R. P. Feynman, There's Plenty of Room at the Bottom, Engineering and Science, vol.23, issue.5, pp.22-36, 1960.

L. Bong-geun-chung, A. Kang, and . Khademhosseini, Micro-and nanoscale technologies for tissue engineering and drug discovery applications, Expert Opinion on Drug Discovery, vol.2, issue.12, pp.1653-1668, 2002.

C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering, Biomaterials, vol.25, issue.5, pp.877-886, 2002.

K. Tuzlakoglu, N. Bolgen, A. J. Salgado, M. E. Gomes, E. Piskin et al., Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering, Journal of Materials Science: Materials in Medicine, vol.16, issue.12, pp.1099-1104, 2002.

X. Zong, . Bien, . Chung, . Yin, . Fang et al., Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials, vol.26, issue.26, pp.5330-5338, 2002.

H. Y. Grafe, S. Chung, and . Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture, Biomaterials, vol.26, issue.28, pp.5624-5631, 2002.

N. Annabi, A. Tamayol, . Su-ryon, . Shin, M. Amir et al., Surgical materials: Current challenges and nanoenabled solutions, Nano Today, vol.9, issue.5, pp.574-589, 2002.

. Bibliography,

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan et al., Nanoparticle solutions as adhesives for gels and biological tissues, Nature, vol.505, issue.7483, pp.382-385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01078535

A. Meddahi-pellé, A. Legrand, A. Marcellan, L. Louedec, D. Letourneur et al., Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles, Angewandte Chemie International Edition, vol.53, issue.25, pp.6369-6373, 2002.

H. Shao, T. Yoon, M. Liong, R. Weissleder, and H. Lee, Magnetic nanoparticles for biomedical NMR-based diagnostics, Beilstein Journal of Nanotechnology, vol.1, p.3, 2010.

M. Colombo, S. Carregal-romero, M. F. Casula, L. Gutiérrez, P. María et al.,

W. J. Parak, Biological applications of magnetic nanoparticles, Chemical Society Reviews, vol.41, issue.11, p.4306, 2012.

T. Yoon, H. Lee, H. Shao, and R. Weissleder, Highly magnetic core-shell nanoparticles with a unique magnetization mechanism, International Ed. in English), vol.50, issue.20, pp.4663-4666, 2003.

A. Kumar-gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2003.

C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, and N. Paul,

P. A. Durfee, T. N. Brown, J. Hanna, and . Liu,

N. J. Carter, X. Carroll, D. R. Jiang, C. L. Dunphy, . Willman et al., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers, Nature Materials, vol.10, issue.5, p.22, 2011.

N. Jaulin, M. Appel, C. Passirani, G. Barratt, and D. Labarre, Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate), Journal of Drug Targeting, vol.8, issue.3, pp.165-172, 2000.

. Bibliography,

C. J. Coester, K. Langer, H. Van-briesen, and J. Kreuter, Gelatin nanoparticles by two step desolvation-a new preparation method, surface modifications and cell uptake, Journal of Microencapsulation, vol.17, issue.2, pp.187-193, 2000.

J. E. Fuller, G. T. Zugates, L. S. Ferreira, H. S. Ow, and N. Nicholas,

U. B. Nguyen, R. S. Wiesner, and . Langer, Intracellular delivery of coreshell fluorescent silica nanoparticles, Biomaterials, vol.29, issue.10, pp.1526-1532, 2003.

L. Cong, M. Takeda, Y. Hamanaka, K. Gonda, M. Watanabe et al.,

, Uniform Silica Coated Fluorescent Nanoparticles: Synthetic Method, Improved Light Stability and Application to Visualize Lymph Network Tracer, PLOS ONE, vol.5, issue.10, p.3, 2010.

T. Skajaa, Y. Zhao, D. J. Van-den, H. C. Heuvel, . Gerritsen et al.,

R. Cormode, M. M. Koole, and . Van-schooneveld,

Z. A. Fisher, C. Fayad, A. De-mello-donega, and W. J. Meijerink,

. Mulder, Quantum Dot and Cy5.5 Labeled Nanoparticles to Investigate Lipoprotein Biointeractions via Förster Resonance Energy Transfer, Nano letters, vol.10, issue.12, p.3, 2010.

Z. Popovi?, W. Liu, P. Vikash, J. Chauhan, C. Lee et al., A nanoparticle size series for in vivo fluorescence imaging

, Angewandte Chemie, vol.49, p.3, 2010.

M. Stroh, P. John, D. G. Zimmer, T. S. Duda, . Levchenko et al., Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo, Nature medicine, vol.11, issue.6, pp.678-682, 2003.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De-grand, J. Lee et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology, vol.22, issue.1, pp.93-97, 2003.

. Bibliography,

Y. T. Leo, K. Chou, W. C. Ming, and . Chan, Strategies for the intracellular delivery of nanoparticles, Chem. Soc. Rev, vol.40, issue.1, pp.233-245, 2011.

N. Doshi and S. Mitragotri, Designer Biomaterials for Nanomedicine. Advanced Functional Materials, vol.19, issue.24, pp.3843-3854, 2004.

W. B. Liechty, D. R. Kryscio, B. V. Slaughter, and N. A. Peppas, Polymers for Drug Delivery Systems, Annual Review of Chemical and Biomolecular Engineering, vol.1, issue.1, p.4, 2010.

X. Huang, H. Ivan, W. El-sayed, M. A. Qian, and . El-sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods, Journal of the American Chemical Society, vol.128, issue.6, pp.2115-2120, 2005.

I. I. Slowing, B. G. Trewyn, S. Giri, V. S. , and -. Lin, Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications, Advanced Functional Materials, vol.17, issue.8, pp.1225-1236, 2005.

D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht, and S. R. ,

C. , Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharmaceutical Research, vol.33, issue.10, pp.2373-2387, 2005.

C. L. Ventola, Progress in Nanomedicine: Approved and Investigational Nanodrugs. P & T: A Peer-Reviewed Journal for Formulary Management, vol.42, p.13, 2006.

J. M. Caster, A. N. Patel, T. Zhang, and A. Wang, Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials: Investigational nanomedicines in 2016. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.9, p.1416, 2017.

, Nanotechnology Characterization Laboratory: National Cancer Institute US National Institues of Health

. Clinicaltrials and . Gov, , vol.8, p.11, 2017.

G. Bao, S. Mitragotri, and S. Tong, Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging, Annual Review of Biomedical Engineering, vol.15, issue.1, p.10, 2013.

. Bibliography,

K. Prashant, X. Jain, . Huang, H. Ivan, M. A. El-sayed et al.,

, Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, vol.41, pp.1578-1586, 2008.

J. Christopher, C. Gannon, R. Patra, P. Bhattacharya, S. Mukherjee et al., Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells, Journal of Nanobiotechnology, vol.6, issue.1, 2008.

N. Halas, Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells, MRS Bulletin, vol.30, issue.05, pp.362-367, 2005.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13549-13554, 2003.

E. Phillips, O. Penate-medina, P. B. Zanzonico, R. D. Carvajal, P. Mohan et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe, Science Translational Medicine, vol.6, issue.260, p.12, 2014.

K. Ma, H. Sai, and U. Wiesner, Ultrasmall Sub-10 nm Near-Infrared Fluorescent Mesoporous Silica Nanoparticles, Journal of the American Chemical Society, vol.134, issue.32, p.12, 2012.

A. Burns, H. Ow, and U. Wiesner, Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology

, Chem. Soc. Rev, vol.35, issue.11, p.12, 2006.

T. M. Allen and P. R. Cullis, Liposomal drug delivery systems: From concept to clinical applications, Advanced Drug Delivery Reviews, vol.65, issue.1, p.12, 2013.

L. Sercombe, T. Veerati, F. Moheimani, Y. Sherry, A. K. Wu et al., Advances and Challenges of Liposome Assisted Drug Delivery, Frontiers in Pharmacology, vol.6, p.12, 2015.

. Bibliography,

K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices, Journal of Controlled Release: Official Journal of the Controlled Release Society, vol.70, issue.1-2, p.12, 2001.

. Sarah-r-macewan, J. Daniel, A. Callahan, and . Chilkoti, Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery, Nanomedicine, vol.5, issue.5, p.12, 2010.

J. Cheng, . Teply, . Sherifi, . Sung, . Luther et al., Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery, Biomaterials, vol.28, issue.5, pp.869-876

P. Calvo, B. Gouritin, I. Brigger, C. Lasmezas, J. Deslys et al., PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases, Journal of Neuroscience Methods, vol.111, issue.2, p.12, 2001.

P. Calvo, B. Gouritin, H. Chacun, D. Desmaële, J. Angelo et al., Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery, Pharmaceutical Research, vol.18, issue.8, p.12, 2001.

L. Wang, L. Wu, S. Lu, L. Chang, I. Teng et al., Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding, ACS Nano, vol.4, issue.8, p.17, 2010.

S. J. Sofia, V. Premnath, and E. W. Merrill, Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption, Macromolecules, vol.31, issue.15, pp.5059-5070, 1998.

R. Michel, S. Pasche, M. Textor, and D. G. Castner, Influence of PEG Architecture on Protein Adsorption and Conformation, Langmuir, vol.21, issue.26, p.17, 2005.

. Bibliography,

Y. Lin, K. R. Hurley, and C. L. Haynes, Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles, The Journal of Physical Chemistry Letters, vol.17, p.32, 2012.

M. Bartneck, A. Heidrun, S. Keul, K. Singh, J. Czaja et al., Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry, ACS Nano, vol.4, issue.6, p.30, 2010.

C. Allen, N. Santos, R. Gallagher, G. N. Chiu, Y. Shu et al.,

A. S. Johnstone, L. D. Janoff, M. S. Mayer, M. B. Webb, and . Bally, Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol), Bioscience Reports, vol.22, issue.2, pp.225-250, 2002.

Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang et al., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses, Biomaterials, vol.31, issue.6, p.18, 2010.

A. Lainé, J. Gravier, M. Henry, L. Sancey, J. Béjaud et al., Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring, Journal of Controlled Release, vol.188, pp.1-8, 2014.

H. Meng, M. Xue, T. Xia, Z. Ji, D. Y. Tarn et al.,

A. E. Nel, Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model, ACS Nano, vol.5, issue.5, pp.4131-4144, 2011.

D. Peer, J. M. Karp, S. Hong, C. Omid, R. Farokhzad et al., Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, vol.2, issue.12, pp.751-760, 2007.

W. Hak-soo-choi, P. Liu, E. Misra, . Tanaka, P. John et al., Renal clearance of quantum dots, Nature Biotechnology, vol.25, issue.10, pp.1165-1170, 1920.

. Bibliography,

M. Longmire, H. Peter-l-choyke, and . Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine, vol.3, issue.5, pp.703-717, 1920.

H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nature Nanotechnology, vol.6, issue.12, pp.815-823, 1920.

P. Vikash, Z. Chauhan, O. Popovi?, J. Chen, D. Cui et al., Fluorescent Nanorods and Nanospheres for Real-Time In Vivo Probing of Nanoparticle Shape-Dependent Tumor Penetration. Angewandte Chemie International Edition, vol.50, pp.11417-11420, 1920.

S. E. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden et al.,

J. M. Napier and . Desimone, The effect of particle design on cellular internalization pathways, Proceedings of the National Academy of Sciences, vol.105, pp.11613-11618, 1921.

K. Xiao, Y. Li, J. Luo, J. S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials, vol.32, issue.13, pp.3435-3446, 1921.

O. Ishida, K. Maruyama, H. Tanahashi, M. Iwatsuru, K. Sasaki et al., Liposomes Bearing Polyethyleneglycol-Coupled Transferrin with Intracellular Targeting Property to the Solid Tumors In Vivo, Pharmaceutical Research, vol.18, issue.7, pp.1042-1048, 1922.

J. Li, E. A. Sausville, P. J. Klein, D. Morgenstern, and P. Christopher,

R. A. Leamon, P. Messmann, and . Lorusso, Clinical Pharmacokinetics and Exposure-Toxicity Relationship of a Folate-Vinca Alkaloid Conjugate EC145 in Cancer Patients, The Journal of Clinical Pharmacology, vol.49, issue.12, pp.1467-1476

V. J. Yao, D. Sara, K. S. Angelo, C. Butler, T. L. Theron et al.,

, Ligand-targeted theranostic nanomedicines against cancer, Journal of Controlled Release, vol.240, pp.267-286, 1923.

. Bibliography,

Z. Cheng, A. Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas, Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities, Science, vol.338, issue.6109, pp.903-910, 1923.

C. C. Fleischer and C. K. Payne, Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes, Accounts of Chemical Research, vol.47, issue.8, pp.2651-2659, 1926.

C. D. Walkey, J. B. Olsen, H. Guo, A. Emili, and W. C. Chan, Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake, Journal of the American Chemical Society, vol.134, issue.4, pp.2139-2147, 1926.

S. Shahabi, S. Döscher, T. Bollhorst, L. Treccani, M. Maas et al., Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum, ACS Applied Materials & Interfaces, vol.7, issue.48, p.144, 1926.

M. Lundqvist, C. Augustsson, M. Lilja, K. Lundkvist, B. Dahlbäck et al., The nanoparticle protein corona formed in human blood or human blood fractions, PLOS ONE, vol.12, issue.4, p.175871, 1926.

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai et al., Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials, vol.31, issue.30, p.29, 2010.

M. Kokkinopoulou, J. Simon, K. Landfester, V. Mailänder, and I. Lieberwirth, Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions, Nanoscale, vol.9, issue.25, p.27, 2017.

N. Feliu, D. Docter, M. Heine, P. Del-pino, S. Ashraf et al., In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev, vol.45, issue.9, p.27, 2016.

. Bibliography,

M. Schäffler, M. Semmler-behnke, H. Sarioglu, S. Takenaka, A. Wenk et al., Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles, Nanotechnology, vol.24, issue.26, p.27, 2013.

A. Salvati, A. S. Pitek, M. P. Monopoli, K. Prapainop, F. B. Bombelli et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nature Nanotechnology, vol.8, issue.2, p.27, 2013.

D. Dell, &. Orco, M. Lundqvist, T. Cedervall, and S. Linse, Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.8, p.27, 2012.

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme

, Langmuir, vol.20, issue.16, p.27, 2004.

C. E. Rodriguez, J. M. Fukuto, and K. Taguchi,

A. K. Cho, The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions, Chemico-Biological Interactions, vol.155, issue.1-2, p.27, 2005.

A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding biophysicochemical interactions at the nano-bio interface, Nature Materials, vol.8, issue.7, pp.543-557, 1929.

B. , D. Chithrani, C. W. Warren, and . Chan, Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes, Nano Letters, vol.7, issue.6, pp.1542-1550, 1929.

B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, vol.6, issue.4, pp.662-668, 1929.

H. Gao, W. Shi, and L. B. Freund, Mechanics of receptor-mediated endocytosis, Proceedings of the National Academy of Sciences, vol.102, pp.9469-9474, 1929.

. Bibliography,

W. Jiang, Y. S. Betty, J. T. Kim, W. C. Rutka, and . Chan,

, Nanoparticle-mediated cellular response is size-dependent, Nature Nanotechnology, vol.3, issue.3, pp.145-150, 1929.

H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-kam et al., Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation, ACS Nano, vol.6, issue.5, p.31, 2012.

M. Vallet-regi, A. Rámila, R. P. Del-real, and J. Pérez-pariente, A New Property of MCM-41: Drug Delivery System, Chemistry of Materials, vol.13, issue.2, pp.308-311, 1932.

C. Argyo, V. Weiss, C. Bräuchle, A. Bein, and E. Thomas, Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery, Chemistry of Materials, vol.26, issue.1, p.35, 2014.

S. Wu, Y. Hung, and C. Mou, Mesoporous silica nanoparticles as nanocarriers, Chemical Communications, vol.47, issue.36, p.33, 2011.

T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials, Bulletin of the Chemical Society of Japan, vol.63, issue.4, p.33, 1990.

J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, vol.114, issue.27, p.33, 1992.

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, vol.359, issue.6397, p.33, 1992.

P. T. Tanev and T. J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves, Science, vol.267, issue.5199, p.50, 1995.

S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants, Science, vol.269, issue.5228, p.50, 1995.

É. Prouzet and C. Boissière, A review on the synthesis, structure and applications in separation processes of mesoporous MSU-X silica obtained with the two-step process, Comptes Rendus Chimie, vol.8, issue.3-4, p.33, 2005.

. Null-zhao, . Feng, . Huo, . Null-melosh, . Null-fredrickson et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, issue.5350, p.34, 1998.

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. ,

. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, Journal of the American Chemical Society, vol.120, issue.24, p.34, 1998.

T. Charles, W. J. Kresge, and . Roth, The discovery of mesoporous molecular sieves from the twenty year perspective, Chemical Society Reviews, vol.42, issue.9, p.34, 2013.

T. Fontecave, C. Sanchez, T. Azaïs, and C. Boissière, Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions, Chemistry of Materials, vol.24, issue.22, p.148, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01468416

X. Sun, Y. Zhao, S. Victor, I. I. Lin, B. G. Slowing et al., Luciferase and Luciferin Co-immobilized Mesoporous Silica Nanoparticle Materials for Intracellular Biocatalysis, Journal of the American Chemical Society, vol.133, issue.46, p.35, 2011.

H. Vallhov, N. Kupferschmidt, S. Gabrielsson, S. Paulie, M. Strømme et al., Adjuvant Properties of Mesoporous Silica Particles Tune the Development of Effector T Cells, Small, vol.8, issue.13, p.35, 2012.

W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of colloid and interface science, vol.26, issue.1, p.35, 1968.

. Bibliography,

C. , J. Brinker, and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, vol.35, p.48, 1990.

C. E. Fowler, D. Khushalani, B. Lebeau, and S. Mann, Nanoscale Materials with Mesostructured Interiors. Advanced Materials, vol.13, issue.9, p.37, 2001.

R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, and A. E. Ostafin, Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size, Chemistry of Materials, vol.14, issue.11, p.37, 2002.

K. Suzuki, K. Ikari, and H. Imai, Synthesis of Silica Nanoparticles Having a Well-Ordered Mesostructure Using a Double Surfactant System, Journal of the American Chemical Society, vol.126, issue.2, p.37, 2004.

K. Yano and Y. Fukushima, Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactantElectronic supplementary information (ESI) available: time courses of particle size and scattering intensity of samples obtained with TEOS and C16tmacl, Journal of Materials Chemistry, vol.14, issue.10, p.37, 2004.

Y. Han and J. Y. Ying, Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures, Angewandte Chemie International Edition, vol.44, issue.2, p.37, 2005.

K. Möller, J. Kobler, and T. Bein, Colloidal Suspensions of Nanometer-Sized Mesoporous Silica, Advanced Functional Materials, vol.17, issue.4, p.37, 2007.

A. Berggren and A. E. Palmqvist, Particle Size Control of Colloidal Suspensions of Mesostructured Silica, The Journal of Physical Chemistry C, vol.112, issue.3, p.37, 2008.

F. Lu, S. Wu, Y. Hung, and C. Mou, Uniform Mesoporous Silica Nanoparticles. Small, vol.5, issue.12, p.37, 2009.

Q. He, X. Cui, F. Cui, L. Guo, and J. Shi, Sizecontrolled synthesis of monodispersed mesoporous silica nano-spheres under a neu-Bibliography tral condition, Microporous and Mesoporous Materials, vol.117, issue.3, p.37, 2009.

C. Urata, Y. Aoyama, A. Tonegawa, Y. Yamauchi, and K. Kuroda, Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles, Chemical Communications, vol.36, issue.34, p.37, 2009.

T. Suteewong, H. Sai, R. Cohen, S. Wang, M. Bradbury et al., Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure, Journal of the American Chemical Society, vol.133, issue.2, p.37, 2011.

V. Cauda, C. Argyo, D. G. Piercey, and T. Bein, Liquid-Phase Calcination" of Colloidal Mesoporous Silica Nanoparticles in High-Boiling Solvents, Journal of the American Chemical Society, vol.133, issue.17, pp.6484-6486, 1936.

Y. Lin and C. L. Haynes, Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity, Journal of the American Chemical Society, vol.132, issue.13, p.36, 2010.

Y. Lin, N. Abadeer, and C. L. Haynes, Stability of small mesoporous silicananoparticles in biological media, Chem. Commun, vol.47, issue.1, p.36, 2011.

Q. He, J. Shi, M. Zhu, Y. Chen, and F. Chen, The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid, Microporous and Mesoporous Materials, vol.131, issue.1-3, p.119, 1936.

V. Cauda, A. Schlossbauer, and T. Bein, Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol), Microporous and Mesoporous Materials, vol.132, issue.1-2, p.36, 2010.

V. Cauda, C. Argyo, and T. Bein, Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles, Journal of Materials Chemistry, vol.20, issue.39, p.118, 2010.

. Bibliography,

C. Urata, H. Yamada, R. Wakabayashi, Y. Aoyama, S. Hirosawa et al.,

, Aqueous Colloidal Mesoporous Nanoparticles with Ethenylene-Bridged Silsesquioxane Frameworks, Journal of the American Chemical Society, vol.133, issue.21, p.36, 2011.

B. Rimal, A. K. Greenberg, and W. N. Rom, Basic pathogenetic mechanisms in silicosis: current understanding, Current Opinion in Pulmonary Medicine, vol.11, issue.2, p.38, 2005.

M. Ghiazza, M. Polimeni, I. Fenoglio, E. Gazzano, D. Ghigo et al., Does Vitreous Silica Contradict the Toxicity of the Crystalline Silica Paradigm?, Chemical Research in Toxicology, vol.23, issue.3, p.38, 2010.

H. Zhang, D. R. Dunphy, X. Jiang, H. Meng, B. Sun et al.,

J. Garcia, M. L. Yang, T. Kirk, J. I. Xia, A. Zink et al., Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic, Journal of the American Chemical Society, vol.134, issue.38, p.118, 2012.

S. Quignard, G. Mosser, M. Boissière, and T. Coradin, Longterm fate of silica nanoparticles interacting with human dermal fibroblasts, Biomaterials, vol.33, issue.17, p.39, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01461435

T. Yu, A. Malugin, and H. Ghandehari, Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity, ACS Nano, vol.5, issue.7, p.39, 2011.

F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Silica-Based Mesoporous Organic-Inorganic Hybrid Materials, Angewandte Chemie International Edition, vol.45, issue.20, p.42, 2006.

A. Liberman, N. Mendez, W. C. Trogler, and A. C. Kummel, Synthesis and surface functionalization of silica nanoparticles for nanomedicine, Surface science reports, vol.69, issue.2-3, p.39, 2014.

R. Anwander, I. Nagl, M. Widenmeyer, G. Engelhardt, O. Groeger et al., Surface Characterization and Func-Bibliography tionalization of MCM-41 Silicas via Silazane Silylation, The Journal of Physical Chemistry B, vol.104, issue.15, p.40, 2000.

L. Mercier and T. J. Pinnavaia, Heavy Metal Ion Adsorbents Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors Affecting Hg(II) Uptake, Environmental Science & Technology, vol.32, issue.18, p.40, 1998.

A. M. Liu, K. Hidajat, S. Kawi, and D. Y. Zhao, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chemical Communications, issue.13, p.40, 2000.

M. Nawal-kishor-mal, Y. Fujiwara, and . Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, vol.421, issue.6921, p.41, 2003.

Q. Fu, G. V. Rao, L. K. Ista, Y. Wu, B. P. Andrzejewski et al., Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials, Advanced Materials, vol.15, issue.15, p.41, 2003.

Y. You, K. K. Kalebaila, S. L. Brock, and D. Oupický, Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles, Chemistry of Materials, vol.20, issue.10, p.41, 2008.

C. Gao, H. Zheng, L. Xing, M. Shu, and S. Che, Designable Coordination Bonding in Mesopores as a pH-Responsive Release System, Chemistry of Materials, vol.22, issue.19, p.41, 2010.

R. Liu, X. Zhao, T. Wu, and P. Feng, Tunable Redox-Responsive Hybrid Nanogated Ensembles, Journal of the American Chemical Society, vol.130, issue.44, p.41, 2008.

S. Giri, B. G. Trewyn, M. P. Stellmaker, and V. Lin, Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles, Angewandte Chemie International Edition, vol.44, issue.32, p.41, 2005.

V. Cauda, A. Schlossbauer, J. Kecht, A. Zürner, and T. Bein, Multiple Core Shell Functionalized Colloidal Mesoporous Silica Nanoparticles, Journal of the American Chemical Society, vol.131, issue.32, p.41, 2009.

. Bibliography,

S. L. Burkett, S. D. Sims, and S. Mann, Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors, Chem. Commun, issue.11, p.41, 1996.

D. J. Macquarrie, Direct preparation of organically modified MCMtype materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM, Chem. Commun, issue.16, p.41, 1996.

L. Mercier and T. J. Pinnavaia, Direct Synthesis of Hybrid Organic Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure Function Control by Stoichiometric Incorporation of Organosiloxane Molecules, Chemistry of Materials, vol.12, issue.1, p.41, 2000.

C. E. Fowler, S. L. Burkett, and S. Mann, Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture, Chemical Communications, issue.18, p.41, 1997.

P. Van-der, D. Voort, E. Esquivel, F. De-canck, I. Goethals et al., Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev, vol.42, issue.9, p.42, 2013.

C. , J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Advanced Materials, vol.11, issue.7, p.51, 1999.

J. Galo, A. A. De, C. Soler-illia, B. Sanchez, J. Lebeau et al., Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, vol.102, issue.11, p.50, 2002.

T. Chew, A. L. Ahmad, and S. Bhatia, Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2)

, Advances in Colloid and Interface Science, vol.153, issue.1-2, p.50, 2010.

M. Ogawa, Preparation of Layered Silica Dialkyldimethylammonium Bromide Nanocomposites, Langmuir, vol.13, issue.6, pp.1853-1855, 1950.

. Bibliography,

D. Grosso, F. Cagnol, G. J. De, A. A. Soler-illia, E. L. Crepaldi et al., Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly, Advanced Functional Materials, vol.14, issue.4, p.73, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00005435

T. Martin, A. Galarneau, F. Di-renzo, F. Fajula, and D. Plee, Morphological control of MCM-41 by pseudomorphic synthesis, International Ed. in English), vol.41, issue.14, pp.2590-2592, 1950.

T. Peter, M. Tanev, T. J. Chibwe, and . Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature, vol.368, issue.6469, p.50, 1994.

P. Innocenzi, T. Kidchob, J. M. Bertolo, M. Piccinini, C. Mariangela-cestelli-guidi et al., Time-Resolved Infrared Spectroscopy as an In Situ Tool To Study the Kinetics During Self-Assembly of Mesostructured Films, The Journal of Physical Chemistry B, vol.110, issue.22, p.50, 2006.

L. Landau and B. Levich, Dragging of a Liquid by a Moving Plate, Acta Physicochim. URSS, vol.17, p.76, 1942.

J. Soo-suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign, PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Advanced Drug Delivery Reviews, vol.99, p.53, 2016.

C. Pale-grosdemange, E. S. Simon, K. L. Prime, and G. M. ,

. Whitesides, Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2ch2)mOH on gold, Journal of the American Chemical Society, vol.113, issue.1, p.63, 1991.

E. Delamarche, C. Donzel, F. S. Kamounah, H. Wolf, M. Geissler et al.,

, Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide) Silanes

, Langmuir, vol.19, issue.21, pp.8749-8758, 2003.

B. Parrish, R. B. Breitenkamp, and T. Emrick, PEG-and Peptide-Grafted Aliphatic Polyesters by Click Chemistry, Journal of the American Chemical Society, vol.127, issue.20, p.53, 2005.

. Bibliography,

S. Edmondson, T. S. Wilhelm, and . Huck, Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers, Journal of Materials Chemistry, vol.14, issue.4, p.54, 2004.

D. M. Jones, A. A. Brown, and W. T. Huck, Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density, Langmuir, vol.18, issue.4, p.54, 2002.

K. Matyjaszewski and J. Xia, Atom Transfer Radical Polymerization, Chemical Reviews, vol.101, issue.9, p.62, 1954.
URL : https://hal.archives-ouvertes.fr/hal-01564110

H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Non-Fouling" Oligo(ethylene glycol)-Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization, Advanced Materials, vol.16, issue.4, p.56, 2004.

A. A. Brown, N. S. Khan, L. Steinbock, and W. T. Huck, Synthesis of oligo(ethylene glycol) methacrylate polymer brushes, European Polymer Journal, vol.41, issue.8, p.63, 2005.

N. Graf, E. Yegen, T. Gross, A. Lippitz, W. Weigel et al., XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces, Surface Science, vol.603, issue.18, p.64, 2009.

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry. Langmuir, vol.21, p.71, 1968.
URL : https://hal.archives-ouvertes.fr/hal-00022622

P. Löbmann, Characterization of sol-gel thin films by ellipsometric porosimetry, Journal of Sol-Gel Science and Technology, vol.84, issue.1, p.70, 2017.

E. Bindini, G. Naudin, M. Faustini, D. Grosso, and C. Boissière, Critical Role of the Atmosphere in Dip-Coating Process, vol.121, p.75, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01549056

M. Faustini, B. Louis, P. A. Albouy, M. Kuemmel, and D. Grosso, Preparation of Sol-Gel Films by Dip-Coating in Extreme Conditions, J. Phys. Chem. C, vol.114, p.83, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477806

. Bibliography,

M. Faustini, Nanopatterning through bottom-up approach; an alternative way for data storage device, p.77, 2011.

G. J. Soler-illia, P. C. Angelome, M. C. Fuertes, D. Grosso, and C. Boissiere, Critical aspects in the production of periodically ordered mesoporous titania thin films, Nanoscale, vol.4, p.79, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01520483

C. Sanchez, C. Boissiere, D. Grosso, C. Laberty, and L. Nicole, Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity, Chem.Mater, vol.20, p.79, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348213

B. Louis, N. Krins, M. Faustini, and D. Grosso, Understanding Crystallization of Anatase into Binary SiO 2 /TiO 2 Sol Gel Optical Thin Films: An in Situ Thermal Ellipsometry Analysis, The Journal of Physical Chemistry C, vol.115, issue.7, p.92, 2011.

H. Hertz, On the evaporation of liquids, especially mercury. In Vacuo, Ann. Phys. Chem, vol.17, pp.177-198

M. Knudsen, Ann. Phys, vol.47, p.83, 1915.

M. Faustini, D. R. Ceratti, B. Louis, M. Boudot, P. Albouy et al., Engineering Functionality Gradients by Dip Coating Process in Acceleration Mode, ACS Applied Materials & Interfaces, vol.6, issue.19, p.91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01289937

, Handbook of ellipsometry

W. Andrew-pub, , p.99, 2005.

A. Nabok and A. Tsargorodskaya, The method of total internal reflection ellipsometry for thin film characterisation and sensing, Thin Solid Films, vol.516, issue.24, p.100, 2008.

M. Hans-arwin, K. Poksinski, and . Johansen, Total internal reflection ellipsometry: principles and applications, Applied Optics, vol.43, issue.15, p.102, 2004.

M. Poksinski and H. Arwin, Protein monolayers monitored by internal reflection ellipsometry, Thin Solid Films, pp.716-721, 0100.

. Bibliography,

M. K. Mustafa, A. Nabok, D. Parkinson, I. E. Tothill, F. Salam et al., Detection of \beta-amyloid peptide (1-16) and amyloid precursor protein (APP770) using spectroscopic ellipsometry and QCM techniques: A step forward towards Alzheimers disease diagnostics, Biosensors and Bioelectronics, vol.26, issue.4, p.100, 2010.

I. Baleviciute and Z. Balevicius, Asta Makaraviciute, Almira Ramanaviciene, and Arunas Ramanavicius. Study of antibody/antigen binding kinetics by total internal reflection ellipsometry, Biosensors and Bioelectronics, vol.39, issue.1, pp.170-176, 0100.

E. Kretschmann, Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen, Zeitschrift für Physik A Hadrons and nuclei, vol.241, issue.4, p.100, 1971.

, Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, p.102, 2014.

J. Kim, Joining plasmonics with microfluidics: from convenience to inevitability, Lab on a Chip, vol.12, issue.19, p.103, 2012.

L. Niu, N. Zhang, H. Liu, X. Zhou, and W. Knoll, Integrating plasmonic diagnostics and microfluidics, Biomicrofluidics, vol.9, issue.5, p.103, 2015.

A. Van-reenen, A. M. De-jong, M. J. Jaap, . Den-toonder, W. J. Menno et al., Integrated lab-on-chip biosensing systems based on magnetic particle actuation -a comprehensive review, Lab Chip, vol.14, issue.12, p.106, 2014.

Á. Ríos, M. Zougagh, and M. Avila, Miniaturization through labon-a-chip: Utopia or reality for routine laboratories? A review, Analytica Chimica Acta, vol.740, p.106, 2012.

P. Abgrall and A. Gué, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review, Journal of Micromechanics and Microengineering, vol.17, issue.5, pp.15-49, 0106.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson et al.,

B. H. Tam and . Weigl, Microfluidic diagnostic technologies for global public health, Nature, vol.442, issue.7101, pp.412-418, 0106.

. Bibliography,

Q. Smith and S. Gerecht, Going with the flow: microfluidic platforms in vascular tissue engineering, Current Opinion in Chemical Engineering, vol.3, p.106, 2014.

A. C. Esteves, J. Brokken-zijp, J. Laven, H. P. Huinink, N. J. Reuvers et al.,

G. Van and . De-with, Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed, Polymer, vol.50, issue.16, p.107, 2009.

J. Ng-lee, C. Park, and G. M. Whitesides, Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, issue.23, pp.6544-6554, 2003.

A. L. Paguirigan and D. J. Beebe, From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures, Integrative Biology, vol.1, issue.2, p.111, 2009.

S. Yunus, C. De-crombrugghe-de-looringhe, C. Poleunis, and A. Delcorte, Diffusion of oligomers from polydimethylsiloxane stamps in microcontact printing: Surface analysis and possible application, Surface and Interface Analysis, vol.39, pp.922-925, 0111.

J. Andersson, J. Rosenholm, S. Areva, and M. Lindén, Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro-and Mesoporous Silica Matrices, Chemistry of Materials, vol.16, issue.21, pp.4160-4167, 0118.

I. Izquierdo-barba, M. Colilla, M. Manzano, and M. Vallet-regí, In vitro stability of SBA-15 under physiological conditions, Microporous and Mesoporous Materials, vol.132, issue.3, p.118, 2010.

K. Braun, A. Pochert, M. Beck, R. Fiedler, J. Gruber et al., Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids, Journal of Sol-Gel Science and Technology, vol.79, issue.2, pp.319-327, 0118.

J. D. Bass, D. Grosso, C. Boissiere, E. Belamie, T. Coradin et al., Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions, Chemistry of Materials, vol.19, issue.17, p.123, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184161

. Bibliography,

J. P. Icenhower and P. M. Dove, The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength, Geochimica et Cosmochimica Acta, vol.64, issue.24, p.118, 2000.

P. M. Dove, N. Han, A. F. Wallace, and J. J. De-yoreo, Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs, Proceedings of the National Academy of Sciences, vol.105, issue.29, pp.9903-9908, 0118.

B. Go, W. M. Alexander, R. K. Heston, and . Iler, The Solubility of Amorphous Silica in Water, The Journal of Physical Chemistry, vol.58, issue.6, pp.453-455, 0118.

R. Mortera, S. Fiorilli, E. Garrone, E. Verné, and B. Onida, Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: A quantitative model, Chemical Engineering Journal, vol.156, issue.1, p.118, 2010.

X. Li, S. Barua, K. Rege, and B. D. Vogt, Tuning Stability of Mesoporous Silica Films under Biologically Relevant Conditions through Processing with Supercritical CO 2, Langmuir, vol.24, issue.20, p.119, 2008.

R. O. Fournier and J. J. Rowe, The solubility of amorphous silica in water at high temperatures and high pressures, American Mineralogist, vol.62, p.119, 1977.

D. Rebiscoul and P. Frugier, Protective properties and dissolution ability of the gel formed during nuclear glass alteration, Stéphane Gin, and André Ayral, vol.342, p.124, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077997

P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin et al., SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model, Journal of Nuclear Materials, vol.380, issue.1-3, p.124, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00569196

, Veniamin Grigorevich Levich. Physicochemical hydrodynamics, vol.126, p.172, 1962.

T. Higuchi, Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, Journal of Pharmaceutical Sciences, vol.52, issue.12, p.133, 1963.

L. Philip, N. A. Ritger, and . Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of Bibliography slabs, spheres, cylinders or discs, Journal of Controlled Release, vol.5, issue.1, p.134, 1987.

L. Philip, N. A. Ritger, and . Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, Journal of controlled release, vol.5, issue.1, p.134, 1987.

E. Jörn, B. C. Möckel, and . Lippold, Zero-Order Drug Release from Hydrocolloid Matrices, Pharmaceutical Research, vol.10, issue.7, pp.1066-1070, 0134.

J. Siepmann, Mathematical modeling of bioerodible, polymeric drug delivery systems, Advanced Drug Delivery Reviews, vol.48, issue.2-3, pp.229-247, 0134.

B. E. Givens, Z. Xu, J. Fiegel, and V. H. Grassian, Bovine serum albumin adsorption on SiO 2 and TiO 2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions, Journal of Colloid and Interface Science, vol.493, pp.334-341, 0140.

A. Sharma, K. Pratibha, S. Agarwal, and . Deep, Characterization of different conformations of bovine serum albumin and their propensity to aggregate in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide, Journal of Colloid and Interface Science, vol.343, issue.2, p.144, 2010.

A. Valstar, M. Almgren, W. Brown, and M. Vasilescu, The Interaction of Bovine Serum Albumin with Surfactants Studied by Light Scattering, Langmuir, vol.16, issue.3, p.143, 2000.

C. Dobson, Protein Aggregation and Its Consequences for Human Disease, Protein & Peptide Letters, vol.13, issue.3, p.143, 2006.

T. Fontecave, C. Boissiere, N. Baccile, F. J. Plou, and C. Sanchez, Using Evaporation-Induced Self-Assembly for the Direct Drug Templating of Therapeutic Vectors with High Loading Fractions, Tunable Drug Release, and Controlled Degradation, Chemistry of Materials, vol.25, issue.23, p.149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289767

E. Dervishi, S. Bourdo, J. A. Driver, F. Watanabe, A. R. Biris et al., Catalytic Conversion of Graphene into Carbon Nanotubes via Gold Nanoclusters at Low Temperatures, ACS Nano, vol.6, issue.1, p.152, 2012.

. Bibliography,

. J. Cheng-an, T. Lin, C. Yang, S. H. Lee, R. A. Huang et al., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications, ACS Nano, vol.3, issue.2, p.152, 2009.

S. Kyuju-kwak, K. Kumar, D. Pyo, and . Lee, Ionic Liquid of a Gold Nanocluster: A Versatile Matrix for Electrochemical Biosensors, ACS Nano, vol.8, issue.1, p.152, 2014.

M. Hembury, C. Chiappini, S. Bertazzo, T. L. Kalber, and G. L. ,

O. Drisko, S. Ogunlade, and . Walker-samuel,

P. Jumeaux, . Beard, S. S. Challa, A. E. Kumar, M. F. Porter et al., Gold-silica quantum rattles for multimodal imaging and therapy, Proceedings of the National Academy of Sciences, vol.112, issue.7, p.153, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01291227

E. Esteve, S. Reguer, C. Boissiere, C. Chanéac, G. Lugo et al., Flyscan opportunities in medicine: the case of quantum rattle based on gold quantum dots, Journal of Synchrotron Radiation, vol.24, issue.5, p.154, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02127279

C. Lavenn, F. Albrieux, G. Bergeret, R. Chiriac, P. Delichère et al., Functionalized gold magic clusters: Au25(SPhNH2)17, Nanoscale, vol.4, issue.23, p.156, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866702

A. M. Malek, S. L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, JAMA, vol.282, issue.21, p.165, 1999.

G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, p.1851