L. La, CONTENTION débits des cartes, et d'autre part de determiner les cas où le lien se dégrade afin d'adapter la modulation utilisée ou d'initier une procédure de handover, afin de limiter le nombre de retransmissions. IP Geocast Sommaire 5.1 Communications géocentriques pour DataTweet

. .. Discussion,

, Nous proposons alors d'insérer ces géopréfixes dans des adresses multicast afin de pouvoir les utiliser sur l'infrastructure existante. Enfin, nous nous sommes intéressés de manière transversale aux problèmes de reproductibilité et de répétabilité des expériences dans les réseaux sans fil. Pour cela nous avons développé une plateforme reproductible permettant la répétabilité et la reproductibilité des expérimentations : WalT . Cette plateforme utilise du matériel grand public peu onéreux et permet de redéployer à l'identique l'environnement logiciel d'une expérience grâce à Docker. Dans ce contexte seul l'environnement radio et la topologie déployée varient d'une plateforme WalT à une autre, sous-réseaux afin d'adresser des zones géographiques de tailles différentes

, Pour ce type d'application, il serait intéressant d'utiliser les résultats que nous obtenons concernant les durées de connectivité, afin d'optimiser les politiques de caching en fonction des différents types d'utilisateurs. Concernant le comportement des cartes 802.11, nous envisageons d'étudier plus en détail les retransmissions lors de la contention afin d'essayer de voir s'il est possible pour une carte de savoir si elle se trouve en contention ou en présence d'un lien de mauvaise qualité lorsqu'elle observe des pertes. En effet, actuellement, baisser la modulation lors de l'augmentation du nombre de pertes de paquet n'est pas optimal, et des solutions comme Minstrel mettent du temps à converger lorsque le signal est rompu. De plus nous pensons qu'il existe deux cas bien précis : soit nous sommes en présence de contention et dans ce cas là il ne faut absolument pas réduire le débit des cartes, mais augmenter les fenêtres de contention, soit nous sommes en présence d'un canal dégradé et il faut adapter le débit afin d'utiliser une modulation plus robuste. Nous envisageons d'effectuer des mesures supplémentaires afin d'observer le comportement d'une station lorsque celle-ci s'éloigne d'un point d'accès, Travaux futurs Plusieurs pistes d'exploration sont envisagées pour les différents travaux menés. Tout d'abord concernant l'utilisation des points d'accès dans les villes, nous avons vu qu'il était envisageable d'utiliser cette infrastructure pour des applications ayant des besoins importants en bande passante tel que le streaming, tant que les utilisateurs ne se déplacent pas trop vite

I. P. Concernant and . Geocast, Une approche naïve consisterait à définir plusieurs quadtree légèrement décalés, mais des frontières continueraient d'exister. Par ailleurs il serait intéressant de proposer un découpage non homogène. Actuellement IP Geocast découpe l'intégralité du monde en zones de plus ou moins un mètre carré en fonction de la latitude. Or, certaines zones n'ont peut-être pas besoin d'une telle précision, nous aimerions proposer une implémentation de celui-ci afin de pouvoir évaluer ses performances lors d'un déploiement dans une infrastructure de réseau

, Cisco Visual Networking Index : Forecast and Trends, vol.23, p.80, 2018.

M. Elodie, M. Mickael, G. Roberto, and D. Andrzej, Comparison of the device lifetime in wireless networks for the internet of things, IEEE Access, vol.5, issue.23, pp.7097-7114, 2017.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 1 : Radio Resource Measurement of Wireless LANs, Part, vol.11, p.36, 2008.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 8 : IEEE 802.11 Wireless Network Management, Part, vol.11, p.35, 2011.

H. Jerome,

, Cisco Visual Networking Index : Global Mobile Data Traffic Forecast Update, pp.2017-2022

S. Isabel, A. De, L. Oliva, J. Carlos, and . Bernardos, Experimental analysis of connectivity management in mobile operating systems, Computer Networks, vol.94, p.32, 2016.

M. Arunesh, S. Minho, and A. William, An empirical analysis of the IEEE 802.11 MAC layer handoff process, ACM SIGCOMM Computer Communication Review, vol.33, issue.2, p.33, 2003.

M. Vivek and P. Konstantina, Using smart triggers for improved user performance in 802.11 wireless networks, Proceedings of the 4th international conference on Mobile systems, applications and services, p.32, 2006.

V. Héctor and K. Gunnar, Techniques to reduce the IEEE 802.11b handoff time, IEEE International Conference on, vol.7, p.60, 2004.

R. Ramya, M. Elizabeth, . Belding, P. Konstantina, C. Kevin et al., Understanding handoffs in large ieee 802.11 wireless networks, Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, p.32, 2007.

G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journal on selected areas in communications, vol.18, issue.3, p.35, 2000.

W. U. Haitao, T. Kun, Z. Yongguang, and Z. Qian, Proactive scan : Fast handoff with smart triggers for 802.11 wireless LAN, INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, vol.33, p.36, 2007.

T. Chien-chao, C. Kuang-hui, M. Hsieh, and C. Hung-hsing, Location-based fast handoff for 802.11 networks, IEEE Communications letters, vol.9, issue.4, p.37, 2005.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol.11, p.33, 2016.

V. Sudarshan, P. Konstantina, D. Christophe, J. K. Don, and T. , Facilitating access point selection in IEEE 802.11 wireless networks, Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, vol.35, p.40, 2005.

M. Nicolas, B. Alberto, N. Renzo, K. Tanguy, and C. German, IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), p.35, 2015.

W. Lukasz, T. Henning, D. Ivan, A. N. , R. E. Nikolaus et al., Location-based handover in cellular IEEE 802.11 networks for Factory Automation, Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on, p.36, 2010.

, Architectural Design and Specification

M. Julien and N. Thomas, IEEE 802.11 handovers assisted by GPS information, Wireless and Mobile Computing, Networking and Communications, p.36, 2006.

S. Minho, M. Arunesh, A. William, and . Arbaugh, Improving the latency of 802.11 hand-offs using neighbor graphs, Proceedings of the 2nd international conference on Mobile systems, applications, and services, p.37, 2004.

P. Sang-hee, H. , K. , C. Park, J. Kim et al., Selective channel scanning for fast handoff in wireless LAN using neighbor graph, IFIP International Conference on Personal Wireless Communications, p.37, 2004.

C. Yuh-shyan, M. Chuang, C. , and C. , DeuceScan : deuce-based fast handoff scheme in IEEE 802.11 wireless networks, IEEE Transactions on Vehicular Technology, vol.57, issue.2, p.37, 2008.

R. Ishwar and S. Stefan, SyncScan : Practical fast handoff for 802.11 infrastructure networks. Proceedings -IEEE INFOCOM, vol.1, pp.675-684, 2005.

J. Sunggeun, C. Munhwan, W. Lei, and C. Sunghyun, Fast scanning schemes for IEEE 802.11 WLANs in virtual AP environments, Computer Networks, vol.55, issue.10, p.38, 2011.

Y. Mahnsuk, C. Keuchul, L. I. Jilong, Y. Jeongbae, Y. Minyoung et al., AdaptiveScan : The fast layer-2 handoff for WLAN, Information Technology : New Generations (ITNG), p.38, 2011.

S. Sangho, G. Andrea, A. Forte, R. Singh, and S. Henning, Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs, Proceedings of the second international workshop on Mobility management & wireless access protocols, p.39, 2004.

B. Vladimir, M. Arunesh, and B. Suman, Eliminating handoff latencies in 802.11 WLANs using Multiple Radios : Applications , Experience, and Evaluation. IMC '05 Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, p.39, 2005.

R. Kishore, R. Sampath, C. John, and . Lin, Make-before-break mac layer handoff in 802.11 wireless networks, Communications, 2006. ICC'06. IEEE International Conference on, vol.10, p.39, 2006.

J. Sunggeun, C. Munhwan, and C. Sunghyun, Multiple WNIC-based handoff in IEEE 802.11 WLANs, IEEE Communications Letters, vol.13, issue.10, p.39, 2009.

W. Sonia, R. Kevin, and B. Raouf, Selective active scanning for fast handoff in WLAN using sensor networks. Mobile and Wireless Communication Networks, p.40, 2005.

C. Ranveer and B. Paramvir, MultiNet : Connecting to multiple IEEE 802.11 networks using a single wireless card, INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol.2, p.40, 2004.

M. Singh, D. Amol, P. Dinesh, K. Anvekar, D. Kapoor et al., Fuzzy logic based handoff in wireless networks, Vehicular Technology Conference Proceedings, vol.3, p.40, 2000.

. Bibliographie,

Z. Wenhui, Handover decision using fuzzy MADM in heterogeneous networks, Wireless communications and networking conference, vol.2, p.40, 2004.

S. Srinivas, A. Eitan, and A. Kumar, Multihoming of users to access points in WLANs : A population game perspective, IEEE Journal on Selected Areas in Communications, vol.25, issue.6, p.41, 2007.

C. Ben-alexander, A. Timur, P. Michael, . Wellman, and N. Brian, Access point selection under emerging wireless technologies, Proc. of 6th workshop on the Economics of Networks, Systems, and Computation (NetEcon), p.41, 2011.

K. Ouldooz-baghban, J. Liu, and R. Jennifer, Optimal collaborative access point association in wireless networks, INFOCOM, p.41, 2014.

S. Navrati and R. Abhishek, Novel framework for proactive handover with seamless multimedia over WLANs, IET communications, vol.5, issue.9, p.41, 2011.

P. Sangheon and C. Et-yanghee, Fast Inter-Ap Handoff Using Predictive Authentication Scheme in a Public Wireless LAN, Proceedings of IEEE Networks Conference (confunction of IEEE ICN and IEEE ICWLHN, p.41, 2002.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment, vol.11, p.42, 2004.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 2 : Fast Basic Service Set (BSS) Transition, Part, vol.11, p.43, 2008.

M. Isabel, S. Et-azzedine, and B. , On ieee 802.11 k/r/v amendments : Do they have a real impact, vol.23, p.43, 2016.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 5 : Enhancements for Higher Throughput, Part, vol.11, p.44, 2009.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 4 : Enhancements for Very High Throughput for Operation in Bands below 6 GHz, Part, vol.11, p.44, 2013.

U. , Unlicensed Spectrum Utilization of LTE, p.44, 2014.

, Extending LTE Advanced to unlicensed spectrum, p.44, 2013.

. Real-time-lte/wi-fi-coexistence and . Testbed, , p.44

K. Hwan-joon, J. Jeongho, B. Abhijeet, Y. E. Qiaoyang, H. Hiroki et al., Licensed-Assisted Access to Unlicensed Spectrum in LTE Release 13, IEEE Communications Magazine, vol.55, issue.2, p.44, 2017.

, Extending LTE Advanced to unlicensed spectrum, p.44, 2014.

M. Amitav, J. Cheng, F. Sorour, K. Havish, K. Reem et al., Licensed-assisted access LTE : Coexistence with IEEE 802.11 and the evolution toward 5G, IEEE Communications Magazine, vol.54, issue.6, p.46, 2016.

. Bibliographie,

A. Erika, M. André, . Cavalcante, C. D. Rafael, . Paiva et al., Enabling LTE/WiFi coexistence by LTE blank subframe allocation, Communications (ICC), 2013 IEEE International Conference on, p.45, 2013.

A. Electronics, . Qualcomm, . Inc, . Samsung, and . Verizon, , p.45, 2015.

C. Eugene, S. Karthik, A. Mohammad, . Khojastepour, and R. Sampath, LTE in unlicensed spectrum : are we there yet ?, Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, vol.45, p.46, 2016.

C. Capretti, G. Francesco, F. Nicolò, and P. Paul, LTE/Wi-Fi co-existence under scrutiny : an empirical study, WiNTECH@ MobiCom, p.46, 2016.

C. Cheng, R. Rapeepat, and G. Amitava, Downlink performance analysis of LTE and WiFi coexistence in unlicensed bands with a simple listen-before-talk scheme, Vehicular Technology Conference, p.46, 2015.

S. Sasha and . Aggregation, Benefits and Deployment Considerations, p.46

, Overall description ; Stage 2. Technical Specification (TS) 36.300

, 3GPP : Evolved Universal Terrestrial Radio Access (E-UTRA

, Packet Data Convergence Protocol (PDCP) specification. Technical Specification (TS) 36.323, 3rd Generation Partnership Project (3GPP), vol.46, 2017.

, 3GPP : Evolved Universal Terrestrial Radio Access (E-UTRA

. Lte-wlan, Aggregation Adaptation Protocol (LWAAP) specification. Technical Specification (TS) 36.360, 3rd Generation Partnership Project (3GPP), 2017.

E. Wireless and L. , WLAN

, Technical Specification (TS) 36.465, 3rd Generation Partnership Project (3GPP), 2016.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6 : Wireless Access in Vehicular Environments, Part, vol.11, p.46, 2010.

J. Daniel and D. Luca, 11 p : Towards an international standard for wireless access in vehicular environments, Vehicular Technology Conference, vol.802, p.46, 2008.

E. David, S. Nikoletta, and G. Reinhard, A performance study of cooperative awareness in ETSI ITS G5 and IEEE WAVE, Wireless On-demand Network Systems and Services (WONS), 2013 10th Annual Conference on, p.46, 2013.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment, vol.11, p.47, 2005.

C. Jungwook and L. Hyukjoon, Supporting handover in an IEEE 802.11 p-based wireless access system, Proceedings of the seventh ACM international workshop on VehiculAr InterNETworking, p.47, 2010.

W. Direct,

C. Daniel, G. Andres, and P. Serrano, Device-to-device communications with Wi-Fi Direct : overview and experimentation, IEEE wireless communications, vol.20, issue.3, p.48, 2013.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 9 : Interworking with External Networks, vol.11, p.48, 2011.

, How Interworking Works : A Detailed Look at 802.11u and Hotspot 2.0 Mechanisms, p.48, 2013.

, Hotspot 2.0 : Passing Go

. Hotspot2_whitepaper and . Pdf, , p.48, 2012.

. Wi-fi, Certified Passpoint Architecture for Public Access, p.48

L. Vladimir, An overhead analysis of Access Network Query Protocol (ANQP) in hotspot 2.0 Wi-Fi networks, ITS Telecommunications (ITST), 2013 13th International Conference on, p.49, 2013.

X. U. Wenchao, Z. Haibo, B. I. Yuanguo, C. Nan, S. Xuemin et al., Exploiting Hotspot-2.0 for Traffic Offloading in Mobile Networks, IEEE Network, issue.99, p.49, 2018.

H. Sahar, S. Stefano, P. Guy, W. Sven, W. Adam et al., Quantifying the achievable cellular traffic offloading gain with passpoint hotspots, Proceedings of the 2014 ACM international workshop on Wireless and mobile technologies for smart cities, p.50, 2014.

, Ubiquiti UniFi -Fast Roaming

G. Yan and R. Franck, Virtual access points for transparent mobility in wireless LANs, Wireless Communications and Networking Conference (WCNC), 2010 IEEE, p.50, 2010.

M. Eugenia, B. Franck, R. , and A. Duda, Multichannel virtual access points for seamless handoffs in IEEE 802.11 wireless networks, Vehicular Technology Conference (VTC Spring), p.50, 2011.

Z. Anatolij, Z. Sven, and W. Adam, BIGAP-Seamless handover in high performance enterprise IEEE 802.11 networks, Network Operations and Management Symposium (NOMS), 2016.

. Ieee/ifip, , p.50, 2016.

Y. Chan and L. Dai-jiong, The design of an ap-based handoff scheme for ieee 802.11 wlans, International Journal of e-Education, e-Business, e-Management and e-Learning, vol.4, p.51, 2014.

C. Perkins, IP Mobility Support for IPv4, 2010.

G. Montenegro, Reverse Tunneling for Mobile IP, revised. RFC 3024, RFC Editor, p.53, 2001.

C. Perkins, D. Johnson, and J. Arkko, Mobility Support in IPv6, 2011.

. Bibliographie,

C. Claude, HMIPv6 : A hierarchical mobile IPv6 proposal, ACM SIGMOBILE Mobile Computing and Communications Review, vol.4, issue.1, p.53, 2000.

H. Soliman, C. Castelluccia, and K. Elmalki, BELLIER : Hierarchical Mobile IPv6 (HMIPv6) Mobility Management, 2008.

R. Koodli, Mobile IPv6 Fast Handovers, RFC, vol.5568, p.53, 2009.

S. Gundavelli, K. Leung, V. Devarapalli, and K. Chowdhury, PATIL : Proxy Mobile IPv6, 2008.

P. Xavier, T. Marc, . Moreno, and H. Hannes, A performance comparison of Mobile IPv6, Hierarchical Mobile IPv6, fast handovers for Mobile IPv6 and their combination, ACM SIGMOBILE Mobile Computing and Communications Review, vol.7, issue.4, pp.5-19, 2003.

A. Mohamed, A. Irfan, and R. Holton, Performance evaluation of fast handover in mobile IPv6 based on link-layer information, Journal of Systems and Software, vol.83, issue.10, p.54, 2010.

K. Kong, L. Wonjun, H. Youn-hee, M. Shin, and Y. Heungryeol, Mobility management for all-IP mobile networks : mobile IPv6 vs. proxy mobile IPv6, IEEE Wireless communications, vol.15, issue.2, p.54, 2008.

R. Moskowitz and P. Nikander, Host Identity Protocol (HIP) Architecture. RFC 4423, RFC Editor, 1954.

R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, Host Identity Protocol Version 2 (HIPv2), 2015.

J. Petri, R. Teemu, J. Tony, W. Jorma, K. Martti et al., Handover performance with HIP and MIPv6, 1st International Symposium on Wireless Communication Systems, vol.3, p.54, 2004.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions for Multipath Operation with Multiple Addresses, 2013.

R. Costin, P. Christoph, B. Sebastien, A. F. Michio, H. Fabien et al., How hard can it be ? designing and implementing a deployable multipath TCP, Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, p.55, 2012.

P. Christoph, D. Gregory, D. Fabien, R. Costin, and B. Olivier, Exploring mobile/WiFi handover with multipath TCP, Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks : operations, challenges, and future design, p.55, 2012.

D. E. Quentin, . Coninck, and B. Olivier, Observing Network Handovers with Multipath TCP, Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, p.56, 2018.

D. E. Quentin, . Coninck, B. Matthieu, H. Benjamin, and B. Olivier, A first analysis of multipath tcp on smartphones, International Conference on Passive and Active Network Measurement, p.56, 2016.

Q. De-conick and B. Olivier, Every millisecond counts : Tuning Multipath TCP for interactive applications on smartphones. Rapport technique

L. Ong and J. Yoakum, An Introduction to the Stream Control Transmission Protocol (SCTP). RFC 3286, RFC Editor, 1956.

R. Stewart, Stream Control Transmission Protocol. RFC 4960, RFC Editor, 2007.

R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka, Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration. RFC 5061, RFC Editor, p.56, 2007.

K. Seok-joo, M. Jeong, C. Et-meejeong, and L. , mSCTP for soft handover in transport layer, IEEE communications letters, vol.8, issue.3, p.56, 2004.

M. A. Li, Y. U. Fei, C. M. Victor, . Leung, and R. Tejinder, A new method to support UMTS/WLAN vertical handover using SCTP, IEEE Wireless communications, vol.11, issue.4, p.56, 2004.

K. Andrew, M. Gabriel, P. Philip, and M. John, Delay-centric handover in SCTP over WLAN, Transactions on Automatic Control and Computer Science, vol.49, issue.63, p.56, 2004.

J. Iyengar and T. Martin, QUIC : A UDP-Based Multiplexed and Secure Transport, 2018.

L. Adam, R. Alistair, W. Alyssa, V. Antonio, K. Charles et al., The QUIC transport protocol : Design and Internet-scale deployment, Proceedings of the Conference of the ACM Special Interest Group on Data Communication, p.56, 2017.

, Apple Developers Guidelines : About Networking

, Apple Push Notification service, p.57

F. Cloud and M. ,

, Amazon Simple Notification Service

, Azure Notification Hubs

K. Persson, V. Fredric, S. G. Viktor, S. Pär, and B. , Method and a media device for pre-buffering media content streamed to the media device from a server system, US Patent, vol.9, p.57, 2017.

O. Mikael, System and method for early media buffering using prediction of user behavior, novembre 30 2017

F. John and P. Greg, Pre-buffering audio streams, avril 28 2015. US Patent 9, vol.537, p.58

F. Kevin and F. Stephen, DTN : an architectural retrospective, IEEE Journal on Selected areas in communications, vol.26, issue.5, p.58, 2008.

A. Mcmahon and F. Stephen, Delay-and disruption-tolerant networking, IEEE Internet Computing, vol.13, issue.6

. Bibliographie,

V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst et al., Delay-Tolerant Networking Architecture. RFC 4838, RFC Editor, 2007.

K. Scott and S. Burleigh, Bundle Protocol Specification. RFC 5050, RFC Editor, 2007.

C. C. Sobin, R. Vaskar, M. Gustavo, and S. Ankita, A survey of routing and data dissemination in delay tolerant networks, Journal of Network and Computer Applications, vol.67, p.58, 2016.

M. Elizabeth, . Daly, and H. Mads, Social network analysis for information flow in disconnected delay-tolerant MANETs, IEEE Transactions on Mobile Computing, issue.5, p.58, 2008.

A. Khaled, . Harras, C. Kevin, . Almeroth, M. Elizabeth et al., Delay tolerant mobile networks (dtmns) : Controlled flooding in sparse mobile networks, International Conference on Research in Networking, p.58, 2005.

F. Laurent and G. Et-felipe, Using delay tolerant networks for car2car communications, IEEE International Symposium on, p.58, 2007.

J. Arkko, Analysing IP Mobility Protocol Deployment Difficulties. IETF meeting #83, 2012.

R. Kishore, Mobile IP-deployment after a decade, p.58, 2006.

T. Henderson and A. Gurtov, The Host Identity Protocol, vol.6538, p.58, 2012.

B. Olivier and S. Sunghoon, Multipath TCP Deployments. IETF Journal, 2016.

, Créer des connexions de secours pour iOS via le protocole Multipath TCP, p.58

S. Sunghoon, KT's GiGA LTE -Mobile MPTCP Proxy Deployment. IETF meeting #97, 2016.

M. Belshe, R. Peon, and M. Thomson, Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540, RFC Editor, 2015.

H. Syed-faraz, S. Nazmul, and C. Shyam, Intelligent transport systems : 802.11-based roadside-to-vehicle communications, p.60, 2012.

M. Przemyslaw and W. Józef, Performance evaluation of IEEE 802.11 fast BSS transition algorithms, WMNC2010, p.60, 2010.

M. Nicolas and N. Thomas, Anticipated handover over IEEE 802.11 networks, IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, vol.2, p.60, 2005.

K. David, C. C. Newport, R. S. Gray, J. Liu, Y. Yougu et al., Experimental Evaluation of Wireless Simulation Assumptions, Proc. of MSWiM, p.64, 2004.

T. Kefeng and W. U. Daniel, An (Jack) CHAN et Prasant MOHAPATRA : Comparing Simulation Tools and Experimental Testbeds for Wireless Mesh Networks, Pervasive and Mobile Computing, vol.7, issue.4

N. Barry, C. E. Taylor, and . Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1297, National Institute of Standards and Technology, p.64, 1994.

R. Dipankar, M. Ott, and S. Ivan, ORBIT Radio Grid Tested for Evaluation of Next-Generation Wireless Network Protocols, Proc. of TRIDENTCOM, p.64, 2005.

, iMinds RESEARCH INSTITUTE : w-iLab.t Generic Wireless Testbeds

A. Cedric, B. Emmanuel, F. Eric, H. Gaetan, M. Nathalie et al., Julien VANDAELE et Thomas WATTEYNE : FIT IoT-LAB : A Large Scale Open Experimental IoT Testbed, Proc. of IEEE World Forum on Internet of Things, p.64, 2015.

A. , N. Mitton, and V. Julien, How to choose an experimentation platform for wireless sensor networks ? A survey on static and mobile wireless sensor network experimentation facilities, Ad Hoc Networks, vol.30, p.64, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01147346

C. Bormann, M. Ersue, and A. Keranen, Terminology for Constrained-Node Networks, RFC, vol.7228, p.66, 2014.

U. Das,

E. Dublé-:-debootstick,

B. Pierre, D. Etienne, R. Franck, and A. Duda, WalT : A reproducible testbed for reproducible network experiments, Computer Communications Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, p.70, 2016.

M. Olivier, A. Lorena, and . Barba, Reproducible and replicable CFD : it's harder than you think, vol.73, p.74, 2016.

, Connectivity : Broadband market developments in the EU, p.80, 2017.

F. Arsham, K. Mahesh, . Marina, and G. Francisco, Urban WiFi characterization via mobile crowdsensing, IEEE Network Operations and Management Symposium (NOMS), p.80, 2014.

C. German, L. Loiseau, and M. Nicolas, An evaluation of IEEE 802.11 community networks deployments, The International Conference on Information Networking 2011 (ICOIN2011), p.80, 2011.

B. Vladimir, H. Bret, M. Allen, H. Balakrishnan, and M. Samuel, A measurement study of vehicular internet access using in situ Wi-Fi networks, Proceedings of the 12th annual international conference on Mobile computing and networking, p.80, 2006.

C. German, A. L. , A. Blanc, and M. Nicolas, Wi2me : a mobile sensing platform for wireless heterogeneous networks, Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International Conference on, p.81, 2012.

R. Pierre, R. Patrice, and C. Mathieu, Large scale Wi-Fi tracking using a botnet of wireless routers, SAT 2015-Workshop on Surveillance & Technology, p.82, 2015.

M. Eugenia, B. Franck, R. , and A. Duda, Citywide mobile internet access using dense urban WiFi coverage, Proceedings of the first workshop on Urban networking, p.83, 2012.

G. Maps and A. ,

. Itut-itu-t, One-Way Transmission Time, vol.114, 2003.

C. German, M. Juan, M. Nicolas, A. Andrés, F. Raphaël et al., A study of urban IEEE 802.11 hotspot networks : towards a community access network, 2013 IFIP Wireless Days (WD), p.92, 2013.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std, vol.11, issue.11, p.96, 2012.

, Internet Protocols Measurement Tools, p.101

R. K. Ganti, Y. E. Fan, and L. Hui, Communications Magazine, Mobile Crowdsensing : Current State and Future Challenges, vol.49, pp.32-39, 2011.

K. Ethan, P. John, A. K. John, W. David, A. Thomas et al., Towards IP Geolocation Using Delay and Topology Measurements, Proc. of ACM IMC, p.116, 2006.

M. Balakrishnan, M. Iqbal, and R. Venugopalan, Where's That Phone ? : Geolocating IP Addresses on 3G Networks, Proc. 9th ACM SIGCOMM IMC Conference, p.116, 2009.

K. Georgios, H. Geert, F. Andreas, A. Petrescu, and A. Chai-ken,

S. Thomas, D. Armin, R. Matthias, and P. Simon, Using Gray Codes as Location Identifiers, Proc. of 6. GI/ITG KuVS Fachgesprach Ortsbezogene Anwendungen und Dienste, 2009.

P. Davide, G. Giulio, C. E. Palazzi, and P. Giovanni, A Naming Scheme to Represent Geographic Areas in NDN, Wireless Days, vol.118, p.120, 2013.

M. Guy and . Morton, A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing, IBM, p.118, 1966.

B. Mohamed and V. Stig, Updates to the IPv6 Multicast Addressing Architecture, RFC, vol.7371, p.119, 2014.

O. Thomas, M. Daniel, H. Nazar, and A. Et-raed, Localization using GPS Coordinates in IPv6 Addresses of Wireless Sensor Network Nodes, Indian Journal of Science and Technology, p.120, 2016.

B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, Protocol Independent Multicast -Sparse Mode (PIM-SM) : Protocol Specification (Revised). RFC 4601, RFC Editor, 0121.

R. Sylvia, A. E. Scott, and S. , Revisiting IP Multicast, Proc. of ACM SIGCOMM, p.121, 2006.