 + 1680ν4 + 9240ν2 + 889
2949120 ~3 +O(~4) .

(4.4.14)
Interestingly, the terms independent of ~ can be resummed to

log
( √

2π16ν
Γ(1

2 + ν)

)
. (4.4.15)

Furthermore, let us denote the power series in ~ starting from O(~) by[
−1
~
∂FC

∂tc

]
. (4.4.16)

Then the “instanton–anti-instanton” correction can be written as

EIĪ
F0(ν, ~) = ±if (1) 28ν+2π

Γ(1
2 + ν)2~

1−2νe16C/~ · 1
~
∂Epert

F0 (ν, ~)
∂ν

exp
[
−2
~
∂FC

∂tc

] ∣∣∣∣
tc→~ν

, (4.4.17)

19This deep observation first appeared in four dimensional gauge theory. For instance see [155, 150].
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where the components after · is a power series starting from constant 1.
We observe here that this result in terms of topological string free energies also re-

produces the imaginary part of the instanton–anti-instanton correction for the Harper-
Hofstadter model after applying the map (4.4.4), if we choose

f (1) = 1
2π . (4.4.18)

Note that this normalization constant can also be fixed through the path integral calcula-
tion in section 4.3.1. Comparing the remaining part with the numerical result (4.3.18), one
conjectures then the A-function should be identified with the opposite of the derivative of
the NS free energy for local F0, i.e.

A(N, φ) =
[
+1
~
∂FC

∂tc

] ∣∣∣∣~→−φ
tc→−φν

. (4.4.19)

We follow the calculation in [42] of the NS free energies for local F0 by solving the NS
holomorphic anomaly equations and push it to a few orders higher than what is explicitly
given in [42]. We find

[
+1
~
∂FC

∂tc

] ∣∣∣∣~→−φ
tc→−φν

=
(
ν2

16 + 11
192

)
φ

+
(

5ν3

1152 + 49ν
4608

)
φ2

+
(

7ν4

12288 + 77ν2

24576 + 889
2949120

)
φ3

+
(

733ν5

7372800 + 2213ν3

2211840 + 181981ν
353894400

)
φ4

+
(

47ν6

2359296 + 3035ν4

9437184 + 16157ν2

37748736 + 112573
3170893824

)
φ5

+
(

35921ν7

8323596288 + 2443337ν5

23781703680 + 2194733ν3

8153726976 + 652008227ν
7990652436480

)
φ6 +O(φ7) ,

(4.4.20)

and it agrees completely with the A-function (4.3.19) from the numerical fit.
Finally, since the power series in the 1-instanton sector is given by the A-function as

shown in (4.3.17), we claim that the 1-instanton sector can also be expressed in terms of
the NS free energy of local F0. In fact, by plugging (4.4.19) into (4.3.17) for the fluctation
and comparing the prefactor with the component (4.4.15), we find an expression similar to
(4.4.13)

E1-inst
(θx,θy)(N, φ) = cos θx + cos θy

π
e−A/φ∂E

pert(N)
∂N

Im exp
(

+ 1
φ

∂FC

∂tc

) ∣∣∣∣~→−φ
tc→−φ(N+1/2)

. (4.4.21)

63



4.5. INTERLUDE: HOLOMORPHIC ANOMALY AT WORK

Note that after mapping ~→ −φ the exponential becomes purely imaginary, and we take
its imaginary value in the expression above. This indeed agrees with numerical results [55],
and recover (4.2.40) in the leading order for the ground state.

4.5 Interlude: holomorphic anomaly at work
This section provides details for the calculations underlying Eqs. (4.4.12). It is mostly
based on [42].

Since here we are only interested in the NS free energies part FNS
n := F0,n

ref in (3.1.21),
we can take the NS limit of the full set of equations (3.1.23),

∂FNS
n

∂t̄
= 1

2C
tt

t̄

n−1∑
r=1

DtF
NS
r DtF

NS
n−r, n ≥ 2, (4.5.1)

where we use a single coordinate t to parametrize the one dimensional moduli space of
complex structure for (4.4.1)20. In this situation, all the anti-holomorphic dependence can
be encapsulated in a single function known as the propagator,

C
tt
t̄ = ∂t̄S

tt . (4.5.2)

This means we can rewrite (4.5.1) to be,

∂FNS
n

∂S
= 1

2γ

n−1∑
r=1

DτF
NS
r DτF

NS
n−r, n ≥ 2 , (4.5.3)

where γ takes into account normalization of free energies. Starting from [2], we realized
that holomorphic anomaly is correlated with modular anomaly. In our situation, since the
moduli space of complex structures is one dimensional, this is actually easy to explain. We
parametrize all the quantities in terms of elliptic modular forms introduced in appendix A.
If we want to maintain the modularity, we have to choose the non-holomorphic modular
form Ê2(τ, τ̄) defined in (A.1.14),

Ê2(τ, τ̄) = E2(τ)− 3
πImτ , (4.5.4)

making the free energies non-holomorphic21. The identification in terms of modular forms
also gives us a very convenient way to solve holomorphic anomaly equations.

In our case, the propagator which encapsulates all the non-holomorphicity can be found
as

Stt = 1
6Ê2(τ, τ̄) . (4.5.5)

20It is one dimensional since the mirror curve has genus one.
21If we instead choose E2, everything is holomorphic but we lose modularity.
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The covariant derivative Dt can be identified with the Maass derivative acting on (almost-
holomorphic) modular forms of weight k,

Dτ = 1
2πi

d

dτ
− k

4πImτ . (4.5.6)

We further introduce some auxiliary modular forms22,

b(τ) = ϑ4
2(q), c(τ) = ϑ4

3(q), d(τ) = ϑ4
4(q) . (4.5.7)

In terms of those modular forms, the only component of the Yukawa coupling is

Y = 2
d
√
c
. (4.5.8)

This also gives a map between the modular parameter τ and the moduli z,

z = 1
16
b

c
. (4.5.9)

Given γ = 1 and the initial condition

FNS
1 = − 1

24 log(1− 16z
z2 ) = − 1

24 log(256 c d
b2 ), (4.5.10)

the holomorphic anomaly equations can determine the free energy at each order n up to a
holomorphic function fn, known as the holomorphic ambiguity, which can be parametrized
in the following form

fn =
3n−3∑
i=0

αn,i b
i d3n−3−i, (4.5.11)

with αn,i some constants. This ambiguity can be fixed by the boundary conditions. More
precisely, the moduli space has three distinguished points: the large radius point corre-
sponding to z = 0, the conifold point corresponding to z = 1/16 and the orbifold point
orresponding to z = ∞. In order to have a well-behaved expansion around these points,
we choose the vanishing periods rather than z as good local coordinates.

At the large radius point, t has the asymptotic behavior t = − log z − 4z + · · · . we
expand the free energies in terms of Q = et which is a good local coordinate, and we
demand the absence of constant terms.

At the conifold point, we use the local coordinate

tc = 1
π

(∂F
NS
0
∂t
− π2

3 ), (4.5.12)

and demand the expansion of free energies satisfy the so-called gap condition [109],

FNS
n = (22n−2 − 2−1)B2n

(2n)(2n− 1)(2n− 2)
1

t2n−2
c

+O(t0c). (4.5.13)

22They can be obtained from the corresponding Θ
[
a
b

]
(τ, z) in section A.2 by setting z to zero.
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At the orbifold point, we use the local coordinate

to = i
4π (t− 2∂F

NS
0
∂t

), (4.5.14)

and demand the expansion of free energies satisfy another gap condition [109],

FNS
n = (−1)n−1(1− 21−2n)B2n

(n)(2n− 1)(2n− 2)
1

t2n−2
o

+O(t0o). (4.5.15)

These are already enough to completely fix the holomorphic ambiguity.
The first few terms of the free energy are found as follows,

FNS
2 = (c+ d)2

1728cd2 Ê2 −
37b3 + 51b2d+ 18bd2 + 20d3

8640cd2 ,

FNS
3 = − (c+ d)3Ê3

2
1119744c2d4 + (c+ d)2(5c2 − 5cd+ 2d2)Ê2

2
373248c2d4

+ (c+ d)(449c4 − 799c3d+ 360c2d2 − 91cd3 + 101d4)Ê2

1866240c2d4

+ 110539b6 + 373926b5d+ 467142b4d2 + 259765b3d3 + 72690b2d4 + 4260bd5 + 280d6

39191040c2d4 ,

FNS
4 = (c4 + 4c3d+ 6c2d2 + 4cd3 + d4)Ê5

2
322486272c3d6

+ (−21c5 − 44c4d− 14c3d2 + 12c2d3 − 5cd4 − 8d5)Ê4
2

322486272c3d6

+ (869c6 + 409c5d− 1159c4d2 − 310c3d3 + 319c2d4 + 101cd5 + 171d6)Ê3
2

806215680c3d6

+ (−12173c7 + 8647c6d+ 13647c5d2 − 7978c4d3)Ê2
2

806215680c3d6

+ (−1927c3d4 + 363c2d5 + 253cd6 − 1232d7)Ê2
2

806215680c3d6

+ (19160307c8 − 39788474c7d+ 9431827c6d2)Ê2

56435097600c3d6

+ (27005574c5d3 − 17935348c4d4 + 2537054c3d5)Ê2

56435097600c3d6

− (411333c2d6 + 1087154cd7 − 1101547d8)Ê2 + 335441623b9

56435097600c3d6

+ −1736667437b8d− 3719865425b7d2 + 4231474589b6d3 + 2720317301b5d4

56435097600c3d6

+ +964336535b4d5 + 159588344b3d6 + 12231464b2d7 − 408496bd8 + 2800d9

56435097600c3d6 .

(4.5.16)
The non-holomorphic piece does not play a role in our comparison with (4.3.19). So

then we just take τ → 0 to decouple the anti-holormorphic part, which also means replacing
Ê2 by E2 in FNS

n .
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Chapter 5

Elliptic Genera and Topological
Strings: Overview

Starting from this chapter, we will discuss another application of topological string theory,
which is related to six dimensional super-conformal field theories. More concretely, a recent
revival of interest in those theories has led to a better understanding of the topological string
partition function Ztop on an elliptically fibered Calabi-Yau threefold X. An incomplete
list of techniques and strategies is [110, 85, 126, 83, 108, 128, 66, 117, 125, 50, 101, 79, 96,
87, 15, 48, 127, 137].

A particularly elegant way of encoding Ztop in this setting is in terms of modular
expressions for the coefficients Zk(τ, z,m) of the expansion of Ztop in suitably shifted
exponentiated Kähler moduli Q̃B of base classes,

Ztop = Z0 ·

1 +
∑
k 6=0
ZkQ̃k

B

 . (5.0.1)

Here and throughout this note, we use the notation k = (k1, k2, . . .), ki ≥ 0, to denote a
curve class in the base B. Zk(τ, z,m) is a Jacobi form whose modular parameter is the
Kähler modulus τ of the elliptic fiber, and with elliptic parameters the string coupling
z = gs

2π , as well as the Kähler moduli m of the fibral curve classes.
The Gopakumar-Vafa form [69, 70] of Ztop reveals that Zk must exhibit poles; Zk as

a Jacobi form must hence be meromorphic. Unlike the ring of weak Jacobi forms, whose
elements are holomorphic, the ring of meromorphic Jacobi forms is not finitely generated.
In [108, 79, 48, 127], progress hinged on expressing Zk as a quotient of weak Jacobi forms1,

Zk =
∑
ciφk,i(τ, z,m)
φDk (τ, z,m) . (5.0.2)

The denominator takes a universal form depending only on the knowledge of the classical
intersection numbers of the divisors of the elliptically fibered Calabi-Yau manifold X.

1There are lots of φ in this thesis, so we use the subscript D to indicate that φDk is the denominator of
Zk.
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This data also fixes the weight and indices of the numerator, allowing an expansion in
appropriate ring generators. The expansion coefficients ci must be determined by imposing
additional constraints on Zk.

However, before discussing possible ways to determine them, let’s first set the stage and
introduce necessary background. Thus we devote this chapter to a quick review of some
known results in the literature, which prepares the reader for the next two chapters.

Its structure is the following. In section 5.1, we review the classes of 4-cycles that occur
in elliptically fibered Calabi-Yau manifolds, and explain the role the corresponding Kähler
classes play in Zk. During the analysis, we find that it’s necessary to separate the geometry
into two classes, depending on whether it gives rise to non-abelian gauge symmetries or
not. We also give one example for each class. In section 5.2 we review the ansatz (5.0.2),
in particular the denominator φDk (τ, z,m), which plays a crucial role in later analysis.

This chapter is based on the section 2 and 3 of the article Computing the elliptic genus
of higher rank E-strings from genus 0 GW invariants [56] by Jie Gu, Amir-Kian Kashani-
Poor and the author, with various changes for pedagogical reasons.

5.1 Elliptic fibrations and four-cycles
Compact elliptically fibered Calabi-Yau manifolds can be constructed as hypersurfaces in
a projective bundle P1,2,3(O ⊕ 2KB ⊕ 3KB) over a compact Kähler base manifold B. The
hypersurface is cut out via a Weierstrass equation in variables [x : y : z],

y2 = 4x3 − f4xz
4 − g6z

6 , (5.1.1)

where f4 and g6 are sections of particular line bundles over the base surface B,

f4 ∈ −4KB , g6 ∈ −6KB . (5.1.2)

Another important quantity is the so-called discriminant of the Weierstrass equation,

∆ = 4f 3 + 27g2 ∈ −12KB. (5.1.3)

The order of vanishing of (f, g,∆) must be strictly smaller than (4, 6, 12) along any
divisor, in order that that the Calabi-Yau condition is satisfied. In other words, the allowed
singularities along any divisor must be of Kodaira type.

The Kodaira singularity structure of the elliptic fiber depends on the vanishing orders
of these sections. When we resolve singularities along a given divisor, extra 2-cycles occur
and can give rise to gauge groups in F theory compactification. The precise dictionary is
worked out by the “Tate algorithm” [26]. We summarize the result in table 5.1. Note that
when there are multiple choices, we need to also supply the so-called monodromy cover
equation.
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ord(f) ord(g) ord(∆) Kodaira type singularity non-abelian algebra

≥ 0 ≥ 0 0 I0 none none
0 0 1 I1 none none
0 0 n ≥ 2 In an−1 sun or sp[n/2]

≥ 1 1 2 II none none
1 ≥ 2 3 III a1 su2

≥ 2 2 4 IV a2 su3 or su2

≥ 2 ≥ 3 6 I∗0 d4 so8 or so7 or g2

2 3 n ≥ 7 I∗n−6 dn−2 so2n−4 or so2n−5

≥ 3 4 8 IV∗ e6 e6 or f4

3 ≥ 5 9 III∗ e7 e7

≥ 4 5 10 II∗ e8 e8

Since our primary interest here is six dimensional gauge theory, we decouple gravity by
decompactifying the geometries. For instance, decompactification along the fiber direction
can lead to local Calabi-Yau manifolds which are the total space of the canonical bundle
of a surface, while decompactification perpendicular to the fiber direction yields elliptic
fibration over a non-compact surface, such as the geometries appearing as building blocks
in the classification scheme of 6d SCFTs via F-theory [97].

The topological string partition function depends on the topological string coupling
constant gs (or, in the case of refinement, on two parameters ε1,2 which can be organized
as g2

s = −ε1ε2 and s = (ε1 + ε2)2) and (in the A-model perspective) on Kähler parameters
associated to homology classes in H2(X) of the Calabi-Yau manifold X. In the generic
Gopakumar-Vafa formula, which we will review in the next section, all Kähler parameters
enter the partition function on the same footing. When X is elliptically fibered, different
Kähler parameters are distinguished by the action of the monodromy group on the asso-
ciated curve classes [108]. The curve classes in the base B are essentially invariant under
this action (see the discussion around equations (5.2.8) and (5.2.9) for the precise state-
ment). As we shall see later, the associated Kähler parameters are treated as expansion
parameters. The coefficients Zk of the expansion in appropriately shifted exponentiated
base classes, with k indicating the base class, are Jacobi forms. All remaining Kähler pa-
rameters as well as the string coupling play the role of the modular and elliptic parameters
of these Jacobi forms.

To understand the roles played by different curve classes in the topological string parti-
tion function on an elliptic Calabi-Yau threefold, we focus on the case of compact Calabi-
Yau manifolds, and argue, via Poincaré duality, in terms of 4-cycles rather than 2-cycles.
The non-compact case can then be obtained via degeneration. We can distinguish between
4 classes of divisors [177, 151]:

1) The pullbacks Bα of divisors (curves) of the base B to X via the projection π : X →
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B, i.e. Bα = π∗Hα.

2) The zero section of the fibration, which is topologically the base B.

3) Divisors Tκ,I consisting of fiber components ακ,I arising from the resolution of singu-
larities of the fibration over curves bκ in B, fibered over bκ.

4) Divisors Si associated to other than the zero section of the fibration.

By [177], all 4-cycles in X fall into one of these four classes. Upon replacing the 4-cycles
Si by their images under the threefold version of the Shioda map [158], the Poincaré dual
2-cycles to these 4 classes are

1) Curve classes Hα of the base B.

2) f , the fiber class of the fibration.

3) Fiber components ακ,I .

4) Isolated rational curves si in the fiber.

In the F-theory compactification on X, curve classes of type 1 give rise to tensor multiplets,
those of type 3 to non-abelian vector multiplets, while those of type 4 give rise to abelian
vector multiplets as well as hypermultiplets charged under them.

The corresponding Kähler classes play different roles in Ztop, depending on the mon-
odromy action on the associated curve classes:

1) The exponentials QB = (Q1, . . . , Qb2(B)) of the base Kähler classes tα =
∫
Hα
J can be

rendered invariant upon an appropriate shift explained below (see equations (5.2.8)
and (5.2.9)). Ztop is expanded in terms of the shifted variables Q̃B, see (5.0.1), to
yield the Jacobi forms Zk as coefficients.

2) τ =
∫
f J is the modular parameter of the Jacobi forms Zk.

3) cκ,I =
∫
ακ,I

J are elliptic parameters on which the position of the poles of Zk as a
function of gs (or ε1,2 in the refined case) depends.2

4) mi =
∫
σ(Si) J give rise to elliptic parameters which do not modify the position of the

poles of Zk as a function of gs (or ε1,2 in the refined case).

2Note that F -theory, and therefore the 6 dimensional theory obtained by compactifying on such geome-
tries, is not sensitive to these Kähler parameters. Upon compactifying on a circle, however, the resulting
vector multiplets exhibit real scalar fields whose VEV keeps track of the blow-up cycle size, and which
collectively transform under the global symmetry given by the Weyl group of the gauge group.
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We refer to the curve classes of type 3 and 4 as fibral, and denote the corresponding
Kähler parameters collectively as tι.

Now let’s consider some canonical examples to illustrate our points above. We choose
the complex base B to be Hirzebruch surfaces Fn which itself is a fibration of CP1 over
another CP13. Then we decompatify the base by sending the volume of the fiber to infinity,
in such a way that the non-compact space is total space O(−n)→ P1. Schematically, the
procedure can be represented as the graph 5.1.4,

E → Xyπ1

F = P1 → B = Fnyπ2

b = P1

→

E → X̌yπ̌1

O(−n)→ B̌yπ̌2

b = P1

. (5.1.4)

After the decompactification, the only one compact divisor is the base CP1. Whether it is
a divisor of type 3 or 4 depends on n. It turns out that it is of type 4 if n ≤ 2, while of
type 3 if n > 2. Below we will give one example for each, and further explore them in the
next two chapters.

Example 3. Let’s first consider n to be 1. The toric data of the ambient toric variety is
given in table 5.1.5 4. Moreover, there are two ways to resolve the singularity (triangulate
the face fan), related by the flop. Both phases have h2,1 = 243 and h1,1 = 3 as can be
checked from our general formula (3.2.2). However, their intersection rings are different,
as they should be. We consider the phase I and send the volume of F to infinity. The
vanishing degree of (f, g,∆) along the base CP1 is (0,0,0). Hence according to table 5.1,
the elliptic fiber over it is generically non-singular, i.e., b is a divisor of type 4. It is also
known as the E string geometry upon decompatification.

Div. νi l
(e)
I l

(f)
I l

(b)
I l

(e′)
II l

(h)
II l

(−b)
II

D0 0 0 0 0 −6 0 0 −6 0 0
D1 −1 0 0 0 2 0 0 2 0 0
D2 0 −1 0 0 3 0 0 3 0 0
E 2 3 0 −1 0 1 −1 −1 0 1
K 2 3 0 0 1 −2 −1 0 −3 1
F 2 3 −1 −1 0 0 1 1 1 −1
H 2 3 0 1 0 1 0 0 1 0
F 2 3 1 0 0 0 1 1 1 −1

. (5.1.5)

3For its toric construction, see example 5.
4See appendix B for our convention.
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Example 4. Next, let’s consider the case when n = 3. The toric data of the ambient
toric variety is given in table 5.1.6. There are altogether sixteen possible triangulations,
and we only list one of them. Again, we send the volume of F to infinity to decompactify
the geometry. The vanishing degree of (f, g,∆) along the base CP1 is (2, 2, 4). Hence
according to table 5.1, the elliptic fiber over it has singularity of Kodaira type IV . When
we resolve it, we obtain the gauge algebra su3. This also means that b is a divisor of type
3.

Div. νi l(1) l(2) l(3) l(4) l(5)

D0 0 0 0 0 −1 0 0 0 0
D1 −1 0 0 0 0 1 0 −1 0
D2 0 −1 0 0 1 0 0 0 −1
D3 1 1 0 −1 −1 0 0 0 2
D4 1 2 0 −1 1 −3 0 3 0
E 2 3 0 −1 0 0 1 −3 1
K 2 3 0 0 0 0 −2 1 0
F 2 3 −1 −3 0 1 0 0 −1
H 2 3 0 1 0 0 1 0 0
F 2 3 1 0 0 1 0 0 −1

. (5.1.6)

5.2 The base degree k partition function as
Jacobi form

We now turn to the discussion of the structure of the partition function at base-wrapping
degree k, Zk. At the end of the section, we point out the modifications necessary to
generalize to the case of refinement.

One path to the identification of the transformation properties of Zk runs via the
holomorphic anomaly equations of the topological string [26, 106, 108]. These can be
rewritten in the form (

∂

∂E2
+ π2

3 Mk

)
Zk = 0 . (5.2.1)

Mk, dubbed the index bilinear form in [48], depends quadratically on the string coupling
z = gs

2π and all fibral Kähler parameters,

Mk = iz(k)z2 +
∑

itι(k)t2ι . (5.2.2)

It is easy to show that a convergent power series∑
`z ,`

a`z ,`z
2`z τ̄ 2` (5.2.3)
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with coefficients a`z ,` of weight w+ 2(`z +∑
ι `ι) in the ring C[E2, E4, E6] of quasi-modular

forms which satisfies the differential equation (5.2.1) is a weak Jacobi form5 with elliptic
parameters z, tι of index iz(k), itι(k) respectively.

The program of rewriting the holomorphic anomaly equations of [25] in the form (5.2.1)
has been carried out for local 1/2 K3 in [106] and for the elliptic fibration over the base
B = F1 in [130], though some details remain to be ironed out.

A currently more efficient path towards determining the indices itι for all fibral curve
classes proceeds via F-theory compactifications on the elliptically fibered manifold X. The
resulting 6d theory exhibits non-critical strings which arise via D3 branes wrapping curves
Ck in the base manifold B. Zk for k 6= 0 can be identified with the elliptic genus of
these strings [131, 83]. The transformation properties of elliptic genera under modular
transformations have been argued for in [23, 24]. One can use this vantage point to fix
the index bilinear Mk in terms of the anomaly polynomial of the worldsheet theory6 of
these strings [50, 79, 48, 137], which has been computed in [125, 166]. For our purposes,
the important characteristic is that all indices other than iz depend linearly on the base-
wrapping degree k; iz, which takes the elegant form

iz(k) = Ck · (Ck +KB)
2 , (5.2.4)

is quadratic in k.
An important ingredient in solving for Zk, once its transformation properties under the

modular group have been identified, is determining its pole structure. The Gopakumar-
Vafa form of the free energy motivates the ansatz

φDk =
b2(B)∏
i=1

ki∏
s=1

φ−2,1(τ, sz) (5.2.5)

for the denominator in (5.0.2). In the absence of curves of type 3, this ansatz has been
verified for numerous examples in [108, 79]. Indeed, isolated rational curves, such as the
curves of type 4, are locally modeled by the conifold. Having a trivial moduli space, they
are not expected to give rise to a contribution (hence m dependence) in the denominator
of Ztop. On the other hand, rational curves of self-intersection number less than −1, such
as the curves of type 3, do necessarily exhibit a non-trivial moduli space, and are expected
to modify the pole structure of Ztop (cf. the discussion in section 3.4 of [115] juxtaposing
−1 and −2 curves). This expectation is born out by localization computations [50, 137]
and topological string computations [79, 48, 137], the latter primarily in the case of local
geometries.

To describe how the ansatz (5.2.5) must be modified in the presence of curves of type
3, recall that these arise upon resolution of singularities over a divisor C in the base B.

5For a quick introduction to Jacobi modular forms, see section A.2.
6See [51] for an analysis of these worldsheet theories beyond the minimal SCFTs.
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Those curves {Ei} are related to the gauge algebra according to table 5.1. This point will
be discussed in more detail in chapter 7. The upshot is that the Kähler parameters mi

associated to a choice of basis of the exceptional curves are assembled into an element of
the complexified root lattice m = ∑

imiωi, the ωi denoting the fundamental weights of g.
There is also a monodromy action on {Ei} captured by the Weyl group of g. The invariance
of Zk under this Weyl group action can be easily seen from the worldsheet expression of
elliptic genus7.

The denominator in (5.0.2) in the case b2(B) = 1 given in [48] reduces in the unrefined
case (up to a sign) to

k∏
s=1

φ−2,1(τ, sz)
s−1∏
`=0

∏
α∈∆+

φ−2,1 (τ, (s− 1− 2`)z +mα)
 , (5.2.6)

where we have defined
mα = (m, α∨) (5.2.7)

for any root α ∈ ∆. The naive generalization beyond b2(B) = 1 should be correct, but no
computations have yet been performed in this case.

Finally, we explain the relation between the exponentiated expansion parameters Q̃B

and the exponentiated base Kähler classes QB. As argued in [108], based on genus zero
observations in [38], for the case of non-singular elliptic fibrations, the base class shifted
by an appropriate multiple of the fiber class is invariant under the SL(2,Z) monodromy
action, up to a sign corresponding to the same multiplier system as an appropriate power
of η12(τ). The modular properties of Ztop are thus manifest when expanding in

Q̃B =
( √

q

η12(τ)

)−Ck·KB
QB . (5.2.8)

From the identification of the topological string with the elliptic genus of the worldsheet
theory of non-critical strings, this result was generalized to the case of singular fibrations
in [83] to

Q̃B =
 √

q

η12(τ)∏r
i=1Q

a∨i
i

−Ck·KB

QB . (5.2.9)

Note that the appropriate expansion parameter to extract the enumerative data encoded
in Ztop remains QB; this is also the parameter that occurs in the Gopakumar-Vafa presen-
tation of the free energy which we shall review in section 6.1. We thus introduce straight
letters Z and F to denote the corresponding expansion coefficients, such that

Zk =
 √

q

η12(τ)∏r
i=1Q

a∨i
i

−Ck·KB

Zk , Fk =
 √

q

η12(τ)∏r
i=1Q

a∨i
i

−Ck·KB

Fk , (5.2.10)

7For a quick proof of this important result, see section 2.5 in [48]
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where the product in the denominator ranges over divisors of the geometry of type 3.
The refined version of the results discussed in the section is also known [50, 79, 48].

Introducing the variables

z1,2 = ε1,2
2π , zL,R = ε1 ∓ ε2

4π = εL,R
2π , (5.2.11)

the refined partition function takes the general form

Zk = N
refined
k (τ, zL, zR,m)
φDk (τ, z1, z2,m) , (5.2.12)

where N refined
G,k (τ, zL, zR,m) = ∑

ciφk,i(τ, zL, zR,m) a linear combination of weak Jacobi
modular forms with zL,R (or equivalently z1,2) serving as elliptic parameters. The denom-
inator in the absence of divisors of type 3 is given by [50, 79]

φDk =
b2(B)∏
i=1

ki∏
s=1

φ−1,1/2(τ, sz1)φ−1,1/2(τ, sz2) , (5.2.13)

where φ2
−1,1/2 = φ−2,1. When such divisors are present, the denominator (in the case

b2(B) = 1) is [50, 127]

k∏
s=1

∏
j=±1

φ−1,1/2(s(zR + jzL))
s−1∏
`=0

∏
α∈∆+

φ−1,1/2((s+ 1)zR + (s− 1− 2`)zL + jmα)
 .

(5.2.14)
Note that this specializes to (5.2.6) for zR = 0, z = zL up to an irrelevant sign.

The different forms of the denominators Eqs. (5.2.5), (5.2.13) and (5.2.14) may seem
hard to digest. Actually there exists a uniform way to argue them from the gauge theory
perspective. For completeness, we include the basic idea here. It can be safely skipped for
the uninterested reader. The rationale is due to [50].

To start with, we can assume b2(B) = 1 without lost of generality. From [50], when
q → 0, the following relation holds,

Ztop|q=0 = Z0 ·

1 +
∑
k 6=0

ZkQ
k

 |q=0 = Z ′0

1 +
∑
k 6=0
H(MG,k)Qk

 , (5.2.15)

where H (MG,k) is the Hilbert series of the moduli space of k G-instantons. This can teach
us some important lesson about Zk. In particular, counting the generators [47], we find
the explicit expression for the denominator DG,k(ε1, ε2,mα) of H (MG,k),

DG,k(εL, εR,mα) =
k∏
i=1

(
i∏

j=−i
j−i even

(1− vixj)
)(

i−1∏
j=−i+1
j−i odd

∏
α∈∆̃G

(1− vi+1xje2πimα)
)
, (5.2.16)
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where ∆̃G includes all the roots of G as well as Cartan elements, while x = e2πiεL and
v = e2πiεR .

On the other hand, based on the form of refined topological string partition function
(6.1.21), only poles at ε1 = 0 or ε2 = 0 are possible for Zk. Combining these two pieces of
information, we are led to speculate the q-independent part of the denominator of Zk,

φDk (τ, zL, zR,m)|q=0 =
∏
s=±1

k∏
i=1

(
(1− (vxs)i)

i−1∏
l=0

∏
α∈∆+

(1− vi+1xi−1−2le2πismα)
)
, (5.2.17)

where ∆+ only includes all the positive roots.
In order to guess its full form, we should examine each individual term more carefully.

First notice that they can all be written as (1 − e2πiz), with z a linear combination of
εL,R and mα. Besides, from the elliptic genus point of view, the final expression should
behave reasonably under modular transformations. Since it already vanishes when z is an
integer, it should also be zero at z = nτ +m after nτ translations. Thus naively, (1−e2πiz)
can be completed as (1 − e2πiz)∏∞j=1(1 − qje2πiz)∏∞j=1(1 − qje−2πiz). Actually there is a
more modular covariant way to package it, if one invokes the infinite product expansion of
ϕ−1,1/2(z, τ),

ϕ−1,1/2(z, τ) = ie−πiz(1− e2πiz)
∞∏
j=1

(1− qje2πiz)(1− qje−2πiz)
(1− qj)2 . (5.2.18)

To summarize, we replace (1− (vxs)i) by ϕ−1,2(τ, i(εR + sεL)) and (1− vi+1xi−1−2le2πismα)
by ϕ−1,2(τ, (i+1)εR+(i−1−2l)εL+smα), hence obtain most general denominator (5.2.14).
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Chapter 6

Geometries without codimension-one
singular fibers: Reconstruction

Recall that our goal is to compute Zk, for which we have the following ansatz,

Zk =
∑
ciφk,i(τ, z,m)
φDk (τ, z,m) . (6.0.1)

In this chapter, the main result is to show that for geometries without divisors of type 3
(no non-abelian gauge symmetry), e.g., higher rank E-strings obtained from stacks of M5
branes embedded in the end of the world M9 brane, genus zero Gromov-Witten invariants
provide sufficient boundary conditions to determine the ci in (6.0.1). In other words, we
can compute the topological string to all orders in gs. Recall that the geometries underlying
the higher rank E-strings are elliptic fibrations over a non-compact base consisting of a
chain of -2 curves ending on a -1 curve [97]. The six dimensional theory engineered by
considering F-theory on these geometries generalize the E-string as originally studied in
[67, 164, 131, 149]. The topological string on the higher rank E-strings was solved based on
the ansatz (6.0.1) in [79] by imposing vanishing conditions on Gopakumar-Vafa invariants
– a target space perspective. We show here that boundary conditions arising from a
worldsheet perspective are also sufficient to solve these models.

Our analysis relies on determining the principal parts (the negative degree terms in the
Laurent expansion) of Zk around all of its poles. We achieve this by combining modular
and multi-wrapping properties of Ztop. While the modular properties are manifest in the
form (6.0.1), the multi-wrapping properties, as captured by the Gopakumar-Vafa formula,
are formulated more naturally in terms of the topological string free energy Fk, related to
Zk via

Ztop = Z0 · exp
∑
k 6=0
FkQ̃k

B

 . (6.0.2)

We thus begin our analysis by asking to what extent the modularity properties of Zk carry
over to Fk. In a nutshell, the answer is that the string coupling as elliptic parameter is
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lost. However, the coefficients of Fk in a gs expansion are elements of the ring of Jacobi
forms with modular parameter τ and elliptic parameters m, tensored with the ring of
quasi-modular forms. We next study the pole structure of Fk as a function of z. In the
case of elliptic fibrations with only isolated fibral curves (geometries that engineer SCFTs
in F-theory with at most abelian gauge symmetry are in this class), the denominator φDk
in (6.0.1) in fact does not depend on fibral Kähler classes. This gives rise to a tractable
pole structure for the free energy, and ultimately allows us to reduce the computation of
all negative index Laurent coefficients of Zk to the knowledge of genus 0 Gromov-Witten
invariants. The analogous considerations in the case of more general elliptic fibrations fail,
as we explain.

We also discuss the case of the refined topological string. Here, the elliptic parameter
z = gs

2π is replaced by two elliptic parameters z1,2 = ε1,2
2π . The role of the genus zero Gromov-

Witten invariants in determining the partition function is played in the refined case by the
Nekrasov-Shatashvili data

nd,NS
g =

∑
gL+gR=g

nd
gL,gR

, (6.0.3)

with ngL,gR indicating the refined Gopakumar-Vafa invariants.
This chapter is organized as follows. We first study the modularity and pole structure

of the topological free energy Fk in section 6.1. Section 6.2 explains how to reconstruct
Zk from all its principal parts. In section 6.3 we show how to reduce the computation of
the principal parts of Zk in the case of elliptic fibrations with only isolated fibral curves to
the knowledge of genus zero Gromov-Witten invariants. We first work out one particular
example in sufficient detail to motivate the general procedure, then we give the proof in
full generality.

It is mostly based on section 3, 4 and section 5 of the article Computing the elliptic
genus of higher rank E-strings from genus 0 GW invariants [56] by Jie Gu, Amir-Kian
Kashani-Poor and the author, with various changes for pedagogical reasons.

6.1 The structure of the topological string
free energy

6.1.1 Setting up the analysis

Depending on the computational approach one takes, the topological string partition func-
tion or its free energy moves to the fore. The considerations in section 5.2 centered around
Ztop, as this quantity has the better transformation properties under the modular group.
From the Gopakumar-Vafa presentation, it is clear however that the partition function
contains redundant information due to multi-wrapping contributions. This redundancy is
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easily identified at the level of the free energy. Recall that it takes the general form

F (gs, τ̄) =
∑
w≥1
g≥0

∑
d∈H2(X,Z)

nd
g

(
2 sin

(
wgs
2

))2g−2 Qwd

w
, nd

g ∈ Z , (6.1.1)

with single-wrapping contributions

f(gs, τ̄) =
∑
g≥0

∑
d∈H2(X,Z)

nd
g

(
2 sin

(
gs
2

))2g−2
Qd . (6.1.2)

We thus turn to the study of the free energy on elliptic Calabi-Yau manifolds in this
section. These considerations will play an important role when determining the interdepen-
dence of the principal parts of the base degree k contributions Zk to the partition function
in section 6.3.

As in the case of the partition function, it will be convenient to consider coefficients Fk
of the free energy in an expansion in base degree classes QB (recall that z = gs

2π ) ,

Ztop = Z0

∑
k>0

ZkQ
k
B

 = Z0 exp
∑
k>0

FkQ
k
B

 , (6.1.3)

with single-wrapping contribution

fk(z, τ̄) =
∑

g,dτ ,dm

nk,dτ ,dmg (2 sin πz)2g−2qdτQm
dm . (6.1.4)

We can invert
Zk =

∞∑
n=1

1
n!

∑
k1,...,kn>0∑

ki=k

n∏
i=1

Fki (6.1.5)

to obtain the free energy at base wrapping k in terms of Zk′ , |k′| ≤ |k|,

Fk =
∞∑
n=1

1
n!

∑
k1,...,kn>0∑

ki=k

a
(k)
k1,...,kn

n∏
i=1

Zki =
∑
n

Mk,n({Zk′ : |k′| ≤ |k|}) . (6.1.6)

Note that the sums over n in (6.1.5) and (6.1.6) are effectively finite due to the constraint
ki > 0 on the n summation coefficients k1, . . . ,kn. This constraint also implies that the
monomials Mk,n are homogeneous in the index ki of is arguments, ∑i ki = k.

The integer coefficients a(k)
k1,...,kn are easily computed iteratively. In particular, a(k)

k = 1.
We give the corresponding monomial the index 1,

Mk,1 = Zk . (6.1.7)

In the case of b2(B) = 1, e.g., we have

F1 = Z1 , F2 = Z2 −
1
2Z

2
1 , F3 = Z3 − Z1Z2 + 1

3Z
3
1 , . . . (6.1.8)
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and
M1,1 = Z1 , (6.1.9)

M2,1 = Z2 , M2,2 = −1
2Z

2
1 , (6.1.10)

M3,1 = Z3 , M3,2 = −Z1Z2 , M3,3 = 1
3Z

3
1 , . . . . (6.1.11)

To compute the single-wrapping contribution fk, it suffices to subtract from Fk appro-
priate linear combinations of Fk′ , |k′| < |k|, evaluated at integer multiples of all of their
arguments. Symbolically, we write this as

fk(z, τ̄) = Fk(z, τ̄) + P F→f
k (F|k′|<|k|(∗z, ∗τ̄)) , (6.1.12)

where ∗ is a placeholder for a possible multi-wrapping factor, and P F→f
k is a polynomial

with the property that every contributing monomial ∏i Fki(wiz, wiτ̄) satisfies ∑iwiki = k.
In the case b2(B) = 1, the first few expressions are

f1(z, τ̄) = F1(z, τ̄) ,

f2(z, τ̄) = F2(z, τ̄)− 1
2F1(2z, 2τ̄) ,

f3(z, τ̄) = F3(z, τ̄)− 1
3F1(3z, 3τ̄)

. . . .

(6.1.13)

Combining this with (6.1.6), we immediately obtain

fk(z, τ̄) = Zk(z, τ̄) + PZ→f
k (Z|k′|<|k|(∗z, ∗τ̄)) . (6.1.14)

Again in the case b2(B) = 1, the first few relations are

f1(z, τ̄) = Z1(z, τ̄) ,

f2(z, τ̄) = Z2(z, τ̄)− 1
2Z1(2z, 2τ̄)− 1

2Z1(z, τ̄)2 ,

f3(z, τ̄) = Z3(z, τ̄)− 1
3Z1(3z, 3bt)− 1

6Z1(z, τ̄)3 ,

. . . .

(6.1.15)

We of course can also invert these relation to obtain

Zk(z, τ̄) = fk(z, τ̄) + P f→Z
k (f|k′|<|k|(∗z, ∗τ̄)) . (6.1.16)

When b2(B) = 1,
Z1(z, τ̄) = f1(z, τ̄)

Z2(z, τ̄) = f2(z, τ̄) + 1
2f1(2z, 2τ̄) + 1

2f1(gs, τ̄)2

Z3(z, τ̄) = f3(z, τ̄) + 1
3f1(3z, 3τ̄) + 1

6f1(z, τ̄)3

. . . .

(6.1.17)
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In section 6.3, it will be more natural to reorder (6.1.14),

Zk(z, τ̄) = fk(z, τ̄)− PZ→f
k (Z|k′|<|k|(∗z, ∗τ̄)) . (6.1.18)

This equation encodes the fact that when increasing the base degree by one step to k,
all the new information required to reconstruct Zk is captured by the single-wrapping
contribution to the free energy fk. Anticipating our discussion in section 6.3, we also
introduce the monomials mk,i constituting PZ→f

k ,

Zk = fk +
∑

mk,i , (6.1.19)

where each mk,i is of the form

mk,i ∝
∏
j

Zki,j(sjτ, sjz, sjm) ,
∑
j

sjki,j = k . (6.1.20)

All of these formulae generalize straightforwardly to the refined case, given the refined
Gopakumar-Vafa expansion (6.1.21)

F (εL,R, τ̄) =
∑

gL,R≥0

∑
w≥1

∑
d∈H2(X,Z)

nd
gL,gR

w

(2 sin wεL
2 )2gL(2 sin wεR

2 )2gR

2 sin w(εR+εL)
2 2 sin w(εR−εL)

2

Qwd , nd
gL,gR

∈ Z

(6.1.21)
as starting point. In terms of the equivariant parameters ε1,2, we have εL,R = ε1∓ε2

2 . The
conventional (non-refined) topological string is obtained by setting ε2 = −ε1, g2

s = ε21.

6.1.2 Transformation behavior

While the object with the best transformation behavior under the modular group is Zk, the
partition function at fixed base-wrapping, some of this behavior survives to the level of the
free energies Fk. Perhaps somewhat surprisingly, the unrefined and the refined situations
are qualitatively different. We discuss these two cases separately in this subsection.

The unrefined case

From the relation (6.1.6) between free energy and partition function, we can conclude that
Fk has the general form

Fk(τ, z,m) =
∑
n

Mk,n(Zk′ : |k′| ≤ |k|}) . (6.1.22)

Note that the Mk,n(Zk′ : |k′| ≤ |k|}) as monomials in Jacobi forms are again Jacobi forms.
They have identical m-index, as this quantity is linear in the base-wrapping degree k, and
the Mk,n are homogeneous with regard to base-wrapping. By contrast, the z-index depends
quadratically on the base-wrapping degree, hence varies with the index n. Fk is hence not
a Jacobi form of fixed z-index. To make progress, we Laurent expand in the variable z,

Fk(τ, z,m) =
∞∑
g=0
Fk,g(τ,m) z2g−2 . (6.1.23)
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The coefficients Fk,g(τ,m) are the genus g contributions to the free energy at base degree
k.

In the absence of divisors of type 3 (i.e. non-abelian gauge symmetry in the case of
SCFTs), Zk is of the form

Zk =
∑
ciφk,i(τ, z,m)
φDk (τ, z) , (6.1.24)

with

φDk =
b2(B)∏
i=1

ki∏
s=1

φ−1,1/2(τ, sz1)φ−1,1/2(τ, sz2) , (6.1.25)

and φk,i(τ, z,m) an element of the tensor product of the ring of Jacobi forms in z and
in m, and with φDk (τ, z) having τ -independent leading coefficient in z. The expansion in z
thus yields Jacobi forms in m with quasi-modular forms (see appendix A), as coefficients.
By the argument above, the m-index of Fk,g is equal to that of Zk. Restoring the η-
dependence, the weight of Fk,g can be read off from the power of z it multiplies; it is equal
to 2g − 2.

The structure of Fk,g for these cases can be further constrained. Let us restrict for
simplicity to the case b2(B) = 1. Fix k and g. The contributions of the second Eisenstein
series E2(τ), the source of the “quasi” in the quasi-modularity of Fk,g, stem from the
Taylor expansion of the Jacobi forms A and B in z. From the Taylor series of A and
B, given in (A.2.10), we can infer that the highest power of E2 at given order in z will
arise from the contribution to Fk,g with the highest power in B. At genus g, this highest
power is 2k+ 2g− 2; the contribution 2k stems from the leading power z2k in the universal
denominator (6.1.25) of Zk in the absence of divisors of type 3. The bound on the highest
power in E2 is thus k + g − 1, which lies below the bound provided by the weight alone.

The structure of Fk,g in the presence of divisors of type 3 (i.e. of non-abelian gauge
symmetry in the case of SCFTs) is similar. To arrive at this conclusion, consider again the
general form

Zk =
∑
ciφk,i(τ, z,m)
φDk (τ, z,m) . (6.1.26)

of Zk. The denominator, as given in (5.2.6), now has m-dependence. Naively, the oc-
currence of linear combinations of z and m as elliptic parameters invalidates the above
argument for the structure of Fk,g. Upon rewriting the denominator in the form(

k∏
s=1

φ−2,1(τ, sz)
) ∏
α∈∆+

φ−2,1(τ,mα)αk(0)

k−1∏
j=1

∏
α∈∆+

(
φ−2,1(τ, jz +mα)φ−2,1(τ, jz −mα)

)αk(j)
 ,

(6.1.27)
where

αk(j) =
⌈
k − j

2

⌉
, (6.1.28)

we note however that each occurrence of the linear combination jz+mα as elliptic parame-
ter of a φ−2,1 factor in φDk is balanced by the occurrence of jz−mα. The index bilinear form

82



6.1. THE STRUCTURE OF THE TOPOLOGICAL STRING FREE ENERGY

of the denominator thus disentangles the contribution of z and of m as elliptic parameters.
The product over positive roots guarantees invariance under the action of the Weyl group.
This is consistent with φDk taking value in the tensor product of the rings of Jacobi forms
with elliptic parameter z and of Weyl invariant Jacobi forms with elliptic parameter m.
Indeed, the identity

φ−2,1(z1)φ−2,1(z2) = 1
144 (φ−2,1(z+)φ0,1(z−)− φ−2,1(z−)φ0,1(z+))2 , z± = z1±z2

2 , (6.1.29)

can be used to eliminate linear combinations of z and mα as elliptic arguments. The leading
coefficient of φDk (τ, z,m) in z is a Weyl invariant Jacobi form. Laurent expanding Fk in z
thus yields Fk,g as meromorphic Weyl invariant Jacobi forms in m with coefficients in the
ring of quasi-modular forms.

As an example, we list low genus results for the free energy at base wrapping degree 2
for the geometry of example 4, based on the calculation in [48]:

F2,0 = 1
(2πi)2

5φ4
−2,3 − 1792φ0,3φ−2,3φ−6,6 + 32E2φ

2
−2,3φ−6,6 + 512E4φ

2
−6,6

4096φ3
−6,6

,

F2,1 = 1
98304φ4

−6,6
(3φ6

−2,3 − 1568φ0,3φ
3
−2,3φ−6,6 + 50E2φ

4
−2,3φ−6,6 + 73728φ2

0,3φ
2
−6,6

−17920E2φ0,3φ−2,3φ
2
−6,6 + 224E2

2φ
2
−2,3φ

2
−6,6 + 672E4φ

2
−2,3φ

2
−6,6 + 5120E2E4φ

3
−6,6

+2048E6φ
3
−6,6) ,

F2,2 = (2πi)2

754974720φ5
−6,6

(495φ8
−2,3 − 341760φ0,3φ

5
−2,3φ−6,6 + 9600E2φ

6
−2,3φ−6,6

+44892160φ2
0,3φ

2
−2,3φ

2
−6,6 − 5017600E2φ0,3φ

3
−2,3φ

2
−6,6 + 80000E2

2φ
4
−2,3φ

2
−6,6

+149120E4φ
4
−2,3φ

2
−6,6 + 235929600E2φ

2
0,3φ

3
−6,6 − 28672000E2

2φ0,3φ−2,3φ
3
−6,6

−22839296E4φ0,3φ−2,3φ
3
−6,6 + 266240E3

2φ
2
−2,3φ

3
−6,6 + 2158592E2E4φ

2
−2,3φ

3
−6,6

+548864E6φ
2
−2,3φ

3
−6,6 + 8192000E2

2E4φ
4
−6,6 + 3342336E2

4φ
4
−6,6 + 6553600E2E6φ

4
−6,6) .

This result is expressed in terms of the generators of the ring JD∗,∗(a2) introduced in appendix
A. The map Fk,g → Fk,g is implemented by replacing these generators by their images in
J D̂∗,∗(a2) under the map (A.3.17), and dividing by η(τ)12k.

The refined case

In topological string applications, the refined free energy is sometimes usefully written as
a function of the parameters g2

s = −ε1ε2 and s = ε1 + ε2. The symmetry under exchange of
ε1 and ε2, apparent in (6.1.21), is manifest with this choice. For our purposes of retaining
some of the transformation properties of the partition function in passing to the free energy,
this choice at first glance appears propitious, as the index bilinear written in terms of these
variables decomposes into a sum of squares, with the coefficient of s2 depending linearly
on k. This naively suggests that the expansion coefficients of Fk in gs should have good
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transformation properties with regards to the remaining parameter s. This however is not
the case, as unlike the superficially analogous case of m-dependence in the unrefined case,
expansion in gs breaks the periodicity in the variable s as well; Fk,g(τ, s) hence cannot be
expanded in Jacobi forms in the elliptic parameter s. Expanding Fk(τ, zL, zR,m) therefore
in both zL and zR (recall that z• = ε•

2π ), we obtain

Fk(τ, zL, zR,m) = 1
z1z2

∞∑
g=0
Fk,gL,gR(τ,m) z2gL

L z2gR
R . (6.1.30)

The same arguments as in the unrefined case show that Fk,gL,gR(τ,m) are elements of
the ring of Jacobi forms with elliptic index m, tensored over the ring of quasi-modular
forms. The m-index is that of Zk, and the weight increases with the indices gL and gR.

6.1.3 Pole structure of single-wrapping contributions to free en-
ergy

Divisors of type 3 modify the pole structure of Zk, and therefore fk drastically, as can be
seen in (5.2.6) or (6.1.27). We will thus discuss geometries with and without such divisors
separately in this section.

Absence of divisors of type 3 (no non-abelian gauge symmetry) – unrefined

We will argue that fk(z, τ,m) as a function of z = gs
2π has the following pole structure:

(I) A second order pole at all integers, and no further poles on the real line. The Laurent
coefficients at these poles are determined by the single-wrapping genus zero Gromov-
Witten invariants at base degree k.

(II) All the other poles are at non-real s-torsion points for all integers s ≤ max{ki}.
These poles are of order 2` and less, where ` = ∑

ibki/sc. The Laurent coefficients
of these poles are determined by the single-wrapping free energies fk′ , |k′| < |k|,
together with the data specified in (I).

To show (I), notice that the Gopakumar-Vafa presentation (6.1.2) of the single-wrapping
contributions in the unrefined case becomes

fk(z, τ,m) =
∑

g,dτ ,dm≥0
nk,dτ ,dmg (2 sin πz)2g−2 qdτQdm

m . (6.1.31)

The second order poles at integer values of z are visible from the sin(πz) factor with g = 0.
Their Laurent coefficients depend only on the single-wrapping genus zero Gromov-Witten
invariants; for example at z → 0

fk(z, τ,m) =
∑
dτ ,dm≥0 n

k,dτ ,dm
0 qdτQdm

(2π)2z2 + regular terms in z . (6.1.32)
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Note that we prefer speaking of single-wrapping genus zero Gromov-Witten invariants,
rather than the identical genus zero Gopakumar-Vafa invariants, as we are concerned with
the z expansion of fk, rather than the expansion in sin πz.

Regarding the possibility of other real poles, the infinite sum in q cannot lead to poles at
τ -independent (hence real) points, and the infinite sum in Qm does not lead to additional
poles in the absence of divisors of type 3. fk hence has no other poles on the real line.

To argue for (II), consider the expression (6.1.14) of the single-wrapping function
fk(z, τ̄) in terms of the partition function Zk′ at base wrappings |k′| ≤ |k|.

fk(τ, z,m) will at best share the poles of the base-wrapping k′ partition functions Zk′
appearing on the RHS of (6.1.14). These poles lie at s-torsion points for all integers s ≤
max{ki}. The maximal order of a pole at an s-torsion point will arise from a contribution
to (6.1.14) with a maximal number ` of Z• factors at multi-wrapping s. This number is
` = ∑

ibki/sc, and the order of the corresponding pole is 2`.
By (I), a certain number of cancellations must take place between the poles stemming

from the monomials contributing to fk:

• All but the second order pole at integer values of z cancel.

• All real poles at real s torsion points, s > 1, cancel.

We observe by explicit computation that generically, no other cancellations occur. For
all non-real s-torsion points, s > 1, this follows from the following observation: as we
will see in detail in section 6.3, all poles at s-torsion points for a given s are related via
modular transformations. Given that the monomials contributing to fk have different
indices, the vanishing of the poles at one element of this SL(2,Z) orbit, the real s-torsion
point, generically excludes the vanishing at all others.

We will show in section 6.3 that the principal part of the partition function Zk at
base-wrapping k can be computed from knowledge of the partition function at lower base-
wrapping, in conjunction with knowledge of the single-wrapping genus zero Gromov-Witten
invariants at base-wrapping k. The central ingredient in the argument is that all poles at
s-torsion points for fixed s are related by an SL(2,Z) action, and each SL(2,Z) orbit has a
distinguished real representative; the principal part of the Laurent expansion of Zk around
this point is determined by the data proposed. This property of Zk implies the final claim
of (II) regarding the pole structure of fk(τ, z,m).

Absence of divisors of type 3 (no non-abelian gauge symmetry) – refined

As in the unrefined limit given by ε1 = −ε2, εL ∝ gs while εR = 0, we will study the
pole structure of fk(zL, zR, τ̄) as a function of zL. This choice is not necessarily canonical.
Arguing in direct analogy to the unrefined case, we find the following:
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(I) fk(zL, zR, τ̄) as a function of zL has simple poles at zL = ±zR + Z and no further
poles along the axes ±zR + R. At these poles, the Laurent coefficients depend only
on the refined GV invariants nd,NS

g appearing in the NS limit ε1 → 0 (or equivalently
ε2 → 0) of the free energy, which are given by

nd,NS
g =

∑
gL+gR=g

nd
gL,gR

. (6.1.33)

(II) There are further poles at ±zR shifted by non-real s-torsion points for all integers
s ≤ max{ki}. These poles are of order ` = ∑

ibki/sc and less.

The argument proceeds in precise analogy to the unrefined case in section 6.1.3. To see
that the invariants (6.1.33) play the role of the genus zero Gromov-Witten invariants in
the unrefined case, note that expanded around zL = ±zR,

fk(zL, zR, τ̄) =∓
∑
dτ ,dm,g≥0 n

n,dτ ,dm,NS
g (2 sin πzR)2g/(2 sin 2πzR)qdτQdm

m

2π(zL ∓ zR)
+ regular terms in zL ∓ zR .

(6.1.34)

Presence of divisors of type 3 (gauge symmetry) - unrefined

In geometries that exhibit divisors of type 3, the denominator φDk exhibited in (6.0.1)
depends on the associated Kähler parameters, and Zk as a function of z exhibits poles that
depend on these parameters. These poles are inherited by the free energies Fk.

We will focus on the case b2(B) = 1. From the explicit form of the denominator φDk
given in (6.1.27), we can read off the poles of the partition function Zk at fixed base degree
k:

1) Poles of order 2bk/sc at s-torsion points for 1 ≤ s ≤ k.

2) Poles at
zj = mα

j
+ j-torsion point (6.1.35)

for 1 ≤ j ≤ k − 1 and mα = (m, α), α ∈ ∆, of order 2αk(j) as defined in (6.1.28).

The poles of the first kind are independent of the presence of divisors of type 3, and can
be treated as in subsection 6.1.3. The poles of the second kind are qualitatively different,
as no representative in their SL(2,Z) orbit is related to simply accessible data: they are
all invisible in the Gopakumar-Vafa presentation (6.1.1) of the free energy. This limitation
reduces the utility of analyzing the pole structure of Zk via knowledge of the pole structure
of fk. Having come this far, we nevertheless want to make some observations regarding
the latter.

Let us first consider Fk and the possibility that the poles of the monomials Mk,n on
the RHS of the expression (6.1.6) for Fk in terms of Zk′ , k′ ≤ k cancel. For k − j odd,
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this is ruled out by the fact that αk(j) > αk′(j) for k′ < k. Hence, the order of the pole
at zj is highest amongst the monomial Mk,n in the one equaling Zk, the pole at this order
can therefore not be canceled. For k − j even, αk(j) = αk−1(j) and αk−1(j) > αk′−1(j) for
k′ < k, so the Zk and the ∝ Zk−1Z1 contribution to Fk have the same order pole at zj. We
have checked via explicit computation that these do not cancel.

Turning now to fk, by the multi-wrapping structure (6.1.2) of the free energy, the
single-wrapping quantities fk must exhibit poles beyond those of Fk. To see the origin of
such poles, consider e.g. the base degree k = 4. We have

F4(τ, z,mα) = f4(τ, z,mα) + 1
2f2(2τ, 2z, 2mα) + 1

4f1(4τ, 4z, 4mα) . (6.1.36)

As f2(τ, z,mα) exhibits poles at z = r + sτ ± mα, f2(2τ, 2z, 2mα) will exhibit poles at
z = r

2 + sτ ±mα. But as no the Z• exhibits poles at this location, neither can F4. f1 = Z1,
hence does not exhibit a pole at this location either. The pole must hence be canceled by
f4.

6.2 Zk of negative index

In the following subsections, we first explain why the negativity of the index is crucial to
determining the partition functions. We then review the technique presented in [34] to
explicitly construct a negative index Jacobi form solely from its principal part.

6.2.1 Why negative index is simpler

The observation that negative index Jacobi forms are determined by their principal parts
holds simply because holomorphic Jacobi forms of negative index do not exist.

Indeed, consider two meromorphic Jacobi forms of equal weight, index, and principal
parts. Their difference is again a Jacobi form of same weight and index as before, but with
vanishing principle parts. If the index is negative, this difference, by the non-existence
of non-trivial holomorphic Jacobi forms of negative index, is hence zero. The statement
follows.

Let us also point out why the argument fails for elliptic fibrations in the presence of
type 3 curves. The denominator in this case is given by (6.1.27). The mass dependent
poles are not visible in the Gopakumar-Vafa form, and as we say in section 6.1, they do
not distribute nicely with regard to multi-wrapping considerations. Hence, the difference
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(6.2.1) in the singular case takes the more complicated form

Z1
k − Z2

k =
φk(τ, z,m)

φ−2,1(τ, z)∏α∈∆+ φ−2,1(τ,mα)αk(0)
(∏k−1

j=1
∏
α∈∆+

(
φ−2,1(τ, jz +mα)φ−2,1(τ, jz −mα)

)αk(j)
) .

(6.2.1)

To argue for vanishing as above, the sum of the index of the LHS and the index of the
denominator of the RHS must be negative, a much weaker constraint than previously.

6.2.2 Explicit reconstruction of Jacobi forms from their principal
parts

The construction presented in [34] relies on the existence of a function FM(τ, z, u) for any
M ∈ 1

2N, which satisfies the following two properties:

1) It is quasi-periodic as a function of u, i.e. it satisfies the relation

FM(τ, z, u+ λτ + µ) = (−1)2Mµe
[
−M(λ2τ + 2λu)

]
FM(τ, z, u) . (6.2.2)

For M ∈ N, this is the elliptic transformation property of a Jacobi form of index M .

2) Again as a function of u, it is meromorphic with only simple poles. These lie at
z + Zτ + Z. The residue at u = z is 1

2πi .

Now consider a Jacobi form φ−M(τ, u) of index −M , M ∈ N. The product

φ−M(τ, u)FM(τ, z, u) (6.2.3)

is one- and τ -periodic in the variable u. The integral around the boundary of a fundamental
parallelogram for the lattice Zτ +Z, chosen to avoid all poles of the integrand (6.2.3) along
the integration path, thus vanishes,∮

φ−M(τ, u)FM(τ, z, u) du = 0 . (6.2.4)

Now choose z away from the poles of φ−M(τ, u). Evaluating the LHS of (6.2.4) by the
residue theorem yields

φ−M(τ, z) = −2πi
∑
i

Resu=ui(φ−M(τ, u)FM(τ, z, u)) , (6.2.5)

with the sum ranging over all poles of φ−M in the chosen fundamental domain. This is
the desired result, as the RHS of this expression is completely determined by FM and the
negative index Laurent coefficients at the poles of φ−M .
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Explicitly, FM is a level 2M Appell-Lerch sum, given by the expression

FM(τ, z, u) = (ζω−1)
∑
n∈Z

ω−2MnqMn(n+1)

1− qnζω−1 , q = e[τ ], ω = e[u], ζ = e[z] . (6.2.6)

In terms of the principal parts Dn,ui of φ−M(τ, z) at the poles ui,

φ−M(τ, z) =
∑
n<0

Dn,ui(z − ui)n + holomorphic , (6.2.7)

the RHS of (6.2.5) can be evaluated to

φ−M(τ, z) =
∑
i

∑
n>0

D−n,ui
(n− 1)!

( 1
2πi

∂

∂u

)n−1

FM(τ, z, u)

u=ui

. (6.2.8)

6.3 Partition function from genus zero GW
Invariants

Based on the above discussion, we learn that Zk is completely determined by its principal
parts at all poles inside the fundamental domain, and we have explicit way to reconstruct
it given those data. One natural question then arises: since determining all the principal
parts is still a huge amount of work, can we reduce the necessary data further to a minimal
subset? As we will show, in fact what we only need is sufficient numbers of genus zero GW
invariants1.

The proof goes by induction. Instead of rushing to show the general proof which is
somehow tedious, let’s first look at one particular example: E-string theory. Without lost
of generality and for simplicity, we set all the flavor masses to zero. Once we understand
how does the induction work for base degree 1 and 2, we are readily able to understand
how does it work in general.

6.3.1 Motivating Example: the massless E-string

In this subsection, we will work out the details of massless E-string at base degree one and
two. Its index bilinear is

iz(k) = −k(k + 1)
2 . (6.3.1)

We introduce the following notation: Dz0 g will stand for the principal part of g(z) at
z = z0, and Dz0,k g for the coefficient of (z − z0)−k in this expansion. Thus, if g has a pole
at z0 of maximal order `,

Dz0 g =
−1∑
n=−`

an(z − z0)n , Dz0,k g = ak . (6.3.2)

1The precise number is the same as the dimension of elliptic modular forms at certain weight, which
is surely always finite.
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Figure 6.1: The position and the order of pole for Z1 inside the fundamental parallelogram.

The genus zero Gromov-Witten invariants required as input for our calculation can be
determined e.g. with the help of mirror symmetry. For example, a partial list of the first
few base degrees can be found in appendix E. This approach naturally yields the full genus
zero free energy Fk,0 = D0,2Fk, even though the new data at each new base order is of
course captured by the single-wrapping invariants, generated by fk. We report here the
results up to base degree 3:

D0,2F1 = −(2πi)−2E4, (6.3.3)

D0,2F2 = (2πi)−2

24 (E2E
2
4 + 2E4E6), (6.3.4)

D0,2F3 = (2πi)−2

15552 (4E2
2E

3
4 + 109E4

4 + 216E2E
2
4E6 + 197E4E

2
6). (6.3.5)

Here Ei are elliptic (quasi) modular forms whose explicit expressions can be found for
instance in the appendix A. Note in particular the bound k−1 on the power of E2 occurring
in Fk, as derived in section 6.1.2.

Base degree one: for partition function Z1, the general ansatz (6.0.1) together with
the denominator (6.1.25) and the indices

Z1 = φ1(τ, z)
φ−2,1(τ, z) . (6.3.6)

Inside the fundamental parallelogram for z spanned by 1 and τ , Zk only has a double pole
at the origin, with coefficient (6.3.3). The position and the order of pole is shown in Figure
6.1.

The weight of Z1 fix the numerator φ1(τ, z) to have weight 4. This uniquely fixes it to
be

Z1 = − E4

φ−2,1(τ, z) , (6.3.7)

up to the proportionality factor −1, which can be determined from a single genus zero
Gromov-Witten invariant.
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Figure 6.2: The position and the order of pole for Z2 inside the fundamental parallelogram.

Base degree two: next, assuming we have already determined Z2, let’s see in detail
how to determine Z1. For the case of base degree two, we have2

Z2(τ, z) = F2(τ, z) + 1
2Z

2
1 (τ, z) (6.3.8)

= f2(τ, z) + 1
2
η24(τ)
η12(2τ)Z1(2τ, 2z) + 1

2Z
2
1 (τ, z) .

For reader’s convenience, let’s name the last two terms3,

m2,1 = 1
2Z1(2τ, 2z) , m2,2 = 1

2Z
2
1 (τ, z) . (6.3.9)

From the general form (6.1.25) of the denominator of Zk, we can read off that within
a fundamental parallelogram of z, Z2 exhibits poles at all 2-torsion points

z = 0, 1
2 ,
τ

2 ,
τ + 1

2 . (6.3.10)

They are summarized in Figure 6.2.
To find the corresponding principal parts, we adopt the following strategy: we first

determine the expansions around the real poles, and then relate the Laurent data at the
non-real torsion points to these.

z = 0 The structure of the denominator (6.1.25) when k = 2 tells us that there are a
fourth and a second order pole at z = 0. The fourth order pole is due to the contribution
1
2Z

2
1 in (6.3.8). Its Laurent coefficient can be determined as

D0,4Z2 = 1
2 (D0,2Z1)2 . (6.3.11)

The same term also contributes to the second order pole, together with the genus zero part
of F2,

D0,2Z2 = (D0,2Z1)(D0,0Z1) +D0,2F2 . (6.3.12)

2Note that the f2(τ, z) in (6.3.8) differs from f2(τ, z) by some overall factor, so we use a different font.
3The notations are consistent with those appear in the next subsection.
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z = 1
2 By property (I) of fk and the presentation (6.1.16) of Zk in terms of f•, the second

order pole at z = 1
2 is due to the multi-covering contribution 1

2Z1(2τ, 2z) to F2,

D 1
2 ,2
Z2 = 1

2
η24(τ)
η12(2τ)D

1
2 ,2
Z1(2τ, 2z) . (6.3.13)

z = τ
2 The pole at τ

2 is due to the contribution f2(τ, z), which, a prior, we have no access
to. To determine its Laurent data, we use the following crucial observation. The non-real
torsion point τ

2 is mapped to the real torsion point 1
2 via the SL(2,Z) matrix S = ( 0 −1

1 0 )!
We now compare the two Laurent expansions

Z2 =
∞∑

n=−2
c2,n(τ)(z − τ

2 )n =
∞∑

n=−2
b2,n(τ)(z − 1

2)n . (6.3.14)

Z2 has weight w = 12 and indices iz(2) = −3. Invoking the modular transformation of
a Jacobi Modular form for ( a bc d ) = S, i.e., (A.2.2), we obtain

Z2(τ, z) = τ−we
[
− iz(2) z2

τ

]
Z2(−1

τ
,
z

τ
) = τ−we

[
− iz(2) z2

τ

] ∞∑
n=−2

b2,n(− 1
τ
)

τn
(z − τ

2 )n . (6.3.15)

Comparing with (6.3.14) yields
∞∑

n=−2
c2,n(τ)(z − τ

2 )n = τ−we
[
− iz(2) z2

τ

] ∞∑
n=−2

b2,n(− 1
τ
)

τn
(z − τ

2 )n , (6.3.16)

Our next task is to rewrite b2,n(− 1
τ
) for n negative so that it’s more convenient to use.

Of the two monomials 2,i(τ, z) in (6.3.9), only m2,1 contributes to the poles at 1
2 . We have

D 1
2
m2,1(τ, z) =

−1∑
n=−2

b2,n,1(τ)(z − 1
2)n , (6.3.17)

with b2,n = b2,n,1 for n < 0, such that(
η24(− 1

τ
)

η12(− 2
τ
)

)
D τ

2
m2,1(− 1

τ
, z
τ
) =

−1∑
n=−2

b2,n(− 1
τ
)

τn
(z − τ

2 )n, (6.3.18)

with
m2,1(− 1

τ
, z
τ
) = 1

2Z1(− 2
τ
, 2z
τ

) , (6.3.19)

Naively, the matrix ( 0 −2
1 0 ) would map the modular argument τ ′ = − 2

τ
on the RHS of

(6.3.19) back to τ , which is the form that we want, but it is clearly not an element of
SL(2,Z). Here we use a small trick. We regard τ̃ = τ

2 instead of τ as our modular
parameter. Now the element ( 0 −1

1 0 ) ∈ SL(2,Z) transforms the modular argument τ̃ to τ
2

thus gets rid of τ on the denominator. Acting with this transformation on the RHS of
(6.3.19), we obtain

m2,1(− 1
τ
, z
τ
) = 1

2

(
τ

2

)w/2
e
[
2 iz(1)z2

τ

]
Z1( τ2 , z) . (6.3.20)
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Using this result to obtain a q-expansion of the RHS of (6.3.17) and plugging into (6.3.16)
yields

−1∑
n=−2

cn(τ)(z − τ
2 )n =

= D τ
2
τ−we

[
− iz(2) z2

τ

] (η24(− 1
τ
)

η12(− 2
τ
)

)
m2,1(− 1

τ
, z
τ
)

= 1
2D

τ
2

( 1
2τ

)w/2
e
[
− iz(2)−2iz(1)

τ
z2
] (η24(− 1

τ
)

η12(− 2
τ
)

)
Z1( τ2 , z)

= −1
2D

τ
2
e
[
− iz(2)−2iz(1)

τ
z2
] (η24(τ)

η12( τ2 )

)
Z1( τ2 , z).

(6.3.21)

The overall minus sign is due to the non-trivial multiplier system of the Dedekind η func-
tion. Expanding the RHS around z = τ

2 and comparing coefficients finally yields

D τ
2 ,2Z2(τ) = c−2(τ) = −1

2q
1
4

(
η24(τ)
η12( τ2 )

)
D τ

2 ,2Z1( τ2 , z) ,

D τ
2 ,1Z2(τ) = c−1(τ) = −(2πi)iz(2)c−2(τ) ,

(6.3.22)

where we have evaluated iz(2)− 2iz(1) = −1, and used the fact that Z1 only has a second
order pole at z = τ

2 , as can be seen from its explicit form (6.3.7). The above transformation
is presented schematically in Figure 6.2.

z = τ+1
2 We can determine the Laurent coefficients at z = τ+1

2 by invoking the periodicity
of Z2 in τ :

Z2(τ, z) =
∞∑

n=−2
cn(τ)(z − τ

2 )n =
∞∑

n=−2
dn(τ)(z − τ+1

2 )n

= Z2(τ + 1, z) =
∞∑

n=−2
cn(τ + 1)(z − τ+1

2 )n . (6.3.23)

Hence
dn(τ) = cn(τ + 1) , (6.3.24)

yielding
D τ+1

2 ,2Z2 = D τ
2 ,2Z2(τ + 1, z) , (6.3.25)

and
D τ+1

2 ,1Z2 = D τ
2 ,1Z2(τ + 1, z) . (6.3.26)

The above transformation is also presented schematically in Figure 6.2.
To summarize, we have thus expressed the principal parts of Z2 around all of its poles

(6.3.10) using the knowledge of Z1 and of genus zero Gromov-Witten data at base degree
two.
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Below, we list explicitly the Laurent data of base degree one and two:

D0,2Z1 = −(2πi)−2E4 .

D0,4Z2 = (2πi)−4

2 E2
4 .

D0,2Z2 = −(2πi)−2

24
(
3E2E

2
4 + 2E4E6

)
,

D 1
2 ,2
Z2 = −(2πi)−2

8

(
η24(τ)
η12(2τ)

)
E4(2τ) ,

D τ
2 ,2Z2 = (2πi)−2

2

(
η24(τ)
η12( τ2 )

)
q3/4E4( τ2 ) ,

D τ
2 ,1Z2 = 3(2πi)−1

2

(
η24(τ)
η12( τ2 )

)
q3/4E4( τ2 ) ,

D τ+1
2 ,2Z2 = −i(2πi)−2

2

(
η24(τ)
η12( τ+1

2 )

)
q3/4E4( τ+1

2 ) ,

and
D τ+1

2 ,1Z2 = −3i(2πi)−1

2

(
η24(τ)
η12( τ+1

2 )

)
q3/4E4( τ+1

2 ) .

We extend these calculations to base degree 3 and 4, restricting to the massless case for
simplicity, in appendix D.

6.3.2 General Proof

Based on the relation (6.1.18) relating Zk(τ, z,m) to the single-wrapping free energy
fk(τ, z,m) and Zk′ , |k′| < |k| and the properties of fk(τ, z,m) that we have established
in the previous section, we will now demonstrate that the principal parts of Zk(τ, z,m)
can be computed from the knowledge of Zk′ with |k′| < |k|, complemented with the single-
wrapping genus zero Gromov-Witten invariants at base degree k.

Zk has poles at all s-torsion points

z = cτ + d

s
(6.3.27)

for s ≤ max{ki}. From property (I) of fk and (6.1.18), it follows that the knowledge of
genus zero Gromov-Witten invariants for base wrapping degree |k′| ≤ |k| is sufficient to fix
the Laurent coefficients of Zk at all real torsion points. Our task is therefore to reduce the
discussion at non-real torsion points to this case. As the following discussion relies on the
SL(2,Z) transformation behavior of Ztop, it will be convenient to work with the quantity
Zk, which differs from Zk by a rescaling, see (5.2.10).

We consider hence a non-real s-torsion point

z = r
cτ + d

s
, c 6= 0, (6.3.28)
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where, for d 6= 0, we enforce (c, d) = 1 by including the factor r. We can relate the Laurent
coefficients ck,n of an expansion around this point,

Zk(τ, z,m) =
∞∑

n=−2`
ck,n(τ,m)

(
z − rcτ + d

s

)n
, (6.3.29)

to those around the real torsion point r
s
,

Zk(τ, z,m) =
∞∑

n=−2`
bk,n(τ,m)(z − r

s
)n . (6.3.30)

by considering the modular transformation ( a bc d ) ∈ SL(2,Z) of this latter expression. We
obtain

Φw,iz(k),im(k)Zk(τ, z,m) = Zk(aτ+b
cτ+d ,

z
cτ+d ,

m
cτ+d) =

∞∑
n=−2`

bk,n(aτ+b
cτ+d ,

m
cτ+d)

(cτ + d)n

(
z − rcτ + d

s

)n
,

(6.3.31)
where

Φw,iz(k),im(k) = (cτ + d)we
[
iz(k)cz2

cτ+d

]
ε
[
im(k)c(m,m)

2(cτ+d)

]
, (6.3.32)

with the notation e[x] = exp(2πix). Note that unlike Zk, Zk has non-trivial weight w.
Substituting in the expression (6.3.29) yields

∞∑
n=−2`

ck,n(τ,m)
(
z − rcτ + d

s

)n
= (cτ + d)−we

[
− iz(k)cz2

cτ+d

]
e
[
− im(k)c(m,m)

2(cτ+d)

]
∞∑

n=−2`

bk,n(aτ+b
cτ+d ,

m
cτ+d)

(cτ + d)n

(
z − rcτ + d

s

)n
. (6.3.33)

The Laurent coefficients ck,n of Zk around the non-real torsion point (6.3.28) can now be
expressed in terms of the coefficients bk,n around the real torsion point r

s
by expanding the

remaining z dependence in the exponential on the RHS of (6.3.33).
Equation (6.3.33) is difficult to use for explicit calculations away from s = 1, as the

expansion coefficients of Jacobi forms around s-torsion points do not behave well under
modular transformations for s > 1. For computations, we must obtain all expressions in
an expansion in q = ε[τ ]. To put bk,n(aτ+b

cτ+d ,
m
cτ+d) in this form, we proceed by induction.

Assume that we have determined all Zk′ for |k′| < |k|. From equation (6.1.18) and property
(I) of the single-wrapping free energy fk, we see that the principal parts of Zk around real s-
torsion points for s > 1 are determined completely by the monomials mk,i in Zk′ , |k′| < |k|
introduced in (6.1.19), i.e. do not involve fk. The negative index Laurent coefficients bk,n
of Zk around the s-torsion point r

s
, s > 1, relate to those of each monomial mk,i around

this point, which we denote as bk,i,n, as

bk,n =
∑
i

bk,i,n , n < 0 . (6.3.34)
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For each monomial, we introduce the product of Jacobi forms mk,i, which is mk,i evaluated
on the set {Zk′} rather than {Zk′}, with the corresponding Laurent coefficients bk,i,n,

mk,i(τ, z,m) =
∞∑

n=−2`
bk,i,n(τ,m)

(
z − r

s

)n
. (6.3.35)

The coefficient bk,i,n evaluated at the point of interest satisfy

mk,i(aτ+b
cτ+d ,

z
cτ+d ,

m
cτ+d) =

∞∑
n=−2`

bk,i,n(aτ+b
cτ+d ,

m
cτ+d)

(cτ + d)n

(
z − rcτ + d

s

)n
. (6.3.36)

We cannot, in analogy with (6.3.31), directly relate the LHS to mk,i(τ, z,m) via a mod-
ular transformation. This is because mk,i will generically contain factors of Jacobi forms
evaluated at arguments (tτ, tz, tm), t > 1, hence not be a Jacobi form for the full mod-
ular group SL(2,Z). To obtain a q-expansion of bk,i,n(aτ+b

cτ+d
m
cτ+d) nonetheless, we study

the factors contributing to mk,i(τ, z,m) individually. A generic such factor is of the form
Zki,j(sjτ, sjz, sjm). We will write t = sj in the following argument to lighten the notation.
On the LHS of (6.3.36), this factor occurs evaluated at the arguments

Zki,j(taτ+b
cτ+d , t

z
cτ+d , t

m
cτ+d) . (6.3.37)

Our goal is to obtain a form amenable to q-expansion of all such factors contributing to the
monomial mk,i(aτ+b

cτ+d ,
z

cτ+d ,
m
cτ+d). This will allow us to express the negative index coefficients

on the RHS of (6.3.36) in terms of a q-expansion, which via (6.3.34) will yield the desired
q-expansion of the coefficients ck,n(τ,m) in (6.3.33) .

The transformation  d −t b
−c t a

 : t
aτ + b

cτ + d
7→ τ (6.3.38)

would remove the τ -dependence of the denominator of the modular argument of (6.3.37),
but is not an element of SL(2,Z) for t 6= 1. We can correct for this by adjusting the two
top entries of the matrix, as only the bottom entries enter in removing the τ -dependence
in the denominator of t aτ+b

cτ+d . For a solution to this problem to exist, the bottom entries
must be mutually prime. Let therefore u = gcd(c, t). Then we can find α and β such that

SL(2,Z) 3
 α β

− c
u

t
u
a

 : t
aτ + b

cτ + d
7→ p τ + q

t
, p, q ∈ Z , (6.3.39)

with
p = u2 , q = u(αbt+ βd) . (6.3.40)

Setting α β

γ δ

 =
 α β

− c
u

t
u
a

 , (τ ′, z′,m′) = (taτ+b
cτ+d , t

z
cτ+d , t

m
cτ+d) , (6.3.41)
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we obtain

Φw,iz(ki,j),im(ki,j)Zki,j(τ ′, z′,m′) = Zki,j(α τ
′+β

γτ ′+δ ,
z′

γτ ′+δ ,
m′

γτ ′+δ ) = Zki,j(p τ+q
t
, u z, um) ,

(6.3.42)
where

Φw,iz(k),im(k) =
(

t

u(cτ + d)

)wi,j
e
[
−t iz(ki,j)cz2

cτ+d

]
ε
[
−t im(ki,j)c(m,m)

2(cτ+d)

]
. (6.3.43)

Recalling t = sj and the constraint (6.1.20) on sj, we note that by linearity of the
index im(k) in k, the q-expansion of the expansion coefficients bk,i,n(aτ+b

cτ+d ,
m
cτ+d) of the

monomials mk,i for all i will exhibit the same prefactor e
[
im(k)(m,m)

2(cτ+d)

]
. The expression for

bk,n(aτ+b
cτ+d ,

m
cτ+d) (n < 0) obtained from these by summing over i therefore also exhibits this

prefactor. In determining the Laurent coefficients ck,n via (6.3.33), this prefactor will hence
cancels against e

[
− im(k)(m,m)

2(cτ+d)

]
.

Above, we have shown that in the case of elliptically fibered Calabi-Yau manifolds
without divisors of type 3, the negative index Laurent coefficients of Zk at all poles can
be reconstructed from the knowledge of Zk′ , |k′| < |k|, complemented by the genus zero
Gromov-Witten at base degree k. By the discussion in section 6.2, when the z-index of Zk
is negative, the knowledge of these coefficients is sufficient to reconstruct all of Zk [34, 86].
Thus we finish our proof.

6.3.3 Geometries on which Zk is completely determined by genus
zero Gromov-Witten invariants

The z-index of Zk is given by the formula

iz(k) = Ck · (Ck +KB)
2 , (6.3.44)

with the Ck denoting divisors of the base B of the elliptically fibered Calabi-Yau manifold
X. For this to be negative for all k, we need Ck · Ck < 0, as the second contribution to
iz(k) grows only linearly in k. In particular, we have to exclude base surfaces with divisors
of positive self-intersection number, hence all compact projective surfaces. Luckily, we are
often interested in considering non-compact base surfaces, e.g. when engineering 6d SCFTs
in F-theory.

To allow for the determination of the principal parts of Zk from genus zero Gromov-
Witten invariants, we need to exclude divisors of type 3 in the Calabi-Yau manifold X.
This leaves us with geometries containing only curves of self-intersection number −2 or
−1. By the analysis of [97], the most general such configuration leading to a minimal
SCFT is a chain of −2 curves ending with a −1 curve, with neighboring curves intersecting
once. This is the higher rank E-string. Its z-index is given in [79]. Considering a chain of
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length n + 1, with the 0th node indicating the −1 curve, and denoting the corresponding
intersection matrix as CIJ , the index can be written as

iz(k) = 1
2

 n∑
I,J=0

kICIJkJ − k0

 , (6.3.45)

which is clearly negative definite.

6.3.4 Laurent coefficients of the refined partition functions

The discussion for the refined partition function follows the same pattern as in the unrefined
case; the additional data upon increasing the base-wrapping degree to k are now the NS-
invariants (6.1.33) at base degree k.

Zk as a function of zL has poles at ±zR shifted by all s-torsion points

zL = ±zR + cτ + d

s
(6.3.46)

for s ≤ max{ki}. Due to the property (I) of single wrapping contributions fk to the
refined free energy, and the relation (6.1.18) adapted by replacing z everywhere by zL, zR,
the Laurent coefficients of Zk at all the poles zL = ±zR + real torsion can be fixed by the
knowledge of the NS-invariants at base wrapping degree |k′| ≤ |k|. Poles at ±zR shifted
by non-real torsion points, on the other hand, can be related to the former by a modular
transformation. As in the unrefined case, we will for the rest of the discussion switch to
the quantity Zk, related to Zk by the rescaling given in (5.2.10), as Zk has better modular
transformation properties.

The Laurent coefficients ck,n(τ, zR,m) of an expansion around a nonreal-torsion-shifted
singular point,

Zk(τ, zL, zR,m) =
∞∑

n=−`
ck,n(τ, zR,m)

(
zL ∓ zR − r

cτ + d

s

)n
, (6.3.47)

can be expressed in terms of the coefficients bk,n(τ, zR,m) around the real-torsion-shifted
point ±zR + r

s

Zk(τ, zL, zR,m) =
∞∑

n=−`
bk,n(τ, zR,m)

(
zL ∓ zR −

r

s

)n
. (6.3.48)

by expanding the following identity

∞∑
n=−`

ck,n(τ, zR,m)
(
ẑL − r

cτ + d

s

)n
= (cτ + d)−we

[
− iL(k)c(ẑ2

L±2zRẑL)
cτ+d

]
e
[
− (k)cz2

R

cτ+d

]

e
[
− im(k)c(m,m)

2(cτ+d)

] ∞∑
n=−`

bk,n(aτ+b
cτ+d ,

zR
cτ+d ,

m
cτ+d)

(cτ + d)n

(
ẑL − r

cτ + d

s

)n
. (6.3.49)
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Here we have introduced (k) = iL(k) + iR(k) and the variable

ẑL = zL ∓ zR , (6.3.50)

evaluated in the neighborhood of r(cτ + d)/s. As in the unrefined case, we also enforce
gcd(c, d) = 1 by introducing r. Beside, we need to put bk,n(aτ+b

cτ+d ,
zR
cτ+d ,

m
cτ+d) in a form

amenable to expansion in q = e[τ ]. We first note that the coefficients bk,n are related to
those of the monomials mk,i introduced in (6.1.18) at the same torsion point by

bk,n =
∑
i

bk,i,n , n < 0 . (6.3.51)

The monomials mk,i, which are mk,i evaluated on the set {Zk′} rather than {Zk′}, are
products of Jacobi forms. Their expansion coefficients bk,i,n around ẑ = r

s
, evaluated at

the point of interest, satisfy

mk,i(aτ+b
cτ+d ,

zL
cτ+d ,

zR
cτ+d ,

m
cτ+d) =

∞∑
n=−`

bk,i,n(aτ+b
cτ+d ,

zR
cτ+d ,

m
cτ+d)

(cτ + d)n

(
ẑL − r

cτ + d

s

)n
. (6.3.52)

To obtain a q-expansion of the negative order coefficients, we need to consider the individual
factors contributing to the monomial mk,i, which are of the form

Zki,j(sj aτ+b
cτ+d , sj

zL
cτ+d , sj

zR
cτ+d , sj

m
cτ+d) . (6.3.53)

with possible multi-wrapping factors sj. Withα β

γ δ

 =
 α β

− c
u

t
u
a

 , (τ ′, z′L, z′R,m′) = (sj aτ+b
cτ+d , sj

zL
cτ+d , sj

zR
cτ+d , sj

m
cτ+d) , (6.3.54)

and u = gcd(c, t), we find

Φw,iL(ki,j),iR(ki,j),im(ki,j)Zki,j(τ ′, z′L, z′R,m′) = Zki,j(α τ
′+β

γτ ′+δ ,
z′L

γτ ′+δ ,
z′R

γτ ′+δ ,
m′

γτ ′+δ )

= Zki,j(p τ+q
sj

, uzL, uzR, um) , (6.3.55)

where
p = u2 , q = u(αbsj + βd) , (6.3.56)

and

Φw,iL(k),iR(k),im(k) =
(

sj
u(cτ + d)

)w
e
[
−sj

iL(ki,j)c(ẑ2
L±2zRẑL)

cτ+d

]
e
[
−sj

(ki,j)cz2
R

(cτ+d)

]
e
[
−sj im(ki,j)c(m,m)

2(cτ+d)

]
.

(6.3.57)
We note that both (k) and im(k) are linear in k. As a result, the expansion coefficients
bk,i,n(aτ+b

cτ+d ,
zR
cτ+d ,

m
cτ+d) of the monomials mk,i for all i and thus their sum bk,n(aτ+b

cτ+d ,
zR
cτ+d ,

m
cτ+d)

will exhibit the same prefactors e
[

(k)cz2
R

(cτ+d)

]
, e
[
im(k)c(m,m)

2(cτ+d)

]
, which then cancel against e

[
− (k)cz2

R

(cτ+d)

]
,

e
[
− im(k)c(m,m)

2(cτ+d)

]
in (6.3.49) when one computes the Laurent coefficients ck,n.
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Chapter 7

Geometries with codimension-one
singular fibers: Higgsing Trees

In this chapter, we turn to geometries having codimension-one singular fibers (leading to
non-abelian gauge symmetries). As we mentioned in chapter 6, their topological string
partition functions have a more complicated denominator structure, and the partition
functions cannot be solely determined from genus zero GW invariants. Instead, we need to
determine them using other boundary data. Besides, in the classification list of [97], there
exists a set of minimal geometries, upon which the F-theory compactification gives rise to
theories that cannot be Higgsed further. By specializing the complex structure, we obtain
geometries with more severe singularity. This naturally arranges all the geometries into
different branches. Within a given branch, the geometries are related via fine tuning of
their complex structure moduli, or so-called “Higgs branch flow” of the underlying SCFTs.
We would like to see if one can recover this pattern from the topological string partition
functions, e.g., through mappings of the corresponding Weyl-invariant Jacobi forms.

This chapter is organized as follows. In section 7.1, we discuss resolution of singular
fibers, Higgsing tree structure that are necessary for later sections. In section 7.2, we will
discuss the a2 model [83, 48], which lies at the bottom of a Higgsing tree. In section 7.3,
we climb up one level on the Higgsing tree and discuss the g2 model.

It is based on some work in progress by Amir-Kian Kashani-Poor and the author.

7.1 Higgsing trees
To begin with, since we assume the existence of divisor of type 3, we need to discuss in
detail how to desingularize the elliptic fiber. The geometry that we consider here is X̌ in
5.1.4. This yields n ≥ 3 in order that b is the divisor we want. Since we are only interested
in how the singularity is resolved along b, we can forget the non-compact direction and
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focus on the elliptic surface S
E → Syπ′
b = P1

(7.1.1)

The exceptional curves Ci that resolve the singularities in the elliptic fiber are all
rational curves, in one to one correspondence with a choice of simple roots αi for the Lie
algebra g. They intersect within S according to the negative of its Cartan matrix. What’s
more, if we denote the original fiber by F0, then it serves as the affine node α0. In other
words, F0 and all the exceptional curves Ci intersect according to the negative of the Cartan
matrix for the corresponding affine Lie algebra ĝ. Furthermore, the resolved elliptic fiber
F can be written as a combination of those curves,

F = F0 +
∑
i

a∨i Ei , (7.1.2)

with a∨i equal to the comark of the simple root that Ei is identified with. One way to
understand this is the following. The correspondence F0 → α0 and Ei → αi maps F to
the imaginary root δ, which means

F · F = δ · δ = 0 . (7.1.3)

Therefore, the resolved fiber F has zero self-intersection, as it should be.

So far, we haven’t talked about flavor groups. In fact, they can be represented as non-
compact divisors inside the base B. This can be argued for as follows. We can regard
flavor group as the limit of gauge group when the gauge coupling is tuned to zero. Given
a divisor of type 3, the gauge group is determined by the singularity, and the square of the
inverse coupling is proportional to the volume of that divisor. Divisors with infinite volume
then have zero gauge coupling, thus correspond to flavor symmetries. The intersection of
flavor divisors and gauge divisors give rise to the matter. A general picture of the divisor
structure inside B can be presented schematically as Figure 7.1.

Since we have the charged matter, we can give vevs to its scalar and invoke Higgs
mechanism to the gauge field. The broken part then becomes massive and is decoupled
from our theory. In terms of the elliptic Calabi-Yau geometry, this means deforming the
complex structure and making the singularities of the elliptic fiber less and less severe.

We can draw a graph to represent the Higgs branch flows. We first label the theory
by the gauge algebra and the representation of matters. Meanwhile whenever there is a
flow between any two theories, we draw a line between them with an arrow indicating the
direction of the flow. This type of graph is called the Higgsing tree. An example can be
found in Figure 7.1.
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Figure 7.1: Divisorial structure of the base B. The divisors in red are divisors of type 3
(over which the elliptic fiber is singular), and f labels the non-compact flavor divisor. Matters
live on their intersect points.

e7 ⊕ (1
256)⊕5

��
e6 ⊕ 27⊕3

��
f4 ⊕ 26⊕2

��
so8 ⊕ 8v ⊕ 8s ⊕ 8c

��
so7 ⊕ 8⊕2

��
g2 ⊕ 7

��
a2

At the bottom of this Higgsing tree, we recover the system we discussed before: one
compact divisor of type 3 with no matter example 4.

7.2 a2 model
Let’s first discuss the a2 model lying at the bottom of the Higgsing tree in Table 7.1.

Recalled our general ansatz (5.2.12). For reader’s convenience, we reproduce it here,

Zk = N
refined
k (τ, zL, zR,m)
φDk (τ, z1, z2,m) . (7.2.1)
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The denominator φDk takes a universal form thus only the numeratorN refined
k is unknown.

Let’s specialize the above to our case. This means k = 1 and m takes values in the
Cartan subalgebra of a2. Throughout this section for simplicity we also sometimes use G
to denote SU(3).

The weight and index of N refined
G,k follow by subtracting the weight and index of the

denominator from those of the elliptic genus, which is of vanishing total weight, and index
bilinear form iG,k given by [50]

iG,k(εL, εR,m) = iL(G, k)ε2L + iR(G, k)ε2R + if (G, k)(mG,mG)g
2 , (7.2.2)

with coefficients

iL = −3
2k

2 + 1
2k , (7.2.3)

iR = 3
2k

2 − 5
2k , (7.2.4)

if = −3k .

Based on the general form of denominator (5.2.12), the modular weight w(G, k) of the
numerator then follows as

w(G, k) = −3k2 + k , (7.2.5)

and the index bilinear form of the numerator is

dG,k(εL, εR,m) = dL(G, k)ε2L + dR(G, k)ε2R + dg(G, k)(mG,mG)g
2 , (7.2.6)

with coefficients

dL(G, k) = 1
4k

4 + 5
6k

3 − 5
4k

2 + 1
6k , (7.2.7)

dR(G, k) = 3
4k

4 + 23
6 k

3 + 29
4 k

2 + 1
6k , (7.2.8)

dg(G, k) = 3k2 . (7.2.9)

Together with the relation

N refined
G,k ∈ J∗,dL(εL)⊗ J∗,dR(εR)⊗ J∗,dg(a2) , (7.2.10)

determining the partition function is reduced to a finite dimensional problem. The unre-
fined case can be obtained by setting εL = 0, εR = gs.

However, in practice, the unknown coefficients grow very fast as we increase the base
degree. Table 7.1 gives the numbers of possible terms for the first few cases.

In section 5.2 of chapter 5, we mentioned the Weyl group invariance of Zk. But in the
last section we learned that we have more, there is actually an affine Lie algebra structure
lurking inside. Naturally, we would like to ask: can we explore the affine Lie algebra
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k w dL dR df unrefined refined

1 −2 0 12 3 4 126
2 −10 6 72 12 583 192859
3 −24 230 32 27 33154 38331108

Table 7.1: Numbers of possible terms in the numerator of the elliptic genus of k strings for
a2 in terms of J∗,∗(a2).

k w dL dR df unrefined refined

1 −2 0 12 3 1 5
2 −10 6 72 12 38 30362
3 −24 32 220 27 2299 4904253
4 −44 98 554 48 57378 237021553

Table 7.2: Numbers of possible terms in the numerator of the elliptic genus of k strings for
a2 in terms of JD̂∗,∗(a2)..

symmetry to simplify our calculation? After careful analyses, in [48] it is argued that
N refined
G,k not only is invariant under the Weyl group of g, but also should transform in a

simple way (in the sense of being invariant up to some powers of Qi) under the symmetry
group D(ĝ) of the affine Dynkin diagram of ĝ. This also explains nicely the slight miss-
match between elliptic genus and topological string partition (5.2.10): once we include
the prefactor, Zk, i.e., the topological string partition function becomes invariant under ĝ

symmetry1!
Weyl invariant Jacobi modular forms invariant under D(ĝ) will be denoted as J D̂∗,∗(g).

In [48], a set of basis is conjectured to be

φ0 ∈ J D̂0,3(a2) , φ2 ∈ J D̂−2,3(a2) , φ6 ∈ J D̂−6,6(a2) , (7.2.11)

Their explicit expressions can be found in appendix A.
This extra symmetry greatly simplifies the computation, see Table 7.2 and compare it

with Table 7.1.
Then in [48] it was found that for base degree up to 3, Zk can be completely solved by

imposing the so-called precise vanishing conditions for GV invariants. Then we can extract
GV invariants from the form of the topological string partition function. Some examples
are given in appendix E.

Finally, in order to compare the above results with those from topological string theory,
we need to choose the correct basis of two-cycles that have the desired intersection matrix

1Namely, the map (A.3.17) in section A.3.
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inside S. The basis is listed in Table 7.2.12.

Div. νi l1â2
l2â2

l3â2
lb lde

D0 0 0 0 0 −4 −1 −1 1 −5

D1 −1 0 0 0 1 1 0 0 14
9

D2 0 −1 0 0 3 0 0 0 7
3

D3 1 1 0 −1 −2 1 1 −1 1
3

D4 1 2 0 −1 1 −2 1 −1 1
3

E 2 3 0 −1 1 1 1 −1 1
3

K 2 3 0 0 0 0 −2 0 −8
9

F 2 3 −1 −3 0 0 1 0 0

H 2 3 0 1 0 0 0 0 1

F 2 3 1 0 0 0 0 1 0

. (7.2.12)

7.3 g2 model
In this subsection, we mention briefly the g2 model. From Graph 5.1.6, we see that our
theory has gauge algebra g2 with charged matter in the fundamental representation. The
flavor symmetry can be determined to be SU(2). Throughout this section for simplicity
we sometimes also use G to denote G2 and F for SU(2).

Recall again our ansatz for Zk,

Zk = N
refined
k (τ, zL, zR,m)
φDk (τ, z1, z2,m) . (7.3.1)

In our case, k = 1 and m takes values in the Cartan subalgebra of g2, since only the
gauge mass parameters appear in the denominator according to our discussion in chapter
5. The expression of φDk can be found in (5.2.14).

We record here the weight and index bilinear form of N refined
G,k , followed by subtracting

the weight and index of the denominator from those of the elliptic genus.
The result is that N refined

G,k has weight w(G, k) = −6k2 − 2k and index bilinear

dFG,k(ε+, ε−,m) = dL(G, k)ε2L + dR(G, k)ε2R + dg(G, k)(mG,mG)g
2 + df (F, k)(mF ,mF )g

2 ,

(7.3.2)
where
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dL(k) = 1
2k

4 + 4
3k

3 − 3
2k

2 − 1
3k, (7.3.3)

dR(k) = 3
2k

4 + 22
3 k

3 + 25
2 k

2 + 5
3k, (7.3.4)

dg(G, k) = 4k2 + k. (7.3.5)
df (G, k) = k. (7.3.6)

Together with the relation,

N refined
G,k ∈ J∗,dL(εL)⊗ J∗,dR(εR)⊗ J∗,dg(g2)⊗ J∗,df (a1) , (7.3.7)

we reduce the calculation to a finite dimensional problem.

However, the numbers of possible terms are huge. For example, we turn off the chemical
potential for the flavor group F , so that the elliptic genus doesn’t depend on mF . For base
degree 1, we have 664 unknown coefficients to determine. For base degree 2, the number
is 2291820.

For gauge groups SU(3) as in [48], we can significantly reduce the number of terms using
Jacobi forms invariant under D(â2), the symmetry of affine Dynkin digram a2. However,
here D(ĝ2) is trivial so it does not help.

In [48], it is conjectured that the so-called precise vanishing conditions of GV invariants
can fix all the unknown coefficients for the a2 model, which was verified explicitly for base
degrees up to three. For the g2 model, we are now searching for the precise vanishing
conditions, hoping that they can fix all the unknown coefficients. Meanwhile, since the
generators of J∗,∗(g2) and J∗,∗(a2) are closely related to each other (see section A.3), it is
plausible to conjecture that their partition functions can be identified upon mappings of
Weyl-invariant Jacobi forms, which we have verified [57] for base degree one. In general,
we expect the following diagram to hold,

Zg2
k |mF=0

(A.3.19)−−−−−−−→ Za2
k . (7.3.8)

Meanwhile, an expression of Zg2
k that holds for all base degrees was found using lo-

calization techniques [124]. We can use their result to extra GV invariants and speculate
possible vanishing conditions. Some examples are given in appendix E. If we would like
to compare the above results with those from topological string theory, we again need to
choose the correct basis of two-cycles that have the desired intersection matrix inside S.
The toric data and corresponding two-cycles for g2 model are listed in Table 7.3.9.
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7.3. g2 MODEL

Div. νi l1g2 l2g2 lfiber lb lde

D0 0 0 0 0 −3 0 0 0 0
D1 −1 0 0 0 1 0 0 0 0
D2 0 −1 0 0 0 3 0 0 0
D3 1 1 0 −1 3 −6 0 0 0
D′ 2 3 0 −2 −2 3 1 −1 0
E 2 3 0 −1 1 0 −2 −1 1
K 2 3 0 0 0 0 1 0 −2
F 2 3 −1 −3 0 0 0 1 0
H 2 3 0 1 0 0 0 0 1
F 2 3 1 0 0 0 0 1 0

. (7.3.9)
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Chapter 8

Conclusion and Outlook

In this thesis we have presented various results about topological string theory on Calabi-
Yau manifolds and its relation with spectral theory and six dimensional super-conformal
field theories.

In the first part, we explore the non-perturbative aspects in the Harper-Hofstadter
model. In particular, we employed various techniques to compute the trans-series struc-
ture of the spectrum. The perturbative series is computed very conveniently using the
extended BenderWu package [167, 81]. The 1-loop contributions to the 1-, 2-instanton sec-
tors, and the energy ambiguity are obtained by a path integral calculation, albeit restricted
to the ground state level. Higher order corrections in the 1-instanton sector and in the
ambiguity (imaginary contributions of the instanton–anti-instanton sector) are computed
using refined topological string techniques in connection with the local F0 geometry in-
spired by a similar work [42]. All these results can be checked against numerical results,
which can be computed exactly when the magnetic flux is 2π times a rational number, and
they all agree perfectly. This validates all our techniques.

Clearly there are still many open questions. For example, we have checked that
the perturbative–non-perturbative relation1 relating the perturbative sector and the 1-
instanton sector is not satisfied, which is not that surprising since the Schrödinger equa-
tion of the Harper-Hofstadter model is a difference rather than a second-order differential
equation. On the other hand there still exists a curious relation between the three sectors:
perturbative, 1-instanton, instanton–anti-instanton. Also, we can ask ourselves how far
can we extend this correspondence between topological string theory and condensed mat-
ter physics. For instance, another real world model that describes electrons on a triangular
lattice, is revealed to be connected to the topological string theory, with the target space
being the canonical bundle of the three-point blow-up of P2 [95]. One can explore whether
a similar analysis can be applied in that model as well.

In the second part of thesis, we discuss elliptic genera of six dimensional super-conformal

1This relation was first proposed in [10, 6, 7, 8, 9] and later rediscovered by [59].
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field theories and topological string partition functions on Calabi-Yau manifolds that en-
gineer them. After careful analysis of their pole structure, we found that for geometries
without codimension one singular fibers, their partition functions can be reconstructed
based solely on genus zero Gromov-Witten invariants. Then we move on to geometries
having codimension one singular fibers and discuss the Higgs tree structure.

There are lots of future directions waiting to be explored. First of all, for the geometries
leading to non-abelian gauge symmetries, it’s not clear what set of boundary conditions
suffices to reconstruct the topological string partition functions. For the a2 model, the
precise vanishing conditions for GV invariants [48] were conjectured to be sufficient. We
would like to find conditions of this sort for other geometries. Furthermore, once those
partition functions are determined, we would like to see if they enable us to read off the
Higgsing tree pattern. One plausible way is to look at degenerations among various Weyl-
invariant Jacobi modular forms.

Meanwhile, their partition functions can also be studied from the two dimensional
world-sheet, which have interesting chiral algebra structures [51] and can possibly be related
to the super-conformal index and BPS spectrum of four dimensional SCFTs. It would be
worthwhile to clarify their relations.

Last but not least, to define an elliptic CY manifold we need to choose a two dimensional
base, either compact or non-compact. In [56], we obtain our strongest results for the non-
compact bases, where the dynamics in the gravity sector is frozen. If instead we choose a
compact base, its partition function captures the BPS content of black holes. Clearly, the
more we can compute, the better we can understand those microscopic states and hence,
the black hole entropy. However, since here the indices of gs for the partition functions of
different base degrees are mostly positive, we need new methods to compute it. It would
also be interesting to see to what extent we could use GW invariants at low genera to
determine the partition functions.
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Appendix A

Modular Forms

In this appendix, we give a quick introduction to the theory of modular forms. Modular
forms appear in a lot of places in modern mathematics: arithmetics, geometry, combi-
natorics, etc. They also arise quite naturally in modern physics, typically as partition
functions of systems with certain symmetries. In section A.1, we discuss modular form of a
single variable, also known as the elliptic modular form, then in section A.2 modular form
with additional elliptic parameters, i.e., Jacobi modular form. Finally we will talk about
Jacobi modular forms with extra Weyl group symmetries in section A.3, used in chapter
7.

For introductions to elliptic modular forms, one can read chapter 7 of the classical book
[165], on which the section A.1 is based, or the first chapter of [35]. The standard reference
for the section A.2 is [60]. For the section A.3 on Weyl-invariant Jacobi forms, many details
can be found in [27].

A.1 Elliptic modular forms
Definition 2. Suppose k is an integer. A function f : H→ C is called a modular form of
weight k for full modular group SL(2,Z) if f is holomorphic on H ∪ {∞} and satisfies the
following equation

f(aτ + b

cτ + d
) = (cz + d)kf(τ), for any

a b

c d

 ∈ SL(2,Z) (A.1.1)

In particular, if we choose the matrix
1 1

0 1

, we find that f(τ + 1) = f(τ). Thus

introducing q = exp(2πiτ), f can be expanded as a power series at τ = i∞

f(τ) =
∑
n≥0

anq
n (A.1.2)
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A.1. ELLIPTIC MODULAR FORMS

The condition n ≥ 0 is guaranteed by the holomorphicity at the infinity. If furthermore
a0 = 0, we say that f is a cusp form. Notice that in this expansion, the full SL(2,Z)
symmetry is no longer manifest.

naively, possible examples of modular form should be related to summation over integer
points of a lattice, which are reshuffled under SL(2,Z) transformation. Indeed, it’s not
difficult to write down examples of this sort, also known as the Eisenstein series,

Definition 3. For k > 2 an even integer, the level k Eisenstein series is defined as

Gk(τ) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(m+ nτ)k , (A.1.3)

The condition k > 2 is to ensure absolute convergence1 of the infinite sum. It’s straight-
forward to verify that Gk is a modular form of weight k. The construction for odd k doesn’t
give anything new since in that case Gk is always zero. But still, this already gives us in-
finitely many examples. Notice that we can always rescale Gk by an overall factor, and
we make use of this freedom to define Ek = 1

ζ(k)Gk such that the constant term is one.
Expand Ek at τ = i∞ and obtain

Ek = 1− 2k
Bk

∞∑
n=1

σk−1(n) qn, (A.1.4)

where Bk is the kth Bernoulli number and σi(n) denotes the sum of the ith powers of the
positive divisors of n. We also list the first few examples:

E4(τ) = 1 + 240q + 2160q2 + · · · ,
E6(τ) = 1− 504q + 16632q2 + · · · ,
E8(τ) = 1 + 480q + 61920q2 + · · · .

(A.1.5)

Moreover, we can write down a cusp form by canceling the constant term,

∆(τ) = 1
1728(E4(τ)3 − E6(τ)2) = q − 24q2 + · · · . (A.1.6)

Since the product of two modular forms is also a modular form with weight the sum of
separate weights, the space of modular forms forms a ring. Tis in fact greatly simplifies the
structure, and the first striking result is that the ring of modular forms is generated by only
two elements E4 and E6. cusp modular forms of weight k and the space of holomorphic
modular forms of weight k. Clearly M c

k ⊂Mk.

Theorem 2. 1) When k is odd, k < 0 and k = 2, Mk = 0.

1This is needed to ensure that we can rearrange the order of summation.
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A.1. ELLIPTIC MODULAR FORMS

2) When k = 0, 4, 6, 8, 10, Mk is one dimensional with basis 1, E2, E4, E6, E
2
4 , E4E6 re-

spectively, while M c
k = 0.

3) Mk = M c
k ⊕ CEk.

4) Multiplication by ∆ is an isomorphism from Mk−6 to M c
k.

Proof. [165]. 2

Corollary 1. M∗ is generated by E4 and E6.

It turns out that we also need functions that are not exactly modular. The first one is
the famous Dedekind eta-function,

η(τ) = q
1
24

∞∏
i=1

(1− qi) . (A.1.7)

The factor q 1
24 may seem strange, but actually it nicely reflects the presence of zero-point

energy of physical systems. The Dedekind η function has the transformation rule,

η(τ + 1) = exp( iπ
12) η(τ), η(−1

τ
) =
√
τ√
i
η(τ). (A.1.8)

Nevertheless, η24 is a cusp modular form of weight 12, using the fact that T and S matrices
generate the whole SL(2,Z) group. Since M c

12 is one dimensional, by comparing the first
factor we immediately conclude that

∆(τ) = η(τ)24 . (A.1.9)

Another function that is close to being modular is the so-called qausi modular form
E2. It can be motivated from the Eisenstein series. Although in the original definition 3
k must be greater than two to ensure absolute convergence, the Taylor series expansion
(A.1.4) can be extended formally to k = 2 with finite radius of convergence. I.e.,

E2(τ) = 1− 24
∞∑
n=1

σ1(n)qn = 1− 24q − 72q2 + · · · (A.1.10)

However, we are no longer guaranteed to have modular invariance, since the naive
definition 3 is not absolutely convergent. In fact, by noticing the fact that

1
2πi

d

dz
log ∆(z) = E2(z) , (A.1.11)
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A.2. JACOBI MODULAR FORMS

which can be checked explicitly, together with (A.1.9) we can show

E2(aτ + b

cτ + d
) = (cτ + d)2E2(τ)− 6i

π
c(cτ + d) . (A.1.12)

In fact, we can enlarge our ring M∗ to be the ring of quasi-modular forms M̃∗, by
relaxing the condition (A.1.1) to be

f(aτ + b

cτ + d
) = (cτ + d)k

s∑
j=0

fj(τ)( c

cz + d
)j (A.1.13)

for a set of holomorphic functions fj(τ) and integers k and s. E2 corresponds to the
simplest case with k = 2 and s = 1. Similar to the ring M∗, the M̃∗ is also finitely
generated. Actually, it can be shown [35] that for the full modular group SL(2,Z) M̃∗ is
generated from M∗ just by adding E2.

On the other hand, we can alternatively modify E2 to be modular which can be verified
by explicit computation,

Ê2(τ) = E2(τ)− 3
πIm(τ) , (A.1.14)

at the expense that it’s no longer holomorphic in τ .
In short, if we choose E2, we keep holomorphicity but we lose modularity; If we choose

Ê2 instead, we are able to preserve modularity but lose holomorphicity. This fact is inti-
mately related to the holomorphic anomalies introduced in chapter 3 and greatly simplifies
the computations in chapter 4.

A.2 Jacobi modular forms
A natural generalization of elliptic modular forms is Jacobi modular forms.

Definition 4. A Jacobi modular form is a function φ : H × C → C that depends on a
modular parameter τ ∈ H and an elliptic parameter z ∈ C. It transforms under the action
of SL(2,Z) on H× C as

τ 7→ τγ = aτ + b

cτ + d
, z 7→ zγ = z

cτ + d
with

 a b

c d

 ∈ SL(2,Z) , (A.2.1)

as

φ (τγ, zγ) = (cτ + d)ke
2πimcz2
cτ+d φ(τ, z) , (A.2.2)

φ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z) ∀λ, µ ∈ Z , (A.2.3)

(A.2.2) is known as the modular transformation which is a generalization of modular
transform, while the second one (A.2.3) is known as the elliptic transform.
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A.2. JACOBI MODULAR FORMS

We can immediately extract some information from the definition. For example, in

(A.2.2), if we choose
−1 0

0 −1

 ∈ SL(2,Z), we see that

φ(τ,−z) = (−1)kφ(τ, z) , (A.2.4)

meaning that the parity in z is correlated with its weight. Moreover, if we choose
1 1

0 1


and λ = 0, µ = 1 in equations (A.2.2) and (A.2.3) respectively, we see that the Jacobi form
is invariant under the shift τ → τ + 1 and z → z + 1, hence it enjoys a double Fourier
expansion

φ(τ, z) =
∑
n,r

c(n, r)qnyr, where q = e2πiτ , y = e2πiz . (A.2.5)

It can be shown that c(n, r) only depends on r and an SL(2,Z) invariant combination
4nm − r2, i.e., c(n, r) = C(4nm − r2, r). We can further define three subrings of Jacobi
modular forms: holomorphic Jacobi forms Jh∗,∗ satisfy the constraint c(n, r) = 0 unless
4nm ≥ r2, cusp forms J c∗,∗ satisfy c(n, r) = 0 unless 4nm > r2 and weak Jacobi forms Jw∗,∗
satisfy c(n, r) = 0 unless n ≥ 0. Clearly we have J c∗,∗ ⊂ Jh∗,∗ ⊂ Jw∗,∗. In chapter 5, we will
choose the biggest subring Jw∗,∗ as our ansatz.

An important theorem whose proof can be found in [60] shows that Jw∗,∗ of integer index
is freely generated over the ring of elliptic modular forms by two generators φ−2,1(τ, z) and
φ0,1(τ, z). Using the notation,

A(τ, z) = φ−2,1(τ, z) and B(τ, z) = φ0,1(τ, z) , (A.2.6)

the above statement can be written concisely as

Jw
k,m =

m⊕
j=0

Mk+2jA
jBm−j . (A.2.7)

As a remark, notice that for Jw∗,∗ we can have non trivial elements with negative weights,
but since both generators have positive index, there is no weak Jacobi modular form with
negative index. This fact will play a very important role in the chapter 6.

We will define A and B in terms of the famous Jacobi theta functions. For a and b

∈ {0, 1/2}, we have

Θ
[
a

b

]
(τ, z) =

∑
n∈Z

eπi(n+a)2τ+2πiz(n+a)+2πibn . (A.2.8)

The four theta functions in our conventions are θ1 = iΘ
[

1
2
1
2

]
, θ2 = Θ

[ 1
2
0

]
, θ3 = Θ

[
0
0

]
and

θ4 = Θ
[

0
1
2

]
.
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In terms of θi(τ, z), we can write down our two generators

A(τ, z) = −θ1(τ, z)2

η6(τ) ,

B(τ, z) = 4
(
θ2(τ, z)2

θ2(τ, 0)2 + θ3(τ, z)2

θ3(τ, 0)2 + θ4(τ, z)2

θ4(τ, 0)2

)
.

(A.2.9)

The following Taylor expansions of A and B at z = 0 are useful in the chapter 6,

A(τ, z) = −(2πz)2 + E2

12 (2πz)4 + −5E2
2 + E4

1440 (2πz)6 + 35E3
2 − 21E2E4 + 4E6

362880 (2πz)8

+O(z10) ,

B(τ, z) = 12− E2(2πz)2 + E2
2 + E4

24 (2πz)4 + −5E3
2 − 15E2E4 + 8E6

4320 (2πz)6 +O(z8) .
(A.2.10)

Note that the coefficients of this expansion take values in the ring of quasi-modular
forms C[E2, E4, E6], which is guaranteed by the weakness condition: c(n, r) = 0 unless
n ≥ 0.

Up to now, we only considered Jacobi forms of one elliptic variable. It’s possible
to generalize them to Jacobi forms of many elliptic variables, e.g., by taking products.
Formally, We fix an integral lattice L of rank n > 0, equipped with a positive definite
inner product (, ). L is required to be even under this inner product, that is to say, for any
l ∈ L, (l, l) ∈ 2Z. Then we have

Definition 5. A Jacobi modular form for the lattice L is a function φ : H× (L⊗C)→ C
that depends on a modular parameter τ ∈ H and z ∈ L⊗C ' Cn. It transforms under the
action of SL(2,Z) on H× Cn as

τ 7→ τγ = aτ + b

cτ + d
, z 7→ zγ = z

cτ + d
with

 a b

c d

 ∈ SL(2,Z) , (A.2.11)

as

φ (τγ, zγ) = (cτ + d)ke
2πimc(z,z)
cτ+d φ(τ, z) , (A.2.12)

φ(τ, z + λτ + µ) = e
−2πim

(
(λ,λ)τ+2(λ,z)

)
φ(τ, z) ∀λ,µ ∈ L∗ , (A.2.13)

where in (A.2.13) L∗ stands for the dual lattice, whose elements are defined to have
integer inner product with all the elements in L. Note that comparing with definition 4,
we basically just replace z by the z. To name a small difference, the index m which is very
important in definition 4 actually only plays a minor role here, since we can always rescale
the inner product (, ) to be m(, ). However, we choose to preserve the index m because
below we will use a fixed inner product on the lattice.
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A.3 Weyl-invariant Jacobi forms
Lattices naturally occur in the study of Lie algebras. In fact, given a Lie algebra g, on the
dual of complexified Cartan sub-algebra h∗ we have a bilinear form induced by the (suitably
normalized) Killing form on h∗. Moreover, it’s well known that on the root lattice there
is a discrete group of automorphisms called the Weyl group, generated by reflections of
simple roots. Therefore, we can impose the Weyl group invariance upon definition 5

φ(τ, σ(z)) = φ(τ, z), ∀σ ∈ W. (A.3.1)

Before proceeding further, let’s first introduce our notation. For a given Lie algebra
g, the bigraded ring J∗,∗(g) = ⊕w,nJw,n(g) denotes Jacobi modular forms on hC satisfying
equations (A.2.12), (A.2.13) and (A.3.1). It is a polynomial ring over M∗ which is the
elliptic modular forms generated by E4 and E6. It was shown in [179] that if g is a simple
Lie algebra other than e8, J∗,∗(g) is freely generated by

ϕ0, ϕ1, . . . , ϕr , (A.3.2)

whose weights and indices are given respectively by

(−di, a∨i ) . (A.3.3)

d0 = 0, a∨0 = 1, while for i = 1, . . . , r, di are the exponents of the Casimirs of g, and a∨i
dual Coxeter numbers. We call the generators of the ring J∗,∗(g) the fundamental Jacobi
forms. Their explicit forms were constructed in Bertola’s thesis [27] for g = an, bn, g2, c3, d4,
and in [161] for g = e6, e7; For the case of e8, fundamental Jacobi forms Ai and Bi were
proposed in [162], whose explicit forms can be found in A.3.3. It was proved in [175] that
J∗,∗(e8) is properly contained inside the polynomial algebra of Ai and Bi over the rational
field C(E4, E6).

As a special case, we have actually already encountered the J∗,∗(a2). Remember that
the root lattice of a1 has rank one, generated by α∨1 = e1 − e2, hence we can identify
zα∨1 with z. Being invariant under the Weyl group just means an even function in the z
invariable. Comparing with definition 4, we readily see that J∗,∗(a1) is the same as Jw

k,m

introduced before.

A.3.1 J∗,∗(a2)
The next example, which is also used in chapter 7, is J∗,∗(a2). Its complexified Cartan
subalgebra is two-dimensional, and a vector z can be parametrized as

z =
3∑
j=1

ujej =
2∑
j=1

xjα
∨
j =

2∑
j=1

mjwj . (A.3.4)
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{ej} is the standard basis of C3, in which hC can be embedded as a hyperplane. The
parameters uj should satisfy

u1 + u2 + u3 = 0 . (A.3.5)

αj are the simple roots and ωj are the fundamental weights. They can be taken to be [33]

α1 = e1 − e2 , α2 = e2 − e3 , (A.3.6)

and
w1 = 1

3(2e1 − e2 − e3) , w2 = 1
3(e1 + e2 − 2e3) . (A.3.7)

Accordingly, the different parametrizations are related by

u1 = x1 = 2

3m1 + 1
3m2 ,

u2 = −x1 + x2 = −1
3m1 + 1

3m2 ,

u3 = −x2 = −1
3m1 − 2

3m2 .

(A.3.8)

According to (A.3.2), J∗,∗(a2) is generated by forms

ϕ3 ∈ J−3,1(a2) , ϕ2 ∈ J−2,1(a2) , ϕ0 ∈ J0,1(a2) (A.3.9)

The explicit constructions in [27] are as follows: defining

dx = 1
2π

∂

∂x
, (A.3.10)

the ring generators then read

ϕ3 = −i η(τ)−9
3∏
j=1

θ1(τ, uj)|u∗→x∗ ,

ϕ2 =
( 3∑
j=1

dujθ1(τ, uj)
θ1(τ, uj)

)
· ϕ3|u∗→x∗ ,

ϕ0 =
(
− dτ −

E2(τ)
4 + 1

3(d2
x1 + d2

x2 + dx1dx2)
)
◦ ϕ2 ,

(A.3.11)

where u∗ → x∗ means a change of parametrization according to (A.3.8).

J D̂∗,∗(a2)

In fact, as discussed in chapter 7, we are also interested in a subring inside J∗,∗(a2), which
contains Weyl invariant Jacobi forms invariant further under the affine Dynkin diagram
automorphism group D(â2). A set of generators is conjectured in [48] to be

φ̃0 ∈ J D̂0,3(a2) , φ̃2 ∈ J D̂−2,3(a2) , φ̃6 ∈ J D̂−6,6(a2) . (A.3.12)
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Figure A.1: Affine a2 Dynkin diagram. The number outside of a circle is its comark.

To express these generators explicitly, we first write down Weyl invariant Jacobi forms
that are invariant under the Dynkin diagram automorphism group D(a2). We denote them
as JD∗,∗(a2). They are conjectured to have a basis,

φ0 ∈ JD0,3(a2) , φ2 ∈ JD−2,3(a2) , φ6 ∈ JD−6,6(a2) , (A.3.13)

where
φ6 = − η−18

3∏
j=1

θ2
1(mj)

∣∣∣∣
m3=−m1−m2

,

φ2 = −8i η−9
3∏
j=1

θ1(mj)
( 3∑
k=1

dmkθ1(mk)
θ1(mk)

)∣∣∣∣
m3=−m1−m2

,

φ0 = 3
4
(
− dτ −

E2

4 + 1
3(d2

m1 + d2
m2 − dm1dm2)

)
◦ φ2 .

(A.3.14)

In terms of generators of J∗,∗(a2) and elliptic modular forms, they look as follows

φ0 = 6ϕ3
0 + E4ϕ0ϕ

2
2

8 − E6ϕ
3
2

72 − E6ϕ0ϕ
2
3

16 + E2
4ϕ2ϕ

2
3

192 ,

φ2 = 24ϕ2
0ϕ2 − E4ϕ0ϕ

2
3 −

E4ϕ
3
2

6 + E6ϕ2ϕ
2
3

12 ,

φ6 = 4ϕ3
0ϕ

3
2 − 27ϕ4

0ϕ
2
3 + 5

8E4ϕ
2
0ϕ

2
2ϕ

2
3 + E6ϕ

2
0ϕ

4
3

16 − E4ϕ0ϕ
5
2

12 − E6ϕ0ϕ
3
2ϕ

2
3

24 − E2
4ϕ0ϕ2ϕ

4
3

96

+ E6ϕ
6
2

216 + E2
4ϕ

4
2ϕ

2
3

2304 + E4E6ϕ
2
2ϕ

4
3

2304 − E2
6ϕ

6
3

27648 + E3
4ϕ

6
3

27648 .

(A.3.15)
They are normalized so that in the power series expansion in Q0, Q1, Q2 with

q = Q0Q1Q2 (A.3.16)

the leading term has coefficient 1.
The generators of JD(g) and generators of J D̂(g) only differ by some prefactors,

JDk,m(g) −→ J D̂k,m(g) ,

φk,m 7−→ φ̃k,m =
(
Q1Q2

)m
2
φk,m .

(A.3.17)

A.3.2 J∗,∗(g2)
The complexified Cartan subalgebra of g2 can be realized as the hyperplane of C3 satisfying
z1 + z2 + z3 = 0. Its root lattice is the same as that of a2, while the root diagram of g2
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Figure A.2: Root system of g2.

looks like Figure A.2. Intuitively, g2 has two copies of the roots of a2 but with different
lengths. The Weyl goup W (g2) is the dihedral group D6 of order 12. In fact, it can be
shown that W (g2))/W (a2) ' Z2, where Z2 is generated by the involution:

i : (z1, z2, z3)→ (−z3,−z2,−z1) . (A.3.18)

Therefore, by analyzing the generators for J∗,∗(a2) under this involution, [27] proposed
the following generators for J∗,∗(g2):

ψ0 = φ0 ∈ J0,1(g2); ψ2 = φ2 ∈ J−2,1(g2); ψ6 = 1
2φ

2
3 ∈ J−6,2(g2) . (A.3.19)

A.3.3 J∗,∗(e8)

Finally, we list the generators of E8 Weyl invariant Jacobi forms conjectured in [160]:

A1 = Θ(τ,m) = 1
2

4∑
k=1

8∏
j=1

θ4(τ,mj) , A4 = Θ(τ, 2m) ,

An = n3

n3 + 1

(
Θ(nτ, nm) + 1

n4

n−1∑
k=0

Θ( τ+k
n
,m)

)
, n = 2, 3, 5 ,

B2 = 8
15

(
(θ4

3 + θ4
4)Θ(2τ, 2m) + 1

24 (−θ4
2 − θ4

3)Θ( τ2 ,m) + 1
24 (θ4

2 − θ4
4)Θ( τ+1

2 ,m)
)
,

B3 = 81
80

(
h(τ)2Θ(3τ, 3m)− 1

35

2∑
k=0

h( τ+k
3 )2Θ( τ+k

3 ,m)
)
,

B4 = 16
15

(
θ4(2τ)4Θ(4τ, 4m)− 1

24 θ4(2τ)4Θ(τ + 1
2 , 2m)− 1

45

3∑
k=0

θ2( τ+k
2 )4Θ( τ+k

4 ,m)
)
,

B6 = 9
10

(
h(τ)2Θ(6τ, 6m) + h(τ)2

24

1∑
k=0

Θ(3τ+3k
2 , 3m)− 1

35

2∑
k=0

h( τ+k
3 )2Θ(2τ+2k

3 , 2m).

.− 1
3 · 64

5∑
k=0

h( τ+k
3 )2Θ( τ+k

6 ,m)
)
,
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where we have set m = ∑8
i=1miei and

h(τ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ) . (A.3.20)

An and Bn have index n and weight 4 and 6 respectively.
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Appendix B

Toric Geometries

In this appendix, we review briefly the basic results in toric geometry, which plays an
indispensable role in topological string theory. Mathematical oriented readers can consult
[65, 46] for more details. [45] also contain lots of useful information. The first three sections
B.1, B.2 and B.3 of this appendix are mainly based on chapter 7 of [103]. For the last
section B.4, [145] contains a more detailed discussion.

Definition 6. An r-dimensional toric variety X is a complex algebraic variety containing
an algebraic torus T = Cr as a dense open set, together with an action of T on X whose
restriction to T ⊂ X is the multiplication.

The nomenclature is explained by the definition. Since tori can be constructed through
the quotient of Euclidean space by lattices, toric varieties are also naturally related to
lattices. Let’s fix N to be a rank r lattice, and set NR = N ⊗ R. We also introduce the
dual lattice M = Hom(T,C∗) ' Hom(N,Z), and its underlying vector space MR = M⊗R.
The action of M on N will be denoted as 〈, 〉 : M ×N → Z.

In the mathematical literature, there are typically two ways to define a toric variety X
through the lattice. The first one makes use of N while the second one needs M . Since
they are both useful in the main text, let’s introduce both of them.

B.1 Fans
The first construction starts from (strongly convex rational) polyhedron cones in N .

Definition 7. A (strongly convex rational) polyhedron cone σ ⊂ NR is a set

σ = {a1ν1 + a2ν2 + · · ·+ akνk|ai ≥ 0} (B.1.1)

generated by a finite set of vectors νi ∈ N such that σ ∩ (−σ) = 0.
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A collection Σ of polyhedron cones is known as a fan if it satisfies the following condi-
tions:

1.Each face of a polyhedron cone is also a polyhedron cone in Σ, (B.1.2)
2.The intersection of two polyhedron cones in Σ is a face of each. (B.1.3)

Given a fan Σ, let Σ(1) be the set of one dimensional rays of Σ, denoted as {νρ}nρ=1,
where νρ generate the intersection of the ray ρ with lattice N . The toric variety XΣ is
constructed as a quotient of a subset of Cn as follows.

We associate a coordinate xρ for each νρ. Let S denote a subset of Σ(1) that do not
form a cone in Σ. Correspondingly, we single out a subspace V (S ) in Cn that is defined
by setting xρ = 0 for ρ ∈ S . If we denote Z(S ) by the union of all possible V (S ), then
XΣ is the quotient of Cn − Z(S ) by a group G, and the algebraic torus can be identified
as a dense open set (C∗)n/G.

The group G can be written down explicitly in terms of coordinates. If the coordinate
of νρ is (νi1, · · · , νir) inside NR, first we consider the map φ:

φ : (C∗)n → (C∗)r, (x1, · · · , xn)→ (
n∏
i=1

xνi1i , · · · ,
n∏
i=1

xνiri ) (B.1.4)

Then the group G is defined as the kernel of φ.
One of the useful features of the fan is an explicit correspondence between polyhedron

cones and T -invariant subvarieties. Suppose σ ∈ Σ is a cone generated by edges ρ1, · · · , ρk,
then we can associate to it a codimension k subvariety

Zσ = {x ∈ XΣ |xρ1 = · · · = xρk = 0}, (B.1.5)

where xi is assigned to ρi as before. For example, each edge ρ corresponds to a T -invariant
divisor Dρ in Xσ. If they constitutes a two dimensional cone in Σ, this means that their
intersection gives a codimension two T -invariant subvariety, etc. (Notice σ 7→ Zσ reverses
the order of inclusion)

In particular, if we consider all effective (complex) one-cycles of X, they form a cone
known as the Mori cone. Given the fan Σ, it is possible to find the generators of the Mori
cone explicitly based on the above correspondence.

Theorem 3. The Mori cone of a toric variety X is generated by curves corresponding to
all (r − 1) dimensional cones.

Proof. [65]. 2

In practice, we choose to represent the data of Σ as two matrices Pij|Qkl, where
(Pi1, · · · , Pir) is the coordinate of the edge ρi, while Qkl encodes relations among the
edges:

r∑
i=1

Qilρi = 0 for all l. Actually, it can be shown that (Q1l, · · · , Qnl) represents a
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Figure B.1: Hirzebruch surface Fn.

one cycle Cl, and Qkl is nothing but the intersection number of Cl with the divisor Dk.
Since we are free to choose a set of basis for one-cycles, we shall always choose {Cl} to be
generators of the Mori cone whenever it is possible. In the main text, we sometimes also
use the notation `

(j)
i for Qij.

After all these abstract definitions, it’s better to look at some concrete example. Below,
let’s construct the Hirzebruch surface Fn, which plays an important role from chapter 5 to
chapter 7, from its fan.

Example 5. We consider the compact toric variety associated with the fan Σ with edges
Σ(1) = {(1, 0), (−1,−n), (0, 1), (0,−1)}, shown in Figure B.1.

Clearly {ν1, ν2} and {ν3, ν4} don’t span a cone in Σ, and any set of edges that doesn’t
span a cone must contain at least one of these sets. Therefore, we see that Z(Σ) = {x1 =
x2 = 0}∪{x3 = x4 = 0}. Moreover, the group G which is the kernel of the map φ : (C∗)4 →
(C∗)2 is given by

(x1, x2, x3, x4)→ (t1t−1
2 , t−n2 t3t

−1
4 ). (B.1.6)

As a result, G is actually the following map

(t1, t2, t3, t4)→ (t1, t1, tn1 t2, t2). (B.1.7)

First of all, according to our rules (B.1.5), four edges νi correspond to four T -invariant
divisors Di. Since v1, v2 do not span a cone, D1 and D2 do not intersect. Similarly for
D3 and D4. However, all other possible pairings of Di with Dj (i 6= j) intersect, simply
because the corresponding edges constitute two-dimensional cones in Σ.

From the fan it’s easy to see that Fn is a CP1 bundle over CP1. Consider the map
Fn → CP1 by (t1, t2, t3, t4) → (t1, t2). From (B.1.7) we see that this map is well-defined
and the fiber is also a CP1. The fiber over (1, 0) and (0, 1) are D1 and D2 respectively.

If n = 0, we can define another projection map by (t1, t2, t3, t4)→ (t3, t4) with the base
also a CP1, hence we have F0 ' CP1 × CP1.
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Furthermore, by noticing that we have two relations 1 · ν3 + 1 · ν4 = 0 and 1 · ν1 + 1 ·
ν2 − n · ν4 = 0 , we can write down the matrix P |Q from the general recipe outlined in the
previous paragraph, 

1 0 0 1
−1 −n 0 1

0 1 1 0
0 −1 1 −n

 (B.1.8)

From the matrix Q, we can obtain the intersection numbers between divisors and one-
cycles. Since We already showed that both D1 and D2 are fibers, so D1 ∼ D2 or D3 ∼ D4

in the Picard group. Let’s denote the divisors corresponding to D3 and D4 by H and
E respectively. From the intersection numbers of H and E with one-cycles, we see that
H = E + nF . Since n is non negative, it’s easy to see that we should choose H and F as
generators of the Mori cone.

On the other hand, since Fn is two-dimensional, one-cycles are themselves divisors.
Again the intersection numbers determine them. The first column vector is f , since F 2 = 0
and f ·H = D1 ·D2 = F ·E = D1 ·D4 = 1. Similarly, the second column vector is E, since
F · E = 1, E ·H = D3 ·D4 = 0 and E · E = E · (H − nF ) = −n.

B.2 Polytopes
Next we switch our gear and discuss another description of toric variety in terms of poly-
topes. Polytopes live in MR, which is the dual space of NR.

Definition 8. An integral polytope in MR is the convex hull of a finite set of points of M .

Now let’s spell out the details of the construction. A Polytope encodes the data of
projective embedding of X into a projective space. Consider an r-dimensional polytope
∆ ⊂MR. The points of ∆∩MR are denoted as m0, · · · ,mk. Recall that M = Hom(T,C∗),
hence mi can be regarded as nowhere vanishing holomorphic functions on T . These func-
tions give us a map

f : T → CPk, f(t) = (m0(t), · · · ,mk(t)) . (B.2.1)

Since mi are nowhere vanishing, f is well-defined and in fact gives an embedding. The
toric variety CPk∆ is defined as the closure of f(t) in CPk. The algebraic torus is clearly
the image of f(t). Note that the toric variety structure does not depend on the ordering
of mi.

On the other hand, we can rewrite (B.2.1) as yi = mi(t), where (y0, · · · , yk) are homo-
geneous coordinates on CPk. Suppose we have a linear relation among mi:

∑
aimi = 0.

Then CPk∆ is contained in the following subvariety:∏
ai>0

yaii =
∏
ai<0

y−aii . (B.2.2)
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Figure B.2: The polytope of F0.

Conversely, we can use all such equations (B.2.2) to define our CPk∆ as a projective subva-
riety.

It’s straightforward to recover the fan from a given ∆. First of all, for each face F of
∆, we define the cone

σF = {v ∈ NR|〈m, ν〉 ≤ 〈m′, ν〉 for all m ∈ F and m′ ∈ ∆} (B.2.3)

The collection of all possible F forms a fan, known as the normal fan Σ∆.

Theorem 4.
XΣ∆ ' CP

k
∆ . (B.2.4)

Proof. [65]. 2

Now let’s come back to our old friend Fn. For simplicity, we only show how to describe
F0 = CP1 × CP1 from its polytope.

Example 6. The polytope of CP1×CP1 is Figure B.2. The integral points of ∆∩MR can
be easily found to be

{m}4
i=0 = {(0, 0), (1, 0), (0, 1), (1, 1)}. (B.2.5)

This defines a projective embedding into CP3 as follows,

f : (t1, t2) = (1, t1, t2, t1t2). (B.2.6)

The closure of its image gives us the embedding of CP1 × CP1,

f : ([x0, x1], [y0, y1]) = ([x0y0, x0y1, x1y0, x1y1]) (B.2.7)

Moreover, if we take its normal fan, constituting normal vectors for all the faces, we get
back the Figure B.1 after setting n = 0.

Next, let’s discuss the inverse problem: how to recover the polytope ∆ from the toric
variety X? Because we always assume X is projective, i.e., can be embedded in a projective
space CPk, there always exists a very ample divisor OX(1) on X. To construct ∆, we need
to fix an isomorphism betweenOX(1) andO(D), where D is a T -invariant divisor. Different
choices will result in a translation in MR, so there is no essential difference. We also need
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to assume that the action of T can be extended to an action on CPk, which is just by
coordinate multiplications.

Holomorphic sections of divisor D can be identified with meromorphic functions f on
X satisfying (f) +D ≥ 0, with (f) being the divisor defined by f . Therefore, if we restrict
each coordinate function xi on CPk to X, it can be regarded as a meromorphic function
fi on X. The assumption that T is an action on CPk implies that its further restriction
on T ∈ X is a character. We denote all such characters by lattice points {mi}, and their
convex hull is the ∆ that we are looking for.

Example 7. Let’s consider again our favorite example F0. It can be represented as
[(x0, x1, x2, x3)�{(0, 0, x2, x3) ∪ (x0, x1, 0, 0)}]/ ∼, where ∼ means the equivalence relation

(x0, x1, x2, x3) ∼ (λ1x0, λ1x1, x2, x3), (x0, x1, x2, x3) ∼ (x0, x1, λ2x2, λ2x3), (B.2.8)

for all λ1,2 ∈ C∗.
We choose to identify OF0(1) with O(D0 + D2). A basis of Γ(O(D0 + D2)) is given

by four homogeneous monomials of (1, 1) bidegree. From our choice, they correspond to
meromorphic functions on F0,

V =
{

s

x0x2
: s ∈ {x0x2, x1x2, x0x3, x2x3}

}
. (B.2.9)

Then it’s easy to see we indeed recover Figure B.2 or (B.2.5).

B.3 Blow-ups
.

Singularities appear naturally when studying algebraic varieties, and how to resolve
them is an important subject in algebraic geometry. A big theorem proved by Heisuke
Hironaka [99] says that over a complex field, all the singularities can be resolved by per-
forming sufficiently many times of blow-ups. If we restrict to toric varieties, the blow-up
can be visualized quite easily. Therefore, in this section we will discuss pictures rather
than definitions. For rigorous definitions and discussions, we refer readers to [90].

At this point we already know that there are two ways to construct a toric variety.
Thanks to theorem 4, if we understand one case, then we can readily infer the other one.
Here, we choose to study the fan in more detail.

First of all, it’s helpful to know what types of singularities could possibly arise. In
terms of fans, we have the following characterizations for different levels of being singular:

Theorem 5. Given a fan Σ and its corresponding toric variety XΣ,
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• If each cone σ in Σ is generated by a Z− basis for the intersection of σ with N , then
XΣ is actually smooth.

• If the generating vectors {νi} each cone σ in Σ forms a basis for the vector space they
span, then Σ is called simplicial and XΣ in general is an orbifold.

• If the generating vectors {νi} of one cone σ in Σ do not form a basis for the vector
space, XΣ has more severe singularities.

Proof. [65]. 2

It’s well-known that blow-ups create new cycles in the resolved geometry. Because of
the correspondence (B.1.5), it’s natural to expect that resolution amounts to adding new
cones. That is indeed the case. We first introduce the notion of a subdivision:

Definition 9. A fan σ′ is a subdivision of σ′ if

• Σ(1) ∈ Σ′(1),

• each cone of Σ′ is contained in some cone of Σ.

Suppose Σ′ with generators Σ′(1) = {ν1, · · · , να} subdivides σ with generators Σ(1) =
{ν1, · · · , νβ}. Then it can be checked that there is a well-defined projection map π :
Cm − Z(Σ′) 7−→ Cn − Z(Σ) compatible with the group action, hence π descend to a map
from XΣ′ to XΣ. It is birational because it induces an isomorphism on the torus which is
a dense open set.

Intuitively, blow-ups means “adding new edges” and subdividing a fan. Base on theorem
4, we can check that it is the same as “cutting the corner” of the corresponding polytope.

In practice, if we want to blow up a T -invariant smooth point p ∈ Xσ, we first iden-
tify the corresponding r-dimensional cone σ ∈ Σ. If the primitive generators of σ are
{µ1, · · · , νk}, then all we need to do is to add a new edge

νk+1 = ν1 + · · · νk , (B.3.1)

and properly subdivide σ. These new cones together with other cones in Σ form the new
fan Σ′. This procedure can be easily generalized to lower dimensional cones, related to
blow-ups along higher dimensional subvarieties.

Furthermore, we can blow up a singular point to resolve singularities. Now comes a
important remark. For complex threefolds, there is a very important phenomenon which
doesn’t exist for lower dimensional varieties, known as the flop. In particular, this means
that there can be different ways to resolve a singularity. Abstract as it sounds, it is actually
very concrete in terms of toric geometry. A prototype example is the resolution of conifold
singularity.
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Figure B.3: Resolutions of conifold singularity and flop.

Example 8. Consider the fan Σ with cone generated by (1, 0, 0), (0, 1, 0), (1, 1,−1) and
the faces they form. The toric variety is singular at one point corresponding to the three
dimensional cone formed by (1, 0, 0), (0, 1, 0), (1, 1,−1). It is not an orbifold singularity
since the four vectors do not constitute a set of basis. This codimension three singularity
is the famous conifold point.

Singularity can be resolved by blow-ups. However, here they are two ways to perform
the blow-up, as shown in Figure B.3.

We did not add any new edge to the fan, so there’s no exceptional divisor, i.e., Σ′(1) =
Σ(1). Nevertheless, we added new two dimensional cone (spanned by (1, 0, 0), (0, 1, 0) in
the first case and by (0, 0, 1), (1, 1,−1) in the second case), so there’s a new exceptional
curve in the resolved geometry. This phenomenon is known as the flop.

Since the flop can change the one-cycles, it can shuffle the GV invariants. If we want to
compare results in the topological string with those in the gauge theory, we need to select
the corresponding CY geometry among all possible flops.

B.4 Toric Diagrams
In the physics literature, there is another very common way to present specifically a three-
dimensional toric non compact CY variety, known as the toric diagram. Roughly speaking,
a toric diagram starts from local patches which are C3 and encodes how to glue them
together globally. Below let’s see how this works.

To begin with, it’s essential to first consider the simplest case C3. To make the torus
fibration manifest, we will rather view it as a T 2 × R fibration over R3, and we will only
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show the degeneration pattern.
More precisely, let zi be complex coordinates on C3, i = 1, 2, 3. The canonical symplec-

tic form ω = ∑
i dzi∧dzi turns it into symplectic manifold. We introduce three commuting

Hamiltonian functions,

rα(z) = |z1|2 − |z3|2 ,
rβ(z) = |z2|2 − |z3|2 ,
rγ(z) = Im(z1z2z3) . (B.4.1)

The Hamiltonians generate three vector fields on C3 via the standard procedure

∂νzi = {rν , zi}ω, ν = α, β, γ. (B.4.2)

where {, }ω is the Poisson bracket. The integral curves give us exactly the fibration struc-
ture mentioned earlier. The base R3 parameterizes the values of (B.4.1), while over each
point p we have the fiber T 2×R. The elliptic part of the fiber can be easily seen from the
integrated form of the flow (B.4.2),

eiαrα+iβrβ : (z1, z2, z3) → (eiαz1, e
iβz2, e

−i(α+β)z3). (B.4.3)

We denote the cycle generated by rα the (0, 1) cycle and the cycle generated by rβ the
(1, 0) cycle.

Notice that the (0, 1) cycle degenerates along the subspace z1 = z3 = 0, which in terms
of (B.4.1) is a subspace of R3 given by rα = rγ = 0, rβ ≥ 0. Similarly, along z2 = z3 = 0
the (1, 0)-cycle degenerates over the subspace rβ = rγ = 0 and rα ≥ 0 of R3. Finally, the
(1, 1) cycle is degenerate along rα − rβ = 0 = rγ and rα ≤ 0.

The toric diagram of C3 encodes the degeneration loci of T 2 in the R3 base. Namely, we
consider a planar graph by taking rγ = 0 and drawing the lines in the rα− rβ plane. From
the above discussion, the degeneration loci are straight lines described by the equation
prα + qrβ = const. Over this line the (−q, p) cycle of the T 2 degenerates. Therefore
we correlate the degenerating cycles unambiguously with the lines in the graph (up to
(q, p)→ (−q,−p)). This yields the graph in Figure B.4.

Taking the symmetries of C3 into account, the vectors in the toric diagram can always
be assumed to satisfy ∑

i

vi = 0. (B.4.4)

Aside from that, there is still a residual SL(2,Z) symmetry acting on the torus. In
terms of one cycles, this just means the freedom to choose a set of basis in H1(T 2,R). This
means that different toric diagrams can correspond to the same toric geometry.

After discussing the local structure, now let’s see how to patch them together. Suppose
we are given a toric Calabi-Yau threefold as a symplectic quotient of CN+3,

µA =
N+3∑
j=1

Qj
A|zj|2 = tA, A = 1, · · · , N. (B.4.5)
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Figure B.4: Toric diagram of C3.

We first find a decomposition of coordinates {zj}N+3
j=1 into triplets Ua = (zia , zja , zka)

that correspond to the decomposition of X into C3 patches. We pick one of the patches and
associate to it two Hamiltonians rα, rβ, just as we did for C3 before. These two coordinates
will be global coordinates in the base R3, therefore they will generate a globally defined
T 2 fiber. The third coordinate in the base is rγ = Im(∏N+3

j=1 zj), which is manifestly gauge
invariant and moreover, patch by patch, can be identified with the coordinate used in the
C3 example above. The (B.4.5) can then be used to find the action of rα,β on the other
patches.

Example 9. The example that we look at is K → F0, which is the total space of canonical
line bundle K over F0. It can be defined as the symplectic quotient inside C5

|z1|2 + |z2|2 − 2|z0|2 = t1 ,

|z3|2 + |z4|2 − 2|z0|2 = t2 .
(B.4.6)

The two U(1) actions on the zi are

(z0, z1, z2, z3, z4)→ (e−2iα−2iβz0, e
iαz1, e

iαz2, e
iβz3, e

iβz4). (B.4.7)

Notice that z1,2,3,4 describe the basis F0, while z0 parameterizes the direction of the fiber.
This geometry can be glued together in terms of four local patches Ui defined by zi 6=

0, for i = 1, 2, 3, 4, since they cannot all be zero simultaneously. they all look like C3,
because for example, for z1 6= 0, we can “solve” for z1 and z3 in terms of the other three
unconstrained coordinates which then parameterize C3: U3 = (z0, z2, z4).

Let us now construct the local toric diagram. In the U1 = (z0, z2, z4) patch we take as
our Hamiltonians

rα = |z4|2 − |z0|2,
rβ = |z2|2 − |z0|2.
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Figure B.5: Toric diagram of local F0.

The graph of the degenerate fibers in the rα− rβ plane is the same as in the C3 example
Figure B.4. The third direction in the base, rγ is now given by the gauge invariant product
rγ = Im(z0z1z2z3z4).

The same two Hamiltonians rα,β generate the action in the U2 = (z0, z1, z4) patch, and
we can use the constraint (B.4.6) to rewrite them. Since both z0 and z4 are coordinates
of this patch rα does not change. However, rβ must be changed because z2 is not a good
coordinate. Using the first equation in (B.4.6), we can rewrite rβ as

rβ = t1 + |z0|2 − |z1|2, (B.4.8)

Consequently, the action in U2 becomes

e(iαrα+iβrβ) : (z0, z1, z4)→ (ei(−α+β)z0, e
−iβz1, e

iαz4). (B.4.9)

We see from the above that the fibers degenerate over three lines. Two of them is obvious,
which are just the (1,0) and (0,-1) cycles. The final one is rα + rβ = t, corresponding to
z2 = z3 = 0, and where a (1,−1) cycle degenerates. To glue U1 and U2 patches, we need to
identify the leg (0, 1) in U1 and (0,−1) in U2. The gluing of other patches is similar, and
we end up with the graph for K → F0 shown in Figure B.5.
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Appendix C

Computations in One-Instanton
Sector

C.1 Instanton solution
We would like to solve the instanton profile from its equations of motion

iẋ− sin y = 0 , (C.1.1a)
iẏ + sin x = 0 . (C.1.1b)

We take the derivative w.r.t. time on (C.1.1a) and multiply it with ẋ, and after using
(C.1.1b) to remove all appearance of y, we find

d
dt(
√

1 + ẋ2 ± cosx) = 0 , (C.1.2)

where ± comes from converting cos y to sin y, and the above equation integrates to the
identity

E(β) =
√

1 + ẋ2 ± cosx . (C.1.3)

We interpret the integration constant E(β) to be the conserved energy of the saddle point
configuration. Indeed, when ẋ is small, the r.h.s. of (C.1.3) becomes

1
2 ẋ

2 + 1± cosx (C.1.4)

which resembles the conserved energy of a saddle point configuration in non-relativistic
QM where 1± cosx is the inverted potential. For the 1-instanton configuration x1(t), the
energy E(β) reaches the maximum value in the limit β → ∞, and it corresponds to the
oscillation between two neighboring highest points of the inverted potential. In (C.1.3),
we have E(∞) = 2 regardless of the sign in the inverted potential, so we simply take +
without loss of generality √

1 + ẋ1
2 + cosx1 = 2 . (C.1.5)
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Solving (C.1.5), we find the following profile of 1-instanton

x1(t) = 2 cos−1

− √
2 tanh(t− t0)√

1 + tanh2(t− t0)

 , (C.1.6)

as well as
y1(t) = cos−1(2− cos(x1(t))) = cos−1

(
1 + 2

cosh 2(t− t0)

)
. (C.1.7)

Using the conservation law

cos y1 + cosx1 = 2 , (C.1.8)

we find that the action is given by

A =
∫ ∞
−∞

dt(− cosx1 − cos y1 + 2− iẋ1y1)

=− i
∫ 2π

0
y1(x1)dx1 = 2

∫ π

0
cosh−1(2− cosx)dx

=2
∫ π

0
log

(
2− cosx+

√
(3− cosx)(1− cosx)

)
dx

=4
∫ π

0
log

(
sin x2 +

√
1 + sin2 x

2

)
dx

=8
∫ 1

0

dt
1− t2 log(t+

√
1 + t2) = 8C . (C.1.9)

In the last line we performed the change of variables t = sin x/2, and used one of the
definitions of the Catalan’s constant

C =
∫ 1

0

sinh−1 t√
1− t2

dt . (C.1.10)

C.2 The moduli-space metric
We want to find the moduli-space metric of the one instanton. We can do this by adding
a factor λδx̃2 to the action (4.2.25) before integration, so as to lift the zero mode. Upon
modifying (4.2.25) by adding such a term, we can do the Gaussian integral and simply get

Zλ
1 = 1√

Õ + λ
. (C.2.1)

Now let us write the small deviation around the instanton solution as

δx̃ ≈
(
∂t0x1

∣∣∣
t0=0

/
√cos y1

)
t0 + δx̃⊥ = −ẋ1t0/

√cos y1 + δx̃⊥ , (C.2.2)

where δx̃ is orthogonal to cos y1ẋ1. The first term is a small deviation from the instanton
solution in the direction of the zero mode, and t0 specifies a shift of its position in time.
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In fact t0 is precisely the coordinate we want to isolate, and over which we will integrate
exactly, producing a factor of β. Recall that our goal is to find a way to write the path
integral in (4.2.25), as

Z1 =
∫

dt0
µ√

det′ Õ
, (C.2.3)

where the prime indicates that the zero-mode has been excluded from the determinant.
The µ above is the measure of the zero-mode moduli t0 (also referred to as moduli space
metric), which is what we wish to find.

To find it we will add the term λδx̃2 into the action as before, and integrate over t0. We
should get (C.2.1), up to a constant, which will precisely correspond to µ−1. To do this,
let us plug in the expression (C.2.2) for δx̃ into the path integral (4.2.25). It only amounts
to adding the term λδx̃2 into the action, since the zero mode is annihilated by Õ. Then it
is easy to see that the action contains the term

e−
λN2
2φ t20 . (C.2.4)

where N is given by (4.2.27). If we now integrate over t0 and δx̃⊥ we produce a term
√

2πφ
λN2

µ√
det′(Õ + λ)

, (C.2.5)

where the prime on the determinant means we have excluded the zero mode of the Õ
operator. The λ in the denominator however combines with the primed determinant to
give the complete determinant

√
2πφ
N2

µ√
det(Õ + λ)

. (C.2.6)

Comparing with (C.2.1), we can read off the measure to be

µ =
√
N2

2πφ . (C.2.7)

C.3 The one-instanton determinant
In this appendix, we will compute the determinant of the one-instanton fluctuation operator
using the Gel’fand-Yaglom theorem, explained for instance in [43, 58, 169, 140]. Consider
an ordinary differential operator O, with a canonical second derivative term O = −∂2

t + . . . .
We wish to compute the determinant of the operator. For that purpose we consider the
space of functions on which the operator acts to be defined on an interval t ∈ [−β/2, β/2]
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with the Dirichlet boundary conditions1 for the eigenfunctions φ(t), i.e.

φ(−β/2) = φ(β/2) = 0 . (C.3.1)

Then the Gel’fand-Yaglom theorem states that the determinant of the operator O is

det O ∝ Ψ(β/2) , (C.3.2)

where Ψ(t) is a zero mode of O, i.e.

O ◦Ψ(t) = 0 (C.3.3)

satisfying a different boundary condition

Ψ(−β/2) = 0 , Ψ̇(−β/2) = 1 . (C.3.4)

The proportionality identity can be made precise by regularizing the operator determinant
with that of a simple operator, for instance, the harmonic oscillator

det O
det O0

= Ψ(β/2)
Ψ0(β/2) , (C.3.5)

where Ψ0(t) is the zero mode of the harmonic oscillator O = −∂2
t + 1 with the boundary

condition Eqs. (C.3.4), and it is simply

Ψ0(t) = sinh(t+ β/2) . (C.3.6)

To treat det′O with zero mode removed, we can use the relation

det′O = lim
λ→0

d
dλ det Oλ , (C.3.7)

with
Oλ := O + λ . (C.3.8)

Therefore we need to compute the zero mode of Oλ satisfying the boundary condition Eqs.
(C.3.4) up to order λ.

Now we could take the operator O to simply be the fluctuation operator Õ given by
(4.2.26). However notice that we have

det(Õ + λ) = det[f(t)Õ 1
f(t) + λ] , (C.3.9)

1More appropriate boundary conditions for computing path-integral determinants would be periodic
boundary conditions, as Euclidean time is periodic. However in the limit of large Euclidean time-expanse
– the limit relevant for the ground state properties of the system – the boundary conditions do not
matter. Since the formulas are simpler when Dirichlet boundary conditions are used. But everything can
be generalized to periodic boundary conditions if so desired. Indeed if one wished to study the excited
spectrum of the theory, one would need to do precisely this.
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where f(t) is an arbitrary, nonsingular function with no zeros. By taking the derivative
with respect to λ and setting λ = 0 we get

det ′(Õ) = det ′[f(t)Õ 1
f(t) ] . (C.3.10)

If we take f(t) =
√

cos y1(t) we can define the operator

O =
√

cos y1(t)Õ 1√
cos y1(t)

= cos y1

(
−∂t

1
cos y1(t)∂t + cosx1(t)

)
(C.3.11)

so that we will compute det ′(O) instead of det (O).
In order to compute it we first have to consider the determinant of det Oλ, where

Oλ = O + λ, at least for small λ. We already know that O has a zero mode given by ẋ1.
To use Gel’fand-Yaglom theorem we look for a solution

OλΨλ = 0 , (C.3.12)

where Ψλ satisfies Eqs. (C.3.4). Now assuming λ is small we can write

Ψλ = Ψ(0) + λΨ(1)(t) +O(λ2) , (C.3.13)

where
OΨ(0) = 0 (C.3.14)

and
OΨ(1) = −Ψ(0) . (C.3.15)

The first of these equations reduces to

OΨ(0) = cos y1(t)
(
−∂t

1
cos y1(t)∂t + cosx1(t)

)
Ψ(0) = 0 . (C.3.16)

This is a second order ODE, and we already know that one solution is

ψ1(t) = ẋ1(t) , (C.3.17)

although it does not satisfy the boundary condition Eqs. (C.3.4). In order to find a second
independent solution, we notice that the operator O can be factorized in the following way.
We introduce operators

Q = 1
cos y1

∂t − i sin x1

sin y1
, Q† = 1

cos y1
∂t + i sin x1

sin y1
. (C.3.18)

They satisfy

Q†Q = − 1
cos2 y1

O , QQ† = − 1
cos2 y1

O + 2
cos y1

(
cosx1

cos y1
+ sin2 x1

sin2 y1

)
. (C.3.19)
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We want to find the most general homogeneous solution to the equation Oψ = 0. This is
the same as finding such a solution for the operator Q†Q. We observe that Q† annihilates
1/ẋ1. If one can find ψ2 such that Qψ2 = 1/ẋ1, then one concludes immediately from Eqs.
(C.3.19) that ψ2 is another solution to Eq. (C.3.16). Indeed by making an appropriate
ansatz we find

ψ2(t) = ẋ1(t)
∫ t

dt′ cos y1(t′)
ẋ2

1(t′) . (C.3.20)

Furthermore since the Wronskian is not identically vanishing

W21(t) := ψ2(t)∂tψ1(t)− ψ1(t)∂tψ2(t) = − cos y1(t) , (C.3.21)

the two solutions are linearly independent. From ψ2(t) we can construct the solution to
Eq. (C.3.16) satisfying the boundary condition Eqs. (C.3.4)

Ψ(0)(t) = ẋ1(−β/2)
cos y1(−β/2) ẋ1(t)

∫ t

−β/2
dt′ cos y1(t′)

ẋ2
1(t′) . (C.3.22)

Let us proceed to the next order in λ, namely Eq. (C.3.15),(
∂2
t −

ẏ1 sin y1

cos y1
∂t − cos y1 cosx1

)
Ψ(1) = −O ◦Ψ(1) = Ψ(0) , (C.3.23)

and Ψ(1)(t) satisfies the boundary condition

Ψ(1)(−β/2) = 0 , Ψ̇(1)(−β/2) = 0 . (C.3.24)

One way to solve Eq. (C.3.23) is to first find the modified Green’s functionG(t, t′) satisfying

OG(t, t′) = cos y1δ(t− t′) , (C.3.25)

so that Ψ(1) is given by

Ψ(1)(t) =
∫ β/2

−β/2
dt′G(t, t′)Ψ(0)(t′) 1

cos y1
. (C.3.26)

We claim that the Green’s function is given by

G(t, t′) =

−ψ1(t)ψ2(t′) + ψ2(t)ψ1(t′) , t > t′ ,

0 , t ≤ t′ .
(C.3.27)

Indeed, when both t < t′ and t > t′, Eq. (C.3.25) is trivially satisfied since ψ1(t), ψ2(t)
are annihilated by O. In the neighborhood of t → t′, let us plug Eq. (C.3.27) into Eq.
(C.3.25), integrate both sides from t = t′ − ε to t = t′ + ε and take the limit ε → 0. The
r.h.s. is simply cos y1(t′), while the l.h.s. is given by

∂tG(t, t′)
∣∣∣
t=t′+

− ∂tG(t, t′)
∣∣∣
t=t′−

= −W21(t′) = cos y1(t′) , (C.3.28)
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where we have used Eq. (C.3.21). Therefore Eq. (C.3.27) is the correct modified Green’s
function. We can now write down Ψ(1)(t)

Ψ(1)(t) =
∫ t

−β/2
dt′Ψ(0)(t′) 1

cos y1(t′) (ψ1(t′)ψ2(t)− ψ2(t′)ψ1(t)) . (C.3.29)

This function indeed satisfies the boundary condition Eqs. (C.3.24).
Now we are ready to compute the operator determinant using the Gel’fand-Yaglom

theorem. Combining Eqs. (C.3.5),(C.3.6),(C.3.7) and (C.3.29), we have

det′O
det O0

= det′ Õ
det O0

= ẋ1(−β/2)ẋ1(β/2)
sinh β cos y1(−β/2)

∫ β/2

−β/2
dt ẋ

2
1(t)

cos y1

∫ t

−β/2
dt′ cos y1(t′)

ẋ2
1(t′)

∫ β/2

t
dt′′ cos y1(t′′)

ẋ2
1(t′′) .

(C.3.30)
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Appendix D

Principal Parts of Z3 and Z4 for the
Massless E-string

D.1 Base degree 3

For simplicity, we only consider the massless limit of the E-string at base degree three. The
generalization to the massive case is straightforward but cumbersome. The decomposition
(6.1.18) of Z3 is given by

Z3 = F3 + Z1Z2 −
1
3Z

3
1 , (D.1.1)

where

F3 = f3(τ, z) + 1
3

(
η36(τ)
η12(3τ)

)
Z1(3τ, 3z) . (D.1.2)

We can read off the poles of Z3 from the expression (5.2.5) for the denominator spe-
cialized to b2(B) = 1, k = 3:

z = 1
2 ,
τ

2 ,
τ + 1

2 ,
mτ + n

3 , (D.1.3)

where m,n ∈ {0, 1, 2}.

In order to determine the negative index Laurent data, assuming that we already know
the expressions for Z1 and Z2, the only input we need is the genus zero free energy at
base-wrapping degree 3.

Following the general strategy outlined in subsection 6.3.2, we determine the principal
parts of Z3 as follows:
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z = 0 At the origin, all three terms in Z3 contribute, yielding

D0,6Z3 = −(2πi)−6

6 E3
4 ,

D0,4Z3 = (2πi)−4

12 (E2E
3
4 + E2

4E6) ,

D0,2Z3 = −(2πi)−2

155520 (3240E2
2E

3
4 + 2359E4

4 + 6480E2E
2
4E6 + 2645E4E

2
6) . (D.1.4)

z = 1
3 ,

2
3 The second order poles at z = 1

3 , z = 1
2 and z = 2

3 appear due to the multi-
covering contribution of Z1 in F3. Therefore, the Laurent coefficients can be simply read
off as

D 1
3 ,2
Z3 = D 2

3 ,2
Z3 = −(2πi)−2

27
η36(τ)
η12(3τ)E4(3τ) . (D.1.5)

z = 1
2 ,

τ
2 ,

τ+1
2 These poles are due to F3 and Z1Z2. Relating them via modularity to the

Laurent coefficients at the real poles, we obtain

D 1
2 ,2
Z3 = (2πi)−2

8

(
η24(τ)
η12(2τ)

)
E4(τ)E4(2τ)
φ−2,1(τ, 1

2) ,

D τ
2 ,2Z3 = −(2πi)−2

2 q5/4
(
η24(τ)
η12( τ2 )

)
E4(τ)E4( τ2 )
φ−2,1(τ, τ2 ) ,

D τ
2 ,1Z3 = − 1

2πiq
5/4
(
η24(τ)
η12( τ2 )

)
[3φ−2,1(τ, τ2 )− ∂zφ−2,1(τ, τ2 )]E4(τ)E4( τ2 )

φ−2,1(τ, τ2 )2 ,

D τ+1
2 ,2Z3 = −i(2πi)−2

2 q5/4
(
η24(τ)
η12( τ+1

2 )

)
E4(τ)E4( τ+1

2 )
φ−2,1(τ, τ+1

2 ) ,

D τ+1
2 ,1Z3 = − 1

2πq
5/4
(
η24(τ)
η12( τ+1

2 )

)
[3φ−2,1(τ, τ+1

2 )− ∂zφ−2,1(τ, τ+1
2 )]E4(τ)E4( τ+1

2 )
φ−2,1(τ, τ+1

2 )2 .

(D.1.6)

z = mτ+n
3 , (m 6= 0) The remaining six poles are due to f3 only. We obtain

D τ
3 ,2Z3 = 1

q2D 2τ
3 ,2
Z3 = −(2πi)−2

3 q2/3
(
η36(τ)
η12( τ3 )

)
E4( τ3 ) ,

D τ
3 ,1Z3 = 1

2q2D 2τ
3 ,1
Z3 = −4(2πi)−1

3 q2/3
(
η36(τ)
η12( τ3 )

)
E4( τ3 ) ,

D τ+1
3 ,2Z3 = 1

q2D2τ+2
3 ,2
Z3 = −(2πi)−2eπi/3

3 q2/3
(
η36(τ)
η12( τ+1

3 )

)
E4( τ+1

3 ) ,

D τ+1
3 ,1Z3 = 1

2q2D 2τ+2
3 ,1Z3 = −4(2πi)−1eπi/3

3 q2/3
(
η36(τ)
η12( τ+1

3 )

)
E4( τ+1

3 ) ,

D τ+2
3 ,2Z3 = 1

q2D 2τ+1
3 ,2Z3 = −(2πi)−2e2πi/3

3 q2/3
(
η36(τ)
η12( τ+2

3 )

)
E4( τ+2

3 ) ,

D τ+2
3 ,1Z3 = 1

2q2D 2τ+1
3 ,1Z3 = −4(2πi)−1e2πi/3

3 q2/3
(
η36(τ)
η12( τ+2

3 )

)
E4( τ+2

3 ) . (D.1.7)
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We have checked these results by using them to compute the full Jacobi form Z3, following
the discussion of subsection 6.2.2, and checking against the results in [79].

D.2 Base degree 4
Here we shall explain the complications that arise when we consider higher orders in the
base degree. Let’s take Z4 as an example. At base degree four, we have the decomposition,

Z4 = F4 + Z1Z3 + 1
2Z

2
2 −Z2

1Z2 + 1
4Z

4
1 . (D.2.1)

where

F4 = f4(τ, z) + 1
2

(
η48(τ)
η24(2τ)

)
Z2(2τ, 2z)− 1

4

(
η48(τ)
η24(2τ)

)
Z1(2τ, 2z)2. (D.2.2)

Among all the poles of Z4, the most intricate one is the point z = τ
2 , Again we use the

strategy detailed in chapter 6. First assume we have two expansions:

Z4(τ, z) =
∞∑

n=−4
c4,n(τ)(z − τ

2)n =
∞∑

n=−4
b4,n(τ)(z − 1

2)n. (D.2.3)

Making use of the S-transform, we have the following relation,

∞∑
n=−4

c4,n(τ)(z − τ

2)n = τ 24e[10 z2

τ
]
∑
i

∞∑
n=−4

b4,n,i(− 1
τ
)

τn
(z − τ

2)n (D.2.4)

In this case, there are five terms in mk,i which contribute: 1
2Z2(2τ, 2z), −1

4Z1(2τ, 2z)2,
1
2Z

2
2 , Z1Z3 and −Z2

1Z2, with the first three having fourth order poles at z = 1
2 while

the last two of only second order. This is the simplest example to demonstrate a very
important fact: even though naively in c4,n(τ) terms proportional to τ will appear, they
will actually cancel with each other so that the final result has τ dependence only in q, as
they should.

Furthermore, since 1
τ

is always accompanied by z2, the claimed cancellation will only
occur at the second and first order pole and only the first three terms are relevant. The
result of the Laurent expansion of each term, after applying the general method in chapter
6, is as follows (· · · represents irrelevant terms)

Z2(τ, z)2 = e[−6z2

τ
]
(

(2πi)−2

2 (η
24(τ)
η12( τ2 ))q3/4E4( τ2 )

)2

( 1
(z − τ

2 )2 + 3 2πi
z − τ

2
+ · · · )2, (D.2.5)

(
η48(τ)
η24(2τ)

)
Z2(2τ, 2z) = e[−6(z − τ/2)2

τ
]
(

(2πi)−4

2
η48(τ)
η24( τ2 )E4(τ2)2

)
( 1
(z − τ

2 )4 + · · · ),

(D.2.6)
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(
η48(τ)
η24(2τ)

)
Z1(2τ, 2z)2 = e[−4(z − τ/2)2

τ
]
(

(2πi)−2(η
24(τ)
η12( τ2 ))E4( τ2 )

)2

( 1
(z − τ

2 )2 + · · · )2.

(D.2.7)
Plug them back to Eqs. (D.2.1), (D.2.2) and (D.2.4), we can write down the expansion of
Z4 at z = τ

2 ,

Z4 ⊃
1
2Z2(τ, z)2 + 1

2

(
η48(τ)
η24(2τ)

)
Z2(2τ, 2z)− 1

4

(
η48(τ)
η24(2τ)

)
Z1(2τ, 2z)2, (D.2.8)

where (· · · represents irrelevant terms)

Z2(τ, z)2 ⊃
(

(2πi)−2q1/2

4
η48(τ)
η24( τ2 )E

2
4( τ2 )

)
( 4/τ
(z − τ

2 )2 + 40(2πi)/τ
z − τ

2
+ · · · ), (D.2.9)

(
η48(τ)
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2
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2
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(D.2.10)(
η48(τ)
η24(2τ)

)
Z1(2τ, 2z)2 ⊃

(
(2πi)−2q1/2 η

48(τ)
η24( τ2 )E

2
4( τ2 )

)
( 6/τ
(z − τ

2 )2 + 60(2πi)/τ
z − τ

2
+ · · · ).

(D.2.11)
Indeed, the sum of the above three terms in Z4 vanishes as claimed.

Finally, similar to the base degree three case, We have determined all the principal parts
and use them to reconstruct the full Jacobi form Z4, following the discussion of subsection
6.2.2, and checking against the results in the literature.
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Appendix E

Some Enumerative Invariants

E.1 Genus zero GW invariants for massless
E strings

In this subsection, we list some genus zero GW invariants for massless E strings. Note that
they are in general rational numbers rather than just integers. Meanwhile notice that the
column of fiber degree 0 hints at the denominator structure (3.1.13).

b/e 0 1 2 3 4

1 1 252 5130 54760 419895

2 1
8 0 -18441

2 -673760 -82133595
4

3 1
27 0 0 2545912

3 115243155

4 1
64 0 0 0 -1828258569

16

(E.1.1)

E.2 GV invariants for a2 and g2 models
In this subsection, we list some GV invariants of a2 and g2 models. Similarly, Refined GV
invariants can also be obtained using the methods outlined below.

In the literature, there are many different strategies to obtain the partition functions
and extract those invariants. Here we would like to mention two possible ways. One way
is to look at the field theory side. We can work out the precise gauge theory dynamics
living on the six dimensional space-time, then use localization technique to determine the
partition functions, which is the strategy adopted in e.g., [126, 112, 125, 124]. The other
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way is to explore modularity. We write down the modular ansatz and find sufficiently many
boundary conditions to determine the unknowns. For example, in [48], it was found that the
a2 models for base degree up to 3 can be completely solved by imposing precise vanishing
conditions. Since the precise vanishing conditions for the g2 model haven’t been worked
out yet, we obtain the corresponding GV invariants based on field theoretic computations
[124]. To extract them, in particular we set the flavor mass to zero.

E.2.1 a2 model

Base degree 1

Fiber degree 0, genus 0

m2/m1 0 1 2 3 4 5
0 1 3 5 7 9 11
1 3 4 8 12 16 20
2 5 8 9 15 21 27
3 7 12 15 16 24 32
4 9 16 21 24 25 35
5 11 20 27 32 35 36

(E.2.1)

Fiber degree 1, genus 1

m2/m1 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 2 6 10 14 18
2 0 6 8 16 24 32
3 0 10 16 18 30 42
4 0 14 24 30 32 48
5 0 18 32 42 48 50

(E.2.2)

Fiber degree 2, genus 2

m2/m1 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 3 9 15 21
3 0 0 9 12 24 36
4 0 0 15 24 27 45
5 0 0 21 36 45 48

(E.2.3)

144
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Base degree 2

Fiber degree 0, genus 0

m2/m1 0 1 2 3 4 5
0 0 0 -6 -32 -110 -288
1 0 0 -10 -70 -270 -770
2 -6 -10 -32 -126 -456 -1330
3 -32 -70 -126 -300 -784 -2052
4 -110 -270 -456 -784 -1584 -3360
5 -288 -770 -1330 -2052 -3360 -6076

(E.2.4)

Fiber degree 1, genus 1

m2/m1 0 1 2 3 4 5
0 0 0 0 -16 -144 -704
1 0 0 -8 -132 -936 -4308
2 0 -8 -36 -272 -1860 -8964
3 -16 -132 -272 -776 -3192 -131920
4 -144 -936 -1860 -3192 -7436 -22384
5 -704 -4308 -8964 -131920 -22384 -45936

(E.2.5)

Fiber degree 2, genus 2

m2/m1 0 1 2 3 4 5
0 0 0 0 0 -30 -348
1 0 0 0 -24 -430 -3600
2 0 0 -24 -224 -2250 -15660
3 0 -24 -224 -880 -4816 -30092
4 -30 -430 -2250 -4816 -13050 -51354
5 -348 -3600 -15660 -30092 -51354 -117168

(E.2.6)
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E.2.2 g2 model

Base degree 1

Fiber degree 0, genus 0

m2/m1 0 1 2 3 4 5
0 1 3 5 7 9 11
1 0 3 4 8 12 16
2 0 0 5 8 9 15
3 0 0 0 7 12 15
4 0 0 0 0 9 16
5 0 0 0 0 0 11

(E.2.7)

Fiber degree 1, genus 1

m2/m1 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 -2 -6 -10 -14
2 0 0 0 -6 -8 -16
3 0 0 0 0 -10 -16
4 0 0 0 0 0 -14
5 0 0 0 0 0 0

(E.2.8)

Fiber degree 2, genus 2

m2/m1 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 3 9
3 0 0 0 0 0 9
4 0 0 0 0 0 0
5 0 0 0 0 0 0

(E.2.9)
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Base degree 2

Fiber degree 0, genus 0

m2/m1 0 1 2 3 4 5
0 0 0 -6 -32 -110 -288
1 0 0 0 -10 -70 -270
2 0 0 -6 -10 -32 -126
3 0 0 0 -32 -70 -126
4 0 0 0 0 -110 -270
5 0 0 0 0 0 -288

(E.2.10)

Fiber degree 1, genus 1

m2/m1 0 1 2 3 4 5
0 0 0 0 16 144 704
1 0 0 0 8 132 936
2 0 0 0 8 36 272
3 0 0 0 16 132 272
4 0 0 0 0 144 936
5 0 0 0 0 0 704

(E.2.11)

Fiber degree 2, genus 2

m2/m1 0 1 2 3 4 5
0 0 0 0 0 -30 -348
1 0 0 0 0 -24 -430
2 0 0 0 0 -24 -224
3 0 0 0 0 -24 -224
4 0 0 0 0 -30 -430
5 0 0 0 0 0 -348

(E.2.12)
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RÉSUMÉ

Cette thèse porte sur diverses applications de la théorie des cordes topologiques basée sur différents types de variétés

de Calabi-Yau (CY). Le premier type considéré est la variété torique CY, qui est intimement liée aux problèmes spectraux

des différents opérateurs. L’exemple particulier considéré dans la thèse ressemble beaucoup au modèle de Harper-

Hofstadter en physique de la matière condensée. Nous étudions d’abord les secteurs non perturbatifs dans ce modèle et

proposons une nouvelle façon de les calculer en utilisant la théorie topologique des cordes. Dans la deuxième partie de

la thèse, nous considérons les fonctions de partition sur des variétés de CY elliptiquement fibrées. Celles-ci présentent

un comportement modulaire intéressant. Nous montrons que pour les géométries qui ne conduisent pas à des symétries

de jauge non abéliennes, les fonctions de partition des cordes topologiques peuvent être reconstruites avec seulement

les invariants de Gromov-Witten du genre zéro. Finalement, nous discutons des travaux en cours concernant la relation

entre les fonctions de partitionnement des cordes topologiques sur les soi-disant arbres de Higgsing dans la théorie de

F.

MOTS CLÉS

Théorie de cordes topologiques, invariant de Gromov-Witten, symétrie miroir, résurgence, genre elliptique.

ABSTRACT

This thesis focuses on various applications of topological string theory based on different types of Calabi-Yau (CY) man-

ifolds. The first type considered is the toric CY manifold, which is intimately related to spectral problems of difference

operators. The particular example considered in the thesis closely resembles the Harper-Hofstadter model in condensed

matter physics. We first study the non-perturbative sectors in this model, and then propose a new way to compute them

using topological string theory. In the second part of the thesis, we consider partition functions on elliptically fibered CY

manifolds. These exhibit interesting modular behavior. We show that for geometries which do not lead to non-abelian

gauge symmetries, the topological string partition functions can be reconstructed based solely on genus zero Gromov-

Witten invariants. Finally, we discuss ongoing work regarding the relation of the topological string partition functions on

the so-called Higgsing trees in F-theory.

KEYWORDS

Topological string theory, Gromov-Witten invariant, mirror symmetry, resurgence, elliptic genus.
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