P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

C. Antoci, M. Gallati, and S. Sibilla, Numerical simulation of fluid-structure interaction by sph, Computers & Structures, vol.85, pp.879-890, 2007.

M. Abkarian, C. Lartigue, and A. Viallat, Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force, Physical review letters, vol.88, issue.6, p.68103, 2002.

F. Almgren, J. E. Taylor, and L. Wang, Curvature-driven flows: a variational approach, SIAM Journal on Control and Optimization, vol.31, issue.2, pp.387-438, 1993.

M. Abkarian and A. Viallat, Vesicles and red blood cells in shear flow, Soft Matter, vol.4, issue.4, pp.653-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00321718

D. Bresch, F. Couderc, P. Noble, and J. Vila, A generalization of the quantum bohm identity: Hyperbolic cfl condition for euler-korteweg equations, Comptes Rendus Mathematique, vol.354, issue.1, pp.39-43, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01870745

D. Bresch, B. Desjardins, and E. Zatorska, Twovelocity hydrodynamics in fluid mechanics: Part ii existence of global ?-entropy solutions to the compressible navier-stokes systems with degenerate viscosities, Journal de Mathématiques Pures et Appliquées, vol.104, issue.4, pp.801-836, 2015.

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM Journal on Numerical Analysis, vol.32, issue.2, pp.484-500, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02315330

S. Benzoni-gavage, R. Danchin, and S. Descombes, On the well-posedness for the euler-korteweg model in several space dimensions, Indiana University Mathematics Journal, pp.1499-1579, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00693094

N. Alexander, . Brooks, J. R. Thomas, and . Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navierstokes equations. Computer methods in applied mechanics and engineering, vol.32, pp.199-259, 1982.

T. Biben, Phase-field models for free-boundary problems, European Journal of Physics, vol.26, issue.5, p.47, 2005.

S. Bertoluzza, M. Ismail, and B. Maury, Analysis of the fully discrete fat boundary method, Numerische Mathematik, vol.118, issue.1, pp.49-77, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00665644

D. Bresch and P. Jabin, Global existence of weak solutions for compressible navier-stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Annals of Mathematics, vol.188, issue.2, pp.577-684, 2018.

T. Biben, K. Kassner, and C. Misbah, Phase-field approach to three-dimensional vesicle dynamics, Physical Review E, vol.72, issue.4, p.41921, 2005.

. Ju-brackbill, C. Douglas-b-kothe, and . Zemach, A continuum method for modeling surface tension, Journal of computational physics, vol.100, issue.2, pp.335-354, 1992.

E. Bretin, S. Masnou, and E. Oudet, Phase-field approximations of the willmore functional and flow, vol.131, pp.115-171, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00825393

A. Bourlioux, A coupled level-set volume-of-fluid algorithm for tracking material interfaces, proceedings of the 6th international symposium on computational fluid dynamics, vol.15, 1995.

H. Brezis, Analyse fonctionnelle. théorie et applications.(french)[functional analysis. theory and applications], collection mathématiques appliquées pour la ma?trise, 1983.

W. Breugem, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, Journal of Computational Physics, vol.231, issue.13, pp.4469-4498, 2012.

J. Beaucourt, . Rioual, . Séon, C. Biben, and . Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E, vol.69, issue.1, p.11906, 2004.

J. Caltagirone, Sur l'intéraction fluide-milieu poreux; application au calcul des efforts exercés sur un obstacle par un fluide visqueux. Comptes rendus de l'Académie des sciences. Série II, Mécanique, physique, chimie, astronomie, vol.318, pp.571-577, 1994.

B. Peter and . Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, Journal of theoretical biology, vol.26, issue.1, pp.61-81, 1970.

M. Coquerelle and G. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, Journal of Computational Physics, vol.227, issue.21, pp.9121-9137, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297673

P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni et al., Billion vortex particle direct numerical simulations of aircraft wakes, Computer Methods in Applied Mechanics and Engineering, vol.197, pp.1296-1304, 2008.

V. Caselles and F. Catté, Tomeu Coll, and Françoise Dibos. A geometric model for active contours in image processing, Numerische mathematik, vol.66, issue.1, pp.1-31, 1993.

S. F. Italo-capuzzo-dolcetta, R. Vita, and . March, Area-preserving curve-shortening flows: from phase separation to image processing, Interfaces and Free Boundaries, vol.4, issue.4, pp.325-343, 2002.

A. Chambolle, An algorithm for mean curvature motion. Interfaces and free Boundaries, vol.6, pp.195-218, 2004.

V. Chabannes, Vers la simulation des écoulements sanguins, 2013.

A. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of computational physics, vol.2, issue.1, pp.12-26, 1967.

G. Cottet, D. Petros, D. Koumoutsakos, . Petros, D. Petros et al., Vortex methods: theory and practice, 2000.

B. Joseph, H. Collins, and . Levine, Diffuse interface model of diffusion-limited crystal growth, Physical Review B, vol.31, issue.9, p.6119, 1985.

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of computational physics, vol.191, issue.2, pp.448-475, 2003.

I. Cantat and C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow, Physical review letters, vol.83, issue.4, p.880, 1999.

G. , H. Cottet, and E. Maitre, A level-set formulation of immersed boundary methods for fluid-structure interaction problems, Comptes Rendus Mathematique, vol.338, issue.7, pp.581-586, 2004.

G. , H. Cottet, and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, vol.16, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

G. , H. Cottet, and E. Maitre, A semi-implicit level set method for multiphase flows and fluid-structure interaction problems, Journal of Computational Physics, vol.314, pp.80-92, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01188443

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluidstructure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, pp.471-492, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297711

A. Chambolle and M. Novaga, Convergence of an algorithm for the anisotropic and crystalline mean curvature flow, SIAM journal on mathematical analysis, vol.37, issue.6, pp.1978-1987, 2006.

. Carlos-conca, J. Osses, and . Planchard, Added mass and damping in fluid-structure interaction, Computer methods in applied mechanics and engineering, vol.146, issue.3-4, pp.387-405, 1997.

A. Chicco-ruiz, P. Morin, and M. Pauletti, The shape derivative of the gauss curvature, 2017.

J. Du, B. Fix, J. Glimm, X. Jia, X. Li et al., A simple package for front tracking, Journal of Computational Physics, vol.213, issue.2, pp.613-628, 2006.

Y. Dgc-+-13]-vincent-doyeux, V. Guyot, C. Chabannes, M. Prud'homme, and . Ismail, Simulation of two-fluid flows using a finite element/level set method. application to bubbles and vesicle dynamics, Journal of Computational and Applied Mathematics, vol.246, pp.251-259, 2013.

J. Donea, J. Giuliani, and . Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer methods in applied mechanics and engineering, vol.33, issue.1-3, pp.689-723, 1982.

J. Donea, A. Huerta, J. Ponthot, and A. Rodríguez-ferran, Arbitrary l agrangian-e ulerian methods. Encyclopedia of computational mechanics, 2004.

Q. Du, M. Li, and C. Liu, Analysis of a phase field navier-stokes vesicle-fluid interaction model. Discrete and Continuous, Dynamical Systems Series B, vol.8, issue.3, p.539, 2007.

Q. Du, C. Liu, R. Ryham, and X. Wang, A phase field formulation of the willmore problem, Nonlinearity, vol.18, issue.3, p.1249, 2005.

Q. Du, C. Liu, and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, vol.198, issue.2, pp.450-468, 2004.

V. Doyeux, Modeling and simulation of multi-fluid systems. Applications to blood flows, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00939930

C. Michel, J. Delfour, and . Zolâsio, Shapes and geometries: metrics, analysis, differential calculus, and optimization, vol.22, 2011.

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational physics, vol.183, issue.1, pp.83-116, 2002.

S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Communications on pure and applied mathematics, vol.68, issue.5, pp.808-864, 2015.

S. Esedoglu, J. Steven, R. Ruuth, and . Tsai, Threshold dynamics for high order geometric motions. Interfaces and Free Boundaries, vol.10, pp.263-282, 2008.

S. Esedoglu, S. Ruuth, and R. Tsai, Diffusion generated motion using signed distance functions, Journal of Computational Physics, vol.229, issue.4, pp.1017-1042, 2010.

A. Evan and . Evans, Bending resistance and chemically induced moments in membrane bilayers, Biophysical journal, vol.14, issue.12, pp.923-931, 1974.

C. Lawrence and . Evans, Convergence of an algorithm for mean curvature motion, Indiana University mathematics journal, pp.533-557, 1993.

C. Farhat, P. Geuzaine, and C. Grandmont, The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, Journal of Computational Physics, vol.174, issue.2, pp.669-694, 2001.

A. Miguel, J. Fernández, C. Gerbeau, and . Grandmont, A projection algorithm for fluid-structure interaction problems with strong added-mass effect, Comptes Rendus Mathematique, vol.342, issue.4, pp.279-284, 2006.

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.794-821, 2007.

A. Miguel, M. Fernández, M. Landajuela, and . Vidrascu, Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, Journal of Computational Physics, vol.297, pp.156-181, 2015.

A. Miguel, J. Fernández, M. Mullaert, and . Vidrascu, Generalized robin-neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability analysis and numerics, International Journal for Numerical Methods in Engineering, vol.101, issue.3, pp.199-229, 2015.

J. Gomes and O. Faugeras, Reconciling distance functions and level sets, Journal of Visual Communication and Image Representation, vol.11, issue.2, pp.209-223, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00073006

M. J. James-glimm, J. Graham, X. L. Grove, T. M. Li, D. Smith et al., Front tracking in two and three dimensions, Computers & Mathematics with Applications, vol.35, issue.7, pp.1-11, 1998.

J. Glimm, J. Grove, B. Lindquist, A. Oliver, G. Mcbryan et al., The bifurcation of tracked scalar waves, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.1, pp.61-79, 1988.

J. Glimm, W. John, X. L. Grove, K. Li, Y. Shyue et al., Three-dimensional front tracking, SIAM Journal on Scientific Computing, vol.19, issue.3, pp.703-727, 1998.

C. Grandmont, V. Guimet, and Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Mathematical Models and Methods in Applied Sciences, vol.11, issue.08, pp.1349-1377, 2001.

R. Grzhibovskis and A. Heintz, A convolution thresholding scheme for the willmore flow. Interfaces and Free Boundaries, vol.10, pp.139-153, 2008.

D. Goldstein, L. Handler, and . Sirovich, Modeling a no-slip flow boundary with an external force field, Journal of Computational Physics, vol.105, issue.2, pp.354-366, 1993.

D. Goldstein, L. Handler, and . Sirovich, Direct numerical simulation of turbulent flow over a modeled riblet covered surface, Journal of Fluid Mechanics, vol.302, pp.333-376, 1995.

A. Robert, J. Gingold, and . Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices of the royal astronomical society, vol.181, issue.3, pp.375-389, 1977.

T. Gph-+-01]-roland-glowinski, . Pan, I. Todd, . Hesla, D. Daniel et al., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.

R. Glowinski, T. Pan, I. Todd, and D. Hesla, A distributed lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.

C. Galusinski and P. Vigneaux, Level-set method and stability condition for curvature-driven flows, Comptes Rendus Mathematique, vol.344, issue.11, pp.703-708, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00193189

C. Galusinski and P. Vigneaux, On stability condition for bifluid flows with surface tension: Application to microfluidics, Journal of Computational Physics, vol.227, issue.12, pp.6140-6164, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274569

. Hac-+-06]-ma-hoefer, . Ablowitz, E. A. Coddington, P. Cornell, V. Engels et al., Dispersive and classical shock waves in bose-einstein condensates and gas dynamics, Physical Review A, vol.74, issue.2, p.23623, 2006.

G. Hauke, A simple subgrid scale stabilized method for the advection-diffusion-reaction equation, Computer Methods in Applied Mechanics and Engineering, vol.191, pp.2925-2947, 2002.

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Zeitschrift für Naturforschung C, vol.28, pp.693-703, 1973.

C. Herring, Surface tension as a motivation for sintering, Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, pp.33-69, 1999.

J. R. Thomas, L. P. Hughes, G. M. Franca, and . Hulbert, A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-diffusive equations, Computer methods in applied mechanics and engineering, vol.73, issue.2, pp.173-189, 1989.

J. R. Thomas and . Hughes, Recent progress in the development and understanding of supg methods with special reference to the compressible euler and navier-stokes equations, International journal for numerical methods in fluids, vol.7, issue.11, pp.1261-1275, 1987.

H. Francis, J. Harlow, and . Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids, vol.8, pp.2182-2189, 1965.

A. Morton and . Hyman, Non-iterative numerical solution of boundaryvalue problems, Applied Scientific Research, vol.2, issue.1, pp.325-351, 1952.

M. James and . Hyman, Numerical methods for tracking interfaces, Physica D: Nonlinear Phenomena, vol.12, issue.1-3, pp.396-407, 1984.

M. Ismail and A. Lefebvre-lepot, A necklace model for vesicles simulations in 2d, International Journal for Numerical Methods in Fluids, vol.76, issue.11, pp.835-854, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00670072

M. Ismail, Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés. Application aux écoulements fluides tridimensionnels, 2004.

M. Jedouaa, C. Bruneau, and E. Maitre, An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid, Journal of Computational Physics, vol.378, pp.143-177, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01236468

D. Jamet and C. Misbah, Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension, Physical Review E, vol.78, issue.4, p.41903, 2008.

D. Jamet and D. Torres, On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method, Journal of Computational Physics, vol.182, issue.1, pp.262-276, 2002.

B. Kallemov, A. Bhalla, B. Griffith, and A. Donev, An immersed boundary method for rigid bodies, Communications in Applied Mathematics and Computational Science, vol.11, issue.1, pp.79-141, 2016.

C. Kublik, S. Esedoglu, and J. A. Fessler, Algorithms for area preserving flows, SIAM Journal on Scientific Computing, vol.33, issue.5, pp.2382-2401, 2011.

B. Kaoui, J. Harting, and C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Physical Review E, vol.83, issue.6, p.66319, 2011.

D. Kinderlehrer, I. Jee-hyun-lee, . Livshits, D. Anthony, S. Rollett et al., Mesoscale simulation of grain growth, Materials Science Forum, vol.467, pp.1057-1062, 2004.

K. Kassner and C. Misbah, A phase-field approach for stressinduced instabilities, Europhysics Letters), vol.46, issue.2, p.217, 1999.

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, vol.63, issue.3-4, pp.410-423, 1993.

P. Koumoutsakos, Multiscale flow simulations using particles, Annu. Rev. Fluid Mech, vol.37, pp.457-487, 2005.

A. Karma and W. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical review E, vol.57, issue.4, p.4323, 1998.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International journal of computer vision, vol.1, issue.4, pp.321-331, 1988.

I. Lee and H. Choi, A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body, Journal of Computational Physics, vol.280, pp.529-546, 2015.

T. Laux and F. Otto, Convergence of the thresholding scheme for multi-phase mean-curvature flow, Calculus of Variations and Partial Differential Equations, vol.55, issue.5, p.129, 2016.

X. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of computational physics, vol.115, issue.1, pp.200-212, 1994.

M. Ilya, . Lifshitz, V. Vitaly, and . Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of physics and chemistry of solids, vol.19, issue.1-2, pp.35-50, 1961.

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation. Calculus of variations and partial differential equations, vol.3, pp.253-271, 1995.

T. Laux and D. Swartz, Convergence of thresholding schemes incorporating bulk effects, 2016.

J. Liu, J. P. Schneider, and . Gollub, Three-dimensional instabilities of film flows, Physics of Fluids, vol.7, issue.1, pp.55-67, 1995.

A. Laadhari, P. Saramito, and C. Misbah, Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods, Journal of Computational Physics, vol.263, pp.328-352, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00604145

B. Leon and . Lucy, A numerical approach to the testing of the fission hypothesis, The astronomical journal, vol.82, pp.1013-1024, 1977.

L. Li, X. Xu, E. Saverio, and . Spagnolie, A locally gradientpreserving reinitialization for level set functions, Journal of Scientific Computing, vol.71, issue.1, pp.274-302, 2017.

P. Mascarenhas, Diffusion generated motion by mean curvature, 1992.

B. Maury, A fat boundary method for the poisson problem in a domain with holes, Journal of scientific computing, vol.16, issue.3, pp.319-339, 2001.

B. Maury, Numerical analysis of a finite element/volume penalty method, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1126-1148, 2009.

B. Merriman, J. K. Bence, and S. Osher, Diffusion generated motion by mean curvature. Department of Mathematics, 1992.

B. Merriman, K. James, S. J. Bence, and . Osher, Motion of multiple junctions: A level set approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.

T. Metivet and V. Chabannes, Mourad Ismail, and Christophe Prud'homme. High-order finite-element framework for the efficient simulation of multifluid flows, Mathematics, vol.6, issue.10, p.203, 2018.

C. Mimeau, F. Gallizio, G. Cottet, and I. Mortazavi, Vortex penalization method for bluff body flows, International Journal for Numerical Methods in Fluids, vol.79, issue.2, pp.55-83, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00936332

R. Mittal and G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech, vol.37, pp.239-261, 2005.

T. Mmc-+-09]-emmanuel-maitre, G. Milcent, A. Cottet, Y. Raoult, and . Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, pp.2161-2169, 2009.

A. Morar, F. Moldoveanu, and E. Gröller, Image segmentation based on active contours without edges, 2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing, pp.213-220, 2012.

E. Maitre, C. Misbah, P. Peyla, and A. Raoult, Comparison between advected-field and level-set methods in the study of vesicle dynamics, Physica D: Nonlinear Phenomena, vol.241, issue.13, pp.1146-1157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909424

C. Fernando, A. Marques, and . Neves, Min-max theory and the willmore conjecture, Annals of mathematics, pp.683-782, 2014.

J. Joe and . Monaghan, Simulating free surface flows with sph, Journal of computational physics, vol.110, issue.2, pp.399-406, 1994.

L. Mugnai, C. Seis, and E. Spadaro, Global solutions to the volume-preserving mean-curvature flow, Calculus of Variations and Partial Differential Equations, vol.55, issue.1, p.18, 2016.

R. Malladi, A. James, . Sethian, C. Baba, and . Vemuri, Topology-independent shape modeling scheme, Geometric Methods in Computer Vision II, vol.2031, pp.246-259, 1993.

W. William and . Mullins, Two-dimensional motion of idealized grain boundaries, Journal of Applied Physics, vol.27, issue.8, pp.900-904, 1956.

M. Mader, V. Vitkova, M. Abkarian, T. Viallat, and . Podgorski, Dynamics of viscous vesicles in shear flow, MVA + 06, vol.19, pp.389-397, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01261886

S. Osher, P. Ronald, and . Fedkiw, Level set methods: an overview and some recent results, Journal of Computational physics, vol.169, issue.2, pp.463-502, 2001.

S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol.153, 2006.

S. Osher, A. James, and . Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, pp.12-49, 1988.

. Na-patankar, A formulation for fast computations of rigid particulate flows, pp.185-196, 2001.

C. Prud, &. Homme, V. Chabannes, V. Doyeux, M. Ismail et al., Feel++: A computational framework for galerkin methods and advanced numerical methods, ESAIM: Proceedings, vol.38, pp.429-455, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00662868

. Charles-s-peskin, Numerical analysis of blood flow in the heart, Journal of computational physics, vol.25, issue.3, pp.220-252, 1977.

. Charles-s-peskin, The immersed boundary method. Acta numerica, vol.11, pp.479-517, 2002.

D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A pde-based fast local level set method, Journal of computational physics, vol.155, issue.2, pp.410-438, 1999.

G. Pena, C. Prud'homme, and A. Quarteroni, High order methods for the approximation of the incompressible navier-stokes equations in a moving domain, Computer Methods in Applied Mechanics and Engineering, vol.209, pp.197-211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748062

D. Rossinelli, M. Bergdorf, G. Cottet, and P. Koumoutsakos, Gpu accelerated simulations of bluff body flows using vortex particle methods, Journal of Computational Physics, vol.229, issue.9, pp.3316-3333, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00748016

J. William, . Rider, and . Douglas-b-kothe, Reconstructing volume tracking, Journal of computational physics, vol.141, issue.2, pp.112-152, 1998.

Y. Renardy and M. Renardy, Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of computational physics, vol.183, issue.2, pp.400-421, 2002.

G. Russo and P. Smereka, A remark on computing distance functions, Journal of Computational Physics, vol.163, issue.1, pp.51-67, 2000.

J. Steven and . Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, Journal of Computational Physics, vol.144, issue.2, pp.603-625, 1998.

J. Steven, . Ruuth, and . Brian-tr-wetton, A simple scheme for volumepreserving motion by mean curvature, Journal of Scientific Computing, vol.19, issue.1-3, pp.373-384, 2003.

K. Valerij and . Saul'ev, On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. J, vol.4, issue.4, pp.912-925, 1963.

E. M. Saiki and . Biringen, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, Journal of Computational Physics, vol.123, issue.2, pp.450-465, 1996.

A. James and . Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1591-1595, 1996.

A. James and . Sethian, Fast marching methods, SIAM review, vol.41, issue.2, pp.199-235, 1999.

M. Sussman and E. Fatemi, An efficient, interfacepreserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM Journal on scientific computing, vol.20, issue.4, pp.1165-1191, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01694576

M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An improved level set method for incompressible two-phase flows, Computers & Fluids, vol.27, issue.5-6, pp.663-680, 1998.

A. Smolianski, Finite-element/level-set/operator-splitting (felsos) approach for computing two-fluid unsteady flows with free moving interfaces, International journal for numerical methods in fluids, vol.48, issue.3, pp.231-269, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01706187

N. Sharma, A. Neelesh, and . Patankar, A fast computation technique for the direct numerical simulation of rigid particulate flows, Journal of Computational Physics, vol.205, issue.2, pp.439-457, 2005.

M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational physics, vol.114, issue.1, pp.146-159, 1994.

M. Sussman, A second order coupled level set and volume-offluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics, vol.187, issue.1, pp.110-136, 2003.

D. Swartz and N. Kwan-yip, Convergence of diffusion generated motion to motion by mean curvature, Communications in Partial Differential Equations, vol.42, issue.10, pp.1598-1643, 2017.

R. Scardovelli and S. Zaleski, Interface reconstruction with least-square fit and split eulerian-lagrangian advection, International Journal for Numerical Methods in Fluids, vol.41, issue.3, pp.251-274, 2003.

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, W. Al-rawahi et al., A front-tracking method for the computations of multiphase flow, Journal of computational physics, vol.169, issue.2, pp.708-759, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02146147

H. Terashima and G. Tryggvason, A front-tracking/ghostfluid method for fluid interfaces in compressible flows, Journal of Computational Physics, vol.228, issue.11, pp.4012-4037, 2009.

G. Salih-ozen-unverdi and . Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, vol.100, issue.1, pp.25-37, 1992.

P. Vigneaux, Méthodes Level Set pour des problèmes d'interface en microfluidique, 2007.

M. Petia, T. Vlahovska, C. Podgorski, and . Misbah, Vesicles and red blood cells in flow: From individual dynamics to rheology, Comptes Rendus Physique, vol.10, issue.8, pp.775-789, 2009.

. Wcw-+-16]-zhi-bin, R. Wang, H. Chen, Q. Wang, X. Liao et al., An overview of smoothed particle hydrodynamics for simulating multiphase flow, Applied Mathematical Modelling, vol.40, pp.9625-9655, 2016.

F. Wakai, N. Enomoto, and H. Ogawa, Three-dimensional microstructural evolution in ideal grain growth-general statistics, Acta Materialia, vol.48, issue.6, pp.1297-1311, 2000.

T. Willmore, Riemannian geometry, 1996.

X. Yang, J. Ashley, J. James, X. Lowengrub, V. Zheng et al., An adaptive coupled level-set/volume-offluid interface capturing method for unstructured triangular grids, Journal of Computational Physics, vol.217, issue.2, pp.364-394, 2006.

H. Zhao, B. Merriman, S. Osher, and L. Wang, Capturing the behavior of bubbles and drops using the variational level set approach, Journal of Computational Physics, vol.143, issue.2, pp.495-518, 1998.