L. .. Wavegraph, , p.93

L. and .. .. ,

, The futures of gravitational wave experiments

. Bibliography,

P. Bacon, V. Gayathri, E. Chassande-mottin, A. Pai, F. Salemi et al., Driving unmodeled gravitational-wave transient searches using astrophysical information, Physical Review D, vol.98, p.24028, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801881

V. Gayathri, P. Bacon, E. Chassande-mottin, A. Pai, F. Salemi et al., Applying wavegraph in real noise, 2018.

Q. Bammey, P. Bacon, E. Chassande-mottin, A. Fraysse, and S. Jaffard, Sparse Time-Frequency Representation of Gravitational-Wave Signals in Unions of Wilson Bases, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02080871

A. Einstein, Zur elektrodynamik bewegter korper, Annalen der Physik, vol.322, issue.10, pp.891-921, 1905.

A. Einstein, Die formale grundlage der relativitätstheorie, Sitzungsberichte . K. Preuss. Akad. Wiss, pp.1066-1077, 1914.

A. Einstein, Naherungsweise integration der feldgleichungen der gravitation, Sitzungsberichte . K. Preuss. Akad. Wiss, p.688, 1916.

J. A. Wheeler and K. W. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics, 1998.

J. D. Jackson and L. B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys, vol.73, pp.663-680, 2001.

M. Maggiore, Gravitational waves, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00327138

E. Gourgoulhon, Relativité générale, 2014.

D. Kennefick, Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, 2007.

B. P. Abbott, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett, vol.116, p.61102, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01273200

J. Veitch, Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Physical Review D, vol.91, p.42003, 2015.

B. P. Abbott, Properties of the Binary Black Hole Merger GW150914, Physical Review Letters, vol.116, p.241102, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274010

B. P. Abbott, Tests of General Relativity with GW150914, Physical Review Letters, vol.116, p.221101, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01274032

K. Belczynski, V. Kalogera, F. A. Rasio, R. E. Taam, A. Zezas et al., Compact Object Modeling with the StarTrack Population Synthesis Code, Astrophysical Journal, vol.174, pp.223-260, 2008.

J. Abadie, Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Classical and Quantum Gravity, vol.27, p.173001, 1003.
URL : https://hal.archives-ouvertes.fr/in2p3-00465032

E. E. Salpeter, The Luminosity Function and Stellar Evolution, Astrophysical Journal, vol.121, p.161, 1955.

B. P. Abbott, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett, vol.116, p.241103, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01332514

B. P. Abbott, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Physical Review Letters, vol.118, p.221101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645700

B. P. Abbott, GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence, Astrophysical Journal Letters, vol.851, p.35, 2017.

B. P. Abbott, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett, vol.119, p.141101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645341

B. P. Abbott, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett, vol.119, p.161101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645859

B. P. Abbott, GW170817: Measurements of neutron star radii and equation of state, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01846586

B. P. Abbott, Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGOs First Observing Run, Astrophysical Journal Letters, vol.832, p.21, 2016.

W. D. Arnett, J. N. Bahcall, R. P. Kirshner, and S. E. Woosley, Supernova 1987A, vol.27, pp.629-700, 1989.

B. P. Abbott, Multi-messenger Observations of a Binary Neutron Star Merger, Astrophysical Journal Letters, vol.848, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646052

A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophysical Journal, vol.826, p.56, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00015872

, Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, Astronomy and Astrophysics, vol.596, p.107, 2016.

B. P. Abbott, Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophysical Journal Letters, vol.848, p.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645884

C. Freiburghaus, S. Rosswog, and F. Thielemann, r-process in neutron star mergers, Astrophysical Journal Letters, vol.525, issue.2, p.121, 1999.

R. B. Larson, The physics of star formation, Reports on Progress in Physics, vol.66, pp.1651-1697, 2003.

A. H. Joy, Contributions from the Mount Wilson Observatory / Carnegie Institution of Washington, vol.709, pp.1-28, 1945.

K. L. Luhman, The Formation and Early Evolution of Low-Mass Stars and Brown Dwarfs, Annual Review of Astronomy and Astrophysics, vol.50, pp.65-106, 1208.

E. Hertzsprung, Ueber die Verwendung photographischer effektiver Wellenlaengen zur Bestimmung von Farbenaequivalenten, Publikationen des Astrophysikalischen Observatoriums zu Potsdam, vol.63, 1911.

E. E. Salpeter, Nuclear reactions in the stars. i. proton-proton chain, Phys. Rev, vol.88, pp.547-553, 1952.

M. Catelan, J. A. De-freitas, J. E. Pacheco, and . Horvath, The Helium-Core Mass at the Helium Flash in Low-Mass Red Giant Stars: Observations and Theory, Astrophysical Journal, vol.461, p.231, 1996.

D. Koester and G. Chanmugam, Physics of white dwarf stars, Reports on Progress in Physics, vol.53, issue.7, p.837, 1990.

S. Woosley and T. Janka, The physics of core-collapse supernovae, Nature Physics, vol.1, pp.147-154, 2005.

S. J. Smartt, Progenitors of Core-Collapse Supernovae, Annual Review of Astronomy and Astrophysics, vol.47, pp.63-106, 2009.

D. L. Meier, R. I. Epstein, W. D. Arnett, and D. N. Schramm, Magnetohydrodynamic phenomena in collapsing stellar cores, Astrophysical Journal, vol.204, pp.869-878, 1976.

A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy, Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions, Astrophysical Journal, vol.655, pp.416-433, 2007.

F. Daigne, Objets compacts et phénomènes associés, 2016.

W. Baade and F. Zwicky, On Super-novae, Proceedings of the National Academy of Science, vol.20, pp.254-259, 1934.

J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev, vol.55, pp.374-381, 1939.

S. K. Gupta, P. V. Murthy, B. V. Sreekantan, and S. C. Tonwar, High-energy pulsed gamma rays from pulsars, Astrophysical Journal, vol.221, pp.268-273, 1978.

S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, 1983.

C. Heinicke and F. W. Hehl, Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction, International Journal of Modern Physics D, vol.24, pp.1530006-214, 2015.

E. Newman and T. Adamo, Kerr-Newman metric, Scholarpedia, vol.9, p.31791, 1410.

V. Kalogera, K. Belczynski, C. Kim, R. O'shaughnessy, and B. Willems, Formation of double compact objects, Physics Reports, vol.442, pp.75-108, 2007.

S. E. De-mink, M. Cantiello, N. Langer, and O. R. Pols, Chemically Homogeneous Evolution in Massive Binaries," vol. 1314 of American Institute of Physics Conference Series, pp.291-296, 1010.

S. E. De-mink and I. Mandel, The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO, Monthly Notices of the Royal Astronomical Society, vol.460, pp.3545-3553, 2016.

T. M. Tauris, E. P. Van-den, and . Heuvel, Formation and evolution of compact stellar X-ray sources, Compact stellar X-ray sources, pp.623-665, 2006.

P. P. Eggleton, Approximations to the radii of Roche lobes, Astrophysical Journal, vol.268, p.368, 1983.

P. A. Crowther, Physical Properties of Wolf-Rayet Stars, Annual Review of Astronomy and Astrophysics, vol.45, pp.177-219, 2007.

K. A. Postnov and L. R. Yungelson, The Evolution of Compact Binary Star Systems, Living Reviews in Relativity, vol.17, p.3, 1403.

K. S. Thorne and A. N. Zytkow, Stars with degenerate neutron cores. I -Structure of equilibrium models, Astrophysical Journal, vol.212, pp.832-858, 1977.

J. Zahn, Circulation and turbulence in rotating stars, Astronomy and Astrophysics, vol.265, pp.115-132, 1992.

I. Mandel and S. E. De-mink, Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries, Monthly Notices of the Royal Astronomical Society, vol.458, pp.2634-2647, 2016.

P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris, and T. J. Moriya, A new route towards merging massive black holes, Astronomy and Astrophysics, vol.588, p.50, 2016.

L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Reviews in Relativity, vol.17, issue.2, 2014.

L. Lehner, Numerical relativity: a review, Classical and Quantum Gravity, vol.18, pp.25-86, 2001.

K. D. Kokkotas and B. G. Schmidt, Quasi-Normal Modes of Stars and Black Holes, Living Reviews in Relativity, vol.2, issue.2, 1999.

J. M. Bardeen and J. A. Petterson, The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes, Astrophysical Journal Letters, vol.195, p.65, 1975.

P. C. Peters and J. Mathews, Gravitational radiation from point masses in a keplerian orbit, Phys. Rev, vol.131, pp.435-440, 1963.

M. C. Miller and D. P. Hamilton, Four-Body Effects in Globular Cluster Black Hole Coalescence, Astrophysical Journal, vol.576, pp.894-898, 2002.

E. B. Ford, B. Kozinsky, and F. A. Rasio, Secular Evolution of Hierarchical Triple Star Systems, Astrophysical Journal, vol.535, pp.385-401, 2000.

L. Wen, On the eccentricity distribution of coalescing black hole binaries driven by the kozai mechanism in globular clusters, Astrophysical Journal, vol.598, issue.1, p.419, 2003.

F. Antonini, S. Toonen, and A. S. Hamers, Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution, Astrophysical Journal, vol.841, p.77, 2017.

F. Antonini and H. B. Perets, Secular Evolution of Compact Binaries near Massive Black Holes: Gravitational Wave Sources and Other Exotica, Astrophysical Journal, vol.757, p.27, 1203.

M. P. Muno, E. Pfahl, F. K. Baganoff, W. N. Brandt, A. Ghez et al., An overabundance of transient X-ray binaries within 1 parsec of the galactic center, Astrophysical Journal Letters, vol.622, issue.2, p.113, 2005.

R. M. O'leary, B. Kocsis, and A. Loeb, Gravitational waves from scattering of stellar-mass black holes in galactic nuclei, Monthly Notices of the Royal Astronomical Society, vol.395, pp.2127-2146, 2009.

I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei, The Astrophysical Journal, vol.835, p.165, 2017.

B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese et al., Astrophysical Implications of the Binary Black-hole Merger GW150914, Astrophysical Journal Letters, vol.818, p.22, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01273215

V. Tiwari, Proposed search for the detection of gravitational waves from eccentric binary black holes, Physical Review D, vol.93, p.43007, 2016.

L. Barack, Black holes, gravitational waves and fundamental physics: a roadmap, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833690

C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution, Physical Review D, vol.93, p.84029, 2016.

P. C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev, vol.136, pp.1224-1232, 1964.

B. Mikóczi, B. Kocsis, P. Forgács, and M. Vasúth, Parameter estimation for inspiraling eccentric compact binaries including pericenter precession, Physical Review D, vol.86, p.104027, 1206.

E. Poisson and C. Will, Gravity: Newtonian, Post-Newtonian, Relativistic, 2014.

N. Loutrel and N. Yunes, Eccentric gravitational wave bursts in the post-Newtonian formalism, Classical and Quantum Gravity, vol.34, p.135011, 2017.

K. Martel and E. Poisson, Gravitational waves from eccentric compact binaries: Reduction in signal-tonoise ratio due to nonoptimal signal processing, Physical Review D, vol.60, p.124008, 1999.

A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Physical Review D, vol.80, p.84043, 2009.

S. Tanay, M. Haney, and A. Gopakumar, Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits, Physical Review D, vol.93, p.64031, 2016.

R. A. Hulse and J. H. Taylor, Discovery of a pulsar in a binary system, Astrophysical Journal, vol.195, pp.51-53, 1975.

T. Tenev and M. Horstemeyer, The Mechanics of Spacetime -A Solid Mechanics Perspective on the Theory of General Relativity, 2016.

P. Weber, General Relativity and Gravitational Waves, 1961.

M. E. Gertsenshtein and V. I. Pustovoit, On the Detection of Low Frequency Gravitational Waves, Sov. Phys. JETP, vol.16, p.433, 1962.

G. E. Moss, L. R. Miller, and R. L. Forward, Photon-noise-limited laser transducer for gravitational antenna, Appl. Opt, vol.10, pp.2495-2498, 1971.

R. Weiss, Electromagnetically coupled broadband gravitational antenna, vol.105, p.54, 1972.

C. Misner, K. Thorne, and J. Wheeler, Gravitation, W. H. Freeman, 1973.

M. Pitkin, S. Reid, S. Rowan, and J. Hough, Gravitational Wave Detection by Interferometry (Ground and Space), Living Reviews in Relativity, vol.14, p.5, 2011.

D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, Gravitational-wave observations as a tool for testing relativistic gravity, Phys. Rev. Lett, vol.30, pp.884-886, 1973.

B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen et al., LIGO: the Laser Interferometer Gravitational-Wave Observatory, Reports on Progress in Physics, vol.72, p.76901, 2009.

T. Accadia, F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci et al., Virgo: a laser interferometer to detect gravitational waves, Journal of Instrumentation, vol.7, p.3012, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00689749

B. Willke, The GEO 600 gravitational wave detector, Classical and Quantum Gravity, vol.19, 2002.

M. Ando, Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy, Phys. Rev. Lett, vol.86, pp.3950-3954, 2001.

B. P. Abbott, Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Reviews in Relativity, vol.21, p.3, 2018.

J. Aasi, Advanced LIGO, Classical and Quantum Gravity, vol.32, p.74001, 1411.
URL : https://hal.archives-ouvertes.fr/in2p3-00807196

F. Acernese, Advanced Virgo: a second-generation interferometric gravitational wave detector, Classical and Quantum Gravity, vol.32, p.24001, 1408.
URL : https://hal.archives-ouvertes.fr/in2p3-01056608

C. S. Unnikrishnan, IndIGO and Ligo-India Scope and Plans for Gravitational Wave Research and Precision Metrology in India, International Journal of Modern Physics D, vol.22, p.1341010, 2013.

K. Somiya, Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector, Classical and Quantum Gravity, vol.29, p.124007, 2012.

Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa et al., Interferometer design of the KAGRA gravitational wave detector, Physical Review D, vol.88, p.43007, 1306.

S. Goldwasser, Wavelet graphs for the direct detection of Gravitational Waves, 2017.

S. Konar, D. Mukherjee, D. Bhattacharya, and P. Sarkar, Gravitational waves from surface inhomogeneities of neutron stars, Physical Review D, vol.94, p.104036, 2016.

B. Abbott, Upper limits on gravitational wave emission from 78 radio pulsars, Phys. Rev. D, vol.76, p.42001, 2007.

T. Regimbau and V. Mandic, Astrophysical sources of a stochastic gravitational-wave background, Classical and Quantum Gravity, vol.25, p.184018, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01084664

C. Caprini, Stochastic background of gravitational waves from cosmological sources, Journal of Physics Conference Series, vol.610, p.12004, 1174.
URL : https://hal.archives-ouvertes.fr/cea-01220579

B. S. Sathyaprakash and B. F. Schutz, Physics, Astrophysics and Cosmology with Gravitational Waves, vol.12, issue.2, 2009.

E. F. Evangelista and J. C. De-araujo, Stochastic background of gravitational waves generated by eccentric neutron star binaries, Monthly Notices of the Royal Astronomical Society, vol.449, pp.2700-2705, 2015.

V. B. Ignatiev, A. G. Kuranov, K. A. Postnov, and M. E. Prokhorov, Orbital Eccentricity Effects on the Stochastic Gravitational Wave Background from Coalescing Binary Neutron Stars, 2001.

M. Coughlin, P. Earle, J. Harms, S. Biscans, C. Buchanan et al., Limiting the effects of earthquakes on gravitational-wave interferometers, Classical and Quantum Gravity, vol.34, p.44004, 2017.

E. Thrane, N. Christensen, and R. M. Schofield, Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications, Physical Review D, vol.87, p.123009, 1303.

S. A. Usman, The PyCBC search for gravitational waves from compact binary coalescence, Classical and Quantum Gravity, vol.33, p.215004, 2016.

S. Privitera, S. R. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos et al., Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data, Physical Review D, vol.89, p.24003, 1310.

B. Allen, ? 2 time-frequency discriminator for gravitational wave detection, Physical Review D, vol.71, p.62001, 2005.

T. Damour, The General Relativistic Two Body Problem and the Effective One Body Formalism, General Relativity, p.111, 2014.

I. W. Harry, B. Allen, and B. S. Sathyaprakash, Stochastic template placement algorithm for gravitational wave data analysis, Physical Review D, vol.80, p.104014, 2009.

T. Canton and I. W. Harry, Designing a template bank to observe compact binary coalescences in Advanced LIGO's second observing run, 2017.

D. Sivia and J. Skilling, Data analysis: A bayesian tutorial, 2006.

S. Sharma, Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy, Annual Review of Astronomy and Astrophysics, vol.55, pp.213-259, 2017.

W. D. Vousden, W. M. Farr, and I. Mandel, Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations, Monthly Notices of the Royal Astronomical Society, vol.455, pp.1919-1937, 2016.

D. E. Holz and S. A. Hughes, Using Gravitational-Wave Standard Sirens, The Astrophysical Journal, vol.629, pp.15-22, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02303016

B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature, vol.551, pp.85-88, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645900

H. Chen, D. E. Holz, J. Miller, M. Evans, S. Vitale et al., Distance measures in gravitational-wave astrophysics and cosmology, 2017.

G. Dalya, G. Galgoczi, L. Dobos, Z. Frei, I. S. Heng et al., GLADE: A Galaxy Catalogue for Multi-Messenger Searches in the Advanced Gravitational-Wave Detector Era, Monthly Notices of the Royal Astronomical Society, vol.479, pp.2374-2381, 2018.

T. Kuroda, K. Kotake, K. Hayama, and T. Takiwaki, Correlated signatures of gravitational-wave and neutrino emission in three-dimensional general-relativistic core-collapse supernova simulations, The Astrophysical Journal, vol.851, issue.1, p.62, 2017.

H. Andresen, B. Müller, E. Müller, and H. Janka, Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae, Monthly Notices of the Royal Astronomical Society, vol.468, pp.2032-2051, 2017.

D. Gabor, Theory of communication. Part 1: The analysis of information, The Institution of Electrical Engineers, pp.429-441, 1946.

S. Mallat, Third Edition: The Sparse Way, A Wavelet Tour of Signal Processing, 2008.

S. Klimenko, S. Mohanty, M. Rakhmanov, and G. Mitselmakher, Constraint likelihood analysis for a network of gravitational wave detectors, Physical Review D, vol.72, p.122002, 2005.

S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, A coherent method for detection of gravitational wave bursts, Classical and Quantum Gravity, vol.25, p.114029, 2008.

S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari et al., Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Physical Review D, vol.93, p.42004, 2016.

V. Necula, S. Klimenko, and G. Mitselmakher, Transient analysis with fast wilson-daubechies timefrequency transform, Journal of Physics: Conference Series, vol.363, issue.1, p.12032, 2012.

I. Daubechies, S. Jaffard, and J. Journe, A simple Wilson orthonormal basis with exponential decay, 1990.

V. Connaughton, Fermi GBM Observations of LIGO Gravitational-wave Event GW150914, Astrophysical Journal Letters, vol.826, p.6, 2016.

T. Damour, A. Gopakumar, and B. R. Iyer, Phasing of gravitational waves from inspiralling eccentric binaries, Physical Review D, vol.70, p.64028, 2004.

E. Chassande-mottin, E. Lebigot, H. Magaldi, E. Chase, A. Pai et al., Wavelet graphs for the direct detection of gravitational waves, 2017.

I. T. Jolliffe and J. Cadima, Principal component analysis: a review and recent developments, Philosophical Transactions of the Royal Society of London Series A, vol.374, p.20150202, 2016.

R. Bellman, The theory of dynamic programming, Bull. Amer. Math. Soc, vol.60, p.1954

J. Powell, Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches, Classical and Quantum Gravity, vol.35, p.155017, 2018.

M. Zevin, Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science, Classical and Quantum Gravity, vol.34, p.64003, 2017.

S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevin et al., Machine learning for gravity spy: Glitch classification and dataset, Information Sciences, vol.444, pp.172-186, 2018.

E. Huerta, P. Kumar, S. T. Mcwilliams, R. O'shaughnessy, and N. Yunes, Accurate and efficient waveforms for compact binaries on eccentric orbits, Physical Review D, vol.90, p.17, 2014.

E. A. Huerta, C. J. Moore, P. Kumar, D. George, A. J. Chua et al., Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers, Physical Review D, vol.97, p.24031, 2018.

I. Hinder, L. E. Kidder, and H. P. Pfeiffer, An eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory, 2017.

E. K. Porter and A. Sesana, Eccentric Massive Black Hole Binaries in LISA I : The Detection Capabilities of Circular Templates, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00707020

Z. Cao and W. Han, Waveform model for an eccentric binary black hole based on the effective-onebody-numerical-relativity formalism, Physical review D, vol.96, p.44028, 2017.

T. Hinderer and S. Babak, Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Physical Review D, vol.96, p.104048, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01704955

I. Harry, J. C. Bustillo, and A. Nitz, Searching for the full symphony of black hole binary mergers, Physical Review D, vol.97, p.23004, 2018.

M. Turner, Gravitational radiation from point-masses in unbound orbits -Newtonian results, Astrophysical Journal, vol.216, pp.610-619, 1977.

T. B. Littenberg, J. B. Kanner, N. J. Cornish, and M. Millhouse, Enabling high confidence detections of gravitational-wave bursts, Physical Review D, vol.94, p.44050, 2016.

C. Moreno-garrido, E. Mediavilla, and J. Buitrago, Gravitational radiation from point masses in elliptical orbits: spectral analysis and orbital parameters, Monthly Notices of the Royal Astronomical Society, vol.274, pp.115-126, 1995.

H. Wang and B. Raj, On the Origin of Deep Learning, 2017.

B. Müller, H. Janka, and A. Heger, New two-dimensional models of supernova explosions by the neutrino-heating mechanism: Evidence for different instability regimes in collapsing stellar cores, Astrophysical Journal, vol.761, issue.1, p.72, 2012.

M. H. Van-putten, Proposed source of gravitational radiation from a torus around a black hole, Phys. Rev. Lett, vol.87, p.91101, 2001.

M. Punturo, The Einstein telescope: a third-generation gravitational wave observatory, Classical and Quantum Gravity, vol.27, issue.19, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00629986

B. P. Abbott, Exploring the sensitivity of next generation gravitational wave detectors, Classical and Quantum Gravity, vol.34, p.44001, 2017.

P. Amaro-seoane, Laser Interferometer Space Antenna, 2017.

M. Armano, Free-flight experiments in LISA Pathfinder, Journal of Physics Conference Series, vol.610, p.12006, 1412.

J. I. Thorpe, C. Parvini, and J. Trigo-rodriguez, Detection and Characterization of Micrometeoroids with LISA Pathfinder, 2015.