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Cilia and flagella are organelles present in most eukaryotic cells. They share a 

canonical cylindrical structure composed of 9 microtubule doublets called the 

axoneme that is conserved during evolution. Despite some variations in composition 

and length between different types of cilia, the length for a given cell type is tightly 

controlled. Any defect in this length can lead to serious cellular dysfunctions, 

including in humans where it is associated to genetic diseases called ciliopathies. 

Two major questions result directly from these observations: (1) how are these 

organelles assembled? (2) Which are the mechanisms implicated in the control of 

their length?  

Ribosomes are absent from the ciliary compartment meaning that all the constituents 

necessary for construction are synthesized in the cytoplasm. Axonemal component 

incorporation takes place at the distal end of the organelle (Rosenbaum and Child 

1967). It is proposed that they are transported to the assembly site by Intraflagellar 

Transport (IFT), a bidirectional movement of protein complexes driven by molecular 

motors along the axoneme. IFT proteins are associated in trains or particles visible 

by electron microscopy as electron dense material found between the ciliary 

membrane and the axoneme microtubules. It is possible to visualize IFT in live cell by 

tagging one of its constituents with a fluorescent protein. IFT defects are responsible 

for defaults in flagellum construction or / and in the control of flagellum length. During 

my thesis, I have studied the IFT machinery and the mechanisms implicated in 

flagellum length control by using the parasite Trypanosoma brucei as a model. First, 

using a combination of high-resolution electron microscopy and light microscopy we 

have investigated how and where IFT trains move within the flagellum of T. brucei. 

Second, we have proposed a new model named “grow and lock” to explain how 

flagellum length could be controlled. We have evaluated the impacts of both the 

flagellum growth rate and the timing of the locking event in the control of the 

flagellum length. We have investigated the relevance of other potential models for 

length regulation in T. brucei and none of them can explain the results. Finally we 

have started to investigate how flagellum length could be regulated during the 

parasite cycle, where trypanosomes construct flagella of very different lengths. This 

could be controlled by the “grow and lock” model or by other models such as the 

existence of a length sensor for example. Mechanisms implicated in length regulation 



  
Figure 1: Diversity of cilia and flagella.  
 
Images acquired by scanning electron microscopy showing different ciliated type of 
(A) mouse ependymal cilia covering the epithelium of the brain ventricles. (B) Cilia 
present on collecting tubule from mouse kidneys observed after cryo-fracture. (C) 
Mucociliary epithelium in Xenopus with one multi-ciliated cell (arrowhead) and one 
sensory cell (asterisk). (D) Cultured inner medullary collecting duct cells (IMCCD) 
and (E) Madin-Darby canine kidney cells (MDCK). (F) The ciliate Paramecium 
tetraurelia (G) Trypanosoma brucei, procyclic stage found in the midgut of the tsetse 
fly (H) and Leishmania donovani, promastigote stage. Scale bars: 1µm except for 
Paramecium, 10µm. Figure courtesy of (Vincensini, Blisnick et al. 2011) 
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could be specific for each stage of the parasite cycle. This could be also the case in 

multicellular organisms where specific mechanisms could be activated to produce 

different types of cilia depending on the cell type.  

 

  



 

 

 
 
 
 

Figure 2: First observations of cilia and flagella. 
 
(A) Illustration made by Kowalevsky in 1867 showing a portion of a 30-hours old 
Amphioxus embryo. The epithelium is made of a simple layer of cuboidal cells, that 
each possesses a single flagellum. (Bloodgood 2009) (B) Drawing of rabbit kidney 
tubule epithelia with central primary cilia made by Zimmerman in 1898. Dark dots at 
the cell surface represent cell junctions. (Zimmermann 1898) 
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 Cilia and flagella I.

Eukaryotic cells are highly structured and separated from their environment by a 

plasma membrane. The cytoplasm contains specialized organelles such as the 

nucleus surrounded by a double nuclear envelope, enclosing the genetic material 

organised in chromosomes. Each compartment or organelle is associated to 

particular biological processes like polymer degradation associated to lysosomes. 

Most cells from unicellular or multicellular eukaryotic organisms exhibit at their 

surface a complex organelle called cilium or flagellum (interchangeable terms). They 

share a common structure and are highly conserved throughout evolution. 

Nevertheless, each type of cilium presents variation in number, length, positioning 

and roles from one organism to the other, but also between different cell types in the 

same organism (Figure 1).  

1) History   

Cilia are the oldest known cellular organelles, first described in 1675 by Anthony van 

Leeuwenhoek, using homemade light microscopes to observe ciliary beating in 

protozoa. In 1786, Otto Muller proposed the term cilium to define this organelle and 

Dujardin introduced the term flagellum much later in 1841 (Muller 1786, Dujardin 

1841). At that time, the use of two different terms was codified; the term “flagellum” 

was used for cells having one or few numbers of organelles and the term “cilium” at 

the opposite, was used when a cell exhibited many similar organelles. From the 

cilium discovery until the 19th century, the study of cilia was only focused on their 

motility that was a defining feature to identify them. During the second half the 19th 

century, Langerhans described a new class of non-motile cilia (Langerhans 1876). 

This type of cilia was first observed on a wide variety of epithelia in Amphioxus 

(Figure 2A). In mammalian cells, they were observed for the first time at the surface 

of rabbit and human epithelia by Zimmermann 22 years later (Figure 2B) 



Figure 3: Schema of the ciliary / flagellar structure. 
 
On the left is a longitudinal representation of the organelle. On the right are cross 
sections at different levels of the cilium / flagellum including the basal body, the 
transition zone and the axoneme. The two common configurations called “9+2” and 
“9+0” are represented. IFT: Intraflagellar transport (Brown and Witman 2014).   
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(Zimmermann 1898). He proposed the name of “central flagellum” and correctly 

predicted its sensory role. During the 20th century, Joseph hypothesized that cells 

with a “central flagellum” could represent a transition between non-ciliated cells and 

multi-ciliated cells (Jospeh 1903). In 1968, the term “primary cilia” was proposed to 

refer to “the rudimentary or abortive cilia” which “ have only a transitory existence” 

(Sorokin 1968). More recently, this hypothesis was confirmed in mouse, where 

ependymal cells emerge with a primary cilium and become multi-ciliated cells during 

embryogenesis (Banizs, Pike et al. 2005). Once called the “forgotten organelles”, cilia 

are today a central interest for research due to their importance in many sensory and 

developmental processes. Moreover, disorders in cilia assembly and / or functions 

can cause a wide array of pathologies called ciliopathies. Understanding the exact 

aetiology of these diseases is now a major interest for a growing scientific 

community. 

2) The structure of cilia and flagella 

Most cilia and flagella share a common architecture conserved throughout evolution. 

It contains three different structural regions from the base to the tip of the organelle: 

the basal body, the transition zone and the axoneme (Figure 3). Cilia and flagella can 

be separated in two majors categories: motile and non-motile. Both show the basic 

axonemal structure composed of nine microtubule doublets. In motile cilia the 

axoneme is organized following a “9+2” conformation: nine microtubules doublets 

associated to dynein arms (essential for ciliary beating) surround a central pair of 

single microtubules (Figure 3). On the contrary, non-motile cilia possess a “9+0” 

structure where the central pair and the dynein arms are absent (Figure 3). The 

cilium possesses a specific membrane surrounding the axoneme and, in some 

specific cases, extra-axonemal structures.  

 



 

 

 
 
Figure 4: Centrosomes and basal body structure.  
 
(A) A centriole is the main structural constituent of centrosomes or basal bodies 
when it is anchored at the membrane. The canonical centriole has nine microtubule 
triplets. Each centrosome is composed of a mother and a daughter centriole 
presenting an orthogonal configuration and surrounded by the pericentriolar material 
(PCM). The basal body anchors the cilium to the cellular membrane. (a) and (b) 
boxes showing respectively the structure of “9+2” and “9+0” axoneme (Bettencourt-
Dias 2013). (B) Electron microscopy images of a cross section through the basal 
body and the axoneme of Chlamydomonas. The name of each microtubule of a 
triplet basal body and of a doublet axoneme is indicated in these images. Scale bar: 
0.95 µm. (Linck and Stephens 2007) 
	
    



Introduction 

 

7 

a) Basal bodies and centrioles 

Basal bodies and centrioles are large, evolutionary conserved organelles; that 

display nine triplets of microtubules organised in a 9-fold symmetry determined by 

the cartwheel (Figure 4A). This scaffold appears at the initial step of centriole 

assembly and is composed of a core from which irradiate 9 spokes. Each triplet is 

composed of a complete A tubule made of 13 protofilaments, fused with the 

incomplete B tubule (11 protofilaments), the latter being associated with the 

incomplete C tubule also built with 11 protofilaments (Figure 4B, left panel). Some 

exceptions have been described such as in Drosophila melanogaster embryos where 

basal bodies present 9 doublets instead of triplets (Callaini, Whitfield et al. 1997). 

The A and B tubules of the basal body extend into the axonemal part whereas the C 

tubule stops before the transition zone (Figure 4B, right panel). The distal end of the 

basal body is anchored to the cell membrane thanks to transition fibers. The 

transition fibers contribute to the separation of the flagellar compartment from the rest 

of the cell, as electron microscopy pictures from various cell types show that the 

inter-fibre spaces are too small to allow vesicle trafficking (Reiter, Blacque et al. 

2012, Garcia-Gonzalo and Reiter 2017). The flagellum base forms a flagellar pore 

complex (FPC) thought to be related to the nuclear pore complex (NPC) enabling a 

selective entry inside the flagellar compartment (Rosenbaum and Witman 2002, 

Dishinger, Kee et al. 2010, Kee, Dishinger et al. 2012). 

The centrosome is composed of usually two perpendicular centrioles surrounded by 

a peri-centriolar material (PCM) made of proteins essential for microtubule nucleation 

and anchoring such as γ-tubulin or pericentrin. The mature, appendage-bearing 

centrosome is called the mother centriole and the immature; often shorter is named 

the daughter centriole (Figure 4A) (Chretien, Buendia et al. 1997). The centrosome is 

the microtubule-organizing center in most animal cells where it is essential for 

mitosis. In its absence, chromosomes alone fail to organize a bipolar spindle and 

kinetochore microtubules (Sluder and Rieder 1985). The basal body has the ability to 

nucleate the polymerisation of the axoneme into cilia and flagella (Figure 4A). Basal 

bodies and centrioles are related functionally, as illustrated by one centriole of the 



 
 
 
Figure 5: The transition zone. 
 
(A) Schematic representation of the transition zone (TZ). The transition zone is 
defined by the transition fibers (TF) that link the basal body to the membrane, the Y-
links and the ciliary necklace. Cross-sections of the transition fibers (blue arrows) and 
Y-links (red arrows) from C. elegans sensory cilium and human oviduct primary 
cilium. (B) Ciliary necklace from a hamster respiratory cilium visualized by freeze 
fracture scanning electron microscopy indicated by the green arrows (Reiter, Blacque 
et al. 2012). 
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centrosome becoming basal body during ciliogenesis in animal cells. This is also 

found in other organisms such as Chlamydomonas. Once the flagella are removed, 

basal bodies are transformed into centrioles, migrate at the nucleus periphery and 

drive mitosis by nucleating the spindle (Cavalier-Smith 1974). By contrast, most 

protists like Paramecium maintain their cilia with the basal bodies anchored to the 

membrane during all the cell cycle. In this context, the basal body is not used as a 

centriole but is only dedicated to axoneme assembly.  

b) The transition zone 

The transition zone ensures the separation between the cytoplasm and the ciliary 

compartment. At the base of the transition zone, electron-dense appendages called 

transition fibres connect the basal body to the membrane (Figure 5A) (Garcia-

Gonzalo and Reiter 2017). The nine transition fibres emerge from the distal portion of 

the basal body and end as electron-dense buttons on the ciliary membrane (Ringo 

1967). At an early stage of ciliogenesis, the transition zone is formed and anchors the 

basal body to the plasma membrane. Cross-sections of the transition zone show a 

60nm space between each transition fibre, and it has been proposed that this space 

could act as a gateway for the cilium (Nachury, Seeley et al. 2010). Transition fibres 

are composed of at least of five proteins, including CEP83 (CEntrosomal Protein 83) 

and Sclt1 (Sodium channel and clathrin linker 1) that are both important for the 

correct localization of the other transition fibre proteins (Tanos, Yang et al. 2013) but 

their exact spatial distribution remains to be determined. The proteins ODF2 (Outer 

dense fibre 2) and CEP164 (CEntrosomal Protein 164) are also localized in the 

transition fibres. These two proteins are required for the proper anchoring of the 

basal body to the cell membrane in mice and human, hence for ciliogenesis 

(Ishikawa, Kubo et al. 2005, Graser, Stierhof et al. 2007). Depending of the ciliary 

type, the transition zone measures 0.1µm to 1µm from the basal body to the basal 

plate, the structure allowing the nucleation of the central pair microtubules in motile 

cilia (“9+2”). In each of the nine triplets, only two microtubules (A and B) further 

elongate to form the transition zone that is therefore composed of nine doublets of 



 
 
 
 

 
 
 
Figure 6: Determination of doublet orientation. 
 
The pink line crosses the central pair and the green line is drawn perpendicularly the 
first one and crossing between microtubules of the central pair. The only doublet 
crossed by this line (green), defined as doublet 1. In this electron microscopy section, 
dynein arms are in clockwise orientation, so doublet 2 is at the right of the doublet 1. 
DA: Dynein arms. Electron microscopy images of a cross section through the 
axoneme of Chlamydomonas. Adapted to (Linck and Stephens 2007).    
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microtubules. The interface between each tubule doublet is connected to the ciliary 

membrane by unique structures called Y-links (Figure 5A) (Gilula 1972). Freeze 

fracture revealed that the ciliary membrane of the transition zone is decorated with 

intra-membrane particles forming the ciliary necklace (Figure 5B) (Gilula 1972). 

CEP290 is the only protein known to localize in the Y-links of Chlamydomonas, but 

this protein is also predicted to be associated to the cylinder microtubule shaft of the 

transition zone in mammals and in C. elegans revealing the occurrence of species-

specific adaptations (Craige, Tsao et al. 2010, Yang, Su et al. 2015). Of note, other 

proteins such as the Nephrocystin NPHP1 or some trans-membrane proteins such as 

MKS-2 (Meckel-Gruber syndrome) present a periodic pattern similar to that of the 

ciliary necklace or the Y-links (Lambacher, Bruel et al. 2016).  

c) The axoneme 

In continuity with the transition zone, the axoneme constitutes the main core of cilia 

and flagella. Its ultrastructure has been well described by classical electron 

microscopy studies as well as cryo-tomography (Fawcett 1975, Nicastro, McIntosh et 

al. 2005). The axoneme is made of nine parallel microtubule doublets, which are 

composed of α-ß tubulin heterodimers as in cytoskeletal microtubules. The doublets 

are disposed at regular intervals and their (+) end is located at the tip of the 

flagellum. Each doublet consists of one A-tubule, made with 13 protofilaments fused 

with one incomplete B-tubule composed of 11 protofilaments (Figure 4B). The 

orientation of the axoneme has been established by using the central pair and the 

dynein arms as referential cues. First, a line is drawn crossing through the central 

pair (Figure 6). A second line is drawn perpendicularly to the first one and crossing in 

between the two microtubules of the central pair. Only one doublet can be crossed by 

it and it is defined as doublet 1. Second the visualization of dynein arms allows 

determining the flagellum orientation: if the dynein arms are in clockwise orientation, 

the doublet 2 will be on the right side of the doublet 1. By knowing the relative 

position of the basal body and the flagellum tip, flagellum orientation can be 

determined. Indeed from the base to the tip, the dynein arms are always in clockwise 



 
 
 
Figure 7: Asexual and sexual reproduction in Chlamydomonas: 
importance of the flagellar membrane.  
 
Schematic representation of the Chlamydomonas reproductive cycles. When 
gametes of opposite mating types (mt+ (a) and mt- (b)) are mixed for sexual 
reproduction (c), flagellar adhesion is characterized by membrane-membrane 
contacts and is followed by gamete activation. Membrane-membrane is possible 
thanks to a set of agglutinins that are trans-membrane flagellar proteins (Hallmann 
2011). 
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orientation. This aspect will be essential to orientate flagella in 3D electron 

microscopy. 

d) The membrane of cilia and flagella 

The axoneme is wrapped by the ciliary membrane that is an extension of the plasma 

membrane with a unique set of proteins and lipids. It can be enriched in trans-

membrane receptors involved in transduction of various extra-cellular signals.  

In T. brucei, a recent study based on mass spectrometry analysis of purified flagella 

showed an enrichment of raft-forming phospholipids in the flagellum membrane as 

compared to whole cell (Serricchio, Schmid et al. 2015). These candidate lipid rafts 

could have a major role in protein localization and trafficking (Tyler, Fridberg et al. 

2009), and might be essential for several signalling cascades. Indeed, a recent lipid 

raft proteomic analysis revealed an enrichment in calpains that are proteins proposed 

to detect external Ca2+ concentration and could be associated to signalling functions 

(Sharma, Olson et al. 2017). Cilia can also be involved in adhesion function and the 

membrane is a key player in this phenomenon. For example, during the sexual cycle 

of Chlamydomonas, gametes of opposite mating types (mt+ and mt-) get in contact 

via their flagella that adhere thanks to trans-membrane agglutinins. This interaction 

activates a signalling pathways required for gamete fusion (Figure 7) (Goodenough 

1989, Pan 2002). 

One major question concerns the transport of membrane proteins from the cell body 

to the ciliary compartment. A study in rat trachea showed that the ciliary necklace 

region is depleted of filipin-sterol complexes (Montesano 1979). It has been 

demonstrated that filipin binds specifically to cholesterol in cell membrane meaning 

that the ciliary necklace contains little or no cholesterol (de Kruijff and Demel 1974). 

Cholesterol contributes to the fluidity of the cell membranes and its absence in the 

ciliary necklace is thought to act as a diffusion barrier and as it can restrict the exit of 

ciliary membrane components and prevent mixing between two compartments 

(Montesano 1979, Rohatgi and Snell 2010). One model proposes that proteins 

targeted to the ciliary membrane are transported on vesicles from the Golgi to the 



 
Figure 8: Extra-axonemal structures in spermatozoa. 
 
(A) Carbon of the mammalian spermatozoa. In the middle piece, each doublet is 
attached to a row of dense fibers and mitochondria, visible on the right cross section 
of a guinea pig sperm cell (B). In the principal piece, a fibrous sheath surrounds the 
axoneme, visualized in the left cross section (C). ODF: Outer dense fibers (Fawcett 
1975).  
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base of the cilium as shown for opsin in photoreceptors (David Papermasrer 1985). 

Proteins need to enter through the transition zone gateway and then can be 

transported or either diffuse in the ciliary compartment. Another model proposes that 

the proteins from the plasma membrane can move laterally and enter in the cilium 

compartment. This phenomenon has been shown for the agglutinins that access the 

ciliary membrane from the plasma membrane during Chlamydomonas adhesion 

(Hunnicutt 1990). In mammalian cells, an elegant microscopy-based pulse-chase 

approach revealed the lateral transport of the Hedgehog (Hh) pathway protein 

Smoothened (Smo) from the plasma membrane to the ciliary membrane (Milenkovic, 

Scott et al. 2009).  

e) Extra-axonemal structures 

In some specific cell types, such as spermatozoa or protists, supplementary 

structures are associated with the axoneme. For example, the axoneme of the 

human spermatozoa is divided in three main regions: the middle, principal and end 

pieces (Figure 8A Top panel) (Fawcett 1975). In the middle piece, an outer dense 

fibre is linked to each outer microtubule doublet of the axoneme. Moreover, a large 

number of mitochondria and the outer dense fibre surrounding the axoneme provide 

the ATP necessary for flagellum beating (Figure 8C). The axoneme of the principal 

piece of the sperm tail is surrounded by a fibrous sheath (Figure 8B). The later could 

be involved in enzyme regulation and notably glycolytic enzymes that are probably 

essential for producing energy for sperm swimming (Miki, Qu et al. 2004). Extra-

axonemal structures are also found in many protists. Giardia intestinalis, a parasite 

pathogen of mammals, possesses four pairs of flagella termed anterior, posterior 

lateral, ventral and caudal flagella, each with specific localization, structure and 

functions (Figure 9A). The proximal part of each axoneme is localized in the 

cytoplasm and not surrounded by any membrane but it is associated with extra-

axonemal structures (Figure 9B) (Friend 1966, Elmendorf, Dawson et al. 2003). 

These extra-axonemal structures confer a unique structural identity to each flagellar 

pair. For example, two distinguish structures are associated with the anterior flagella 



 
 
 
Figure 9: Extra-axonemal structures in Giardia intestinalis.  
 
(A) Scanning electron micrograph of Giardia intestinalis parasite (T.Blisnick) and a 
schematic representation of Giardia lambia. bb: basal body, afl: anterior flagella, cfl: 
caudal flagella, pfl: posterior-lateral flagella, vfl: ventral flagella, vd: ventral disc and 
mb: median body (McInally and Dawson 2016). (B) Transmission electron 
microscopy (TEM) image of the anterior flagella (af) of Giardia intestinalis with the 
classical “9+2” organization, with some striated fibers (sf) and dense rod pointed by 
the arrow (Left image) (vd: ventral disk). On the right transversal section, the 
additional array of microtubules (arrowheads) surrounding the caudal flagella (cf) of 
Giardia intestinalis is visible, as well as some dense rods (arrows) (b). Scale bar: 
0.2µm. (Elmendorf, Dawson et al. 2003).  
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(Friend 1966). The first structure corresponds to the “dense rods”, located just below 

the axoneme and the second one is a system of striated filaments found in the upper 

portion of the flagellum (Figure 9Ba). It was proposed that these filaments help the 

motility and behaviour of the anterior flagella (Maia-Brigagao, Gadelha et al. 2013). 

On caudal flagella, there is the “caudal complex” or “funis” that surround and extend 

the axoneme (Figure 9Bb) (Filice 1952, Benchimol, Piva et al. 2004). Based on 

several ultra-structural studies, it was shown that the “funis” is composed of 

microtubule sheets that fan out laterally at the emergence of the caudal axonemes. 

The “funis” has no known function, yet has been suggested to have a structural role 

in maintaining the Giardia cell shape (Benchimol, Piva et al. 2004).  

3) Different types of cilia and flagella 

1) The motile “9+2” cilia and flagella 

The typical motile “9+2” cilia are characterised by the presence of inner dynein arms 

(IDAs) and outer dynein arms (ODAs) that are attached at a precise positions of the 

A-tubule of the axoneme. Axonemal dyneins are multi-subunit complexes, composed 

of a variable number of dynein light, intermediate and heavy chains (Figure 10) 

(DiBella, Sakato et al. 2004). In ODA and IDA complexes, the dynein heavy chain 

possesses ATPase and molecular-motor activities that are necessary to generate 

ciliary beating. Using ATP as an energy source, the dynein arms present on the A-

tubule of any doublet create a force against the B-tubule of the adjacent doublet, 

inducing the sliding of the adjacent microtubule doublets (Porter and Sale 2000, Satir 

and Christensen 2007). Because the nexin / DRC complex links connect microtubule 

doublets to each other and the microtubule are attached at the basal body, the inter-

doublet sliding results into flagellar bending.  

The “9+2” cilium possesses a central pair of microtubules. The later emerges from 

the basal plate (a region lying above the transition zone) and extends to the distal tip 

of the cilium. The central pair is formed by two singlet microtubules called C1 and C2, 



 

 
 
 

 

Figure 10: The axoneme. 
 
(A) Computer averaging of TEM micrographs of cross-sectioned axonemes from 
human sperm showing the classic “9+2” axoneme structure. Only the axoneme 
portion is shown (Afzelius 2004). (B) Corresponding cross-section schematic 
illustration of the classic “9+2” axoneme, with the nine peripheral doublet 
microtubules surrounding the central pair (Bustamante-Marin and Ostrowski 2017). 
(C) A three-dimensional representation of a “9+2” axoneme (from sea urchin sperm 
flagellum) obtained after cryo-electron tomography analysis. Adapted from (Linck, 
Chemes et al. 2016).  
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that are structurally and biochemically distinct (Porter and Sale 2000). They are 

connected to each other by a protein bridge and surrounded by a unique set of 

accessory proteins that facilitate the contact with radial spokes (Figure 10B and C). 

The later are T-shape structure composed of (1) an elongated stem that is attached 

to the A-tubules of peripheral doublets and (2) a head that could contact the central 

pair and its associated projections (Warner and Satir 1974, Goodenough and Heuser 

1985). The radial spokes are made of at least 23 distinct proteins, termed radial 

spoke proteins (RSP) that are conserved throughout evolution in organisms with 

motile cilia (Yang, Diener et al. 2006).  

Motile flagella can be found at the surface of multiple protists where they are 

responsible for cell motility. In mammals this is the case of spermatozoa that use 

their flagellum to propel themselves through the female reproductive tract. “9+2” 

motile cilia line the surface of the respiratory epithelium and brain ventricles, where 

they produce and maintain the movement of the surrounding fluids. The fallopian 

tube epithelium is made with two major cell types: the secretory and ciliated cells. 

After ovulation, the ciliary beating is essential for the ovum transport from the ovary 

to the uterus.  

2) The immotile “9+0” cilia and flagella 

Immotile “9+0” cilia are defined by the absence of a central pair of microtubules, of 

radial spokes and both types of dynein arms (ODAs and IDAs). The “9+0” cilia are 

found at the surface of most mammalian cells and are also called primary cilia. 

Primary cilia are involved in sensory functions such as the detection of flow sensing 

at the surface of the epithelial cells of kidney tubules (Praetorius and Spring 2003). 

One of the best-known “9+0” cilium is found in photoreceptors in the retina where 

they contribute to light detection (Figure 13B). The rod and cone photoreceptors are 

found on the outermost layer of the retina; they have both the same basic structure. 

Photoreceptors can be divided in four main regions from the visual field in the eye to 

the brain tissues: the axon termination that releases neurotransmitters, the cell body 

that contains the nucleus and the cell organelles, the inner segment full of 



 
 

 
 
Figure 11: Other types of axonemes. 
 
(A) Typical nodal cilium of mice in the “9+0” conformation bearing dynein arms (red 
arrow). Scale bar: 50 nm (Odate, Takeda et al. 2016). (B) C. elegans cilia 
ultrastructure. Cross sections of the different regions of the amphid channel 
containing sensory cilia showing the different architecture. (A1) Distal microtubule 
singlets are devoid of B-tubule. Microtubule doublets containing B-tubule are present 
in (A2) and (A3), and additional singlet microtubules are present in the lumen of 
these two later regions. TZ: transition zone Scale bar: 250nm (Warburton-Pitt, Silva 

et al. 2014). (C) Cross-section of Sciara coprophila sperm cell axoneme consisting of 
microtubule doublets and accessory microtubules disposed in a spiral arrangement 
(Dallai, Lupetti et al. 2006). (D) Cross section of the flagellum of the male gamete of 
Diplauxis hatti presenting a “3+0” organisation. A: A-tubule B: B-tubule M: Membrane 
(Prensier, Vivier et al. 1980).   
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mitochondria and the outer segment. A connecting cilium is present between the 

inner segment and the outer segment. The later contains stacks of membrane with 

membrane-associated molecules (opsin and rhodopsin) capable of transducing 

information coded by light energy into a specific neuronal electro-chemical activity 

that can be processed by neurons (Calvert, Strissel et al. 2006). 

3) Other types of cilia and flagella 

Some noticeable exceptions to the general patterns of motile or immotile cilia 

detailed in the previous sections have been described in various organisms. For 

instance, “9+0” cilia of embryonic node cells possess outer-dynein arms and are 

capable to generate a rotational movement to produce the leftward fluid flow 

necessary to initiate left-right asymmetry (Nonaka, Tanaka et al. 1998) (Figure 11A). 

At the periphery of the node, some classical non-motile “9+0” cilia can detect this flow 

and activate a Ca2+ dependent pathway. This pathway is only activated in the cells 

situated on the left side of the embryo and is essential to determine the left-right axis 

(Nonaka, Tanaka et al. 1998, McGrath, Somlo et al. 2003).  

The nervous system of the nematode C. elegans is made of 302 neurons among 

which 60 possess cilia at the ends of their dendrites. All these sensory cilia are 

immotile with an axoneme separated in three distinct regions: a transition zone, a 

middle segment and a distal segment. The middle segment is made of nine 

microtubule doublets that surround a few central singlets and the distal segment is 

only made of microtubule singlets (Figure 11B).  

The flagella of some insect spermatozoa do not possess a central pair and can 

present a “12+0” or a ”14+0” architecture and in general they are immotile (Baccetti 

1986). Even more spectacular is the axoneme of the sperm flagellum of the fly Sciara 

coprophilia made of 70 microtubule doublets each being associated to a peripheral 

singlet tubule (Figure 11C) (Phillips 1966). Smaller microtubule combinations are 

encountered in the male gametes of the gregarines Lecudina tuzetae and Diplauxis 

hatti that possess axonemes with respectively ”6+0” and “3+0” architecture (Figure 

11D) (Schrevel and Besse 1975, Prensier, Vivier et al. 1980).  



 
 
Figure 12: Cilia and ciliopathies.  
 
(A) Schematic representation of the localization of some cilia dedicated to sensing 
(framed in blue) and motile cilia in the human body observed by SEM (Brown and 
Witman 2014). (B) Cartoon showing the different organs or tissues that are affected 
in diverse ciliopathies, and the main disease phenotypes for each organ. Ciliopathies 
that are caused by defects in motile cilia are highlight in orange, those that result 
from defects in non-motile cilia in blue and those associated with defects in both 
types of cilia in green. NPHP, nephronophthisis; PKD, polycystic kidney disease. 
(Reiter and Leroux 2017) 
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4) Ciliopathies 

Ciliopathies are a group of genetic diseases caused by defects in ciliary assembly 

and / or functions that affect 1 in 400 births (Reiter and Leroux 2017). In humans, a 

large diversity of cells possesses one or more cilia. Motile cilia are found at the 

surface of several epithelia such as in the respiratory tract, where they sweep mucus 

(Figure 12A). The beating of sperm flagella is essential for the male gamete to 

migrate in the female sexual tract and fertilize the ovum. Immotile cilia are generally 

associated to sensory functions such as those found in the odorant receptors in the 

dendritic knob of the olfactory neurons (Figure 12A). In case of a defect associated to 

ciliogenesis, many organs can be affected resulting in several disorders induced by a 

single underlying cause (Cf next session). Dysfunctions in motile cilia induce primary 

ciliary dyskinesia, while defects in sensory cilia are responsible for a diversity of 

diseases such as polycystic kidney, retinal degeneration, Bardet-Biel or Alstrom 

syndromes (Figure 12B) (Reiter and Leroux 2017). Here, I will briefly describe three 

examples of ciliopathies.   

a) Primary ciliary dyskinesia 

The first ciliopathy that have been identified is “immotile cilia symptom” or primary 

ciliary dyskinesia (PCD) that is caused by genetic abnormalities impacting motile cilia 

(Afzelius 1976). This is an autosomal recessive disorder with genetically 

heterogeneous manifestations. PCD roughly affects 1 in every 20-60 000 individuals 

in the United States, although this may be an underestimate in general population 

because diagnosis relies on a difficult combination of cilia structure analysis by 

electron microscopy and genetic analysis (Zariwala, Knowles et al. 2007). So far, 

mutations in more than > 30 genes have been associated with this disease (Reiter 

and Leroux 2017). Most of them encode for proteins directly involved in cilia motility 

such as components of the outer dynein arms, the radial spokes and the nexin links 

(Figure 13A) (Chilvers 2003). Patients with PCD frequently present chronic bronchitis 
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due to a dysfunction of their cilia involved in mucus clearance. Male patients are 

usually infertile because of reduced motility of their sperm flagellum. Moreover in 

female patients defects in the beating of cilia in the epithelium of the Fallopian tubes 

can also induce infertility due to problems in ovum migration from the ovary to the 

uterus. In addition, half of the patients present a situs inversus, a spectacular 

phenotype in which the position of the heart and other internal organs are reversed 

during embryonic development. This symptom is due to impaired motility of nodal 

cilia that initiate left-right asymmetry in early embryo (See previous section). More 

rarely, patients with PCD present hydrocephalus symptoms (an abnormal intracranial 

accumulation of cerebrospinal fluid) that could be caused by the defective motility of 

the ependymal “9+2” cilia (Lee 2013). Although it is a rare human symptom, 

hydrocephalus is a common manifestation of the disease in mice, suggesting that 

distinct genetic mechanisms underlie the differences in the development and 

physiology of human and mouse brains (Lee 2013). 

b) Polycystic kidney disease 

Polycystic kidney disease (PKD) is the most common disease caused by sensory 

cilia dysfunctions (frequency 1: 1 000) and more generally one of the most life 

threatening inherited diseases, affecting 12.5 million people worldwide (Brown and 

Witman 2014). Two different types of PKD have been identified: autosomal dominant 

PKD (ADPKD) that mostly affects adults and the autosomal recessive PKD (ARPKD) 

occurring in neonates and children. Both types of PKD are characterized by an 

excessive proliferation of the kidney epithelial cells, ultimately leading to a massive 

organ enlargement and a loss of function. The first connection between PKD and cilia 

came from studying cilia in C. elegans where two homologues of human polycystin-1 

(PC1) and polycystin-2 (PC2) (mutated in most cases of ADPKD) were detected in 

sensory cilia involved in mating behaviour (Barr and Sternberg 1999). PC1 and PC2 

are two trans-membrane proteins that can interact to form a complex. The PC1/PC2 

complex may function as a receptor-ion channel with PC1 transducing environmental 



 
 
Figure 13: Phenotypes of ciliopathies 
 
(A) Electron microscopy images from a healthy human subject (a) and patients with 

PCD (b and c). (a) Red arrows point ODAs and green arrows IDAs. (b) Patient with 

CCDC40 mutations. Abnormal IDAs defects are indicated with green arrows. (c) 

Abnormal ODAs and IDAs defects are pointed with red and green arrows 

respectively. Adapted from (Knowles, Daniels et al. 2013). (B) Schematic diagram of 

vertebrate rod and cone photoreceptors. The outer and inner-segments are 

connected by the connecting cilium (Cote 2006). (C) Typical outer segments of rod 

cells in wild type animal (mice). Scale bar: 500nm (E and F) Typical examples of 

aberrant outer segments in Tg737 mutant mice. (Salinas, Pearring et al. 2017) (E) 
The arrow indicates disrupted discs. (F) Outer segment extendeding into the inner 

segment. IS: Inner segment Scale bar: 1µm. (Pazour, Baker et al. 2002) 
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signals to PC2 that in turn mediates a Ca2+ influx (Chapman and Schrier 1991, 

Lakkis and Zhou 2003). 

The analyses of kidney cells in the mouse model for ARPKD (Tg737orpk) revealed the 

crucial role of cilia in PKD (Pazour, Dickert et al. 2000). The gene mutated in this 

mouse lineage is the homologue of IFT88 that is essential for ciliogenesis. Scanning 

electron microscopy of kidney in the ARPKD murine model revealed that their 

primary cilia were shorter and it was proposed that the cystic kidney might be a 

consequence of ciliary defect (Pazour, Dickert et al. 2000). Shortly after, Pazour and 

colleagues revealed that polycystin-2 was specifically localized in the primary cilium 

at the surface of mouse and human kidney cells (Pazour, San Agustin et al. 2002). In 

that case, primary cilia function as a sensory antenna to detect and transduce signals 

from the environment to the cell body. Mutations in PC1 or PC2 genes can result in 

defective ciliary signalling that block the pathway implicated in proper kidney 

development and function. This highlights an important role of cilia in kidney 

functions, as further supported by the common presence of kidney defects in multiple 

ciliopathies.  

c) Retinal degeneration 

Blindness is associated to photoreceptor cell degeneration Retinitis pigmentosa and 

is one of the most common symptoms observed in ciliopathies. The rod and cone 

photoreceptors are composed of an inner segment and an outer segment that can be 

considered as a modified cilium (Figure 13B). The connecting cilium separates these 

two segments, and can be seen as an elongated transition zone. Defects in proteins 

of the connecting cilium such as CEP290 (protein important in early and late steps of 

ciliogenesis) cause Leber’s congenital amaurosis, a disease characterized by an 

early form of retinal degeneration (den Hollander, Koenekoop et al. 2006). Many of 

the proteins necessary for constructing the outer segment are likely to be dependent 

on the IFT machinery to pass through the connecting cilium (Crouse, Lopes et al. 

2014). Accordingly, several mutations in the IFT machinery can cause abnormal 
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outer segment development resulting in photoreceptor death (Figure 13C) 

(Marszalek, Liu et al. 2000, Pazour, Baker et al. 2002).  

 

There are many more ciliopathies associated with a large panel of symptoms / 

phenotypes such as defects in left-right asymmetry establishment, polydactyly, cystic 

kidneys, liver, and pancreatic diseases, behavioural and cognitive defects and 

obesity (Figure 12B). The difficulty of prenatal diagnosis is due to the absence of 

diagnostic criteria that appear later on during childhood. Moreover the phenotypic 

overlap between the different syndromes and their clinical and genetic heterogeneity 

does not facilitate the diagnosis. Therefore, basic research is essential to understand 

what could be the impact of mutations in gene implicated in ciliogenesis and to 

evaluate if the impact will be the same in all the different types of cilia present in the 

human body. Moreover, the knowledge of ciliary protein localisation and their timing 

of expression could facilitate the comprehension of symptoms associated to 

ciliopathies.  

5) Model organisms to study cilia and flagella 

Ciliopathies are characterized by a large diversity of sometimes overlapping 

symptoms. Mutation in the same gene can result in different clinical manifestations 

whereas mutations in different genes can cause the same phenotype. This 

complexity is explained by the diversity in cilium structure, composition and function. 

Studies of gene function can be performed in vitro in human cultured cells or tissues, 

but multi-ciliated cells are terminally differentiated and difficult to manipulate. The 

primary cilium can be assembled but mostly when the cells exit from the cell cycle 

necessitating to incubate cells in starvation conditions. Physiological relevance is 

therefore questionable.  The use of model organisms is essential to try to understand 

the complex ciliary biology and mechanisms involved in ciliopathies (Vincensini, 

Blisnick et al. 2011). Fortunately cilia and flagella exhibit a high level of structural and 

molecular conservation throughout evolution, allowing the use of simpler model 

organisms to reveal complex phenomena. Pioneering studies carried out in 





Introduction 

 

19 

Tetrahymena and Chlamydomonas permitted respectively the discovery of the first 

axonemal microtubule motor, the dynein motor and the IFT (Gibbons and Rowe 

1965, Kozminski, Johnson et al. 1993). Moreover, multicellular organisms such as 

mouse, C. elegans or zebrafish and protists such as Tetrahymena or T. brucei each 

bring specific advantages to the study of cilium biology. 

a) The green alga Chlamydomonas reinhardtii 

The green alga Chlamydomonas possesses two flagella in the “9+2” conformation 

that emerge from the apical end of the cell. They are important for motility, light 

detection and gamete adhesion. Flagella are not essential for the cell cycle and are 

disassembled at mitosis, allowing the transformation of basal bodies in centrioles that 

migrate at the nuclear pole to nucleate the mitotic spindle. Several biological and 

technical advantages make Chlamydomonas one of the most efficient models to 

understand mechanisms implicated in ciliogenesis. Chlamydomonas may be grown 

synchronously and large amounts of flagella can be purified for biochemical or 

proteomic analyses. Since flagella are not essential, forward genetics is possible 

allowing the generation and characterization of many mutant strains defective in 

flagellum formation or functions. After deflagellation, Chlamydomonas is able to 

synchronously regrow new flagella allowing the study of mechanisms implicated in 

flagellum elongation. IFT was first observed in Chlamydomonas using differential 

interference contrast (DIC) microscopy (Kozminski, Johnson et al. 1993). Numerous 

genes involved in flagellum motility (Dynein arms) and construction have been 

discovered in Chlamydomonas (Kozminski, Beech et al. 1995, Piperno and Mead 

1997, Cole, Diener et al. 1998, Porter, Bower et al. 1999). As the specific genes and 

proteins involved in IFT were identified, it became possible to control flagellum 

assembly by interfering with IFT. This has led to a better understanding of cilia and 

flagella formation and functions and comprehension of their importance in Human.   
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b) The nematode Caenorhabditis elegans 

C. elegans is a transparent nematode of about 1mm in length that lives in soil. It does 

not possess motile cilia and the only ciliated cell types are the sensory neurons. A 

hermaphrodite adult has 60 neurons with cilia at their ends, that present a wide 

diversity of structure including membranous elaborations of different shapes (Perkins, 

Hedgecock et al. 1986). Ciliated neurons are essential to detect external stimuli (e.g. 

surrounding salt concentration) but are not essential for the worm to survive. A large 

collection of mutants has been generated based on their non-lethal failure to respond 

to external stimuli and have been separated in two categories: chemosensory or 

osmosensory mutants. Some of them were mutated in IFT genes, resulting in several 

defects in ciliogenesis (Tabish, Siddiqui et al. 1995, Collet, Spike et al. 1998). In 

addition to the generation of functional mutants, gene tagging with a GFP reporting 

construct is possible, allowing the first in vivo visualization of GFP::IFT fusion protein 

(Orozco, Wedaman et al. 1999). Studies in C. elegans have brought key discoveries 

on the IFT machinery (Prevo, Scholey et al. 2017) but also on the regulation of ciliary 

gene expression by transcription factors. Many genes involved in ciliogenesis are 

under the control of the same RFX-like transcription factor that recognizes a specific 

sequence present upstream of the start codon (Swoboda, Adler et al. 2000). RFX-like 

factors have been shown to be important in other organisms such as Drosophilia to 

regulate genes implicated in ciliogenesis (Laurencon, Dubruille et al. 2007). Studies 

in C. elegans have brought important insight into the ciliogenesis machinery, the 

mechanisms of ciliary gene expression and permitted to establish a list of known and 

candidate ciliary proteins.  

c) The mouse 

The mouse is the most common model to study human diseases in basic and 

preclinical research. It offers the advantage to be evolutionarily closer to humans 

than unicellular model organisms and reasonably easy to breed. The use of 

hypomorph mutants or conventional mutants using the Cre-lox system allowed for 



 
 

 

 

 

 

 

 

Figure 14: Trypomastigote morphotype of Trypanosoma brucei.  
 
Schematic representation of the trypanosome cell in trypomastigote morphotype. 
This model shows the localization of the major organelles and the anterior and 
posterior poles of the cell. (Overath and Engstler 2004)   
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detailed analysis of genes involved in human ciliogenesis. The first series of IFT 

mutants revealed that the primary cilium is essential for mouse embryo survival and 

brought understanding of the ciliary role in mammalian development. Moreover, 

mouse mutants provided important highlights in Shh (Sonic hedgehog) signalling 

pathway and its role in ciliogenesis (Huangfu, Liu et al. 2003). Indeed key actors of 

Shh pathway are enriched in vertebrate cilia and their disruption mimics many 

ciliopathy symptoms such as polydactily or craniofacial abnormalities (Mullor, 

Sanchez et al. 2002, Brancati, Iannicelli et al. 2009). Specifically, the main advantage 

for using mouse models is to assess the impacts of gene mutations on different 

ciliary types present on several tissues and to compare these defects with human 

symptoms. However, it is more time-consuming compared in other organisms such 

as zebrafish.  

In the lab, we have selected the protist Trypanosoma brucei as model. This organism 

is well known for being the causative agent of sleeping sickness. T. brucei is a typical 

unicellular eukaryote with an elongated and highly polarized cell body shape that 

measures from 3 to 45 µm depending on the parasite cycle stage (Rotureau, Subota 

et al. 2011). The cell polarity is defined by the microtubules of the cytoskeleton, with 

the (+) end of the microtubules at the posterior part of the cell and the (-) end at the 

anterior part (Figure 14) (Robinson 1995). The trypanosome flagellum emerges from 

the flagellar pocket near the posterior end of the cell and is attached along the cell 

body with the exception of its distal tip (Figure 14). Trypanosomes possess several 

biological and technological advantages to study ciliogenesis. First, the T. brucei 

genome has been fully sequenced and annotated. The absence of introns facilitates 

gene identification and cloning (Berriman, Ghedin et al. 2005). Thanks to intense 

research efforts over the last decade, a powerful and diversified genetic toolbox is 

currently available for functional studies including constitutive or conditional gene 

knockout, overexpression, inducible or constitutive expression of fluorescently tagged 

proteins, inducible or constitutive RNAi silencing (Clayton 1999, Julkowska and 

Bastin 2009) and recently CRISPR-cas9 gene editing (Rico, Jeacock et al. 2018). 

Many of the human genes currently known to be involved in ciliogenesis are 
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conserved in trypanosomes. Indeed comparison of T. brucei and H. sapiens showed 

that all IFT proteins are conserved and share 30-45% identity despite the large 

evolutionary distance (van Dam, Townsend et al. 2013). Trypanosomes maintain the 

existing flagellum while constructing the new one during the cell cycle, providing the 

opportunity to study flagellum construction and maintenance in the same cell 

(Sherwin and Gull 1989). Two trypanosome stages can be easily cultivated in liquid 

medium where they can reach high cell densities with a doubling time of less than 12 

hours. During my thesis I studied the control of flagellum length in T. brucei. At the 

procyclic stage, cells proliferate but always produce a flagellum with a final length of 

20 µm. In this context, we can study how one cell is able to control the construction of 

a flagellum always presenting the same fixed length. During the complex life cycle, 

other stages are characterized by large morphological modifications including 

different stage-specific flagellum lengths (Rotureau, Subota et al. 2011). By studying 

parasites isolated from tsetse fly, we can evaluate parameters implicated in the 

production of the different flagella that could possibly be distinct for each parasite 

stage. Indeed, using the same genome, a given parasite stage can produce a 

flagellum with a very different length, and distinct functions as compared to those of 

the previous or next stages and that could be regulated by stage-dependant 

pathways. It is also the case in multicellular organisms such as in Human where cell 

types possessing cilia with different functions, structures and compositions originate 

from the same genome.  
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 Trypanosoma brucei II.

1) Trypanosoma brucei as a parasite 

a) African trypanosomiasis: history and epidemiology  

Human African Trypanosomiasis (HAT), also known as sleeping sickness is a vector-

borne parasitic disease. An equivalent disease exists in animals and is called Animal 

African trypanososomiasis (AAT) or nagana. Although it has probably been existing 

since prehistoric times, the Arab historian Ibn Khaldun was the first to describe 

sleeping sickness in writings from the 14th century, when reporting the death of King 

Diata II, sultan of Mali. "His end was to be overtaken by the sleeping sickness which 

is a disease that frequently befalls the inhabitants of these countries especially their 

chieftains. Sleep overtakes one of them in such a manner that it is hardly possible to 

awake him." In the 19th century, it was the explorer David Livingstone who first 

suggested a link between the bite of tsetse flies and nagana (Livingstone 1857). In 

1895, David Bruce demonstrated that cattle were sick due to the presence of 

parasitic agents in their blood and cerebrospinal fluid. Robert Forde made the first 

observation of the causative agent in the human blood few years later. David Bruce 

established the conclusive evidence that it is the bite of the tsetse flies that transmits 

the causative agent of sleeping sickness (Bruce 1895). Ten years later, Friedrich 

Kleine started to describe the overall cyclical transmission of African trypanosomes 

between mammals and tsetse flies (Kleine 1909). Three major human outbreaks 

have occurred over the last century. The first one occurred between 1896 and 1906 

mostly in Uganda and the Congo Basin. The second one occurred in 1920 in several 

African countries and was controlled thanks to massive screening and treatment of 

populations at risk. In the 1960s, the disease seemed under control with less than 5 

000 reported cases per year and the surveillance was relaxed. The disease 

reappeared and reached epidemic level from 1970 to the late 1990s. Today, the 



 
 

Figure 15: Human African Trypanosomiasis. 
 
(A) Maps representing the foci distribution of the HAT cases reported to WHO from 
2010 to 2014 (Franco, Cecchi et al. 2017). (B) Numbers of new HAT cases caused 
by T. brucei gambiense and T. brucei rhodesiense annually reported to WHO since 
2000 and epidemiological projections until 2020 (Franco, Cecchi et al. 2017).  (C) 
Simplified life cycle of T. brucei. During a blood meal, a tsetse fly ingests stumpy 
forms that are pre-adapted to life in the midgut. After a complex journey from the 
posterior midgut to the salivary glands, infective metacyclic forms are produced in the 
saliva for being injected in a new mammalian host. Cycle from the American Center 
of Diseases Control and Prevention web site.   
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burden of sleeping sickness has been reduced thanks to continuous international 

control efforts. The number of new HAT cases reported between 2000 and 2012 

dropped by 73% (WHO 2018) (Figure 15B). Today, the World Health Organization 

(WHO) considers HAT as a neglected tropical disease. It threatens 36 countries in 

Sub-Saharan Africa, with around 65 million people living at risk (WHO 2018) (Figure 

15A). In addition, nagana threatens 50 million heads of cattle and still represents the 

most economically important livestock disease in Africa, with annual losses estimated 

between US$ 1-1.2 billion per year (Kennedy 2008). However, despite these 

numerous campaigns of mass screening and treatment, some transmission foci have 

been persisting and the disease is not yet eliminated. The goal of the WHO is 

elimination of HAT as a public health problem for 2020, and the transmission 

interruption in humans for 2030 (Figure 15B) (Informal Expert Group on Gambiense, 

Buscher et al. 2018).  

During the last Ebola outbreak in Guinea, HAT active screening and surveillance was 

interrupted over two years (2014-2016). This arrest of screening activities led to a 

dramatic resurgence of HAT (Kagabadouno 2018). Recently, experiment in mouse 

models suggested that the skin could act as a reservoir for parasites transmission. 

After the bite of a tsetse fly, extravascular trypanosomes remain abundantly present 

in the skin (Capewell, Cren-Travaille et al. 2016). Using intra-vital imaging it was 

shown that these extravascular trypanosomes are highly motile, consistent with 

viability. Moreover, they are able to infect tsetse flies even in absence of blood 

parasitemia demonstrating that parasites in the skin could contribute to transmission. 

Skin biopsies collected from humans as part of a National onchocerciasis screening 

programme showed the presence of parasites in the extravascular tissue meaning 

that the situation is also encountered in the field (Capewell, Cren-Travaille et al. 

2016). Importantly, these people did not report for sleeping sickness, suggesting the 

existence of asymptomatic patients. Presence of asymptomatic subjects could 

explain why HAT has not yet been eliminated and the rapid resurgence of HAT in 

Guinea (Informal Expert Group on Gambiense, Buscher et al. 2018).  
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b) African trypanosomiasis: actors of the infection 

i. The trypanosomes 

Trypanosomes are eukaryotic organisms belonging to the Kinetoplastidae family that 

is characterized by the presence of large amount of concatenated DNA in a single 

and large mitochondrion, forming a structure called the kinetoplast. Besides their 

unique mitochondrion, trypanosomes possess several typical organelles such as the 

nucleus, the endoplasmic reticulum, a Golgi apparatus and a single flagellum (Figure 

14 and 16A) (Lacomble, Vaughan et al. 2009). Kinetoplastids include a number of 

human parasites such as Trypanosoma brucei, the parasite causing sleeping 

sickness, Trypanosoma cruzi, the agent of Chagas disease, also called American 

Trypanosomiasis and several Leishmania species that are responsible for visceral 

and cutaneous leishmaniases. The genus Trypanosoma is subdivided in two groups 

depending on their behaviour in the insect vector. The first group is composed of 

stercorian trypanosomes that are transmitted to the next recipient host in the feces of 

the insect vector. This is the case of T. cruzi that is transmitted by the feces of 

reduviid bugs (subfamily Triatomine). The members of the second group are called 

salivarian trypanosomes because their infective forms are present in the salivary 

glands of the insect vector and penetrate in their vertebrate host during a blood meal. 

T. brucei is a member of this group and is transmitted to the mammalian host by the 

bite of tsetse flies (Figure 15C and 16B). Two sub-species are able to infect humans 

and cause different forms of HAT in Africa. T. brucei gambiense accounts for 97% of 

the reported cases and is found in West and Central Africa where it causes the 

chronic form of the disease. The infection may remain latent for months or even 

years before the emergence of the first symptoms (Brun, Blum et al. 2010). The 

remaining cases are caused by T. brucei rhodesiense that is found in Southern and 

Eastern Africa, where it causes a faster and more severe disease often resulting in 

death within a few weeks after the first symptoms in absence of treatment (Simarro, 

Jannin et al. 2008).  
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Natural human immunity to T. brucei brucei, T. vivax and T. congolense, causative 

agents of AAT is due to two trypanolytic factors (TLF1 and -2), found in the serum.  

These complexes contain haptoglobin-related protein (HPR) and apolipoprotein L1 

(APOL1) (Pays, Vanhollebeke et al. 2006). APOL1 kills trypanosomes by lysis after 

insertion into endosomal and lysosomal membranes. The two subspecies that cause 

HAT can resist APOL1. T. brucei gambiense resists TLFs via a hydrophobic ß-sheet 

of the T. brucei gambiense specific glycoprotein (TgsGP) that prevents APOL1 

toxicity by inducing a stiffening of the membrane (Uzureau, Uzureau et al. 2013).  

T. brucei rhodesiense resistance is conferred by a truncated form of the variant 

surface glycoprotein (VSG) (See section below) termed serum resistance associated 

protein (SRA). SRAs interact strongly with APOL1 preventing its association with 

trypanosome membranes (Vanhamme, Paturiaux-Hanocq et al. 2003).  

ii. The tsetse 

Tsetse flies can be considered as obligatory host for trypanosomes due their critical 

role to complete life cycle and as vector because they transmit trypanosomes to 

mammalian hosts. Tsetse flies are biting flies that are found exclusively in Africa 

(Figure 16B). Tsetse flies include all the species in the genus Glossina and are found 

in three main ecosystems: savannah, forest and riverbanks. Males and females are 

exclusive blood-feeders. Tsetse fly saliva is injected in the dermis during the blood 

meal to avoid blood coagulation and to induce vasodilatation. If the saliva contains 

infective trypanosomes, they are transferred during the blood meal and can develop 

an infection in mammal. During the bite of an infected tsetse fly, up to hundreds of 

trypanosomes can be injected in the inoculation site (Otieno and Darji 1979). 

Presently, 31 species of Glossina have been identified among which 12 are 

recognized as efficient trypanosome vectors and 6 are directly incriminated in the 

transmission of the two human-infective trypanosomes sub-species (WHO 1998, 

Franco, Simarro et al. 2014). During the different outbreaks, vector control strategies 

were used to disrupt the transmission cycle. Odor baited traps and screen 

impregnated with insecticide have been used to suppress tsetse population by 99% 
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in Uganda and The Republic of Congo (WHO 2018). Despite the simplicity of these 

traps, they require a lot of maintenance. Sometimes they are applied on too small 

scale to prevent tsetse reinvasion. The sterile insect technique (SIT) is another 

approach to reduce tsetse populations. This is based on the fact that females mate 

only once in their life. Mating a female with a sterile male will prevent new births. 

Glossina was eradicated in less than 4 years in the island of Unguja (Zanzibar) by 

using this approach (Vreysen, Saleh et al. 2000). SIT was efficient in this island 

because it is a closed ecosystem. However in African countries, effective 

suppression using other methods is prerequisite. Indeed, the cost of SIT is very high 

and large of numbers of sterile male flies would be needed to be released to out-

compete the wild population to prevent future reinvasion.  

iii. Mammalian host and reservoir 

The role of animal reservoirs and humans is different in the two forms of HAT. In HAT 

associated to T. brucei gambiense, the role of animal reservoirs is thought to be 

minor in most transmission foci, while HAT associated to T. brucei rhodesiense is a 

zoonotic disease mostly affecting mainly animals and where humans are only 

accidental hosts (Franco, Simarro et al. 2014). In gambiense HAT, asymptomatic 

patients infected with trypanosomes could be a source of infection for vectors that 

would sustain the transmission (Checchi, Filipe et al. 2008, Capewell, Cren-Travaille 

et al. 2016, Informal Expert Group on Gambiense, Buscher et al. 2018). The role of 

animal reservoirs in maintaining T. brucei gambiense is currently not clear. In some 

West African foci, data suggest that T. brucei gambiense was also found in domestic 

pigs but in others foci the parasites were exclusively present in humans (Njiokou, 

Nimpaye et al. 2010, Balyeidhusa, Kironde et al. 2012). In rhodesiense HAT, the 

population of trypanosomes is maintained in wild and domestic animal reservoirs 

(Franco, Simarro et al. 2014, Berthier, Breniere et al. 2016). In some cases, the 

trypanotolerant animal just carries the parasite and survives for many years, but in 

other cases, the disease affects the animal. In this context, the incidental contact 

between humans and animals (mainly cattle) can explain small and limited outbreaks 
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of the disease in humans. Non-endemic cases of rhodesiense HAT encountered over 

the past 20 years have been imported largely due to tourists traveling to endemic 

areas, primarily for safari, but also soldiers training in endemic areas (Migchelsen, 

Buscher et al. 2011). 

c) Parasite cycle 

The parasite cycle of T. brucei alternates between mammalian hosts, such as 

humans, wild or domestic animals and the tsetse flies (Figure 15C). After the 

passage from the reservoir host to the vector host, parasites multiply, differentiate 

and migrate in the different organs of the tsetse, leading to the production of the only 

infective stage that can be transmitted to a new mammalian host during a blood meal 

(Figure 16D). During their parasite cycle, trypanosomes adapt their metabolism in 

order to optimize the benefits from the nutrients available in their micro-

environments, especially glucose in the mammalian host and mostly proline in the 

tsetse fly (Smith, Bringaud et al. 2017).  

i. Mammalian stages 

T. brucei is exclusively extracellular and colonizes both the blood and interstitial 

tissues including the skin and the brain at the final stage of the disease (See next 

section) (Caljon, Van Reet et al. 2016, Capewell, Cren-Travaille et al. 2016). 

Parasites are permanently exposed to the immune system. Bloodstream 

trypanosomes possess a dense surface coat made of 10 million copies of the same 

type of variant surface glycoproteins (VSG) linked to the cell membrane by a unique 

GPI-anchor (glycosyl-phosphastidylinositol) (Cross 1975, Ferguson, Homans et al. 

1988). VSGs allow trypanosomes to evade the immune system by an intensive 

antigenic variation. A given VSG is recognized by the immune system and cleared by 

an antibody response specifically directed against them. However, a small proportion 

of the population is able to modify its VSG coat by expressing a different VSG gene 

and escape the antibody response. These parasites proliferate until a new antibody 



 

 

Figure 16: Life cycle of Trypanosoma brucei. 
 
(A) Scanning electron micrograph of a T. brucei procyclic found in the tsetse 
posterior midgut (B). Tsetse fly Glossina morsitans morsitans, the main vector of T. 
brucei brucei (B. Rotureau). (C) Cartoons showing the two common morphologies of 
T. brucei. The nucleus is the large circle and the kinetoplast is the small blue oval 
linked to the base of the flagellum. The trypomastigote possesses the kinetoplast 
posterior to the nucleus. In epimastigote conformation, the kinetoplast is anterior to 
the nucleus (Sunter and Gull 2016). (D) Schema of T. brucei development in the 
tsetse fly. The parasitic path is represented in the left part of the drawing and the 
successive forms found in different organs and tissues are represented in 
chronological order on the right part. * indicate proliferative stages. Pr: proboscis, FG: 
foregut, Pv: proventriculus, MG: midgut, HG: hindgut, R: rectum, Hx: hypopharynx, 
SG: salivary glands, SL: slender trypomastigote, ST: stumpy trypomastigote, PC: 
procyclic trypomastigote, MS: mesocyclic trypomastigote, DE: long dividing 
epimastigote, SE: short epimastigote, AE: attached epimastigote, MT: metacyclic 
trypomastigote (Rotureau and Van Den Abbeele 2013). 
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response is mounted against the new VSG coat. The infection can persist for a long 

time because the trypanosome genome contains about 1000-2000 VSG and VSG–

related genes, constituting a diversified repertoire of antigenic forms of VSGs (Horn 

2014). Moreover, segmental gene conversion has been observed in T. brucei 

infections in mouse, generating mosaic VSGs not previously encoded in the genome 

and offering an even greater potential for diversification (Mugnier, Cross et al. 2015).  

In mammals, trypanosomes exist in two different forms: the slender form (SL) that 

can multiply every 7 hours by binary fission and the stumpy form (ST), which is pre-

adapted to survive in the tsetse midgut and does not proliferate. As parasite number 

increases, an irreversible differentiation from slender to stumpy form occurs (Reuner, 

Vassella et al. 1997, Tyler, Matthews et al. 1997).  

ii. Tsetse fly stages 

After the tsetse fly has taken a blood meal on an infected mammal, parasites start a 

long developmental programme of up to three weeks that will lead to the production 

of the metacyclic stage, the only stage able to infect mammals. In tsetse fly, T. brucei 

parasites successively travel through the midgut and the proventriculus and finally 

reach the salivary glands (Vickerman 1985). During their journey, they switch 

between two morphotypes defined by the relative position of the kinetoplast to the 

nucleus and the posterior end (Figure 16C) (Frolov 1994). In the trypomastigote 

morphotype, the kinetoplast is found between the nucleus and the posterior end of 

the cell, while it is located between the nucleus and the anterior end of the cell in 

epimastigotes (Figure 16C). Upon ingestion by the tsetse fly, 99% of parasites are 

eliminated, but some cells at the stumpy stage are pre-adapted to survive in the gut 

and can transform into procyclic forms (PCF) that colonize the midgut (Figure 16A). 

The development of PCF is marked by the replacement of the VSG coat by a new 

surface coat composed of two distinct classes of procyclin: EP and GPEET (Roditi 

and Clayton 1999). There are seven procyclin genes (EP) that encode unusual 

proteins with extensive tandem repeat units of glutamic acid (E) and proline (P) and 

two genes that encode proteins with internal pentapeptide GPEET repeat (Butikofer, 
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Ruepp et al. 1997). During this colonization, a parasite population called mesocyclic 

(MS) differentiates and migrates toward to the proventriculus (Figure 16D) 

(Vickerman 1985). Cytoskeleton elongation at the posterior end and an increase in 

cell length characterize this differentiation from PCF to MS (Rotureau, Subota et al. 

2011). In the proventriculus, they differentiate into long dividing epimastigotes (DE). 

This differentiation is characterized by nucleus migration toward the posterior end 

beyond the kinetoplast position. This cell asymmetrically divides to give birth to two 

distinct cells: the short epimastigote (SE) and the long epimastigote (LE) (Figure 

16D). The exact role of the LE is currently being debated but the community has 

proposed a transfer role to bring the SE to the salivary glands. Indeed, the SE is not 

able to swim alone to get to the salivary glands due to the short length of its flagellum 

(3 µm). Once in the salivary glands, the SE can differentiate in attached epimastigote 

(AE), covered by a coat composed of BARP proteins (Urwyler, Studer et al. 2007). 

BARPs (Bloodstream alanine rich protein) are a glycosylphosphatidyl inositol 

anchored proteins that form a stage-specific coat for epimastigote forms (Urwyler, 

Studer et al. 2007). The transition from SE to AE is also accompanied by a significant 

increase in cell volume and an important elongation of the posterior end (Rotureau, 

Subota et al. 2011). At the early stage of salivary glands infection, the AE proliferate 

(Epi-Epi) and colonize the epithelium by creating extensive membrane outgrowths 

and desmosome-like connections inducing physical contact with microvilli of epithelial 

cells (Vickerman 1985). AEs can enter in asymmetric division (Epi-Trypo) to produce 

the infective metacyclic stage (MT) in the saliva, ready to be injected in a new 

mammalian host (Figure 16D) (Rotureau, Subota et al. 2012). The proportion of Epi-

Epi divisions decrease in favour of Epi-trypo divisions during the course of infection 

(Rotureau, Subota et al. 2012). MT trypomastigotes are non-proliferative cells that 

have re-acquired a VSG coat in preparation for being injected into mammalian hosts. 

d) Human infection and symptoms  

During the first stage of the disease known as the hemo-lymphatic phase, 

trypanosomes multiply in the blood, the lymph and probably in the dermis. Fever 
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spikes, weakness, headaches, cutaneous itching, joint pains and swollen cervical 

lymph nodes are characteristic symptoms associated with this phase. Fever is 

intermittent with weeks or months between episodes and parasite burdens in fluids 

are accompanied by a swelling of the lymph nodes. As the symptoms are fairly 

generic and other infectious diseases such as malaria are present in the same areas, 

the diagnosis is difficult to establish solely from clinical observations. Occasionally, 

trypanosomes proliferate at the inoculation site, which leads to an inflammatory 

nodule, called chancre. The first phase of the disease may last for years in the case 

of infection with T. brucei gambiense, whereas in the case of T. brucei rhodesiense, 

the infection is more virulent and neurological symptoms progress over a matter of 

weeks. The second phase of the disease known as the meningo-encephalitic phase, 

begins when parasites cross the blood-brain barrier and invade the central nervous 

system. Neurological symptoms include sensory disturbances, confusion, tremor and 

altered behaviour. At this stage, parasites impair the circadian rhythm of their host 

with an alteration of sleep/wake cycles, hence the name “sleeping sickness”. The 

neurological damages caused by the parasites are irreversible. Without treatment, 

the natural evolution of the disease is invariably lethal, with a progressive mental 

deterioration, a systemic organ failure, cachexia, coma and finally death.  

e) Diagnosis and treatment 

The diagnosis of a potential infection starts by an evaluation of the clinical signs and 

especially the palpation of swollen cervical lymph nodes. However, due to the non-

specificity of the symptoms, the diagnosis need to be first completed by serological 

tests. A field-adapted test called Card Agglutination Test for Trypanosomiasis (CATT) 

is available for Gambian HAT to identify anti-trypanosome antibodies present in the 

patient’s whole blood or plasma (Magnus, Vervoort et al. 1978). If there is suspicion 

of infection, a second and compulsory step is the visualization of parasites in a blood 

sample or in a lymph node aspirate by microscopy. If negative, it is possible to 

examine the cerebrospinal fluid obtained by lumbar puncture and to determine 

whether parasites are present. This will also confirm the disease stage. The 
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presence of parasite DNA can be detected by polymerase chain reaction (PCR) 

permitting the identification of the subgenus Trypanozoon (Mitashi, Hasker et al. 

2012). In addiction, the existence of skin-dwelling parasites may now require the 

development of new non-invasive detection techniques (Capewell, Cren-Travaille et 

al. 2016). These new diagnostic tools could permit to screen large population, detect 

and treat asymptomatic patients in order to prevent future trypanosome transmission. 

The type of treatment depends on the trypanosome species and on the stage of the 

disease. In the early stage of T. brucei gambiense sleeping sickness, patients are 

treated with pentamidine that is generally well tolerated. For patients infected with  

T. brucei rhodesiense, suramin is recommended, but this can lead to adverse effects 

like allergic reactions and nephrotoxicity. Due to a low cerebral fluid entry-rate, 

pentamidine and suramin cannot be used to treat the second phase of the disease. 

In that case, melarsoprol is still used against T. brucei rhodesiense infections. This 

old arsenical derivative can cross the blood-brain barrier and is highly trypanocidal. 

However, it has many side effects: the most dramatic one being a possible fatal 

encephalopathy observed in 5-10% of the cases. Moreover, drug resistance is 

observed in several foci in Central Africa (Baker, de Koning et al. 2013). Eflornithine 

is a molecule less toxic than melarsoprol that is used in combination with Nifurtimox. 

This combination reduces and simplifies the used of Eflornithine alone. Indeed 

Eflornithine alone should be administrated intravenously every six hours during 14 

days while the combination of the two molecules reduces the duration of treatment to 

one week (Priotto, Kasparian et al. 2009). The Nifurtimox/Eflornithine combination is 

only efficient against T. brucei gambiense. Therefore, WHO recommends using it in 

first line treatment for this form rather than melarsoprol in stage two gHAT patients. A 

new oral medicine called Fexinidazole is about to obtain a market authorization to 

treat the late-stage of African T. brucei gambiense trypanosomiasis. This drug is a 

little less efficient than the Nifurtimox/Eflornithine combination therapy (NECT) but 

the advantages of an oral treatment compensate this loss due the absence of 

complication related to intravenous catheter and offer the possibility to receive home-

based treatment, which is important when all patients live in rural areas without 

hospitals nearby (Mesu, Kalonji et al. 2018). Anti-trypanosomiasis vaccination could 

be the best option to eliminate the disease but antigenic variation has been a major 
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obstacle to vaccine development. Non-variable intra-cellular vaccine targets have 

been tested such as microtubule-associated proteins (MAPp15). The same level of 

protection against T. brucei was observed in the mice vaccinated with MAPp15 

antigen and in the mice injected with PIPES as negative control (Rasooly and 

Balaban 2004). In view of the available treatments and the absence of a vaccine, 

patient care in the early stages of the disease is therefore essential. 

2) The flagellum of Trypanosoma brucei 

In addition to being a parasite, T. brucei is also a robust model to study a variety of 

biological processes such as GPI anchors, mono-allelic expression or RNA editing to 

cite only few. In my thesis I have used T. brucei to investigate flagellum assembly. 

The flagellum is particularly interesting because it is essential for parasite 

development and has conserved and specific structural components. The conserved 

features of the trypanosome flagellum provide a model to study flagellum assembly, 

maintenance and functions including in the context of ciliopathies. The flagellum is 

present throughout the cell and parasite cycles and its assembly is carried out while 

the old one is maintained. These particular characteristics enable the comparison of 

flagellum assembly and maintenance within the same cell (Bastin, MacRae et al. 

1999, Fort, Bonnefoy et al. 2016).  

a) Conserved and unique features in the architecture of 
the trypanosome flagellum  

The flagellum emerges from a specific membrane invagination called the flagellar 

pocket and contains two main structures: a classical “9+2” axoneme and an extra-

axonemal structure called paraflagellar rod (PFR). The flagellum is attached along 

the cell body by the flagellar attachment zone (FAZ) except at its distal tip that 

remains free (Figure 14 and 16A). When the procyclic cell possesses two flagella, a 

specific structure called the flagella connector is present, connecting the tip of the 
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new flagellum to the side of the old one (Moreira-Leite, Sherwin et al. 2001, Briggs, 

McKean et al. 2004). Proteomic analysis revealed the complexity of the trypanosome 

flagellum that is composed of at least 600 proteins (Broadhead, Dawe et al. 2006, 

Oberholzer, Langousis et al. 2011, Subota, Julkowska et al. 2014).  

I. Flagellar pocket  

The typical trypanosome cell shape is due to the presence of a subpellicular array of 

microtubules orientated with the (+) end at the posterior part of the cell (Robinson 

1995). The flagellum exits through a gap between this microtubule skeleton where a 

membrane invagination called the flagellar pocket is present (Figure 14 and 17a). 

The flagellar pocket is the unique site of endocytosis and exocytosis of the cell and 

plays an essential role in immune evasion (see next section) (Engstler, Pfohl et al. 

2007, Lacomble, Vaughan et al. 2009). The flagellar pocket is closed by the flagellar 

collar that appears as an electron-dense ring. BILBO1 was the first protein identified 

in this structure. It is a trypanosome specific cytoskeletal protein with two EF-hand 

domains and a large C-terminal coiled-coiled domain. This protein is essential for 

flagellar pocket formation. In its absence the flagellar pocket is not formed and 

vesicular trafficking is stopped (Bonhivers, Nowacki et al. 2008). Moreover the new 

flagellum is made too short and is not correctly positioned for cytokinesis that fails 

(Absalon, Blisnick et al. 2008, Bonhivers, Nowacki et al. 2008). In a recent study, a 

yeast two-hybrid screen identified several BILBO1 protein partners, including FPC4; 

a multi partner protein that can also bind microtubules and that is involved in flagellar 

pocket collar segregation (Albisetti, Florimond et al. 2017). 

II. Basal body and transition zone  

The basal body is the microtubule-organizing center of the flagellum. In 

trypomastigote stages, the basal body is located at the posterior part of the cell but it 

can be found in an anterior position relative to the nucleus during the parasite cycle 

when trypanosomes adopt the epimastigote conformation. The basal body is 



 

Figure 17: Ultra-structure of the flagellum in the T. brucei procyclic 
cell. 
 
(a) TEM pictures of a longitudinal section through the flagellar pocket and the base of 
the flagellum. (b-f) TEM cross-sections through the flagellum at different regions 
indicated by the lines on picture (a) (b) Basal body. (c) Base of the transition zone 
(arrows indicate transition fibers). (d) Transition zone (arrowheads indicate the 
collarette). (e) Axoneme within the flagellar pocket. (f) Axoneme and the PFR after 
the flagellum exits from the flagellar pocket. The bar indicates the position of the 
FAZ-associated microtubule quartet and the arrowhead points the FAZ filament. The 
star indicates an IFT particle. FPC: Flagellar pocket collar, FPL: Flagellar pocket 
lumen, G: Golgi, K: Kinetoplast. Scale bars: 100nm (Buisson and Bastin 2010).  
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composed of nine triplet of microtubules (A, B and C) and is linked to the kinetoplast 

by a filament network called the Tripartite attachment complex (TAC) (Robinson and 

Gull 1991, Ogbadoyi, Robinson et al. 2003). At the distal portion of the basal body, 

C-tubules stop whereas A and B-tubules continue to form the transition zone and the 

axoneme (Figure 17 b-d).  

The transition zone is localized in the flagellar pocket and it is comprised between the 

distal end of the basal body and the basal plate where the central pair nucleation is 

initiated.  The proximal region of the transition zone has an invariant length of 150 nm 

and is characterized by the collarette surrounding the membrane (Vaughan and Gull 

2015, Trepout, Tassin et al. 2018). The collarette is likely equivalent of the ciliary 

necklace and is composed of fibers connected to the microtubules of the transition 

zone (Figure 17d). The distal part of the transition zone presents more length 

variations (from 55 nm to 235 nm) and contains the typical Y-links following a more 

complex organisation than observed in previous studies (Trepout, Tassin et al. 2018). 

At the base of the transition zone, electron-dense projections appear to connect each 

outer microtubule doublets to the flagellar membrane. The tubulin-folding co-factor C 

or RP2 (Retinal Pigmentosa 2) is the only protein that has been clearly localized at 

the transition fibres in T.brucei, where it could play a role of quality control gateway 

for tubulin (Stephan, Vaughan et al. 2007).  

III. Axoneme 

Microtubule doublets of the axoneme are the continuity of those of the transition 

zone. The axoneme compartment starts when the flagellum is still in the flagellar 

pocket (Figure 17e). The “9+2” axoneme presents a typical structure with nine 

doublet microtubules surrounding a central pair of singlet microtubules (Figure 17f). 

Peripheral A-tubules are decorated with ODA and IDA that are responsible for 

flagellum beating (Figure 18). The outer microtubule doublets are linked to one 

another with a nexin link and radial spokes project from the A microtubules toward 

the central pair (Figure 18) (Hughes, Ralston et al. 2012). The microtubules are 

composed of α and β tubulin subunits that are modified by classical post-translational 



 

Figure 18: Schematic structural organization of the Trypanosoma 
brucei flagellum. 
 
Schematic representation of a cross section of the T. brucei flagellum indicating its 
major components. Flagellar substructures that are conserved among eukaryotes are 
in blue, and structures that are unique to trypanosomes are in green (Ralston, 
Kabututu et al. 2009). MT: microtubules; DRC: dynein regulatory complex;  
IFT: Intraflagellar transport; FAZ: Flagellar attachment zone; PFR: Paraflagellar rod. 
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modifications such as glutamylation or acetylation (Sherwin 1987, Schneider, 

Plessmann et al. 1997). Genes encoding less abundant tubulin types such as γ- δ- ε-

tubulin and the trypanosomatid-specific ξ-tubulin are present in the genome, but their 

localisation remains to be clarified (Vaughan, Attwood et al. 2000). Proteomic and 

genomic analyses showed that the vast majority of axonemal proteins are conserved 

in T. brucei (Ralston, Kabututu et al. 2009). The dynein regulatory complex (DRC) 

that is essential to transmit mechanochemical signals from the central pair to the 

axonemal dynein.  

IV. ParaFlagellar Rod (PFR) 

When the flagellum emerges from the flagellar pocket, an additional structure called 

the PFR follows the axoneme until its distal tip (Figure 17f). This structure is 

described as a complex lattice-like structure (Vickerman 1962). Cross-sections of the 

PFR reveal 3 different domains defined by their relative position to the axoneme 

(Figure 18) (M. Farina 1986). The proximal region is connected to the axoneme with 

fibers attached to doublets 4 to 7 and organised in stacks of plates. The intermediate 

domain is constituted of filaments perpendicular to the plates whereas the distal one 

has a very similar pattern to the proximal region (M. Farina 1986, Koyfman, Schmid 

et al. 2011, Hughes, Ralston et al. 2012).  

Proteomic analyses revealed that the PFR of T. brucei is made of at least 20 proteins 

(Portman, Lacomble et al. 2009). The major components are two coiled-coil proteins 

called PFR1 and PFR2. Homologues of these two proteins have been found in other 

kinetoplastids such as Leishmania mexicana and in Euglena (Moore, Santrich et al. 

1996, Ngo and Bouck 1998). In trypanosomes, the absence of PFR2 leads to 

disruption of the distal and intermediate domains of the PFR and to the accumulation 

of the PFR1 protein at the distal tip of the flagellum (Bastin, MacRae et al. 1999). The 

absence of PFR in T. brucei or Leishmania is characterized by a pronounced motility 

defect demonstrating the importance of the PFR in flagellum beating (Santrich, 

Moore et al. 1997, Bastin, Sherwin et al. 1998, Maga, Sherwin et al. 1999). Based on 
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cryo-electron microscopy, it was suggested that PFR could act as a biomechanical 

spring to successively absorb and transmit the energy produced by axoneme beating 

(Koyfman, Schmid et al. 2011). The PFR is also proposed to be a storage place for 

ATP that is essential for dynein arms to generate flagellum movement. Moreover, two 

adenylate kinase proteins has been identified and localized in the PFR (Pullen, 

Ginger et al. 2004). These proteins could convert two ADP molecules in one ATP 

and 1 AMP.  

V. Flagellar attachment zone (FAZ) 

The flagellum emerges from the flagellar pocket and is attached to the cell body 

along most of its length with the exception of the distal tip. The site of attachment 

defines a specialised region of the cell body that has been called the flagellum 

attachment zone (FAZ) (Figure 18) (Kohl and Gull 1998). The FAZ contains two 

distinct structures: the microtubule quartet, a unique set of four microtubules and the 

FAZ filament. The microtubule quartet is integrated into a gap within the sub-

pellicular microtubule corset. This set of four microtubules is distinct from the other 

sub-pellicular microtubules.  The polarity of the quartet is the same as for the 

axonemal microtubules with the (+) end at the anterior of the cell. This is in anti-

parallel orientation compared to all the other sub-pellicular microtubules (Robinson 

1995). Moreover these microtubules are distinct from the other cytoplasmic 

microtubules by their higher chemical stability, as they are resistant to high NaCl 

treatment (Sherwin and Gull 1989). They are also associated to the smooth 

endoplasmic reticulum (Angelopoulos 1970). The molecular composition of these 

four microtubules is still unclear but the quartet seems to host a specific version of ß-

tubulin recognized by the monoclonal antibody 1B41 (Gallo, Precigout et al. 1988). 

The quartet is also enriched in γ-tubulin (Scott, Sherwin et al. 1997).  

The FAZ filament is linked to both the cell body and the flagellum by a network of 

regularly spaced connectors localized across the cell and flagellar membranes 

(Vickerman 1969). It appears as regular arrays of electron dense staple-like 

structures alternating with less contrasted portions on longitudinal flagellum sections. 



Figure 19: The flagella connector. 
 
(A) Schematic representation of T. brucei procyclic cell cycle. At G1 phase the cell 
possesses one kinetoplast, one nucleus and one flagellum. During the cell cycle, new 
flagellum elongation occurs in parallel to basal body and kinetoplast segregations. 
The new flagellum is connected to the old flagellum via the flagella connector (FC) 
(Briggs, McKean et al. 2004). (B) Scanning micrograph of procyclic T.brucei where 
the new and old flagella are connected by the FC (zoom on this area) (Hoog, 
Lacomble et al. 2016)  (C) Negative stained whole-mount cytoskeleton. The flagella 
connector (asterisk) is positioned at the tip of the new flagellum (nf) and along the 
axoneme (ax) of the old flagellum (of) (Briggs, McKean et al. 2004). (D) Cartoon 
showing the structure of the FC. Microtubule doublets of the axonemes connected to 
the FC are indicated. PFR: Paraflagellar rod (Hoog, Lacomble et al. 2016).   
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This filament is composed of multiple molecular components; some of them have 

been first identified using antibodies from infected patients or animals or from 

proteome analysis (Vaughan and Gull 2008, Sunter, Benz et al. 2015, Zhou, Hu et al. 

2015). The FAZ1 protein was the first to be identified; it is a large protein (close to 

200kDa) containing from 36 to 70 repetitions of a unique 14 amino-acid-sequence. 

This protein is not essential for FAZ filament assembly but its absence perturbs 

nucleus segregation and flagellum adhesion, further implicating this filament in cell 

morphogenesis (Vaughan and Gull 2008).  

Transversal flagellar sections show the presence of filamentous structures that link 

the FAZ-associated membrane and the proximal domain of the PFR (Sherwin and 

Gull 1989). The flagellum attachment glycoprotein 1 (FLA1), a transmembrane 

protein with a very long extracellular domain that is highly glycosylated is also 

essential for flagellum attachment in T. brucei and T. cruzi (Cooper, de Jesus et al. 

1993, LaCount, Barrett et al. 2002). The T. brucei FLA1-binding protein (FLA1BP) 

binds the flagellar membrane to the plasma membrane linking FAZ elongation to 

flagellum growth (Sun, Wang et al. 2013). On the axoneme side, a unique protein 

called FLAM3 was shown to be essential for flagellar connection (Rotureau, Blisnick 

et al. 2014, Sunter, Benz et al. 2015).   

VI. Flagella connector (FC) 

During its elongation, the tip of the new flagellum of procyclic T. brucei is tethered to 

the lateral region of the old flagellum by a pyramidal structure termed the flagella 

connector (Moreira-Leite, Sherwin et al. 2001) (Figure 19). The flagella connector is 

separated in three plates with an overall width of ~90nm. The central core layer is  

~18nm wide and is the thickest of the three layers. The layer closest to the old 

axoneme is the next thickest layer with ~16 nm and the layer closest to the tip of the 

new flagellum is the thinnest with ~13 nm (Briggs, McKean et al. 2004). A recent 

analysis described the protein composition of the flagella connector and revealed the 

existence of two kinesin motors. It was proposed that kinesins could contribute to the 

flagella connector movement along the old flagellum and render the connection 



 

Figure 20: The T. brucei procyclic cell cycle.  
 
(A) Immunofluorescence images of the different stages of the procyclic trypanosome 
cell cycle. (a) At the G1 stage, trypanosomes possess a single flagellum, one 
kinetoplast and one nucleus. (b) After basal body duplication, a new flagellum is 
assembled that is found in a posterior position relative to the old flagellum. (c) Mitosis 
occurs and the new flagellum further elongates. (B) Scanning electron microscope 
images of the different cell cycle steps in the procyclic cells. (a) A single flagellum 
emerges from the flagellar pocket (arrowhead) at the posterior end. (b) A new 
flagellum is assembled and emerges from its own flagellar pocket (arrowhead). Its tip 
elongates towards the anterior end of the cell in close proximity of the old flagellum 
(arrow). (c) The new flagellum continues to elongate with its distal tip physically 
connected to the old flagellum by the flagella connector (c, arrow). (d) Cell division 
takes place at the anterior end and progresses through the posterior end. At this final 
step, flagella are disconnected (Buisson and Bastin 2010) Scale bar: 1 µm. 
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flexible robust and dynamic (Varga, Moreira-Leite et al. 2017). The flagella connector 

is associated to one side of the old flagellum axoneme and its tip is connected to the 

extremity of the elongating microtubules in the new flagellum (Figure 19 C and D). At 

the early steps of flagellum construction, the old and the new flagella are already 

connected in the same flagellar pocket by the flagella connector found in a distal 

position to the transition zone of the new flagellum. The flagella connector moves 

toward the distal end of the old flagellum in parallel to the growth of the new flagellum 

(Figure 19A) (Absalon, Kohl et al. 2007). During flagellum construction, the basal 

body of the new flagellum migrates towards the posterior end of the cell. Using 

(Trypanosome Basal Body Component) TBBCRNAi mutant where the new flagellum 

was disconnected from the old one, it was demonstrated that flagella connection is 

important for basal body migration (Absalon, Kohl et al. 2007). The flagella connector 

has not been found in bloodstream forms nor in T. brucei, in T. cruzi and in 

Leishmania species (Briggs, McKean et al. 2004).  

b) Duplication of the flagellum during the cell cycle 

During its cell cycle, T. brucei grows a new flagellum in parallel to the maintenance of 

the existing one. In the G1 phase, a trypanosome cell possesses one kinetoplast 

(1K), one nucleus (1N) and one flagellum (1F) (Figure 20 Aa and Ba). During their 

cell cycle, BSF and PCF divide by binary fission without disassembling their 

cytoskeleton to produce two similar daughter cells after the duplication of all the 

organelles in a defined chronological order. First, the basal body duplicates and 

nucleates the formation of a new flagellum (NF) in an anterior position compared to 

the old flagellum (OF) (Sherwin and Gull 1989). During its elongation, the new 

flagellum migrates to a posterior position to emerge from a new flagellar pocket 

(Lacomble, Vaughan et al. 2010). Kinetoplast duplication and segregation start 

before mitosis, resulting in cells with two kinetoplasts, two flagella and one nucleus 

(2K2F1N) (Figure 20Ab and Bb). Kinetoplast segregation depends on basal body 

segregation (Robinson and Gull 1991). The microtubule corset elongates at the 

posterior end of the cell, resulting in an increase of 20% of the initial volume of the 
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cell (Sherwin and Gull 1989, Rotureau, Subota et al. 2011). The connection between 

the NF and the OF via the flagella connector during NF elongation induces the re-

localisation of the new basal body-kinetoplast complex to the posterior end of the cell 

(Absalon, Kohl et al. 2007). NF elongation occurs in parallel to the construction of a 

new FAZ, allowing its attachment. Mitosis leads to cells with 2 kinetoplasts, 2 flagella 

and 2 nuclei (2K2F2N) (Figure 20 Ac). As in most protists, the nuclear membrane 

stays intact. The new flagellum keeps on elongating and cytokinesis is initiated from 

the anterior end of the cell. In PCF, the cell inheriting the NF is smaller than the cell 

retaining the pre-existing one. The ratio between the length of the NF and the OF in 

cells about to divide is close to 80% (Figure 20 Bd) (Robinson 1995, Subota, 

Julkowska et al. 2014). The NF continues growing after division until it reaches its 

definitive length and the cell can undergo then another duplication cycle. 

c) Roles of the trypanosome flagellum  

I. Motility 

T. brucei possesses a flagellum with the classical “9+2” characteristics; its motility is 

associated to ATP-dependent structural changes in the dynein arms connected to the 

A-tubule (Satir 1968). The flagellum is attached to the surface of the cell body and 

tracts the swimming trypanosome. Trypanosomes move due to the beating wave 

initiated at the tip of the flagellum and that propagates to the base. This wave is 

characterized by a low amplitude but a high frequency and is responsible for the 

forward movement (Hill 2003). The opposite wave causes the re-orientation of the 

cell, it starts from the base with a high amplitude and a low frequency and finishes at 

the distal tip. In high-viscosity medium, the proportion of trypanosomes undergoing 

propulsive motility increases as compared to liquid culture medium. To better 

understand this phenomenon, researchers monitored trypanosome motility in a 

homemade microfluidic environment containing silicone micropillars homogenously 

distributed, yet with variable interspaces. Parasite exhibited maximal velocity when 

the pillar spacing was approximating that estimated for red blood cells in the 



Figure 21: The importance of the flagellum in T. brucei : Immune 
evasion. 
 
(A) Forward motility is essential in immune evasion to eliminate IgG-VSG complexes. 
Visualization of antibody removal. Cells were surface labelled with a blue-fluorescent 
dye and incubated for 10 min on ice with anti-VSG-specific IgG (green). Following 0-
3 min of incubation at 37°C, cells were fixed and permeabilised. Open arrows 
indicate the position of the flagellar pocket, and filled arrows point to the lysosome. 
(B) The trypanosome DNAI1RNAi mutant shows backward motility and reversed 
direction of VSG-IgG movement with an accumulation at the anterior part of the cell. 
Scale bar: 3 µm (Engstler, Pfohl et al. 2007).  



Introduction 

 

41 

bloodstream, suggesting that trypanosomes have optimized their motility according to 

their environment (Heddergott, Kruger et al. 2012).  

Trypanosome motility is crucial for parasite transmission and affects parasite 

virulence. In the mammalian host, the parasites circulate from the inoculation site to 

the dermis to finally penetrate the blood barrier endothelium and reach the central 

nervous system. Bloodstream parasites knockdown for the paraflagellar rod protein 

(PFR2), are rapidly cleared in mice potentially due to a reduction of their motility 

(Griffiths, Portman et al. 2007). In the insect vector, trypanosomes need to travel 

from the midgut to the salivary glands to be transmitted to the next mammalian host. 

Like in other eukaryotes, the dynein intermediate chain protein DNAI1 is essential for 

dynein arm assembly and its absence leads to forward motility defects (Branche, 

Kohl et al. 2006). A DNAI1 null mutant strain is able to infect the midgut but fails to 

access the proventriculus and salivary glands, showing for the first time the role of 

motility in the insect vector (Rotureau, Ooi et al. 2014). 

Flagellum motility is also crucial for the final step of the cell cycle. Once cytokinesis is 

almost complete when the two future daughter cells face each other, flagella point 

and swim in opposite directions allowing the separation of these two cells. Many 

paralyzed mutant fail to separate at this stage, a phenotype that can be compensated 

by shaking the culture flasks (Branche, Kohl et al. 2006, Broadhead, Dawe et al. 

2006, Ralston, Lerner et al. 2006).  

II. Immune evasion 

The flagellum of T. brucei is also essential for immune evasion. In mammals, 

bloodstream trypanosomes are exposed to the host immune system and particularly 

to antibodies against VSG proteins. Parasites are able to clear a part of these 

antibodies from their membrane by endocytosis in order to resist for longer to the 

immune system. Forward motility is required for this process to orientate the cells 

against the hydrodynamic flow that causes the “sailing” of immunoglobulins 

associated to VSGs at the cell surface toward the flagellar pocket, where they are 

captured by endocytosis (Figure 21A) (Engstler, Pfohl et al. 2007). The acidic 



 

 
Figure 22: The importance of the flagellum in T. brucei: salivary 
gland adhesion. 
 (A) Diagram showing the different stages present in the tsetse salivary glands. The 
attached epimastigote use it flagellum to attach to the microvillar salivary gland 
epithelium. Metacyclics possess a VSG and are free in the saliva ready to be injected 
(Vickerman 1985, Ralston, Kabututu et al. 2009) (B) Electron microscopy section 
through the apical region of microvillar border of the tsetse salivary glands with 
attached flagella of T. brucei. The flagellar membrane has been highlighted in black. 
The membrane presents extensive outgrowth to create contact with salivary gland 
epithelium. Mv: Microvillosity Magnification x42 000  
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environment of the endosomes leads to dissociation of the antibodies from the VSG. 

VSG proteins are rapidly recycled and re-integrated in the parasite surface coat while 

the lysosome pathway eliminates the antibodies. In the DNAI1RNAi mutant, antibodies 

accumulate at the anterior end of the cell demonstrating the crucial role of forward 

motility in surface molecule recycling (Figure 21B) (Engstler, Pfohl et al. 2007).  

III. Salivary gland adhesion 

In the tsetse salivary glands, the flagellum is essential for the colonization of the 

epithelium. The flagellum membrane of the attached epimastigote elaborates 

extensive outgrows that create contacts with the epithelium microvilli of the salivary 

glands (Figure 22). The production of “hemidesmosome-like” junctions between the 

flagellar membrane and the host cell membrane creates strong physical links 

(Vickerman 1985). The adhesion to the epithelium prevents release of non-infective 

trypanosomes in the saliva during a blood meal. These close contacts may facilitate 

interactions with molecules present at the surface of host cells such as flagellar 

receptors that could initiate pathways essential for parasite adaptation at its new 

environment (metabolic responses, etc).  

IV. Cell morphology  

Trypanosomes are highly polarized cells and during mitosis the respective positions 

of their organelles have be maintained. As previously detailed, the emergence and 

the elongation of the flagellum are strictly linked to the cell cycle. Modifications of 

flagellum assembly by RNAi silencing targeting components of the IFT machinery 

(See section below) have important effects on cell morphology (Figure 23). Cells with 

a shorter flagellum are smaller than control cells, with an almost linear correlation 

between flagellum and cell length (Kohl, Robinson et al. 2003). This is accompanied 

by restricted elongation of the FAZ and reduced body migration. It was shown that 

this is not due to a defect in cell body elongation but rather to a mispositioning of the 

cleavage furrow suggesting that the tip of the FAZ could define the point of initiation 



 
 

Figure 23: The importance of the flagellum in T. brucei: cell 
morphology. 
Scanning electron micrographs of IFT20RNAi cells induced for 72h. (a) cells with 
normal flagellum (b) with short flagellum and (c) no flagellum. Disruption of the 
flagellum assembly machinery (IFT) by RNAi silencing targeting one of its component 
leads to the formation of short cells with small flagellum and smaller cell body 
(Absalon, Kohl et al. 2007) 
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of division. RNAi knockdown of CC2D, a structural protein of the FAZ, disrupted 

elongation of the FAZ filament and led to the formation of smaller cells confirming the 

importance of the FAZ in defining cell length (Zhou, Liu et al. 2011). 

V. Sensory functions 

During their complex parasite cycle, trypanosomes need to detect signals from their 

surrounding microenvironment in order to activate or repress the appropriate 

differentiation programs as well as to evade the antimicrobial host immune 

responses. Recently cilia and flagella have emerged as critical sensory organs for 

unicellular or multicellular organisms (Singla and Reiter 2006).  They can be 

compared to cellular antenna due to their positioning at the cell surface and to the 

original composition of their membrane that is enriched in lipid raft platforms known 

to organize trans-membrane signalling events (Tyler, Fridberg et al. 2009). Some 

proteins present at the surface of the flagellum in bloodstream forms have been 

characterized by proteomic analysis.  The proteins identified take in a large range of 

molecular functionalities, including many candidates to signalling functions and host-

parasite interactions (Oberholzer, Langousis et al. 2011). These include adenylate 

cyclases and calflagins that are predicted to function in host-parasite signalling. 

Moreover, uncharacterized flagellum surface proteins have been identified. They 

possess domain architectures typical of cell surface receptors with a large 

extracellular domain suitable for binding host ligands and an intracellular signalling 

module compatible with receptor functions (Oberholzer, Langousis et al. 2011).   
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 Flagellum biogenesis III.

1)  History  

Cilia and flagella are sophisticated organelles that exhibit a complex structure and 

molecular composition. Proteomic studies of purified Chlamydomonas flagella 

revealed that it contains more than 600 proteins (Pazour, Agrin et al. 2005). Other 

studies in different organisms confirmed this molecular complexity. In T. brucei, the 

cytoskeletal scaffold of the flagellum is composed of at least 330 different 

polypeptides (Broadhead, Dawe et al. 2006, Oberholzer, Langousis et al. 2011). 

However, mass spectrometry analysis performed on intact flagella of procyclic stage 

cells identified a total of 751 proteins and revealed the existence of 212 proteins that 

were not previously reported to be associated with flagella (Subota, Julkowska et al. 

2014). All these proteins need to be assembled at the right place and at the right 

time. Since their discovery, the ultrastructure of cilia and flagella has been 

extensively studied by electron microscopy and understanding the mechanisms 

responsible for their construction and length control have attracted the interest of 

biologists for decades.  

The first experiment describing flagellum assembly was performed 50 years ago 

using four different species of flagellated protozoa (Astasia, Chlamydomonas, 

Euglena and Ochromonas) (Rosenbaum and Child 1967). Rosenbaum and 

colleagues followed flagellum regeneration after amputation, focussing on the kinetic 

of the process. They showed that there was a lag phase during which there was no 

apparent growth followed by a rapid growth of the flagellum that ended in a slow 

elongation phase as the original length of the organelle was reached. The lag phase 

was highly reproducible, although its duration and the regeneration rate were specific 

to each species without any relations with the expected final flagellum length. The lag 

phase could be associated to the production of flagellar components. To test this 

hypothesis, cycloheximide (an inhibitor of protein synthesis) was added just after 



 

 

Figure 24: Flagellum assembly: first discoveries.   

(A) Visualisation of the flagella assembly site in Chlamydomonas. 
Immunofluorescence images obtained after staining mating algae cells with an 
antibody directed against the radial spoke protein 3 (RSP3) in Chlamydomonas. 15 
min after mating between wild-type algae and mutant cells that lacked radial spokes. 
RSP3 is localised along full lengths of the two wild-type axonemes, whereas no 
signal is detected in the two mutant axonemes indicated with arrows. An increasing 
signal progressively appears at the distal tips of these two mutated flagella observed 
for 90 minutes. Scale bar: 10 µm.  Adapted from (Johnson and Rosenbaum 1992) 
(B) Electron micrographs of longitudinal (left) and cross (right) sections of 
Chlamydomonas flagella. In the longitudinal sections. IFT particles appear as a linear 
array distinct from the membrane (bold segments). In the cross section, IFT particles 
appear as electron-dense material between the axonemal microtubules and the 
membrane (big arrowhead) (Kozminski, Johnson et al. 1993) 
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deflagellation and this resulted in an inhibition of flagella elongation. In contrast, 

addition of the inhibitor after the lag phase was followed by the production of a 

flagellum with a length of around 10 µm (half of their normal size) before the 

elongation stopped. This means that the synthesis and accumulation of flagellar 

proteins necessary for elongation was occurring during the lag phase (Rosenbaum 

and Child 1967).  

The first flagellar components whose incorporation was revealed in vivo were tubulin 

and radial spoke protein 3 (RSP3). By using donor Chlamydomonas cells expressing 

tagged tubulin or RSP3 in their flagella and fusing them with wild type cells, Johnson 

et al. followed the incorporation of tagged proteins in wild type flagella. They revealed 

that the assembly site of the tagged protein was at the distal tip of the organelles 

(Figure 24A) (Johnson and Rosenbaum 1992). Although the axonemal components 

were incorporated at the distal tip, the delivery system was still unknown. Flagellar 

components were thought to be delivered actively via unknown transport 

mechanisms or passively, by diffusion.  

Less than one year later, the system necessary to deliver building block from the 

base to the tip of the flagellum was discovered using differential interference contrast 

(DIC) microscopy to observe paralyzed flagella of Chlamydomonas. Kozminski et al. 

revealed the presence of two distinct sets of granule-like particles moving along the 

flagellum in a manner independent of flagellum beating. First, some particles moved 

from the base to the tip of the flagellum at a speed of ~ 2µm/sec and others travelled 

in the opposite direction at ~ 3.5 µm/sec (Kozminski, Johnson et al. 1993). Second, 

the movement of these particles was dependent on FLA10, a subunit of the 

heterotrimeric kinesin II complex (Kozminski, Beech et al. 1995). The 

Chlamydomonas FLA10 null mutant cells have wild-type flagella at the permissive 

temperature (20°C) and resorb their flagella at the restrictive temperature (33°C) due 

to the absence of FLA10 subunit. In this mutant, the incorporation of tagged proteins 

at the distal tip of the flagellum was not observed any more. The process was termed 

IntraFlagellar Transport (IFT).  



Figure 25: Schema of IFT process in Chlamydomonas. 

Schematic representation of the main steps of Intraflagellar transport in 
Chlamydomonas. (1) Assembly of IFT-A and IFT-B proteins, kinesin (active) and 
dynein motors (as a cargo) and other cargo proteins such as the tubuin. (2) IFT trains 
enter into the cilium and (3) move toward the tip. (4) IFT trains are remodelled and 
cargo proteins are released. (5) Kynesins going back independently from the other 
components to the base (6) Activation of the dynein motor and formation of 
retrograde trains (7) Retrograde transport to return to the ciliary base (8) Exit from 
the ciliary compartment. BB: Basal body (Taschner and Lorentzen 2016). 
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2) Intraflagellar Transport (IFT) 

Intraflagellar transport (IFT) is the motor-dependent and bidirectional microtubule-

based movement along the axoneme of multi-protein complexes called IFT particles 

or IFT trains (Pedersen and Rosenbaum 2008). IFT can be decomposed in several 

steps: (1) entry of IFT proteins into the axoneme compartment, (2) assembly of 

trains, (3) loading of trains with cargo proteins, (4) transport of IFT trains towards the 

distal tip using kinesin motors (anterograde transport), (5) reorganisation of IFT trains 

at the distal tip, (6) return to the ciliary base driven by dynein motors (retrograde 

transport) and (7) finally exit or recycling of IFT proteins (Figure 25). It was shown 

that IFT is involved in flagellum assembly, maintenance and signalling functions 

depending on the organism. Four different situations have been encountered so far 

regarding the contribution of IFT in flagellum construction and maintenance. First, IFT 

is active in both growing and mature flagella and is essential for both construction 

and maintenance of flagellum length, as shown in Chlamydomonas (Marshall and 

Rosenbaum 2001). Second, IFT is only active during flagellum construction and 

becomes absent once the organelle has reached its full length. This case has been 

reported in mouse spermatozoa where IFT proteins are highly abundant during 

flagellum elongation but are not detectable in mature spermatozoa (San Agustin, 

Pazour et al. 2015). Third, an intermediate situation has been described in T. brucei 

where IFT is active in both growing and mature flagella but is essential only for the 

construction and not for flagellum length maintenance (Fort, Bonnefoy et al. 2016). 

Fourth, IFT is not required for flagellum construction when the latter one takes place 

in the cytoplasm, as described for male gametes in Plasmodium and Drosophila 

(Han, Kwok et al. 2003, Briggs, McKean et al. 2004). 

a) The IFT trains 

By using correlative light microscopy and transmission electron microscopy (TEM) in 

Chlamydomonas flagella, it was demonstrated that the IFT particles consist of linear 



 

Figure 26: Schematic representation of the IFT-A and IFT-B 
complexes in Chlamydomonas. 

Schematic map of the predicted interactions between different proteins of the IFT 
complexes (Taschner and Lorentzen 2016).  
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arrays of lollipop-shaped structures located between the outer doublet microtubules 

and the flagellar membrane (Figure 24B) (Kozminski, Beech et al. 1995). The identity 

of these electron-dense structures was confirmed by immunogold labelling with 

antibodies directed against kinesin motors and later on IFT proteins (Kozminski, 

Beech et al. 1995, Pedersen, Geimer et al. 2006).  IFT trains were first isolated from 

the matrix of Chlamydomonas flagella, which allowed identifying a “17S” complex 

made of at least 13 different polypeptides (Piperno and Mead 1997). Following this 

study, the purification of IFT particles revealed the existence of 15 polypeptides 

forming a complex that dissociated at increasing ionic strength into two biochemically 

distinct sub-complexes called IFT-A and IFT-B (Cole, Diener et al. 1998). Presently, 

20 IFT proteins have been identified and characterised. The IFT-B complex is 

composed of at least 14 subunits and the IFT-A complex consists of 6 subunits 

(Figure 26) (Taschner, Bhogaraju et al. 2012). The different proteins of these two IFT 

complexes were named according to their apparent molecular weight in 

Chlamydomonas as judged by migration in SDS-PAGE. IFT polypeptide orthologues 

were found in most ciliated / flagellated eukaryotes suggesting a high conservation 

throughout evolution (Pazour, Baker et al. 2002, Follit, Xu et al. 2009). It has been 

proposed that the IFT complexes originated from vesicle coat similar to coat protein 

complex and clathrin (Avidor-Reiss, Maer et al. 2004, Li, Gerdes et al. 2004). 

Recently, the origins and acquisition of the IFT system were studied by comparing 

the genome of 52 different ciliated and non-ciliated eukaryotes. This suggests that 

the BBSome (an octameric protein complex involved in trafficking cargos into the 

primary cilium) and IFT-A emerged from an IFT-B–like complex by intra-complex 

duplications (van Dam, Townsend et al. 2013). It is proposed that the cilium emerged 

in association with a “proto-IFT” complex itself derived from protocoatamer, followed 

by the acquisition of the IFT-A complex and the BBSome. This is the likely situation 

of the las common eukaryotic ancestor. For non-ciliated species, one could imagine a 

scenario with successive loss of the BBsome, the IFT-A subcomplex and ultimately 

the IFT-B complex. Intermediate with less elaborate cilia have been observed (van 

Dam, Townsend et al. 2013). In general, mutations in proteins of the IFT-B complex 

result in the formation of abnormally short or absent flagella suggesting a role of the 

IFT-B complex in anterograde transport (Figure 27) (Pazour, Dickert et al. 2000, 
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Absalon, Blisnick et al. 2008). By contrast, defects in IFT-A proteins lead to the 

apparition of short flagella full of IFT proteins, suggesting a role of the IFT-A complex 

in retrograde transport (Figure 28). In this case, IFT trains can enter and travel 

toward the tip of the flagellum by anterograde transport but cannot go back to the 

base.  These results not only showed that IFT-A and IFT-B complexes are 

biochemically distinct complexes, but also indicated that they have specific and 

distinct roles in the IFT process.  

b) IFT-B complex 

Bioinformatics analyses of IFT protein sequences revealed the existence of well-

known protein:protein interaction domains such as tetra-tricopeptide repeats (TPRs), 

WD-40 repeats, and coiled coils domains, consistent with their assembly into large 

macromolecular complexes and with their predicted binding to ciliary cargo proteins 

(Taschner, Bhogaraju et al. 2012). The IFT-B complex can be separated in two sub-

complexes, a salt-stable complex called IFT-B core (IFT-B1) and a peripheral 

complex (IFT-B2) dissociated at a NaCl concentration of 300mM (Figure 26).  

I. The IFT-B core (IFT-B1) 

The IFT-B core was first isolated from Chlamydomonas and consisted of 6 proteins 

(IFT88, 81, 74, 52, 46 and 27) (Lucker, Behal et al. 2005) to which four newly 

identified members were added later on (IFT70, 25, 22 and 56) (Lechtreck, Luro et al. 

2009, Wang, Fan et al. 2009, Fan, Behal et al. 2010). Most of the IFT-B core 

members are essential for ciliogenesis and the absence of one of these factors leads 

to severe defects in cilium assembly. The most studied protein is IFT88 that is 

essential for flagellum formation in Chlamydomonas, T. brucei, C. elegans and its 

mutation is associated to kidney disease in mammals. Indeed, the mouse lineage 

with a hypomorphic mutation in the Tg737 gene (an orthologue of IFT88) is a classic 

model to study polycystic kidney and presents very short cilia at the surface of kidney 

epithelial cells (Pazour, Dickert et al. 2000). IFT88 plays a central role in the 



 
 
 

Figure 27: Absence of on IFT-B protein results in defect in flagellum 
formation. 

(A) Electron microscopy images of wild-type (wt) (top) and IFT52 Chlamydomonas 
mutant (called blb) (bottom). WT cells present normal transition zone (red arrow) and 
normal axoneme whereas in blb mutant no cilium assembly occurs but the transition 
zone (red arrow) looks normal. Immunofluorescence images using an antibody 
against α-tubulin, the cruciform array of stable microtubules found in the cells 
remains unaffected (Brazelton, Amundsen et al. 2001). (B) Immunofluorescence with 
antibody against PFR2 in IFT52RNAi mutants non-induced (top panel) and induced 
(bottom panel) of T. brucei after RNAi induction. When IFT52 is absent, cells possess 
short flagellum (two cells) or they are not able to construct flagellum (Absalon, 
Blisnick et al. 2008). 
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interaction between IFT-B1 and IFT-B2 via its TPR domains (Taschner, Weber et al. 

2016).  

It was shown that IFT52 occupies a central position and interacts with other IFT-B 

core members such as IFT46/70/88 as well as with the tetramer formed by 

IFT81/74/27/25 suggesting that IFT52 plays a crucial role in IFT-B assembly and 

stability. The Ift52 gene is mutated in the bld1 Chlamydomonas strain. The mutation 

leads to the production of ‘bald’ algae that are unable to construct flagella (Brazelton, 

Amundsen et al. 2001) (Figure 27A). This protein travels along the axoneme of T. 

brucei and C. elegans, and is essential for cilium formation since its disruption 

triggers the apparition of cell without flagellum (Figure 27B) (Collet, Spike et al. 1998, 

Absalon, Blisnick et al. 2008). 

In vitro, IFT81 and IFT74 form a stable complex with IFT27/25 (Taschner, Bhogaraju 

et al. 2011). IFT81/74 contain calponin-homology (CH) domains known to recognize 

and bind tubulins (Bhogaraju, Cajanek et al. 2013). In vitro it was shown that the 

IFT81 CH domain binds tubulin with a low affinity that was reinforced by interactions 

of the E-hooks with the high basic end of IFT74.  

IFT22/RABL5 is a small G-protein first discovered in C. elegans. In the nematode, 

IFT22 is not essential for cilium formation (Ishikawa, Ide et al. 2014). By using in vivo 

imaging of GFP fusion proteins it was shown that IFT22 traffics within the cilium 

(Ishikawa, Ide et al. 2014). The T. brucei IFT22 also traffics in the flagellum but by 

contrast, its depletion induced the formation of very short flagella where IFT material 

accumulates (Adhiambo, Blisnick et al. 2009).  Another small G protein called IFT27 

was first characterized in Chlamydomonas and proposed to be essential for flagellum 

formation and cytokinesis (Qin, Wang et al. 2007). IFT27 forms a stable complex with 

IFT25 (Wang, Fan et al. 2009). In T. brucei, IFT27 is essential for retrograde 

transport by controlling the entry of the IFT dynein (Huet, Blisnick et al. 2014).  

IFT56 and IFT70 are also part of the IFT-B core. IFT70 has first been identified in    

C. elegans (DYF-1) and is thought to link the homodimeric motor OMS-3 to the IFT-B 

complex (Ou, Blacque et al. 2005). A recent study in mammalian cells shows that the 

homodimeric kinesin motor KIF17 interacts with IFT46-IFT56 dimer and this 

interaction is essential for KIF17 entry in the ciliary compartment (Funabashi, Katoh 

et al. 2017). IFT56 plays a role in IFT-B core complex stability and its contribution to 
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flagellum construction is variable (Lucker, Miller et al. 2010, Taschner, Bhogaraju et 

al. 2011). Knockdown of IFT56 in zebrafish embryos or mutation in Chlamydomonas 

leading to the production of a truncated IFT56 proteins did not interfere with train 

speed or frequency, but resulted in the formation of shorter flagella (Inglis, Blacque et 

al. 2009, Ishikawa, Ide et al. 2014). In T. brucei IFT56 is essential for ciliogenesis 

exactly like other IFT-B proteins (Absalon, Blisnick et al. 2008).  

II. The Peripheral IFT-B complex 

The peripheral IFT-B complex is composed by IFT172, IFT80, IFT57, IFT54 and 

IFT20. These proteins can be dissociated from the IFT-B core complex with high 

NaCl concentration, suggesting a potential peripheral localisation (Lucker, Behal et 

al. 2005, Taschner, Bhogaraju et al. 2011, Taschner, Weber et al. 2016). The first 

four proteins seem to have an important role in IFT regulation. For example, IFT172 

plays a role in the transition between anterograde and retrograde transport. In 

Chlamydomonas, IFT172 is encodes by FLA11. When fla11 is point mutated in 

Chlamydomonas, there is an accumulation of IFT material at the distal tip of the 

flagellum (Pedersen, Miller et al. 2005). However, this was not observed in T. brucei 

IFT172 knockdown mutant (Absalon, Blisnick et al. 2008). These differences could 

be due to the different approaches used to generate the IFT172 mutants. Indeed 

RNAi is characterized by a strong reduction in protein abundance; while the point 

mutation leads to the production of malfunctioning protein.   

In mammals, IFT20 does not only localize to the cilium but also to the Golgi complex 

and it was proposed that IFT20 could be involved in membrane protein sorting before 

entering the cilium (Follit, Tuft et al. 2006). In T. brucei and Chlamydomonas, IFT20 

is essential for flagellum assembly but it is not found in the Golgi apparatus (Absalon, 

Blisnick et al. 2008). IFT54 possesses a CH-domain tubulin binding that could 

contribute to the transport of two tubulin subunits per IFT-B complex (with the domain 

present on IFT81/74) compatible with the kinetics of ciliogenesis in Chlamydomonas 

(Taschner, Weber et al. 2016).  



 

Figure 28: Phenotypes caused by defects in retrograde IFT. 

Disruption of the IFT-A components leads to the formation of short flagella full of IFT 
material (A) Chlamydomonas temperature-sensitive dhc1b-1 mutant. At 21°C the 
mutant appeared to have a regular distribution of IFT proteins along the flagella. At 
34°C flagella appear smaller and a strong accumulation of IFT proteins in these 
flagella is visible. This accumulation is also visible on TEM images, where dense 
material is visible in the flagellum. Scale bare 5µm (IFA) and 200nm (TEM) (Engel, 
Ishikawa et al. 2012). (B) Localization and distribution of IFT172 protein in wild-type 
procyclic and IFT140RNAi  trypanosome mutants. In wild-type flagellum, IFT172 is 
present all along the flagellum and at its base. In IFT140RNAi trypanosome mutants, a 
strong accumulation of IFT protein is visible in the small flagellum. Scanning electron 
image showing wild type cell with a long flagellum attach to the cell body and 
IFT140RNAi mutant that exhibit short and dilated flagellum. Scale bar: 1µm (Absalon, 
Blisnick et al. 2008).  
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c) The IFT-A complex 

The IFT-A complex is made of 6 proteins, and with the exception of IFT43, they have 

a molecular weight superior to 120kDa and a similar domain organization. Most of 

their protein sequences exhibit some similarity with the presence of WD-40 repeats 

at the N-terminal region and TPRs at the C terminal part. Co-immunoprecipitation 

experiments suggested the existence of a core sub-complex made of IFT144, IFT140 

and IFT122 (Mukhopadhyay, Wen et al. 2010).  

IFT140 is the most studied IFT-A protein. In T. brucei, RNAi knockdown of IFT140 

expression induced the formation of short flagella full of IFT172 proteins, indicating a 

default in retrograde transport (Figure 28B) (Absalon, Blisnick et al. 2008). In 

Drosophila, a similar phenotype was observed as well as defaults in 

mechanosensory functions (Lee, Sivan-Loukianova et al. 2008).  

By contrast, IFT122 seems to play different roles depending on the organism. In 

Tetrahymena thermophila, the protein is not required for cilia assembly but for 

efficient return of IFT proteins from the ciliary tip to the cell body (Tsao and Gorovsky 

2008). The trypanosome orthologue of IFT122 is required for retrograde IFT whereas 

the IFT122 mutant mice display an anterograde phenotype with defective Sonic 

hedgehog signalling (Absalon, Blisnick et al. 2008, Cortellino, Wang et al. 2009).  

d) The IFT associated motors 

According to DIC microscopy and GFP-tagged fusion proteins in Chlamydomonas, 

IFT trains travel at an average speed of ~ 2µm/sec in anterograde direction and ~ 

4µm/sec in retrograde direction. Other live-cell studies confirmed the existence of two 

different speeds associated to each transport in T.brucei, C. elegans and primary 

cilia (Hsiao, Tuz et al. 2012, Buisson, Chenouard et al. 2013). Two microtubule-

based motors drive IFT: kinesin-2 and cytoplasmic dynein 1b, which are respectively 

associated to the anterograde and retrograde movements of IFT particles along the 

axoneme.  
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The first motor family to be identified was kinesin-2 after purification from sea urchin 

eggs. This is a trimeric complex displaying a movement towards the (+) ends of 

microtubules (Cole, Chinn et al. 1993). Further studies revealed that this complex 

was made of KIF3A and KIF3B, two kinesin-related motors and a kinesin-associated 

protein (KAP). In Chlamydomonas, kinesin localization between microtubules and the 

ciliary membrane was demonstrated by immunogold using an antibody against the 

protein FLA10, a subunit of the trimeric kinesin complex (Kozminski, Beech et al. 

1995). The inactivation of FLA10 induces a dramatic reduction of IFT frequency and 

a default in ciliogenesis. Likewise, the disruption of the kinesin-2 protein in mice 

embryos led to the absence of nodal cilia that are essential to establish the left-right 

asymmetry during embryogenesis (Nonaka, Tanaka et al. 1998).  

In C. elegans, two types of kinesin complexes participate to anterograde transport. In 

this organism, sensory cilia are made of two different parts called the middle and 

distal segments. The middle segment is made of nine doublet microtubules whereas 

the distal segment consists of nine singlet microtubules extending from the middle 

segment toward the distal tip. In these particular cilia, heterotrimeric kinesin-2 

cooperates with a second motor called OSM-3 that is made of two identical subunits 

but that does not contain a KAP. These two motors travel together along the middle 

segment. When arriving at the end of the middle segment, the kinesin-2 motors 

undergo turnaround and liberate OSM-3. The OSM-3 motor continues moving to 

reach the distal end of the axoneme and construct the distal segment. The osm-3 

mutants are still able to build the middle segment of the axoneme, suggesting that 

kinesin-2 and OSM-3 can travel independently (Snow, Ou et al. 2004). Conversely, 

the absence of kinesin-2 leads to the formation of apparently normal cilia constructed 

by OSM-3 alone (Pan, Ou et al. 2006). The genome of T. brucei encodes two kinesin 

II proteins potentially forming a homodimer but no kinesin-associated protein (KAP) 

(Julkowska and Bastin 2009). 

 

The second molecular motor implicated in IFT is cytoplasmic dynein 1b. The dynein 

heavy chain (DHC2) was first identified in sea urchin embryos where it was up-

regulated prior ciliogenesis (Gibbons, Asai et al. 1994). This motor is composed of 

copies of the two heavy chains (DHC2) and at least three intermediate or light 
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chains. Each of these components is required for proper IFT. A direct role for this 

dynein in driving retrograde IFT is supported by work done in Chlamydomonas and 

C. elegans cilia. Mutation in genes coding for heavy (DHC-1b or CHE-3), light 

intermediate (D1bLIC/XBX1/FAP133) or light (LC8) chains cause the formation of 

very short cilia containing large amounts of accumulated IFT material, suggesting a 

role in retrograde transport (Figure 28A) (Pazour, Dickert et al. 1999, Porter, Bower 

et al. 1999, Signor, Wedaman et al. 1999, Perrone, Tritschler et al. 2003, Schafer, 

Haycraft et al. 2003). In kinetoplastids, two genes encode for IFT dyneins heavy 

chain (DHC2.1 and DHC2.2) and both have been shown to be essential for flagellum 

assembly (Kohl, Robinson et al. 2003, Adhiambo, Forney et al. 2005). By contrast, 

gene encoding the intermediate chain proteins (FAP133/DICS/WDR24) and DLI1 

(D1bLIC/XBX1) are present as single copy. Inducible RNAi-mediated knockdown of 

any IFT dynein gene resulted in the production of small-inflated flagella full of IFT 

material. Dynein motors are probably assembled in the cytoplasm and associated to 

the IFT-A complex at the base of the flagellum (Blisnick, Buisson et al. 2014).  

e) IFT regulation 

IFT is a complex multi-step process, and most of its components have now been 

identified and characterized. However, several key steps remain unclear such as the 

entry of IFT material in the flagellar compartment or the assembly of the IFT trains 

per se. In this section, we summarize the different steps and mechanisms of 

flagellum assembly.  

I. Initiation of flagellum assembly  

The migration of the basal body to the cellular membrane precedes the initiation of 

axoneme elongation. In Chlamydomonas and mammals, the mother centriole needs 

to be liberated from its centrosomal role in mitosis before it could migrate to the 

membrane. In some mammalian cells, ciliogenesis is initiated by the addition of 

Golgi-derived vesicles to the distal end of the mother centriole (Sorokin 1962) 
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(Sorokin 1968). Basal body migration seems to be dependent on the actin 

cytoskeleton and other membrane-associated components of the transition zone 

(Dawe, Farr et al. 2007). Once the basal body docks to the plasma membrane, the 

axoneme elongates and one face of the Golgi-derived vesicle becomes the ciliary 

membrane, forming a membrane sheath around the emerging axoneme. The 

initiation of axoneme formation and the role of IFT in this process remain unclear. 

How is IFT initiated in the absence of axoneme? The initiation of microtubule 

polymerisation could be independent of IFT and the presence of short microtubules 

would permit to create railway of IFT trains and launch further axoneme elongation. 

However the absence of a short axoneme in IFT-BRNAi mutants does not support in 

the sense of this first hypothesis. IFT motors at the base could be essential for the 

entry of tubulin in the ciliary compartment and then for the early elongation of 

microtubules, subsequently followed by initiation of transport. It is also proposed that 

the high concentration of IFT proteins and cilium constituents ate the base of the 

cilium could initiate microtubule formation and initiate axoneme elongation. Once the 

basal body docks into the plasma membrane, axonemal elongation occurs thanks to 

the IFT machinery and the cilium becomes isolated from the rest of the cell as the 

different elements of the transition zone are added to the structure. 

II. IFT Regulation at the base of the flagellum 

IFT particles, motors are highly concentrated at the base of the flagellum as 

demonstrated by immuno-localisation or GFP::IFT fusion proteins in several 

organisms (Cole, Diener et al. 1998, Orozco, Wedaman et al. 1999, Pazour, Dickert 

et al. 1999, Buisson, Chenouard et al. 2013, Blisnick, Buisson et al. 2014). In 

Chlamydomonas, immuno-electron microscopy revealed that a pool of IFT52 is 

localized near the site where the transition fibres contact the flagellar membrane, 

suggesting that IFT is initiated by the gathering of IFT components cargo proteins at 

this level (Deane, Cole et al. 2001). This was confirmed in C. elegans and 

photoreceptor; hence transition fibres are proposed to be the site of docking and 
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assembly for the intraflagellar machinery (Deane 2001, Sedmak and Wolfrum 2010, 

Williams, Li et al. 2011).  

Recently, a study showed that IFT particles are injected by pulses in avalanche-like 

releases of accumulated material at the base of flagella. This supports that IFT entry 

regulation could be controlled by a self-organizing physical mechanism (Ludington, 

Wemmer et al. 2013). Double staining of Chlamydomonas IFT-A and IFT-B 

complexes revealed that the proteins are found in distinct regions within the basal 

body area, IFT-A proteins are located more apically whereas IFT-B proteins are more 

basal, with a partial staining overlap at the apical end of the peri-basal body region 

(Hou, Qin et al. 2007). However, these studies were performed with conventional 

light microscopy and will need confirmation with more resolutive approaches. These 

observations suggest that IFT proteins would be segregated into separate 

compartments and then subsequently assembled before their injection in the 

flagellum. The overlapping region could correspond to transition fibers (Reiter, 

Blacque et al. 2012).  

In T. brucei, photobleaching experiments demonstrated that when IFT proteins are 

coming back from retrograde trains to the base of the flagellum, they appear to follow 

each other. Then, they are mixed with the existing pool at the base of the flagellum to 

be used to build new anterograde trains (Buisson, Chenouard et al. 2013). In 

Chlamydomonas, IFT-A and dynein motor proteins were shown to be recruited from 

the cell body to the basal body pool, to be assembled into trains, to move through the 

cilium, and disperse back into the cell body after retrograde transport. This means 

that IFT-A and motors proteins evolve in an “open-system”. In contrast, IFT-B 

proteins from retrograde trains re-enter the pool present at the base where a portion 

is reused directly in anterograde trains indicating a ‘semi-open’ system, closer to 

what has been observed in trypanosomes (Wingfield, Mengoni et al. 2017).  

III. Entry into the flagellar compartment and anterograde transport 

After their assembly, IFT particles adopt a linear shape and travel toward the flagellar 

tip as part of the anterograde transport system. The speed of IFT trains depends on 
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the type of molecular motors involved as well as on the organism. In 

Chlamydomonas, kinesin-2 transports IFT trains and the inactive dynein motors 

towards the tip at the mean speed of 1.9 µm/sec (Dentler 2005). In T. brucei, the 

quantification by kymograph analysis of GFP::IFT52 speeds revealed different 

anterograde velocities. About 67% of these trains travel at a speed of 2.5 µm/sec and 

the second population travels at a slower speed of 1.53 µm/sec (Buisson, Chenouard 

et al. 2013). In this experiment the tagged version of IFT52 was overexpressed. By 

contrast, only one population of anterograde trains was detected (speed 1.75 

µm/sec) when IFT81 was endogenously tagged (Bhogaraju, Cajanek et al. 2013). 

Expression of GFP fused IFT27 using the PFR regulatory sequences led to an 

intermediate expression level and here also only one population was detected 

travelling at a speed of 2.5 µm/sec (Huet, Blisnick et al. 2014).  The situation is more 

complex in C. elegans where two different motors are involved in anterograde 

transport. Along the middle segment microtubule doublets, kinesin-2 and OSM-3 

travel together at a 0.7µm/sec rate, whereas OSM-3 continues alone along the distal 

segment to reach the tip of the cilium at a 1.3µm/sec speed (Snow, Ou et al. 2004).   

IV. Cargo protein transport 

For cilia and flagella construction, IFT trains need to transport axonemal precursors 

from the base to the assembly site at the distal tip. The most abundant cargo is 

obviously tubulin. In Chlamydomonas, IFT protein inside flagella can be imaged by 

total internal reflexion fluorescence microscopy (TIRF) (Wren, Craft et al. 2013). TIRF 

microscopy permits to restrict the excitation and detection of fluorophores to a thin 

region. This technique permitted an improvement of the signal to-noise-ratio and the 

spatial resolution. Using double channel fluorescent live imaging, it was shown that 

GFP-tagged α-tubulin molecules enter in flagellum as IFT cargoes or by simple 

diffusion (Craft, Harris et al. 2015). Simultaneous monitoring of mNeonGreen-α-

tubulin and IFT20-mCherry movements further showed that α-tubulin is an IFT cargo 

protein. More recently, the same team attenuated the tubulin IFT-based transport by 

altering the tubulin binding sites in IFT81 and IFT74. They showed that despite a 
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strong reduction in transported tubulin rates, the length of the axoneme was only 

moderately reduced. They proposed that ~80% of axonemal tubulin could enter in 

the flagellar compartment or access to the assembly site by simple diffusion and that 

IFT trains would rather be important to concentrate the tubulin in the flagellar 

compartment as well as to favour its polymerization {Harris, 

https://doi.org/10.1101/268573}. In Chlamydomonas, IFT transports other axonemal 

components to the distal end of the cilium such as DRC2 and DRC4 proteins and the 

central pair protein PF16 (Wren, Craft et al. 2013). In C. elegans, OSM-9 and OCR-2 

two transient receptor potential vanilloid (TRPV) move in ciliary membrane at rates 

similar to IFT trains. Moreover, in IFT mutant their motility is disrupted confirming the 

role of the IFT machinery to transport these cargo proteins (Qin, Burnette et al. 

2005).   

V. Transition at the flagellum tip  

The flagellum tip is the site where axonemal growth occurs. When IFT trains arrive at 

the tip of the flagellum, they release their cargoes. The anterograde trains are at least 

probably disassembled and retrograde trains are formed in association with dynein 

motors in order to return back to the flagellum base.  

On transmission electron microscopy images of several Chlamydomonas mutants, 

analysis with non-growing flagella showed that anterograde trains appeared twice 

large as retrograde one (Dentler 2005). Tomography of Chlamydomonas flagella 

showed the existence of two populations of IFT trains. The first one was made of 

electron-dense material, measured 250nm in length and exhibited a ~16 nm 

periodicity. The second population showed a less electron-dense material with a 

length of 700nm and a ~ 40 nm periodicity (Pigino, Geimer et al. 2009). A recent 

CLEM analysis of Chlamydomonas flagellum revealed that anterograde (~ 233nm) 

and retrograde (~ 209 nm) trains are similar in length (Stepanek and Pigino 2016). 

Stepanek et al developed a novel method that allows millisecond resolution in TIRF 

compatible with IFT trafficking analysis and 3D electron microscopy. A 

Chlamydomonas cell in gliding position was fixed with glutaraldehyde during TIRF 
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acquisition of GFT::IFT trains. In these conditions it was not possible to identify the 

nature of each train before checking their structure in electron microscopy. The 

anterograde trains appear like compact electron-dense structures as previously 

described. The retrograde trains appear less condensed and less regular suggesting 

that in previous studies they could have been missed or not considered as IFT 

particles. Another class of IFT trains was identified that were not motile with a length 

of ~ 650nm (Stepanek and Pigino 2016). Their structure and size was similar to the 

long trains described previously (Pigino, Geimer et al. 2009).  

The analysis of IFT train frequency in live T. brucei cells expressing GFP::IFT52 

showed a 1:3 ratio of anterograde versus retrograde train (Buisson, Chenouard et al. 

2013). This suggests that one anterograde trains is remodelled to produce three 

retrograde trains at the distal tip within 3-4s. In Chlamydomonas, a recent analysis 

using photo-gate experiments allowing to track individual trains, showed that this 

remodelling occurs within 1.3s. Then 1.7s average waiting time is necessary between 

the departure of successive retrograde trains (Chien, Shih et al. 2017).  

Since the flagellum tip is the site where the axoneme elongates, cargo proteins 

transported by IFT trains need to be unloaded in this region. In Chlamydomonas, it 

was shown that GFP-tubulin was predominantly released from anterograde IFT trains 

near the flagellar tip accompanied by a deceleration of the trains (Craft, Harris et al. 

2015).  In addition, the anterograde motors have to be inactivated; the IFT complexes 

(A and B) must be associated to the IFT dynein. This one has to be activated to drive 

retrograde transport. Due to the presence of many IFT trains, very little is known 

about the regulatory mechanisms promoting IFT remodelling. IFT trains could be 

totally disassembled and all IFT proteins would mix together before forming new 

retrograde trains. By contrast, anterograde trains could be split to produce retrograde 

trains without disassembly.  

At the tip of the Chlamydomonas flagellum, the (+) end microtubule-binding protein 

(EB1) is able to associate with IFT172 only when IFT-A and IFT-B complexes are 

separated (Pedersen, Geimer et al. 2006). EB1 could therefore play a role in the 

remodelling of IFT complexes at the flagellar tip.  
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VI. Retrograde transport 

Studies in several organisms have shown that retrograde transport is faster than 

anterograde transport. During retrograde IFT, the inactivated kinesin could be 

transported back to the base of the flagellum by IFT dynein or going back by simple 

diffusion. Immunofluorescence experiments of Chlamydomonas D1bLIC (Dynein light 

intermediate chain) mutant demonstrated that the two-kinesin subunits do not 

accumulate in the dilated flagellum (Hou, Pazour et al. 2004). The same result was 

obtained in T. brucei IFT dynein RNAi mutants (Blisnick, Buisson et al. 2014). In 

Chlamydomonas expressing KAP-GFP proteins, recent live imaging studies 

demonstrated that kinesin is coming back to the base by diffusion (Engel, Ludington 

et al. 2009, Chien, Shih et al. 2017). In contrast to Chlamydomonas, both 

heterotrimeric (OSM-3) and homodimeric kinesin-II motors of C. elegans are recycled 

by retrograde IFT (Prevo, Mangeol et al. 2015).  

  



	
  

	
  
 

 
Figure 29: The balance point model. 
 
Schematic representation of the “balance point” model (Marshall and Rosenbaum 
2001). During flagellum elongation, tubulin assembly is faster at the distal tip than 
disassembly. In parallel to flagellum elongation, the rate of delivery is going down. In 
full-length flagellum, a dynamic equilibrium between assembly and disassembly 
occurs to maintain the flagellum at its final length. The concentration of IFT proteins 
decreases in parallel to flagellum elongation, hence the initial number of IFT proteins 
recruited into flagellum determines its final length.  
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 Models for flagellum length control IV.

The way by which cells control the size of their organelles is a major question for cell 

biologists. Eukaryotic cilia and flagella are excellent models to answer this question 

because they are present in many tissues and in many organisms and because their 

length is easily measurable in one-dimension. The ciliary length is tightly regulated in 

a cell-type specific manner. Mutations inducing the production of shorter or longer 

flagella can modify the swimming speed in protists and result in several diseases in 

humans (Barsel, Wexler et al. 1988). Some patients with nephronophthisis possess 

shorter or longer cilia in kidney cells that could be responsible for disorders in the 

associated mechanosensory signalling pathways. Three main models are currently 

proposed to explain the various mechanisms of flagellum length control. 

I. Balance point model 

The balance point model is based on the principle that flagellum length is the result of 

an equilibrium between assembly and disassembly of tubulin at the distal end (Figure 

29). To explain growth, it was proposed that tubulin disassembly is totally 

independent of flagellum length while the rate of tubulin assembly is initially faster 

than disassembly but decreases in parallel to flagellum elongation (Figure 29). A 

constant disassembly was observed in the absence of IFT in the fla10 conditional 

kinesin-2 Chlamydomonas mutant, regardless of flagellar length (Kozminski, Beech 

et al. 1995, Marshall and Rosenbaum 2001). Furthermore, flagella also naturally 

shorten in a length-independent manner during mitosis (Marshall, Qin et al. 2005). 

Therefore the balance-point model proposes that the flagellar assembly rate 

decreases as the organelle elongates until the assembly and disassembly rates are 

equivalent (Marshall and Rosenbaum 2001). Marshall et al. observed that elongating 

and mature flagella contain the same quantity of IFT proteins (Marshall, Qin et al. 

2005). They proposed that the quantity of IFT determines flagellar length. At the 

initial step of ciliogenesis, a fixed quantity of IFT proteins is injected in the flagellum. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30: Precursor availability model. 
 
A limiting pool of precursor component such as tubulin is produced at the initial step 
of the ciliogenesis. Flagellum elongates until the entire protein pool is exhausted. The 
initial quantity of flagellar precursors therefore determines the final length of the 
flagellum. Production of less precursors results in a shorter flagellum (red curve) 
whereas larger amounts will lead to the production of a longer flagellum (green 
curve).   
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As flagella elongate, IFT speed does not change and IFT particles will spend more 

and more time in transit. Surprisingly, the frequency at which IFT trains reach the 

flagellar tip and release their cargoes is constant during flagellum elongation (Dentler 

2005). This is due to a decrease of IFT train size in parallel to flagellum elongation, 

allowing the production of more trains but of shorter size using the same amount of 

proteins in the flagellum (Vannuccini, Paccagnini et al. 2016). Indeed, it was 

demonstrated that anterograde IFT trains in short flagella are composed of more 

kinesin-associated protein and IFT27 proteins than trains in long flagella (Engel, 

Ludington et al. 2009).  

Accordingly to this model, cells can regulate their flagellum length by modifying the 

number of IFT trains during assembly without controlling the production of axonemal 

precursors or sensing the ciliary length. This model is only valid assuming that the 

cargo loading on IFT trains is constant during all the steps of ciliogenesis. However, 

direct imaging analysis revealed that IFT trains are loaded with tubulin and other 

axonemal proteins whereas mature flagella are largely devoid of these cargo proteins 

once they reach their expected length (Wren, Craft et al. 2013, Craft, Harris et al. 

2015). Including these observations, the “balance point” model remains valid but the 

mechanisms would rely more on tubulin transport rather than IFT amounts.  

II. The limited precursor availability 

An elegant model proposes that if the cytoplasmic pool of flagellar components were 

simply maintained at high levels such that precursor concentrations were not limiting, 

the longer flagellum did not need to depolymerize to facilitate the growing of the 

severed flagellum (Goehring and Hyman 2012). The simplest hypothesis for the 

modification of the control of flagellum length is the presence of a limiting pool of 

flagellar precursors (Figure 30). At the initial step of ciliogenesis, a fixed number of 

precursors is produced. Available precursors enter the flagellum during the growing 

phase and flagellum elongation would stop once the entire precursor pool has been 

exhausted. In mammalian cells, the modification of free tubulin availability by 

pharmaceutical agents impacts on the length of the primary cilium (Sharma, Kosan et 



 
 

 
 
 
Figure 31: Regulation of the flagellum length by sensor molecule.  
 
Schematic representation of a model based on the central regulatory role of a sensor 
molecule in the control flagellum length. At the initial step of ciliogenesis a fixed 
quantity of sensor molecules is produced. This sensor molecule is injected into 
flagellum at fixed and regular intervals. When all the sensor molecules are used the 
flagellum stops to grow. The sensor molecule can act as stabilizer of the axoneme to 
prevent depolymerisation.  
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al. 2011). These drugs act on the microtubule network and can increase 

(nocodazole) or decrease (taxol) the soluble pool of tubulin. This revealed an 

increase of the soluble tubulin pool results in an increase of ciliary length while the 

depletion of this pool using taxol induced ciliary shortening. In addition, nocodazole 

treatment induced ciliogenesis under conditions in which cilia are not normally 

present and increased cilia length on cells that have already established cilia. 

In Chlamydomonas, it is possible to severe one of the flagella independently of the 

other one. As the severed flagellum begins to regrow, the longer flagellum reduces in 

length until the two flagella are equal in length after which both grow out in parallel 

(Marshall and Rosenbaum 2001). The severing of a flagellum results in an important 

decrease of the total pool of flagellar components available in the cell. Before the 

synthesis of new flagellar components, the availability of flagellar components is 

limiting and the disassembly of the longer flagellum ensures that there is enough 

material to elongate the short flagellum. This experiment demonstrates also that in 

Chlamydomonas, flagella can communicate and share a common pool of material.  

III. The flagellum length sensor theory 

A third model proposed that cells possess dedicated reporter molecules to detect and 

measure ciliary length in real time in order to adapt their responses and finely tune 

the organelle size by elongating, reducing or maintaining its length. There are several 

possibilities by which a sensor molecule could provide the cell some readout of its 

organelle length. First, this could be a variant of the limiting pool model but 

associated to sensor molecules. The sensor molecule could be inserted into the 

cilium at regular intervals and stabilise the axoneme. Higher the number of sensor 

molecules, the longer the flagellum will be (Figure 31). Second, if ruler molecules 

were delivered to a certain region of the flagellum at some rate, then transport or 

diffusion of this molecule would create a concentration gradient whose properties will 

be directly linked to the flagellum length. Third the ruler proteins might change and / 

or induce a change in the structure of flagellar elements such as the axoneme 

depending on organelle length. Fourth, in the ‘time-of-flight’ model, the activity of a 
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length-regulating sensor could change as it moves along the cilium for example 

under the action of IFT. Assuming that IFT trains move at constant velocity, the time 

necessary for a sensor to cycle through a cilium would be proportional to ciliary 

length. The increase in travel time would be a way to measure flagellum length. This 

model has only been tested in Chlamydomonas using a temperature sensitive dynein 

mutant. When transferred at restricted temperature, retrograde transport speed is 

slow thereby IFT trains take more time to back to the ciliary base. Because of the 

reduced frequency of retrograde trains, less IFT material is available at the basal 

pool to produce new anterograde trains. Surprisingly using the KAP (Kinesin 

associated protein) tagged with GFP, it was shown that IFT injection increases. This 

observation does not support the “ time-of-flight“ model to explain the control of 

flagellum length in Chlamydomonas (Ishikawa and Marshall 2017). 

The exact molecular mechanisms by which cells are able to sense the length of their 

cilia remain unknown but some kinases have been proposed to be involved in this 

process. In Chlamydomonas, mutation in several CDK-related proteins and MAP-

kinases result in the production of abnormally long cilia (Tam, Wilson et al. 2007, 

Wilson, Iyer et al. 2008). These kinases could phosphorylate kinesin 2 subunits and 

prevent its fixation to IFT-B proteins, thereby regulating the entry of IFT trains in the 

ciliary compartment (Liang, Pang et al. 2014). Using two Chlamydomonas mutants 

that produce long (20 µm) and short flagella (6-8 µm), it was shown that CALK 

(aurora-like protein kinase) was dephosphorylated when flagella reached the length 

of 6 µm (Luo, Cao et al. 2011). They observed changes in the CALK phosphorylation 

pattern in response to ciliary length variations provide strong evidence that cells 

could sense the status of their cilia. However, the phosphorylation site on the kinesin-

2 subunit is not universally conserved.  
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 Where do IFT trains travel on the I.

trypanosome axoneme? 

Several studies have shown that Intraflagellar transport (IFT) is essential for cilium / 

flagellum formation in most eukaryotic organisms. The first in vivo observations of 

IFT particles using DIC microscopy, that was rapidly followed by many further studies 

revealed the existence of two types of transport moving along the flagellum: the 

anterograde transport from the base to the tip and the faster retrograde transport in 

the opposite direction. Classical light microscopy allows monitoring of IFT trains in 

real time by using one of their constituents tagged with a fluorescent protein 

(Buisson, Chenouard et al. 2013, Huet, Blisnick et al. 2014, Craft, Harris et al. 2015). 

In the trypanosome flagellum, anterograde trains move at different speeds and 

regularly fuse meaning that at least part of the IFT anterograde trains travel on same 

set of microtubule doublet(s). However, no similar interactions are observed between 

retrograde trains and trains that moving in opposite directions do not apparently 

collide (Buisson, Chenouard et al. 2013). How do trains traveling in opposite 

directions avoid each other? Are there multiple IFT railways along the axoneme?  

The axoneme is made of 9 doublets of microtubules and all are in theory available to 

be used for IFT. One could consider that IFT trains select randomly any of the 18 

possible tracks, meaning that the risk of collision is relatively low. Alternatively, trains 

could select specific tracks for anterograde IFT and distinct tracks for retrograde IFT, 

hence avoiding collision. This is challenging to visualise because the diameter of the 

axoneme is 180 nm in T. brucei, which is below the resolution of classic light 

microscopy (250nm). In these conditions, it is not possible to distinguish microtubules 

doublets in live cells.   

By contrast, this is quite straightforward to do using electron microscopy. IFT trains 

appear as electron dense particles sandwiched between the axonemal microtubules 

and the flagellar membrane. In T. brucei procyclic forms, IFT particles are mostly 

found on doublets 3-4 and 7-8, that are on each the side of the PFR (Absalon, 
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Blisnick et al. 2008). These 4 doublets might be different and can somehow facilitate 

IFT. This restricted localisation also raises different hypotheses. First, anterograde 

trains and retrograde trains could each travel preferentially on specific doublets of the 

axoneme in order to prevent collision. Second, both train types could travel on the 

two sides of the axoneme but using preferentially the A-tubule for one direction and 

the B-tubule for the other one.  

In cross sections of the flagellum, the localization of IFT trains around the axoneme 

can be evaluated but not their length and although we can evaluate the position of 

one particle, it is not possible to determine whether this positioning on a given 

doublet is the same along the entire length of the train.  

Therefore, we have investigated IFT train distribution along the trypanosome 

flagellum using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) to 

obtain a 3D-view of these structures with a high z-resolution (10nm) and on which the 

length of each IFT train could be accurately measured. However, IFT is a dynamic 

process and FIB-SEM analysis does not inform on the train directions (anterograde 

and retrograde). To challenge these two hypotheses, we have also used high-

resolution light microscopy in order to determine where IFT trains traffic along the 

axoneme in live T. brucei cells.  
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 How is the flagellum length II.

controlled in T. brucei? 

T. brucei has a complex life cycle alternating between the tsetse vector and a 

mammalian host,  involving many successive stages with significant different cellular 

morphologies and spectacular variations of flagellum length (Rotureau, Subota et al. 

2011). Trypanosomes assemble flagella of precise length depending of the stage of 

the parasite cycle. Currently, three main models presented in the introduction have 

been proposed to explain the control of flagellum length.  Do any of these models fit 

the strict flagellum length control observed during the T. brucei parasite cycle?  

First the “balance point” model is based on a dynamic equilibrium between assembly 

and disassembly rates using the IFT machinery to deliver tubulin (Marshall and 

Rosenbaum 2001). This model is relevant for cilia that display a microtubule turnover 

such as C. elegans or Chlamydomonas (Engel, Ludington et al. 2009, Hao, Thein et 

al. 2011). Although IFT is essential for T. brucei flagellum construction, it has recently 

been demonstrated that it is not required to maintain its length (Fort, Bonnefoy et al. 

2016). It means that a balance point model could only work if other motors were 

insuring the tubulin transport. Unfortunately, tubulin turnover at the distal tip cannot 

be investigated directly because tagged-tubulin is not incorporated in the 

trypanosome flagellum (Bastin, Bagherzadeh et al. 1996, Sheriff, Lim et al. 2014). 

Thus, we decided to scrutinize the turnover of structural proteins associated to 

tubulin, such as the outer dynein arm heavy chain B (ODAB) at the distal tip of the 

old flagellum by using fluorescence recovery after photobleaching (FRAP) 

experiments.  Since the dynein arms are firmly anchored to the microtubules, we 

reasoned that the ODAB turnover would reflect the tubulin turnover. In cultured 

procyclic form, we have not observed any turnover of ODAB at the distal end of the 

mature flagellum, demonstrating little or no turnover of the axoneme microtubules. 

This demonstrates that the “balance point” model is not compatible with situation 

observed in T. brucei procyclic forms.  
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We next challenged the model of the limiting pool of cytoplasmic components 

(Goehring and Hyman 2012). The production of flagella of different lengths could be 

controlled by modifying the abundance of axonemal components. Using the mutant 

targeting T. brucei IFT kinesins (KIN2A2BRNAi) and that produces shorter flagella (12 

µm), we have determined the amount of soluble tubulin by cell fractionation. In these 

cells with short flagella, we found out that a significant pool of soluble tubulin was still 

available, which could not explain the production of shorter flagella in KIN2A2BRNAi 

cells. This result demonstrates that the “limiting pool” model is not compatible with 

the situation observed in T. brucei procyclic forms.   

Third we have developed and evaluated a new model called the “grow and lock” 

model. We propose that the flagellum can elongate at a constant growth rate until a 

signal blocks further any elongation or shortening and locks the flagellum in a mature 

conformation. To validate this hypothesis, we have manipulated the two control 

parameters: the axoneme growth rate and the timing of the locking event. This was 

investigated in cultured procyclic form parasites that all produce mature flagella of a 

fixed length of 20µm. This new model is compatible with the existence of a length 

sensor. Indeed, the length sensor could initiate the locking event when the flagellum 

has reached its expected length.  

Trypanosomes precisely set the length of their flagella during their parasite cycle. In 

bloodstream forms and attached epimastigotes, the new flagellum has always the 

same length than the old one like in procyclics. However the short epimastigote and 

metacyclic stages are produced following an asymmetric division. For the first case, 

the new flagellum is made shorter than the old one while the new flagellum of the 

metacyclic is longer than the old one.  

 How is it possible that the same parasite cell can produce flagella with different fixed 

lengths at different times of its development? Is it the same strategy to control 

flagellum length to being used for asymmetric divisions? To answer these questions, 

we started to evaluate the pertinence of different models in the other stages of T. 

brucei parasite cycle. We focused our preliminary studies on the astonishing 

asymmetric division resulting in the production of the short epimastigotes in the 

tsetse proventriculus and tried to evaluate how a cell can produce a flagellum ten 

times shorter than the old one. 
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 Bidirectional Intraflagellar I.

Transport is restricted to only two 

microtubule doublets in the 

trypanosome flagellum. 

1)  Summary  

On transversal sections of flagella observed by transmission electron microscopy, 

IFT trains are easily detectable as electron dense particles sandwiched between the 

microtubule doublets and the flagellar membrane. In T. brucei, these particles are 

exclusively found on doublets 3-4 and 7-8 but are absent in several IFT mutants 

confirming their identity. Using Focussed Ion Beam Scanning Electron Microscopy 

(FIB-SEM) in collaboration with Adeline Mallet (Engineer at the UTechs UBI, Institut 

Pasteur), we have studied the distribution of IFT trains along the trypanosome 

flagellum. We have confirmed that IFT trains are restricted to doublets 3-4 and 7-8 all 

along the length of the axoneme and demonstrated the existence of two distinct 

populations of trains defined by their length and present on both sets of doublets. 

The average particle length in the two populations is statistically different, possibly 

representing the larger anterograde trains and smaller retrograde trains although 

alternative explanations are possible. However since FIB-SEM analysis does not 

allow discriminating anterograde, retrograde and arrested trains, two hypotheses are 

possible. First, one of these two doublets could be dedicated to anterograde 

trafficking and the other one for retrograde trafficking, hence allowing independent 

control of each mode of transport and theoretically preventing any collision. Second, 
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each doublet could serve for the two types of transport, with the same principle at the 

level of A and B microtubules.  

To discriminate these two hypothesis, Jean-Yves Tinevez (Engineer at the Image 

analyse hub, Institut Pasteur) and Cécile Fort (Previous PhD student in the lab) went 

to Janelia Campus (USA) to use recently developed high-resolution microscopy 

system to monitor the trafficking of GFP::IFT52 containing particles and confirmed 

the existence of two tracks for IFT in live cells. At the Institut Pasteur, we have 

reproduced similar observation conditions using a confocal spinning disk with a high 

numerical aperture objective (NA= 1.57). We were able to visualize IFT trafficking on 

two distinct tracks in live cells expressing mNg::IFT81 upon endogenous tagging, 

revealing that anterograde and retrograde transport take place on each of these two 

tracks. Once IFT anterograde particles reach the distal tip, they are converted in 

smaller retrograde trains in 3-4 sec (Buisson, Chenouard et al. 2013). Due to an 

improved imaging resolution, we have further demonstrated that anterograde trains 

were converted into retrograde trains on the same track and no exchange of 

fluorescent proteins was observed between the two tracks. 
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Bidirectional Intraflagellar transport is restricted to only two 
microtubule doublets in trypanosome flagellum.  

Article submitted to Journal of Cell Biology. 

Eloïse Bertiaux, Adeline Mallet, Cécile Fort, Thierry Blisnick, Serge Bonnefoy, Jamin 

Jung, Moara Lemos, Sergio Marco, Sue Vaughan, Sylvain Trépout, Jean-Yves 

Tinevez and Philippe Bastin. 
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Summary 

 

Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes 

driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. Here we 

used a combination of high-resolution electron and light microscopy to investigate how and 

where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused 

Ion Beam Scanning Electron Microscopy (FIB-SEM) analysis of trypanosomes showed that 

trains are found almost exclusively along doublets 4 and 7 and that trains distribute in two 

categories according to their length. High-resolution live imaging of cells expressing 

mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two distinct 

tracks within the flagellum and that anterograde and retrograde IFT takes place on each of 

these tracks. At the distal end, a large individual anterograde IFT train is converted in several 

smaller retrograde trains in the space of 3-4 seconds while remaining on the same track.  
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Introduction 

 

Intraflagellar transport (IFT) is the movement of molecular motors and multi-protein 

complexes that carry tubulin and other flagellar components to the tip of cilia and flagella for 

assembly (Craft et al., 2015; Kozminski et al., 1993). One or more kinesin motors are 

responsible for anterograde transport whereas a dynein motor returns the trains to the base 

during retrograde transport (Prevo et al., 2017). These moving protein complexes have been 

termed IFT trains (Pigino et al., 2009). Absence of IFT prevents construction of most cilia and 

flagella whereas perturbation of IFT components can impact on the structure and function of 

the organelle, as observed in multiple human genetic diseases (Beales et al., 2007; Dagoneau 

et al., 2009; Halbritter et al., 2013; Perrault et al., 2012).  

 Quantification of IFT in animal cells, green algae, trypanosomes or ciliates revealed 

remarkably high speed (0.5-5 µm per second) and frequency (~1-3 trains per s) of IFT trains 

in both directions (Besschetnova et al., 2010; Brooks and Wallingford, 2012; Buisson et al., 

2013; Iomini et al., 2001; Prevo et al., 2015; Snow et al., 2004; Wheeler et al., 2015; Williams 

et al., 2014; Wingfield et al., 2017). Trains are fairly large complexes of >20 proteins 

(Taschner and Lorentzen, 2016) associated to molecular motors whose size is above 1 

megadalton (Rompolas et al., 2007), raising the question of their organisation within the 

flagellum during anterograde and retrograde trafficking.  

In transmission electron microscopy (TEM), trains appear as electron dense particles 

sandwiched between microtubule doublets and the flagellum membrane. This was visualised 

in only two species so far: the green algae Chlamydomonas reinhardtii (Pigino et al., 2009; 

Ringo, 1967; Vannuccini et al., 2016) and the protist Trypanosoma brucei (Absalon et al., 

2008). Recently, an elegant study using correlative light electron microscopy in 

Chlamydomonas cells expressing a fluorescent IFT protein showed that anterograde trains are 
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positioned on the B-tubule of each microtubule doublet whereas retrograde trains are found 

on the A-tubule (Stepanek and Pigino, 2016). In this organism, IFT trains appeared on all 9 

microtubule doublets (Stepanek and Pigino, 2016). By contrast, transmission electron 

microscopy (TEM) suggested that electron dense particles looking like IFT trains are 

restricted to microtubule doublets 3-4 and 7-8 of the axoneme in Trypanosoma brucei 

(Fig. 1A)(Absalon et al., 2008; Hoog et al., 2016). The restricted presence of IFT trains on 

two doublets raises two hypotheses. First, a tantalising explanation would be that one of these 

two doublets serves as track for anterograde transport and the other one for retrograde 

trafficking, hence allowing independent control of each mode of transport (Fig. 1B, Model 1). 

Second, each doublet could serve as a double track for IFT (Fig. 1B, Model 2), as shown in 

Chlamydomonas. In that situation, train frequency and speed could be similar or different 

between the two doublets. In both models, anterograde trains need to be converted to 

retrograde trains. Does it happen on the same doublet or is from a common pool of material 

shared at the distal end? Here, we investigated IFT train distribution along the length of the 

trypanosome flagellum using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) 

to get a three dimensional view and to measure the length of each IFT train using a 10nm Z-

axis increment. We formally demonstrate that trains are indeed mostly found on doublets 4 

and 7 and that they fall in two categories defined by their length. Using high-resolution live 

cell imaging, we reveal which hypothesis is correct for the distribution of anterograde and 

retrograde trafficking and we apply kymograph analysis to examine the conversion of 

anterograde to retrograde trains.  
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RESULTS 

 

FIB-SEM analysis revealed the length and 3-D distribution of IFT trains 

To obtain a global view of the 3-D distribution of IFT trains by electron microscopy, 

different approaches are available. Since the twisted shape of the trypanosome flagellum 

(Sherwin and Gull, 1989) restricts the use of conventional transmission electron tomography 

to short portions of the axoneme, we turned to FIB-SEM that allows trimming a fixed sample 

over several µm (Kizilyaprak et al., 2014). Wild-type trypanosomes were chemically fixed, 

dehydrated and embedded in resin in conditions similar to classic transmission electron 

microscopy. The block was milled with 10 nm increments using the ion beam, hence 

providing a better resolution than serial sectioning. Four samples were reconstructed, each 

containing several trypanosomes. Navigating through the volume of each sample revealed the 

typical trypanosome architecture with the cell body containing the subpellicular microtubules, 

the nucleus, the large mitochondrion and its kinetoplast (mitochondrial DNA), the 

endoplasmic reticulum, the Golgi apparatus or the glycosomes (Video S1)(Fig. 2A). The 

shape, size and distribution of these organelles were in agreement with published data based 

on electron tomography (Lacomble et al., 2009) or serial block face sectioning (Hughes et al., 

2017). Flagella were clearly recognised in both cross and longitudinal sections, including 

multiple cases where the proximal portion was seen to emerge from the flagellar pocket 

(Video S1). The base of the flagellum displayed the typical organisation with the basal body, 

the transition zone, the axoneme, and finally the axoneme and the paraflagellar rod (PFR), a 

lattice-like structure (Hughes et al., 2012) essential for motility (Bastin et al., 1998). Flagella 

were correctly attached to the cell body with the exception of the distal end that is always free 

as expected (Sherwin and Gull, 1989).  
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 Importantly, IFT trains can be seen without ambiguity as electron dense particles 

found between the flagellar membrane and microtubule doublets (Video S1 and Fig. 2A, 

arrows on bottom panels). To determine doublet number, the fixed orientation of the axoneme 

relative to the PFR (Branche et al., 2006; Gadelha et al., 2006; Ralston et al., 2006) was 

exploited (Fig. 1A). Indeed, the presence of a thick projection that connects the B tubule of 

doublet 7 to the PFR makes doublet numbering straightforward (Fig. 1A). In case this 

projection was not visible, the proximal to distal orientation of the axoneme was determined 

by travelling through the volume knowing that dynein arms are orientated clockwise when 

starting from the base of the flagellum (Sherwin and Gull, 1989). Because several portions of 

flagella were encountered in a single volume, each axoneme was individually marked with a 

different colour and IFT trains were indicated in red (Fig. 2B,C)(Video S2). Most trains were 

found along doublets 4 and 7 and exhibited various lengths (Fig. 2B,C). We detected 52 trains 

on doublet 4 and 56 trains on doublet 7 in 27 distinct flagella (total cumulated axoneme length 

166 µm, the average length of visible axoneme was 6.25 ± 4.21 µm). Only 2 trains were not 

found on these doublets (both were present on doublet 1). The calculated average number of 

trains reported to the theoretical full-length flagellum of 20 µm was 6.15 on doublet 4 and 6.6 

on doublet 7. This is below the expected numbers of 8.6 anterograde trains and 8.9 retrograde 

trains per flagellum deduced from their speed and frequency in live cells (Buisson et al., 

2013), suggesting that some trains might be missed in the FIB-SEM analysis. Statistical 

analysis using R software indicated the presence of two distinct populations on each doublet, 

with 61% of short trains (202 ± 94 nm) and 39% of longer trains of (822 ± 515 nm) on 

doublet 4 (n=52) and 68% of short trains (207 ± 99 nm) and 32% of longer trains of (968 ± 

239 nm) on doublet 7 (n=56) (Fig. 2D).  

 These results demonstrate that IFT trains are restricted to doublets 4 and 7 along the 

length of the flagellum in trypanosomes. The average train number and train length is 
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undistinguishable between the two doublets, hence suggesting that similar trains travel on 

each doublet, supporting the second hypothesis of anterograde and retrograde IFT trafficking 

taking place on each doublet. However, FIB-SEM does not give information on train direction 

and the possible presence of arrested trains (Stepanek and Pigino, 2016) cannot be ruled out 

and could interfere with the interpretation. Now that the spatial distribution of IFT trains has 

been established, we turned to live cell imaging in order to investigate their dynamics.   

 

Immunofluorescence analysis indicates the existence of separate tracks for IFT 

Measurements of flagellar sections by transmission electron microscopy showed that 

the outer face of doublets 4 and 7 are separated by 190 ± 11 nm (n=20), which is below the 

resolution of conventional light microscopy. To evaluate the feasibility of detecting IFT on 

these two separate tracks, we tried different fixation protocols and examined the distribution 

of IFT proteins by immunofluorescence assay with antibodies against the IFT172 protein 

(Absalon et al., 2008) and the axonemal protein TbSAXO1 (Dacheux et al., 2012). Fixation of 

trypanosomes in paraformaldehyde followed by a post-fixation in methanol led to the 

detection of TbSAXO1 as a single thick line (second column, Fig. 3) as expected from 

immunogold analysis that showed that this protein was present throughout the axoneme 

(Dacheux et al., 2012). By contrast, IFT172 staining appeared as two parallel lines decorating 

both sides of the TbSAXO1 staining (third column, Fig. 3). This was observed in the single 

flagellum of G1 cells (Fig. 3A) and in both mature and growing flagella of duplicating cells 

(Fig. 3B). Methanol fixation results in dehydration and flattens the sample on the slide, 

possibly leading to a better separation of IFT trains allowing their detection as two separate 

lines by conventional light microscopy. This is promising because this suggests that IFT 

positioning on distinct doublets could be discriminated by light microscopy. 
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The next step was the investigation of IFT in live cells, which requires the expression 

of a fluorescent reporter in trypanosomes (Adhiambo et al., 2009; Bhogaraju et al., 2013; 

Buisson et al., 2013; Huet et al., 2014). Cell lines expressing GFP::IFT52 have been used 

reproducibly to detect IFT (Absalon et al., 2008; Buisson et al., 2013) but in this set-up, 

GFP::IFT52 was expressed from the ribosomal DNA locus with a strong promoter (Wirtz and 

Clayton, 1995). This led to bright flagellar signal but also to significant cytoplasmic signal 

(Buisson et al., 2013). To avoid any risk of potential artefacts due to over-expression, an 

in situ tagging approach (Dean et al., 2017; Kelly et al., 2007) was selected to generate a cell 

line expressing IFT81 fused to mNeonGreen (mNG)(Shaner et al., 2013) from its endogenous 

locus. IFT81 is a well-known member of the IFT-B complex involved in tubulin binding and 

transport (Bhogaraju et al., 2013; Kubo et al., 2016) and was shown previously to traffic 

within the trypanosome flagellum (Bhogaraju et al., 2013). Western blotting with an anti-

mNG antibody demonstrated that the fusion protein displayed the expected mobility on SDS-

PAGE (Fig. S1A). Live analysis showed the classic distribution with a strong signal at the 

base of the flagellum and train trafficking in both anterograde and retrograde direction within 

the flagellum that was detected by kymograph analysis (Video S3 & Fig. S1B-C). Kymograph 

analysis revealed that the frequency and speed of anterograde trains (Fig. S1D-E) was similar 

to what was reported previously for other IFT-B proteins (Bhogaraju et al., 2013; Buisson et 

al., 2013; Huet et al., 2014). Finally, applying the paraformaldehyde/methanol fixation 

protocol followed by direct observation of the mNG::IFT81 fluorescent signal led to the 

detection of two parallel lines within flagella (Fig. S1F). The behaviour of mNG::IFT81 is 

therefore comparable to that of GFP::IFT52 and both cell lines were used for imaging IFT in 

trypanosomes. 
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High-resolution live cell imaging reveals bidirectional IFT on two tracks 

These results are encouraging because they suggest that live imaging by light 

microscopy could permit the visualisation of IFT on two distinct tracks. We turned to super-

resolution based on structured illumination microscopy (SIM)(Gustafsson, 2000; Gustafsson 

et al., 2008) to visualise IFT trafficking. SIM imaging provided the spatial resolution and 

demonstrated the existence of two parallel lines within the flagellum for fluorescent 

mNG::IFT81 in live cells (Fig. S2A and Video S4). Next, we tried to record IFT trafficking 

over time using the GFP::IFT52 cell line (Fig. S2B and Video S5). This demonstrated that 

IFT trains move on two distinct tracks in trypanosomes, in agreement with the electron 

microscopy data. However, the acquisition time (800 milliseconds) was not compatible with 

the rapid speed of IFT in trypanosomes (~2 µm/s for anterograde and ~5 µm/s for retrograde 

transport) and images of multiple trains overlapped, precluding analysis (Video S5).  

To find an appropriate compromise between sufficient resolution and fast acquisition, 

“high-resolution” imaging was performed using objectives with superior numerical aperture 

(1.49 NA for GFP::IFT52, imaging performed at the Janelia Farm Research Campus, 1.57 NA 

for mNG::IFT81, imaging performed at the Institut Pasteur)(Li et al., 2015). In these 

conditions, the theoretical resolution for a green fluorescent molecule should be ~160 nm, a 

value compatible with the discrimination of IFT trafficking on doublets separated by 190 nm. 

Remarkably, examination of cells expressing mNG::IFT81 (Video S6) or GFP::IFT52 (Video 

S7) with the high numerical aperture objectives revealed the presence of trains on two 

separate tracks within the flagellum. This was clearly confirmed with time projections (Fig. 

4A and Fig. S3A). Closer examination of IFT trafficking demonstrated that anterograde and 

retrograde IFT trafficking was taking place on each of these tracks (Fig. 4B, Fig. S3B, Video 

S6 and Video S7). This was further supported by kymograph analysis that showed the 

presence of distinct anterograde and retrograde trains on each track (Fig. 4C & Fig. S3C). 
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These results demonstrate that IFT takes place on two separate tracks in the trypanosome 

flagellum presumably corresponding to doublets 4 and 7, and that anterograde and retrograde 

trafficking occurs on each of them. This supports the hypothesis of bidirectional IFT on both 

doublets and invalidates the model with one track for each direction. 

To be able to quantify and compare IFT train trafficking on each track, it was 

necessary to find a way to identify them. To do that, the cellular asymmetry of trypanosomes 

was exploited. Cells were orientated with the posterior end towards the top of the image and 

with the flagellum lying on the left-hand side, hence defining a left and a right track (Fig. 4A 

and Fig. S3A). Quantification of anterograde IFT train trafficking showed a similar frequency 

close to 0.5 anterograde train per second on the left and on the right track for both fluorescent 

proteins (Fig. 4D, Fig. S3D and Table 1). There was no statistically significant difference 

between these two parameters in cells expressing mNG::IFT81 (one-way ANOVA test, 

p=0.29) or GFP::IFT52 (p=0.14). The anterograde speed was ~2.5 µm per second on each 

track in both cell lines (Fig. 3E, Fig. S3E and Table 1) although we noted a trend towards 

slower IFT speed by 10-15% on the right track (p=0.20 for mNG::IFT81 and p=0.067 for 

GFP::IFT52). Trains trafficking simultaneously on each track might not be discriminated with 

conventional light microscopy. Hence, the anterograde IFT train frequency was compared 

using videos of mNG::IFT81 cells acquired in the same experiment but where two tracks 

could not be discriminated (Fig. 4E, “unresolved”). The frequency calculated from the total of 

left and right kymographs in cells where the two tracks could be detected was consistently 

higher (0.98 anterograde trains per second) compared to cells where only one track was 

visible (0.76 anterograde trains per second)(Table 1) with statistical confidence (p=0.02). This 

result suggests that up to 15% of trains could be missed when IFT was imaged at low 

resolution. By contrast, their average train speed was indistinguishable (Table 1, p=0.21), 

suggesting that the “missed” trains are not a specific population at least in terms of speed. 
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Although retrograde transport was detected in almost all videos (Video S5 and Video 

S6), the lower intensity of these trains made their quantification quite challenging, especially 

for the frequency. Nevertheless, it was possible to estimate the speed of the brightest 

retrograde trains, which was between 4 and 5 µm per second, in agreement with data obtained 

using conventional imaging (Buisson et al., 2013).  

To visualise the conversion of anterograde to retrograde transport, we looked at the 

distal end of the flagellum of cells expressing mNG::IFT81 (Fig. 5A & Video S8). On both 

left and right tracks, the arrival of large anterograde trains at the distal end of the flagellum 

was clearly visible. This was followed by a lag phase (seen as vertical lines on the 

kymograph) where the fluorescent material remained at the distal end but its intensity 

progressively went down while multiple retrograde trains were released during a ~3-4 second 

period (Fig. 5B). It should be noted that the anterograde trains do not all stop exactly at the 

same place (merged panel, Fig. 5B). Data also showed that anterograde trains convert to 

retrograde trains on the same track and that no exchange of IFT-B material could be detected 

between left and right tracks. To confirm these results, the signal for GFP::IFT52 was 

bleached only at the distal end of the flagellum and IFT was recorded in this portion (Fig. 5C 

& Video S9). This led to a significant improvement of the signal-to-noise ratio and facilitated 

visualisation of retrograde trains on videos and on kymographs. Analysis of such kymographs 

confirmed the findings above (Fig. 5D, see magnified area). 

Overall, these results obtained with two different cell lines (expression of 

mNG::IFT81 and GFP::IFT52) at two different imaging centres (Janelia Farm, USA and 

Institut Pasteur, France) using different techniques demonstrate that IFT takes place on two 

distinct tracks and that anterograde and retrograde trafficking occur on each of these tracks. 

To our knowledge, this is the first time that bidirectional IFT trafficking at the level of 

individual doublets has been formally demonstrated. 
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DISCUSSION 

 

T. brucei is only the second organism where IFT trains have been visualised in both 

light and electron microscopy. Here we reveal train distribution on doublets 4 and 7 using 

FIB-SEM and demonstrate bidirectional trafficking on two separate tracks by high-resolution 

live cell imaging. These tracks presumably correspond to doublets 4 and 7 but definitive 

confirmation will require the identification of specific markers of each of these doublets at the 

axoneme level.  

FIB-SEM detected two distinct populations of trains on each doublet. The first 

possibility is that long trains correspond to anterograde ones and short trains to retrograde 

ones, as expected from the distinctive size on videos and kymographs (Buisson et al., 2013). 

The higher frequency of short trains (2.3 to 1.5-fold) is consistent with the higher abundance 

of retrograde trains detected during live imaging (Buisson et al., 2013). However, the total 

number of IFT trains seen in FIB-SEM (12.5 per flagellum) is lower compared to what was 

detected by live imaging (17.5). Moreover, the average length of long trains is close to 1 µm 

and this was extremely rare on kymographs. Intriguingly, two populations of IFT trains were 

also found using electron tomography analysis of Chlamydomonas flagella, with average 

lengths fairly close to what is reported here for trypanosomes (Pigino et al., 2009). Long 

trains were initially thought to correspond to anterograde trains because they accumulate in 

the fla14 retrograde transport mutant whereas small trains disappear. However, correlative 

light and electron microscopy revealed that long trains correspond to standing material and 

that short particles correspond to anterograde trains (Stepanek and Pigino, 2016). Based on 

this, we propose that short and long trains observed by FIB-SEM in T. brucei flagella 

correspond to anterograde trains and to standing material, respectively. A total of 7.2 short 

trains is found per flagellum, which is close to the predicted number of 8.6 (Buisson et al., 
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2013). Observation of kymographs indicated the presence of standing trains that look larger 

than moving trains (Fig. 5B, stars). It should be noted that this material does not remain stuck 

forever as it appears to be picked up by other anterograde trains after a few seconds (stars on 

Fig. 5B and Fig. S1E). In this scenario, retrograde trains would be missed either because they 

are too short or because their morphology is different and difficult to identify by FIB-SEM. In 

Chlamydomonas, retrograde trains appear less condensed and less regular compared to 

anterograde trains, and had been missed in conventional transmission electron microscopy 

until their identification by correlative techniques (Stepanek and Pigino, 2016).  

The use of superior numerical aperture objectives appears to be an optimal 

compromise between speed of acquisition and spatial resolution. It revealed the existence of 

bidirectional IFT on two tracks but it also showed that the frequency of IFT measured with 

conventional microscopy might be underestimated. Moreover, it revealed the transition of 

anterograde trains to retrograde trains with IFT-B proteins spending up to 3-4 seconds at the 

distal end while being progressively associated to the emergence of several retrograde trains. 

This value is in agreement with previous low-resolution analysis based on photobleaching 

experiments (Buisson et al., 2013). In Chlamydomonas (Chien et al., 2017) and in C. elegans 

(Mijalkovic et al., 2017)(Mijalkovic et al, in revision), IFT-B proteins also spend a few 

seconds at the distal end of microtubules before returning towards the base as components of 

several retrograde trains.  

The restriction of IFT to only two doublets is different from the situation encountered 

in Chlamydomonas where trains appear to be present on the majority of the doublets 

(Stepanek and Pigino, 2016). So far, IFT trains have only been visualised by electron 

microscopy in these two organisms. To understand the significance of IFT presence on all or 

only some doublets, it will be essential to determine which doublets are being used in 

different types of cilia in various organisms. This raises the question of why restricting IFT to 
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some doublets. We propose a scenario where the restriction of IFT to some doublets would 

represent an evolutionary advantage by liberating the other doublets from constraints imposed 

by IFT train presence, thereby offering the opportunity for acquiring new structures or 

functions. In trypanosomes and related protists, the PFR is tightly associated to the axoneme 

(Hughes et al., 2012; Koyfman et al., 2011) and brings an essential contribution to flagellum 

motility (Bastin et al., 1998; Santrich et al., 1997). Restricting IFT to some doublets could 

allow the passage of other molecular motors on the remaining doublets. These could transport 

different cargoes, hence increasing the range of functions performed by cilia and flagella. In 

trypanosomes, an unusually large number of genes encoding for kinesins has been identified 

(more than 40, (Berriman et al., 2005)) and several of the protein products have been localised 

to the flagellum (Chan and Ersfeld, 2010; Demonchy et al., 2009) or found in proteomic 

analyses of purified flagella (Broadhead et al., 2006; Oberholzer et al., 2011; Subota et al., 

2014).  

The trypanosome flagellum is attached to the cell body for most of its length towards 

the PFR side. Doublets 1-2-3-8-9 are towards the surface of the flagellum and the absence of 

IFT could favour interactions with host tissues. For example, parasites interact with the 

epithelium of the salivary glands of the tsetse fly via their flagellum and the development of 

electron-dense material resembling hemi-desmosomes (Tetley and Vickerman, 1985). In other 

organisms, the cilia of sensory neurons of C. elegans spring to mind. They are composed of a 

middle segment made of 9 doublet microtubules and of a distal segment with only singlet 

microtubules. Bidirectional IFT was reported on both segments without collisions (Snow et 

al., 2004). If some microtubules were used only for anterograde IFT and others only for 

retrograde IFT, it would provide a way to avoid collisions (Kuhns and Blacque, 2016).  

Here, we show a striking functional difference between doublets 4 & 7 and the others 

that cannot sustain IFT. Although microtubule doublets look similar, discrete molecular and 
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structural differences have been noted between them in several organisms (Heuser et al., 

2012; Lin et al., 2012). This is also the case in trypanosomes where doublets 4, 5, 6 and 7 are 

physically linked to the PFR by different structures (Hughes et al., 2012; Sherwin and Gull, 

1989) that could contain unique proteins (Imboden et al., 1995). Other molecular differences 

between doublets start to be unveiled with the recent example of CFAP43 and CFAP44, two 

proteins required for motility that have been located to doublets 5 and 6 using super-

resolution microscopy (Coutton et al., 2018).  

What could make doublets 4 and 7 different from the others and why would they be 

used for IFT? One possibility is that they contain biochemical information that is 

preferentially recognised by the IFT molecular motors. Promising candidates are post-

translational modifications of tubulin such as (poly)glycylation or (poly)glutamylation. These 

are found at the surface of the tubulin dimer where one would expect interactions with 

molecular motors (Konno et al., 2012; Sirajuddin et al., 2014). Insights into a potential 

molecular mechanism are provided by in vitro experiments using engineered tubulin with 

various post-translational modifications. This revealed that recruitment and processivity of the 

IFT kinesin motor KIF17 was stimulated by polyglutamylation (Sirajuddin et al., 2014). 

Polyglutamylation and polyglycylation are overwhelmingly represented in cilia and flagella 

and their alteration affect these organelles (Bosch Grau et al., 2013; Lee et al., 2012; Pathak et 

al., 2011; Rogowski et al., 2009; Wloga et al., 2009). Mass spectrometry showed that 

trypanosome tubulin is extensively polyglutamylated, with variable numbers of glutamate 

residues added to both cytoplasmic and flagellar microtubules (Schneider et al., 1997). 

Investigating the role of tubulin glutamylation in the definition of microtubule heterogeneity 

will be an exciting but challenging future axis for research given the large number of enzymes 

involved in this process (Janke et al., 2005; van Dijk et al., 2007) including in T. brucei 

(Casanova et al., 2014). 
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Methods 
 

Trypanosome cell lines and cultures 

Cell lines used for this work were derivatives of T. brucei strain 427 cultured at 27°C in 

SDM79 medium supplemented with hemin and 10% foetal calf serum (Brun and 

Schonenberger, 1979). IFT imaging in live cells was carried out with a cell line expressing 

GFP::IFT52 from the pHD430 vector (Absalon et al., 2008) under the control of the tet-

repressor (produced by plasmid pHD360 (Wirtz and Clayton, 1995)) and a Tandem 

Tomato::IFT81 fusion produced from its endogenous locus (Bhogaraju et al., 2013). For the 

generation of the mNeonGreen::IFT81 expressing cell line, the first 500 nucleotides of IFT81 

(Gene DB number Tb927.10.2640) were chemically synthesised (GeneCust, Luxembourg) 

and cloned in frame with the mNeonGreen gene (Shaner et al., 2013) within the HindIII and 

ApaI sites of p2675 vector (Kelly et al., 2007) The construct was linearised within the IFT81 

sequence with the enzyme XcmI and nucleofected (Burkard et al., 2007) in the wild-type 427 

cell line, leading to an integration by homologous recombination in the endogenous locus and 

to expression of the full-length coding sequence of IFT81 fused to mNeonGreen. 

Transfectants were grown in media with the appropriate antibiotic concentration and clonal 

populations were obtained by limited dilution.  

 

Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) 

Trypanosomes were fixed directly in medium with 2.5% glutaraldehyde (Sigma), cells were 

spun down, the supernatant was discarded and the pellet was incubated for 15 minutes in 

fixation buffer made of 2.5% glutaraldehyde and 4% paraformaldehyde in cacodylate 0.1M 

buffer (pH 7.4). Samples were washed 3 times with 0.1M cacodylate buffer (5 minutes each) 

and post fixed with 1% osmium (EMS) and 1.5% potassium ferrocyanide (Sigma) in 0.1M 

cacodylate buffer for 1h. Samples were treated for 30 minutes with 1% tannic acid (Sigma) 
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and 1h with 1% osmium tetroxide (EMS), rinsed in water and dehydrated in ethanol (Sigma) 

series of 25%, 50%, 75%, 90% and 100% (15 minutes each). Cells were embedded in epoxy 

resin (EMS) after 48h at 60°C of polymerization. Embedded samples were mounted on 

aluminium stubs. Blocks were trimmed with glass knives in such a way that exposure of 

vertical faces allowed lateral milling by Focused Ion Beam FIB. Tomographic datasets were 

obtained using a FESEM Zeiss Auriga microscope equipped by a CrossBeam workstation 

(Carl Zeiss) and acquired using ATLAS 3D software (Carl Zeiss). For milling with the 

focused Ga-ion beam, the conditions were as follows: 0.5–1nA milling current of the Ga-

emitter, leading to the removal of 10 nm at a time from the epoxy resin. SEM images were 

recorded with an aperture of 60 µm in the high-current mode at 1.5 or 2 kV of the in-lens EsB 

detector with the EsB grid set to −1000 V. Depending on the respective magnification, voxel 

size was in a range between 10 and 20 nm in x/y and 10 nm in z. Contrast of the images was 

inverted to conventional bright field. Two different persons performed the manual annotation 

of IFT trains. These were defined as electron dense structures sandwiched between the 

axoneme and the flagellum membrane and present on a minimum of 3 consecutive slices (30 

nm). Densities associated to membrane distortions were excluded. Trains were defined as 

different when separated by a minimum of 3 slices (30 nm).  

 

Data processing and 3-D-reconstruction 

Alignment of image stacks was done with the open source software ImageJ for data alignment 

(Schneider et al., 2012) and Amira Software for visualization (FEI Thermofisher, v6.0.1). 

Segmentation and 3-D reconstructions were performed semi-automatically using Amira 

software and were corrected manually. 
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Length measurement of IFT trains 

Segmentations of flagella and IFT trains were first split according to their segmented colours 

then skeletonized in ImageJ (Schneider et al., 2012) using the Skeletonize 3D plugin 

(Arganda-Carreras et al., 2010). The number of voxels composing the generated skeletons 

was computed in ImageJ using the Object Counter 3D plugin (Bolte and Cordelieres, 2006). 

The length of analysed biological structures (flagella and IFT trains) was calculated as the 

number of voxels constituting the skeletonized structure multiplied by the size of the voxel. 

 

Statistical analyses 

In absence of other indications, all errors correspond to the standard deviation of the 

population. Anova tests were performed using the appropriate tool in Kaleidagraph v4.5.2. 

Populations of IFT trains on doublets 4 and 7 were analysed separately with the statistical 

analysis software R (Team, 2014) using the normalMixEM algorithm of the Mixtools package 

(version 1.1.0)(Benaglia et al., 2009) to check whether they were composed of sub-

populations or not. This algorithm based on expectation maximisation estimates the mean and 

standard deviation values of Gaussian sub-populations and eventually converges to a solution 

if such sub-populations exist. Convergence was reached in 27 and 13 iterations for IFT trains 

on doublet 4 and 7 respectively. 

 

Structured illumination microscopy (SIM) 

Trypanosomes expressing the mNG::IFT81 fusion protein were spread on glass coverslips in 

medium and SIM was performed on a Zeiss LSM780 Elyra PS1 microscope (Carl Zeiss, 

Germany) using 100×/1.46 oil Plan Apo objective and an EMCCD Andor Ixon 887 1 K 

camera for the detection at the Institut Pasteur. Fifteen images per plane per channel (five 

phases, three angles) were acquired to perform the SIM image. SIM image was processed 
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with ZEN software. The SIMcheck plugin (Ball et al., 2015) in ImageJ (Schneider et al., 

2012) was used to evaluate the acquisition and the processing parameters.  

 

High-resolution imaging of IFT trafficking 

The cell line expressing GFP::IFT52 and Tandem Tomato::IFT81 was grown in standard 

conditions and samples were mounted between glass and coverslip for observation on a 

custom built microscope (Gustafsson, 2000; Gustafsson et al., 2008) based on a Zeiss 

AxioObserver D1 stand equipped with an UAPON100XOTIRF 1.49 NA objective (Olympus) 

and an Orca Flash 4.0 sCMOS camera (Hamamatsu). GFP fluorophores were excited with a 

488 nm laser (500 mW, SAPPHIRE 488-500, Coherent) and detected through an adequate 

emission filter (BP 500-550 nm). The sequence contains a series of 300 images exposed for 

20 milliseconds each, for a total duration of 17.7 s. Kymographs of individual paths of IFT 

were extracted using Fiji (Schindelin et al., 2012). The two IFT tracks were manually 

annotated as segmented lines on the temporal maximal intensity projection of the sequence. 

These two lines were then used to re-slice the sequence data, generating the kymographs that 

were analysed using Icy (de Chaumont et al., 2012). The cell line expressing mNG::IFT81was 

grown in standard conditions and samples were mounted between glass and quartz coverslip 

(Cover glasses HI, Carl Zeiss, 1787-996). For movie acquisition, a spinning disk confocal 

microscope (UltraVIEW VOX, Perkin-Elmer) equipped with an oil immersion objective Plan-

Apochromat 100x/1.57 Oil-HI DIC (Carl Zeiss) was used. Movies were acquired using 

Volocity software with an EMCCD camera (C-9100, Hamamatsu) operating in streaming 

mode. The samples were kept at 27°C using a temperature controlled chamber. Sequences of 

30 seconds were acquired with an exposure time of 100 milliseconds per frame. Kymographs 

were extracted and analysed with Icy software (de Chaumont et al., 2012) using the plug-in 

Kymograph Tracker 2 (Chenouard et al., 2010). The cells were positioned in the same 
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orientation with the posterior end on top and the flagellum on the left-hand side to define the 

left and right tracks. The two IFT tracks were manually defined as Region of Interest using 

the temporal projection.  

 

Immunofluorescence imaging  

For paraformaldehyde-methanol fixation, cultured parasites were washed twice in SDM79 

medium without serum and spread directly onto poly-L-lysine coated slides (Fisher Scientific 

J2800AMMZ). Cells were left for 10 minutes to settle prior to treatment with 1 volume 4% 

PFA solution in PBS at pH 7. After 5 minutes, slides were washed briefly in PBS before 

being fixed in pure methanol at a temperature of -20°C for 5 minutes followed by a 

rehydration step in PBS for 15 minutes. For immunodetection, slides were incubated for 1 h at 

37°C with the appropriate dilution of the first antibody in 0.1% BSA in PBS; mAb25 

recognises the axonemal protein TbSAXO1 (Dacheux et al., 2012; Pradel et al., 2006) and a 

monoclonal antibody against the IFT-B protein IFT172 (Absalon et al., 2008). After 3 

consecutive 5-minute washes in PBS, species and subclass-specific secondary antibodies 

coupled to the appropriate fluorochrome (Alexa 488, Cy3, Jackson ImmunoResearch) were 

diluted 1/400 in PBS containing 0.1% BSA and were applied for 1 h at 37°C. After washing 

in PBS as indicated above, cells were stained with a 1µg/ml solution of the DNA-dye DAPI 

(Roche) and mounted with the Slowfade antifade reagent (Invitrogen). Slides were 

immediately observed with a DMI4000 microscope (Leica) with a 100X objective (NA 1.4) 

using a Hamamatsu ORCA-03G camera with an EL6000 (Leica) as light excitation source. 

Image acquisition was performed using Micro-manager software and images were analysed 

using ImageJ (National Institutes of Health, Bethesda, MD). 

 

Western blot 
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Cells were washed once in Phosphate Buffer Saline (PBS). Laemmli loading buffer was 

added to the cells and samples were boiled for 5 minutes. 20µg of protein were loaded into 

each lane of a Criterion™ XT Bis-Tris Precast Gel 4-12% (Bio-Rad, UK) for SDS-Page 

separation. XT-Mops (1X) diluted in deionised water was used as a running buffer. Proteins 

were transferred onto nitrocellulose membranes using the BioRad® Trans-Blot TurboTM 

blotting system (25V over 7 minutes). The membrane was blocked with 5% skimmed milk for 

one hour and then incubated with the monoclonal anti-mNeonGreen (32F6) primary antibody 

(ChromoTek, Germany) diluted 1/1000 in 0.05% PBS-Tween (PBST). As a loading control 

the anti-PFR L13D6 monoclonal antibody (Kohl et al., 1999) diluted 1/25 was used. After 

primary antibody incubation, three washes of 5 minutes each were performed in 0.05% PBST 

followed by secondary antibody incubation. Anti-mouse secondary antibody coupled to 

horseradish peroxidase, diluted to 1/20,000 in 0.05% PBST containing 0.1% milk, and the 

membrane was incubated with this for 1 hour. The Amersham ECL Western Blotting 

Detection Reagent Kit (GE Healthcare Life Sciences, UK) was used for final detection of 

proteins on the membrane. 
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Abbreviations 

 

FIB-SEM, Focused Ion Beam Scanning Electron Microscopy  

IFA, immunofluorescence assay 

IFT, intraflagellar transport 

PFR, paraflagellar rod 

TEM, transmission electron microscopy  
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Table 1. Speed and frequency of anterograde IFT trafficking 

 

 Speed (µm/s) Frequency (trains/s) n 

mNG::IFT81 

Left 2.43 ± 0.68 0.52 ± 0.22 284 

Right 2.27 ± 0.65 0.45 ± 0.18 245 

Left + right 2.35 ± 0.62 0.98 ± 0.33 529 

Unresolved* 2.60 ± 0.46 0.76 ± 0.11 389 

 

GFP::IFT52 

Left 2.56 ± 0.26 0.43 ± 0.10 138 

Right 2.18 ± 0.29 0.34 ± 0.17 110 

Left + right 2.37 ± 0.26 0.77 ± 0.15 248  

 
 

*Corresponds to videos acquired in high-resolution conditions but where only one track could 

be visualised, presumably due to the orientation of the flagellum during the acquisition. 

Hence, two tracks could not be resolved. 
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Figure legends 

 

Fig. 1. Positioning of IFT trains in the trypanosome flagellum and models for IFT 

trafficking. (A) Cross-section of the trypanosome flagellum observed by conventional TEM. 

The arrowhead indicates an IFT particle positioned at the level of doublet 4. The cartoon 

shows the main structural components of the axoneme with the numbering of microtubule 

doublets (Branche et al., 2006) superposed on the original image. Doublet numbering follows 

the conventional rules: a line perpendicular to the middle axis of the central pair microtubules 

is drawn and makes contact with the A-tubule of only one doublet that is defined as number 1. 

The numbering follows the clockwise orientation defined by the dynein arms. Dynein arms 

are shown in orange, radial spoke in violet, central pair projections in yellow and the PFR in 

blue. (B) The restricted presence of IFT on doublets 4 and 7 can be explained by two models: 

either one track is used for anterograde and the other one supports retrograde IFT (Model 1) 

or bidirectional trafficking takes place on both (Model 2). 

 

Fig. 2: IFT trains of similar length are distributed on doublets 4 and 7. (A) Successive 

images from Video S1 showing wild-type trypanosomes analysed by FIB-SEM. Each image 

corresponds to a Z-stack of 3 slices between positions 424 and 475. The progression is from 

posterior to anterior. The top panels show low magnification of the cell body where major 

organelles are indicated (ER, endoplasmic reticulum, F, flagellum, G, glycosomes, M, 

mitochondrion). Bottom: A zoom of the flagellum area is shown with the axoneme (A) and 

the PFR. The arrows indicate IFT particles. (B) Portions of flagella reconstructed after FIB-

SEM. Each axoneme is shown with a different colour and IFT trains are in red (for animation, 

see Video S2). Doublet numbers and flagellum orientation (BB, basal body and tip) are 

indicated for a couple of flagella. (C)	Other example of a flagellum from a wild-type 
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trypanosome coming from a different stack than the one presented in A-B with the axoneme 

(sky blue) and several IFT trains (red). (D) Length of the IFT trains on doublets 4 (green) and 

7 (magenta) determined from FIB-SEM analysis. Data are coming from 27 portions of 

flagella representing a total axoneme length of 166 µm. Two populations can be separated 

with short trains (green) and longer ones (magenta, see text for details).  

 

Fig. 3. IFT proteins are found on two distinct lines along the axoneme in fixed cells. 

Control trypanosomes (strain expressing YFP::ODA8 (Bonnefoy et al., 2018)) were fixed in 

paraformaldehyde followed by methanol post-fixation and processed for immunofluorescence 

using a marker antibody for the axoneme (middle panel, magenta on the merged image) and a 

monoclonal antibody against IFT172 (right panel, green on the merged image). The first panel 

shows the phase contrast image merged with DAPI staining (cyan). (A) Cell with one 

flagellum. (B) Cell assembling a new flagellum. In both cases, a single continuous thick line 

is observed for the axoneme marker whereas discontinuous staining spreading on two close 

but distinct lines is visible for IFT172.  

 

Fig. 4. Bidirectional IFT trafficking takes place on two tracks in live trypanosomes 

expressing mNG::IFT81. (A) Temporal projection of a stack of images corresponding to 

Video S6 showing the presence of two tracks for IFT in the flagellum in addition to the pool 

of IFT at the base. The left (green) and right (magenta) tracks were defined after orientating 

the cell with the posterior end on top of the image and the flagellum on the left-hand side. (B) 

Still images from Video S6 of live trypanosomes expressing mNG::IFT81 imaged at high-

resolution. Green and magenta arrowheads indicate trains on the left and right tracks with 

light arrowheads pointing at anterograde trains and darker arrowheads showing retrograde 

trains. The time point for each image is indicated. (C) Kymograph analysis of the same cell 
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showing trafficking on the left track (green), on the right track (magenta) and the merged 

images for the region of interest indicated in A. Scale bars are 2.5 µm for length (horizontal 

bar) and 2.5 seconds for time (vertical bar). (D) Dot plot of the frequency of anterograde IFT 

trains visible on the left (green) and the right (magenta) track, the sum of both (cyan) and 

from videos where only one track was visible (unresolved, grey). (E) Same representation but 

for the speed of anterograde trains. Only statistically significant differences are shown. 

 

Fig. 5. Anterograde trains are converted to retrograde trains whilst remaining on the 

same track. (A) Temporal projection of the flagellum in a cell expressing mNG::IFT81. The 

region of interest at the tip of the flagellum is indicated, with left (green) and right (magenta) 

tracks. (B) The kymographs are shown for each of them is the corresponding colour. Note the 

presence of an anterograde train that arrested for a few seconds before the material it 

contained was picked up by other anterograde trains (stars). Scale bars are 2.5 µm for length 

(horizontal bar) and 5 seconds for time (vertical bar). (C) The distal tip of a cell expressing 

GFP::IFT52 was photobleached and the transition from anterograde to retrograde trains was 

monitored in the indicated region of interest. (D) Kymographs are highlighted in green and 

magenta as above. Scale bars are 2.5 µm for length (horizontal bar) and 5 seconds for time 

(vertical bar). The enlarged portion shows the distal end of the flagellum where fluorescent 

proteins present in anterograde trains are seen transiting for a few seconds before leaving in 

association to multiple but discrete retrograde trains. No evidence for transfer between the left 

and rights tracks could be observed.  
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Legends for supplementary figures 

 

Fig. S1. Endogenous tagging of IFT81 with mNG provides a clean marker for 

monitoring IFT. (A) Western blotting with an anti-mNG antibody reveals the expected 

mobility on SDS-PAGE. No signal is detected with the 29-13 (Wirtz et al., 1999) control cell 

line. The L13D6 monoclonal antibody recognising the PFR proteins was used as loading 

control. (B) Still images of Video S3 showing anterograde (green arrowheads) and retrograde 

(dark green arrowheads) IFT trafficking in a uniflagellated cell using conventional light 

microscopy. Focusing was made on the flagellum and the base of the flagellum is not in the 

same plane. The star shows an arrested IFT train. (C) Temporal projection shows only one 

track in these imaging conditions. (D-E) A region of interest was drawn on the indicated 

position of the image (D) and the kymograph was extracted showing typical robust 

anterograde and more discrete retrograde trains (E). The position of the arrested train marked 

in B is highlighted with stars. Scale bars are 2.5 µm for length (horizontal bar) and 2.5 

seconds for time (vertical bar). (F) Cells expressing mNG::IFT81 were fixed using the 

paraformaldehyde-methanol protocol and direct imaging of mNG::IFT81 fluorescence was 

carried out revealing the existence of two parallel lines in mature and growing flagella. The 

base of both types of flagella is clearly visible on the bottom image. 

 

Fig. S2. SIM imaging in live cells reveals trafficking on two separate tracks. (A) SIM 

images showing the presence of IFT trains on two tracks in cells expressing the mNG::IFT81 

fusion protein. Fifteen images per plane per channel (five phases, three angles) were acquired 

to perform the SIM image. (B) Temporal projection of images coming from Video S5 in cells 

expressing the GFP::IFT52 fusion protein showing the presence of IFT trains on two tracks. 
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Areas in rectangles have been zoomed to show the two tracks. However, temporal resolution 

is not sufficient to determine the orientation of trafficking.  

 

Fig. S3. Bidirectional IFT trafficking takes place on two tracks in live trypanosomes 

expressing GFP::IFT52. (A) Individual images from Video S7 showing the presence of two 

tracks for IFT in the flagellum. The IFT pool at the base is out of the plane of focus. The left 

(green) and right (magenta) tracks were defined after orientating the cell with the posterior 

end on top of the image and the flagellum on the left-hand side. (B) Still images from Video 

S7 of live trypanosomes expressing GFP::IFT52 imaged at high-resolution. Green and 

magenta arrowheads indicate trains on the left and right tracks with lighter arrowheads 

pointing at anterograde trains and darker arrowheads showing retrograde trains. (C) 

Kymograph analysis of the same cell showing the left (green), the right (magenta) and the 

merged images. Scale bars are 2 µm for length (horizontal bar) and 2 seconds for time 

(vertical bar). (D) Dot plot of the frequency of anterograde IFT trains visible on the left 

(green) and the right (magenta) track and the sum of both (cyan). (E) Dot plot but for the 

speed of anterograde trains. 

 

Video S1. Three-dimensional view of wild-type trypanosomes analysed by FIB-SEM with the 

stack of original data where several cells are visible with all typical organelles including the 

flagellum. 

 

Video S2. Individual flagella of the stack from Video S1 are shown in different colours and 

the IFT trains are shown in red. The volume is then rotated in all dimensions to visualise the 

positioning of IFT trains. 
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Video S3. Live imaging of a cell expressing mNG::IFT81 showing robust bidirectional IFT.  

 

Video S4. Live imaging by SIM of a cell expressing mNG::IFT81 showing the existence of 

two tracks for IFT trafficking. Fifteen images per plane per channel (five phases, three angles) 

were acquired to perform the SIM image.  

 

Video S5. Live imaging by SIM of a cell expressing GFP::IFT52 showing the existence of 

two tracks for IFT trafficking. Time-series were acquired for a total of 14 seconds. Although 

the spatial resolution allows the distinction of two tracks, the time resolution is not sufficient 

to discriminate individual IFT trains on them.  

 

Video S6. Live imaging by high-resolution microscopy using a 1.57 NA objective of a cell 

expressing mNG::IFT81. Bidirectional IFT trafficking is visible on two distinct tracks. The 

spatial resolution allows the distinction of two tracks and the time resolution permits the 

discrimination of individual IFT trains on each of them. 

 

Video S7. Live imaging by high-resolution microscopy using a 1.49 NA objective of a cell 

expressing GFP::IFT52. Bidirectional IFT trafficking is visible on two distinct tracks. The 

spatial resolution allows the distinction of two tracks and the time resolution permits the 

discrimination of individual IFT trains on each of them. 

 

Video S8. Live imaging by high-resolution microscopy using a 1.57 NA objective of a cell 

expressing mNG::IFT81. Focusing on the distal tip reveals the transit and turnaround of IFT 

material during the conversion of anterograde to retrograde trains.  
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Video S9. Live imaging by high-resolution microscopy using a 1.49 NA objective of a cell 

expressing GFP::IFT52. Focusing on the distal tip reveals the transit and turnaround of IFT 

material during the conversion of anterograde to retrograde trains.  
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II. Flagellum length control in 

trypanosomes. 

1)  Summary 

Eukaryotic cilia and flagella are composed of more than 600 proteins that need to be 

timely transported and incorporated at the right place in the flagellum (Subota, 

Julkowska et al. 2014). IFT is the key process involved in flagellum construction as it 

is associated to protein transport at the distal tip of the organelle. Laetitia Vincensini 

et al. have investigated the incorporation in growing flagella of different skeletal 

components of the axoneme such as dynein arm intermediate chain (DNAI1) and 

Radial spoke protein 3 (RSP3). Incorporation of the membrane-associated protein 

Arginine Kinase 3 (AK3) was also investigated in both growing and mature flagella in 

procyclic parasites in culture (Subota, Julkowska et al. 2014). By using inducible 

expression of epitope-tagged labelled proteins and FRAP (Fluorescence Recovery 

After Photobleaching) approaches, they demonstrated the existence of at least two 

routes for flagellar protein incorporation. Structural proteins were mostly added at the 

distal tip, with little or no turnover in full-length flagella, while membrane proteins 

were indifferently incorporated in new and old flagella with a rapid turnover. 

As said above, IFT is not necessary to maintain flagellum length in trypanosomes 

(Fort, Bonnefoy et al. 2016) suggesting a high stability of tubulin and the absence of 

assembly-disassembly turnover at the distal tip. To confirm this hypothesis, I 

investigated the turnover of the outer dynein arm heavy chain B (DHCODAB) fused 

to mNeonGreen by FRAP experiments. After photo bleaching of the distal tip of 

mature flagella, I followed the fluorescence recovery every 5 minutes during 45 

minutes (n=14). During this period, I was not able to detect any fluorescence 

recovery suggesting an absence of turnover of DHCODAB at the distal tip of mature 
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flagella. Dynein arms are firmly attached to the microtubules of the axoneme and 

their absence of turnover reflects the stability of mature flagellum. Therefore, if there 

is no turnover of tubulin-associated proteins, it is likely that there will be no turnover 

of axonemal tubulin. This observation supports the idea that the length of the mature 

flagellum in T. brucei procyclic cells in culture is fixed.    

Canonical models proposed to explain flagellum length control are based on dynamic 

assembly and disassembly activity at the distal tip of the organelle, involving the IFT 

machinery for tubulin transport. In a second manuscript, we propose a new “grow 

and lock” model that could be more relevant to explain flagellum length control in 

stable flagella. In this model, we propose that the flagellum grows at a constant rate 

until it is locked at a given length. First, we have studied the distribution of fluorescent 

IFT proteins in the flagellum of cultured parasites at different phases of elongation 

and compared growing and mature flagella. We have demonstrated that IFT protein 

concentration per unit of length remains constant during flagellum elongation. These 

data revealed that IFT are recruited in parallel to flagellum elongation, which is 

compatible with the reported linear growth rate (Bastin, MacRae et al. 1999). The 

evaluation of IFT particle speed and frequency showed that IFT trafficking is constant 

during both elongation and maintenance of flagella. In the IFT-associated kinesin 2 

motor RNAi mutant, Benjamin Morga (previous post-doc in the lab) observed a 

reduction of IFT frequency accompanied by the emergence of shorter cells with 

shorter flagella. By reducing IFT trafficking, we decreased the flagellum growth rate 

resulting in the assembly of shorter flagella in agreement with the “grow and lock” 

model. Conventional models such as the limiting pool model could explain the 

production of shorter flagella, especially in mother cells. However we showed the 

tubulin soluble was not exhausted and was at least equivalent, if is not more 

abundant, compared to control conditions. Moreover, the length of the new flagellum 

still increased after cell division until it became fixed, before the cell produced a new 

flagellum during the next cell cycle. To evaluate the importance of the timing of cell 

division and flagellum maturation, we have chemically blocked cell division using 

teniposide, an inhibitor of topoisomerase II. This led to an increase of new flagellum 

elongation, but never beyond the length of the parental one. Then we have used 

FLAM8 as a marker whose high concentration reflects the state of flagellum 
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maturation. We have demonstrated that flagellum elongation after teniposide 

treatment is followed by maturation and acquisition of a strong FLAM8 signal 

explaining why the new flagellum length does not exceed the length of the old one. 

Finally we have deinduced KIN2A2BRNAi after 6 days of induction, this is 

accompanied by a 2-fold augmentation of IFT trafficking. Despite this augmentation 

the old flagellum did not grow further confirming the locking of the old flagellum. In 

this experiment the ability of KIN2A2BRNAi cells to assemble fairly long new flagella 

that grow beyond the short cell body demonstrates that flagellum length is not 

controlled by the cell body. 
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Flagellar incorporation of proteins
follows at least two different routes
in trypanosomes
Laetitia Vincensini2, Thierry Blisnick, Eloı̈se Bertiaux, Sebastian Hutchinson, Christina Georgikou,
Cher-Pheng Ooi3 and Philippe Bastin1

Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris 75015, France

Background Information. Eukaryotic cilia and flagella are sophisticated organelles composed of several hundreds
of proteins that need to be incorporated at the right time and the right place during assembly.

Results. Two methods were used to investigate this process in the model protist Trypanosoma brucei: inducible
expression of epitope-tagged labelled proteins and fluorescence recovery after photobleaching of fluorescent
fusion proteins. This revealed that skeletal components of the radial spokes (RSP3), the central pair (PF16) and the
outer dynein arms (DNAI1) are incorporated at the distal end of the growing flagellum. They display low or even no
visible turnover in mature flagella, a finding further confirmed by monitoring a heavy chain of the outer dynein arm.
In contrast, the membrane-associated protein arginine kinase 3 (AK3) showed rapid turnover in both growing and
mature flagella, without particular polarity and independently of intraflagellar transport.

Conclusion. These results demonstrate different modes of incorporation for structural and membrane-associated
proteins in flagella.

Significance. The existence of two distinct modes for incorporation of proteins in growing flagella suggests the
existence of different targeting machineries. Moreover, the absence of turnover of structural elements supports the
view that the length of the mature flagellum in trypanosomes is not modified after assembly.

� Additional supporting information may be found in the online version of this article at the publisher’s
web-site

Introduction
Cilia and flagella are ubiquitous organelles whose
architecture is highly conserved, from protists to
mammals. The distinction between cilia and flag-
ella is mostly historical, as both organelles display a
common architecture: cilia and flagella elongate their
microtubules from a basal body forming a cylindri-

1To whom correspondence should be addressed (email:
pbastin@pasteur.fr)
2Current address: Sorbonne Universités, UPMC, INSERM, CNRS, Centre
d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, 91 Bd de
l’hôpital, 75013 Paris, France.
3Current address: Department of Life Sciences, Sir Alexander Fleming Building,
Imperial College-South Kensington, London SW7 2AZ, United Kingdom.
Key words: Arginine kinase, Axoneme, Cilia and flagella, Outer dynein arms,
Organelle assembly.
Abbreviations: AK3, arginine kinase 3; DRC, dynein regulatory complex; IFA,
immunofluorescence assay; IFT, intraflagellar transport; PFR, paraflagellar rod;
RNAi, RNA interference; RSP, radial spoke protein.

cal structure termed the axoneme, composed of nine
doublets of microtubules. Most motile cilia exhibit
a 9+2 structure, in which the axoneme surrounds
a central pair of single microtubules. There are a
few exceptions however, most strikingly the motile
9+0 cilia of the embryonic node [Nonaka et al.,
1998] and the atypical spermatozoa of insects [Men-
carelli et al., 2008]. Various microtubule-associated
appendages are involved in ciliary beating. Some gen-
erate the force necessary for motility such as outer
dynein arms and inner dynein arms, whereas others
regulate motor activity such as radial spokes and cen-
tral pair projections. On the contrary, primary cilia
have a 9+0 axoneme, lack dynein arms and do not
appear to be motile. Defects in flagellum assembly or
function have been linked to an increasing number
of genetic diseases collectively termed ciliopathies,
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such as primary ciliary dyskinesia, polycystic kidney
disease, retinitis pigmentosa or the Bardet–Biedl syn-
drome [Huber and Cormier-Daire, 2012; Reiter and
Leroux, 2017].

Cilia and flagella are complex organelles, composed
of over 500 proteins [Pazour et al., 2005; Smith et al.,
2005; Broadhead et al., 2006; Oberholzer et al., 2011;
Subota et al., 2014], that must be incorporated into
the flagellar axoneme, membrane or matrix. Cilia and
flagella constitute a distinct compartment, as their
content is separated from the rest of the cytoplasm
by a barrier, or ciliary gate, positioned between the
transition zone and the plasma membrane [Reiter
et al., 2012]. Since the cilium lacks ribosomes, its
proteins must be synthesised in the cytoplasm prior to
entry and incorporation into the organelle. This raises
the issue of protein targeting and incorporation to the
organelle during both construction and maintenance.

Intraflagellar transport (IFT) is a key process
involved in flagellar construction. First identified in
the green alga Chlamydomonas reinhardtii [Kozminski
et al., 1993], it refers to the bidirectional transport
of protein complexes along the axoneme, from the
basal body to the distal tip of the axoneme and vice
versa, powered by the action of kinesin motors in the
anterograde direction and dynein motor in the retro-
grade direction [Ishikawa and Marshall, 2011]. IFT
has since been shown to be conserved and essential
for the assembly of almost all eukaryotic flagella [Hao
and Scholey, 2009], and inhibition of IFT prevents
flagellum assembly in most organisms studied so far
[Kozminski et al., 1995; Nonaka et al., 1998; Brown
et al., 1999; Han et al., 2003; Kohl et al., 2003].
The canonical model for flagellum assembly proposes
that flagellar components are transported by IFT to
the distal tip of the flagellum, which is the site of
construction of the organelle [Craft et al., 2015]. Yet
so far distal incorporation during flagellum construc-
tion has been formally demonstrated for relatively
few structural proteins: alpha tubulin and the radial
spoke protein (RSP)3 in Chlamydomonas [Johnson and
Rosenbaum, 1992], and the PFR2 and KMP11 pro-
teins in Trypanosoma brucei [Bastin et al., 1999a; Zhou
et al., 2015]. In Chlamydomonas, analysis of dikaryons
between wild-type and strains with various defects
in structural elements, or with a tagged version of
a given protein, revealed various profiles: addition
at the distal end for tubulin, RSP3 [Johnson and
Rosenbaum, 1992], the inner dynein arm subunit

p28 [Piperno et al., 1996], the central pair protein
PF6 [Lechtreck et al., 2013] or the dynein regula-
tory complex (DRC) subunit 4 [Bower et al., 2013].
By contrast, proximal incorporation was observed for
the docking complex of the outer dynein arm [Owa
et al., 2014], and intercalation of the IC69 compo-
nent was reported for the outer dynein arm [Piperno
et al., 1996]. Lateral diffusion has also been reported
for the membrane protein Smoothened [Milenkovic
et al., 2009]. More recently proximal incorpora-
tion was demonstrated for the components of the
associated flagellum attachment zone in T. brucei
[Sunter et al., 2015; Zhou et al., 2015]. The mode
of incorporation could depend on the type of protein
and on its final location.

In order to investigate the site of incorporation
of various flagellar proteins and their dynamics, we
turned to the protist T. brucei, the etiological agent
of sleeping sickness in Africa that is a very amenable
model for studying cilium biology [Vincensini et al.,
2011]. It possesses a single flagellum that remains
present throughout the cell cycle and is composed
of a typical 9+2 axoneme with central pair, dynein
arms and radial spokes [Langousis and Hill, 2014],
which is flanked by a lattice-like structure called the
paraflagellar rod (PFR) [Portman and Gull, 2010].
The trypanosome assembles its new flagellum while
maintaining the existing one, offering the oppor-
tunity to compare in the same cell an elongating
flagellum with a flagellum undergoing maintenance.
Moreover, the axoneme contains specific subdomains
identified with unique proteins such as FLAM6 (re-
stricted to the proximal part) and FLAM8 (only
present at the distal tip) [Subota et al., 2014]. This
restricted protein localisation has also been reported
in other eukaryotes including humans [Fliegauf et al.,
2005; Yagi et al., 2009]. Since multiple reverse genet-
ics and imaging tools are available, trypanosomes are
perfectly suited to study protein incorporation and
turnover [Julkowska and Bastin, 2009; Oberholzer
et al., 2009].

Here, we investigated the mode of addition to the
growing flagellum of three proteins belonging to dis-
tinct elements of the axoneme (radial spokes, central
pair, outer dynein arms) and of a membrane protein,
using two experimental setups based either on rapid
inducible expression of epitope-tagged versions of
flagellar proteins, or on photobleaching experiments.
The results reveal the existence of different modes
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of incorporation in both the old and the new flagel-
lum, and highlight slow or no dynamics for structural
proteins compared to the membrane protein that was
studied.

Results
Assembly of radial spoke and central pair proteins
RSP3 incorporation into the growing flagellum of
Chlamydomonas has been unambiguously shown to
be distal [Johnson and Rosenbaum, 1992]. Hence,
we decided to first focus on this well-characterised
protein to confirm that its mode of incorporation is
indeed conserved in T. brucei. RSP3 is conserved in
trypanosomes and its knockdown leads to the ab-
sence of radial spokes accompanied by a pronounced
motility phenotype [Ralston et al., 2006]. Flagellar
incorporation of RSP3 was investigated using a strain
expressing a Ty1-tagged version of the RSP3 protein
(N-terminal tagging) under the control of a tetracy-
cline inducible trypanosome promoter. The plasmid
was transfected in a cell line constitutively express-
ing the tet-repressor, so that the promoter is silent
under normal culture conditions, but can be rapidly
activated upon addition of tetracycline [Wirtz and
Clayton, 1995; Bastin et al., 1999a; Sunter et al.,
2015].

This system allows the visualisation of recently syn-
thesised proteins and the monitoring of their location
during flagellum construction. Since the old flagel-
lum is maintained while the new one is assembled, it
is possible to monitor the fate of newly synthesised
proteins within both flagella, and thus assess pro-
tein turnover in the mature flagellum. The strain dis-
played normal growth rate, unaltered by the addition
of tetracycline, showing that the epitope-tagged pro-
tein is not toxic (data not shown). Western blotting
with the Ty1 epitope tag specific monoclonal anti-
body BB2 was used to assess the incorporation of the
tagged protein to the axoneme. Samples were treated
with 1% NP40 to separate a cytoskeleton and a solu-
ble fraction [Robinson et al., 1991]. In non-induced
cells, the level of TY1::RSP3 was low but detectable,
indicating a slight leakiness of the system as previ-
ously reported [Wirtz and Clayton, 1995]. Cells were
induced for one hour by addition of tetracycline, lead-
ing to an increase in the amount of tagged protein
(Figure 1A). The TY1::RSP3 protein fractionates in
the cytoskeletal fraction (lanes C), confirming its in-

corporation to the axoneme. As observed for other
axoneme or PFR proteins [Bastin et al., 1998; Baron
et al., 2007; Kabututu et al., 2010; Ralston et al.,
2011], the soluble pool turned out to be either ab-
sent or below detection level. However, these cells
are not synchronised and the existence of a soluble
pool during a brief phase of the cell cycle cannot be
formally excluded. These results validate the strain as
inducible, with expression kinetics compatible with
flagellar assembly that takes 4–5 h in cultured try-
panosomes [Sherwin and Gull, 1989; Bastin et al.,
1999a]. In our experimental setup, the expression
of the TY1::RSP3-tagged protein can be induced in
just an hour, implying that its localisation provides a
marker of recently synthesised proteins. As the pool
of soluble flagellar proteins is low, newly synthesised
proteins should also represent recently assembled
material.

In order to determine the site of incorporation
of RSP3, cells were induced with tetracycline, and
TY1::RSP3 localisation was monitored over time by
IFA. Cells were treated with 1% Nonidet prior to
methanol fixation, in order to solubilise the cytoplasm
and non-incorporated material. The remaining cy-
toskeletons were double labelled with BB2 to visua-
lise the newly incorporated tagged RSP3, and with
mAb25, an axoneme marker [Pradel et al., 2006].
Observations were focused on bi-flagellated cells, in
which the new assembling flagellum can be distin-
guished from the old flagellum based on its posterior
position and its shorter length (Figure 1B) [Sherwin
and Gull, 1989]. Short incubations with tetracycline
(1 h) lead to expression of the fusion protein that was
mostly localised at the distal tip of the new flagel-
lum (Figure 1C, top panel). This profile was repro-
duced after 1 h 30 min of growth in the presence of
tetracycline, where quantification revealed that more
than 95% of the cells exhibited this staining pro-
file (n = 53). The remaining cells possessed a short
flagellum that was fully stained, presumably because
its assembly was initiated during the induction pe-
riod (Figure 1C, left panel). The length of the labelled
segment increased with the duration of growth in the
presence of tetracycline, in agreement with flagellar
elongation rate. The length of the new flagellum seg-
ment showing bright positive signal was measured to
3.9 ± 0.3 μm (induction for 1 h, n = 45), 4.6 ± 0.3
μm (1h30, n = 53) and 7.1 ± 0.5 μm (2h30, n = 35),
in good agreement with an elongation rate of 3.6 μm
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Figure 1 The RSP3 is incorporated at the distal tip of the flagellum
(A) Western blot showing inducible expression of Ty1::RSP3 upon tetracycline induction. Total (T), soluble (S) and cytoskeletal (C)

protein extracts of non-induced cells (0 h), and cells induced for 1 and 48 h were prepared. The membrane was incubated with

the BB2 monoclonal antibody directed against the Ty1 tag to detect the Ty1::RSP3 fusion protein (top panel), or the anti-BiP as

a loading and fractionation control (bottom panel). (B) In bi-flagellated cells, the new assembling flagellum is posterior to the cell

and shorter than the old flagellum in maintenance. Cells were fixed in methanol and stained with the Mab25 antibody to detect

the axoneme (red) and with DAPI (blue). F, flagellum; N, nucleus; K, kinetoplast. (C) 1 h-induced and 4 h-induced Ty1::RSP3 cells

were treated with 1% NP40 prior to methanol fixation, stained with the Mab25 antibody to detect the axoneme (red, left panels)

and the BB2 antibody to detect Ty1::RSP3 (green, middle panels) then counterstained with DAPI (blue). Sites of incorporation of

newly synthesised proteins are indicated with long white arrows. Yellow arrow, new flagellum; white arrow, old flagellum. Scale

bar: 5 μm.

per hour [Bastin et al., 1999a]. After 4 h of growth
in the presence of tetracycline, a large segment of the
distal part of long flagella was stained (Figure 1C,
bottom panels). In all cases, the signal is resistant to
detergent, showing that the tagged protein is indeed
incorporated in the axoneme. These data support the
view that RSPs are added to the distal end of the
growing flagellum in trypanosomes.

We next wondered whether a protein located
within a different sub-region of the axoneme could
undergo a different mode of incorporation. We there-
fore investigated PF16, a well-characterised protein
of the central pair [Smith and Lefebvre, 1996; Sapiro
et al., 2002; Branche et al., 2006; Ralston et al.,
2006], whose central position is more distant from
the microtubule doublets that carry IFT particles.

The same approach was used to generate an inducible
cell line expressing Ty1-tagged PF16 upon addition
of tetracycline. The strain displayed normal growth
rate, unaltered by the addition of tetracycline, sug-
gesting that the tagged protein is not toxic (data not
shown). Expression was first monitored by Western
blotting, using the Ty1 tag specific antibody BB2
(Figure 2A). In non-induced cells, a low amount of
tagged PF16 is visible, but upon tetracycline addi-
tion, the level of the protein increases slowly and
reaches much higher levels after the cells have been
induced for over 48 h. The protein is restricted to the
cytoskeletal fraction and is not detected within the
soluble fraction. These results validate the strain as
inducible, with kinetics acceptable for investigation
of protein localisation during flagellum construction.
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Figure 2 The central pair protein PF16 is incorporated at
the distal tip of the flagellum
(A) Western blot showing inducible expression of PF16 upon

tetracycline induction. Total (T), soluble (S) and cytoskeletal

(C) protein extracts of non-induced cells, and cells induced

for 1, 1.5, 2.5 and 48 h were prepared. The membrane was

incubated with the BB2 antibody directed against the Ty1 tag

to detect the PF16::Ty1 fusion protein (top panel), the L13D6

antibody to detect the PFR (middle panel) or the anti-BiP (bot-

tom panel), as loading and fractionation controls. (B) 2.5-hr-

induced PF16::Ty1 cells were treated with 1% NP40 prior to

methanol fixation, stained with the Mab25 antibody to de-

tect the axoneme (red, left panel) and the BB2 antibody to

detect Ty1::PF16 (green, middle panels) then counterstained

with DAPI (blue, left and right panels). The site of incorpo-

ration of newly synthesised proteins is indicated with long

white arrows. A weak homogenous signal can be seen on the

old flagellum and corresponds to a low level of expression

of PF16::Ty1 due to a slight leakiness of the inducible sys-

tem as also observed on the Western blot. Yellow arrow, new

flagellum; white arrow, old flagellum. Scale bar: 5 μm.

In order to determine the site of incorporation of
PF16, cells were induced with tetracycline for 1–3 h,
and Ty1::PF16 expression was monitored over time
by IFA. Cells were treated with 1% Nonidet prior
to methanol fixation, in order to confirm axonemal
incorporation. Slides were analysed by IFA double
labelled with BB2, to visualise the newly incorpo-
rated tagged PF16, and with the flagellar marker
mAb25. Short incubations with tetracycline (1 h and
1 h 30 min) did not lead to detectable expression

of Ty1::PF16 (data not shown). After 2 h 30 min of
induction, the fusion protein was detected at the dis-
tal tip of the new flagellum (Figure 2B). Moreover,
this signal was resistant to detergent, showing that
the protein is indeed incorporated in the axoneme.
A weak signal could be detected in the old flagel-
lum, corresponding to a low level of expression of
Ty1::PF16 due to a slight leakiness of the inducible
system (as also observed on the Western blot), but
it did not show a particular polarity (Figure 2B).
These results demonstrate that central pair proteins
are added to the distal end of the elongating flagella,
as observed for radial spokes.

Photobleaching analysis of a dynein arm
component during flagellum construction and
maintenance
We next investigated the incorporation of a compo-
nent of the outer dynein arm, the dynein intermediate
chain 1 (DNAI1), which is located in the periphery of
the axoneme [Branche et al., 2006]. We developed a
cell line where DNAI1 is endogenously tagged with
GFP for photobleaching analysis. Western blotting
analysis was performed with an anti-GFP, or with a
mouse anti-DNAI1 polyclonal antibody [Duquesnoy
et al., 2009] on total protein samples, cytoskeletal and
detergent-soluble fractions (Figure 3A). The fusion
protein was detected with both antibodies, whereas
the untagged endogenous DNAI1 only reacted with
the anti-DNAI1 antibody. This revealed that the fluo-
rescent version represents about half of the endoge-
nous one. Both proteins showed the same distribu-
tion profile with more material in the cytoskeletal
fraction than in the soluble fraction (Figure 3A) as
previously observed [Duquesnoy et al., 2009]. Live
video-microscopy showed that, as expected, the pro-
tein is constitutively expressed and localises to both
old and new flagella (Figure 3B).

DNAI1 flagellar incorporation and dynamics were
investigated using fluorescence recovery after photo-
bleaching (FRAP). In bi-flagellated cells, the fluores-
cent signal was bleached in both flagella and fluores-
cence recovery was monitored simultaneously in the
mature and in the elongating flagellum. We decided
to photobleach the new flagellum in its entirety but
only half of the old flagellum, hence leaving a posi-
tive signal to control for bleaching due to laser expo-
sure and to facilitate cell detection. Evolution of the
fluorescent signal was monitored for up to 2 h. In
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Figure 3 The outer dynein arm protein DNAI1 undergoes
both distal incorporation and intercalation
FRAP analysis of trypanosomes expressing the GFP::DNAI1

fusion protein. (A) Western blot showing expression of

GFP::DNAI1. Total (T), soluble (S) and cytoskeletal (C) pro-

tein extracts were prepared. The membrane was incubated

with the anti-GFP antibody that detects only the GFP::DNAI1

fusion protein (left panel) and then with the anti-DNAI1 anti-

body that detects both the endogenous DNAI1 protein and

the GFP::DNAI1 fusion protein (right panel). (B) The new flag-

ellum and the proximal part of the old flagellum were bleached

with a brief laser pulse (framed area) and recovery was moni-

tored upon acquisition of an image every 3 min, for up to 2 h.

Pre-bleach situation: old and new flagella are equally posi-

tive for GFP::DNAI1. Post-bleach situation: only the second

half of the old flagellum remains positive. Recovery of fluores-

cent signals is shown at the indicated times. Cartoons under

each panel show the situation for old (black) and new (pur-

ple) flagella. Closed and open segments are GFP positive and

negative, respectively. Recovered signal is shown in green.

Yellow arrow, new flagellum; white arrow, old flagellum. Scale

bar: 5 μm.

all cases, no recovery was detected in the old flag-
ellum (Figure 3B). By contrast, a fluorescent signal
became detectable in the new flagellum from half an
hour after photobleaching (Figure 3B, time 33 min-
utes). It was mostly present towards the distal tip,
but some signal was also detected towards the prox-
imal part (Figure 3B). A clear gradient was visible
at later time points with stronger signal at the dis-
tal tip (Figure 3B). The new flagellum showed signs
of conspicuous elongation during the course of the
experiment and so the bright signal corresponds to
the incorporation of new GFP::DNAI proteins on the
growing axoneme. Presence of a positive (albeit less
bright) signal in the adjacent proximal region that
was already assembled before the bleach could re-
flect either turnover of material that had already been
incorporated or completion of the assembly by an in-
tercalation process. This suggests a clear difference in
protein dynamic between the new flagellum and the
old flagellum where no turnover is observed.

However, turnover could still occur at the dis-
tal end of the mature flagellum, that is known to
be highly dynamic in some species such as Chlamy-
domonas [Marshall and Rosenbaum, 2001], or C. ele-
gans [Hao et al., 2011]. To investigate whether dynein
turnover may occur in the distal portion of the flag-
ellum of T. brucei, the fluorescent signal was bleached
at the distal tip of the flagellum in cells expressing
GFP::DNAI1, and fluorescence recovery was moni-
tored. No recovery could be detected at the distal tip
(Supplementary Figure 1). This experiment was re-
produced using a cell line expressing the dynein heavy
chain ODA-B fused to mNeonGreen following in situ
tagging at the 5′ end of the gene [Shen et al., 2001].
The distal end of the mature flagellum was bleached
(Figure 4A) and recovery was monitored over 45 min
(Figures 4B–4G). Again, no recovery was observed.
These results demonstrate that both the heavy and
the intermediate dynein chains undergo little or no
turn over at the distal tip of the flagellum, supporting
the view that, once assembled, mature trypanosome
flagella do not modify their length [Ooi and Bastin,
2013].

Overall these results show that the structural pro-
teins of the axoneme studied so far mostly follow a
distal pattern of incorporation, with a slight varia-
tion for the outer dynein arm DNAI1 protein that
appears to also undergo intercalation or turnover at
the proximal part of the elongating flagellum.
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Figure 4 The outer dynein arm heavy chain B does do not show visible turnover in the mature flagellum
FRAP analysis of trypanosomes expressing the GFP::DHCODAB fusion protein. The distal end of the flagellum was bleached

with a brief laser pulse (framed area) and recovery was monitored upon acquisition of a series of 20 images at each of the

indicated time points. This is a typical example out of 14 cells from two different experiments. (A) Pre-bleach situation: the

flagellum is positive along its length. Darker areas correspond to regions that are not in the focal plane. (B) Post-bleach situation:

only the proximal part of the flagellum remains positive. The length of the fluorescent portion has been measured and is indicated

at the bottom of each image. (C–G) The fluorescent signal is shown at the indicated times. No recovery could be detected in the

flagellum. The thin fluorescent portion corresponds to the anterior end of the cell body and not the flagellum. Scale bar: 5 μm.

The flagellum membrane-associated protein AK3
shows fast and non-polarised incorporation in
growing or mature flagella
A recent study indicated that flagellar proteins dis-
play diverse dynamic behaviours depending on their
flagellar localisation [Subota et al., 2014]. To inves-
tigate this phenomenon, we turned towards a novel
flagellum membrane protein called arginine kinase
3 (AK3) [Oberholzer et al., 2011; Voncken et al.,
2013; Subota et al., 2014; Ooi et al., 2015]. In
contrast to structural axonemal proteins, detergent
extraction localised AK3 exclusively to the soluble
fraction and IFA data unambiguously revealed that
AK3 co-localises with the flagellum membrane and
wraps around all flagellar structural elements such as
the axoneme and the PFR [Subota et al., 2014]. The
staining is distinct from that observed for intraflag-
ellar proteins and is sensitive to detergent treatment
[Subota et al., 2014]. This staining profile is very
similar to that observed for the flagellar membrane
proteins calflagins [Maric et al., 2011]. The T. brucei

genome contains three genes encoding closely related
proteins for arginine kinase that differ in their N- or
C-termini sequences [Miranda et al., 2009]. These
sequences are responsible for differential locations:
AK1 is in the cytosol, AK2 is in the glycosomes and
AK3 is in the flagellum membrane [Voncken et al.,
2013; Ooi et al., 2015]. RNA interference (RNAi)
silencing leads to rapid disappearance of AK3 in both
old and new flagella in less than 4 h, corresponding
to one third of the duration of the cell cycle. This
disappearance did not show a particular polarity in
IFA experiments, suggesting that AK3 might move
rapidly in the flagellum membrane [Subota et al.,
2014].

An inducible strain expressing AK3::Ty1 under
the control of the tetracycline repressor was gener-
ated in an ak3-/- knockout strain: the tagged protein
being expressed in a negative genetic background,
there is no competition with the endogenous AK3
protein. Tetracycline-inducible expression was con-
firmed by Western blotting, using the anti-Ty1 tag
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Figure 5 The flagellum membrane AK3 shows fast and non-polarised incorporation in growing and mature flagella
(A) Western blot showing inducible expression of AK3::TY1 upon tetracycline induction. Total protein extracts of non-induced

cells, and cells induced for 2 and 4 h were prepared. The membrane was incubated with the BB2 antibody directed against the

Ty1 tag, to detect the AK3::Ty1 fusion protein (bottom panel), the anti-AK antibody (middle panel) and the L13D6 antibody (top

panel) to detect the PFR as a loading control. (B) 30-min-induced AK3::Ty1 cells were subjected to PFA fixation, and stained

with the BB2 antibody to detect AK3::Ty1 (green) then counterstained with DAPI. Cells are shown at different time points of the

cell cycle (1K1N, 2K1N, 2K2N). Scale bar: 5 μm.

BB2 antibody and the anti-AK polyclonal antibody
(Figure 5A). In non-induced cells, no AK3::Ty1
is detectable, neither by BB2 nor by the anti-AK
antiserum. Upon tetracycline addition, the level of
the tagged protein increases rapidly as confirmed
by detection with both BB2 and the anti-AK an-
tiserum, which detects both AK1/AK2 proteins
(these two co-migrate at �40 kDa) and the tagged
AK3 protein. These results validate the strain as in-
ducible, with fast kinetics compatible with flagellar
dynamics.

Induction experiments were then analysed by IFA
with either the BB2 or the anti-AK antibody. Upon
30 min of induction, both flagella were equally la-
belled, with no significant difference in intensity be-
tween them (Figure 5B). This was consistently ob-
served no matter the length of the new flagellum
(Figure 5B). Neither a particular polarity nor a gradi-
ent could be observed. These results were reproduced
using a cell line expressing the Ty1-tagged version of
AK3 in a background where both AK3 endogenous
alleles were still present, showing that these distribu-
tion profiles are not explained by the fact that AK3 is
absent from the mature flagella before induction (data
not shown). These results illustrate fast turn over in
both flagella, and the possibility of rapid exchange
between the two flagella could also be considered.

IFT has long been postulated to transport flagellar
components within the organelle and recent work has
shown that several proteins rely on IFT to be main-
tained at their correct location in the flagellum [Fort
et al., 2016]. The possible contribution of IFT to the
flagellar incorporation of AK3 was investigated using
two tetracycline-inducible RNAi strains: IFT88RNAi

and IFT140RNAi in which respectively anterograde
and retrograde transport are inhibited upon knock-
down [Kohl et al., 2003; Absalon et al., 2008]. Cells
were stained with the anti-AK antibody and an an-
tibody against the flagellum transition zone compo-
nent (FTZC), as marker of the base of the flagellum
[Bringaud et al., 2000]. In non-induced conditions,
the signal covered the flagellum membrane as ex-
pected (Figure 6A). Over the course of RNAi silenc-
ing, the amount of IFT is reduced and cells assemble
shorter and shorter flagella. However, mature flagella
that were assembled prior to initiation of RNAi re-
main present (Figures 6B and 6C), even though IFT
is absent (IFT88 knockdown), or arrested (IFT140
knockdown) [Fort et al., 2016]. This system thus al-
lows the investigation of the contribution of IFT to
flagellar targeting of AK and its distribution within
the flagellum. The AK signal was retained in all flag-
ella of induced IFT88RNAi and IFT140RNAi cells (ar-
rows on Figures 6B and 6C), no matter their length,
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Figure 6 Entry and maintenance of AK3 in the flagellum
does not rely on IFT
IFT140RNAi and IFT88RNAi cells were grown in the absence

of tetracycline (0 h, A) or in the presence of tetracycline for

48 h (B and C). Cells were stained with an anti-AK antibody

and with the flagellum transition zone component (FTZC), as

a marker of the base of the flagellum. The right panel shows

the phase contrast image merge with DAPI (cyan) to reveal

nuclear and kinetoplast DNA. The left panel shows the im-

munofluorescence images with the anti-AK (that detects all

three AK proteins) in green and the anti-FTZC in red. Arrows

indicate remaining flagella in the induced sample that all re-

main positive for arginine kinase. Note the increase of arginine

kinase signal in the cytoplasm in induced samples. Scale bar:

5 μm.

indicating that flagellar targeting of AK is proba-
bly independent of IFT. In cells lacking flagella, the
signal for AK was significantly increased in the cy-
toplasm (Figures 6B and 6C). This could correspond
to AK3 still being produced and accumulating there
in the absence of flagellum, or it could represent an
increase in the amount of AK1 and AK2 that have
been located to the cytoplasm and to glycosomes,
respectively [Voncken et al., 2013].

Discussion
This study revealed two distinct protein behaviours
during flagellum construction and maintenance.
Structural proteins are mostly added at the distal
end of the elongating organelle with little (if any)
turnover in mature flagella, whereas membrane pro-
teins do not show a specific polarity during incor-
poration and exhibit a rapid turnover. Components
of the radial spokes, the central pair and the dynein
arms (RSP3, PF16 and DNAI1) are mainly assem-
bled at the distal end of the growing T. brucei axo-
neme. This is in agreement with the established ob-
servation for PFR2, a major component of the PFR
[Bastin et al., 1999a] and supports the view that this
mode of incorporation is conserved for components of
flagellar skeletal structures among eukaryotic species
[Rosenbaum et al., 1969; Johnson and Rosenbaum,
1992; Lechtreck et al., 2013]. The approaches used
here have the advantage of visualising addition of
new subunits in elongating flagella, rather than in
the dikaryon experiments where flagella are already
assembled.

Distal assembly is compatible with IFT transport
of components of the axoneme and the PFR. FRAP
analyses in Chlamydomonas have convincingly demon-
strated transport of alpha-tubulin, DRC components
and PF16 in growing and mature flagella [Wren
et al., 2013; Craft et al., 2015]. So far, IFT move-
ment of axoneme or PFR proteins has not been shown
directly in trypanosomes. Epitope- or YFP-tagged
alpha-tubulin fails to incorporate into flagellar mi-
crotubules, hence hampering direct analysis [Bastin
et al., 1996; Sheriff et al., 2014]. Here, monitoring of
the elongating flagellum after photobleaching of the
GFP::DNAI1 signal failed to reveal IFT-type move-
ment. This could be explained by technical reasons if
the amount of DNAI1 per IFT train was too low to
be detected, or if the association of the cargo to the
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IFT train complex interfered with the ability of GFP
to fluoresce.

Alternatively, outer dynein arms might not rely on
IFT for transport in the trypanosome flagellum. In
Chlamydomonas, analysis of dikaryons between dynein
arm and IFT mutants suggested that inner dynein
arms, but not outer dynein arms, require a functional
IFT kinesin for correct incorporation [Piperno et al.,
1996]. However, further work has shown that outer
dynein arm addition was dependent on IFT46 [Hou
et al., 2007] and the IFT-associated adaptor protein
ODA16 [Ahmed et al., 2008]. These data support
a contribution of IFT, but visualisation of the way
ODA components move within the flagellum will
be needed to formally prove whether they are trans-
ported by IFT or by other means. For example, the
distal protein EB1 is added at the distal end of axo-
nemal microtubules independently of IFT [Harris
et al., 2016].

Transport of flagellar precursors was suggested in
the PFR2RNAi mutant that fails to assemble a normal
PFR [Bastin et al., 1998] in which other PFR proteins
are found at the distal end of the flagellum where
they accumulate over the course of organelle assembly.
This material is not incorporated in any structure
and is lost after cell division [Bastin et al., 1999b].
However, formal evidence of IFT-like movement of
PFR precursors is still lacking and the possibility of
diffusion [Ye et al., 2013], or the use of other types
of motor systems [Demonchy et al., 2009] cannot be
ruled out.

Although distal incorporation of structural axo-
neme proteins was the major trend in both series of
experiments (inducible expression of tagged proteins
and FRAP experiments), some signal was detected
towards the proximal part of the assembling flagel-
lum for DNAI1, often visible as a gradient starting
from the distal region. One could imagine that the
majority of the material destined for incorporation is
delivered at the distal tip to be associated to “naked”,
recently elongated microtubule segments but that
some material is released from the IFT train prior
to reaching the tip of the flagellum. These proteins
would serve for completion of the assembly or for
turnover. This hypothesis is supported by the rela-
tive structural disorganisation found in the terminal
portion of the new flagellum of T. brucei perhaps be-
cause assembly of all subcomponents is not complete
[Hoog et al., 2014]. In this context, it should be

pointed out that in Chlamydomonas, DRC4 can disso-
ciate from IFT trains at various sites along the flag-
ellum and not always at the distal tip [Wren et al.,
2013].

The situation turned out to be very different for the
membrane-associated flagellar protein AK3, where
no polarity could be detected during assembly of the
flagellum. AK3 is found all along the flagellum mem-
brane without any specific association to a defined
substructure [Subota et al., 2014]. It is likely asso-
ciated to the membrane by prenylation, as suggested
by the presence of a typical flagellum-targeting sig-
nal at its amino-terminus [Ooi et al., 2015] similar to
that found in calflagins [Godsel and Engman, 1999;
Maric et al., 2011]. These proteins presumably asso-
ciate first to the cell body membrane and then to the
flagellum membrane [Emmer et al., 2009]. Although
direct trafficking studies of calflagins have not been
reported, these proteins likely reach the flagellum by
its base and then could either diffuse within the or-
ganelle, or be associated or transported by systems yet
to discover. In cultured mammalian cells, two trans-
membrane proteins (the somatostatin receptor 3 and
Smoothened, the Hedgehog transducer) appeared to
diffuse freely within the primary cilium [Ye et al.,
2013]. RNAi showed that all the AK3 flagellar pro-
tein pool is turned over in less than 4 h [Subota et al.,
2014], which is less than half of the trypanosome cell
cycle. This shows that the old flagellum is dynamic
with regards to rapid replacement of at least certain
membrane proteins. AK3 is a phosphagen shuttle and
has been proposed to contribute to flagellum motility
[Voncken et al., 2013; Ooi et al., 2015]. Since both
flagella appear equally motile, the requirements for
AK3 could be similar.

During half of their cell cycle, trypanosomes
possess two basal bodies and two flagella, one
undergoing construction and one that is already fully
assembled [Sherwin and Gull, 1989]. The results
reported here show that newly synthesised subunits
for structural proteins are mostly targeted to the
new flagellum with low amounts reaching the old
flagellum. In mature flagella of Chlamydomonas, the
degree of protein exchange turned out to be highly
variable: some axonemal proteins hardly showed any
turnover, whereas others were totally replaced during
the life of the flagellum [Song and Dentler, 2001].
Protein exchange requires the existence of a soluble
pool of material that could not be detected in the
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case of PFR [Bastin et al., 1998] or DRC proteins
[Kabututu et al., 2010; Ralston et al., 2011], but ex-
ists in significant amounts for the dynein component
LC1 [Ralston et al., 2011], and to a lesser extent for
the inner dynein arm component 5 [Wei et al., 2014]
and for DNAI1 [Duquesnoy et al., 2009]. A large
soluble pool might not be necessary providing that
mRNA is available and that translation produces
protein that is immediately used for turnover. Anal-
ysis of mRNA content at different cell cycle stages
from trypanosomes that had been synchronised by
elutriation revealed that many flagellar genes are up-
regulated during flagellum synthesis [Archer et al.,
2011]. Moreover, the timing of the expression peaks
reflects that of flagellum construction: transcripts for
basal body and IFT proteins emerge first, followed
by those for axonemal proteins and ultimately those
for PFR proteins [Morga and Bastin, 2013].

Finally, the absence of turnover of both the heavy
and the intermediate dynein chains supports the
view that the length of the mature flagellum in try-
panosomes is fixed [Ooi and Bastin, 2013]. This find-
ing explains that absence or arrest of IFT in mature
flagella had no effect on their length, contrarily to
the growing flagellum [Fort et al., 2016]. This means
that the control of flagellum length is different com-
pared to what has been described for Chlamydomonas,
where flagellar length is regulated by a dynamic bal-
ance of assembly (relying on IFT for continuous de-
livery of tubulin) and disassembly at the distal end
[Marshall and Rosenbaum, 2001].

Materials and methods
Trypanosome cell line and culture
For inducible expression, procyclic trypanosome cell lines were
generated from the PTH cell line, a derivative of strain 427 that
constitutively expresses the tet-repressor [Bastin et al., 1999a].
IFT88RNAi [Kohl et al., 2003] and IFT140RNAi [Absalon et al.,
2008] strain have been described previously. They were cultured
in SDM-79 [Brun and Schonenberger, 1979] supplemented with
hemin and 10 % foetal bovine serum, with the exception of the
inducible cell line expressing the AK3::Ty1 protein that was
grown in SDM79 supplemented with 20 mM glycerol [Ooi
et al., 2015]. The AnTat1.1 strain was used for expression
of mNeonGreen::DHCODAB. Long primer PCR transfections
were performed in bloodstream form parasites cultured in HMI-
11 medium prior to differentiation into procyclic stage parasites.
Bloodstream pleomorphic parasites were differentiated by addi-
tion of 5 μM 8-pCPT-2-O-methyl-5-AMP to 105 parasites per
ml in 10 ml of HMI-11. Parasites were cultured for 48 h to in-
duce stumpy formation followed by transfer to SDM-79 medium
supplemented with 20 mM glycerol and 6 mM cis-aconitate at

106 parasites per ml and transferred to a 27°C incubator for 72 h,
after which time cells were cultured in SDM-79 supplemented
with 20 mM glycerol. Cell numbers in culture was determined
using the Z2 cell counter (Beckman Coulter).

Expression of Ty1 and fluorescent fusion proteins
Expression of Ty1-tagged flagellar proteins was achieved with
the pHD430 plasmid that contains the full gene sequence fused
to the Ty1 tag in 5′ (RSP3) or 3′ (PF16) positions, under the
control of the tetracycline-inducible EP promoter [Bastin et al.,
1999a]. All the sequence fragments were chemically synthesised
by GeneCust Europe and sub-cloned into the pHD430 vector.
For the generation of cell lines expressing these Ty1 fusion pro-
teins, linearised pHD430 vectors were nucleofected into PTH
cells that express the tetracycline-repressor by targeting the in-
verted spacer of the ribosomal DNA that is supposed to be silent
[Wirtz and Clayton, 1995]. For endogenous tagging of DNAI1,
the first 400 bp of the gene were cloned in the pPCPFRGF-
PDHC1b vector [Blisnick et al., 2014] and integrated in the
genome following linearisation within the DNAI1 sequence.
For in situ tagging of DHC-ODAB (Tb927.11.3250), primers
matching the p2675mNeonGreenIFT81 plasmid were designed
with 80 bp extensions covering the last 80 bp of the 5′UTR
sequence (CGT GTC CGT AGG TGG AAC GAT TAA GCA
ACG AGA AGA GGA GTT ACG TAA ATC AAA CAA GCA
AAC TAA GGA AAG GAA CCC CGC CTA AAG TCG AGG
AGG TTG A) and the first 80 bp of the DHC-ODAB coding
sequence ((TTT AAC CCG GTA ATG ATG CGC TGC TCA
AGC CAC TGA ACA CGC CTA TCG ACG GGT GCC TCT
TCC TTG TCG CCC TTC GCC ATG TCA AGT GGG TCC
TGG TTA G), hence amplifying the puromycin drug resistance
cassette, the splicing sequence, a Ty-1 tag and the mNeonGreen
sequence. Transfections were carried out using Nucleofector R©
technology [Burkard et al., 2007]. Transgenic cell lines were se-
lected in medium supplemented with phleomycin (2.5 μg/ml)
or puromycin (1 μg/ml) where appropriate.

Tetracycline induction time course
Tetracycline induction was carried out at a concentration of
1 μg/ml. Cells were grown in culture to �107 cells/ml in SDM79
or SDMG medium prior to commencement of the experiment.
Non-induced cells were split into separate flasks corresponding
to the number of time points and induction was initiated in a
staggered manner. Upon addition of tetracycline (Sigma) to the
flask for time 0, cells were harvested for Western blotting or
immunofluorescence assays (IFAs).

Immunoblot analysis
Samples were boiled in Laemmli buffer (2× stock: 0.5 M
Tris pH 6.8 containing 20% glycerol, 4% dithiothreitol, 4%
SDS, Bromo-phenol blue) before SDS-PAGE separation, load-
ing 40 μg of total cell protein per lane. The Criterion system
(Biorad) was used for electrophoresis. Proteins were transferred
to polyvinylidene difluoride membranes (Hybond-P from Amer-
sham) in the Criterion blotter (Biorad) for 45 min at 100 V con-
stant in TG buffer (10× stock: 0.25 mM Tris pH 8.3, 1.92 mM
glycine). The membrane was blocked overnight with 5%
skimmed milk in PBS and incubated with primary antibodies di-
luted in 1% milk and 0.1% Tween20 in PBS for 1 h. Membrane
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washes were performed with 0.2% Tween20 in PBS. Species-
specific secondary antibodies coupled to horseradish peroxidase
(GE Healthcare) were diluted 1/20,000 in 1% milk and 0.1%
Tween20 in PBS and incubated with the membranes for 1 h.
Final detection was carried out by using an ECL kit accord-
ing to manufacturer’s instructions (Amersham) and exposure of
Hyperfilm-ECL (Amersham). Antibodies against the endoplas-
mic reticulum component BiP [Bangs et al., 1993] or against the
paraflagellar proteins [Kohl et al., 1999] were used as loading
controls.

Indirect IFA
Cultured parasites were washed twice in SDM79 medium with-
out serum and spread on poly-L-lysine coated slides (Menzel-
Gläser) before fixation. For methanol fixation, parasites were air
dried and fixed in methanol at –20°C for 5 min followed by a
rehydration step for 15 min in PBS. For PFA fixation, parasites
were left to settle on slides, rinsed in PBS before being incu-
bated for 30 min at room temperature with a 4% PFA solution
in PBS at pH 7. After a permeabilisation step with 0.1% Non-
idet P-40 (Fluka) in PBS, samples were blocked for 1 h with
1% BSA in PBS. To extract the cytoskeleton and solubilise cy-
toplasmic contents, the cells were left to settle on poly-L-lysine
coated slides for 10 min, rinsed in PBS and treated for 7 s with
1% NP40 in PEM buffer (0.1 M PIPES pH 6.9, 2 mM EGTA,
1 mM MgSO4). After thorough washes, the samples were fixed
in methanol before being processed.

For immunodetection, slides were incubated with the ap-
propriate dilution of the first antibody in 0.1% BSA in PBS
for 1 h. MAb25 recognises the axonemal protein TbSAXO1
[Dacheux et al., 2012] and was used as a marker of the axoneme
[Pradel et al., 2006], whereas BB2 served to detect the Ty1 tag
[Bastin et al., 1996]. After three 5-min washes, species and
subclass-specific secondary antibodies coupled to the appropri-
ate fluorochrome (Alexa 488, Cy3 or Cy5; Jackson ImmunoRe-
search) were diluted 1/400 in PBS containing 0.1% BSA and
were applied for 1 h. After washing as above, cells were stained
with a 1 μg/ml solution of the DNA-dye DAPI (Roche) and
mounted with the ProLong antifade reagent (Invitrogen). Slides
were analysed with a DMR microscope (Leica) and images cap-
tured with a CoolSnap HQ camera (Roper Scientific). Image
acquisition was controlled using ImageJ and images were taken
with the threshold set at maximum. Subsequent normalisation
of signals was carried out by parallel manipulation of brightness
and contrast against controls, and images were superimposed
using Photoshop CC.

FRAP analysis
The expression of GFP::DNAI1 was first observed directly with
a DMI4000 Leica microscope using a mercury bulb for exci-
tation to verify correct protein expression and localisation. For
FRAP analysis of cells expressing GDP::DNAI1, a Zeiss inverted
microscope (Axiovert 200) equipped with an oil immersion ob-
jective (magnification ×63 with a 1.4 numerical aperture) and a
spinning disk confocal head (CSU22, Yokogawa) was used [Buis-
son et al., 2013]. Images were acquired using Volocity software
with an EMCCD camera (C-9100, Hamamatsu) operating in
streaming mode. A sample was taken directly from the culture
grown at 6–8 × 106 cells/ml and trapped between slide and

coverslip. The samples were kept at 27°C using a fast response
mini-stage temperature controller. Time-lapse sequences were
acquired to analyse GFP signal recovery after photobleaching.
Movies were taken using a time lapse of 3 min. Exposure time
was 0.8 s per frame (binning was 1 × 1 pixels). In the case
of cells expressing mNeonGreen::DHC-ODAB, the same set-
tings were used except that the microscope was equipped with
a 100× objective (1.4 numerical aperture). In this case, eight
cells were identified per series and their position recorded before
photobleaching. Sequences of 20 s were filmed for each with an
exposure time of 0.1 s per frame. Time lapse varied between 5
and 13 min.
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SUMMARY 

 

Several cell types such as photoreceptors and spermatozoa possess very stable cilia and 

flagella, a feature also encountered in numerous protists. We tested an original model 

for the control of flagellum length in such cells, using Trypanosoma brucei as an 

experimental system. The grow-and-lock model proposes that the flagellum elongates at 

a linear rate and that a locking event takes place in a timely defined manner preventing 

further elongation or shortening. We show that the total amount of IFT material 

increases during flagellum elongation, ensuring a constant concentration per unit of 

length and the ability to provide a constant delivery of precursors in agreement with a 

linear growth rate. Reducing the IFT rate by RNAi knockdown of the IFT kinesin 

motors slows down the growth rate and results in the assembly of shorter flagella. The 

flagellum is locked after cell division in an irreversible process and even subsequent 

increase in the IFT rate does not lead to further elongation. Other models (limitation by 

the soluble pool of tubulin, equilibrium between assembly and disassembly rates, or 

morphogenetic control) fail to explain the experimental data. The locking event is 

associated to the addition of the FLAM8 molecular marker at the distal end of the 

flagellum and is initiated prior cell division, leading to an arrest of elongation in the 

daughter cell. These results provide support for the grow-and-lock model as a new 

paradigm for the control of organelle length. 

 

 

Keywords: cilia and flagella; ciliogenesis; organelle length; microtubules; intraflagellar 

transport; trypanosome; photoreceptor; spermatozoa  
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INTRODUCTION 

 

Cilia and flagella (interchangeable terms) are present at the surface of many eukaryotic 

cells from protists to humans where they are involved in a range of functions including 

motility, sensing or morphogenesis. Multiple types of ciliary organisations are encountered 

from one species to another, and also between different cells in the same organism. Striking 

variations have been noted in cilia composition, positioning or length, presumably reflecting 

an optimisation related to the function in a given cell type. The lifespan of cilia is also highly 

variable, from the transitory existence of some primary cilia to the very stable cilia or flagella 

of photoreceptors or spermatozoa that show little or no turnover of their microtubules.  

Despite extensive variation, each cilium or flagellum exhibits a defined length, a 

process that has fascinated scientists for decades [1]. To decipher the mechanisms that control 

length, it is essential to understand how the organelle is constructed. Tubulin is delivered via 

Intraflagellar Transport (IFT) to the distal end of growing microtubules where incorporation 

takes place [2-4]. Absence of IFT prevents cilium construction in all organisms investigated 

so far [5]. The control of flagellum length has mostly been studied in the green algae 

Chlamydomonas [6], a member of the Archeoplastida group [7]. In this organism, flagellar 

microtubules are highly dynamic and exhibit constant disassembly at their plus end. In such a 

situation, IFT is essential not only for the construction but also for the maintenance of length 

[8]. Several models have been proposed to explain the control of length in this context, 

mainly as a balance between assembly and disassembly rates [6], with IFT being a central 

component [4, 8-11]. These models could function in other systems where cilia display 

significant microtubule turnover such as in C. elegans [12] but could not be applied in cells 

with more stable cilia.  
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In mammals, the mouse sperm flagellum relies on IFT for assembly but not for 

maintenance, and yet the sperm flagellum does not disassemble after maturation [13]. Another 

case is the connecting cilium of photoreceptors in the retina. These cells display very low 

turnover [14] and loss of IFT after assembly only impacts ciliary length after 2-3 weeks, 

possibly because the cell degenerates [15]. How is length control achieved in such conditions? 

Here, we propose a new model termed grow-and-lock where the organelle grows up to a stage 

where a signal blocks further elongation or shortening by inducing a modification that locks 

the structure in a stable (or mature) configuration. The organelle is now ready to perform its 

final function and does not need length monitoring. In theory, this model is compatible with 

any type of assembly rate but the easiest situation is to assume a linear growth rate. The 

moment when the flagellum is locked could be controlled at the level of the flagellum itself, 

thereby implying a way to measure length. A simpler option would be to link that event to 

another cellular process that is timely regulated, such as progression through the cell cycle or 

through cell differentiation. The locking event would lead to a modification of the organelle 

that makes its structural elements very stable whereas other components could remain 

dynamic. Alternatively, it could prevent access of tubulin dimers and other components 

to the flagellum. This simple model predicts that cells could produce flagella of different 

lengths by modulating the growth rate and/or the timing of the locking event. 

Spermatozoa or photoreceptors do not lend easily to manipulation. By contrast, 

protists represent great model organisms, are amenable in the laboratory and several of them 

exhibit very stable flagella. Here, we selected the protist Trypanosoma brucei for the 

investigation of the grow-and-lock model for several reasons. First, its axoneme is very stable 

[16] and relies on IFT for construction [17, 18] but not for length maintenance [19], exactly 

like in spermatozoa or photoreceptors. IFT remains active after assembly to maintain other 

elements but not axoneme composition [19]. Second, when trypanosomes infect mammals or 
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tsetse flies, they progress through several stages of development during which they assemble 

flagella of different length [20-22] and composition [23]. This is reminiscent to what multi-

cellular organisms do in different cell types and means that the system is flexible. Third, 

trypanosomes grow well in culture; they assemble their flagellum in a timely, reproducible 

and well-characterised manner [24-26]; they are amenable to reverse genetics and IFT has 

been exhaustively quantified [27].  

In this study, we provide experimental evidence that supports each of the major 

predictions of the grow-and-lock model. We show that results are not compatible with 

three other possible models: limited pool of soluble tubulin, equilibrium between 

assembly and disassembly and control by cell body length. The growth rate of the 

trypanosome flagellar is linear thanks to the continuous recruitment of new IFT trains in the 

elongating flagellum and its reduction upon IFT kinesin knockdown results in the 

construction of shorter flagella. The locking event is controlled at the cell cycle level, is 

triggered prior cell division and is correlated to the addition of a unique marker protein. The 

fact that the flagellum is locked is supported by the fact that increasing the IFT rate 

after maturation does not result in further elongation. Blocking cell division allows for 

the construction of longer flagella that ultimately mature and reach exactly the same length as 

the flagellum assembled in the previous generation. The grow-and-lock model provides an 

opportunity to explain the control of flagellum length in cells with very stable organelles. 
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RESULTS 

 

IFT delivery remains constant during flagellum construction 

The simplest version of the grow-and-lock model is based on a linear growth rate. This 

is exactly the case of flagellum assembly in T. brucei as measured in culture [25] and during 

animal infection [28]. This implies a constant delivery of tubulin by IFT no matter the stage 

of elongation. So far, IFT has only been quantified in mature flagella of T. brucei at the 

procyclic stage maintained in culture [27, 29]. Here, IFT trafficking was examined in the 

elongating flagellum and compared to the mature flagellum that remains present during the 

cell cycle, providing an ideal control [24]. This was carried out in live procyclic trypanosomes 

that express a fusion protein between the fluorescent Tandem Tomato protein (TdT)[30] and 

the IFT-B protein IFT81, upon endogenous tagging in the IFT81 locus [31]. In addition to the 

bright signal at the base, a succession of motile spots was detected all along the length of the 

flagellum moving in either anterograde or retrograde direction in cells with a single flagellum 

(Video 1, Fig. 1A1) or in those assembling the new one, hence possessing two flagella 

(Videos 2-4, Fig. 1 A2-4). A summary of flagellum elongation during the trypanosome 

cell cycle is presented at Figure S1A. At first glance, IFT behaviour looked quite similar in 

both growing and mature flagella (Fig. 1A). The total amount of fluorescence emitted by the 

TdT::IFT81 protein in the flagellar compartment was quantified by using the first image of 

each movie. Plotting the ratio between the total amount of fluorescence in the new flagellum 

and that in the old one versus the length of the growing flagellum demonstrated a linear 

correlation between these two parameters (Fig. 1C). This data shows that IFT proteins are 

progressively recruited to the flagellum as it elongates. This means that the IFT amount 

increases linearly with length hence IFT density per unit of length of length remains 

constant during elongation. 
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Next, kymograph analysis [27] was carried out to quantify IFT rates and frequencies in 

cells with one (Fig. 1A1 and Fig. 1B1) or two flagella at different steps of elongation (Fig. 

1A2-4 and Fig 1B2-4). Kymograph observations revealed brighter individual tracks for 

anterograde transport and less intense tracks for retrograde transport as expected [27]. Both 

IFT speed (Fig. 1D) and frequency (Fig. 1E) were invariant during flagellum elongation 

(Table 1), supporting a constant delivery rate of material at the tip of the growing flagellum. 

We conclude that the IFT delivery rate remains constant during flagellum construction, which 

is in agreement with the reported linear growth rate [25, 28]. 

 

Knockdown of IFT kinesins reduces frequency and speed of IFT and results in the 

assembly of short flagella 

The grow-and-lock model implies that modulation of the flagellum growth rate 

would impact on the final length reached by the organelle. To reduce IFT trafficking, we 

selected to deplete the expression of kinesin II, the IFT anterograde motor. The genome of 

T. brucei encodes two putative kinesin II proteins (Tb927.5.2090 and Tb927.11.13920) but no 

kinesin-associated protein (KAP) [32, 33]. Individual RNAi silencing of KIN2A or KIN2B 

did not result in a visible phenotype: cells assembled apparently normal flagella and grew 

normally in culture (data not shown), suggesting redundancy. Hence simultaneous 

knockdown of KIN2A and KIN2B was performed following stable transformation of 

trypanosomes with a plasmid expressing dsRNA of both KIN2A and KIN2B under the control 

of tetracycline-inducible promoters [34]. The efficiency of RNAi silencing in KIN2A2BRNAi 

cells was confirmed by western blotting using an antibody against KIN2B [33](Fig. S2). The 

signal for KIN2B dropped by at least 8-fold from day 1 and remained low for at least 6 days, 

confirming the efficiency of RNAi silencing (Fig. S2). The frequency and speed of IFT was 

examined upon transformation of KIN2A2BRNAi cells with the reporter construct described 
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above allowing endogenous tagging of IFT81 with TdTomato. Trypanosomes were grown in 

induced or non-induced conditions and IFT was measured in live uniflagellated cells upon 

kymograph analysis. In control cells, bright anterograde trains were frequently observed, 

trafficking from the base to the tip of the flagellum where they were transformed to retrograde 

trains (Fig. S3A & Video 5). Kymograph analysis revealed that the average anterograde speed 

was 1.7±0.5 µm.s-1 (n=159 trains from 10 separate cells) and the mean frequency was 0.64 

train.s-1 (Fig. S3B & Table 2). RNAi-induced cells looked different, the signal at the base of 

the flagellum appeared brighter and adopted a more elongated shape compared to that in 

control cells (Fig. S3C). The train frequency was reduced to 0.37.s-1 (n=95) after one day of 

induction, and down to 0.25.s-1 after 4 to 6 days in RNAi conditions (n=125)(Video 6)(Table 

2). This is visible on the kymograph with fewer traces in induced cells (Fig. S3D) compared 

to control ones (Fig. S3B). In addition, IFT trains travelled more slowly when kinesin 

expression was knocked down: 1.4 µm.s-1 at days 4 or 6 instead of 1.9 µm.s-1 at day 0 (Fig. 

S3D)(Table 2). We conclude that the joint depletion of KIN2A and KIN2B expression 

efficiently reduced IFT delivery in the flagellum.  

 

The observed 3-fold reduction in IFT train frequency should result in a significant 

reduction in the flagellum growth rate that should consequently allow testing the impact of 

this parameter on the grow-and-lock model. Monitoring the culture by microscopy during the 

course of RNAi indicated the presence of smaller cells with a shorter flagellum (Fig. 2A). To 

quantify this reduction, cells were fixed, processed for immunofluorescence assay (IFA) using 

the axonemal marker Mab25 and DAPI for DNA staining, and the length of the flagellum was 

measured. Cells that possessed a single flagellum were first examined. In non-induced 

samples, the length of the axoneme was on average ~20 µm, as expected [24]. However, the 

length of the flagellum was shorter during the course of RNAi induction, down to ~9 µm at 
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day 4. Despite the large dispersion, this difference was statistically significant (Fig. 2B). 

Flagellum length remained in that range over the next two days of induction (Fig. 2B), and up 

to 11 days after having triggered kinesin knockdown (not shown). In control non-induced 

samples, analysis by scanning electron microscopy revealed the typical elongated 

trypanosome shape with the flagellum attached to the cell body (Fig. 2C). By contrast, 

flagellum length was clearly shorter in induced cells that displayed a shorter cell body 

(Fig. 2D), in agreement with the role of the flagellum in governing trypanosome 

morphogenesis [17].  

 

The flagellum can be shorter because it is made too short, hence reflecting a defect in 

construction as predicted by the grow-and-lock model, but it could also be the case because it 

shortens after construction. To discriminate between these two possibilities, trypanosomes at 

a late stage of the cell cycle were investigated. These cells can easily be recognised because 

they possess two nuclei [24]. In control non-induced cells, the length of the new flagellum 

was ~15 µm whereas that of the old flagellum was ~20 µm (Fig. 3A, grey symbols on Fig. 

3B) as expected because construction is not completed before cell division [24, 35]. This was 

confirmed by scanning electron microscopy of dividing cells: when the cleavage furrow was 

visible, the length of the new flagellum was shorter than that of the old one (Fig. 3C). In 

induced KIN2A2BRNAi cells, the average length of the new flagellum was around 7 µm, for all 

induction times examined and that difference was statistically significant (Fig. 3A, black 

symbols on Fig. 3B). Analysis by scanning electron microscopy revealed that the new 

flagellum is much shorter and that the daughter cell is smaller (Fig. 3D) compared to the non-

induced cells (Fig. 3C). This implies that the new flagellum is made too short when the cell is 

about to divide and supports the first postulate of the “grow and lock model”: reducing the 

growth rate impacts on the length of the flagellum. 
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Presence of soluble tubulin does not support the limited cytoplasmic pool model 

 The shorter flagellum length could also be explained if the amount of soluble 

tubulin was more limited, for example because of the shorter cell size. In this were true, 

regulation of flagellum length could be explained by the model of the limiting pool of 

cytoplasmic components [36]. To challenge this model, the amount of soluble tubulin 

was determined using cell fractionation in detergent to separate a cytoskeletal and a 

soluble fraction [37]. Analysis non-induced KIN2A2BRNAi cells demonstrated the 

existence of a low-abundance pool of soluble tubulin (Fig. S4) in agreement with 

previous studies [38]. A similar (possibly even more abundant) pool of soluble tubulin 

was found in KIN2A2BRNAi cells after RNAi knockdown (Fig. S4). We conclude that the 

amount of soluble tubulin is not the limiting factor that would cause flagella to be 

shorter in KIN2A2BRNAi cells after RNAi knockdown.  

 

Evidence for flagellum locking after cell division is not compatible with the balance-point 

model 

 The grow-and-lock model implies that the mature flagellum is locked in a 

stable state that prevents further elongation or shortening. Although this is supported 

by the maintenance of flagellum length in the absence of IFT [19], the presence of a 

shorter mature flagellum of KIN2A2BRNAi cells offers the possibility to bring more direct 

evidence. KIN2A2BRNAi cells were grown in RNAi conditions for 6 days, resulting in the 

presence of short flagella as observed above. Tetracycline was washed out, leading to 

expression of fresh KIN2A and KIN2B and restoring IFT (Fig. 4A). The return of IFT 

trafficking in old and new flagella was monitored in live cells by the presence of a fusion 

protein between mNeonGreen [39] and IFT81 expressed from the endogenous IFT81 
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locus [40]. After 16 hours without tetracycline, the frequency of IFT is increased by ~2-

fold in both the new and the mature flagellum (Table 2). This was confirmed by 

immunofluorescence staining with an anti-IFT172 antibody that revealed close to 

normal signal in both flagella (Fig. 4B). This shows that new IFT proteins have access to 

the mature flagellum in addition to the new one.  

 The length of each flagellum was measured using the Mab25 axonemal staining 

in induced and “de-induced” conditions. In induced conditions, the average length of the 

old flagellum was 14.2 ± 4.1 µm (black squares, Fig. 4C) whereas that of the new one was 

8.25 ± 3.1 µm (black circles, Fig. 4C), as previously observed (Fig. 3B). Strikingly, the 

length of the old flagellum remained unchanged at 13.9 ± 4.08 µm (grey squares, Fig. 

4C). This demonstrates that a 2-fold increase in IFT cannot rescue flagellum length after 

maturation. We interpret this result as evidence that the mature flagellum is locked. 

This also proves that the balance point model between assembly and disassembly does 

not apply to this type of flagellum since this model would predict an elongation of the 

flagellum upon increase of the IFT frequency [9].  

 The T. brucei flagellum is attached to the cell body via a sophisticated 

cytoskeletal network [41] and this could provide an original way to control flagellum 

length. This hypothesis is somehow contradicted by the fact that mutants with defects in 

the adhesion machinery assemble detached flagella of apparently normal length [42-46]. 

However, these flagella are completely detached from the cell body with the exception of 

the anchoring via the flagellar pocket and might be regulated differently compared to 

KIN2A2BRNAi cells where the short flagella are properly attached to the cell body. The 

“de-induction” experiment provides a way to challenge this model directly because at 

the time of tetracycline wash out, cells exhibit a short cell body. If this is a limiting 

factor, it should prevent further elongation of the new flagellum since it is formed on a 
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short cell body. Measurements of the length of the new flagellum in de-induced cells 

contradicted this model. Indeed, the length of the new flagellum was 11.7 ± 3.9 µm 

instead of 8.25 ± 3.1 µm (Fig. 4C, grey circles). Examining the ratio between the length 

of the new and the old flagellum revealed further interesting observations (Fig. 4D, grey 

circles). In close to one third of de-induced cells (16/55), the new flagellum was longer 

than the mature one; something that was never observed in induced KIN2A2BRNAi cells 

(Fig. 4D, black circles) or in control cells [26]. Several of these cells grew flagella that 

extended well beyond the cell body (Fig. S5). We conclude that flagellum length is not 

controlled by the size of the cell body. 

 

The locking event is initiated prior cell division  

Having brought further evidence for flagellum locking, we next investigated the 

second postulate of the grow-and-lock model. It says that a timely controlled event should 

lead to a modification that locks the flagellum and prevents further elongation or shortening. 

Since flagellum assembly is intimately linked with the progression through the cell cycle in 

trypanosomes as in other protists [24, 47, 48], we propose that the locking event is controlled 

by a cell cycle-dependent mechanism rather than at the flagellum level. When a procyclic 

trypanosome divides, the new flagellum has reached ~80% of the length of the old flagellum 

meaning that elongation continues up to 20 µm in the daughter cell inheriting that flagellum. 

Post-division elongation has been experimentally proven but not quantified so far [49] and the 

events leading to its arrest are unknown. Arrest of flagellum growth could happen instantly or 

could be triggered by a specific signal that would be effective after a lag phase. In the first 

hypothesis (sharp arrest), flagellum elongation would be blocked when the flagellum becomes 

mature at some point after cell division. In the second hypothesis (delayed arrest), the signal 

leading to flagellum locking could happen prior or after cell division.  
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Whilst measuring the length of the new flagellum in KIN2A2BRNAi cells (7 µm, see 

above), we noticed that the old flagellum of the same cells was almost twice longer (12 µm, 

black symbols, Fig. 3B), but albeit shorter than normal (20 µm). This could be explained by 

the first hypothesis if the flagellum keeps its slow growth rate after cell division until the 

locking event occurs. But it could also be explained with the second model if the locking 

signal is triggered before division and blocks flagellum elongation later on. Therefore, this 

result does not discriminate between the two hypotheses.  

To tease apart the mechanism responsible for the locking of the flagellum, cell 

division was inhibited. If the locking event takes place after division, it should be possible 

to restore normal flagellum length since flagellum growth should continue unabated. If 

it were initiated before cell division, only limited growth would be possible after 

activation of the signal. KIN2A2BRNAi cells were grown in the presence of 10 mM teniposide, 

a drug that interferes with mitochondrial DNA segregation but neither with basal body 

duplication nor with flagellum elongation [50]. This resulted in the expected arrest of cell 

division that is clearly visible on the growth curve (Fig. S6). KIN2A2BRNAi cells induced for 

5 days were incubated in the presence of 10 mM teniposide. After incubation, cells were 

fixed and processed for IFA with the axonemal marker Mab25 whilst DNA was stained with 

DAPI. In controls without teniposide, the mitochondrial DNA segregated normally and cells 

progressed to the typical pattern with 2 kinetoplasts and 2 nuclei preceding cell division (Fig. 

5A, top panels). By contrast, kinetoplasts failed to fully segregate in the presence of 

teniposide (Fig. 5A, bottom panels, white arrow), inhibiting cell division. In the absence of 

teniposide, the ratio between the length of the new and the old flagellum in induced 

KIN2A2BRNAi cells was about 60% (Fig. 5B, light grey), in agreement with previous 

measurements (Fig. 3B). Remarkably, after 16 hours of incubation with teniposide, the 

ratio was close to 100%, meaning that the length of the new flagellum had reached the length 
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of the old flagellum at ~12 µm but had failed to reach the normal 20 µm (Fig. 5B, dark grey, 

left bars). However, this short length could be due to slow elongation and not to a locking 

event. KIN2A2BRNAi cells were therefore incubated for 24 hours in the presence of 

teniposide. These extra 8 hours in teniposide did not result in an increase of new 

flagellum length that remained stuck at 12 µm (Fig. 5A, bottom panels & Fig. 5B, dark 

grey, right bars). We conclude that the signal for the locking event is triggered prior cell 

division and impacts elongation definitely.  

One could consider that KIN2A2BRNAi cells behave differently than wild-type cells 

for whatever reasons (shorter flagellum length, shorter cell size, reduced motility) and 

this might not reflect the normal situation. Therefore, we analysed the impact of an 

inhibition of cell division in wild-type cells. If the model is true, blocking cell division 

should result in an increase of the new flagellum from 80% (length of the new flagellum in 

wild-type cells) to 100% of the length of the old flagellum. In the absence of teniposide, the 

ratio between new and old flagella in cells about to divide was close to 80% as expected [26, 

35](Fig. S7A, top panels and S7B, light grey bars). After incubation with teniposide, the 

length of the new flagellum reached that of the old flagellum but did not elongate further (Fig. 

S7A, bottom panels and S7B, dark grey bars). We conclude that when cytokinesis is 

blocked upon inhibition of mitochondrial DNA segregation, the signal that locks 

flagellum length is still present. This shows that this signal is triggered prior to cell 

division.  

 

A molecular marker to monitor flagellum maturation 

 The last element of the grow-and-lock model implies that a modification of the 

flagellum takes place preventing further elongation. The data above indicate this must be 

progressive since it is initiated prior cell division and leads to an elongation arrest only after 
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division. We therefore searched for candidate molecules that accumulate towards the late 

phase of flagellum elongation and could serve as markers for flagellum maturation. The 

FLAM8 protein appeared as an attractive candidate. It is a large protein (3,075 amino acids) 

of unknown function that was discovered in a proteomic study of purified trypanosome 

flagella [35]. FLAM8 is abundant at the distal tip of mature flagella and detected in very low 

concentrations at the first stages of flagellum construction. However, its amount increases 

during elongation to reach 40% of that of the old flagellum just prior cell division [35]. It 

means that a significant increase must happen after cell division, which is compatible with the 

findings above.  

If FLAM8 is indeed a marker of flagellum maturation, it should accumulate in the new 

flagellum of teniposide-treated cells. Therefore, cell division was inhibited using teniposide in 

induced KIN2A2BRNAi cells exactly as above. Cells were fixed and stained by IFA with an 

anti-FLAM8 antibody, the Mab25 antibody as an axonemal marker, and DAPI to label DNA. 

When induced KIN2A2BRNAi cells were not treated with teniposide, FLAM8 was abundant at 

the tip of the old flagellum, but was present in very low amounts or below detection level in 

the new flagellum (Fig. 6A, top panels). By contrast, in cells treated with teniposide for 24 

hours, the new flagellum had elongated further as described above and the FLAM8 signal at 

its tip was much brighter and looked similar to that at the tip of the mature flagellum (Fig 6A, 

bottom panels). A circular region of interest was defined around the tip of the new and the old 

flagella and the total amount of fluorescence was quantified. In untreated induced 

KIN2A2BRNAi cells at an advanced step of their cell cycle, the ratio of FLAM8 signal 

intensities between the new and the old flagellum was close to 60% (Fig. 6B, light grey). 

However, for induced cells treated with teniposide (where the new flagellum reached the 

length of the old flagellum), the FLAM8 ratio increased to 100% (Fig. 6B, dark grey). This 

difference was statistically significant. 
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We conclude that maturation of the new flagellum is initiated towards the end of the 

cell cycle and has an impact in the daughter cell after division. When cytokinesis is inhibited, 

maturation is triggered but because flagellum elongation is slower in induced KIN2A2BRNAi 

cells due to the reduced IFT trafficking, the locking event took place too early, therefore 

preventing the new flagellum to reach the normal length of 20 µm. We conclude that these 

results support the last point of the grow-and-lock model that implied that the mature 

flagellum should be different from the elongating flagellum.  
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DISCUSSION 

In the grow-and-lock model proposed here, the flagellum shows a linear growth rate 

until a signal triggers a modification that blocks further elongation or shortening (Fig. 7A). 

The flagellum is now ready for its final function and its length is not modified anymore. In 

such a model, a cell can produce a shorter flagellum either by a slower growth rate (Fig. 7A, 

magenta curve) or by an earlier initiation of the locking event (Fig. 7B, magenta). Conversely, 

a longer flagellum can be constructed using a faster growth rate (Fig. 7A, green curve) or by 

delaying the timing of maturation (Fig. 7B, green). One could also consider that both 

parameters can be shifted together to achieve a different length. In this manuscript, we have 

exploited the KIN2A2BRNAi cells that assemble shorter flagella to provide experimental 

evidence for the grow-and-lock model. First, we have shown that the mature flagellum is 

indeed locked since it does not elongate despite an increase of 2-fold in IFT trafficking in 

the de-induction experiment. This result adds up to the fact that the mature flagellum 

does not shorten in the absence of IFT [19]. We also reveal that FLAM8 can be 

considered as a molecular marker of mature flagella present at the distal end of the 

axoneme and whose high concentration reflects the state of maturation independent of 

the length of the flagellum. Second, we have shown that the signal for the locking event 

takes place prior cell division. Indeed, blocking mitochondrial DNA segregation with 

teniposide and hence cell division allows the flagellum of KIN2A2BRNAi cells to elongate 

for a few microns but is followed by maturation and acquisition of a strong FLAM8 

signal. Rising the incubation time in teniposide from 16 to 24 hours did not result in 

further increase in flagellum length, showing that it is definitely locked. Finally, a 

reduction of IFT frequency leads to a slower growth rate and results in the formation of 

a shorter flagellum, as predicted by the model (Fig. 7).  
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Importantly, the experiments reported here do not support other possible models 

for length control. First, the presence of a soluble pool of tubulin in control cells and in 

induced KIN2A2BRNAi cells that exhibit short flagella does not support the model based 

on control of flagellum length by a depletion of the pool of components [36]. Second, the 

fact that the short mature flagellum does not elongate despite a 2-fold augmentation of 

IFT trafficking in de-induced KIN2A2BRNAi cells contradicts the balance point-model [9]. 

Third, the ability of KIN2A2BRNAi cells to assemble fairly long new flagella that grow 

beyond the short cell body demonstrates that a control via the cytoskeletal attachment 

zone system [41] cannot explain the results either. 

By contrast, the grow-and-lock model is so far the only one that is compatible 

with the experimental data. The principle is fairly simple since it relies on a linear 

growth rate and a locking event initiated prior cell division. There is no need to modulate 

the construction rate but this requires a sufficient supply of IFT proteins to ensure a regular 

increase of IFT trains in the flagellum and maintain a constant delivery rate of tubulin. This is 

in agreement with the fact that the amount of IFT proteins in the cell body largely exceeds 

that in the flagellum [18, 27, 51]. Moreover, the amount of IFT gene transcripts increases 

during flagellum assembly, followed closely by mRNA from genes coding for axonemal 

proteins [52, 53]. Examination of mouse photoreceptors during differentiation also indicates a 

significant amount of IFT proteins in the cell body in addition to the cilium [15, 54].  

Here, we have shown that the event leading to the maturation of the flagellum is linked 

to the cell cycle timing and is triggered prior trypanosome division. This could also be the 

case of multiple protists where flagella are assembled during nuclear mitosis whilst 

maintaining flagella assembled in the previous generation(s) [24, 47, 48, 55]. The signal being 

activated before cell division, the cell commits to flagellum maturation even if it practically 

takes place only in the daughter cell. However, it is not directly controlled by cell division, 



   19 

since its inhibition by the teniposide treatment still allows maturation to occur, as well as 

elongation arrest. 

This model has potential for cilia and flagella that do not disassemble their 

microtubules after assembly and maturation. Locking the length of the axoneme in a mature 

state could have significant advantages for cellular functions. Protein turnover costs energy 

and this would dispense the cell of a potentially costly maintenance process. A maybe more 

significant advantage may be found in the fact that cilia and flagella are central elements in 

the morphogenesis of the three cell types discussed here. In trypanosomes, the flagellum is 

attached along the length of the cell body from the onset of assembly. Some stages even use a 

flagella connector to position the new flagellum alongside the existing one [56]. The 

flagellum actually guides cell morphogenesis and defines the axis of cytokinesis [17, 44]. In 

spermatozoa, the axoneme of the flagellum is fully elongated before the cascade of 

morphogenetic events leading the emergence of the typical elongated shape of the cell body. 

These occur in a precise manner and are articulated around the flagellum [13, 57]. In 

photoreceptors, the large outer segment develops from the cilium [58] and is actually derived 

from the fusion of ectosomes that originated from it [59]. In all three situations, one could 

imagine the requirement of a stable axoneme both to ensure correct morphogenesis and to 

fulfil specific cell function after complete differentiation.  

Locking the mature flagellum could help the cell to discriminate the new 

flagellum (that elongates) from the mature flagellum (that does not). Recent evidence 

indicates that the two flagella differ not only by their length but also by their content 

[35, 60]. This could be particularly helpful during differentiation steps where the new 

flagellum could perform a different function in the daughter cell [22, 23].  The situation 

is very different from the green algae Chlamydomonas that contains two flagella of 

normally equivalent length. When only one of them is severed, the remaining ones 
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shortens while the severed one starts to grow again up to a point where both flagella 

grow at the same rate [61]. This implies an exchange of information between the two 

flagella, something that was not observed in T. brucei where the two flagella function 

independently. 

What could be the nature of the locking event that prevents further elongation of 

axoneme microtubules so stable? Several hypotheses can be put forward. First, the addition of 

a cap at the tip of microtubule doublets could be sufficient to prevent further assembly or 

disassembly. The identification of the distal tip FLAM8 protein as a marker of maturation 

goes along this line but it does not necessarily mean that this protein inhibits elongation. So 

far, a cap structure has not been detected on electron micrographs of T. brucei procyclic 

flagella [62] but the morphology of the axoneme tip looks very different between growing and 

mature flagella: whilst it looks disorganised in elongating flagella with some microtubule 

doublets very close to the central pair and others further away and in contact with the 

membrane, it is nicely and regularly structured in mature ones [63]. A cap at the tip could also 

protect against the action of the depolymerising kinesin 13 that has been connected to 

flagellum length control in the related protists Leishmania major [64] or Giardia intestinalis 

[65] but whose contribution appears minor in T. brucei [66]. A second possibility is the level 

of some post-translational modifications of tubulin that could alter the dynamics of 

microtubules. For example, the tip of the growing flagellum contains a large amount of 

tyrosinated tubulin that is not detected in the mature flagellum [67]. One could imagine that 

exhaustive detyrosination protects the axoneme from disassembly. By contrast, the totality of 

trypanosome tubulin being acetylated, a direct role of tubulin acetylation sounds unlikely 

[68]. Finally, the locking event could take place at the level of the base of the flagellum, 

for example by preventing access of fresh tubulin to the mature organelle. However, the 

de-induction experiment revealed that new IFT proteins were able to enter the mature 
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flagellum, showing that access remained available, at least for this category of proteins. 

Yet, this was not accompanied by an increase in flagellum length. The membrane 

protein arginine kinase 3 also has access to the mature flagellum since RNAi 

experiments showed it undergoes complete turnover in four hours [35]. Nevertheless, it 

remains to be seen if tubulin itself can access the old flagellum. Due to the failure of 

tagged tubulin to incorporate trypanosome microtubules [69, 70], it is not technically 

feasible to address this question.  

The maturation/locking could be reversible in case the organelle needs to be modified, 

for example during a differentiation process [71], as recently demonstrated in the related 

parasite Trypanosoma congolense where shortening of the flagellum takes place during 

the transition between a free-swimming stage to an attached stage in culture conditions 

[72]. One could imagine that a structural cap is removed or that some post-translational 

modifications of tubulin are reverted, for example via the action of specific enzymes [73]. In 

mammalian cells, cilia are usually assembled after mitosis (or meiosis) in the so-called G0 

phase of the cell cycle. If post-translational modifications are involved, the enzyme in charge 

could be expressed from this time point to progressively act on microtubules and finally 

inhibit assembly. Intriguingly, a “decapitation” process removes the distal end of the 

primary cilium in mouse embryonic fibroblasts as well as a large amount of IFT-B 

proteins before the organelle is resorbed [74]. 

 

Timing information for the locking event could come from the process of cell 

differentiation. We note that in both spermatozoa and photoreceptors, assembly of the cilium 

is one of the first steps in morphological differentiation [13, 59]. Alternatively, the timing of 

maturation could be controlled at the level of the flagellum once it reaches a certain length, 

via a length sensor. This possibility remains open via the time-of-flight model whereby a 
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sensing molecule traffics in association with IFT proteins and undergoes some modification in 

the flagellum. As the flagellum elongates the time spent for a trip increases and the proportion 

of modified sensor could become high enough to trigger the locking event. This model had 

been tested in Chlamydomonas but was not supported by experimental evidence in this 

organism [75]. In induced KIN2A2BRNAi cells, the speed of IFT is reduced by ~30%, 

meaning that the time spent in the flagellum increases, what could trigger a premature 

locking event when the flagellum reaches 70% of the theoretical length. The length of 

the mature flagellum in induced KIN2A2BRNAi cells is compatible with this result. The 

grow-and-lock model could therefore function with a length sensor system, as proposed 

in other organisms with more dynamic flagella [3, 76]. This simple model could therefore 

be suitable for different types of cilia and flagella with different options for the control of the 

growth rate and for both the mode and the timing of maturation of the organelle.  
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FIGURE LEGENDS  

 

Figure 1. IFT trafficking during flagellum construction is compatible with a linear 

growth rate 

(A) Still images of AnTat1.1E cells expressing a TdTomato::IFT81 from the endogenous 

locus. Subpanel 1 shows a cell with a single flagellum (Video S1) and subpanels 2-4 show 

cells at successive stages of flagellum construction (Videos S2-S4). Orange and white 

arrowheads indicate the new and the old flagellum, respectively. (B) Kymographs extracted 

from the corresponding videos where the X axis corresponds to flagellum length (horizontal 

scale bar, 2 µm) and the Y axis represents the elapsed time (vertical bar, 1s). (C) The ratio 

between the total TdT::IFT81 fluorescence intensity in the new and the old flagellum was 

calculated and plotted according to the length of the new flagellum. A linear correlation curve 

is indicated together with its R2 coefficient. (D) The ratio between IFT rates (anterograde 

transport, magenta circles; retrograde transport, green circles) in the new flagellum and the 

old flagellum from the same cell was calculated and plotted according to the length of the new 

flagellum. Retrograde transport is more difficult to detect and data were only incorporated 

when the signal was sufficiently reliable. (E) Quantification of the ratio between the IFT 

frequency (anterograde transport, magenta circles; retrograde transport, green circles) in the 

new flagellum and the old flagellum in the same cell was calculated and plotted versus the 

length of the new flagellum. See Table 1 for total number of trains analysed. 

 

Figure 2. Reduction of IFT train frequency impacts on flagellum length in KIN2A2BRNAi 

cells.  

(A) IFA of non-induced KIN2A2BRNAi cells, or cells induced for 3 or 6 days as indicated, fixed 

in methanol, and stained with the Mab25 antibody to detect the axoneme (white). The top 
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panels show the phase-contrast image merged with DAPI (blue) and Mab25 signal (white). 

Scale bar: 10µm. The bottom panels show Mab25 staining (white) merged with DAPI (blue). 

(B) Dot plot showing flagellum length during the course of RNAi induction of KIN2A2BRNAi 

cells including 100 uni-flagellated cells for each time point. The mean values are indicated 

with a bold segment. Statistically significant differences are indicated with two stars 

(p<0.0001). (C-D) Scanning electron microscopy analysis of a non-induced KIN2A2BRNAi cell 

showing the typical trypanosome shape and length (C) and of two induced KIN2A2BRNAi cells 

for 6 days with shorter flagella (D).  

 

Figure 3. The new flagellum is built shorter upon reduction of IFT train frequency in 

KIN2A2BRNAi cells.  

(A) IFA images of non-induced and 6-day induced KIN2A2BRNAi cells obtained after methanol 

fixation and staining with the Mab25 antibody labeling the axoneme (white). The top panels 

show the phase-contrast images merged with DAPI (cyan) and the Mab25 axonemal marker 

(red) and the bottom ones show the Mab25 signal (white) merged with DAPI (cyan). Scale 

bar: 10µm. (B) Dot plot showing the length of old and new flagella during the course of RNAi 

induction of KIN2A2BRNAi measured in cells possessing 2 kinetoplasts and 2 nuclei (n= 50 for 

each time point). The mean values are indicated with a bold segment. Statistically significant 

differences are indicated with one (p<0.001) or two stars (p<0.0001). (C) Scanning 

electron microscopy pictures of non-induced (C) and induced KIN2A2BRNAi cells after 6 days 

(D). The purple arrow indicates the cleavage furrow. Orange and white arrowheads show the 

new and the old flagellum, respectively.  

 

Figure 4. De-induction of RNAi leads to an increase of IFT trafficking in KIN2A2BRNAi 

cells but has no impact on the length of the mature flagellum.  
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(A) Schematic representation of the de-induction experiment. KIN2A2BRNAi cells were 

grown in RNAi conditions for 6 days before extensive washings to remove tetracycline 

and returned to culture with (control) or without tetracycline (de-induced) for 16 hours. 

(B) IFA pictures of a de-induced KIN2A2BRNAi cell undergoing cytokinesis, stained with 

the anti-IFT172 antibody and with the Mab25 antibody targeting the axoneme as 

indicated. The first image shows phase contrast and DAPI staining (cyan). The merged 

panel contains DAPI (cyan), Mab25 (white) and IFT172 (magenta) signals. Scale bar: 

5µm. (C) Dot plot showing the length of old and new flagella in KIN2A2BRNAi cells that 

were grown in RNAi conditions (left, black symbols) and in de-induced cells for 16 hours 

(grey symbols). This was measured in cells possessing 2 kinetoplasts and 2 nuclei (n=54 

for induced cells and n=49 for de-induced cells). (D) Dot plot representing the ratio 

between the length of the new flagellum and that of the old flagellum. The mean values 

are indicated with a bold segment. Statistically significant differences are indicated with 

two stars (p<0.0001). 

 

Figure 5. Inhibition of cell division impacts flagellar length.  

(A) IFA pictures of 6-day induced KIN2A2BRNAi cells that were left untreated (top panels) or 

treated for 24 hours with teniposide (bottom panels), stained with the Mab25 antibody 

targeting the axoneme (white) and DAPI labeling DNA (cyan). The left panels show the 

phase-contrast image merged with DAPI (cyan) and Mab25 signal (white). The right panels 

show the Mab25 signal (white) and DAPI (cyan). Orange and white arrowheads show the new 

and the old flagellum, respectively. The white arrow shows the bridge linking the kinetoplasts 

after treatment with teniposide. Scale bar: 5µm. (B) Ratio between the length of the new 

flagellum and the old flagellum for 6-day induced KIN2A2BRNAi cells treated (dark bars) or 

not (white bars) with teniposide during 16 (left, one experiment) or 24 (right, three 
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independent experiments with standard deviation) hours. For the 16 hour-experiment, 

n=40 for teniposide-treated cells and n=62 for the untreated control. For the 24 hour-

experiment, n=112 for teniposide-treated cells and n=163 for the untreated control. 

Statistically significant differences are indicated with two stars (p<0.0001). 

 

Figure 6. The event leading to flagellum maturation is triggered prior cell division.  

(A) IFA pictures of 6 day-induced KIN2A2BRNAi cells non-treated or treated for 24 hours with 

teniposide, fixed in methanol and stained using the Mab25 antibody to detect the axoneme 

(white), the anti-FLAM8 (magenta) and DAPI (cyan). The left panels show the phase-contrast 

image merged with DAPI (cyan), the anti-FLAM8 (magenta) and Mab25 antibody (white). 

The right panels show the anti-FLAM8 signal only (white). Orange and white arrowheads 

show the new and the old flagellum, respectively. The white circles are centered on the 

FLAM8 signal. Scale bar: 5µm. (B) Ratios between the FLAM8 fluorescent signal intensity in 

the new and the old flagellum in 6 day-induced KIN2ABRNAi cells treated (n=109) or not 

(n=60) with teniposide during 24 hours. Two independent experiments are shown. 

Statistically significant differences are indicated with two stars (p<0.0001). 

 

Figure 7. The grow-and-lock model to explain the control of flagellum length in T. brucei  

(A) A slower (magenta) or faster (green) growth rate allows the production of shorter or 

longer flagella without having to change the timing of the locking event. (B) The flagellum 

elongates with a linear growth rate until a point where it is locked (arrow) and shows neither 

assembly nor disassembly. Keeping the same growth rate but triggering the locking event 

earlier (magenta) or later (green) will result in the formation of shorter or longer flagella.  
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STAR METHODS 

Plasmids, cell lines, and culture conditions 

The pleomorphic strain T. brucei AnTat1.1E [77] was used for transformation with 

p2675TdTIFT81. Cells were cultured in SDM79 medium [78] supplemented with hemin, 

10% fetal bovine serum and 10mM glycerol. All the other procyclic T. brucei cell lines were 

derivatives of the strain 427 and grown in SDM79 medium with hemin and 10% fetal bovine 

serum. All the cells were cultivated at 27°C. The 29–13 cell line expressing the T7 RNA 

polymerase and the tetracycline-repressor has been described previously [79]. For generation 

of the KIN2A2BRNAi cell line, a 489-nucleotide fragment of KIN2A (Tb927.11.13920) was 

amplified by PCR flanked by HindIII and XhoI sites and cloned in the compatible sites of the 

pZJM vector. The KIN2B (Tb 927.5.2090) fragment was generated by chemical synthesis by 

GeneCust Europe (Dudelange, Luxembourg). Genecust cloned these fragment into the pZJM 

vector [34], allowing tetracycline-inducible expression of dsRNA generating RNAi upon 

transfection in the 29-13 recipient cell line. The dsRNA is expressed from two tetracycline-

inducible T7 promoters facing each other in the pZJM vector. Primers were selected using the 

RNAit algorithm to ensure that the fragment lacked significant identity to other genes to avoid 

cross-RNAi [80]. For generation of the KIN2A2BRNAi expressing TdT::IFT81 cell line and 

AnTat1.1E expressing TdT::IFT81, the first 500 nucleotides of the IFT81 gene (Gene DB 

number Tb927.10.2640) were chemically synthesised (GeneCust, Luxembourg) and cloned in 

frame with the TdTomato gene within the HindIII and ApaI sites of the p2675 vector [81]. 

The construct was linearised within the IFT81 sequence with the enzyme XcmI and 

nucleofected [82] in the KIN2A2BRNAi or the AnTat1.1E cell line, leading to integration by 

homologous recombination in the IFT81 endogenous locus and to expression of the full-

length coding sequence of IFT81 fused to TdTomato. To construct the 
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p2675mNeonGreenIFT81 plasmid, the mNeonGreen gene [39] was chemically 

synthesised (GeneCust, Luxembourg) with HindIII and ApaI site and cloned in the 

corresponding site of the p2675YFPIFT81 [31] to replace the YFP gene. The vector was 

linearised with XcmI and nucleofected in the KIN2A2BRNAi cell line as described above. 

Transfectants were grown in media with the appropriate antibiotic concentration and clonal 

populations were obtained by limited dilution. 

For de-induction experiments, KIN2A2BRNAi cells were grown for 6 days in the presence 

of tetracycline and then washed in four times in SMD79 supplemented with serum and 

hemin before being returned to culture either in the presence of tetracycline (induced 

control) or in the absence of tetracycline (de-induced sample). For inhibition of cell 

division, teniposide (Sigma SML0609), a topoisomerase II inhibitor was dissolved in DMSO 

and added to trypanosome cultures at a final concentration of 200 µM [50] during 24 hours 

(KIN2A2BRNAi strain) and 8 hours (wild-type strain). In the control flask, the same volume of 

DMSO was added (63 µL).  

Scanning electron microscopy 

For scanning electron microscopy, samples were fixed overnight at 4°C with 2.5% 

glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) and post-fixed in 2% OsO4 in the same 

buffer. After serial dehydration, samples were dried at the critical point and coated with 

platinum according to standard procedures [83]. Observations were made in a JEOL 7600F 

microscope. 

Immunofluorescence and live cell imaging 

Cultured parasites were washed twice in SDM79 medium without serum or in Phosphate 

Buffer Saline (PBS), and spread directly onto poly-L-lysine coated slides. The slides were air-
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dried for 10 min, fixed in methanol at −20°C for 30 s and rehydrated for 10 min in PBS. For 

immuno-detection, slides were incubated with primary antibodies diluted in PBS with 0.1% 

Bovine Serum Albumin (BSA) for 1 h at 37°C. Three washes of 10 min were performed and 

the secondary antibody diluted in PBS with 0.1% BSA was added to the slides. After an 

incubation of 45 min at 37°C, slides were washed three times in PBS for 10 min and DAPI 

(2 µg/µl) was added. Slides were mounted with coverslips using ProLong antifade reagent 

(Invitrogen). The antibodies used were the Mab25 monoclonal antibody recognising 

TbSAXO1, a protein found all along the trypanosome axoneme [84], an anti-IFT172 mouse 

monoclonal antibody diluted at 1/200 [18], an anti-FLAM8 rabbit polyclonal 1/500 (kind gift 

of Paul McKean, Lancaster University, UK). Subclass-specific secondary antibodies coupled 

to Alexa 488 and Cy3 (1/400; Jackson ImmunoResearch Laboratories, West Grove, PA) were 

used for double labelling. Sample observation was performed using a DMI4000 microscope 

equipped with a 100X NA 1.4 lens (Leica, Wetzlar, Germany) and images captured with an 

ORCA-03G Hamamatsu camera. Pictures were analyzed using ImageJ 1.47g13 software 

(National Institutes of Health, Bethesda, MD) and images were merged and superimposed 

using Adobe Photoshop CC. For fluorescence quantification, we have used the Raw 

Integrated Density values and removed the background at all these values. For live video 

microscopy, cells were covered with a coverslip and observed directly with the DMI4000 

microscope at room temperature. Videos were acquired using an Evolve 512 EMCCD 

Camera (Photometrics, Tucson, AZ), driven by the Metavue acquisition software (Molecular 

Probes, Sunnyvale, CA). IFT trafficking was recorded at 100 (AnTat1.1E expressing 

TdT::IFT81) or 250 (KIN2A2BRNAi expressing TdT::IFT81) milliseconds per frame during 30 

seconds. Kymographs were extracted and analysed as described previously [27, 85]. For 

length measurements, the Mab25 staining of the axoneme was taken as reference using 

ImageJ. Statistical analyses were done with Kaleidagraph v4.5.2 using ANOVA test with 
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Turkey HSD (α=0.5). Graphs were drawn using Kaleidagraph v4.5.2. All errors 

correspond to the standard deviation of the population. 

Western blot analysis 

Cells were washed in PBS and boiled in Laemmli loading buffer before SDS-PAGE 

separation, loading 20 µg of total cell protein per lane. Proteins were transferred overnight at 

25V at 4°C to polyvinylidene fluoride membranes (PVDF), then blocked with 5% skimmed 

milk in PBS-Tween 0.1% (PBST) and incubated with primary antibodies diluted in 1% milk 

and PBST. The anti-KIN2B (a kind gift of Robert L. Douglas, Berkeley)[33] serum was 

diluted 1/100. As loading controls, antibodies against ALBA proteins [86] diluted 1/500 were 

used. Three membrane washes were performed with PBST for 5 minutes. Species-specific 

secondary antibodies coupled to horseradish peroxidase (GE Healthcare) were diluted 

1/20,000 in PBST containing 1% milk and incubated for 1 hour. Final detection was carried 

out using an enhanced chemoluminescence kit and a high performance chemoluminescence 

film according to manufacturer's instructions (Amersham, Piscataway, NJ). 

For fractionation in detergent, cells were washed twice in PBS by 5 minutes at 500 g and 

the pellet was incubated for 2 minutes in Nonidet P-40 1% in PEM buffer in the 

presence of protease inhibitors (Sigma P8340).  After centrifugation for 2 minutes at full 

speed, the supernatant (soluble fraction) was separated from the pellet (cytoskeletal 

fraction). Cells without treatment were used as control (total extract). Samples were 

loaded on gel and treated as above for transfer on membranes. Tubulin was detected 

with the TAT-1 monoclonal antibody [87] and IFT22 that was used here as a soluble 

marker was detected with a mouse anti-IFT22 antiserum [88].  
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SUPPLEMENTAL INFORMATION 

 

Figure S1. Cartoons representing the trypanosome cell cycle in different conditions 

(A) In wild-type conditions, a new flagellum elongates after duplication of the basal 

body. After mitosis, flagellum has grown to ~80% of its final length [24, 26]. One 

daughter cell inherits the old flagellum and the other one inherits the new flagellum 

after division. This one continues growing until it reaches the final length of 20 µm. (B) 

In KIN2A2BRNAi cells, the new flagellum only reaches 7 µm at the time of cell division 

but elongates up to 12 µm until it matures in the next cell cycle. DNA is shown in dark 

blue whereas old and new flagella are shown in cyan and orange, respectively. 

 

Figure S2. RNAi efficiently targets KIN2B at the protein level. 

Total protein samples of non-induced and induced KIN2A2BRNAi cells were prepared after the 

indicated number of days. Proteins were separated by SDS-PAGE, transferred to a PVDF 

membrane that was incubated with the anti-KIN2B (top picture) or the anti-ALBA that 

detects ALBA3 and ALBA4 as loading control (bottom picture).  

 

Figure S3. The frequency of IFT trains is reduced in KIN2A2BRNAi cells.  

Live imaging of a non-induced (A) and a 6-day induced KIN2A2BRNAi cell (B) expressing the 

TdT::IFT81 from its endogenous locus. Still images from Video S5 (A) and S6 (B) at the 

indicated time points showing the movement of IFT trains. White arrowheads indicate the 

successive position of anterograde IFT trains. Kymograph analyses from non-induced (C) and 

induced cells (D) show clear anterograde IFT traces that are highlighted in color. Note the 

difference in frequency between non-induced and induced cells. Horizontal scale bar is 2µm 

and vertical scale bar is 2s.  
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Figure S4. A soluble pool of tubulin is available. 

Samples from KIN2A2BRNAi cells grown in non-induced or induced conditions for 8 days 

were run on gel, transferred to membranes and incubated with the indicated antibodies. 

Total protein samples, detergent-soluble and cytoskeletal fractions were analysed. 

Tubulin was detected with the TAT-1 monoclonal antibody whereas IFT22 (soluble 

marker) was detected with a mouse anti-IFT22 antiserum [88]. Tubulin is detected in 

the soluble pool in all conditions. Since the cytoskeletal pool is comparatively more 

abundant [38], a higher amount of protein was loaded to analyse the soluble pool alone 

(right panel). This confirmed the presence of a soluble pool of tubulin in both non-

induced and induced conditions.  

 

Figure S5. De-induction of RNAi in KIN2A2BRNAi cells leads to the formation of longer 

new flagella that extend beyond the cell body.  

IFA pictures of a de-induced KIN2A2BRNAi cell undergoing cytokinesis, stained with the 

Mab25 antibody targeting the axoneme. The first image shows phase contrast and DAPI 

staining (cyan) and the second one shows the axoneme staining (white). White and 

orange arrowheads indicate the old and the new flagellum, respectively. 

 

Figure S6. Teniposide blocks cell proliferation. 

Growth curve of wild-type cells untreated (grey continuous line) or treated with teniposide for 

24h (grey dotted line) and 6 day-induced KIN2A2BRNAi cells untreated (cyan continuous line) 

or treated with teniposide (purple dotted line). 

 

Figure S7. Inhibition of cell division and flagellum growth in wild-type cells 
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(A) IFA pictures of or wild-type cells that were left untreated (top panels) or treated for 24 

hours with teniposide (bottom panels), stained with the Mab25 antibody targeting the 

axoneme (white) and DAPI labeling DNA (cyan). The left panels show the phase-contrast 

image merged with DAPI (cyan) and Mab25 signal (white). The right panels show the Mab25 

signal (white) and DAPI (cyan). Orange and white arrowheads show the new and the old 

flagellum, respectively. The white arrows show the bridge linking the kinetoplasts after 

treatment with teniposide.  Scale bar: 5µm. (B) Ratios between the length of the new 

flagellum and the old flagellum for wild-type cells treated (dark bars, n=150) or not (white 

bars, n=180) with teniposide during 8 hours. The results are shown for three independent 

experiments. Statistically significant differences are indicated with two stars (p<0.0001). 

 

Supplementary Videos 

 

Video S1: Visualisation of TdT::IFT81 in AnTat1.1E cells.  

TdT::IFT81 is found inside the trypanosome flagellum where it travels by IFT. Live 

procyclic, wild-type T. brucei cell transfected with TdT::IFT81 observed by time-lapse 

epifluorescence microscopy using a DMI4000 microscope at room temperature. Frames were 

taken every 100 ms for 30 s by an Evolve 512 EMCCD Camera. Example of a cell with a 

single flagellum. 

 

Video S2: Visualisation of TdT::IFT81 in AnTat1.1E cells.  

Same as Video S1 but example of a cell with two flagella, the new one being at early phase of 

assembly. 

 

Video S3: Visualisation of TdT::IFT81 in 1.1E cells.  
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Same as Video S1 but example of a cell with two flagella, the new one being at an 

intermediate phase of assembly. 

 

Video S4: Visualisation of TdT::IFT81 in AnTat1.1E cells.  

Same as Video S1 but example of a cell with two flagella, the new one being at a late phase of 

assembly. 

 

Video S5: Visualisation of TdT::IFT81 in KIN2A2BRNAi cells.  

This is an example of a non-induced cell showing robust IFT. IFT proteins are found at the 

base of the flagellum and as motile trains trafficking both ways in the flagellum. 

 

Video S6: Visualisation of TdT::IFT81 in KIN2A2BRNAi cells.  

This is an example of a cell induced for 6 days where the frequency of IFT is much reduced 

whereas the total amount of IFT protein at the base is significantly increased.  
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Table 1 IFT speed and frequency in growing and mature flagella of AnTat1E cells 

expressing TdT::IFT81. The number of measured trains is given in parentheses. Since 

retrograde trains are more difficult to detect, only non-ambiguous ones were used for analysis, 

hence the reduced number. There are no statistically significant differences for all 

parameters between uniflagellated and biflagellated cells with the exception of the speed 

of anterograde trains in the old flagellum of biflagellated cells compared to the new one 

(p=0.06). 

 

 
Uniflagellated 

cells 
Biflagellated cells 

 
New F Old F 

Speed 
(µm.sec-1) 

Anterograde 1.65 ± 0.36 
(329) 

1.63 ± 0.40 
(396) 

1.9 ± 0.53 
(419) 

Retrograde 5.09 ± 0.86  
(297) 

5.29 ± 0.60 
(284) 

5.38 ± 1.0 
(261) 

Frequency 
(trains.sec-1) 

Anterograde 1.13 ± 0.21 1.00 ± 0.22 1.04 ± 0.33 

Retrograde 1.59 ± 0.28 1.78 ± 0.84 1.7 ± 0.63 
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Table 2. IFT anterograde speed and frequency in the KIN2A2BRNAi cell line in various 

conditions 

 

Conditions Frequency (train.sec-1) Speed (µm sec-1) Trains 

No tetracycline 0.63 ± 0.08 1.78 ± 0.51 159 

1-day induction 0.38 ± 0.06 1.91 ± 0.64 95 

4-day induction 0.28 ± 0.09 1.32 ± 0.65 62 

6-day induction 0.25 ± 0.07 1.40 ± 0.59 63 

De-induced (OF) 0.38 ± 0.11 - 161 

De-induced (NF) 0.50 ±0.13 - 239 

 

In the case of conventional tetracycline induction of RNAi, only cells possessing a single 

flagellum was used for the analysis. In the case of the de-induction experiment, only cells 

with two nuclei and two flagella were measured. IFT speed was not measured in these 

experiments. OF, old flagella; NF, new flagella. 
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 Production of flagella with different III.

length during the trypanosome 

parasite cycle.  

1)  Introduction 

During its complex parasite cycle, T. brucei successively transforms into several 

developmental stages that exhibit flagella of different lengths and are accompanied 

with drastic cell morphology modifications (Rotureau, Subota et al. 2011). The 

morphological variations are thought to reflect specific functional requirements. Some 

cells with long flagella, such as the long mesocyclic trypomastigote, are known to 

migrate over long distances to reach the proventriculus in the tsetse. Proliferative cell 

division occurs in procyclic and attached epimastigote forms where the new daughter 

cells are morphologically similar to the parental cells. Some asymmetric divisions 

also occur at several phases of the parasite cycle producing very different daughter 

cells, such as the long proventricular dividing epimastigote that gives birth to one cell 

with a flagellum ten times shorter than the second one. So far, reduction of an 

existing flagellum to produce a shorter one has never been observed in T. brucei.  

Instead, it always constructs de novo a smaller organelle (Ooi and Bastin 2013). In 

the tsetse salivary glands, the “Epi-Trypo” asymmetric division generates two 

daughter cells. The cell inheriting the new flagellum adopts the trypomastigote 

conformation and is the precursor of the metacyclic infective form (Rotureau, Subota 

et al. 2012). It is the only known case where the new flagellum is longer than the old 

one. Despite these inter-stage variations, the flagellum length is always the same in a 

given stage.  
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We have seen that the “grow and lock” model can explain flagellum length control in 

cultured procyclic trypanosomes that always assemble flagella of the same length. 

During the asymmetric division in the tsetse proventriculus, a cell with a tiny flagellum 

is produced. What does control the flagellum length in this specific case? Could the 

“grow and lock” model apply here? Or is it an alternative system put in place? To 

answer these questions, we have examined the two different variables of the “grow 

and lock” model during the natural parasite cycle of T. brucei. Focusing on the 

production of the short flagellum of 3 µm, we have evaluated whether a reduction of 

IFT train frequency could explain a slower flagellum growth rate. Second, we have 

searched whether flagellum maturation was taking place earlier to lock the flagellum  

at a shorter length.  

2)  Materials and methods  

Trypanosome cell lines and cultures 

Derivatives of T. brucei brucei strain AnTat 1.1E PCF strain (Le Ray, Barry et al. 

1977) were cultured at 27°C in SDM79 medium supplemented with hemin, 8mM of 

glycerol and 10% foetal calf serum (Brun and Schonenberger 1979). The 427 BSF 

was cultured in complete HMI-11 medium at 37°C in 5% CO2 (Kooy, Hirumi et al. 

1989). IFT imaging in live cells was carried out with a cell line expressing a 

TdTomato::IFT81 fusion produced from its endogenous locus in AnTat1.1E PCF 

cells. The first 500 nucleotides of the IFT81 gene (Gene DB number Tb927.10.2640) 

were chemically synthesised (GeneCust, Luxembourg) and cloned in frame with the 

TdTomato gene within the HindIII and ApaI sites of the p2675 vector (Kelly, Reed et 

al. 2007). The construct was linearized within the IFT81 sequence with the enzyme 

XcmI and nucleofected in the AnTat1.1E PCF cell line, leading to integration by 

homologous recombination in the IFT81 endogenous locus and to the expression of 

the full-length coding sequence of IFT81 fused to TdTomato.  
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Tsetse fly maintenance, infection and dissection 

Tsetse flies (Glossina morsitans morsitans) were maintained, infected and dissected 

at the Institut Pasteur as previously described (Rotureau, Subota et al. 2011). 

Teneral males were collected 24 to 48 h post-eclosion and fed through a silicone 

membrane with 6-9x106 parasites/ml in SDM-79 medium supplemented with 10% 

FCS, 8mM glycerol and 10mM glutathione for their first meal (MacLeod, Maudlin et 

al. 2007). Flies were infected with the T. brucei brucei AnTat 1.1E wild type (Le Ray, 

Barry et al. 1977) and AnTat 1.1E IFT81::TdT strains. Flies were then maintained in 

Roubaud cages for one month at 27°C and 50% humidity and fed three times a week 

with mechanically defibrinated sheep blood. Flies were starved for at least 48h before 

being individually dissected 28 days after ingestion of the infected meal. In our colony 

conditions, the average midgut infection rates usually obtained with AnTat WT strain 

are 50-60% in the midgut and 10-15% in the salivary glands. Salivary glands were 

first rapidly dissected into a drop of PBS or culture medium. The whole tsetse 

alimentary tract was then dissected and arranged lengthways for assessing the 

parasite presence. The proventriculus and anterior midgut were physically separated 

from the posterior midgut in a distinct PBS drop. Tissues were dilacerated to allow 

parasites to spread in PBS; parasites were recovered and treated for further 

experiments no more than 15 minutes after dissection.  

Immunofluorescence  

Cultured parasites were washed twice in PBS and spread directly into poly-L-lysine 

coated slides. The slides with cultured parasites or parasites isolated from tsetse flies 

were air-dried for 10 min, fixed in methanol at -20°C for 30 s and rehydrated for 10 

min in PBS. For immunodetection, slides were incubated with primary antibodies 

diluted in PBS with 0.1% Bovine Serum Albumin (BSA) for 1 h at 37°C in humid 

chamber. Three washes of 10 min were performed and the secondary antibody 

diluted in PBS with 0.1% BSA was added on the slides. After an incubation of 45 min, 

slides were washed three times in PBS for 10 min and DAPI (4′,6-diamidino-2-
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phenylindole) (2 µg/µl) was added to stain DNA. Slides were finally mounted with 

coverslips using ProLong antifade reagent (Invitrogen). The antibodies used were the 

Mab25 mouse monoclonal antibody recognizing TbSAXO1, a protein found all along 

the trypanosome axoneme (Pradel, Bonhivers et al. 2006, Dacheux, Landrein et al. 

2012), an anti-IFT172 mouse monoclonal antibody diluted at 1/200 (Absalon, Blisnick 

et al. 2008), an anti-IFT22 mouse polyclonal antiserum diluted at 1/200 (Adhiambo, 

Blisnick et al. 2009), an anti-FLAM8 rabbit polyclonal antibody diluted at 1/500 (kind 

gift of Paul Mc Kean, Lancaster University). Subclass-specific secondary antibodies 

coupled to Alexa 488 and Cy3 (1/400; Jackson ImmunoResearch Laboratories, West 

Grove, PA) were used for double labelling. Sample observation was performed using 

a DMI4000 microscope equipped with a 100X NA 1.4 objective (Leica, Wetzlar, 

Germany) and images were captured with a ORCA-03G Hamamatsu camera. 

Pictures were analysed using the ImageJ 1.47g13 software (National Institutes of 

Health, Bethesda, MD). For presentation purposes and only after analysis, images 

were merged using Photoshop CS6 (Adobe). 

Live imaging of parasites isolated from tsetse fly 

Fly dissections were performed in SDM-79 medium. The midgut, proventriculus and 

salivary glands were rapidly separated in different drops. After a visual inspection to 

confirm the presence of parasite, each organ was kept in 15µL of SDM-79 medium 

supplemented with serum in Eppendorf tubes. To increase parasite density 6 organs 

were pooled in each tube and dilacerated. A SDM-79 solution containing 4% Agar 

was heat-liquefied and progressively cooled for being mixed with the medium 

containing the freshly isolated parasites (1:1). For live video microscopy, the solution 

was spread on a slide, covered with a coverslip and rapidly observed at room 

temperature under a DMI4000 microscope. Videos were acquired using an Evolve 

512 EMCCD Camera (Photometrics, Tucson, AZ) driven by the Metaview acquisition 

software (Molecular Probes, Sunnyvale, CA). IFT trafficking was recorded at 100 ms 

per frame during 30 seconds. Kymographs were extracted and analysed using Quia 
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software as described previously (N Chenouard 2010, Buisson, Chenouard et al. 

2013). 

FRAP analysis 

For FRAP analysis of cells expressing Tdt::IFT81, an Axiovert 200 inverted 

microscope (Zeiss) equipped with an oil immersion objective (magnification x100 with 

1.4 numerical aperture) and a spinning disk confocal head (CSU22, Yokogawa) was 

used (Buisson, Chenouard et al. 2013). Movies were acquired using Volocity 

software with an EMCCD camera (C-9100, Hamamatsu) operating in streaming 

mode. The samples were kept at 27°C using a thermo-controlled chamber. 

Sequences of 30 s were acquired at an exposure time of 0.1 s per frame. 

Inhibition of cell division 

Flies were dissected in SDM-79 medium and after visual inspection; three positive 

proventriculi were pooled and resuspended in 500 µL of SDM-79 supplemented with 

hemin, 10% fetal bovine serum and 10mM glycerol in 24-wells plates. For inhibiting 

cell division, teniposide (Sigma SML0609), a topoisomerase II inhibitor was dissolved 

in DMSO and added to isolated parasites from tsetse flies at a final concentration of 

10 mM for 24 hours (Robinson and Gull 1991). In the control wells, the same volume 

of DMSO alone was added (6.3µL). Parasites were spread on poly-lysine slides and 

allowed to sediment for 30 minutes at 27°C before fixed and processed treated for 

immunofluorescence.  

  



	
  
 
Figure 1: Variation of IFT172 distribution during the T. brucei 
parasite cycle.  
 
(A) Parasites isolated from tsetse flies or grown in culture were fixed in methanol and 
stained with the Mab25 antibody to detect the axoneme (green) and the anti-IFT172 
antibody (white). The top panels show the phase-contrast images merged with DAPI 
(blue) and Mab25 signals (green). The bottom ones shows the IFT172 fluorescent 
signal (white). Scale bar: 5µm. Arrowheads indicate kinetoplast positions	
   (B)	
  
Quantification of the total amount of IFT172 fluorescent signal normalized to the 
flagellum length in the flagellum of each stage of the parasite cycle. The ROI was 
defined by the axonemal marker and used to measure the flagellum length. The 
fluorescence intensity directly reflects the total amount of IFT172 proteins present in 
the flagellum compartment per flagellum length unit. n=35 cells per stage. BSF SL: 
Slender bloodstream from slender, PCF: Procyclic form, MS: mesocyclic, LE: Long 
epimastigote, SE: Short epimastigote, AE: Attached epimastigote, MT: Metacyclic.	
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3)  Results 

The IFT concentration remains constant in the flagellum 
during the entire parasite cycle 

In procyclic trypanosomes in culture, we have demonstrated that IFT proteins are 

progressively recruited during the flagellum growth, in such a way that the 

concentration of IFT proteins per unit length remains constant. To evaluate whether 

the IFT amount in a given flagellum correlates with its length in other parasite cycle 

stages, we have first studied the distribution of IFT proteins in fixed cells. IFAs with 

antibodies raised against IFT172 (Figure 1A) (Absalon, Blisnick et al. 2008) or 

IFT22/RABL5 (Figure 2A) (Adhiambo, Blisnick et al. 2009) were performed on both 

cultured parasites and parasites isolated from tsetse flies, in combination with the 

axonemal marker Mab25 (Pradel, Bonhivers et al. 2006). For all parasite stages, IFT 

proteins were present as a succession of spots all along the length of the flagellum, 

with a brighter signal at the base present in almost all stages except in short 

epimastigotes. To quantify the total amount of IFT22 and IFT172 proteins per 

flagellum, a region of interest (ROI) was defined using the Mab25 axonemal marker. 

The total amount of fluorescence, corresponding to the total amount of IFT proteins 

present in the flagellum, was plotted against flagellum length. For both IFT proteins, a 

direct correlation between the total amount of IFT proteins and the length of the 

corresponding flagellum was found (Figure 1B and 2B). These data demonstrate that 

the IFT protein concentration is constant in the flagella of all stages of the parasite 

cycle, in agreement with our previous data obtained in procyclic parasites in culture. 

IFT trafficking remains constant during all the parasite cycle 

The methanol fixation classically used for IFA could have led to a loss of material and 

therefore biased the results (Absalon, Blisnick et al. 2008). Moreover, IFA only 

provides “static” information whereas IFT is a dynamic process. To circumvent these 



	
  
 
Figure 2: Variation of IFT22 distribution during the T. brucei 
parasite cycle  
 
(A) Parasites isolated from tsetse flies or grown in culture were fixed in methanol and 
stained with the Mab25 antibody to detect the axoneme (green) and the anti-IFT22 
antibody (white). The top panels show the phase-contrast images merged with DAPI 
(blue) and Mab25 signal (green). The bottoms ones show the IFT22 fluorescent 
signal (white). Scale bar: 5µm. Arrowheads indicate kinetoplast positions (B) 
Quantification of the total amount of IFT22 fluorescent signal normalized to the 
flagellum length in the flagellum of each stage of the parasite cycle. The ROI was 
defined by the axonemal marker and used to measure the flagellum length. The 
fluorescence intensity directly reflects the total amount of IFT22 proteins present in 
the flagellum compartment per flagellum the. n=35 cells per stage. BSF SL: Slender 
bloodstream from slender, PCF: Procyclic form, MS: mesocyclic, LE: Long 
epimastigote, SE: Short epimastigote, AE: Attached epimastigote, MT: Metacyclic.  
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potential issues, the distribution of IFT proteins was examined in live trypanosomes 

expressing a fusion protein composed of the IFT-B protein IFT81 coupled to  the red 

fluorescent Tandem Tomato protein (TdT). This fusion protein was expressed upon 

endogenous tagging under the control of the 3’ untranslated region (UTR) of the 

IFT81 gene (Bhogaraju, Cajanek et al. 2013). IFT was recorded in live trypanosomes 

at different stages of the parasite cycle. IFT trafficking was detected in all of them 

(Figure 3A). Unfortunately and despite numerous attempts, the difficulty to immobilise 

parasites prevented us from recording exploitable movies for kymograph analysis in 

most stages. This was especially true for the highly motile long espimastigote cells 

that were still able to move through the agar network. For this reason, we first 

focused our study on the procyclic and mesocyclic trypomastigote stages found in 

the tsetse midgut that bear a long flagellum of 20-30µm. Next, we have recorded IFT 

in the short and barely mobile epimastigote cells from the tsetse proventriculus that 

possess a flagellum of about 3 µm. This allowed us to compare IFT trafficking in 

flagella with naturally very different lengths.  

 

In fixed samples, IFT proteins were present as a succession of spots all along the 

length of the flagellum. Because fixation may have altered IFT distribution, the total 

amounts of TdT::IFT81 in short epimastigote and mesocyclic / procyclic flagella were 

quantified in living cells by using the first image of each movie, and plotted according 

to flagellum length. This confirmed the direct correlation between these two 

parameters (Figure 3B), in agreement with the IFA data showing that IFT protein 

concentration increases in parallel to flagellum length.   

 

Although the total amount of IFT proteins appeared proportional to the length of the 

flagellum, a reduction of IFT speed and frequency could still have an impact on the 

flagellum growth rate and could not be excluded. Therefore, this was investigated in 

details and TdT::IFT trafficking was detected between the base and the tip of the 

flagellum in both directions in all cell types examined. Kymograph analyses were 

carried out to quantify IFT rates and frequencies in cells with a long (procyclic and 

mesocyclic forms) or a short flagellum (short epimastigote). In the flagellum of short 

epimastigote cells, the anterograde trains travelled at 2.4 +/- 1.3 µm.sec-1 and 



	
  

Figure 3: Variation of the IFT81 trafficking during the T. brucei 
parasite cycle.  
 
(A) Still images extracted from movies of AnTat1.1E cells expressing a 
TdTomato::IFT81 from the endogenous locus at the indicated stages of the parasite 
cycle in the tsetse fly. Arrowheads indicate the base of the flagellum. (B) The total 
TdT::IFT81 fluorescence intensity in flagella of short epimastigote and long 
trypomastigote mesocyclic cells was calculated and plotted according to the length of 
the corresponding flagella. MS: Mesocyclic; SE: Short epimastigote. (C) The IFT 
particle speeds (anterograde transport, magenta circles; retrograde transport, blue 
circles) in the flagella of short epimastigote and long trypomastigote mesocyclic cells 
were calculated and plotted according to the respective length of the flagella. 
Retrograde transport is more difficult to detect and data were therefore only 
incorporated when the signal was sufficiently intense and reliable. (D) The IFT 
particle frequencies (anterograde transport, magenta circles; retrograde transport, 
blue circles) in the flagellum of short epimastigotes and long trypomastigote 
mesocyclic cells were calculated and plotted according to the respective length of the 
flagella.  
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retrograde trains at 5.6 +/- 3.1 µm.sec-1 (Figure 3C). In the flagellum of mesocyclic / 

procyclic trypomastigote cells, the anterograde trains travelled at 2.1 +/- 0.7 µm.sec-1 

and retrograde trains at 5.6 +/- 1.7 µm.sec-1. Next the IFT frequency was evaluated: 

in the short epimastigote flagellum, the frequency of anterograde trains was 1.2 +/- 

0.4 trains/sec and 2.0+/- 0.7 trains/sec for retrograde trains (Figure 3D). In the 

mesocyclic / procyclic trypomastigote flagellum the anterograde frequency was 1.22 

+/- 0.3 trains/sec and the retrograde frequency was 2.1 +/- 0.1 trains/sec. Therefore, 

the anterograde and retrograde IFT speeds appeared  equivalent in long (mesocyclic 

/ procyclic) and short (short epimastigote) flagella, meaning that there is no 

modification of the IFT speed and frequency that could explain the difference 

between these two stages. These values were slightly higher to the TdT::IFT81 

speeds measured in cultured procyclic parasites and to GFP::IFT52 speeds obtained 

in previous studies (Buisson, Chenouard et al. 2013) possibly because of the 

temperature increase after mixing the cell medium with hot liquid agar. However, the 

retrograde frequency was lower compared to that obtained for GFP::IFT52 (3.31 

train/sec) (Buisson, Chenouard et al. 2013), but the latter quantifications were 

performed by overexpressing a different IFT protein (IFT52) with a different 

fluorophore (GFP) and in a different strain (427).  

In conclusion, these results show that IFT speeds and frequencies are equivalent in 

cells with long and short flagella, no matter their length. In total, the IFT delivery 

appears to be constant and its modulation cannot explain how T. brucei changes its 

flagellum length.  

IFT protein repartition is different in short epimastigote 
flagella 

By immunofluorescence as well as in live cells, IFT proteins were found as a discreet 

spots along the flagellum and concentrated at the base of the flagellum in procyclic 

and bloodstream forms in culture (Figure 4A). Using methanol fixation to study the 

IFT profile in parasite isolated from tsetse flies, we have noticed a lower abundance 



 
Figure 4: Focus on the IFT81 pool at the distal tip of short 
epimastigote flagella. 
 
(A) Still images of AnTat1.1E cells expressing a TdTomato-tagged version of IFT81 
and isolated from a tsetse fly and showing the existence of an IFT pool at the 
flagellum base in the mesocyclic stage (Green circle) and at the flagellum tip in the 
short epimastigote (Red circle). MS: Mesocyclic, SE: Short epimastigote Scale bar: 5 
µm  (B) Quantifications of the TdT::IFT81 mean fluorescence intensities at the base, 
in the middle region, and the tip of flagella in procyclic cells (n=22 left plot) and in 
short epimastigote cells (n=17 right plot). (C) FRAP analysis in a SE of trypanosomes 
expressing the TdT::IFT81 fusion protein. The distal end of the flagellum was 
bleached with a brief laser pulse and the fluorescence recovery was monitored 
during 20 sec. Pre-bleach situation: the IFT pool is present at the distal tip. Post-
bleach situation: the IFT pool is black. The fluorescent signal is shown at the 
indicated times. Rapid recovery could be detected at the distal tip. Scale bar: 3µm.  
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of the IFT pool at the flagellum base of short epimastigotes compared to the other 

stages. Intriguingly, we have also noticed the existence of an IFT pool at the distal 

end of these short flagella in live cells (Figure 4A). To validate these observations, 

we have quantified the TdT::IFT81 fluorescent signal at the base, along the flagellum 

and at the distal tip in procyclic cells (n= 22) and in short epimastigote cells (n=17). 

This result confirms the presence of an IFT pool at the distal tip of the short 

epimastigote flagellum (Figure 4B). This material could actively participate to the IFT 

process or simply be inactive, for example being there to facilitate the future flagellum 

elongation in the salivary glands to produce the attached epimastigotes with a longer 

flagellum. However, using FRAP analysis, we have observed a rapid fluorescence 

recovery at the distal tip of these short flagella (n=7) demonstrating that the IFT pool 

was actively participating to the IFT process (Figure 4C). 

Modulation of FLAM8 concentration is not responsible for 
flagellum length control in short epimastigote.  

In the “grow and lock” model, we have proposed that a modification of the flagellum 

could take place to prevent further elongation once it has reached its expected 

length. We reasoned that the timing of this locking event could be different for each 

stage of the parasite cycle in order to produce a shorter or a longer flagellum by 

blocking its elongation earlier or later. Using FLAM8 as a marker of flagellum 

maturation, we have evaluated whether a faster maturation of the flagellum in the 

short epimastigote could explain why this flagellum does not reach the same length 

as the one in the long epimastigote sibling. To do so, cells isolated from tsetse flies 

were fixed and stained by IFA with an anti-FLAM8 antibody, the Mab25 antibody as 

axonemal marker and DAPI to label DNA. In all stages of the parasite cycle in the 

tsetse fly, it was present at the distal tip of the flagellum except in metacyclic stages 

where FLAM8 was sparsely distributed all along the flagellum (Figure 5A). We used 

an axonemal marker to define a region of interest along the flagellum in all stages for 

quantifying all the fluorescence associated to the anti-FLAM8 staining. The total 

amount of fluorescence was quantified and a direct correlation with flagellum length 



 
Figure 5: Variations of FLAM8 expression during the T. brucei 
parasite cycle 
 
(A) Parasites isolated from tsetse flies were fixed in methanol and stained with the 
Mab25 antibody to detect the axoneme (green) and the anti-FLAM8 (magenta). The 
top panel shows the phase-contrast images merged with the DAPI (DNA in blue) 
Mab25 antibody (axoneme in green) and anti-FLAM8 antibody (FLAM8 in magenta) 
images. The bottom panel only shows the FLAM8 signal (white). Arrowheads indicate 
kinetoplast positions Scale bar: 5µm (B)	
  Quantification of the fluorescence intensity 
corresponding to the FLAM8 amount in the ROI defined by the axonemal marker in 
the flagellum (left axis) associated to the flagellum length (right axis, red dots) in each 
stage of the parasite cycle. n=35 cells per stage.	
  
	
   	
  



Results 

 

219 

was demonstrated (Figure 5B). This shows that the flagellum of the short 

epimastigotes does not mature faster or at least that it does nor acquire this marker 

earlier.   

Cell division timing contributes to the control of flagellum 
length. 

In the “grow and lock” model, the timing of cell division is linked to the locking event. 

To address whether a modification of the timing of cell division could explain the 

production of flagella with different length in the context of the natural cyclical 

development of trypanosomes, we chemically induced a cell division arrest in 

parasites isolated from the tsetse proventriculi and evaluated its impact on flagellum 

elongation. Cells were maintained for 24 hours in the presence of 10mM teniposide, 

a drug that interferes with mitochondrial DNA segregation but neither with basal body 

duplication nor with flagellum elongation (Robinson and Gull 1991). Then, we 

scrutinized the impact of this cell division arrest on both flagella of dividing 

epimastigotes by IFA using DAPI to stain DNA and the axonemal marker Mab25 

(Figure 6). In dividing epimastigote cells treated with teniposide, the new flagellum 

had a length of 3.2 +/- 1.2 µm and the old one of 27.95 +/- 3.54 µm (n= 17). These 

values were comparable to those from previous studies obtained in flies infected with 

wild type parasites (Van Den Abbeele, Claes et al. 1999, Sharma, Peacock et al. 

2008, Rotureau, Subota et al. 2011).  

The exact duration of this asymmetric division is currently not known. Based on data 

available for cultured PCF and BSF, we can reasonably estimate that the asymmetric 

division is completed between 6 and 12 hours. This means that 24 hours of 

teniposide treatment is likely to be sufficient to efficiently block the asymmetric 

division. However, despite an apparent delay in elongation, the flagellum of short 

epimastigotes never exceeded 3 µm (Figure 6A), suggesting that the short flagellum 

could be already blocked or that the elements necessary for its elongation are not 

available anymore.  



 
Figure 6: Effects of the cell division blocking in proventricular 
trypanosome stages. 
 
Parasites isolated from tsetse proventriculi were treated or not with teniposide for 24 
hours and fixed in methanol and stained with the Mab25 antibody to detect the 
axoneme (green) and DAPI to stain DNA. The top panels shows untreated cells and 
the bottom ones cells treated with teniposide. The orange arrowhead shows a new 
flagellum at the posterior end of a long trypomastigote mesocyclic. Arrowheads 
indicate kinetoplast positions. Scale bar: 5 µm 
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Strikingly, we observed the unexpected emergence of a new flagellum at the surface 

of long mesocyclic trypomastigote parasites (Figure 6B). During the parasite cycle, 

the long mesocyclic trypomastigotes migrate from the posterior midgut to the 

proventriculus and differentiate into long epimastigotes almost concomitantly to the 

initiation of the asymmetric division. During this differentiation, the emergence of the 

new flagellum was described to start in parallel to nucleus migration toward the 

posterior pole of the cell (Sharma, Peacock et al. 2008). From our observations, the 

emergence of a new flagellum in mesocyclic trypomastigote cells could mean that a 

short new flagellum is already present to these cells or that the treatment induced 

duplication of basal body followed by flagellum growth. Using an axonemal marker, 

we have measured the length of both new and old flagella in these teniposide-treated 

trypomastigote cells:  the length of the new flagellum was on average 6.2 +/- 2.8 µm 

(n= 24) a value that was higher than the average flagellum length in short 

epimastigotes. Surprisingly, the length of the old flagellum was shorter (21.4 +/- 4.5 

µm) than that untreated cells (28-30µm) (Rotureau, Subota et al. 2011). The 

significance of these unexpected results will be addressed on the general discussion 

of the manuscript. 
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Figure 32: Determination of the exact position of IFT trains along 
trypanosome axoneme.  
 
(A) Axonemal microtubule doublets reconstructed after FIB-SEM. Each microtubule 
doublet is shown with a different colour (Dark green: doublet 3, Light green: doublet 
4, Light blue: doublet 7 and Dark blue: doublet 8) and IFT trains are presented in red. 
(B) Graphics showing distance in pixel between the center of the skeleton of the IFT 
train and of the doublets along IFT train length. IFT trains are systematically closer to 
doublets 4 and 7. Analysis performed by Sylvain Trépout.   
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 IFT on specific doublets I.

1)  Why do IFT trains travel only on specific 
doublets? 

In the first manuscript, we have confirmed and extended previous TEM data, by 

using FIB-SEM analysis that showed that IFT trains are restricted to doublets 3-4 and 

7-8 of the T. brucei axoneme. FIB-SEM is a technique with a powerful z-resolution 

but x- and y- resolutions are limited compared to classical transmission electron 

microscopy. Limitations in x-y made it difficult to discriminate doublets 3 from 4 and 7 

from 8 (Manuscript 1). So, are IFT trains travelling on 2 or 4 doublets? Some 

preliminary individual 3D-reconstructions of these four doublets (3/4/7 and 8) in few 

flagella where they could unambiguously be discriminated support the view that IFT 

trains are restricted only to doublets 4 and 7 (Figure 32) (Sylvain Trépout, 

unpublished data). Whatever the scenario, IFT train distribution in the trypanosome 

axoneme is different compared to the other model organism Chlamydomonas, where 

a CLEM study combining TIRF and 3D-electron microscopy demonstrated that IFT 

trains travel at least on 7 out of the 9 doublets (Figure 33) (Stepanek and Pigino 

2016). This means that IFT trains could be differentially distributed according to the 

type of cilia / flagella.  

So far, IFT trains have not been characterised in detail with electron microscopy in 

other organisms. Therefore, it remains unknown whether one of the two scenarios 

would be relevant to other types of cilia / flagella or whether distinct situations could 

be considered. Moreover, due to the resolution limit of conventional light microscopy, 

it is not possible to distinguish the number of tracks used by IFT trains in most of 

these model organisms.  



	
  
 
 
Figure 33: IFT transport takes place on most microtubule doublets 
of the axoneme in Chlamydomonas. 
 
(A) Schematic representation of IFT in Chlamydomonas cilium. Anterograde IFT 
trains (green), move from the cell body to the ciliary tip along the B tubule (bright 
yellow) of the microtubule doublets, whereas retrograde IFT trains (red) move along 
the A btubule (orange). Each microtubule doublet can be used as a bidirectional 
doubletrack railway. (B) Cross-sectional picture showing anterograde (green arrow) 
and retrograde (pink arrow) trains on several doublet microtubules. Scale bar: 50nm 
(Right panel) (Stepanek and Pigino 2016).  
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In view of the two available examples, we can raise the question whether the 

distribution of IFT trains distribution around the axoneme is species-dependent or if 

the situation is even more complex and IFT trains repartition could be different on the 

same organism depending on the cilia / flagella type. In the first case, control would 

be at the genetic level, whereas in the second one, it would require distinct 

modulation per cell type.  In the human body where a large diversity of cilia and 

flagella is present, are IFT trains positioned on the same microtubule doublets in 

sperm flagella and olfactory cilia for example? Due to the difficulty to access to 

ciliated human cells, the use of model organisms can be very informative. T. brucei is 

a particularly good model because using the same genome; it activates different 

programmes during its parasite cycle, where each stage is associated to a flagellum 

with different length and function (Rotureau, Subota et al. 2011) as this is the case 

for cilia found at the surface of different tissues in the human body.  

Different flagella are assembled during the T. brucei life cycle, with variable length, 

composition and functions. In this context, the repartition of IFT trains might be 

different. For example, one could hypothesize that more tubulin need to be 

transported to the distal tip in order to construct longer flagella in proventricular 

mesocyclic trypomastigotes. This could be associated to IFT trafficking in more than 

two tracks in order to increase flagellum assembly rate. Based on the results 

obtained in this thesis, this scenario is unlikely in T. brucei. Indeed, we have 

demonstrated that IFT train frequency is invariant no matter the length of the 

flagellum. These analyses were carried out in standard imaging conditions; but we 

have demonstrated that the underestimation of IFT train frequency is not major 

(about 10%) (Manuscript 1).  

Interestingly, preliminary electron microscopy data obtained in parasites present in 

the tsetse proventriculus showed that IFT trains could also be positioned in doublets 

1 and 9. This has never been observed in cultured procyclic parasites (Figure 34B 

and C).  Moreover in TEM sections of cultured bloodstream forms, the distribution of 

the IFT trains around the axoneme also differs from cultured procyclic form situation. 

Indeed, IFT trains of bloodstream form flagella are preferentially found in positions 4 
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and 8 (Figure 34A and C). In BSF flagellum sections, IFT trains have a different 

aspect; they look larger and more diffuse. This could be due to a difference in IFT 

train composition or assembly. These differences could impact on IFT train 

disribution and explain their localisation on doublet 8.  

 

These observations suggest that IFT trains could be repositioned around the 

axoneme depending of the parasite stages while remaining associated to only two 

tracks. This can be investigated by using FIB-SEM analysis of parasites in situ in the 

proventriculus. Indeed, FIB-SEM analysis will first allow us to determine parasite 

stage that is not possible in classical TEM due to the population heterogeneity and 

then determine whether IFT train positioning on doublets 1 or 9 is always associated 

to the same parasite stage. Moreover, we would see if IFT trains are found 

exclusively on two microtubule doublets out of nine in all the situations or if IFT trains 

could use more than two tracks in some axonemes.  

 

We cannot exclude that IFT train distribution looks different in several parasite stages 

because of technical issues. Indeed, these stages are less studied than cultured 

procyclic cells; therefore we do not have perspectives of fixation effects on IFT trains 

in these parasites. Our experiments showed that IFT trains can still traffic for about 

200ms after addition of glutaraldehyde (J. Jung and M. Lemos, unpublished data). In 

theory, the train can still move by 0.4µm for anterograde and 1µm for retrograde 

trains. Since membrane composition is different between BSF, PCF and parasites 

isolated from tsetse fly, this could impact on the position of the train after fixation, for 

example if it fell off the microtubules. Repositioning of IFT trains around the axoneme 

could be constrained by the shape of the flagellum membrane. This could be 

significant at the distal tip of the attached epimastigotes that develop extensive 

membrane outgrowths to contact microvilli of tsetse salivary glands (Vickerman 

1985). Because IFT trains are sandwiched between flagellum membrane and the 

axonemal microtubules, any membrane shape modifications could potentially impact 

IFT train positioning around the axoneme and in this case especially at the distal tip 

of the flagellum. An analysis in TEM or FIB-SEM of attached epimastigote flagella 

could be interesting to evaluate if IFT train positioning is modified or not. Flagellum 
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attachment looks different in BSF from PCF, what is reflected by their more elaborate 

beating pattern (Elmendorf, Dawson et al. 2003, Heddergott, Kruger et al. 2012). 

Could this have an impact on IFT positioning on doublet 8? 

In humans, photoreceptor outer segments also present extensive plasma membrane 

outgrowths. It would be interesting to evaluate if IFT train distribution is different 

between the proximal region (present on the side of the inner segment) of the 

connecting cilium and the distal region in contact with plasma membrane outgrowths. 

2)  Why does IFT only use 2 of the 9 microtubule 
doublets? 

While in theory, are nine microtubule doublets are available for IFT trafficking, why 

only few are used for IFT? In both cultured procyclic and bloodstream forms, IFT 

trains were never observed on positions 5 and 6, corresponding to the two doublets 

associated with the PFR. The absence of IFT on these doublets could be due to the 

presence of the PFR that would prevent interaction with the membrane. On the 

contrary, does the absence of IFT trains on the two doublets allow the construction of 

the PFR? 

 A first simple explanation could be that the access to these two doublets by IFT 

trains is physically blocked by the presence of the PFR preventing fixation of IFT 

motors and then their trafficking. On the contrary, we propose that the restriction of 

IFT trains to only two sets of doublets could liberate space for the construction of 

extra-axonemal structures such as the PFR. In sperm flagella, extra-axonemal 

structure are also found such as the fibrous sheath and the ring of mitochondria all 

around the axoneme (Fawcett 1975). These extra-axonemal structures are added 

latter on, when the axoneme is already constructed at the stage where IFT proteins 

start to disappear (San Agustin, Pazour et al. 2015). We propose that the arrest of 

IFT in mature sperm flagellum liberates space to add these extra-axonemal 



 
Figure 35: Putative kinesins with flagellar localisation.  
Images extracted from Tryptag database. These examples show two putative 
kinesins presenting a flagellar localization that could be associated to other 
microtubule doublets than 4 and 7 (Dean, Sunter et al. 2017).  
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structures.  In Giardia, extra axonemal structures are only detected in cytoplasmic 

portion of the axoneme, where IFT is absent (Elmendorf, Dawson et al. 2003). 

As previously described, only two kinesins II (KIN2A and KIN2B) implicated in 

anterograde IFT are found in the trypanosome genome (Julkowska and Bastin 2009). 

However, there are more than forty genes encoding kinesins and only a few of them 

have been studied so far (Wickstead and Gull 2006). In the TrypTag database (a 

project to determine protein localisation for all trypanosome genes http://tryptag.org/ 

(Dean, Sunter et al. 2017)), several different kinesins are also found to be localized in 

the flagellum but their functions are still unknown (Figure 35). These other kinesin 

motors could possibly walk along the axoneme using free doublets that are not 

already used for IFT. They could be implicated in transport of proteins involved in 

construction or in signalling pathways. For example, they could be essential to carry 

proteins from cell body to flagellar tip in response to external stimuli. The first contact 

between the attached epimastigote and the salivary gland epithelium could initiate 

the production of proteins necessary to create hemi-desmosome-like junctions. 

These proteins need to be transported to the distal tip of the flagellum and kinesin 

motors (not already implicated in IFT) could be implicated in this process.   

In trypanosomes, KIF9B is a kinesin motor not associated to IFT but present in the 

axonemal region and at the base of the flagellum (Demonchy, Blisnick et al. 2009). It 

is a good candidate to be associated to microtubule doublets where no IFT trains are 

present. The KIF9BRNAi procyclic mutant was studied and exhibited spectacular 

defaults in PFR assembly (Demonchy, Blisnick et al. 2009). In this mutant, 

immunofluorescence using antibodies against PFR1 and PFR2 proteins produced a 

discontinuous signal, showing alternating regions of intense labelling with regions 

where the signal was negative (Figure 36A) (Demonchy, Blisnick et al. 2009). These 

results were confirmed by scanning and transmission electron microscopy. Flagella 

of KIF9BRNAi mutants present regions with one or more PFR-like structures 

alternating with sections containing only the axoneme (Figure 36B). PFR assembly 

takes place at the distal tip of the flagellum like axonemal proteins and its elongation 



Figure 36: KIF9B and the transport of PFR components in T. brucei. 
 
(A) Immunofluorescence pictures of KIF9BRNAi PCF cells induced for 48 hours.  
The old flagellum (OF) presents a normal axoneme (Mab25) and PFR (L8C4) 
labelling, whereas the new flagellum (NF) presents a normal axoneme but a 
disrupted PFR. Arrows show the detached flagellum. (B) Scanning electron 
micrograph of a WT cell (top panel) and a KIF9BRNAi PCF cell induced for 72 hours 
(bottom panel) extracted with cold Triton X-100. The white rectangle indicates the 
position of the magnified area. The arrows point PFR material, and the arrowhead 
shows a naked region of the axoneme (Demonchy, Blisnick et al. 2009) 
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follows that of the axoneme shortly (Bastin, MacRae et al. 1999). Therefore, PFR 

proteins could be cargoes of IFT trains, although no study has formally proved it yet. 

Therefore it was proposed that KIF9B could be implicated in the transport of PFR 

proteins toward the distal tip for assembly. However, no GFP::KIF9B trafficking was 

visible along the axoneme of live cells (Demonchy, Blisnick et al. 2009). Furthermore, 

unlike IFT proteins, KIF9B is resistant to detergent-treatment, suggesting a strong 

interaction with microtubules. Based on these results, it was proposed that KIF9B 

could be fixed along the axoneme possibly on doublet 5-6 and to progressively drag 

PFR proteins to the distal tip. 

In T. brucei, the IFT dynein RNAi mutants are characterised by the presence of 

dilated flagella full of IFT proteins (Blisnick, Buisson et al. 2014). Interestingly, kinesin 

motors do not accumulate in these dilated flagella. In Chlamydomonas, kinesin 

seems to return to the flagellum base by simple diffusion (Engel, Ludington et al. 

2009, Chien, Shih et al. 2017). Alternatively, IFT kinesin motors are actively returned 

by retrograde transport in C. elegans (Prevo, Mangeol et al. 2015). The last option 

could be that kinesin goes back to the flagellum base independently of IFT and could 

be transported by other motors that would walk on the free microtubule doublets that 

are not already used by IFT.  

In T. brucei procyclic cells, the flagella connector is a structure that links both flagella 

through skeletal fibers during new flagellum elongation. It was proposed that flagella 

connector fibers are present on doublets 7, 8 and 9 of the old flagellum and on 

doublets 3 and 4 of the new flagellum (Briggs, McKean et al. 2004, Hoog, Lacomble 

et al. 2016). Study of flagella connector composition has revealed the presence of 

kinesin motors (Varga, Moreira-Leite et al. 2017). It was proposed that these kinesins 

could be responsible for flagella connector movement along the old axoneme. In this 

context, these motors could walk on doublets 8 and 9, where there is no IFT but what 

about doublet 7? The presence of flagella connector does not seem to interfere with 

IFT. Indeed IFT trafficking in the old flagellum of cultured procyclic forms is not 

disrupted (Manuscript 3). This is possible because IFT motors only walk on a small 
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part of the microtubule (Kozminski, Beech et al. 1995) thus; the flagella connector 

could cohabit with IFT motors and use a different area of the microtubule. The 

flagella connector probably does not interfere with IFT in the new flagellum because 

it is only present at the distal tip where IFT trains stop anyway. 

In bloodstream forms, the flagella connector is absent and the distal tip is enbeddes 

in a cell-body groove (Hughes, Towers et al. 2013). Furthermore IFT trains are found 

on different positions (doublets 7 and 8).  Thus a tempting question would be the 

possible impact of flagella connector in IFT positioning? It would therefore be 

interesting to study the repartition of IFT trains in procyclic flagella connector mutants 

to evaluate whether the presence of flagella connector could restrict IFT positions 

around the axoneme. Moreover, during Epi-trypo asymmetric division the two flagella 

are not connected to each other (Rotureau, Subota et al. 2012). It could be also 

interesting to study whether IFT train distribution is different during this specific 

division to evaluate if the flagella connector could really have an impact on IFT 

positioning.  

3)  How does IFT only take place on specific 
microtubule doublets?  

In trypanosomes, there is no tubulin α or β gene specifically dedicated to axonemal 

construction. The nine microtubule doublets are therefore made of the same tubulin 

proteins, so why are only two microtubule doublets out of nine are used for IFT? 

What does differentiates them from the others? A possible explanation can be found 

by the fact that doublets 4 and 7 have a distinct molecular identity compare to the 

other doublets due to tubulin post-translational modifications or that proteins might 

associate specifically to doublets? Such biochemical information could be 

preferentially recognized by IFT motors and favour their interaction. On contrary, 

specific biochemical information could prevent IFT train access to all the other 

doublets.   
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Tubulin is the main component of the axoneme and can undergo a large panel of 

post-translational modifications such as polyglycylation or polyglutamylation 

(L'Hernault and Rosenbaum 1985, Rudiger, Plessmann et al. 1995). Analyses of 

loss-of-function mutants of microtubule-modifying enzymes suggest that post-

translational modifications are important for assembly, stability and function of the 

cilium (Janke 2014). 

A recent study in mice fibroblasts showed that the anterograde trafficking of 

mNg::IFT88 was slowed down in absence of ciliary tubulin glutamylation (Hong, 

Wang et al. 2018). Additionally, the effect of tubulin polyglutamylation on the velocity 

of kinesin-2 has been tested in vitro. Using yeast tubulin fused to different human 

tubulin carboxy terminal tails (CTTs), it has been demonstrated that both short (3 

glutamates) and long (10 glutamates) CCTs increased the velocity and the 

processivity of the kinesin-2 motors (Sirajuddin, Rice et al. 2014). In contrast, the 

recruitment and the processivity of kinesin-2 motors were reduced by tubulin 

tyrosination (Sirajuddin, Rice et al. 2014).  We could propose that specific post-

translational modifications on doublet 4 and 7 could favour IFT (polyglutamylation) 

fixation or in contrast prevent IFT fixation on the other doublets (tyrosination).  

 Glycylating enzymes are absent from the genome of T. brucei and mass 

spectrometry analysis demonstrated that glycylation was not detected in tubulin 

trypanosome (Schneider, Plessmann et al. 1997). Moreover, this study showed that 

trypanosome tubulin is extensively glutamylated, with variable numbers of glutamate 

residues added to both cytoplasmic and axonemal tubulin (Schneider, Plessmann et 

al. 1997). Glutamylases belong in Tyrosine ligase like proteins (TTLL) and the 7 

genes are found in T. brucei genome (Casanova, de Monbrison et al. 2015). 

During the construction of the new flagellum, the tip of the extended axoneme 

microtubules of T. brucei contains exclusively tyrosinated tubulin (Sherwin, Schneider 

et al. 1987). This post-translational modification could inhibit kinesin recruitment and 

IFT (Sirajuddin, Rice et al. 2014). Recently, the localisation of the seven TTLLs has 



Figure 37: Microtubules 4 and 7 are differentially polyglutamylated. 
 
(A and C) TEM micrographs of detergent-extracted cytoskeletons from wild-type 
procyclic trypanosomes post-embedded and immuno-gold stained with GT335 that 
detect all forms of glutamylated tubulin no matter the length of the chain (A) or with 
poly-E antibody that binds selectively to the polyglutamate chains longer than 3 
residues (C). Positions of gold beads are indicated with white arrowheads.  
(B and D) Histograms showing the percentage of sections with gold particles on the 
9 doublet microtubules and the central pair (CP) in samples stained with GT335 
(n=290 flagellum cross sections) (B) or the poly-E antibody (n=165 flagellum cross-
sections) (D). Since more than one particle can be encountered on the same doublet, 
both the absolute number of gold particles (in red) and the event occurrence (positive 
signal no matter the number of particles (in blue) are represented. Results obtained 
by Cécile Fort.   
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been investigated and several were found to be located in the flagellum, especially 

TTLL4A that is concentrated at the distal tip of the growing flagellum (Elise Warter, 

unpublished data). Because of this localisation, TTLL4A is a strong candidate to 

rapidly glutamylate microtubules immediately after their polymerisation. Tubulin 

glutamylation achieved by TTLL4A could be specific to doublet 4 and 7. This could 

relieve tyrosine inhibition and allow access to IFT trains on these two doublets. 

Indeed the characterisation of polyglutamylation distribution in the trypanosome 

axoneme was performed in the lab, using immuno-gold detection with two antibodies: 

the GT335 monoclonal antibody that detect all forms of glutamylated tubulin no 

matter the length of the chain (Wolff, de Nechaud et al. 1992) and a poly-E anti-

serum that binds selectively to the polyglutamate chains longer than 3 residues 

(Rogowski, Juge et al. 2009). While GT335 stained equally the nine doublets and the 

central pair (Figure 37A) (10% of the gold particles on each) (Figure 37B), the poly-E 

signal was overrepresented on doublets 4 and 7 (50% of the gold particles) (Figure 

37C and 37D) (Cécile Fort et al., Unpublished data). Based on this observation, 

microtubule doublets 4 and 7 are specifically polyglutamylated discriminating them 

from the other doublets. In contrast doublets appear indifferently tyrosinated during 

axoneme construction (Sherwin and Gull 1989). This could relieve tyrosination 

inhibition of IFT and favour interaction and traffic of kinesin IFT motors and explain 

the specific localisation of IFT trains on these two doublets.  

The restriction of IFT trains on only two doublets out of nine could also be due to the 

presence of unique proteins on specific microtubule doublets conferring a particular 

identity to them a particular identity. These proteins could facilitate (on doublet 4 and 

7) or prevent (all the other doublets) IFT train access. Few examples of protein 

association to specific doublets are known that could confer them their own identity. 

Doublets 4 and 7 are linked to the PFR by strong and bulky connectors. Using 

immunogold labelling, I17 protein (high molecular weight protein with unknown 

function) was shown to localize between the axoneme and the PFR (Imboden, Müller 

et al. 2009). I17 could be essential to determine the identity of doublet 4 or 7. Two 

other proteins CFAP43 and CFAP44 (WD repeats containing proteins important for 



 

 
Figure 38: IFT train repartition around the axoneme in the flagellar 
pocket of T. brucei.  
(A) Still images of cells expression GFP::IFT52 obtain in SIM showing that IFT 
proteins form a donut-like structure (pointed by the arrowhead) at the base of the 
flagellum. Scale bar: 5µm. Images obtained by Cécile Fort and Jean-Yves Tinevez. 
(B) TEM pictures of WT trypanosome flagellar cross-sections close to the top of the 
flagellar pocket. Central pair and dynein arms are visible, but the PFR is not yet 
present. Abundant electron dense material similar to IFT particles can be seen close 
to most doublets (Absalon, Blisnick et al. 2008).  
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axonemal organisation) localized on doublet 5 and 6 and their presence could also 

determine doublet identity (Coutton, Vargas et al. 2018). Based on these two 

examples, we could propose that specific proteins could be associated to each 

doublet to distinguish them from each other.  

In IFA and live cell studies of T. brucei, an IFT pool is observed at the base of the 

flagellum of all the different parasite stages except for the short epimastigote. TEM 

images of the transition zone of cultured procyclic cells show electron dense material 

between membrane and microtubules. These could correspond to IFT trains or IFT 

material (Trepout, Tassin et al. 2018) but the presence of Y-links does not facilitate 

the interpretation. This material is gone with detergent treatment demonstrating that it 

is probably not physically linked with microtubules (Vaughan and Gull 2015). Recent 

data obtained in the lab by super-resolution microscopy (SIM), have shown that IFT 

proteins are concentrated in a donut-like structure at the base of the flagellum (Figure 

38A) (Cécile Fort, Jean-Yves Tynevez and Jamin Jung, unpublished data). These 

observations raise the question of the localisation of the IFT train assembly site. Are 

IFT trains assembled in the cytoplasm and then able to enter in the flagellar 

compartment? Or are IFT proteins first concentrated at the flagellum base before 

trains are assembled and injected in the axoneme? Does IFT-A and IFT-B assemble 

at the same place? A fluorescence resonance energy transfer (FRET) analysis using 

an IFT-A and IFT-B tagged proteins could elucidate the site of IFT train assembly. 

Using the same method, it could be possible to evaluate where IFT trains are 

attached to kinesin motors to initiate anterograde transport.  

The donut-like distribution of IFT proteins at the flagellum base suggests that this 

material is associated to the nine microtubule doublets of the region. So, how 

trafficking could later be restricted to only on two microtubule doublets of the 

axoneme? We proposed the existence of a restricting system to explain the specific 

distribution of IFT trains on doublets 4 and 7. Are these modifications present all 

along the axoneme? Or are they present only at the flagellum base? And if there are 
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only present at the base at which level exactly? Transition zone? Transition fibres? 

Or the portion of axoneme without PFR? 

In T. brucei , the transition zone is located in the flagellar pocket with the axoneme in 

its continuity. When the flagellum emerges from the flagellar pocket, the PFR is 

associated, meaning that the 9 microtubule doublets of the axoneme not already 

associated to the PFR are in theory available to link IFT train motors. In most of the 

TEM sections of the axoneme in this portion of the flagellar pocket region, there is no 

electron dense structures sandwiched between microtubules and flagellar 

membrane. In a few sections found close to the apex of the flagellar pocket, electron 

dense structures that look like IFT particles are detected, but all around the axoneme 

(Figure 38B) (Absalon, Blisnick et al. 2008).  

The absence of electron dense material in this region could be due to the kinetics of 

fixation by glutaraldehyde. As said above, IFT trains need 200-300ms to stop after 

addition of the fixative (Jamin Jung and Moara Lemos, unpublished data). the 

majority of IFT anterograde trains travel with a speed of 2.4µm/sec (Buisson, 

Chenouard et al. 2013) and this region is 1.2µm in length (Trepout, Tassin et al. 

2018). During this time lapse, IFT trains present in portion of axoneme in the flagellar 

pocket could leave this region and those being prepared in the transition zone could 

be blocked.  

Electron dense material present in this regions are sensitive to detergent treatment 

(Vaughan and Gull 2015), an obervation compatible with the fact that this material 

being IFT proteins or trains. If the electron dense material observed in the few TEM 

sections at the level of the flagellar pocket (Figure 38B) corresponds to IFT trains, it 

would mean that IFT trains are injected on most doublets of the axoneme before the 

addition of the PFR. The presence of the PFR would impose IFT train reorientation 

on doublets 4 and 7. However, this explanation does not explain why trains are 

absent from doublets 1,2 and 9. This raises the question of how an IFT train could 

“jump” from one microtubule to another. Alternatively, some IFT trains could already 
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be specifically associated to doublets 4 and 7 and all the other IFT trains present at 

this level are not fixed to the axoneme and are queuing to access on doublets 4 and 

7. It could be interesting to study microtubule doublets identity at this level and check 

for example if the polyglutamylation profile is already specific on doublets 4 and 7 or 

not. Possibility to use transition zone enriched fractions as described by Dean et al. 

would facilitate this analysis (Dean, Moreira-Leite et al. 2016).  

4)  Why are only doublets 4 and 7 be modified?  

In the previous section, we have proposed several hypotheses to explain why IFT 

take place only on two specific doublets. This could be due to tubulin post-

translational modifications, the presence of unique protein in microtubule doublets or 

a control at the base of the flagellum. This lead to another question: Why do only 

doublets 4 and 7 acquire this unique identity associated to IFT? 

First, we can propose that doublets 4 and 7 already possess their own identities as 

soon as in the proximal region of the basal body. Each triplet of the basal body is 

associated to specific structures such as striated fibers or rootlets (Vaughan and Gull 

2015). We can hypothesize that the specific identity of these microtubules is inherited 

at each basal body replication and facilitates their recognition by enzymes or proteins 

that modify axonemal microtubules and give them their specific identities. Second, 

the differential polyglutamylation profiles of the doublets 4 and 7 could be due to their 

proximity with the PFR. Indeed, the TTLL(s) implicated in identifying IFT tracks could 

be localized at the PFR periphery. In these conditions, only doublets 4 and 7 would 

be accessible to the enzyme and therefore be strongly polyglutamylated. To validate 

this hypothesis, it will be interesting to study the pattern of axonemal glutamylation by 

immunogold in a calmodulin null mutant that has no PFR left (Ginger, Collingridge et 

al. 2013). If PFR presence mediates specific positioning of key enzymes are 

specifically positioned, its absence should result in a reduction of glutamylation on 

doublets 4 and 7, and in theory impact IFT train positioning. We note that the 
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calmodulin RNAi mutant has shorter flagellum, a phenotype associated to IFT 

frequency reduction.  

Third, the axoneme is in close contact with the flagellum membrane. A specific 

distribution of membrane proteins or lipid rafts could also influence IFT distribution 

around the axoneme. Indeed, lipid-raft proteomic analyses revealed an over-

representation of IFT proteins (Sharma, Olson et al. 2017). We could imagine that 

lipid-rafts are only present in the flagellar membrane along the doublet 4 and 7(Tyler, 

Fridberg et al. 2009), inducing the positioning of IFT trains on these two doublets 

from the base of the flagellum. This brings the question as to how lipids would be 

preferentially organised. 

5)  How anterograde and retrograde trains avoid 
collisions?  

In trypanosome flagella, anterograde trains move at different speeds. Fusion and 

fission events occur between anterograde particles but collisions were not observed 

between trains moving in opposite directions (Buisson, Chenouard et al. 2013). 

Further analyses using total internal reflection fluorescence microscopy (TIRF) in 

Chlamydomonas flagella confirmed the existence of interactions between 

anterograde trains but also demonstrated the existence of interactions between 

retrograde trains (Stepanek and Pigino 2016). Fusion events were typically observed 

as a faster train caught up with a slower one moving in the same direction, resulting 

in both progressing together at the faster speed (Buisson, Chenouard et al. 2013). 

On T. brucei flagellum sections, short electron dense fibres linking IFT particles to the 

axoneme microtubules are sometimes visible (Absalon, Blisnick et al. 2008). We 

think that these links could correspond to the IFT motor but they do not seem to be 

preferentially associated with specific doublets (3 or 4 and 7 or 8) or to any tubules (A 

or B). However, TEM sectioning does not allow discrimination of train identity 

(retrograde, anterograde). IFT motors could correspond to kinesin or dynein and 
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since anterograde and retrograde trains are found on both tracks, all possibilities 

could be observed in a section.  CLEM approaches are currently the only option to 

determine train identity as well as their precise position on the axoneme. In view of 

the recent results obtained in Chlamydomonas, we can propose that the anterograde 

transport takes place on the B-tubule and the retrograde one on the A-tubule. This is 

currently investigated in the lab (Adeline Mallet). 

In studies where polyglutamylation profile of ciliary microtubules was modified, the 

anterograde transport and kinesin motors were impacted (O'Hagan, Piasecki et al. 

2011, Hong, Wang et al. 2018). The GT335 antibody stains only B-tubules of 

Chlamydomonas axonemes (Lechtreck and Geimer 2000).  We can propose that the 

B-tubule could also be differentially glutamylated in trypanosomes, favouring 

interaction with the IFT kinesin motors implicated in anterograde transport. On the 

way back, dynein motors could specifically bind the A-tubule due to the presence of 

specific modifications that could attract them. In contrast the presence of proteins at 

the distal tip of the axoneme or specific modifications on the B-tubule could prevent 

dynein fixation. One other option may be to consider whether anterograde trains 

continuously travel on the B-tubule, and when they reach the end of the flagellum, 

the A-tubule is the only one available and dynein walks on it by default. In these 

conditions each type of transport would occur along a specific tubule, preventing 

collisions between trains running in opposite directions.  
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 Flagellum length control II.

Currently, the most popular model for flagellum length control is based on the 

existence of a dynamic assembly and disassembly of tubulin at the distal tip of the 

organelle, involving the IFT machinery for tubulin transport. In T. brucei, it was 

demonstrated that IFT is required for the construction but not for flagellum length 

maintenance (Fort, Bonnefoy et al. 2016). Here, we have proposed the new “grow 

and lock model that could be more relevant for stable flagella. This new model raises 

several questions especially concerning the regulation of flagellum growth and the 

nature of the locking event. 

1)  What could regulate flagellum growth? 

We have shown a direct correlation between the total amount of IFT signal within a 

flagellum and its length, with the exception of the short flagellum of dividing 

epimastigote cells where the new flagellum contains more IFT material in an 

accumulation at the distal end. Analysis of the KIN2A2BRNAi cell line in knockdown 

conditions suggests that the growth rate is controlled by active IFT transport in the 

growing flagellum. But in wild-type conditions, what controls the growth rate? The 

simplest explanation would be that the cell produces the right amount of IFT proteins 

at the synthesis level. However, the situation is more complex than that because IFT 

proteins are also abundant in the cytoplasm in addition to the flagellum, as shown by 

immunofluorescence experiments using antibodies against various IFT proteins and 

motors (Huet, Blisnick et al. 2014). In Chlamydomonas, cell fractionation revealed a 

20- to 50-fold excess of IFT protein in the cell body compared to the flagellum 

(Ahmed, Gao et al. 2008) and in mammalian cells, immunofluorescence analyses 

showed the presence a large cell body pool for many IFT proteins (Follit, Xu et al. 

2009).  





Discussion 

 

239 

To gain further insights about the control of IFT proteins, Jamin Jung in our lab 

has deleted one allele of the IFT172 gene and examined the distribution of the 

protein. Western blots confirmed a diminution of 50% of the IFT172 signal but IFA 

revealed that the total signal in the flagellum and its base remained unchanged, in 

contrast to the cytoplasmic signal that was reduced (J. Jung et al., unpublished data). 

This implies that the concentration of IFT proteins is regulated at the level of the 

flagellum itself. A similar conclusion was reached by Silva et al. who depleted the 

amount of IFT22/RABL5 by RNAi in Chlamydomonas (Silva, Huang et al. 2012). This 

raises the question whether the correlation between IFT amount and flagellum length 

is passive or active, i.e. which one controls the other one? The knockdown of both 

kinesins supports an active control of length by the actual IFT train frequency in the 

flagellum but this has not been observed during the life cycle where the frequency is 

the same in all life cycle stages that could be examined.  

At first sight, these results suggest that the flagellum growth rate is likely to be 

constant in all life cycle stages and that the only adjustment for controlling flagellum 

length used in vivo would be at the level of the timing of the locking event. However, 

this assumption is only valid in case the loading of IFT trains with tubulin is constant. 

In Chlamydomonas, large differences in loading have been observed between 

growing and mature flagella (Craft, Harris et al. 2015). Therefore, one could propose 

that the growth rate is controlled by tubulin loading and delivery at the distal end of 

the flagellum. As said above, it has not been possible so far to visualise fluorescent 

tubulin in trypanosomes and the hypothesis cannot currently be challenged. 

2)  What could be the mechanism(s) responsible 
for flagellum locking?  

Our experimental evidence indicates that the axoneme of procyclic trypanosomes 

does not undergo turnover once it has maturated. We could propose four 

mechanisms for flagellum locking: (1) axoneme modifications, (2) membrane 
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availability as a limiting factor, (3) modification of flagellar compartment accessibility 

or (4) modification of IFT train conformation. These different mechanisms could act 

independently or in synergy.  

First, one could consider that the axoneme microtubules in the mature flagellum are 

heavily modified by post-translational modifications that prevent further elongation or 

shortening. Post-translational modifications of tubulin are known for ensuring high 

stability to the ciliary axoneme (Janke 2014). Acetylation is known to be important for 

stabilizing microtubules and indeed the deacetylation of axonemal tubulin by histone 

deacetylase 6 (HDAC6) promotes the disassembly of primary cilia (Pugacheva, 

Jablonski et al. 2007). The trypanosome axoneme is acetylated in parallel to its 

construction (Sasse and Gull 1988) and the acetylation of axonemal tubulin at the 

distal tip could prevent disassembly but it cannot explain the arrest of flagellum 

growth. However this sounds unlikely because mass-spectrometry showed that the 

entirety of flagellar α-tubulin was acetylated (Schneider, Sherwin et al. 1987). To 

study the impact of tubulin acetylation in flagellum locking, we could develop and 

study an acetyl-transferase inducible RNAi mutant or overexpress the enzyme and 

evaluate the impact of the loss of flagellum acetylation in flagellum construction and 

length control. This would require a way to target the enzyme specifically to the 

flagellum to avoid interfering with microtubules in the corset.  

Then, the addition of several glycine residues to C-terminal tail of tubulin has been 

proposed to be essential for controlling the length of primary cilia (Gadadhar, Dadi et 

al. 2017). However, glycylation has not been detected in trypanosomes samples 

neither by mass-spectrometry nor by antibodies (Schneider, Sherwin et al. 1987).  

Tubulin polyglutamylation by generating multiple negative vharges to the tubulin 

dimers may facilitates and regulates association with other proteins and therefore be 

involved in axoneme stabilisation in addition to modulating IFT trafficking. Whatever 

the type of possible tubulin post-translational modifications, we could propose to 

compare their profile in the new and the old flagellum. Indeed, doing 

immunofluorescence or western blot with specific antibodies of tubulin glutamylation 

or mass-spectrometry analysis could allow us to highlight specific profiles associated 



 
Figure 39: Protein candidate for microtubule capping.  
Images extracted from Tryptag database. This example show one candidate protein 
presenting a flagellar tip and posterior end localization that could be associated to 
microtubule capping (Dean, Sunter et al. 2017).  
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to the flagellum status. For the moment it is not possible to separate new and old 

flagella, which prevent the realisation of this experiment.   

The axoneme could be modified by the presence of microtubule capping proteins that 

would prevent tubulin assembly and disassembly. Such as capping proteins could be 

expressed at the final step of flagellum assembly and be transported to the distal tip 

to bind the (+) end of axonemal microtubules. FLAM8 is localized at the tip of the 

flagellum and is recruited in parallel to flagellum elongation. FLAM8 looks like a good 

candidate to function as cap for axonemal microtubules in the mature flagellum. 

However flagellum length looks normal, in both null and RNAi mutants of FLAM8 

(Estefania Calvo Alvarez and Serge Bonnefoy, Unpublished data), demonstrating 

that FLAM8 does not lock the mature flagellum. Electron microscopy examination of 

the distal tip of the T. brucei flagellum does not indicate a clear structure at this level. 

However, the tip of the growing flagellum looks less organised that of the mature 

flagellum (Hoog, Lacomble et al. 2014). These structural differences could reflect 

axoneme stabilisation and locking in the mature flagellum. 

In the TrypTag database (Dean, Sunter et al. 2017) several unknown proteins 

localise to the tip of the flagellum and could represent good candidates to lock the 

axoneme by stabilising the (+) end of axonemal microtubules. For example the cation 

/ proton antiporter encoded by gene Tb927.11.840.1 (Figure 39), is present at the 

distal tip of the old flagellum and in the posterior end of the cell where tubulin 

polymerisation occurs. This protein could be associated to the (+) end of 

microtubules and stabilised them.  

Second, the other major component of the flagellum is its membrane. We could 

propose that flagellum length could be restricted by availibility of membrane 

components. In BILBO1RNAi mutants (BILBO1 is a protein of the flagellar pocket 

collar), the flagellar pocket is absent and flagella are made too short (Bonhivers, 

Nowacki et al. 2008). We have evaluated the IFT trafficking in this strain after 

BILBO1 knockdown and IFT was still active (Data not shown). This demonstrates 
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that the construction of the shorter flagellum is not due to a defect in IFT trafficking. 

We propose that it could be due to a lower abundance of flagellar membrane 

components that will induce the production of shorter flagellum. Indeed, the absence 

of a flagellar pocket blocks endocytosis and exocytosis, which are essential to 

produce the flagellar membrane (Bonhivers, Nowacki et al. 2008). In these conditions 

the axoneme cannot grow further. This suggests that flagellum length depends on 

availability of flagellum membrane components. In wild-type conditions, flagellum 

membrane could also be the limiting factor if a fixed amount of flagellar membrane 

components are produced and could control flagellum length. 

Third, the locking event could be associated to the flagellum base. All the elements 

necessary for flagellum elongation need to transit though the selective “flagellum 

gateway” at the transition zone. Therefore, one could imagine that specific 

modification of the flagellum base could prevent new flagellar components from 

entering the flagellum compartment and consequently lock the flagellum to a precise 

length. Finally the locking event could be at the level of the IFT trains if for instance 

the CH domain is modified and cannot transport tubulin. In both cases, this implies 

that there is no disassembly of the flagellum.  

3)  Could the “grow and lock” model apply to other 
stages of the T. brucei parasite cycle?  

The “grow and lock” model was based on the study of cultured procyclic 

trypanosomes. These cells construct flagella that ultimately always exhibit the same 

length (20 µm). BSF and attached epimastigotes (Epi-Epi division) also construct 

new flagella with always the same final length suggesting that the “grow and lock” 

model could also be relevant in these stages that possess flagellum with a final 

length of 24µm and 12µm respectively. However, this may not necessarily be the 

case in some other parasite stages as discussed here, such as the proventricular 
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dividing epimastigote that produces a new flagellum ten times shorter than the old 

one.  

Could the “grow and lock” model explain formation of the very short new flagellum of 

the dividing epimastigote? The first possible explanation is a slower growth rate, as 

shown in vitro with the KIN2A2BRNAi  following the reduction of IFT frequency. A lower 

abundance of IFT trains in the flagellum and / or to a reduced IFT frequency. This is 

not compatible with IFA results and monitoring of TdT::IFT81 concentration in live 

cells, which showed that IFT protein recruitment and train frequency in the short 

epimastigote flagellum are equivalent to what was observed in longer flagella. A 

modification of train loading could be responsible for the shorter flagellum but as said 

above we cannot visualise fluorescent tubulin, so this hypothesis cannot be 

challenged for the moment. Determination of the quantity of soluble tubulin also looks 

very difficult, since these dividing cells cannot be purified.  

The second adjustment parameter of the “grow and lock” model is the timing of the 

division and of flagellum maturation. Possibly the short flagellum grows normally but 

the cell divides prematurely. To investigate this possibility, cells were treated with 

teniposide. Despite a long incubation, the new flagellum showed no sign of 

elongation. This indicates that the new flagellum could already be locked preventing 

further elongation. Is this associated to earlier flagellum maturation? This latter 

hypothesis was tested by using FLAM8 as a marker for flagellum maturation. We 

have quantified the total amount of fluorescence associated to the anti-FLAM8 

antibody but we always observed weak signal at the distal tip of short epimastigote 

flagella compare to the old one.  As previously said, flagellum length looks normal in 

both null and RNAi mutants of FLAM8 (Estefania Calvo Alvarez and Serge Bonnefoy, 

Unpublished data). This questions the relevance of using FLAM8 as a marker for 

flagellum maturation. It does not mean that the new flagellum of short epimastigote 

cells is not locked but rather calls for a search of new markers for maturation as 

discussed above.  
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4) Could other models explain flagellum length 
control?  

We have seen that the “grow and lock” model could be relevant but it is worth also 

considering other models. First, reduced elongation could be due to the presence of 

a limiting pool of tubulin. Once all the blocks have been used, IFT trains would travel 

empty and could not contribute to flagellum elongation. In this case, the cells would 

not need to regulate IFT trafficking to modulate their flagellum length. Unfortunately, 

we cannot yet directly visualise tubulin incorporation due to the failure of tagged 

tubulin to incorporate trypanosome microtubules (Bastin, MacRae et al. 1999, Sheriff, 

Lim et al. 2014). Moreover, we can neither specifically isolate short epimastigotes 

from tsetse flies to evaluate the presence of a soluble pool of tubulin at this stage.  

Second, a higher tubulin disassembly rate could be responsible for the production of 

shorter flagella. Indeed, if the disassembly rate is faster than the growth rate this 

could result in the production of shorter flagella. In trypanosomes, neo-synthesized 

tubulin is tyrosinated, and IFA performed on cultured procyclic cells with the YL1/2 

antibody directed against tyrosinated tubulin highlights the tip of the new flagellum 

(Sherwin and Gull 1989). This was also observed at the distal tip of short 

epimastigotes (Rotureau, Subota et al. 2011) showing that tubulin was newly 

incorporated in these flagella. In this context tubulin incorporation that is not 

accompanied by flagellum elongation is arguing in favour of a high turnover. 

In Giardia and Leishmania, the kinesin-13  (KIF13) protein is concentrated at the 

distal tip of the flagellum and possesses a depolymerising microtubule activity. Its 

overexpression in Leishmania produces flagellar shortening whereas its knockdown 

in T. brucei generates longer flagella (Blaineau, Tessier et al. 2007). However, 

another study of KIF13RNAi at the procyclic stage failed to reproduce this phenotype 

(Klaus Ersfeld data). KIF13 could be essential to regulate flagellum length but mostly 

in the short epimastigote. Overexpression at the distal tip of the short epimastigote 
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could prevent further elongation and explain the production od this short flagellum. In 

the future, it will be interesting to inactivate that gene and to evaluate the impact on 

flagellum formation in dividing epimastigote. Monitoring expression of a fluorescent 

version could also be informative, for example if the concentration at the distal tip of 

the new flagellum of dividing epimastigote was higher.   

5)  Discovery of a new stage during the parasite 
cycle.  

During the parasite cycle, long mesocyclic trypomastigotes migrate from the posterior 

midgut to the proventriculus, differentiate into long epimastigotes almost 

concomitantly to the initiation of an asymmetric division (Vickerman 1985, Sharma, 

Peacock et al. 2008). During this differentiation, the emergence of the new flagellum 

was described to start in parallel to nucleus migration toward the posterior pole of the 

cell (Sharma, Peacock et al. 2008). Strikingly, after teniposide treatment of parasites 

isolated from tsetse flies, we have observed the emergence of a new flagellum in 

long mesocyclic trypomastigotes. This means that either the treatment induces a 

duplication of the basal bodies or that a new flagellum was already present before 

cell differentiation into epimatigotes and that basal bodies had a fortiori duplicated 

before nucleus migration. This second hypothesis was confirmed by FIB-SEM 

analysis of some proventricular parasites where 63% of mesocyclic trypomastigotes 

were presenting a short new flagellum that did not extend beyond the flagellar pocket 

(in total n=22) (Moara Lemos, unpublished data). This is supported by IFA data using 

the anti-FTZC antibody as a marker of the transition zone and the anti-IFT22 

antibody revealing the presence of two spots at the base and consequently two 

transition zones in mesocyclic stage (Data not shown). These results demonstrate 

that generation of the new flagellum of the dividing proventricular epimastigote 

already initiates in mesocyclic trypomastigotes, i.e earlier than previously described 

(Sharma, Peacock et al. 2008). This means that the new flagellum is maintained in a 
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short length conformation for longer periods than expected, which is an additional 

argument for the existence of a specific mechanisms implicated to restrict its length.  

6)  Flagellum length control during Epi-trypo 
division.  

Another asymmetric division occurs in the tsetse salivary glands to produce the 

infective metacyclic form. In contrast to the dividing epimastigote, this asymmetric 

division (Epi-Trypo) is characterised by the production of a new flagellum that is 

longer than the old one (Rotureau, Subota et al. 2012). So far, we did not investigate 

this division due to the difficulty to obtain a sufficient number of infected salivary 

glands and to the relatively low abundance of these Epi-Trypo dividing cells in 

infected salivary glands. Therefore, all the hypotheses previously discussed remain 

open to explain flagellum length control in this asymmetric division.  

First, a longer flagellum could be produced by an increase of the flagellum growth 

rate or by a delay of the locking event in association to cell division or flagellum 

maturation, allowing the new flagellum to grow longer. The increase of flagellum 

growth rate could be associated to a modification of IFT protein availability during 

flagellum construction. The production of a higher amount of IFT proteins would 

therefore be associated to the construction of a longer flagellum. Second, the 

production of higher initial amounts of flagellar components could also explain the 

construction of a new longer flagellum, arguing for the limiting pool model. The 

validity of this model relies on the timing of cell division. Third based on the “balance 

point” model, a diminution of tubulin disassembly rate at the distal tip and / or a 

higher axonemal stability could also explain the production of longer flagella.  
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 Conclusion and perspectives. III.

 

In a recent paper, IFT-based tubulin transport has been attenuated by altering the 

tubulin binding sites in IFT81 and IFT74. Despite a strong reduction in transported 

tubulin rates, the length of the axoneme was only moderately reduced. The authors 

propose that ~ 80% of the axonemal tubulin content could enter the flagellum by 

simple diffusion and that IFT trains would rather be important to concentrate the 

tubulin in the flagellar compartment as well as to favour its polymerization {Harris, 

https://doi.org/10.1101/268573}. This important discovery raises the question of the 

role of IFT in axoneme construction and in length control.  

IFT could be important to transport other axonemal components than tubulin 

especially those present as a large complexes such as Radial Spokes or Outer 

Dynein Arms (Qin, Diener et al. 2004). Moreover, IFT trains could be essential to 

transport tubulin-capping proteins at the distal tip of the flagellum. If these proteins 

were important to lock the flagellum at its final length, they would need to be 

transported rapidly at the distal tip and this could be achieved by IFT. Due to the 

inter-species differences on IFT observed especially between Chlamydomonas and 

T. brucei, it could be important to implement the experiment made by Harris et al. in 

other model organisms as well as to evaluate the role of tubulin diffusion in the 

axoneme construction and if IFT is only implicated in the import of material in flagellar 

compartment by crossing the ciliary gateway of the transition zone. 

In human, flagella and cilia are present at the surface of different tissues and exhibit 

specific structural and functional characteristics. Some ciliopathies are associated to 

mutation in the same IFT genes but phenotypes are different. For example, 

Sensenbrenner syndrome is a ciliopathy associated to mutations in at least IFT122 

and IFT43 genes and patient present only skeletal anomalies and live almost 

normally. While Bardet-Biedl syndrome is associated to mutations in the same 
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genes, multiple organs are affected resulting in more severe pathology (Halbritter, 

Bizet et al. 2013). Finally, Jeune syndrome presents very severe symptoms mostly 

fatal in the first years of life (Beales, Bland et al. 2007). In these three ciliopathies IFT 

genes are affected but the type of mutation is different and the impact in cilia and 

flagella and their function is variable. This reveals that IFT and IFT proteins have not 

necessarily the same role in all the cilia present in human body. This diversity is likely 

to be also true at the level of the control of ciliary length. Studies in Chlamydomonas 

have brought great insights in the comprehension of cilia and flagella, particularly for 

IFT but they do not really take into account the diversity of these organelles. Our 

work on trypanosomes brings a new look by showing the diversity of IFT trafficking 

and proposing a new model for flagellum length control. The “grow and lock” model 

could explain length control in the stable flagellum of sperm cells. The model could 

also be significant for primary cilia that are disassembled following a decapitation 

(Phua, Chiba et al. 2017) during the cell cycle, in case would be a reversible locking. 

This highlights the importance to study a diversity of model organisms (Vincensini, 

Blisnick et al. 2011) and remind us to not consider that mechanisms and models 

proposed in one organism are valid for all the other situations. 
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Abstract: 
 

Cilia and flagella are essential organelles in most eukaryotes including 
humans. They share a canonical cylindrical structure composed of nine doublets of 
microtubules called the axoneme that is conserved during evolution. They are built by 
an active mechanism termed Intraflagellar Transport or IFT. Despite some variations 
in composition and length between different types of cilia, the length for a given cell 
type is tightly controlled. Any defect in flagellum length or IFT machinery can lead to 
serious cellular dysfunctions, including in humans where it is associated to genetic 
diseases called ciliopathies. During my thesis, we have first investigated the role and 
functioning of IFT in Trypanosoma brucei a flagellated protozoan parasite that is a 
powerful model to investigate cilia. Using Focus Ion Beam-Scanning Electron 
Microscopy (FIB-SEM), we have demonstrated that IFT trains are present almost 
exclusively on only two out of nine microtubules doublets of the axoneme. Then, the 
use of high-resolution microscopy allowed us to observe in live cells that two tracks 
are actually used for bidirectional IFT trafficking. We have investigated mechanisms 
controlling flagellum length and propose a new model named “grow and lock” where 
the flagellum elongates at a constant growth-rate until a signal blocks further 
elongation or shortening. Finally this and other models have been investigated during 
the parasite cycle, when trypanosomes construct flagella with very different lengths.   

 
Keywords: IFT, flagellum, length control, trypanosome. 

 
Résumé: 

 
Les cils et les flagelles sont des organites essentiels chez la plupart des 

eucaryotes, y compris chez l’Homme. Ils possèdent une structure cylindrique 
composée de neuf doublets de microtubules appelée axonème qui est conservée au 
cours de l’évolution. Ils sont construits par un mécanisme appelé Transport 
IntraFlagellaire ou IFT. Malgré des variations de composition et de longueur entre 
différents types de cils, la longueur des cils d’un type cellulaire donné est étroitement 
contrôlée. Toute anomalie de la longueur du flagelle ou de la machinerie IFT peut 
entraîner de graves dysfonctionnements cellulaires, y compris chez l'homme, où 
elles sont associées à des maladies génétiques appelées ciliopathies. Au cours de 
ma thèse, nous avons dans un premier temps étudié le rôle et le fonctionnement de 
l'IFT chez Trypanosoma brucei, un parasite protozoaire flagellé qui est un excellent 
modèle pour étudier les cils. En utilisant le Focus Ion Beam-Scanning Electron 
Microscopy (FIB-SEM), nous avons démontré que les trains IFT n’étaient présents 
presque exclusivement que sur deux des neuf doublets microtubules de l'axonème. 
Puis, l'utilisation de la microscopie à haute résolution nous a permis de démontrer 
dans des cellules vivantes que ces deux voies sont utilisées pour l’IFT dans les deux 
sens sur chacun de ces doublets. Nous avons ensuite étudié les mécanismes 
contrôlant la longueur du flagelle et proposé un nouveau modèle appelé «grow and 
lock» où le flagelle s'allonge avec un taux de croissance constant jusqu'à ce qu'un 
signal bloque son élongation ou son raccourcissement. Pour finir nous avons étudié 
l’implication ce modèle ainsi que d’autres modèles durant le cycle parasitaire, lorsque 
les trypanosomes construisent des flagelles de longueurs très différentes. 
 
Mots clés: IFT, flagelle, contrôle de longueur, trypanosome. 
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