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"Adaptation is the key to survival."
The Citadel [3.18], Star Wars: The Clone Wars - George Lucas and Matt Michnovetz
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Synthèse

Les systèmes vivants sont des systèmes ouverts qui échangent constamment des in-
formations et de l'énergie-matière avec leur environnement. La communication, qui
peut être définie comme un échange d’informations entre deux systèmes ou sous-
systèmes, est donc un élément essentiel de la vie. Il permet la coordination efficace
des processus homéostatiques et l'adaptation à un environnement en constante évo-
lution, y compris la réponse aux menaces internes ou externes ou les processus auto-
curatifs. Les organismes multicellulaires sont structurés de manière hiérarchique,
les cellules étant souvent considérées comme des unités fondamentales : les cellules
s’organisent pour former des tissus, un ensemble de tissus forme des organes, qui for-
ment eux-mêmes des organismes. Par conséquent, la communication intercellulaire
est à la base de l’organisation d’ordre supérieur observée dans les tissus, les organes
et les organismes. Il est essentiel de coordonner la fonction de divers types cellulaires
impliqués dans des processus biologiques complexes, tels que l'embryogenèse, la for-
mation et le renouvellement des tissus, la régulation hormonale, la réponse au stress,
une réaction immunitaire efficace aux agents pathogènes microbiens et le remode-
lage tissulaire au cours d'une inflammation et de la cicatrisation. La dérégulation
dans la communication intercellulaire peut entraîner une pathologie due à l'échec
des processus homéostatiques et/ou à une adaptation défectueuse face aux menaces
environnementales. Comment les cellules s'adaptent-elles à un microenvironnement
spécifique en fonction de la communication intercellulaire ? Est-ce qu'elles gardent
leur identité ou adoptent un comportement spécifique ? Ces questions sont parti-
culièrement pertinentes quand on étudie le système immunitaire dans le contexte
de l'inflammation et du cancer. Les interactions entre les cellules cancéreuses et le
microenvironnement tumoral (TME) jouent un rôle crucial dans le développement
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et la progression de la tumeur. Le TME est un système hétérogène constitué de
nombreuses protéines et cellules de types différents qui interagissent au sein d'un
réseau complexe. En particulier, de nombreux types de cellules immunitaires sont
recrutés et participent à la réponse anti-tumorale, mais également à l'inflammation
et à l'immunosuppression favorisant la tumeur. Il a été démontré que les cellules
dendritiques (DCs) dans le TME étaient liées à la fois à la progression de la tumeur
et à la prévention. Les DCs jouent un rôle essentiel dans le déclenchement des
réponses immunitaires adaptatives. Chez l'homme, différentes sous-populations de
DCs ont été identifiées. Des études antérieures ont montré que les DCs infiltrent des
tumeurs solides, notamment le cancer du sein. Cependant, l'impact du TME sur le
comportement des sous-ensembles de DCs infiltrant des tumeurs humaines est mal
connu.

Dans le premier chapitre de la thèse, j'ai présenté les concepts généraux de la
communication et du micro-environnement, puis j'ai décrit le cancer du sein et son
microenvironnement, qui représentent un réseau complexe de cellules qui interagis-
sent dans un contexte inflammatoire. Par la suite, j'ai présenté l'hétérogénéité des
cellules présentatrices d'antigènes (APCs) qui infiltrent le TME du sein et leurs com-
munications dans ce contexte. Enfin, je me suis concentrée sur les défis techniques
et méthodologiques liés à l'étude de la communication cellulaire et sur les outils
bioinformatiques que nous pouvons utiliser pour surveiller les communications in-
tercellulaires.

Le deuxième chapitre de la thèse pose les hypothèses et objectifs de mon tra-
vail. Ce projet part de l'hypothèse que le microenvironnement tumoral module les
réseaux de communication intra et intercellulaires formés par les APCs. Ces mod-
ifications auraient des conséquences sur l'interaction entre la tumeur et le système
immunitaire de l'hôte et a fortiori sur sur le développement de la tumeur. Mal-
heureusement, dans la littérature, il existe plusieurs limites concernant l'étude de
APCs qui sont des cellules rares dans un contexte tissulaire. Les sous-populations
d'APCs ont été caractérisées dans différents tissus (e.g. le sang, la rate, la peau),
des maladies (e.g. cancers, maladies auto-immunes), des organismes (e.g. souris,
humains). Cependant, dans le cancer du sein, seuls les macrophages et les cDC2 ont

12



été étudiés [Ojalvo, Whittaker, et al. 2010; Wargo et al. 2016] et aucune comparaison
n'a été faite entre le tissu tumoral (T) et le tissu non malin appelé juxtatumoral (J),
ni entre différents sous-types de cancer du sein. L'objectif général de ma thèse est
de comprendre l'impact du microenvironnement tumoral sur les sous-populations de
DCs par une analyse systémique. Dans la première partie de mon travail de thèse,
je cherchais à identifier les sous-populations de DCs dans le microenvironnement de
la tumeur du sein. Plus précisément, le projet s'est concentré sur l'identification
et la caractérisation des fonctions biologiques de sous-populations de DCs isolées
de tumeurs du sein de deux sous-types différents: Luminal (LBC) et Triple-Négatif
(TNBC), dont le pronostic est le plus sombre. Les APCs étant des cellules rares
dans le TME du sein, nous avons voulu définir les sous-ensembles de APCs infil-
trant les tumeurs à une résolution supérieure à celle décrite dans la littérature. En
utilisant la technologie de séquençage ARN, nous avons généré le profil moléculaire
de ces cellules et avons voulu en déduire les fonctions biologiques. Dans un pre-
mier temps, l'objectif de cette étude était de décrypter comment le TME modulait
le profil de transcription des sous-populations dAPCs, en comparant les profils de
transcription des APCs dans les tumeurs et les juxtatumeurs et en liant la variation
de l'expression des gènes aux fonctions biologiques. Dans un deuxième temps, nous
avons évalué l'impact de l'hétérogénéité de la tumeur mammaire sur les DCs et les
monocytes/macrophages (Monomacs). Pour ce faire, nous avons comparé le profil
de transcription des sous-types d'APCs, isolés de deux types de cancer du sein, LBC
et TNBC. Enfin, comme nous avions étudié le microenvironnement de la tumeur du
sein et son impact potentiel sur le réseau de communication des sous-populations
d'APCs, nous nous sommes demandé quel était le lien entre la caractérisation de
chaque population spécifique d'APCs et le résultat clinique. Existe-t-il des dif-
férences au niveau de la population entre les résultats cliniques et les différents
TME, en fonction du sous-type de cancer du sein ? À partir de l'extraction de
listes de gènes spécifiques caractérisant chaque population dAPCs identifiée dans le
TME du sein, nous avons cherché à relier les signatures des sous-types cellulaires
dans les différents contextes au pronostic des patients. Dans une seconde partie,
nous avons étudié les communications cellulaires afin de comprendre comment les
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cellules intègrent les signaux provenant de leur environnement. Pour ce faire, nous
avons cherché à créer un score de communication simple basé sur des profils tran-
scriptomiques de cellules. Ce score pourrait être appliqué aux données de puces à
ADN ainsi qu'aux données de séquençage ARN. Il fera partie d'un outil comprenant
une base de données sur les interactions des ligands et des récepteurs organisée et
triée manuellement et un ensemble de profils de transcription des cellules primaires
accessibles au public dans BioGPS [ cite mabbottexpression2013].

Dans le troisième chapitre, les résultats de ma thèse sont présentés en deux
parties. Dans une première partie, je présente les résultats publiés en montrant
que les APCs s'adaptent au TME du sein dune manière spécifique selon la sous-
population. Dans une seconde partie, je présente le manuscrit en préparation
décrivant le développement et l'application d'un score de communication basé sur
les profils transcriptomiques. Le TME est composé d'une grande variété de types
de cellules qui influencent la progression de la tumeur et l'évasion immunitaire. Les
DCs sont des APCs qui peuvent s'infiltrer dans la plupart des types de cancer. Ils
peuvent jouer un rôle protecteur dans l'immunité antitumorale mais, inversement,
ils peuvent également favoriser l'immunosuppression [DeNardo, Barreto, et al. 2009;
Faget et al. 2012; Ghirelli et al. 2015]. L'influence du TME sur la diversité et la
plasticité de ces APCs reste peu explorée. Dans le cadre de ma thèse, j'ai analysé
les profils de séquençage à grande échelle des APCs infiltrant des tumeurs dans
8 échantillons de cancer du sein luminal (LBC) et 4 triples-négatifs (TNBC), en
étroite collaboration avec Paula Michea, chercheuse post-doctorante au laboratoire.
Sur la base d'analyses précédemment effectuées au sein du laboratoire et d'études
publiées sur des sous-types de DCs humaines sur d'autres tissus, tels que le sang
périphérique ou la peau, nous avons étudié quatre sous-populations de DCs et les
macrophages au niveau phénotypique et transciptomique dans le cancer du sein. En
comparant les transcriptomes de ces APCs provenant d'échantillons tumoraux et de
tissus non cancéreux (juxtatumoraux) des mêmes patients, nous avons identifié des
signatures géniques spécifiques à la tumeur pour chaque sous-population d'APCs,
liées à des fonctions biologiques distinctes telles que la migration cellulaire chez les
pDC. De plus, nous avons observé des différences substantielles entre les profils des
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APCs infiltrant les TNBC et les LBC, révélant ldu microenvironnement tumoral et
pas seulement l'empreinte tissulaire ou l'ontogenèse sur le comportement des APC.
Il est intéressant de noter que la signature pDC était liée à une meilleure survie
sans maladie dans les patients LBC, mais pas chez les patients TNBC, ce qui im-
plique que le résultat associé à la signature pDC dépend du contexte. En conclusion,
nous avons constaté que la reprogrammation transcriptionnelle d'APC infiltrant une
tumeur est spécifique à un sous-type, ce qui suggère une interaction complexe en-
tre l'ontogénie et l'empreinte tissulaire dans le conditionnement de la diversité des
DCs dans le TME. Les signatures que nous avons générées sont particulièrement
pertinentes pour l'identification de l'activation de voies biologiques et de nouveaux
biomarqueurs dans les sous-types d'APCs.

Les résultats de la seconde partie de mon étude sont présentés sous la forme d'un
manuscrit qui sera bientôt finalisé pour soumission. Il est intitulé “ńICELLNET:
Reconstruction des réseaux de communication intercellulaires à l'aide de profils tran-
scriptomiquesż”. Pour ce travail collaboratif, j'ai été impliqué dans le développe-
ment d'une approche systémique basée sur la transcriptomique pour reconstruire
des réseaux de communications intercellulaires. En effet, la communication inter-
cellulaire est essentielle pour transférer des informations entre des cellules dotées de
fonctions et de capacités de détection différentes. La communication intercellulaire
coordonne les activités de divers types de cellules nécessaires aux processus com-
plexes tels que l'embryogenèse, le remodelage tissulaire au cours de l'inflammation
et la cicatrisation des plaies, ainsi que les réponses immunitaires. Actuellement,
il n'existe pas de méthode systématique pour reconstruire la communication in-
tercellulaire de manière qualitative et quantitative. Dans cette étude, nous avons
développé ICELLNET, un outil intégrant des informations sur les interactions lig-
and/récepteur, ainsi que des données d’expression génique spécifiques à une cellule
et représentant des aspects quantitatifs et qualitatifs de la communication cellule
à cellule sous forme de cartes de connectivité. ICELLNET peut être automatique-
ment appliqué à n'importe quel profil transcriptomique au niveau de la population
cellulaire afin d'estimer et de quantifier sa communication avec plus de 12 autres
types de cellules. Nous avons appliqué cette méthode aux cellules tumorales, aux
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cellules immunitaires innées et adaptatives (e.g., DC, cellules T, cellules B, NK),
aux cellules épithéliales et stromales. En analysant un ensemble de données orig-
inal de cellules dendritiques humaines générées de novo, nous avons identifié et
validé expérimentalement l'IL-10 en tant que régulateur majeur de la connectivité
intercellulaire des DCs au niveau systémique. Notre approche visant à évaluer la
connectivité cellulaire peut constituer un outil précieux pour évaluer l'impact d'un
contexte spécifique sur la communication entre cellules, en particulier dans un mi-
croenvironnement inflammatoire tel que le cancer. Dans les perspectives futures, les
applications d'ICELLNET pourraient apporter des informations biologiques impor-
tantes et aider à orienter les manipulations pharmacologiques.

Dans la section discussion générale, je confronte mes résultats aux connaissances
actuelles et expose les perspectives futures de ce travail. Dans un premier temps, j'ai
discuté de la pertinence de caractériser les sous-populations d'APCs dans le cancer
du sein et du positionnement de ce travail par rapport à la littérature. J'ai examiné
l'impact de l 'hétérogénéité du cancer sur les communications cellulaires. En ce
qui concerne les résultats biologiques que j'ai obtenus, j'ai discuté de la signature
interféron trouvée dans les TNBC. De plus, j'ai souhaité examiner la pertinence
d'utiliser des données transcriptomiques pour étudier la communication intercellu-
laire et l'impact du microenvironnement sur le comportement cellulaire. J'ai in-
clu des perspectives futures sur l'intérêt d'utiliser, dans ce domaine, une nouvelle
technologie basée sur le séquençage d'ARN en cellule unique. Enfin, j'ai discuté
de l'intérêt et de la complexité de la compréhension de la communication inter-
cellulaire et des futurs développements pouvant être réalisés pour améliorer l'outil
ICELLNET.

Enfin, en annexe, j'ai inclu deux manuscrits en préparation pour lesquels j'ai
collaboré. Le premier décrit des îlots de DCs plasmacytoïdes dans la leucémie
myélomonocytaire chronique. Le second est une étude de l'inhibition d'une pop-
ulation de lymphocytes T CD8+ cytotoxiques par le point de contrôle immunitaire
HLA-G.

16



List of abbreviations

TME: Tumor Microenvironment

DC: Dendritic Cell

APC: Antigen Presenting Cell

MHC: Major Histocompatibility Complex

Th: T helper

IL: Interleukin

IFN: Interferon

BC: Breast Cancer

LBC: Luminal Breast Cancer

TNBC: Triple-Negative Breast Cancer

T: Tumor tissue

J: Juxtatumor tissue

HR: Hormone Receptors

ER: Estrogen Receptor

PR: Progesterone Receptor

HER2: Human Epidermal Growth Factor 2

NK: Natural Killer

CSC: Cancer Stem Cell

ECM: Extracellular Matrix

MDSCs: Myeloid Derived Suppressor Cells

PD-L1: Programmed Cell Death 1 Ligand

PD-1: Programmed Cell Death 1

17



pDC: plasmacytoid Dendritic Cell

cDC: classical Dendritic Cell

Monomacs: Monocytes/macrophages

TLR: Toll-like Receptor

PAMP: Pathogen-Associated Molecular Pattern

PRR: Pattern Recognition Receptor

CLR: C-type Lectin Receptor

TAM: Tumor-Associated Macrophage

DNA: Desoxyribonucleic Acid

mRNA: messenger Ribonucleic Acid

cDNA: complementary DNA

RNA-seq: RNA sequencing

scRNA-seq: single-cell RNA sequencing

DEG: Differentially Expressed Gene

TGF-β: transforming growth factor-β

NF-κB: nuclear factor βB

18



Preamble

Living systems are open systems constantly exchanging information and energy-
matter with their environment. Communication, which can be defined as an infor-
mation exchange between two systems or subsystems, is thus an essential part of
life. It allows the efficient coordination of homeostatic processes, and the adaptation
to an ever-changing environment including internal or external threat response or
self-curative processes.

Multicellular organisms are structured in a hierarchical manner, with cells often
being viewed as fundamental units: cells get organized to form tissues, multiple tis-
sues form organs, which themselves form organisms. Hence, cell-cell communication
is at the basis of the higher-order organisation observed in tissues, organs, and organ-
isms. It is critical to coordinate the function of diverse cell types involved in complex
biological processes, such as embryogenesis, tissue formation and renewal, hormonal
regulation, response to stress, efficient immune reaction to microbial pathogens,
and tissue remodelling during inflammation and wound healing. Dysregulation in
cell-to-cell communication can lead to pathology through the failure of homeostatic
processes, and/or the defective adaptation to environmental threats.

How cells adapt to a specific microenvironment depending on cell-to-cell commu-
nication? Do they keep their identity or adopt a specific behavior? These questions
are particularly relevant when studying the immune system in the context of inflam-
mation and cancer. Interactions between cancer cells and the tumor microenviron-
ment (TME) play a critical role in tumor development and progression. The TME
is a heterogeneous system, which consists of numerous proteins and cells of different
type interacting within a complex network. In particular, many immune cell types
are recruited and participate in anti-tumor response, but also in tumor-promoting
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inflammation and immunosuppression. It has been shown that dendritic cells (DCs)
within the TME were related to both tumor progression and prevention. DCs play
a critical role in triggering adaptive immune responses. In human, different subsets
of DCs have been identified. Previous studies reported that DCs infiltrate solid
tumors, and particularly breast cancer. However, little is known about the impact
of the TME on the behavior of DC subsets infiltrating human tumors.

As a framework of my study, I will introduce the general concepts of communica-
tion and microenvironment, then I will focus on breast cancer and its microenviron-
ment which represent a complex network of cells that interact in an inflammatory
context. Subsequently, I will introduce the heterogeneity of Antigen Presenting
Cells (APCs) that infiltrate breast TME, and their communications in this context.
Finally, I will focus on the technical and methodological challenges of studying cel-
lular communication and the bioinformatic tools we can use to monitor cell-to-cell
communications.

The results will be presented in two sections. In a first part, I will present
our published results showing that APCs adjust to the breast TME in a subset-
specific manner. In a second part, I will present a manuscript in preparation on the
development and application of a communication score based on cell transcriptomic
profiles.

In the general discussion section, I will confront my results to the current knowl-
edge and expose future perspectives of this work.

Finally, in the appendix, I will include two manuscripts in preparation for which I
collaborated. The first one describe plasmacytoid DC islands in chronic myelomono-
cytic leukemia. The second one is a study of the inhibition of a cytotoxic population
of CD8+ T cells by the immune checkpoint HLA-G.
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1.1 Communication

1.1.1 What does communication refer to?

1.1.1.1 A General definition of communication

Communication is an important concept at the level of human being and it is sim-
ply defined by the transmission of a message or an information between entities or
groups. The players of communication are represented by a transmitter of the mes-
sage and a recipient. They can be two individuals, groups of individuals, entities or
societies. A government communicating information to the population is one illus-
tration of communication between two entities. Communication is also defined as a
process by which information is exchanged between individuals through a common
system of symbols, signs, or behavior. In this definition, the emphasis is put on the
use of the same system of symbols. Two individuals can discuss and exchange infor-
mation using the same language. In order for the receiving individual to understand
and interpret the information, he has to be able to decode it (Figure 1.1). Coding
and decoding processes of symbol systems can make communication more complex.
In cryptology, a lot of methods and algorithms to encrypt data or messages coexist.
A key to decode the message is required, in order to be understandable by the en-
tity receiving the information. Coding and decoding messages are used to create a
specific communication between two entities. One example of tools used to decipher
crucial communications during World War II was the ancestor of computer created
by Pr. Alan Turing, a british mathematician. His device enabled to decode messages
encrypted by Nazis from the enigma machine and is considered as the ancestor of
computer science. The methods to communicate between human beings are numer-
ous and have evolved through time, from cave painting to the internet nowadays.
Major forms of communication use writing (e.g. books, letters) or speaking (e.g.
direct speaking, phone, radio). Another interesting form of communication implies
representation, images as painting, sculpture or even sign language. Evolution of
technologies and science helped to develop different ways of communication. In par-
ticular, the comprehension and use of waves allowed us to convey messages by sonar,
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radio, television and phone.

Figure 1.1: Schema representing a communication model. From National Commu-
nication Association (www.natcom.org).

At the level of the cell, we observe the same phenomenon of communication.
One cell can communicate with an another by sending chemicals signals that will be
sensed and processed by a receiving cell to trigger a specific response or mechanism
(Figure 1.2). Cells can sense a great diversity of signals from the extracellular envi-
ronment, such as growth factors, cytokines, danger signals, cell-to-cell contact and
extracellular vesicles [Niel, D’Angelo, and Raposo 2018]. This signals are hundreds
of distinct molecules, the majority being proteins and forming the words of the cell
communication language. In cell biology, different types of signaling are described
depending on the distance between the sending and the receiving cells. Paracrine
signaling for short distance signaling, endocrine signaling for long distance signal-
ing, autocrine signaling, and direct signaling across gap junctions are the four types
of signaling used by cells in multicellular organisms. To sense and process the in-
formation, cells require decoding mechanisms. To detect the chemical signals, the
receiving cell express specific receptors localized at their membrane or inside the
cytoplasm or the nucleus. Once the ligand is attached to the receptor, the message
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is transduced following complex signaling pathways inside the cell (Figure 1.2).

Figure 1.2: Message transduction at the cellular level, interaction between ligand
and receptor. From Introduction to cell signaling, https://www.khanacademy.org.

1.1.1.2 Interest of communication

Communication is essential to human life in many ways. First of all, the use of com-
munication can derive from a need for interacting and coordinating peoples actions
in order to survive and grow. As Aristotle said, “Man is, by nature, a social animal”
[Aristotle 2018]. Following this concept, humans are born to live in cities, and better
exploit their potential via social interactions. Communities thrive around commu-
nication of a diversity of information between people, enabling to organize groups
of individuals with rights and rules. Communication promotes social interactions
which are key to human evolution. Social interactions and cooperation enhance the
development of intelligence not only in humans but also in other species [McNally,
Brown, and Jackson 2012]. Communication plays a role in the enhancement and ex-
pansion of societies, especially via education. Communication of emotions via art or
entertainment is important for the psychological development of humans helping to
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avoid stress and anxiety and improve productivity and stability. In Africa, a study
showed that communication between members of a community promotes active citi-
zen participation and initiatives to the development of the communities [Adedokun,
Adeyemo, and Olorunsola 2010]. Throughout time, communication methods have
evolved to improve the efficiency to convey information. We witness a fast evo-
lution of communication technologies, and nowadays, thanks to the new digital
technologies, the world is interconnected [E. Williams 2011]. This evolution of com-
munication gave an easier and faster access to information, knowledge, and a faster
transmission of information between individuals. More people are connected even if
they are far away from each other thanks to the phone, internet, and social media
replacing mailing post and telegraphy. Fast access to information and connection
between individuals with different culture, origin, and experience enhance sharing
and improvement of the world’s knowledge that can be then applied in various
disciplines such as agro-industries, politics, entertainment, economy or justice. In
science, one of the most important parts of the work is to communicate about the
research and results to spread knowledge and information by means of conferences,
publications, and posters.

In cell biology, communication is essential to development, growth, survival,
maintenance, and defense of the individual cell but also for the development of mul-
ticellular organisms [Niklas and S. A. Newman 2013]. Depending on the sensed
signal, different responses are initiated by the receiving cells and impact their fate.
Cell-to-cell interactions are crucial in the coordination of organism development and
several signaling pathways are involved in and are responsible for most of the animal
development: Hedgehog (Hh), wingless-related (Wnt), transforming growth factor-β
(TGF-β), receptor tyrosine kinase (RTK), Notch, Janus kinase (JAK), signal trans-
ducer and activator of transcription (STAT) and nuclear hormone pathways [Barolo
and Posakony 2002]. In the developed organism, intercellular communication coor-
dinates the activities of multiple cell types required for complex processes such as
immune response, growth, and homeostasis. When cells are damaged, they are also
able to sense intracellular signals such as DNA in the cytosol and trigger mechanisms
of cell death (e.g. apoptosis, autophagy). Another interest of communication be-
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tween cells is the complex signaling network to enable cell migrations which are crit-
ical for immune cell trafficking, wound healing, and stem cell homing, among other
processes. Immune cell crosstalks play a role in establishing central tolerance and
preventing autoimmunity. Indeed, in the thymus, when CD4+CD8+T cells recognize
the complex formed by an external peptide and the major histocompatibility com-
plex (MHC) molecule presented on cortex thymic epithelial cells, they receive critical
survival signals and differentiate into CD4+ and CD8+ T cells. Then, they undergo
a step of negative selection in the medulla where the autoreactive T cells which rec-
ognize self-antigens presented by DCs are eliminated [Takaba and Takayanagi 2017].
Cell-to-cell communication is essential to trigger an immune response and depends
on the stimuli that activate immune cells. An impair in cell-to-cell communication
can lead to the development of severe pathology. For instance, a lack of a specific
receptor such as interferon-gamma receptor (IFNGR) in macrophages cause a rup-
ture of communication. Cells do not receive the immune defense signals anymore
which induce an increase sensibility to mycobacteria infection [Newport et al. 1996].

1.1.2 Factors impacting communication

Considering the diversity of communication methods, messages and responses, it
becomes evident that independent factors impact interactions between individuals.
In sociology, different theories point out the cultural context as a major factor in-
fluencing communication and the efficacy of the message transmission. The theory
introduced by anthropologist Edward T. Hall exposed that two types of culture,
“low” and “high” contexts, are opposed and play a role in communication [Hall
1976]. “Low context” is defined by an explicit communication whereas “high con-
text” is characterized by implicit communication, with the use of ambiguity where
facial expression and the way of speaking can change the meaning of words. There-
fore, low-context individuals, who are not used to read between lines, are less able
to fully understand the messages transmitted by high-context individuals. This can
be nefast for social interactions and a fortiori for the development of the society
especially in diplomatic exchanges. A second interesting hypothesis by Sapir and
Whorf shows that culture significantly affects how people think and communicate.
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More precisely, the language which is one of the bases of a culture and brings to-
gether people strongly affects the way of thinking. Ciaccio and Bormann studied
the influence of color terms on the behavior of Italian and German speakers [Ciaccio
and Bormann 2013]. They demonstrated that the judgments of colors boundaries
was influenced by the language which validate the hypothesis of Sapir and Whorf.
Environmental factors (e.g. pollution) or physical factors (e.g. the intensity of a
signal, the speed of the transmission) can affect the effectiveness of communication
or alter the signal ending in a communication break. The clarity of the message
is important for the comprehension between individuals. A study has revealed the
nefaste impact of traffic noise on communication between frogs. The noises were
masking the perception of acoustic communication signals preventing male frogs
from communicating efficiently with female and it leads to a decrease of reproduc-
tion [Bee and Swanson 2007]. Personal history and previous communications can
drive the way of thinking and interpreting information facilitating or complexifying
coding and decoding processes. Internet and social media increase communication
between people by simplifying interactions, increasing speed of connection between
people all around the world and allowing the spread of all kind of information. But
it raises questions on the quality of communication: is the information trustable
since it is easy to spread any kind of information? Due to the multiplicity of con-
nections and exchanges, are the communication effective? This questions highlight
the complexity of communication networks which are impacted by several factors in
a positive or negative manner.

Looking at the cellular level, cell signaling can be impaired by factors acting
directly on cells, altering the transmission or the reception of messages. Thera-
peutic agents can be used as receptor blockade mechanisms mimicking the ligand
but without carrying the message that would have induced a response from the
sensing cell. Communication can also be altered by genetic mutation destabilizing
gene expression and response to stimuli. Stimuli such as Ultraviolet radiation (UV)
provoke genetic mutation that can alter the expression of key genes, inducing skin
cancer [Seebode, Lehmann, and Emmert 2016]. Mutated cells use a communication
system different from normal cells, notably they release new signals to proliferate
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and survive. Cells can communicate and answer to stimuli differently according to
their type and origin. If cells exhibit a plastic phenotype, they can sense external
stimuli such as communication signals and adapt their future communication within
the cellular environment (e.g. stress, UV, cigarette smoke, diet, culture medium).
Given different stimuli and environments, a cell can differentiate into several states.
A stimulus or a combination of stimuli sensed by one cell type can impact its com-
munication with other cell types inducing various responses. For example, DCs have
been identified as the main drivers of T helper (Th) polarization in 1999 [Rissoan
et al. 1999]. However Th cells integrate numerous signals to specify their phenotypes
[Zygmunt and Veldhoen 2011]. A large number of Th subsets have be defined based
on the diversity cytokines patterns produced by Th cells [Raphael et al. 2015]. These
results reveal the intrinsic complexity of the Th differentiation process as a central
communication system integrating multiple signals coming from DCs and produc-
ing a large diversity of Th responses [Grandclaudon et al. n.d.]. The environment
is a major factor impacting the signaling. Inflammation is triggered when innate
immune cells detect infection or tissue injury. Changes occur in the inflamed envi-
ronment such as the presence of cytokines impacting communication and behavior
of non-immune cells. This peculiar microenvironment will be further described in
section 1.4.2.

1.1.3 Network representation of communication

The organization of multiple entities through communication is a complex system
that researchers try to understand. To study complex system such as cell-to-cell
communication, networks are powerful tools to use [M. E. J. Newman 2003]. In
mathematics, a network or graph is a set of nodes that are connected together
by connections called edges or links. Two types of networks are distinguishable:
directed and undirected. The first one is characterized by links indicating the direc-
tion in which the information circulates. If all edges are bidirectional, or undirected,
the network is an undirected network. Representation of networks is often used in
different fields of application. As examples we can cite connections between in-
dividuals on social media, the internet, financial networks or biological networks.
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In the case of a communication network, nodes describe entities communicating
and edges monitor the transmission of messages. Putting communication into the
perspective of a network enables to organize knowledge on cell interactions into
a systemic view. Cell-to-cell communication networks comprise both intra- and
intercellular processes. Several studies focusing on intracellular communication net-
works are found in the literature and describe metabolic networks [Jeong et al. 2000],
gene-regulatory networks [Thompson, Regev, and Roy 2015], or networks of protein-
protein interactions [Hooda and Kim 2012]. These networks can model the signal
transduction processes inside the cell and the response induced by the message. In-
tercellular networks model the interactions between different cell types. However,
compared with intracellular signal transduction networks, the functions and engi-
neering principles of cell-to-cell communication networks are less understood. Many
studies have addressed cross-talks between a given pair of cell types [Ferlazzo and
Morandi 2014; Haan, Arens, and Zelm 2014; Hivroz et al. 2012]. Most of the time,
communication process is considered a linear signaling cascade, such as immune cas-
cades [Ghirelli et al. 2015; Y.-J. Liu et al. 2007] involving the exchange of one infor-
mation signal at each step. Some studies have focused their purpose on specific cases
of communication such as the cytokines interleukin-2 (IL-2) [Fuhrmann et al. 2018],
interferon-gamma (IFNγ) [Helmstetter et al. 2015], or tumor necrosis factor alpha(
(TNF-α) [Paszek et al. 2010; Tay et al. 2010]. This view has several limitations:
1) it does not consider the possibility that one given cell type could communicate
with multiple cell types concomitantly within the same microenvironment [Bindea
et al. 2013; C. Q. F. Wang et al. 2013], 2) it does not consider the multiplicity of
information signals possibly sent by one cell to another, 3) it does not integrate the
complex and constant rewiring and cell state modifications in the system following
exchange of information, 4) it provides limited mechanistic insight into the com-
plexity of multicellular pathophysiological processes, 5) as a consequence, it is very
limited in predicting the effects of physiological or pharmacological perturbations in
higher order multicellular systems.

To study cell-to-cell communication network, it is important to define and char-
acterize the microenvironment of cells to model their interaction and behavior. In-
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deed, the microenvironment impacts cell communication as culture impacts human
communication.

1.1.4 A model of network: cellular microenvironment

1.1.4.1 Diversity of cellular microenvironments at the physiological state:
role of the tissue type

Within an organism, each cell exists in the context of a complex extracellular mi-
croenvironment. Different types of tissues across the human body have been defined
such as nervous tissue, muscle tissue, epithelial tissue and connective tissue. Within
a given tissue, microenvironmental factors and extracellular matrix proteins coop-
erate to provide both the biochemical signals and structural constraints that are
required to influence intracellular programs of gene expression and further the cellu-
lar behaviors in the tissue in question. Various cell populations are described having
tissue-dependent functions creating a specific cellular environment. This is the case
for certain populations of immune cells. Studies have shown that T-cell primed by
tissue-specific dendritic cells (DCs) can change their specific functions if they are
re-primed by other tissue-specific DCs [Mora and Andrian 2006]. Natural killer cells
(NKs) are a type of lymphocyte that identify infected or transformed cells through
a complex range of activating and inhibitory receptors that regulate direct and in-
direct killing mechanisms. They migrate from peripheral blood to peripheral organs
through cytokines-mediated signals. However, studies have highlighted the existence
of tissue-specific subpopulations of NKs [Shi et al. 2011]. Tissue-specific NK cells
are found in different tissues across the body. Studies suggest that subpopulations
of tissue-specific NK cells may undergo phenotypic changes under inuence of the
microenvironment, but also differentiate in situ from tissue-resident hematopoietic
progenitor cells [Lysakova-Devine and O’Farrelly 2014]. Macrophages are immune
cells present in most tissues in vertebrates. They are best known for their phagocytic
role in immunity, but they can also function as an important source of growth factors
for other cell types within tissues. Tissue-resident macrophages are heterogeneous
populations in terms of phenotype and function. According to the location they re-
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side, tissue-resident macrophages display specific functions which are important for
normal tissue homeostasis [Ginhoux and Guilliams 2016; Gosselin et al. 2014; Okabe
and Medzhitov 2016]. Similarly, signaling factors derived from tissue environments
play key roles in promoting the ontology and phenotype of the residing macrophage
populations [Okabe and Medzhitov 2016].

1.1.4.2 Physiology versus pathology

In addition to the specificity of tissue microenvironment, one key factor to think
of when studying cellular environment is the physiological or pathological context.
Steady state and inflammation have a different impact on communication between
cells creating a specific microenvironment. Inflammation is a state of the microen-
vironment due to the establishment of an adaptive immune response after pathogen
infection, external injuries or an effect of chemicals or radiations. Inflammation re-
flects a complicated, multifactorial, and multidimensional process, in which acute
and chronic inflammation are differentiated. Acute inflammation is a short-term
process occurring in response to tissue injury appearing within minutes or hours.
It is characterized by five main signs: pain, redness, loss of function, swelling and
heat. Inflammation follows several steps independently of the stimulus initiating the
immune response. First, cell surface pattern receptors recognize detrimental stimuli
that lead to activation of inflammatory pathways such as NFκB or MAPK pathways.
Then, inflammatory markers, inflammatory cytokines, proteins, or enzymes, are re-
leased and inflammatory cells are recruited in the microenvironment [L. Chen et al.
2017]. The last step is the resolution of the issue by tissue repair and remodeling by
monocytes. This is made possible by the switching from pro-inflammatory to anti-
inflammatory signals in the inflammatory environment, promoting the recruitment
of monocytes and inhibiting recruitment of neutrophils [Medzhitov 2008]. In the
case of infection, if the acute inflammatory response fails to eliminate the pathogen,
the inflammatory process persists with the presence of macrophages and T cells in
the tissue and a chronic inflammatory state occurs [Medzhitov 2008]. The chronic
inflammatory process that plays a central role in some of the most challenging dis-
eases, including cancers, rheumatoid arthritis, heart diseases, diabetes, asthma, and
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even Alzheimers. Complex genetic and environmental interactions contribute to the
development of chronic inflammatory diseases. Autoimmunity is characterized by
dysregulation of the adaptive immune system as well as the pathogenic role of innate
immunity and is associated with several chronic inflammatory diseases. Studies have
shown the importance of microbiota in the development of autoimmunity [Yurkovet-
skiy, Pickard, and Chervonsky 2015] but also the genetic impact of several autoim-
mune diseases [Zenewicz et al. 2010]. Chronic inflammation is thought to promote
cancer development. Today, between 5% and 10% of cancer cases are thought to be
triggered by mutation and up to 15% by inflammation; the origin of the 80% left is
still unknown [Brücher and Jamall 2014]. Cancer is a complex and heterogeneous
disease affecting several cell populations in many localization and tissues. The tu-
mor microenvironment (TME) is a complex network not only composed of malignant
cells but also stromal cells. Communications among tumor and stromal cells create
a distinct cellular environment that plays a significant role in tumor development
and progression. In solid tumors, fibroblasts in the TME secreting chemokines and
growth factors contribute to tumor growth and affect the extracellular matrix envi-
ronment that helps tumor to progress [Allen and Jones 2011]. Studies have shown
the impact of metabolism in TME, particularly hypoxia that induce angiogenesis,
and invasion [Allen and Jones 2011]. Since it is an inflamed environment, we can find
immune cells infiltrating the TME. Leukocyte infiltration of solid tumors was first
described in the 1800s by Virchow. Proinflammatory cytokines, chemokines, and
adhesion molecules, which regulate the recruitment of leukocytes, are frequently ob-
served in the TME. Some leukocytes including cytotoxic T cells and NK cells have
a pro-inflammatory and anti-tumor role [DeNardo, Andreu, and Coussens 2010;
Gavin P. Dunn, Old, and R. D. Schreiber 2004] whereas other leukocytes such as
regulatory T cells and macrophages play an anti-inflammatory and pro-tumoral role
promoting cancer immune evasion and cancer progression [DeNardo, Andreu, and
Coussens 2010].

For my thesis work I was interested in studying communication processes in one
particular network which is breast cancer microenvironment.
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1.2 Human Breast Cancer

1.2.1 Factors of incidence

Breast cancer is the second most common cancer worldwide with nearly 1.7 million
new cases in 2012 and is the first cause of mortality by cancer among women (http:

//globocan.iarc.fr/Default.aspx). In the literature, many factors are known to
have an incidence on the risk to develop breast cancer. Some mutations, particularly
in BRCA1/2, EGFR, and p53 genes result in an increased risk of occurrence of breast
cancer [M.-C. King et al. 2003; Malkin et al. 1990; Sun et al. 2017]. However, it
concerns only a small proportion of tumors, less than 30% of breast cancers. On the
other hand, exposure to endogenous hormones (estrogen) increases the risk of breast
cancer occurrence [Travis and Key 2003]. During the last decades, many groups have
pointed out the higher risk of developing breast cancer induced by using exogenous
hormones such as hormone replacement therapies (HTR). Moreover, the relative
risk of breast cancer in current users increases with increasing duration of use of
HRT [Li et al. 2003]. Additionally, environmental signals play a role in modifying
the incidence of breast cancer. Danaei et al. have studied the impact of several
environmental factors (e.g. cigarette smoke, diet, obesity) on the incidence of cancers
worldwide. They showed that alcohol use, overweight and obesity, and physical
inactivity have a joint incidence on 21% of all breast cancer deaths worldwide [Danaei
et al. 2005].

The diversity of factors involved in the appearance of breast cancer is a first
observation of the complexity of this disease. Another important layer is the het-
erogeneity of breast cancer subtypes.

1.2.2 Breast cancer subtypes and inter-tumor heterogeneity

1.2.2.1 Classification

Breast cancer has been suggested to be a heterogeneous disease, and multiple classi-
fications exist to better characterize this disease and improve treatments and care of
the patients. The first classification of breast cancer relies on the histopathological
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status of the disease. It is divided into more than 20 types with the most impor-
tant being invasive ductal carcinomas (IDCs), not otherwise specified (NOS), and
invasive lobular carcinoma (ILC). The grade of the disease can also be taken into ac-
count in the classification of breast cancer. Several scores measure the disease state
such as Eston-Ellis grade, Nottingham prognostic index, or tumor, lymph nodes
and metastasis status (TNM). They are based on measurement of the tumor growth
and development, or the lymph node invasion status [Sinn and Kreipe 2013; Viale
2012]. Based on the molecular and transcriptional profile of breast cancers, different
subtypes have been identified and correlated with clinical outcome [Koboldt et al.
2012; Prat, Pineda, et al. 2015; Viale 2012]. Six breast cancer subtypes have been
established based on expression of hormone receptors (HR) which are estrogen re-
ceptor (ER) and progesterone receptor (PR), expression of HER2 (human epidermal
growth factor 2), and Ki-67 protein immunoreactivity:

• Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or
progesterone-receptor positive), but negative for HER2 and have low level of
Ki67 immunoreactivity. It is also characterized by a genomic stability.

• Luminal B breast cancer is hormone-receptor positive as Luminal A but is
characterized by less genomic stability with some amplification (HER2), dele-
tions and mutations (P53). It can be either HER2-positive or negative with
high levels of Ki67 immunoreactivity.

• HER2enriched breast cancer has amplification of ERBB2 and many other
genes. It is defined by positive expression of HER2 and no expression of the
hormone receptors (ER, PR).

• Triple-Negative (TNBC) or Basallike breast cancer is defined based on the
absence of expression of hormone receptors (ER, PR) and HER2. TNBC have
a high genomic instability.

• Normal Breastlike group is similar normal breast epithelium in transcriptomic
analyses.
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• Claudinlow breast cancer is characterized by low expression of cell-to-cell com-
munication proteins (claudins), no/low markers of luminal differentiation and
a high expression of epithelial to mesenchymal transition (EMT) markers, im-
mune response genes and cancer stem-cell markers. These tumors are only
high grade and are less frequent (12-14% of cancers)

These breast cancer classifications highlight the heterogeneity of the disease, at
multiple layers: localisation, grade, molecular profile. Additionally, they have been
linked to distinct clinical outcome.

1.2.2.2 Diversity of behavior and outcome

Tumor complexity is due to the heterogeneity of the disease which impacts the clini-
cal behavior and outcome of the patients [Koren and Bentires-Alj 2015]. The molec-
ular subtypes of breast cancer correlate with different clinical outcomes and response
to treatment [Prat, J. S. Parker, et al. 2010; Prat, Pineda, et al. 2015; Troester et al.
2004]. Troester et al. compared basal and luminal BC cell lines and showed that
molecular subtypes of BC have a subtype-specific response to chemotherapies which
was validated by in vivo data [Troester et al. 2004]. PAM50, a 50-gene qPCR assay,
has been identified as a predictive marker of pathological complete response (pCR)
regarding chemotherapy response. This predictive marker was shown to reflect the
intrinsic molecular classification and its correlation to clinical outcome [Y.-R. Liu
et al. 2016; Prat, Pineda, et al. 2015].

Luminal A cancers are low-grade, tend to grow slowly and have the best progno-
sis and long-term survival while luminal B cancers prognosis is slightly worse. This
difference of prognosis was suggested to be due to a variation in response to estro-
gen therapy between luminal A and B [Rivenbark, OConnor, and Coleman 2013;
Sørlie et al. 2003]. Triple-Negative or basal-like breast cancers are more aggressive
with high rates of cell proliferation and have poor clinical outcomes. As they do
not express hormone receptors neither HER2, herceptin and hormone therapies can-
not be used. Patients with claudin-low breast cancer have poor recurrence-free and
overall survival outcomes, this cancer not being responsive to chemotherapy treat-
ments [Prat, J. S. Parker, et al. 2010]. HER2-enriched breast cancers are associated
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with a poor clinical outcome. As they are ER negative, they are not treated with
anti-estrogen receptor therapies. However, survival of HER2+ breast cancer (HER2-
enriched, Luminal B) improved thanks to herceptin-targeted therapy, in addition to
adjuvant chemotherapy [Cortés et al. 2012; Mukai 2010].

Although the molecular classification of breast cancer help to characterize the
disease and defined adapted therapies, the patient outcomes are disparate. The
observed variation in treatment efficacy has been connected to heterogeneity in the
cellular composition of individual tumors and significant heterogeneity in immune
composition is observed across subtypes as well as patients [Dushyanthen et al. 2015;
García-Teijido et al. 2016]. This highlights the importance of taking into account
the molecular subtypes as well as the intra-tumoral heterogeneity when studying
breast cancer networks and communications.

1.2.3 Intra-tumor heterogeneity

Two distinct but complementary theories describe the origin of tumor cells hetero-
geneity, the cancer stem cell (CSC) hypothesis [Meacham and Morrison 2013] and
the clonal evolution and selection model [Greaves and Maley 2012]. CSCs orig-
inate from single cells possessing specific characteristics regarding cell plasticity.
Those cells undergo tumor-reprogramming processes via multiple molecular alter-
ations through a specific hierarchy and have indefinite self-renew potential that drive
tumor growth. These mechanisms drive temporal intra-tumor heterogeneity. The
clonal evolution/selection model is based on clonal expansion by natural selection
and adaptation to tissue microenvironments. The factors contributing to clonal ex-
pansion promotes certain cellular characteristics allowing cancer cell proliferation in
hypoxia environments. Depending on the local microenvironment, the clonal expan-
sion wont be promoting the same clones, contributing to spatial heterogeneity. In
the majority of the cases intra-tumor heterogeneity is clonal-based, however it has
been shown in the literature that some areas of the tumor can be morphologically
distinct with different repertoires of genetic aberrations [Greaves and Maley 2012;
Martelotto et al. 2014]. Intra-tumoral heterogeneity is a complex interplay between
CSCs genetic and epigenetic mutations and clonal evolution promoting develop-
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ment and evolution of breast cancer to metastasis. Several studies have revealed
genetic differences between primary breast tumors and their metastases [Bonsing
et al. 2000; Kuukasjärvi et al. 1997; Pandis et al. 1998; Torres et al. 2007; C. Wu
et al. 2009]. Genetic and epigenetic modifications can be caused by external factors
such as cigarette smoke, UV lights, chemotherapy agents and/or the microenviron-
ment during the development and growth of the tumor contributing to the temporal
heterogeneity of breast cancers [Martelotto et al. 2014]. Studying intra-tumor het-
erogeneity could have clinical benefits since we observe treatment failures due to
therapeutic selection of cancer cells harboring resistance mechanisms [Turner and
Reis-Filho 2012].

Both inter-tumoral and intra-tumoral heterogeneity make breast cancer a com-
plex disease. Tumor cells evolve in a specific microenvironment (including non-
tumoral cells) that display specific signaling that can be hijacked by the tumor to
promote its progression and survival [Poli, Fagnocchi, and Zippo 2018].

1.2.4 Tumor microenvironment

TME is a complex network composed of cancer cells, stromal cells, endothelial cells,
immune cells as well as components of the extracellular matrix (ECM). As described
above, the TME shows high level of spatiotemporal heterogeneity which is partly
due to alterations of the microenvironment. In normal breast, epithelial and stromal
cells communications are essential to inhibit tumor growth and proliferation [Quail
and Joyce 2013]. However, in breast cancer, communication between cancer cells
and non-malignant cells infiltrating the TME promotes heterogeneity, growth and
proliferation of the disease [Quail and Joyce 2013]. Understand the composition of
the tumor microenvironment and what are the interactions that promote develop-
ment and resistance of the disease could help define better therapies. The TME
is not only impacted by the presence of tumor cells, but it is also involved in the
development of the disease, in different ways. Specific changes happen in the breast
tumor microenvironment that regulate progression to invasion and metastasis, for
instance increase of fibroblast proliferation and ECM remodeling [Bonnans, Chou,
and Werb 2014]. Stromal cells can create a permissive microenvironment for tu-
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morigenesis.[Mao et al. 2013]. We also observe cell-to-cell signaling changes. Genes
encoding for secreted proteins and cell surface receptors are found differentially ex-
pressed in epithelial and stromal cells during breast tumor progression [Allinen et al.
2004]. Paracrine signaling takes place through secretion of soluble factors by cancer
cells, fibroblasts and other cells of the TME. Allinen et al. performed a molecular
characterisation of breast cancer microenvironment. They compared normal epithe-
lial and stromal cells to cancer epithelial cells and infiltrating stromal cells. High
expression of CXCL12 and CXCL14 by myoepithelial and myofibroblast were found
in the TME. These chemokines are involved in cell proliferation, differentiation, mi-
gration, and invasion of breast cancer cell lines. Several signaling pathways involved
in the interplay between tumor infiltrating cells and cancer cells promote tumor
growth, metastatic spread or even drug resistance. TGF-β signaling in breast TME
plays an important part in tumorigenesis. It has implication in angiogenesis, recruit-
ment of endothelial cells, monocytes and macrophages, and activation of fibroblasts.
TGF-β also suppress T cell immunosurveillance and cytotoxic activity [Scheel et al.
2011; Taylor, Lee, and Schiemann 2011]. Breast tumor microenvironment represents
a social network where cells produce and interpret a diversity of signals promoting
cancer cells progression. Figure 1.3 represent in a schematic view these interactions
between the cells of the breast environment. Cancer cells cross-talk with endothelial
cells, fibroblasts and immune cells such as macrophages and T cells, using specific
signaling including TGF-β, growth factors and inflammatory cytokines.
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Figure 1.3: Schematic representation showing the role of stromal cells in microenvi-
ronment and breast cancer progression. The tumor microenvironment is a dynamic
composite of cells broadly categorized as multiple components of non-stromal and
stromal cells, where tumor cells thrive. Stromal cells promote tumor growth, in-
vasion, and metastasis by secreting multiple cytokines, chemokines, growth factors,
etc. Moreover, tumor cells also affect the phenotype of stromal cells. From Mao
et al. 2013.

1.2.5 Inflammatory environment

At the beginning of cancer studies, the immune system was not considered as play-
ing a role in cancer development neither on the clinical outcome of patients. In
breast microenvironment, immune cells play a role of immunosurveillance, by killing
potential cancer cells before they became a cancer. However, the immunosurveil-
lance of immune cells put a selective pressure on cancer cells that develop resistance
mechanisms and escape immune surveillance or generate an immunosuppressive envi-
ronment [Gavin P. Dunn, Bruce, et al. 2002]. This implies changes in the cell-to-cell
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interaction network formed by the cells of the TME. Only recently, immune evasion
has been recognized as a hallmark of BC which is enabled by three major char-
acteristics being (epi)genetic modifications and clonal selection of cancer cells, and
tumor-promoting inflammation [Hanahan and Weinberg 2011]. Now, it is well known
that the TME is composed of different immune cell populations such as T and B
lymphocytes, natural killers (NK), and myeloid cells including macrophages, myeloid
derived suppressor cells (MDSCs), and dendritic cells (DCs). Cellular crosstalk be-
tween different leukocyte subsets infiltrating the breast cancer TME induces either
pro- or antitumor functions driving immune-mediated anti- or pro-tumor activities
in the microenvironment [D. S. Chen and Mellman 2013; DeNardo, Andreu, and
Coussens 2010]. Distinct populations of tumor-infiltrating lymphoid and myeloid
cells have been linked to different prognosis in BC patients [Kroemer et al. 2015].
While breast tumor infiltration by CD8+ T cells was associated with patient sur-
vival and response to therapy [DeNardo, Brennan, et al. 2011; Mahmoud et al. 2011;
Seo et al. 2013], regulatory CD4+FOXP3+ T cells support pro-tumor immunity and
are associated with a poor prognosis in some cases of breast carcinoma [Ibrahim
et al. 2014; Yeong et al. 2017; Zhou et al. 2017]. Myeloid cells localized in pre- and
malignant tissues release amount of cytokines, soluble factors and other inflamma-
tory molecules. These signals contributing to tissue remodelling, angiogenesis, and
suppression of anti-tumor immunity [Stockmann et al. 2014]. If MDSCs have been
characterized as regulator of the immune system [Gabrilovich and Nagaraj 2009],
they also play a role in cancer development and metastasis. MDSCs and cancer cells
interaction via IL-6/STAT3 and NOTCH signaling induce CSCs development [Peng
et al. 2016]. Cancer cells also secrete molecules influencing the microenvironment
towards pro-tumoral and pro-inflammatory environment. Ghirelli et al described the
activation of pDC via GM-CSF and IL-6 secretion by breast tumor cells that was
linked to a worse prognosis [Ghirelli et al. 2015]. Over the past years, new therapies
have been developed targeting the immune system in cancer. As described by the
concept of hot versus cold tumor, the diversity of TILs infiltration levels in tumors
may impact the efficacy of immunotherapies [L. Chen et al. 2017; Spranger 2016;
Wargo et al. 2016]. In breast cancer, level of TILs is variable across BC subtypes
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and high levels of TILs are correlated with increased expression of the checkpoint
molecule programmed cell death 1 ligand (PD-L1). Immunotherapy treatments
rely on therapeutic antibodies targeting immune checkpoint molecules that have co-
stimulatory or co-inhibitory functions. Clinical trials on TNBC show some positive
results. For instance, monotherapies targeting programmed cell death 1 (PD-1) and
one of its ligand CD274 (PD-L1) which have an inhibitory interaction in metastatic
TNBC and showed between 4.7% and 23% of overall response rate (Figure 1.4)[Tan
2018]. Despite some treatment successes, the response seen in patients is limited,
especially in other subtypes such as luminal, drawing attention to the need of better
understanding the immune components of the TME.

Figure 1.4: Clinical trials of checkpoint inhibitors as monotherapy in metastatic
breast cancer. From Tan 2018.
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1.3 Antigen presenting cells

Antigen presenting cells (APCs) are key players of the immune system communi-
cation/social interactions and infiltrate the tumor microenvironment. Professional
APCs include dendritic cells (DCs), B cells, and macrophages [Parkin and Cohen
2001]. These peculiar cells are the sentinels of the body and have an extremely
important role as messenger of the immune system. They patrol many tissues and
are able to trigger the adaptive immune response by presenting exogenous antigens
through MHC class II molecules. This complex is then presented to T cells that
recognize antigens via their TCR. These interactions lead to activation of T cells.

Here, we will focus on monocytes, macrophages and DCs which are mononuclear
phagocytes distinguished on the basis of their morphology, function and origin.

1.3.1 Monocytes and macrophages

Monocytes are present in all vertebrates. In humans, these cells represent 10% of
the nucleated cells in the blood. They arise from myeloid precursor cells in primary
lymphoid organs. Two main human monocyte subpopulations are defined as CD14+

and CD14lowCD16+ monocytes. The first category can be further subdivided into
distinct populations of CD14+CD16+ and CD14+CD16- monocytes that have dif-
ferential capacities to secrete key inflammatory cytokines upon in vitro stimulation
[Sánchez-Torres et al. 2001]. Monocytes and their progeny display various physio-
logical processes including both DC-like and macrophage-like activities. They are
able to promote angiogenesis and arteriogenesis [Ginhoux and Jung 2014]. Upon in-
flammation, in tissues, monocytes can differentiate into tissue-resident macrophages
and especially in cancer they can give rise to tumor associated macrophages [Wynn,
Chawla, and Pollard 2013].

Macrophages are myeloid immune cells that are characterized by avid phagocyto-
sis. They are found in all tissues and have functions on various mechanisms such as
development, tissue homeostasis, wound healing and tissue repair through immune
responses to pathogens [Wynn, Chawla, and Pollard 2013]. Tissue macrophages have
two distinct origins even though the majority of macrophages that reside in healthy
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tissues are established prenatally and show self-maintenance properties [Hashimoto
et al. 2013]. As exposed before, macrophages can also derive from tissue-infiltrating
monocytes [McGovern et al. 2014; Wynn, Chawla, and Pollard 2013]. In inflamma-
tory condition, studies have delineated the activation of macrophages in response to
various signals which exhibit distinct phenotypes called M1 and M2 [Gordon 2003;
Sica and Mantovani 2012]. M1 macrophages express high levels of proinflammatory
cytokines, produce reactive nitrogen and oxygen intermediates, promote Th1 re-
sponse, and are able to kill microbes and tumor cells. In contrast, M2 macrophages
promotes tissue remodeling and cancer progression. They are also characterized by
immunoregulatory functions and efficient phagocytic activity. M1-M2 macrophages
are also distinct in their chemokine expression profiles [Sica and Mantovani 2012].
Tumor-associated macrophages secrete growth factors in the TME, promote breast
cancer progression and correlate with poor prognosis [Mao et al. 2013].

1.3.2 Dendritic cells

DCs were first described in mice by R. Steinman and Z. Cohn in 1973 [Steinman
and Z. A. Cohn 1973]. These peculiar cells are essential sentinels and messenger
between the innate and adaptive immune system. DCs are bone marrow-derived
cells present in blood, lymphoid organs and tissues. When patrolling the body, the
“immature” DCs can sense pathogen-associated and danger-associated signals and
capture antigens. They are specialized antigen-presenting cells: they uptake antigens
with high efficiency via different mechanisms including phagocytosis, micropinosis
and endocytosis and present them through MHC class II molecules. DCs are able
to present antigenic peptides complexed to MHC class I molecules to CD8+ T cells
which will differentiate into cytotoxic killer cells capable of eliminating infected
cells, damaged cells and even tumor cells [J. Banchereau and Steinman 1998]. Upon
activation, DCs migrate to lymphoid organs to initiate adaptive immune response
by interacting with T and B cells.
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1.3.2.1 Notion of subset

First described as a largely homogeneous population distributed throughout the
body, dendritic cells (DC) are, in fact, composed of distinct subtypes each specialized
to respond to particular pathogens and to interact with specific subsets of T cells.
Heterogeneity of the DCs have been described by generating the transcriptional
profiles of mouse and human leukocytes (ImmGen) [Collin, McGovern, and Haniffa
2013]. Several subsets of DCs were characterized based on their ontogeny, phenotypic
and functional specialization. All human DCs express high levels of MHC class
II (HLA-DR) and lack typical lineage markers CD3 (T cell), CD19/20 (B cell)
and CD56 (NK cell). The different subpopulations of DCs are defined as HLA-
DR+ lineage- cells. Several positive DC lineage markers identifies DCs as either
“myeloid” or “plasmacytoid” and exclude monocytes expressing CD14 and CD16
markers [Haniffa, Collin, and Ginhoux 2013]. Two types of “classical” or “myeloid”
DCs from “plasmacytoid” DCs can be distinguished across all mammalian species
by looking at the differential expression of interferon regulatory factors 8 and 4
(IRF8 and IRF4) [Collin and Bigley 2018]. These three subsets derive from common
myeloid progenitors (Figure 1.5). Each subset of DCs can be identified by the
expression of surface markers and the secretion of various cytokines [Collin and
Bigley 2018] (Figure 1.6).
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Figure 1.5: Monocytes and DCs classification. From Gardner and Ruffell 2016.
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Figure 1.6: Human dendritic cell subsets. Features of the principal human dendritic
cell (DC) subsets. Diagrams of the main surface markers, pathogen sensors and
responses of (a) classical DC1 (cDC1) and (b) cDC2 ; (c) plasmacytoid DC (pDC).
Data are principally drawn from observations on freshly isolated blood DC and
do not capture the variety of responses possible following inflammatory activation.
From Collin and Bigley 2018.

1.3.2.2 Classical DCs

In humans, the two subsets of classical DCs (cDCs) can be characterized in part
by expression of BDCA-1 (CD1c) and BDCA-3 (CD141) in peripheral blood (Fig6
a-b). Haniffa et al also found these two subsets in other peripheral tissues such as
liver, skin and lung [Haniffa, Shin, et al. 2012]. Human myeloid cDC1s are present
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at approximately one-tenth the frequency of cDC2s in steady-state blood and tis-
sues [Granot et al. 2017; Guilliams et al. 2016; Haniffa, Shin, et al. 2012; Heidkamp
et al. 2016; Ziegler-Heitbrock et al. 2010]. Thanks to expression profiling, addi-
tional markers have been identified across species to characterize each population of
myeloid DCs. These markers include CLEC9A, CADM1, BTLA, XCR1 and CD26
for CD141+ myeloid cDC1, and CD2, FcεR1 and SIRPA for CD1c+ myeloid cDC2
(Figure 1.5 and 1.6 a-b) [Collin and Bigley 2018]. cDC2s excel in CD4+ T cell prim-
ing [L. Cohn et al. 2013; Jin et al. 2014] and promote T helper type 17 (Th17)- and
T helper type 2 (Th2)-biased immune responses to extracellular pathogens [Pers-
son et al. 2013; Schlitzer et al. 2013]. After stimulation, they can produce high
amount of IL-12 which is known to drive IFNγproduction and promote cytotoxicity
in primed naive T cells [Nizzoli et al. 2013]. cDC1s have a high capacity to crossp-
resent antigens via MHC class I to induce T helper type 1 (Th1) responses and
natural killer responses via IL-12 expression. However, cDC1s express lower levels
of IL-12 in comparison to cDC2 [Collin and Bigley 2018; Haniffa, Shin, et al. 2012;
Poulin et al. 2010]. Myeloid cDC1s are also able to present viral and intracellular
antigens and produce type III interferons (IFNλ)[Collin and Bigley 2018].

1.3.2.3 Plasmacytoid pre-DC

In 1997, Grouard et al and Olweus et al. discovered a Lin-HLA-DR+ plasmacy-
toid cell in human peripheral blood and lymphoid tissues, such as spleen and lymph
nodes [Grouard et al. 1997; Olweus et al. 1997]. These cells were distinct from known
myeloid DCs. At that time, they were named plasmacytoid T cells or plasmacy-
toid monocytes due to their expression of CD4, CD45RA, and their round shape
and morphology resembling plasma cells [Grouard et al. 1997; Olweus et al. 1997].
However they did not express any T cell antigen, CD3, neither the myeloid antigens
CD11b, CD11c, CD13, and CD33 while they have a high MHC-II expression when
put in culture with monocytes. Upon culture with IL-3 and CD40L, plasmacytoid
cells were shown to differentiate into cells with a mature DC morphology with den-
trites [Cella et al. 1999; Colonna, Trinchieri, and Y.-J. Liu 2004; O’Doherty et al.
1994; Siegal et al. 1999]. As they were able to induce Th1 or Th2 responses after
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activation by various stimuli, these cells were called plasmacytoid dendritic cells
(pDCs). In 1999, Siegal et al. and Cella et al. definitively identified the pDCs of
peripheral blood and secondary lymphoid organs as being the same population as
natural interferon-producing cells previously described and responsible for type I
interferon production in peripheral blood in response to most viruses [Cella et al.
1999; O’Doherty et al. 1994; Siegal et al. 1999]. pDCs play a role in viral infections
and against bacterial and fungal pathogens. Upon recognition of nucleic acids from
pathogens, pDCs produce massive amounts of type I and some quantities of type III
interferons and acquire the capacity to present antigen. Production of type I inter-
ferons by human pDCs impact various cell types of the immune system including NK
cells, DCs, T cells and even B cells. Indeed, it activates NK cells cytolytic activity
against infected cells, and it promotes differentiation, maturation and immunostim-
ulatory functions of DCs. Combined with IL-6 expression by pDCs, it induces B
cells differentiation into plasma cells and production of immunoglobulin and induces
early T cell activation markers, long-term T cell survival, IFNλproduction and Th1
differentiation [Colonna, Trinchieri, and Y.-J. Liu 2004].

1.3.2.4 Emerging subsets of DC

Recently, the evolution of RNA-sequencing techniques and single-cell isolation and
analysis helped in defining emerging subpopulations of DCs. Two single-cell RNA-
seq studies shed light on the heterogeneity of DCs subpopulations in blood. See et
al. characterized a new subset of DC precursors called [“early pre-DC”], expressing
CD33, CD45RA and CD123 markers [See et al. 2017]. Those cells present myeloid
DC characteristics of inferior type I interferon production, higher IL-12 production
and greater CD4+ T cell allo-stimulatory capacity. In parallel, Villani et al. have
characterized an other DC subpopulation with similar characteristics. This new pop-
ulation is CD123+ resembling pDC but also express myeloid cDC antigens including
CD11c, CD33 (SIGLEC3) and CX3CR1, AXL and SIGLEC6 (CD327). Though
they were labelled AS DCs [Villani et al. 2017]. A new DC subset, called DC4, was
described as distinct from nonclassical monocytes transcriptomic profile [Villani et
al. 2017] and closer to a dendritic cell subset, although it resembles SLAN+ cells
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which are a controversial population called DCs or CD16+ nonclassical monocyte
in literature [Collin and Bigley 2018]. Their transcriptional profile is reminiscent of
SLAN+ cells with lower CD11b, CD14 and CD36 but higher expression of CD16.

1.3.3 Inflammatory DC (Monocyte-derived inflammatory DC)

In inflammatory skin context such as eczema [Wollenberg et al. 1996] or psoriasis
[Wollenberg et al. 1996; Zaba, Krueger, and Lowes 2009] and inflammatory fluids in-
cluding tumor ascites, one specific subpopulation of monocyte-derived DC (Mo-DC)
was identified and called inflammatory DCs (infDCs). They present a DC morphol-
ogy and phenotype with expression of CD11c, CD1c, FceR1, CD206, IRF4 cells
and MHC class II expression (HLA-DR) suggesting they have the ability to activate
T cells. Nonetheless, infDCs do not express CD16 and CD163 but they express
CD14 at their surface at a lower level than macrophages [Segura and Amigorena
2013]. This peculiar cells can stimulate antigen-specific naive CD4+ T cells during
pathogen infection and induce Th differentiation [León, López-Bravo, and Ardavín
2007; Nakano et al. 2009; Segura, Touzot, et al. 2013]. infDCs can express key
cytokines and chemokines that are crucial for T cell polarization [Plantinga et al.
2013; H. A. Schreiber et al. 2013]. infDCs are also able to migrate from the site
of infection to draining lymph nodes in a CCR7-dependent manner [Segura and
Amigorena 2013].

1.3.4 Plasticity of APC

Antigen presenting cells are composed of a variety of cell populations that are het-
erogenous. These subsets of cells have distinct origin and functions but impor-
tantly, one key feature is their plasticity regarding various stimuli and environments.
Whether it is macrophages, monocytes or each subset of DCs, we can observe differ-
ent spectra of activation and Th polarizations in response to environmental stimuli.
As described previously, macrophages are extremely plastic cells, they exhibit a huge
functional diversity and can undergo M1 or M2 activation depending on the disease
and tissue as it was shown in vitro [Sica and Mantovani 2012]. Concerning DCs, the
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ability of cDC1 and cDC2 to activate and polarize T cells into different Th profiles
has been shown to depend on the activator they encounter. The type of pathogen
sensed by DCs can induce a differential gene expression profile which impact their
functions [Huang et al. 2001]. Alculumbre et al recently demonstrated that pDCs
are plastic cells that can differentiate into two subsets with distinct phenotypes,
morphology and functions [Alculumbre et al. 2018]. Those subsets appear only after
activation with specific factors such as influenza virus infection.

If the type of stimuli sensed by APCs shapes their phenotype and functions to-
ward a specific and adapted immune response, it may probably be the case of the
tumor microenvironment. As we introduce previously, breast cancer is an heteroge-
nous disease fashioned by the interaction of malignant and various non-malignant
cells forming a peculiar cellular microenvironment. Since APCs are plastic cells, we
can wonder whether the breast TME modulates the APC phenotype and how it can
impact the communication and signaling between these key players of the immune
system and cells in this specific network.

1.3.5 Communication in TME

One key feature of cellular communication is the expression of ligands and recep-
tors by the cells. The interaction between these molecules convey a message to the
cell and induce specific responses. APCs express at their membrane surface var-
ious receptors implicated in sensing pathogens and danger signals. pDCs express
Toll-Like Receptors (TLRs) to sense pathogens. DCs are able to sense pathogen-
associated molecular patterns (PAMP) via Pattern Recognition Receptors (PRRs),
TLRs and C-type Lectin Receptors (CLRs) such as CLEC9A in DC1 (Figure 1.6).
They also express various ligands inducing immune responses such as cytokines and
chemokines. The sensing of various stimuli impacts the differentiation of cells and
their functions [Dalod et al. 2014; Huang et al. 2001; Y. J. Liu 2001; Pulendran,
Palucka, and Jacques Banchereau 2001; Soumelis et al. 2015; Stagg and Allard
2013]. For instance, in response to various signals, macrophages may undergo clas-
sical M1 activation via stimulation by TLR ligands and IFNγ or alternatively M2
activation via stimulation by IL-4 and IL-13. Among those ligands and receptors,
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one category is particularly interesting. It is immune checkpoint molecules which
are regulators of immune activation. They play a key role in maintaining immune
homeostasis and preventing autoimmunity. In cancer, immune checkpoint mecha-
nisms are often activated to suppress the nascent anti-tumor immune response. It
has been shown that cancer cells can express inhibitory checkpoints suppressing T
cell activation [Ott, Hodi, and Robert 2013](Figure 1.7). In recent years, immune
checkpoint mechanisms became central targets of anti-cancer immunotherapies.

Figure 1.7: Immune checkpoint interactions between T cells, APCs and cancer cells
in the tumor microenvironment. From Ott, Hodi, and Robert 2013.
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1.4 How can we study the communication be-

tween cells in the TME?

1.4.1 Challenges

The tumor microenvironment is a complex network which can be decomposed in
multiple layers of information: tissue specificity, cellular infiltration, cell plasticity,
soluble factors present in the environment, genetic and epigenetic modifications.
This network evolves in time and space. To reconstruct cell-to-cell signaling, a
general problem arises that all reconstructed signals hypotheses are generated from
partial information due to technical limitations including the experimental design
used, the access to biological material, the number of parameters monitored. Taking
into account the combinatorial aspect of communication and response to signal, this
make a huge network analyse with infinite combinations not necessarily validated
experimentally. Simplification of the network is a first step to understand commu-
nication between cells in the TME. It appears to represent a challenge to study
how the TME acts on cell-to-cell interactions, especially between APCs, and how it
affects their functions in this specific context.

One way to understand the communication between two entities, is to study the
expression of the messages (ligands) and if they can be deciphered (by receptors,
downstream pathways) under different conditions. The modulation of messages
expression in the environment can be diverse: up-regulation (higher expression),
down-regulation (lower expression), blockade, inhibition, or activation. To monitor
the expression of specific proteins localized at the surface of cells, one possibility is
the use of fluorescence flow cytometry. Fluorescence-activated cell sorting (FACS)
is commonly used for identifying cell population such as human DCs [Guilliams et
al. 2016]. FACS enables to identify population via fluorescent antibodies targeting
specific surface markers but also other proteins such as surface receptors, immune
checkpoints, chemokines or cytokines. Advances through cytometry by time-of-light
now enable 30 to 40 antigens to be analyzed simultaneously [Guilliams et al. 2016].
Other techniques based on protein targeting via antibodies can be used to monitor
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expression of ligands and receptors by cells. This includes bead-based (e.g. Cyto-
metric bead array) and electrochemiluminescence systems (e.g. Luminex). However,
the major limitation of all of these techniques is that they allow to monitor only
several proteins at a time and the amount biological material required to perform
these experiments. In recent years, development of high throughput sequencing
techniques and bioinformatic tools enabled biologists to generate molecular profiles
of cells. Breast cancer subtypes were identified using transcriptomics data [Curtis et
al. 2012]. Dendritic cells were also characterized at the molecular level in blood and
tissues, in human and mouse [Ginhoux and Guilliams 2016; Guilliams et al. 2016;
Haniffa, Collin, and Ginhoux 2013]. With such large amount of data, it is possible
to study changes in signaling pathways of APCs in a certain environment such as
breast TME which contribute to understand how the communication network of
APCs is influenced by breast cancer.

1.4.2 Bioinformatics to study cell-to-cell communication

1.4.2.1 Transcriptomic profiles, information providers

The transcriptome refers to the ensemble of messenger RNA (mRNA) molecules
transcribed from expressed genes in an organism. It also describe the group of
mRNA transcripts produced in a particular cell or tissue type. The transcriptome
actively changes, depending on many factors, including stage of development and
environmental conditions. The study of transcriptomes can be use to dissect signal-
ing information and compare gene expression differences between two environments
such as TME and healthy tissue. From the analysis of a transcriptome, we can
reveal genes differentially regulated between at least two conditions. Therefore, we
can derive a gene signature which combines several genes with specific patterns of
expression characterizing cells in one condition (e.g. subsets of cell, disease state,
tissue localization) or genes corresponding to a biological process (e.g. signaling
pathways, response to a stimulus, cellular function). These signatures can have
different applications. In clinics, gene signatures can be used to perform either pre-
diction of disease outcome (i.e. predictive signature), prediction of the effect of
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a treatment (i.e. prognostic signature) or classification of disease phenotypes and
severity (i.e. diagnostic). Gene signatures characterizing cell populations can be
used to deconvolute bulk expression datasets to estimate the proportion of cell in-
filtration in a specific context. Several methods are based on this concept such as
CIBERSORT [A. M. Newman et al. 2015]. In the manuscript, subset-specific gene
signatures refer to genes that have an up-regulated expression in a subpopulation
of cells compared to all other populations of the study. It can also refer to a list of
genes linked to a biological function or concept (e.g. signaling pathway, costimula-
tory molecules) and with a differential expression pattern between conditions of the
study.
Two different techniques enable generation of transcriptomic profiles of organisms:
gene-expression profiling microarrays and RNA-sequencing (RNA-seq). Microarrays
can be used to measure the expression of thousands of genes at the same time, as well
as to provide gene expression profiles, which describe changes in the transcriptome
in response to a particular condition or treatment [Liotta and Petricoin 2000; Mills
et al. 2001]. mRNA molecules are purified from both experimental and reference
samples. A step of reverse transcription converts mRNAs into complementary DNA
(cDNA), and each sample is labeled with a fluorescent probe of a different color.
Then, the cDNAs of the samples are bound to the microarray slide via hybridiza-
tion. Following hybridization, the microarray is scanned to measure the expression
of each gene printed on the slide (Figure 1.8). Standardized protocols are established
to analyze the data even though many bioinformatic tools are available [Selvaraj and
Natarajan 2011].

57



Figure 1.8: Gene-expression profiling microarray protocol. Adapted from Ortuño
et al. 2011.

Public databases are a wealth of information, more than 1500 datasets of ex-
pression profiling by array of human immune cells are found in GEO database (Na-
tional Center for Biotechnology Information NCBI, https://www.ncbi.nlm.nih.

gov/gds/). Transcriptomic profiles of mice and human immune cells are available in
literature (BioGPS, ImmGen https://www.immgen.org/) [Collin, McGovern, and
Haniffa 2013; C. Wu et al. 2009]. These profiles have been generated from cells com-
ing from various tissue origin (e.g. blood, skin, lymph nodes, spleen), species (e.g.
human, mouse), and experimental conditions (healthy, disease, activation via diverse
molecules). Hence, these resources are helpful to study gene expression linked to
communication pathways in a variety of conditions. Regarding APCs and especially
DCs, several gene expression datasets of human DC subsets are available (Figure
1.9). However, majority of the datasets were generated from blood or skin DCs but
not from tumor microenvironment-infiltrating cells.
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Figure 1.9: Table of human DCs and monocytes transcriptomic profile datasets
available in the literature.

For this thesis project, we strived to study APC subpopulations which are rare
cells in the tumor microenvironment. Studies have shown that RNA-seq have better
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sensitivity than microarrays [Mortazavi et al. 2008]. Another limitation of array
technology is the detection of genes for which there are corresponding probes only.
Since we were studying more than two conditions taking into account the tissue
(tumor and non-invaded tissue), the cancer subtype, and different subpopulations
of APCs, we used RNA-seq technologies to generate the transcriptomic profiles
of tumor-infiltrating APC subpopulations. Transcriptomics have moved rapidly
from expression arrays of bulk populations to single cell RNA-sequencing. High-
throughput sequencing technologies are now common use in biology. By sequencing
steady-state mRNAs in a sample, we can obtain short sequence of reads correspond-
ing to all mRNAs. RNA-seq enables detection of alternative splicing [Griffith et al.
2010; Trapnell, B. A. Williams, et al. 2010; L. Wang et al. 2010], RNA editing
[Picardi et al. 2010] and novel transcripts [Robertson et al. 2010; Trapnell, B. A.
Williams, et al. 2010], but most importantly, quantification of gene expression pro-
filing and quantification of the differential expression levels of transcripts during
development or under different conditions such as healthy or disease state. Only
small 10 pg to 1 ng of RNA is necessary to perform RNA-seq. Following purifi-
cation of picograms of mRNAs isolated from samples of interest, the mRNAs are
reverse transcribed into cDNA. Then, the cDNA is fragmented, adaptors are ligated
to the short sequences by random priming and amplified before sequencing (Figure
1.10). Afterwards, the reads are aligned to the reference genome and several tools are
available for this purpose including Bowtie [Langmead et al. 2009], TopHat (which
builds on BowTie results to align splice junctions) [Trapnell, Pachter, and Salzberg
2009; Trapnell, Roberts, et al. 2012], and STAR [Dobin et al. 2013]. RNA-seq pro-
duces large and complex datasets and their interpretation is not straightforward.
Analysis methodology is critical to interpreting the data. It encompasses several
key steps to analyze sequencing data or microarrays or RNA-seq, including quality
control of the data and data normalization. Gene length and nucleotide composition
as well as library size could induce technical biases in RNA-seq. Many effort have
been done to improve normalization methods in order to tackle such biases [Dillies
et al. 2013; Risso et al. 2014].
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Figure 1.10: RNA-seq experiment protocol (From Z. Wang, Gerstein, and Snyder
2009).

1.4.2.2 Tools to study communication

Nowadays, biostatistic and bioinformatic tools are essential to analyse large scale
data and draw hypothesis on biological processes. From cell transcriptional profiles
it is possible to extract a lot of information regarding the expression of genes cod-
ing for proteins involved in diverse cellular pathways. Additionally, the differential
gene expression analysis of these profiles is helpful to decipher how an environment
impacts the transcriptional profile of specific cell populations. Different algorithms

61



and tools are dedicated to differential expression analyses regarding the technology
used to generate the transcriptomic profiles. Tools such as limma [Ritchie et al.
2015] are widely used to analyze gene-expression profiling microarray data. It is less
unanimous for RNA-seq data analysis. RNA-seq data can be represented as read
count matrices, with a non-normal distribution. The different methods of differen-
tial expression analysis fit models to the data following either a poisson distribution
or a negative-binomial distribution which is more accurate for RNA-seq data [Dil-
lies et al. 2013; Risso et al. 2014]. Tools such as edgeR or DESeq2 in R software
have then become gold-standard methods for differential gene expression analysis
of RNA-seq data [Conesa et al. 2016; Love, Huber, and Anders 2014; Robinson,
McCarthy, and Smyth 2010]. They implement negative-binomial model fitting with
variance estimation to perform differential testing of gene expression. These meth-
ods enable the detection of differentially expressed genes (DEGs) between several
conditions (e.g. disease state versus healthy state or between cell types).

From the DEG list, we can perform functional enrichment tests to infer which
biological functions are affected by one condition versus another and whether these
functions are up- or down-regulated for each condition. A great majority of func-
tions, processes and signaling pathways are gathered in databases as Gene Ontology
(GO), KEGG, DAVID, and Reactom [Ashburner et al. 2000; Croft et al. 2011; Den-
nis et al. 2003; Kanehisa and Goto 2000]. In the TME, a few studies have analyzed
macrophages and dendritic cells profiles [Ojalvo, W. King, et al. 2009; Pyfferoen et
al. 2017]. Ojalvo et al. compared invasive and general TAMs purified from mice with
carcinomas [Ojalvo, W. King, et al. 2009]. Using gene-expression profiling arrays,
they identified 1457 differentially regulated transcripts between the two populations
of TAMs. They also showed that invasive TAMs present genes enriched in Wnt
signaling pathway. These results highlight the role of transcriptomic analyses in
deciphering cellular communication and functions in specific context such as cancer.

In parallel, if we consider that gene regulation is part of a specific intra-cellular
communication network, one step of transcriptomic analysis is functional network in-
ference to reconstruct genes networks in each cell population studied. The ARACNe
algorithm was developed by Manolin to this purpose [Margolin et al. 2006]. It is
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based on mutual information which measures the degree of statistical dependency
between two variables. It enables the identification of candidate interactions by
estimating pairwise gene expression profile mutual information. When linked to
functional inference, this helps to understand the gene expression and regulation in-
side cells which correspond to the processing of the message, coding and decoding,
as well as the response.

63



64



Chapter 2

Objectives of the thesis
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This project started from the hypothesis that the tumor microenvironment mod-
ulates the intra- and intercellular communication network formed by APCs. These
modifications would have consequences on the interaction between the tumor and
the host immune system and a fortiori on the tumor development. Unfortunately,
several limits exist in the literature concerning the study of rare APCs in tissue con-
text. APC subpopulations have been characterized in different tissues (e.g. blood,
spleen, skin), diseases (e.g. cancer, autoimmune diseases), organisms (e.g. mouse,
human). However, in breast cancer, only macrophages and cDC2 have been studied
[Ojalvo, Whittaker, et al. 2010; Wargo et al. 2016] and no comparison has been made
either between tumoral tissue (T) and non-malignant tissue which we call juxtatu-
mor (J), or between different breast cancer subtypes. Our general objective was to
understand the impact of the breast tumor microenvironment on DCs subsets using
system-level analysis.

2.1 First objective: identify subsets of DCs and

infer their biological functions in breast can-

cer using RNA-seq transcriptional profiles.

In the first part of my thesis work, I aimed at identifying DC subpopulations in the
breast tumor microenvironment. More precisely, the project focused on the identi-
fication and characterization of biological functions of DCs subpopulations isolated
from breast tumors of two different subtypes: Luminal (LBC) and Triple-Negative
(TNBC) which is of worst prognosis. Since APCs are rare cells in the breast TME,
we wanted to define tumor-infiltrating APCs subsets at a higher resolution than
what has been done in the literature. Using RNA-seq technology, we generated
the molecular profile of these cells and wanted to infer the biological functions. In
a first step, the goal of this study was to decipher how the TME modulate the
transcriptional profile of APC subsets by comparing APC transcriptional profiles in
tumors and juxtatumors and linking the variation of gene expressions to biological
functions. In a second step, we assessed the impact of the breast tumor heterogene-
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ity on DCs and Monomacs. To do so, we compared the transcriptional profile of
APCs subset isolated from two types of breast cancer, LBC, and TNBC. Finally,
since we had studied the breast tumor microenvironment and its potential impact
on APC subsets communication network, we wondered what was the link between
the characterization of each specific APC populations and the clinical outcome. Are
there any differences at the population level between clinical outcome, and in differ-
ent TME, depending on the breast cancer subtype? From the extraction of specific
gene lists that characterize each population of APCs identified in breast TME, we
aimed to link the subset- and context-specific signatures to the patient outcome.

2.2 Second objective: reconstruct intercellular com-

munication networks

In a second part we studied the cellular communications in order to understand how
cells integrate signals from their environment. To do so, we aimed at creating a
simple communication score based on cell transcriptomic profiles. This score could
be applied to microarray data as well as RNA-seq data. It will be part of a tool
including a manually curated database of ligand and receptors interactions and a
collection of transcriptional profiles of primary cells publicly available in BioGPS
[Mabbott et al. 2013].
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Chapter 3

Results
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3.1 Article 1: Adjustment of dendritic cells to

the breast-cancer microenvironment is subset

specific

The TME is composed of a wide variety of cell types that influence tumor progression
and immune evasion. DCs are APCs that can infiltrate most cancer types. They can
have a protective role in anti-tumor immunity but conversely, they can also promote
immunosuppression [DeNardo, Barreto, et al. 2009; Faget et al. 2012; Ghirelli et al.
2015]. The influence of the TME on the diversity and plasticity of these APCs
remains poorly explored. During my thesis, I analyzed large-scale RNA sequencing
profiles of tumor-infiltrating APCs in 8 luminal (LBC) and 4 triple-negative (TNBC)
breast cancer samples, in close collaboration with Paula Michea, post-doctoral fellow
in the lab.

Based on previous analysis performed in the lab and on the basis of published
studies of human DC subsets on other tissues such as peripheral blood or skin [Bronte
et al. 2016; Guilliams et al. 2016; Zaba, Krueger, and Lowes 2009], we studied four
DCs subsets and macrophages at the phenotypic and transcriptional level in breast
cancer. By comparing the transcriptomes of those APCs from tumor sample and
from non-cancerous (juxtatumoral) tissue of the same patients, we identified tumor-
specific gene signatures for each APC subset that were linked to distinct biological
functions such as cell migration in pDCs. Furthermore, we observed substantial
differences between the APC profiles in TNBC and LBC unveiling the impact of
tumor microenvironment and not only the tissue imprint or the ontogeny on the
behavior of APCs. Interestingly, the pDC signature was linked to a better disease-
free survival in LBC but not in TNBC patients, which implicates that the outcome
associated with the pDC signature is context-dependent.

In conclusion, we found that transcriptional reprogramming of tumor-infiltrating
APCs is subset-specific, suggesting a complex interplay between ontogeny and tissue
imprinting in conditioning DC diversity in the TME. The signatures we generated
are particularly relevant for the identification of biological pathway activation and
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novel biomarkers in APC subsets.
Link to the article: https://www.nature.com/articles/s41590-018-0145-8
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The functions and transcriptional profiles of dendritic cells (DCs) result from the 22 

interplay between ontogeny and tissue imprinting. How tumors shape human DCs is 23 

unknown. Here we used RNA-based next generation sequencing to systematically 24 

analyze the transcriptomes of plasmacytoid pre-DC (pDC), cDC1-enriched cells, cDC2, 25 

CD14+DC, and monocyte/macrophages from human primary luminal breast cancer 26 

(LBC) and triple-negative breast cancer (TNBC). By comparing tumor tissue with non-27 

invaded tissue from the same patients, we found that 85% of the genes upregulated in 28 

DCs in LBC were specific to each DC subset. However, all DC subsets in TNBC 29 

commonly showed enrichment for the interferon pathway, but those in LBC did not. 30 

Finally, we defined transcriptional signatures specific for tumor DC subsets with a 31 

prognostic effect on their respective breast-cancer subtype. We conclude that the 32 

adjustment of DCs to the tumor microenvironment is subset specific and can be used to 33 

predict disease outcome. Our work also provides a resource for the identification of 34 

potential targets and biomarkers that might improve antitumor therapies. 35 
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Dendritic cells (DCs) are antigen-presenting cells (APCs) specialized in triggering adaptive 36 

immune responses through T cell activation1. Different subsets of DCs were defined based on 37 

their ontogeny, phenotype and anatomical location2, 3. Advances in high throughput 38 

technologies have improved DCs classification, by identifying novel subset-specific markers 39 

and molecular signatures4. At steady state, studies in mice and human suggest that ontogeny is 40 

a predominant factor in defining DC subsets identity5, 6, 7, 8. For instance, studies on 41 

plasmacytoid pre-DCs (pDCs)9, conventional DC1 (CD141+DC) and cDC2 (CD1c+DC) from 42 

human blood and tonsils, revealed that pDCs clustered first by ontogeny independently of 43 

their tissue of origin10. Instead, cDC1 and cDC2 were more sensitive to tissue localization as 44 

tonsil cDC1 clustered closer to tonsil cDC2 rather than blood cDC110. Tissue imprinting also 45 

influence DCs function. Gut but not spleen DC induce T cell homing back to the gut through 46 

a retinoic acid- CCR9- and α4β7-dependent mechanism11. This suggests a complex interplay 47 

between ontogeny and tissue imprinting, the relative contribution of which remains a matter 48 

of debate. 49 

During inflammation, complex signals must be integrated by various DC subsets, which may 50 

change their function and molecular features12, 13, 14, 15, 16, 17. DC subset diversity itself is also 51 

modified by inflammation, with the appearance of monocyte-derived inflammatory DCs, 52 

which are absent in homeostatic conditions18. In humans, inflammatory DCs were 53 

characterized in psoriatic skin19, 20, ovarian cancer ascites and rheumatoid arthritis synovial 54 

fluid21. DCs infiltrate most cancer types. They have a protective role in anti-tumor immunity 55 

through the expression of co-stimulatory molecules and inflammatory cytokines, and by 56 

inducing T cell activation22, 23. Conversely, DCs also promote immunosuppression by 57 

secreting anti-inflammatory cytokines24, 25, 26, 27 or by expressing negative immune checkpoint 58 

molecules, which are currently targeted by promising anti-tumor therapies28, 29. DC plasticity 59 
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to various tumor microenvironments (i.e tissue imprinting), as well as specialized ontogeny-60 

driven DC functions, may contribute to such a molecular and functional heterogeneity. 61 

In this study, we performed a systematic comparative transcriptomic study of DC subsets in 62 

human primary breast cancer and matched non-involved juxta-tumor tissue. We found that 63 

transcriptional reprogramming of tumor-infiltrating DCs was DC subset-specific, suggesting a 64 

complex interplay between ontogeny and tissue imprint in conditioning DC diversity in the 65 

tumor microenvironment. Our results also provide high-quality large-scale datasets of primary 66 

tumor-infiltrating DC, which constitute a valuable resource to the biomedical community.67 
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Results 68 

Phenotypically distinct APCs infiltrate human breast cancer  69 

DCs infiltrating breast cancer tissues were identified by multicolor flow cytometry based on 70 

previous human DC subset studies20. Because this was the first in depth characterization of 71 

DC subsets in human breast cancer, we performed preliminary analyses to validate our 72 

strategy. After standard gating to eliminate debris, doublets and dead cells, we selected 73 

CD45+ cells to efficiently exclude CD45- cells, which are mainly tumor cells and fibroblasts 74 

(Supplementary Fig. 1a). We used a lineage (Lin) panel to exclude CD3+ T cells, CD19+ B 75 

cells and CD56+ cells (Supplementary Fig. 1a). CD14 expression was analyzed 76 

independently of the lineage channel to efficiently identify CD14+ DC, which were reported 77 

in cancer 20, 21, 30, 31, 32. In Lin- cells, we next gated on CD11c+HLA-DRhi cells to exclude 78 

CD11c+HLA-DR-/lo myeloid-derived suppressor cells (MDSC)33. HLA-DR+CD123+ pDCs 79 

were identified in the CD11c-  gate (Supplementary Fig. 1a).  80 

In the Lin-CD45+ gate we identified four distinct CD11c+ cell populations defined by their 81 

CD1c and CD14 expression (Fig 1a). Based on a recent standardized nomenclature for blood 82 

DC subsets34, CD1c+CD14- cells matched the cDC2 definition, CD1c-CD14- cells contained 83 

cDC1, and CD1c-CD14+ cells were monocyte/macrophages (hereafter MonoMacs) (Fig. 1a). 84 

We also identified a CD1c+CD14+ cell population that co-expressed monocytes and 85 

macrophage markers such as CD14, CD64, CD163 and cDC2 markers like CD1c, CD206 and 86 

FcεRI (Fig. 1b and Supplementary Fig. 1b). Because these CD1c+CD14+ cells were 87 

phenotypically distinct from MonoMacs, and because they were not systematically 88 

distinguished in previous studies 34, we refer to them hereafter as CD14+ DCs. CD56+CD14+ 89 

cells were reported as interferon-producing killer dendritic cells (IKDC) in the context of 90 

cancer 35, later shown to correspond to activated NK cells36. A similar CD56+CD14+ 91 

phenotype was previously described on a fraction of healthy blood monocytes37. We detected 92 
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CD56+CD14+ cells in breast cancer samples (18% of CD45+CD3-CD19- live cells) 93 

(Supplementary Fig. 1c). Because of their controversial nature, we excluded them using 94 

CD56 in our lineage cocktail (Supplementary Fig. 1c).  95 

Clec9A could not be used to identify cDC1, as it was degraded during enzymatic digestion of 96 

the tissue (Supplementary Fig 1d). CD141 (BDCA3) was promiscuously expressed by all 97 

DCs, including pDCs and MonoMacs (Fig 1b). However, CD141hi cells were found only in 98 

the CD1c-CD14- population (Fig. 1b), hence they were highly enriched in cDC1. Because 99 

CD141hi cells were too few (<100 cells/sample) and rare (5-50% of CD141hi from CD1c-100 

CD14- cells in only half of the patients) to enable further separation into subsets, we 101 

designated the CD1c-CD14- cell subset as “cDC1-enriched” (cDC1e) and used it for further 102 

molecular characterization. MonoMacs, CD11c+HLADR-/lo, CD14+DC, cDC2 and cDC1e did 103 

not express CD16 (Fig. 1b and data not shown). CD32B, described on a non-inflammatory 104 

subset of cDC2 in blood38, was highly expressed by MonoMacs, CD14+DC and cDC2, but not 105 

cDC1e. AXL, which is expressed by blood DC precursors and cDC2, was mainly expressed 106 

by cDC2, CD14+DCs and MonoMacs in breast tumors (Fig 1b). This indicates a clear 107 

discrepancy in DC markers between blood and breast tissue.  108 

To examine the morphology of tumor APCs, we sorted and analyzed them for cytological 109 

features. pDCs presented a typical plasmacytoid morphology9, while cDC2, cDC1e and 110 

CD14+DCs had a dendritic morphology with high nuclear-to-cytoplasmic ratio, and, 111 

compared to pDCs, a less basophilic cytoplasm (Fig 1c). MonoMacs presented an acidophilic 112 

cytoplasm with abundant vacuoles (Fig 1c), as commonly observed in this population.  113 

We quantified the distinct APC subsets across 22 luminal breast cancer (LBC) samples. 114 

MonoMacs were the most abundant (median of 6.1% of CD45+ cells) followed by CD14+DC, 115 

and pDC (0.5% and 0.3% among CD45+ cells, respectively). cDC1e and cDC2 were the less 116 

numerous APC (0.2% of CD45+ cells) (Fig. 1d).  This phenotypic analysis identified and 117 
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quantified 5 APC populations infiltrating human breast cancer: MonoMac, cDC2, CD14+DC, 118 

pDC and cDC1e. 119 

 120 

Tumor-infiltrating DC are enriched in human blood DC signatures 121 

Because the number of APCs from primary breast cancer samples obtained after sorting was 122 

very low (range: 2-12,000 cells), we adapted a protocol aimed to obtain robust RNA 123 

sequencing (RNA-seq) transcriptomes from rare cell populations (Supplementary Fig. 1e). 124 

We only analyzed cell populations with more than 100 events. We generated RNA-seq 125 

profiles of pDC, cDC2, cDC1e, CD14+DC and MonoMac from 13 LBC patients 126 

(Supplementary Table 1), with 44 transcriptomes passing all quality controls 127 

(Supplementary Table 2 and Methods). In average, 60.5% of reads were mapped to the 128 

reference transcriptome across all samples. After filtering and normalization of the RNA-seq 129 

raw data, we obtained an average of 14,417 expressed genes.  130 

To verify the identity of each of the subsets at the RNA level in relation to the flow 131 

cytometric analysis, we checked the expression of various subset-specific and shared DC 132 

markers (Fig. 1e). As expected, pDCs had high expression of IL3RA, CLEC4C and TLR9; 133 

cDC2 had high expression of CD1A, CD1B and FCER1A (FcεRI); CLEC9A, XCR1 and 134 

BATF3, all markers of cDC1, were preferentially expressed in cDC1e; MonoMacs had high 135 

expression of CD14, MERTK and TLR4; and CD14+DC shared the expression of FCER1A 136 

and CD14 with cDC2 and MonoMacs, respectively (Fig. 1e). Gene set enrichment analyses 137 

using public datasets indicated that breast cancer cDC2, cDC1e, and MonoMac were enriched 138 

in blood cDC2, cDC1 (CD141hi), and CD14+ dermal mononuclear phagocytes (DMP) and 139 

MonoMac genes, respectively (Fig. 1f). Hence, robust transcriptional profiles confirmed the 140 

identity of the main DC subsets and MonoMacs infiltrating breast cancer.  141 

 142 
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Tumor-infiltrating DC harbor subset-specific signatures 143 

We performed differential analysis between pDC, cDC2, cDC1e, CD14+DC and MonoMac, 144 

and identified 5,132 differentially expressed genes (DEG) in at least one subset compared to 145 

all other APC (P< 0.05) (Fig. 2a). We then applied a post-hoc test, to extract the upregulated 146 

genes for each APC, that we defined as subset-specific signatures. From a total of 662 subset-147 

specific genes 490 corresponded to pDC, 88 to cDC1e, 40 to MonoMacs and 4 to cDC2. We 148 

found no genes specific to CD14+DC (Fig. 2b). 149 

Among the 10 most significant DEG, the oncogene TCL1A and the anti-apoptotic ZFAT, 150 

were found in the pDC signature; the glutamate receptor GRIP, and the cytokines CCL22 and 151 

IFNL1 (IL-29) in the cDC2 signature; the plasma membrane proteins IL1RL1 (IL33R or ST2), 152 

and XCR1 in the cDC1e signature and ASAH1 and ME1, two RNA encoding for fatty acid 153 

biosynthesis enzymes, in the MonoMac signature (Supplementary Table 3).  154 

We then inferred functions linked to each subset-specific signature (Methods; Fig. 2d). From 155 

a total of 29 pathways (False Discovery Rate (FDR) <0.05), the most significantly enriched in 156 

the pDC gene-network was “anatomical structure involved in morphogenesis” (FDR = 157 

2,7x10-07), including EPHB1, VEGFB and VASH2 (Fig. 2e,f). Two pathways were enriched in 158 

cDC1e network, both linked to hematopoiesis, which included KIT, IL9R, CSF1 (M-CSF) and 159 

ITGA2B (Fig. 2e,f). “PI3K signaling” was the only pathway enriched in the MonoMac 160 

signature (IGF1, SEPP1, HTR2B) (Fig. 2e,f). Thus, subset-specific genes were identified for 161 

LBC-infiltrating pDC, cDC2, cDC1e and MonoMac. Importantly, no pathway directly linked 162 

to immune function was differentially enriched in any of those subsets. 163 

 164 

DC plasticity to the tumor microenvironment is subset-specific 165 

To determine how tumor-infiltrating APC adapt to their microenvironment, we analyzed 166 

matched juxta-tumoral (non-malignant) tissue from 8 donors. pDC, cDC2, cDC1e, CD14+DC 167 
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and MonoMac populations described in the tumors were also identified in the juxta-tumoral 168 

tissue, but with decreased frequency among the CD45+ cells compared to the tumor, which 169 

was statistically significant for pDC (P = 0.078) and cDC1e (P = 0.039) (Fig. 3a and 170 

Supplementary Fig. 2a). We generated transcriptional profiles for each APC subset in the 171 

juxta-tumoral tissue following the RNA-seq workflow used for the tumor DC subsets and the 172 

transcriptomes were generated in parallel, ran in the same batch as their tumor counterpart 173 

and matched for each patient (Supplementary Fig. 2b). We compared tumor and juxta-tumor 174 

transcriptome for each APC subset (Supplementary Fig. 2b). We identified 607 DEG for 175 

pDC, 348 DEG for CD14+DC, 236 DEG for MonoMacs, 45 DEG for cDC1e, and 22 DEG for 176 

cDC2 resulting in a total of 1,258 DEG (FDR<0.05; Log2 fold change (FC) >1) that were 177 

kept for further analysis (Fig. 3b). DEG from all DC subsets were increased in the tumor as 178 

compared to the juxta-tumor (Fig. 3b). We identified 7 genes with highest significance 179 

(FDR= 1,72x10-17– 4,1x10-10) in CD14+DC compared to DEG from other APC subsets, 180 

which included the secretoglobulin, TFF1 and TFF3, which have a function in mucosal 181 

healing. Conversely, DEG from MonoMacs were mostly upregulated in juxta-tumor (195 182 

DEG) as compared to tumor (41 DEG) samples. Among the genes most significantly 183 

upregulated in juxta-tumor MonoMacs was CD163L, which is associated with M2 184 

polarization (Fig. 3b).  185 

Among the top five most increased transcripts in the tumor APCs compared to juxta-tumor, 186 

we detected CD5 in pDCs (Fig. 3c) and the secretoglobulins SCGB2A2 and SCGB1D2 in 187 

cDC2. SCGB2A2 was also found in the top 5 DEG of CD14+DC and pDC in the tumor versus 188 

juxta-tumor comparison (Fig. 3c and Supplementary Fig. 2b). TNFRSF13B (also named 189 

TACI), a TNF receptor superfamily protein, was among top 5 DEG upregulated in tumor 190 

compared to juxta-tumor cDC1e, whereas the chemokine CCL7 was highly upregulated in 191 
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tumor compared to juxta-tumor MonoMacs (Fig. 3b). AGR2 was among the top upregulated 192 

genes in tumor compared to juxta-tumor cDC2, CD14+DC and MonoMacs (Fig. 3b).  193 

We next analyzed whether the DEG between tumor and juxta-tumor APCs were shared across 194 

subsets. Strikingly, most of the genes were differentially expressed exclusively in one (1074 195 

genes) or two (184 genes) subsets (Fig. 3d). Only 21 DEG were shared with two other 196 

subsets, and none with three or four (Fig. 3d, e). This indicated that the tumor-induced 197 

transcriptional reprogramming of APC is subset-specific. 198 

The differential expression of SCGB2A2 a gene previously associated to mammary epithelial 199 

tumor cells39, 40, raised questions regarding its tumor- versus immune cell-specificity41. We 200 

excluded the possibility of a contamination by tumor cell mRNA based on our stringent 201 

gating strategy (Supplementary Fig. 1 and Fig. 1a), and on the observation that epithelial-202 

specific mRNA, such as EPCAM, were not detected among DEG in tumor pDCs 203 

(Supplementary Fig. 2b). Considering that SCGB2A2 was detected in a transcriptome 204 

analysis of blood pDC from healthy donors 42, these observations suggest that pDC might 205 

express SCGB2A2 mRNA endogenously at steady state and in inflammatory conditions. In 206 

conclusion, we showed that DCs adapt to the tumor microenvironment in a subset-specific 207 

manner. 208 

 209 

Immune pathways are absent from APC tumor-emerging genes of APC 210 

For each APC, we analyzed the functions linked to tumor-emerging genes (DEG 211 

upregulated), meaning enriched in tumor, as compared to juxta-tumor APC. Pathway 212 

enrichment analysis identified “actomyosin structure organization”, and “proteinaceous 213 

extracellular matrix”, in pDC, “receptor protein tyrosine kinase signaling” in CD14+DC, and 214 

“kinetochore” in MonoMacs (Fig. 4a). Major genes driving enriched pathway included the 215 

growth factor CTGF in pDC, AGR2 in CD14+DC, and the mitotic checkpoint BUB1 in 216 
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MonoMac (Fig. 4b).  Because we did not identify any immune function enrichment with this 217 

unbiased approach, we specifically investigated the expression of immune checkpoints 218 

important in anti-tumor immunity28,29. Out of 19 positive and 15 negative immune 219 

checkpoints (Methods), we found the following that were differentially expressed in tumor as 220 

compared to juxta-tumor APC: TNFRSF14 (HVEM) in pDC, VTCN1 (B7-H4) and 221 

CEACAM6 in cDC2 and CD14+DC, and CEACAM6 in MonoMacs (Fig. 4c). In conclusion, 222 

tumor-emerging genes from LBC APC are poorly linked to immune functions.  223 

 224 

Transcriptomics profile of tumor APC depends on breast cancer subtype  225 

In order to evaluate the impact of tumor type on DC transcriptional profile, we generated the 226 

transcriptomes of pDC, cDC2 and CD14+DC from four TNBC samples and of cDC1e and 227 

MonoMac from four TNBC samples (Supplementary Fig. 3 and Supplementary Table 1). 228 

Principal component analysis of tumor DC transcriptional profiles using the 500 most variant 229 

genes indicated that DCs clustered based on cancer subtype rather than by DC subset (Fig. 230 

5a), suggesting a differential tumor imprint on DC. pDC separated from the other APC 231 

subsets in both cancer types (Fig. 5a). To identify the genes upregulated in TNBC compared 232 

to LBC for each DC subset, we performed differential analysis (FDR<0.05, LogFC>1). 233 

MonoMacs had the highest number of DEG (2,930 genes), followed by CD14+DC (2,662 234 

genes) and pDC (1,434 genes) (Fig. 5b). cDC1e (605 genes) and cDC2 (521 genes) were the 235 

less impacted by the tumor type (Fig. 5b). The majority of DEG (65% of up-regulated genes 236 

in TNBC compared to LBC) were exclusively upregulated in one DC subset (Fig. 5c). Four 237 

DEG (IFNL1, IFNB1 and ISG2 and ISG15), all associated to the IFN pathway, were 238 

upregulated in TNBC compared to LBC (Fig. 5d).  These data indicate that two different 239 

types of cancer had a major impact on the transcriptome of infiltrating DC and MonoMac. 240 

 241 
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TNBC promotes a shared immune-related signature in DC 242 

PDC had the highest number of enriched pathways (166) in comparison to others APC (Fig. 243 

6a). MonoMac, cDC2 and CD14+DC shared 49%, 36% and 29% of their enriched pathways 244 

with at least another subset, respectively (Fig. 6a). In contrast, cDC1e shared only 6% of their 245 

enriched pathways with other subsets (Fig. 6a). These results suggest that enriched pathways 246 

in TNBC APCs were mostly subset-specific, indicating a functional specialization for each 247 

subset. 248 

We then focused on the pathways that were commonly enriched in APCs in TNBC. We 249 

identified 38 pathways, including those linked to immune-related functions, that were shared 250 

with at least another APC subset (Fig. 6b and Supplementary Fig. 4a). In particular, 251 

“chemokine activity”, “cytokine activity”, “cytokine receptor binding” and “IL-10 signaling” 252 

were shared between cDC2 and CD14+DC (Supplementary Fig. 4a). Type 1 IFN related 253 

pathways, such as “IFNα/β signaling” and “negative regulation of viral life cycle” were 254 

commonly enriched in all DC subsets (Fig. 6b). From all type 1 IFN related pathways, we 255 

selected the significantly enriched genes, including IFNB1, ISG15 and ISG20 and classified 256 

them into distinct metagenes according to their contribution to IFN production or the IFN 257 

response (Supplementary Fig. 4b). Because both metagenes were strongly correlated across 258 

all TNBC samples (Fig. 6c) we pooled them into a single “IFN pathways” metagene, which 259 

was increased in all APCs in TNBC compared to APC in LBC (Fig. 6d). As a control, the 260 

“ECM organization pathway” metagene (Supplementary Fig. 4c) was significantly increased 261 

only in TNBC MonoMacs (Fig. 6d). We also analyzed the expression of a “costimulatory” 262 

metagene (Supplementary Fig. 4d) that was significantly increased only in TNBC cDC2 263 

(Fig. 6d) and highly correlated with IFN pathways metagene (r=0,72, P=5,33x10-11) (Fig. 6e). 264 

When analyzing the dependency of individual checkpoint genes with the IFN pathways 265 

metagene, we found that genes such as CD48 (SLAMF2) in pDC, CD80 in cDC2, and 266 
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SLAMF1 in cDC1e highly correlated with IFN pathways (Fig. 6f). In contrast, TNFSF4 in 267 

pDC, TIMD4 in cDC2, and CD70 in CD14+DC were not correlated with the IFN pathway 268 

metagenes (Fig. 6f). This reveals two groups of checkpoint molecules that are differentially 269 

associated to the IFN pathways (Supplementary Fig. 4e). Thus, the APC transcriptomes in 270 

TNBC strongly differs from that of APC in LBC, with a common IFN pathway upregulated in 271 

all TNBC APC, revealing a specific contribution of TNBC to APC reprograming.  272 

 273 

Subset-specific signatures of tumor APC predict breast cancer survival 274 

In order to assess whether the APC subset-specific signatures may have a prognostic impact, 275 

we took advantage of the publicly available dataset from whole breast cancer transcriptome 276 

METABRIC, which includes patient survival clinical annotation43. Because of the differences 277 

in the APC transcriptional profiles, we separately investigated LBC and TNBC datasets. We 278 

calculated a Z-score for each APC subset-specific signature44 (Supplementary Fig. 5a). We 279 

found that high pDC, cDC2 and cDC1e scores significantly predicted disease-free survival in 280 

LBC (P = 0.0018, 0.0183, and 0.0111, and Hazard Ratio (HR) of 1.45, 1.32, and 1.35, 281 

respectively) (Fig. 7a). On the contrary, a high MonoMac score was linked to bad prognosis 282 

in LBC (P = 0.005; HR= 0.72), and TNBC (P = 0.0079; HR: 0.58) (Fig. 7a). A high cDC1e 283 

score was linked to good prognosis in TNBC (P = 0.0083; HR: 1.72), with an increased 284 

significance than for LBC (Fig. 7a). pDC and cDC2 scores had no prognostic value in TNBC 285 

(Fig. 7a), suggesting various signatures may have a different clinical impact according to the 286 

DC subset and the breast cancer type.  287 

A CD103+DC gene signature was reported to correlate with good prognosis in several tumor 288 

types, including breast cancer44. Using the METABRIC dataset, we found that the CD103+DC 289 

gene signature score had significant impact on LBC survival (HR: 1.58; P<0.01) (Fig. 7b), 290 

but not on TNBC prognosis (Fig. 7b). We then assessed the prognostic value of blood pDC 291 
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signature7. Blood pDC signature score had no significant impact on LBC nor TNBC survival 292 

outcome (Fig. 7c). Hence, prognostic significance was most efficiently reached in a given 293 

tumor using DC signatures generated from the same tumor type. Last, no prognostic value 294 

associated to the common IFN signature was found TNBC patients (Fig. 7d), showing that 295 

subset-specific signatures harbored more prognostic information than a shared signature. 296 

We then determined whether subset-specific signatures could be independently associated to 297 

survival when integrated with the Nottingham Prognostic Index (NPI), a reference clinical 298 

score determining survival45. We observed that all significant scores in univariate analysis 299 

were kept in the multivariate analysis in LBC: pDC (P = 0.0072; HR=1.37), cDC2 (P = 300 

0.0041; HR=1.27), cDC1e (P = 0.0041; HR=1.39), MonoMac (P = 0.025; HR=0.77) and in 301 

TNBC: cDC1e (P = 0.0058; HR=1.76), MonoMac (P = 0.049; HR=0.67) (Table 1), 302 

indicating that subset-specific APC signatures in LBC and TNBC were independent 303 

prognostic factors associated to disease-free survival. These results demonstrate the relevance 304 

of generating subset and breast cancer type-specific signatures to predict clinical outcome. 305 
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Discussion 306 

Here we have used DC-specific markers to identify resident DC populations (cDC2, cDC1, 307 

pDC), MonoMacs and subsets that share many features with previously described 308 

inflammatory DCs (CD14+DCs)2, 21 to provide a broad and systematic coverage of currently 309 

identified APC subsets in two types of breast cancer (LBC and TNBC).  310 

Our analysis revealed pDC as the most distinct APC subtype, as reported before in various 311 

tissues and species5, 6, 7, 10, 46, 47. We propose that part of such pDC-specific signature is 312 

determined by ontogeny, as supported by a number of genes identified in the pDC signatures 313 

independently of the tissue type, such as CLEC4C, GZMB, and TCF46, 7, 10. Other pDC 314 

signature genes such as the basal membrane laminins LAMA4, LAMB1 and LAMC1, not 315 

previously associated to a pDC-specific signature6, 7, might be attributed to tissue imprint, or a 316 

combined effect between ontogeny and tissue-driven factors. Contrary to pDC, CD14+DC and 317 

cDC2 had a very close similarity to other subsets. Comparative analyses of DC subsets across 318 

multiple studies may uncover conserved, ontogeny-determined signatures, as opposed to more 319 

plastic and environmental-driven transcriptional modifications.  320 

In high-throughput studies of tumor-infiltrating APC in the mouse48, 49, 50, only two had 321 

performed a comparison of tumor and non-tumor tissue48, 50, but have focused on a single 322 

APC population: CD11b+DC53 or macrophages48, 50, and did not systematically compare 323 

diverse APC in regards to their adaptation to a tumor context. Here, by systematically 324 

comparing the tumor and the juxta-tumor non-involved tissue for each APC subset 325 

transcriptome, we uncovered emergent features in tumor-infiltrating as compared to the non-326 

tumor tissue APC. This imprinting was different for distinct APC subsets, both qualitatively 327 

and quantitatively, indicating that in breast cancer there is no unique signature that could be 328 

attributed to tissue imprinting, as was previously suggested in other anatomical sites6, 7, 8. We 329 



 16

propose that the effect of the tissue microenvironment on innate immune cells should be 330 

considered and interpreted in close interaction with subset-specific molecular features.  331 

Recently, cDC1 was proposed as the main APC subset driving antitumor response in mice 332 

tumor models in a type 1 IFN-dependent manner44, 51, 52. In our study, cDC1e expressing 333 

XCR1 and CLEC9A, as well as other cDC1-specific markers, had no increase in genes related 334 

to DC activation or antigen presentation, as compared to the other APC signatures, neither in 335 

LBC nor in TNBC.  Moreover, all human APC transcriptome from TNBC, and not only 336 

cDC1e, were enriched IFN response and IFN production genes indicating that, at least in 337 

human breast cancer, all DC can upregulate an IFN signature. Further experiments are needed 338 

to determine whether cDC1 is key to antitumor immune responses in humans.  339 

Tumors have been segregated based on their low versus high immune infiltrate (“cold” versus 340 

“hot” tumors)53. The first was characterized by a low T cell infiltration, and an increase in 341 

angiogenic and extracellular matrix factors54, 55. The second had higher T cell infiltrates and 342 

increased chemokine and type 1 IFN expression51, 54, 55. Both tumor types were associated 343 

with distinct mechanisms of immune escape53, 54, 55. The breast cancer subtypes investigated 344 

here, TNBC and LBC, have high and poor immune infiltrate, respectively56. LBC DCs, and 345 

especially LBC pDCs, were enriched in “vascular wound healing” and “extracellular matrix” 346 

pathways, whereas TNBC DC subsets were enriched in immune signatures, including IFN 347 

pathways. Hence, our findings identify DCs as another level of immune-based stratification of 348 

tumors. This could serve to study the differential contribution of DC subsets in mechanisms 349 

of immune escape across different tumor types.  350 

TNBC is a rare and more aggressive breast cancer subtype57. Clinical trials using checkpoints 351 

blockers are ongoing in TNBC with promising results14, 58. Hence, there is a major interest in 352 

precisely characterizing the immune compartment in these patients. Here, we provide a 353 

detailed analysis of APC subsets in TNBC. In particular, cDC1e but not pDC or cDC2- 354 
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specific signatures were predictors of survival in TNBC in contrast to LBC. Hence, our data 355 

can be exploited to identify TNBC-specific prognostic signatures, as well as promising targets 356 

to better direct immune checkpoint-targeting therapies.  357 

Overall, our study provides a detailed and comprehensive molecular profiling of tumor-358 

infiltrating DC subsets and MonoMac in human cancer, which may serve as a reference 359 

dataset to increase biological knowledge on DC in disease context. Our findings shed light on 360 

the rules dictating DC diversity and adaptation to complex microenvironments, such as in 361 

cancer, through transcriptional reprograming. Our data will help to dissect the individual 362 

contribution of DC subsets to anti-tumor immunity, and provide a valuable resource to 363 

identify potential targets and biomarkers to better direct cancer immunotherapies. 364 

  365 
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Figure legends 581 

 582 

Figure 1 Phenotypic and molecular characterization of innate APC infiltrating breast 583 

cancer tissue. a, Representative flow cytometry contour plots showing the gate strategy to 584 

distinguish DC subsets from MonoMac, and their frequency in breast cancer samples. b, 585 

Representative histograms of mean fluorescent intensity of CD141, CD16, CD163, AXL, and 586 

CD32B expression by the indicated APC subset in breast cancer samples (n=3 donors with 587 

similar results). c, Representative Giemsa-staining of cytospin preparation to analyze the 588 

morphology of FACS-sorted APC from tumor (n=3 donors with similar results). d, Frequency 589 

of APC subsets determined by flow cytometry, among total live cells (left), and CD45+cells 590 

(right) (n=22 donors). Median is shown in red. e Boxplots showing the gene expression as 591 

Log2 (Read counts +1) of DC selective markers by tumor-isolated APC. Color code 592 

represents each APC subset. Box limits indicate 1st quartile, median and 3rd quartile. Each dot 593 

represents a sample. f, BubbleMap analysis showing the enrichment of indicated APC public 594 

signatures (Carpentier et al.59) in pairwise comparisons of tumor-isolated APC 595 

transcriptomes. Frameworks indicates the expected signature enrichment. The legend 596 

indicates color intensity and size code for Normalized Enrichment Score (NES) and False 597 

Discovery Rate (FDR), respectively. e,f Transcriptomics data are from 6-10 tumor-isolated 598 

APC (pDC n= 8, cDC2 n=10, cDC1e n=6, CD14+DC n=9, and MonoMac n=11). 599 

 600 

Figure 2 Subset-specific signatures defining tumor APC. a, Pie chart showing the 601 

proportion of differentially expressed genes (DEG) (up/down) among tumor-isolated APC 602 

subset after one-way ANOVA test, and Tukey post-hoc correction (P < 0.05). b, Bar plots 603 

indicate the number of differentially upregulated genes in one subset versus all the others 604 

(left), and the heatmap (right) the relative expression of each gene as z-score. c, 605 
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Bioinformatics pipeline used to perform functional inference from subset-specific gene 606 

signatures. d, Functional network inference showing the most significantly overrepresented 607 

biological pathway in pDC, cDC1e, and MonoMac gene signatures from tumor (FDR <0.05). 608 

Color code represent distinct pathways. Node size reflects P-value, as specified. (e) Boxplots 609 

showing the expression as Log2 (Read counts +1) of indicated genes from the most 610 

significantly enriched pathways found in e for pDC, cDC1e, and MonoMac. Color code 611 

represents each APC subset. Box limits indicate 1st quartile, median and 3rd quartile. Each dot 612 

represents a sample. d, e Transcriptomics data used for network inference analysis are from: 613 

pDC n= 8, cDC1e n=6, and MonoMac n=11. 614 

 615 

Figure 3 Tumor-emergent genes from innate APC are subset-specific. a, Frequency of 616 

APC subsets as determined by flow cytometry, among CD45+ or total live cells, between 617 

tumor (black), and juxta-tumor (grey) from luminal breast cancer (LBC) samples (n=8 paired-618 

donors). Median is shown in red. *P<0.05, **P <0.01 (two-tailed Wilcoxon-test). b, Volcano 619 

plots show the DEG (FDR < 0.05) between tumor and juxta-tumor for each APC subset 620 

transcriptome. Genes upregulated in the tumor (T) are in black (Log2 (Fold change) > 1), and 621 

in the juxta-tumor (J) in grey (Log2 (Fold change) < -1). Number of DEG for each condition is 622 

indicated. c, Barplots show the Log2 (Fold change) value from the top five upregulated (black) 623 

or downregulated (grey) DEG in the tumor for each APC subset d, Venn diagram showing 624 

total DEG between tumor and juxta-tumor from each subset. The number of shared DEG by 625 

all subset is in the center of the diagram. e, Barplots showing the number of DEG unique (0) 626 

or shared with another subset (1,2, 3, or 4). The total number of DEG per section is indicated. 627 

Colors represent the DEG for the corresponding subset. (b-e) DEG are from: pDC n=3, cDC2 628 

n=4; cDC1e n=4, CD14+DC n=3, MonoMac n=5 independent matched-donors from LBC 629 

samples) obtained by likelihood ratio test from edgeR R package. 630 
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 631 

Figure 4 Absence of immune function among enriched pathways from tumor-632 

upregulated genes. a, Functional network inference results for pDC, CD14+DC and 633 

MonoMac gene signatures from luminal breast cancer (LBC) (FDR <0.05). Color code 634 

represent distinct pathways. Node size reflects P-value, as specified. b, Boxplots showing the 635 

expression as Log2 (Read counts +1) of the indicated genes from the most significantly 636 

enriched pathways found in a for pDC, CD14+DC, and MonoMac from LBC c, Boxplots 637 

showing the expression as Log2 (Read counts +1) of the checkpoints genes: VTCN1, 638 

CEACAM6, and TNFRSF14 between tumor and matched-juxta-tumor from LBC. The entire 639 

list of checkpoints is listed in Online Method. Only checkpoint genes differentially expressed 640 

in at least one subset were shown.  * P <0.05, **P<0.01, *** P <0.005; **** P <0.001 641 

(likelihood ratio test from edgeR R package). (a-c) Transcriptomic data are from: pDC n=3, 642 

cDC2 n=4; cDC1e n=4, CD14+DC n=3, MonoMac n=5 independent matched-donors from 643 

LBC samples). (b-c) Color code represents tumor (black) and juxta-tumor (grey). Box limits 644 

indicate 1st quartile, median and 3rd quartile. Each dot represents a sample. 645 

 646 

Figure 5 Transcriptional profile of innate APC subset is breast-cancer subtype 647 

dependent. a, Principal Component Analysis (PCA) showing the clustering of transcriptional 648 

profiles of innate APC subsets isolated from LBC and TNBC tumors. The 500 most variant 649 

genes were used and PC1 and PC2 projected. The variance for each axis is indicated. The 650 

same PCA colored by subset (left), and by breast cancer type (right) is shown. b, Volcano 651 

plots show the DEG for each subset (FDR P value < 0.05). Genes upregulated in the triple-652 

negative breast cancer (TNBC) are in black (Log2 (Fold change) > 1), and in the luminal 653 

breast cancer (LBC) in grey (Log2 (Fold change) < -1). The number of DEG for each 654 

condition is described. c, Venn diagram of total DEG upregulated in TNBC, show the shared 655 
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DEG for each subset. d, Boxplots showing the expression as Log2 (Read counts +1) of the 656 

four genes upregulated in TNBC compared to LBC by all APC subsets (from Venn diagram 657 

core). Color code represents the tumor type. Box limits indicate 1st quartile, median and 3rd 658 

quartile. Each dot represents a sample. * P <0.05, ** P <0.01, *** P <0.005.  (likelihood ratio 659 

test from edgeR R package). (a-d) Transcriptomics data are from 6-10 LBC donors (pDC n= 660 

8, cDC2 n=10, cDC1e n=6, CD14+DC n=9, and MonoMac n=11), and from 3-4 TNBC 661 

donors (pDC n= 3, cDC2 n=3, cDC1e n=4, CD14+DC n=3, and MonoMac n=4). 662 

 663 

Figure 6 Type-1 IFN pathway is upregulated in all TNBC-APC subsets. a, Functional 664 

pathways analysis from up-regulated DEG in TNBC APC, and the resulting number of genes. 665 

Pie chart indicate the percentage of shared (black) or specific (grey) pathways b, Heat map 666 

showing the relative significance as -Log(FDR) in enriched pathways (FDR <0.05) shared 667 

between at least two APC subsets. highlighted immune pathways are in red. IFN metagenes 668 

were extracted from significantly enriched pathways and divided in IFN production, and IFN 669 

response. c, Scatterplot showing the correlation between IFN response and IFN production 670 

(Log2 (expression)) of all APC subsets isolated from LBC or TNBC. d, Violin plots showing 671 

IFN pathways, ECM organization and Costimulatory metagene expression for each APC 672 

subset from LBC, and TNBC. *P<0.05, ** P <0.01, *** P <0.005, ns >0.05 (two-sided 673 

Wilcoxon test). e, Scatterplot showing the correlation between IFN pathways and 674 

Costimulatory metagenes (Log2(expression)) of all APC subsets isolated from LBC or 675 

TNBC.  f, Scatterplot showing the correlation between IFN pathway metagene and individual 676 

costimulatory genes: CD48, CD80, SLAMF1, TNFSF4, TIMD4, CD70 (Log2 (expression)) 677 

for the indicated APC from LBC, and TNBC. c-f LBC (green) or TNBC (blue). c,d,f 678 

Correlation coefficient and p-value are indicated on the plot (Pearson correlation test). LBC 679 
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data are from: pDC n= 8, cDC2 n=10, cDC1e n=6, CD14+DC n=9, and MMAC n=11, and 680 

TNBC data from:(pDC n= 3, cDC2 n=3, cDC1e n=4, CD14+DC n=3, and MMAC n=4. 681 

 682 

Figure 7 Subset-specific signatures are linked to distinct disease-free survival depending 683 

on the subset and breast cancer type. a, Kaplan–Meier plots indicating the probability of 684 

disease-free survival on time, associated to the corresponding subset score in LBC (up), and 685 

TNBC (down) patients. High expression of subset-specific signatures ratio was colored 686 

regarding the corresponding subset. Log-rank test P-val and Hazard Ratio (HR) are written on 687 

each plot c, Kaplan–Meier plot indicate the probability of disease-free survival on time, 688 

associated to previously reported CD103+DC signature44 in LBC (up) and TNBC (down) 689 

patients. High expression of CD103+DC signature Z-score was colored in brown. Log-rank 690 

test p-val and Hazard Ratio (HR) are written. d, Kaplan–Meier plot indicate the probability of 691 

disease-free survival on time, associated to previously reported pDC signature7 in LBC (up) 692 

and TNBC (down) patients. High expression of pDC signature Z-score was colored in brown. 693 

Log-rank test p-val and Hazard Ratio (HR) are written. e, Kaplan–Meier plot indicate the 694 

probability of disease-free survival on time, associated to the APC common IFN signature 695 

score in TNBC patients. High expression of IFN signature Z-score was colored in brown. 696 

Log-rank test p-val and Hazard Ratio (HR) are written. * P <0.05, ** P <0.005, *** P 697 

<0.001, NS P >0.05. (a-e) Transcriptomics data are from METABRIC public dataset (LBC 698 

n=1043, and TNBC n=259). 699 

  700 
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Table 1: Multivariate Cox regression of predictors of disease-free survival influencing the 701 
disease-free survival of breast cancer patients. 702 
 703 

LBC TNBC 

Variables HR p-value  HR p-value 

pDC signature and NPI 

NPI > 5.4 1 - - - 

NPI ≤ 5.4 0.31 7.5e-13 - - 

pDC signature ratio High 1 - - - 

pDC signature ratio Low 1.37 0.0072 - - 

cDC2 signature and NPI 

NPI > 5.4 1 - - - 

NPI ≤ 5.4 0.3 1.8e-13 - - 

cDC2 signature ratio High 1 - - - 

cDC2 signature ratio Low 1.27 0.041 - - 

cDC1e signature and NPI 

NPI > 5.4 1 - 1 - 

NPI ≤ 5.4 0.29 7.6e-14 0.27 1.1e-09 

cDC1e signature ratio High 1 - 1 - 

cDC1e signature ratio Low 1.39 0.0041 1.76 0.0058 

MMAC signature and NPI 

NPI > 5.4 1 - 1 - 

NPI ≤ 5.4 0.31 5.9e-13 0.28 3.9e-09 

MMAC signature ratio High 1 - 1 - 

MMAC signature ratio Low 0.77 0.025 0.67 0.049 
NPI, Nottigham Prognostic Index; HR, Hazard Ratio; p-value < 0.05 marked in bold font shows statistical 
significant. 

 704 
 705 
  706 
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ONLINE METHODS  707 

Human samples and patient characteristics 708 

Fresh samples of tumor and juxta-tumor (exempt of malignant tumor cells) tissues of 709 

untreated breast cancer patients were obtained from Hôpital de l’Institut Curie (Paris) in 710 

accordance with Institut Curie ethical guidelines. Luminal and triple-negative breast cancer 711 

types were included in the study according to the hormonal receptor status. Patient 712 

characteristics are summarized in Supplementary Table 2. 713 

 714 

Single cell suspension from human samples 715 

Tumor and juxta-tumor tissue were cut into small pieces and digested in CO2-independent 716 

medium (Gibco) containing 5% FBS (HyClone) 2mg/mL collagenase I (C0130, Sigma), 717 

2mg/mL hyaluronidase (H3506, Sigma) and 25 µg/mL DNAse (Roche) by three round of 15 718 

min incubation in agitation at 37°C. The samples were filtered on a cell strainer 40µm 719 

(Fischer Scientific) and diluted in PBS 1X (Gibco) supplemented with 1% decomplemented 720 

human serum (BioWest), and EDTA 2 mM (Gibco). After centrifugation, cells were 721 

resuspended in the same medium and counted before being assessed by flow cytometry or 722 

sorted.  723 

 724 

Antibodies and cell sorting  725 

For phenotypical characterization, single cell suspension was stained with the following anti-726 

human antibodies: CD3-Alexa700 (557943; clone: UCHT1) CD19-Alexa700 (557921; clone: 727 

HIB19), CD56-Alexa700 (557919; clone: B159) or -BUV737 (564448; clone: NCAM16.2 ), 728 

CD163-BV786 (741003; clone: GHI/61), CD11c-PECy5 (551077; clone:B-ly6) or -PE-729 

CF594 (562393; clone:B-ly6), CD123-BV650 (563405; clone: 7G3), HLA-DR-BUV395 730 

(564040; clone: G46-6), and CD45 APC-Cy7 (557833; clone: 2D1) from BD. CD14-Qdot605 731 
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(Q10013; clone: TüK4) from Life Technologies. CD14-BV605 (301833; clone:M5E2), 732 

CD16-BV510 (302047 clone: 3G8), CD123-PE-Cy7 (306010; clone: 6h6), CD1c-PE 733 

(331506; clone: L161), and HLA-DR BV711 (307643; clone: L243) from Biolegend. CD1c-734 

PerCP-eFluor710 (46-0015-42; clone: L161), FceR1-APC (17-5899-42; clone: AER-37) from 735 

eBioscience. AXL-AlexaFluor488 (FAB154G; clone: 108724), and CD32B-APC 736 

(FAB1330A; clone:  190723) from R&D. CD141-PE (130-098-841; clone: AD5-14H12) 737 

from Miltenyi Biotec. For DC sorting, we used the following antibodies: CD45-BV570 738 

(304033; clone: HI30) from Biolegend, CD14-FITC (555527; clone: 10.1) from BD, and 739 

HLA-DR-APCeFluor780 (47-9956-42; clone: LN3) from eBioscience instead of the 740 

corresponding marker.  Single cell suspension was of tumor-digested cells were sorted in a 741 

BD FACS Aria III upgrade using the purity mode, a 100µm nozzle loop, and at low pressure 742 

(20psi). DC subsets were sorted in eppendorf tubes containing RPMI+5% FBS (HyClone) for 743 

morphological analysis. Once the morphology for each subset validated, and because of the 744 

low numbers of tumor-infiltrating APC, we directly sorted tumor-APC in TCL buffer 745 

(Qiagen) supplemented with 1% of β-Mercaptoethanol (SIGMA) for RNA-seq experiments.  746 

 747 

Morphological analysis 748 

Sorted cells were subjected to cytospin and colored with May-Grunwald/Giemsa staining. 749 

Pictures were taken with a ProgRes SpeedXT core 5 Microscope Camera (JENOPTIK) on a 750 

Leica DM 4000 B microscope. 751 

 752 

RNA sequencing  753 

General RNA-seq workflow was summarized in Supplementary Fig. 1. Briefly, RNA from 754 

sorted cells (>100 cells) was extracted by using Single Cell RNA Purification Kit (Norgen 755 

Bioteck), including on-column DNase (Qiagen) digestion, as described by the manufacturer's 756 
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protocol. RNA integrity was confirmed with RNA 6000 Pico Kit (Agilent Technologies) in 757 

BioAnalyzer. cDNA was generated with SMARTer Ultra Low input RNA for Illumina 758 

Sequencing-HV(Clontech), following manufacturer’s protocol. 14 cycles were used to 759 

amplify cDNA. Quantity and quality of cDNA was assessed with Qubit dsDNA high 760 

sensitivity (Thermofisher), and Agilent Bioanalyzer using nanochip (Agilent Technologies), 761 

respectively. Multiplexed pair-end libraries 50nt-length, were obtained using Nextera XT kit 762 

(Clontech). Sequencing was performed in a same batch in Illumina HiSeq 2500 using an 763 

average depth of 15 million reads, 50nt-length reads per samples were obtained. Library, 764 

sequencing, and quality control of the sequencing were performed by the NGS facility at 765 

Institut Curie. 766 

 767 

RNA-seq data pre-processing  768 

Reads were mapped to the human genome reference (hg19/GRCh37) using Tophat2 software 769 

version 2.0.660. Gene expression values were quantified as read counts using HTSeq-count61. 770 

We filtered out genes with less than five read counts in at least 25% of samples, and 771 

normalized the raw data using RUVg method (RUVSeq R package)62. This method identifies 772 

technical noise based on negative control genes that should be affected by unwanted 773 

variations but not affected by biological effects of interest. We selected the 5,000 less variant 774 

genes as negative control genes. From the 82 samples sequenced, only two were excluded 775 

from this study, corresponding to tumor and juxta-tumor pDC. These sampled were 776 

expressing low levels of pDC-specific markers, and high expression of macrophage markers. 777 

For exploratory analyses, we performed Principal Component Analysis (PCA) of the 500 778 

most variant genes, based on inter-quartile range method (IQR) (EMA R package)63, of APC 779 

transcriptomes from LBC and TNBC tumor samples. Data were log2-transformed, centered 780 
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and scaled. PCA was performed using the FactoMineR R package. Z-score of log2-781 

transformed gene expression, scaled by gene, were represented in a heatmap color. 782 

 783 

Geneset enrichment analysis 784 

We selected APC specific genesets from literature59 and perform enrichment analysis on our 785 

dataset selected LBC-T samples. To do so, we used BubbleMap module of the BubbleGUM 786 

software which perform GSEA analyses with multiple testing correction64. 787 

 788 

Statistical analysis  789 

Significant differences in the APC frequency from total live cells or the CD45+ cells, were 790 

performed using ANOVA, followed by a post-hoc test. For paired samples in the tumor 791 

versus juxta-tumor comparison of APC we performed a Wilcoxon test, by using the GraphPad 792 

Prism 6.0.   793 

To generate subset-specific signature of APC for each condition, we performed one-way 794 

ANOVA differential analysis test on the Log2 expression data of the five APC. We kept only 795 

the genes differentially expressed between at least two subsets (P <0.05). We then performed 796 

a Tukey post-hoc test to select genes exclusively expressed in one subset compared to all the 797 

others, (P <0.05). Those upregulated genes were defined as the subset-specific signature.  798 

To identify genes that vary between tumor and juxta-tumor, for each APC separately, we 799 

performed pairwise comparison of gene expression matched samples using the generalized 800 

linear model (GLM) likelihood ratio test of EdgeR R package65. Only DEG with FDR < 0.05 801 

and Log2 FC > 1 were considered as differentially expressed. The same analysis was applied 802 

to find differentially expressed genes between TNBC and LBC samples for each subset. 803 

Metagenes expression was defined as the median expression in Log2 of the genes of interest 804 

in each sample. Differential expression analysis of metagenes was done using non-paired 805 
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Wilcoxon test. Correlations were assessed using Pearson correlation test, and a threshold of P 806 

< 0.05. 807 

All RNA-seq statistical analyses were performed using R software (Version 3.2.3). 808 

 809 

Regulatory network and functional inference 810 

We extracted the gene expression matrix for each subset, and each comparison. The 811 

conditions were as followed: 1) all subsets versus all other subsets in LBC, and 2) in TNBC. 812 

3) tumor versus juxta-tumor in LBC, and 4) TNBC versus LBC, for each subset separately. 813 

We then load the matrix on cytoscape software version 3.4.0. One analysis per subset was 814 

performed. Network inference was performed using ARACNe application, which is based on 815 

mutual information theory66, 67. The parameters used in ARACNe were, Mutual information 816 

Algorithm Type: Variable Bandwith. We used a transcription factor (TF) list for Hub/TF 817 

Definition from the dataset Fantom68. Mutual information Threshold was 0.5. We next, 818 

utilized the ClueGO Application69 (to determine pathway enrichment in each network. Public 819 

datasets only from “Experimental evidence” of Gene Ontology (GO) – Biological process-820 

GOA, - Cellular Component-GOA, - ImmuneSystemProcess-GOA, - Molecular Function-821 

GOA, (updated date: 15.01.2017), InterPro dB: Protein Domains (updated date: 03.11.2015), 822 

Reactome (updated date: 20.01.2017), and WikiPathways (updated date: 20.01.2017) were 823 

used. Go Term Fusion option was selected. Only pathways with a “Benjamini-Hochberg” 824 

(BH) adjusted p-val below 0.05 were kept.   825 

 826 

Checkpoint expression analysis 827 

The presence of the following immune checkpoints was analyzed among DEG in tumor 828 

versus juxta-tumor samples, for each subset. Positive checkpoint genes included: CD40, 829 

CD70, CD80, CD83, TNFSF9, also named 4-1BBL, ICOSL, SEMA4A, TIMD4, C10orf54 830 
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known as VISTA or B7-H5, TNFRSF13C, also named BAFFR, TNFSF13, also named 831 

APRIL, TNFSF13, also named as HVEML, CD84, CD48, TNSF4, also named OX40L, and 832 

PVR, also named as CD155. Negative immune checkpoint genes included: CD274, also 833 

named PD-L1, CD276, also named B7-H3, PDCD1LG2, also named PD-L2, BTLA, 834 

LGALS1, LGALS3, LGALS9, CD279, also known as PD1, CEACAM6, and CD209, also 835 

named DC-SIGN. 836 

 837 

Clinical outcome of subset-specific signature score in public breast cancer dataset 838 

METABRIC is a public dataset43 of transcriptomic data of breast tumor samples with clinical 839 

data associated. From this dataset, we selected samples from LBC (n=1043) and TNBC 840 

(n=259) according to the expression of receptors ER, PR and HER2. To study the clinical 841 

outcome of patients we considered the ones with the label “d-d.s” and “a” in the “last follow 842 

up status” variable. Similar to previous report44, we calculated a Z-score of APC subset-843 

specific signatures that we generated from our breast cancer RNA-seq data, as follows: 844 

݋݅ݐଶܴܽ݃݋݈ = 	 ଶ݃݋݈ ቆ
ܵଓ݃݊ܽ݁ݎݑݐ	ܷܲതതതതതതതതതതതതതതതതതത

ܵଓ݃݊ܽ݁ݎݑݐ	ܹܱܰܦതതതതതതതതതതതതതതതതതതതതതതതതቇ 

݋݅ݐܽݎ	݁ݎ݋ܿݏܼ = 	 ݋݅ݐଶܴܽ݃݋݈ −	 ݋ଓݐଶܴܽ݃݋݈
തതതതതതതതതതതതത

(݋݅ݐଶܴܽ݃݋݈)݀ݏ
 

To assess predictive value of the CD103+DC reported in Broz et al.44, we applied the same Z-845 

score, based on CD103+DC signature as the “signature UP” and CD103-DC signature as the 846 

“signature DOWN”. CD103+DC and CD103-DC signatures contained 9 and 16 genes 847 

respectively44.  848 

To assess predictive value of the pDC signature reported in Haniffa et al.7, we applied the 849 

same Z-score, based on pDC up-regulated genes as the “signature UP” and pDC down-850 

regulated genes as the “signature DOWN”. pDC UP and pDC DOWN signatures contained 851 

440 and 524 genes respectively. 852 
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To assess predictive value of the IFN signature found in TNBC-APC, we performed a Z-score 853 

on Log2 mean expression of: IFNL1, IFNB1, ISG15, and ISG20. We performed univariate 854 

cox analysis to assess the link between subset-specific signature ratio expression, and disease-855 

free survival. We divided the subset-specific Z-score ratio expression in two groups: “high” or 856 

“low”, according to the median value. Kaplan-Meier curves were generated using survminer 857 

R package. Multivariate cox analysis was performed to link subset-specific signatures and the 858 

clinical prognostic parameter, Nottingham Prognostic Index (NPI)45, to disease-free survival. 859 

 860 

Life Science Reporting Summary 861 

Further information on Online Methods are available in the Nature Research Reporting 862 

Summary. 863 

 864 

Data availability 865 

RNAseq data that support the findings of this study have been deposited in NCBI Sequence 866 

Read Archive (SRA) with the accession code PRJNA380940 867 

(https://www.ncbi.nlm.nih.gov/bioproject/?term=380940) 868 
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Supplementary Figure 1 

Phenotypic characterization of innate APC infiltrating breast cancer tissue 

a, Flow cytometry contour plots showing the entire gate strategy utilized to distinguish tumor-

infiltrating APC in LBC. b, Histograms of mean fluorescent intensity of FceR1, CD64 and 

CD206 expression by the indicated APC subsets in LBC samples. Isotype control is shown in 

grey. c, Representative flow cytometry contour plots from DAPI-CD45+cells comparing APC 

subset gates from CD3-, CD19-, CD56+ (upper row), CD3-, CD19-, CD56- (middle row), and 

directly from CD3-, CD19- (lower row) in LBC samples. Middle row corresponds to the 

strategy use in this study. d, Representative flow cytometry contour plots showing the 

frequency of cDC1 expressing CD141 markers in digested or undigested PBMC from healthy 

donors. Histograms shows the mean fluorescent intensity of CLEC9A expression at the surface 

of undigested (solid line) or digested (dashed line) blood cDC1. Specific staining is in red and 

the isotype control in black. e, Scheme showing the pipeline used to generate tumor-infiltrating 

APC transcriptome from breast cancer samples. a one representative donor out of 22 with 

similar results, b one representative donor out of 15 with similar results, c, d one representative 

donor out of 3 with similar results. 

 

Supplementary Figure 3 

Comparison of tumor versus juxta-tumor APC infiltrating LBC 

a, Representative flow cytometry contour plots from DAPI-CD45+Lin- cells showing the 

indicated APC subsets in tumor (upper panel), and juxta-tumor (lower panel) samples from 

LBC patients. b, Schema showing the pipeline and number of DEG obtained from each 

indicated APC tumor versus juxta-tumor LBC. c, Box plots showing the RNA expression of 

IL3RA, HLA-DRA, EPCAM, and SCGB2A2 by tumor and juxta-tumor pDC transcriptome 

from this study (upper panels), breast cancer cell line database from Broad Institute (lower left), 

and pDC dataset from healthy donor blood (Novershtern, et al 2011). 

 

Supplementary Figure 5 

Comparison of tumor-infiltrating APC from TNBC versus LBC 

a, Schema showing the pipeline and number of DEG obtained from each indicated APC from 

tumor TNBC versus tumor LBC. 

 

Supplementary Figure 6 



a, Extended list of enriched pathways and corresponding GO term from genes upregulated in 

TNBC versus LBC that were shared with 2 or 3 subsets, as indicated. b, Genes included in the 

IFN pathway metagene separated in IFN production and IFN response that were used for the 

analyses in Fig. 6 c-f. c, Genes included in the costimulatory metagene used for the analysis in 

Fig. 6 d,e. d, Heat map indicating the correlation coefficient between the indicated 

costimulatory gene, and the IFN pathway metagene for each APC subset from LBC and TNBC, 

as indicated. e, GO term associated to the ECM organization metagene used for the analyses in 

Fig. 6 f. 

 

Supplementary Figure 7 

a, Schema showing the pipeline used to analyze disease-free survival of the indicated subset-

specific signature in the METABRIC public dataset. 

 



Supplementary Table S1: Clinical information of the patients included in RNA-seq analysis 
DEMOGRAPHY Groups N % 
Female   17 100 

Age < 60 4 23.5 

 61-70 5 29.4 

 > 71 8 47.1 
EXTENSION       

Size (mm) < 20 5 29.4 

 21-40 7 41.2 
  > 41 5 29.4 

Lymph Nodes (LN) involvement  LN+ 11 64.7 
  LN- 6 35.3 

HISTOLOGICAL SUBTYPE       
Invasive Ductal  9 53 
Invasive Lobular  4 23.5 
Mixed ductal/lobular  3 17.6 
Papillary  1 5.9 

Elston Ellis (EE) GRADE       
I  0 0 
II  6 35.3 
III  11 64.7 
MOLECULAR SUBGROUP       

Triple negative, TN (hormone receptor and HER2 negative)  4 23.5 
Luminal B, LB (hormone receptor and HER2 positive or negative)  13 76.5 

 



Supplementary table S2: Sample description for RNA-seq analysis 
Cancer type Tissue type Subset Donor (absolute number) Donor ID 

LBC 

T 

pDC 8 D1, D2, D3, D6, D7, D11, D13, D15 

cDC2 10 D1, D2, D3, D6, D7, D8, D9, D11, D13, D15 

cDC1e 6 D6, D7, D8, D11, D13, D15 

CD14posDC 9 D1, D2, D3, D6, D7, D9, D11, D13, D15 

MMAC 11 D1, D2, D3, D5, D6, D7, D8, D9, D10, D13, 
D17 

J 

pDC 3 D1, D2, D15 

cDC2 4 D6, D8, D9, D15 

cDC1e 4 D6, D8, D13, D15 

CD14posDC 3 D6, D9, D15 

MMAC 5 D5, D6, D7, D8, D10 

TNBC T 

pDC 3 D4, D14, D16 

cDC2 3 D4, D14, D16 

cDC1e 4 D4, D12, D14, D16 

CD14posDC 3 D4, D14, D16 

MMAC 4 D4, D12, D14, D16 

 



Supplementary Table 3: Top 10 subset-specific DEG from LBC samples 
pDC cDC2 cDC1e MonoMac 

TCL1A CCL22 SIGLEC17P ADAP2 

NLRP7 CLEC17A CLNK MS4A7 

ZFAT GRIP1 MS4A2 NXF3 
FAM129C IFNL1 CLEC9A LINC01094 

CUX2  CATSPER1 ASAH1 

GZMB  SLC45A3 DAB2 
SMIM6  XCR1 IGSF21 

ZDHHC17  LAX1 ME1 

CLEC4C  SH3RF2 PLA2G15 
CRYM  IL1RL1 DLEU7 

 



3.2 ICELLNET: Reconstruction of intercellular com-

munication networks using transcriptomic pro-

files

The second results will be presented as a manuscript that will be soon finalized for
submission. It is entitled “ICELLNET: Reconstruction of intercellular communi-
cation networks using transcriptomic profiles”. For this collaborative work, I was
involved in the development of a systematic transcriptomic-based approach for cell
communication network reconstruction. Indeed, cell-to-cell communication is es-
sential to transfer information between cells with different functions and sensing
capabilities. Intercellular communication coordinates the activities of diverse cell
types required for complex processes such as embryogenesis, tissue remodelling dur-
ing inflammation and wound healing, and immune responses. Currently, there is
no systematic method to reconstruct cell-to-cell communication in a qualitative and
quantitative manner.

In this study, we developed ICELLNET, a tool integrating prior information on
ligand/receptor interactions, and cell-specific gene expression data and representing
quantitative and qualitative aspects of cell-to-cell communication as connectivity
maps. ICELLNET can be automatically applied to any cell population level tran-
scriptomic profile in order to estimate and quantify its communication with over
12 other cell types. We applied this method to tumor cells, innate and adaptive
immune cells (e.g. DCs, T cells, B cells, NK), epithelial, and stromal cells. By ana-
lyzing an original de novo generated dataset of human dendritic cells, we identified
and experimentally validated IL-10 as a major regulator of the systems-level DC
intercellular connectivity.

Our approach to assess cell connectivity may provide a valuable tool to eval-
uate the impact of a specific context on cell-to-cell communication, especially in
inflammatory microenvironment such as cancer. In future perspectives, ICELL-
NET applications could lead to important biological insight and helping to direct
pharmacological manipulation.
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 26	

Key points 27	

• Systems level approach predicted that endogenous DC-derived IL-10 but not TNF 28	

controls DC communication with multiple target cells 29	

• We experimentally validated that IL-10 significantly affects DC communication 30	

outcome with keratinocytes, neutrophils, and pDC 31	

 32	

Abstract 33	

Intro 34	

Cell-to-cell communication is at the basis of the higher-order organisation observed in tissues, 35	

organs, and organisms. It is critical to coordinate the function of diverse cell types involved in 36	

complex biological processes, such as embryogenesis, tissue formation and renewal, and 37	

efficient immune responses. In the literature, there is no method developed to reconstruct 38	

intercellular communication networks in a quantitative and qualitative manner.  39	

Here, we developed ICELLNET, a transcriptomic-based tool to reconstruct intercellular 40	

communication networks. This original quantitative method integrating ligand-receptor 41	

interactions, and cell-type specific gene expression, can be automatically applied to any cell 42	

population level transcriptomic profile. In this study, it predicted that IL-10 controls up to 12 43	

communication channels connecting DCs to immune, epithelial, and stromal cells, four of 44	

which were experimentally validated. 45	

Our results reveal that a single factor can shape systems level cellular connectivity, which has 46	

important implications in the physiopathology and pharmacological manipulation of 47	

multicellular processes. 48	

 49	

  50	
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 51	

Introduction 52	

Cell-to-cell communication is essential to transfer information between cells with different 53	

functions and sensing capabilities. Intercellular communication is critical to coordinate the 54	

function of diverse cell types involved in complex biological processes, such as 55	

embryogenesis, tissue regeneration, and immune responses. For example, this allows innate 56	

immune cells, such as dendritic cells (DCs), to alert neighbouring cells after having sensed a 57	

threat through specialized innate receptors (1, 2). Numerous studies have established 58	

important cross-talks between distinct types of immune cells. However, inflammatory 59	

networks involve numerous cell-cell communications, which collectively determine the nature 60	

and outcome of the response (3, 4). Few attempts were made to reconstruct systems level 61	

immune inter-cellular networks, using literature-based approaches to enumerate possible 62	

connections between different cell types (5, 6). In such networks, nodes are cell-types, and 63	

edges correspond to ligand/receptor interactions forming a communication channel between 64	

two cell-types. This structure introduces three fundamental quantitative dimensions, which 65	

collectively shape the global functional output of a given cell network: 1) the number of 66	

different connections one cell type can form concurrently with other cell types, 2) the 67	

intensity of the communication between two cell types, 3) the efficiency of the 68	

communication reflected by information-induced modifications in the state or function of a 69	

target cell.  70	

Currently, there is no systematic method to reconstruct cell-to-cell communication in a 71	

qualitative and quantitative manner. Given the multiplicity of possible communications 72	

between a given cell type and other cells, we reckoned that large-scale datasets could provide 73	

a valuable source of information in order to estimate cell communication. 74	

In this study, we developed ICELLNET, a systematic transcriptomic-based approach for cell 75	

communication network reconstruction. This method can be automatically applied to any cell 76	

population level transcriptomic profile in order to estimate and quantify its communication 77	

with over 15 other cell types. We applied this method to tumor cells and various types of 78	

immune cells. By analyzing an original de novo generated dataset of human dendritic cells, 79	

we identified and experimentally validated IL-10 as a major regulator of the systems level DC 80	

intercellular connectivity.  81	

 82	
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 83	

Results 84	

Development of ICELLNET, a transcriptomic-based communication score 85	

We developed a quantitative and qualitative bioinformatics approach by integrating prior 86	

information on ligand/receptor interactions, and cell-specific expression data (Figure 1A). 87	

We developed an automatized tool in R script, ICELLNET, to perform the score computation 88	

and network reconstruction that we can apply to any cell type transcriptomic profiles. In a 89	

first step, we manually curated a database of ligand-receptor interactions containing 244 90	

entries (Supplementary Table S2B). The quantification of intercellular communication 91	

consisted of scoring the intensity of each ligand/receptor interaction between two cell types 92	

with known expression profiles. Whenever needed, we took into account the requirements for 93	

multiple ligand units, or receptor chains, using logical rules. The score of an individual 94	

ligand/receptor interaction was computed as the product of their expression levels respectively 95	

by the source and by the target cell. These individual scores were then combined into a global 96	

metric assessing the overall exchange of information between the cell types of interest 97	

(Figure 1A). As putative cellular targets, we selected 12 cell types known to be present in an 98	

inflamed tissue microenvironment (Figure 1B). Cell-specific gene expression data was 99	

obtained using a database from human primary cells (12, 13). As cells of interest, we selected 100	

from literature a dataset of SUM149 human inflammatory breast cancer cell line transfected 101	

with siRNA targeting tazarotene-induced gene 1 (TIG1), a potential tumorigenic gene 102	

identified in inflammatory breast cancer (Wang et al. Cancer Res 2013). By taking into 103	

account all the individual ligand/receptor interactions, we developed a visualization tool by 104	

reconstructing the intercellular communication networks. In these directed graphs, nodes 105	

represent cell types, the width of the edges connecting two cell types is proportional to a 106	

global measure of the intensity of the communication between them and the arrows indicate 107	

the direction of communication from ligand to receptor (Figure 1A and see methods). Such 108	

connectivity maps enable to visualize the communication between cell types in a quantitative 109	

and qualitative manner. Generated for the two conditions (siTIG1 versus control), they 110	

demonstrated that SUM149 cells have a higher communication score with neutrophils, 111	

macrophages and monocytes. On the contrary, the lowest communication score is toward B 112	

cells. We can also observe an increase of communication score towards B cells in the siTIG1 113	

condition compared to control (Figure 1B).  114	
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IL-10 controls an intercellular communication module in LPS-activated dendritic cells 115	

After using a tumor cell model to test the connectivity map reconstruction, we wanted to 116	

assess if ICELLNET tool would allow us to characterize cellular communication using the 117	

immune system as a model. Particularly, we were interested in studying communication of 118	

resting and perturbed immune cells. To explore the role of autocrine loops, we cultured LPS-119	

activated human monocyte-derived DCs in the presence or absence of blocking antibodies 120	

(Abs) to the TNF and IL-10 receptors (aTNFR and aIL10R). No effect on cell viability was 121	

observed (Figure S1). The most prominent effect of LPS on DC hallmark maturation markers 122	

was observed at the mRNA level in the time frame of 4 to 8 hours following activation (11). 123	

We performed large-scale microarray analysis after 4 and 8 hours of culture of DC with LPS, 124	

with and without blocking Abs to TNF and IL-10 receptors (Figure 2A). To identify 125	

expression patterns determined specifically by each loop, we scored every differentially 126	

expressed gene according to its ability to separate the experimental condition LPS+aTNFR or 127	

LPS+aIL10R, respectively, from all of the other conditions considered as a single statistical 128	

group. At 4 hours, we could detect relatively small numbers of genes with expression patterns 129	

specific for the condition LPS+aTNFR or LPS+aIL10R (Figure 2B). At 8 hours, while only 130	

77 genes exhibited significant separability when the TNF loop was blocked, blocking the IL-131	

10 loop led to a transcriptional signature comprising 1432 genes (Figure 2B and C). These 132	

quantitative differences led us to focus on the IL-10 loop signature at 8 hours. Some of the 133	

genes in this signature (ARHGAP22, CSF2, CD163L1 and MLXIP for example) showed a 134	

remarkably large separability score (Figure 2B and C). By using various pathway analysis 135	

resources, we found that the TNF loop signature is enriched in functions involving the 136	

activation of different receptors (GPCR, rhodopsin-like and P2Y) (Figure 3). Applying the 137	

same methods to the IL-10 loop signature, a highly significant enrichment was found in 138	

annotation terms related to cytokine-cytokine receptor interactions, and positive regulation of 139	

cell communication (Figure 2D and E). These results were robust to changes in the empirical 140	

threshold used to define the IL10 loop signature, consistent with a robust biological signal 141	

(supplementary table 1E-H). 142	

We then screened the IL-10 and TNF loop signatures to systematically identify extracellular 143	

molecules mediating cell communication through ligand/receptor interactions. We were able 144	

to extract 47 ligands and 23 receptors from the IL-10 loop signature, while only 3 ligands and 145	

5 receptors from the TNF loop signature (Figure 2F).  146	
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Despite extensive studies of both TNF and IL-10 in the context of innate immunity, their 147	

different contribution to DC intercellular communication could not be predicted a priori at this 148	

systems level. It was particularly striking that communication was controlled specifically by 149	

IL-10, although TNF has strong pro-inflammatory actions (7) which could have suggested a 150	

decreased cell communication in the absence of this cytokine. 151	

The IL-10 loop signature comprised a variety of cytokines, chemokines, growth factors, and 152	

membrane ligands (table 1). Although some of the communication molecules in the loop 153	

signature were known to depend on IL-10 (for example CD80, GM-CSF and GCSF), many of 154	

them had weak or no prior association to IL-10 function (e.g. CLCF1 and TNFSF15), and 155	

would not have been captured by a strategy exclusively based on prior knowledge. We 156	

selected four important immunoregulatory molecules from the IL-6- and IL-12-families, and 157	

further validated expression at the protein level in 24h culture DC supernatants using 158	

cytometric bead array (CBA) and ELISA (Figure 2G). Interestingly, exogenous IL-10 159	

downregulated several targets that were instead up-regulated by blocking the IL-10 loop 160	

(Figure S3).  161	

 162	

Systems level reconstruction of dendritic cell intercellular communication networks 163	

After establishing the possibility of increased DC communication in the absence of the IL-10 164	

loop, we set out to identify the putative cellular partners in the local inflammatory 165	

microenvironment. We applied ICELLNET to reconstruct the intercellular networks between 166	

DCs and the putative target cells (Figure 3A and Figure S4). Focusing on individual 167	

ligand/receptor interactions connecting DCs with the putative target cells, we observed that 168	

certain ligands, such as TNF, could potentially act on many cellular partners (Figure 3B), 169	

consistent with a pleiotropic effect (14). However, other interactions pointed to crosstalk 170	

between DCs and specific targets, for example IL19 and IL36G with keratinocytes; TNFSF18 171	

with NK cells; CD70 with T and B cells (Figure 3B). The connectivity maps, generated for 172	

every DC experimental condition, demonstrated an increase of the global communication 173	

score in all 12 channels, when comparing LPS-activated DC to resting (medium) DC (Figure 174	

3C and Figure S4B). Importantly, these maps revealed that blocking the IL-10 loop 175	

determined the largest amplification of DC communication with all 12 cellular targets, while 176	

the blocking of TNF loop in LPS-activated DC had a minor effect on the global 177	

communication score (Figure 3C and figure S4B). Supplementary table 3A-L details the 178	
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top contributing communication molecules in each DC-target cell channel. Quantification of 179	

in-flow communication, as obtained by reversing the directionality of cell-to-cell interactions, 180	

showed that communication towards LPS-activated DC was also increased with respect to 181	

resting (Med) cells (Figure S4C and D). However, we observed a trend of decreased in-flow 182	

communication for LPS+aIL-10R-DC, relative to LPS-DC or LPS+aTNFR-DC (Figure S4C 183	

and D), indicating that IL-10 specifically controls out-flow communication of DCs. 184	

 185	

Experimental validation of multiple IL-10-dependent communication channels 186	

To assess communication efficiency, i.e how increased connectivity translates into functional 187	

changes in target cells, we turned to experimental validation of predicted communication 188	

channels using immunological assays adapted to output response of each cell type. Due to its 189	

physiopathological relevance, we first investigated the DC-T cell axis through co-culture 190	

experiments of T cells with DCs treated by LPS with or without TNFR and IL10R blocking 191	

antibodies (Figure 3- figure supplement 1). We found that naive CD4 T cells, when co-192	

cultured with LPS-DC in the absence of the IL-10 loop, globally increased and shifted their 193	

pattern of cytokine secretion, as compared to LPS-DC, while blocking the TNF loop had 194	

almost no effect (Figure 4A). Similar results were obtained with memory T cells (Figure 195	

4B).  196	

Since the IL10/IL10R pathway could have a direct effect on T helper cells during the 197	

differentiation process, we verified that the observed T helper polarization was indeed due to 198	

the IL-10 loop blockade in the DCs, and not to a direct effect on T cells (Figure S5B). Indeed, 199	

remaining IL10R blocking antibodies after the DCs washes could have act directly on T cells 200	

during DC-T co-culture. By adding IL10R antibodies during DC-T co-culture (not only to 201	

during DC activation) we could show that IL10R antibodies in our setting would not have any 202	

direct effect on T cell polarization.  203	

Among the factors best explaining the secretion profile of T cells determined by 204	

LPS+aIL10R-DCs, we observed a remarkable emergence of Th17 cytokines (Figure 4C), in 205	

line with recent murine studies (15-17). Strikingly, IL-9 was also increased (Figure 4C), and 206	

produced by a T cell population distinct from Th17 cells producing IL-17A alone or co-207	

expressed with IL-9 and IFN-g (Figure 4D). This provides the first demonstration that LPS-208	
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activated DCs, in the absence of an IL-10 loop, determine a Th17 and Th9 polarization in 209	

human, both of which participate in host defense and autoimmunity (18, 19). 210	

Through a paired DC/T dataset, we detected correlations between specific DC outputs from 211	

the IL-10 loop signature and specific T helper cytokines (Figure 4E and Figure S6). IL-9 212	

secretion from T cells strongly correlated with pro-inflammatory cytokines produced by DCs 213	

such as IL-12p70, again illustrating the link between communication molecules made by DC, 214	

and modifications in T cell behaviour. 215	

We then aimed at validating the model-based hypothesis of an increased communication 216	

between DC and multiple cell types. We considered three additional types of target cells: 217	

keratinocytes, plasmacytoid DCs (pDC) and neutrophils. Similar to T cells, these cell types 218	

play key roles in the inflammatory microenvironment and had an increased global 219	

communication score. Target cells were cultured with DC-derived supernatants, and their 220	

activation assessed by qRT-PCR or FACS. LPS-DC supernatant induced marginal 221	

keratinocyte activation, as assessed by the expression of TNF, IL-1β and this was not affected 222	

by aTNFR (Figure 5A). However, blocking the IL-10 loop dramatically increased both 223	

factors (Figure 5A), validating a potent DC to keratinocyte communication controlled by IL-224	

10. This extends DC-induced keratinocyte activation (20, 21) to the context of bacterial 225	

infection.  226	

The DC-pDC communication channel was also controlled by IL-10, since LPS+aIL10R-DC 227	

supernatants activated pDCs (as assessed by CD86, HLA-DR, and ICOSL surface 228	

expression), in comparison to LPS-DCs (Figure 5B). DC-induced activation of pDC and 229	

keratinocytes was not due to the presence of residual aIL10R (Figure S5C and D). DC-pDC 230	

crosstalk was suggested to be important in antiviral (22), antibacterial (23), and antitumor (24) 231	

immune responses. Through our systems approach, we now show that IL-10 controls DC-232	

pDC connectivity. 233	

Neutrophils contribute to DC migration to infection sites and to their subsequent activation 234	

(25, 26). Reciprocally, it was proposed that DCs can promote neutrophil survival (27).  235	

LPS-DC supernatant induced only a mild activation of neutrophils (as evaluated by rapid 236	

upregulation of CD11b with concomitant downregulation of CD62L), while LPS+aIL10R-237	

DC supernatants led to a strong activation of neutrophils (Figure 5C), establishing an IL-10 238	

loop control of DC-neutrophils communication.  239	
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For all the above-mentioned communication channel, we aimed at getting further mechanistic 240	

insight. First, we performed control experiments using exogenous LPS that formally excluded 241	

a direct effect of LPS at the concentrations found in the DC supernatants (Figure S5A). We 242	

then considered ligand-receptor interactions showing high intensity, and thus more likely to 243	

mediate cellular crosstalk as observed with the LPS+aIL10R-DC supernatants 244	

(supplementary table 3A-L). We blocked, in each DC communication channel, 4 of ligands, 245	

known as potential activators of the target cell type: GCSF, GM-CSF, IL-6 and TNF for 246	

neutrophils, IL-19, IL-36 gamma, OSM and TNF for keratinocytes, and G-CSF, GM-CSF, 247	

TNF and IL-12 for pDCs. Importantly, blocking TNF alone in the LPS+aIL10R-DC 248	

supernatant was sufficient to inhibit keratinocyte, pDC and neutrophil activation (Figure 5A-249	

C).  By comparing the predicted communication intensities with a global score describing the 250	

activation level of keratinocytes, pDC and neutrophils, we observed a qualitative agreement 251	

(Figure 5D), demonstrating increased communication efficiency. In all cases, the maximal 252	

activation of the target cells was determined by the condition LPS + aIL10R.   253	

Discussion 254	

In this study, we demonstrated that a single molecule, IL-10, was able to control intercellular 255	

communication between DC and multiple immune and non-immune cells. DC are central to 256	

immune responses in health and disease, and have the ability to orchestrate and/or modulate 257	

the function of many cell types, including CD4 and CD8 T cells (2, 28), NK cells (29), γδ T 258	

cells (30), neutrophils (27), as well as other  DC  subsets (22, 24). Our findings reveal that 259	

these multiple connections may be collectively regulated by one molecule, in a coordinated 260	

manner. This indicates a level of regulation that could not be captured by conventional 261	

methods isolating pair-wise cell cross-talks, and calls for systems approaches. Previous 262	

research in this direction showed, for example, that systems approaches can be successfully 263	

applied to reconstruct the global cell cross-talk in the stem cell niche (31). In our study, we 264	

add an essential component, in the form of perturbations on purified cell cultures, in order to 265	

address mechanisms regulating the connectivity of immune cells. 266	

One key element of systems approaches to intercellular communication is our a priori 267	

knowledge of the possible ligand-receptor interactions triggering a transduction process. Such 268	

information can be retrieved, for example, through automatic literature mining (31). However, 269	

this method makes it difficult to control the publication quality, and may fail to capture the 270	

requirements for complex interactions involving hetero dimeric receptors. In our work, the 271	
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information on the relevant ligand-receptor interactions was curated manually, which allowed 272	

taking into account the quality of publications, as well as up-to-date knowledge on the 273	

different chains of heterodimeric and heterotrimeric receptors.  274	

Once the molecular mediators of possible cell-to-cell interactions were identified, we turned 275	

to assessing their cell-specific expression. To this end, we identified BioGPS as a particularly 276	

suitable resource, because it integrates transcriptional profiles of over twenty human primary 277	

cell types generated with the same Affymetrix platform (12). While previous applications of 278	

BioGPS allowed identifying specific tissue-related genes (32, 33), we show as an original use 279	

of this resource the possibility to simulate cell cross-talks in diverse microenvironments. The 280	

fact that BioGPS includes transcriptional profiles for both steady state and activated cells 281	

indicates that a predicted communication channel would not be specific (and restricted) to a 282	

given activation cell state. Our ability to provide functional validation of many of the 283	

predicted cellular cross-talks indicates the robustness of the method, and warrants application 284	

to other cellular types. 285	

After retrieving a set of ligand-receptor interactions and cell-specific transcriptomics 286	

expression, we faced the problem of quantifying the intensity of communication between any 287	

pair of cell types. To score individual ligand/receptor interactions, we used the product of 288	

their expression values consistent the law of mass action, commonly assumed in biochemical 289	

models (34). Such individual scores give rise to a complex multigraph with potentially 290	

hundreds of edges connecting any two cell types. To reduce this complexity, we introduced a 291	

global score summing up the intensity of all the individual channels. This greatly simplifies 292	

the interpretation and visualization of intercellular networks, but also introduces some 293	

arbitrariness when choosing to combine the individual scores. Notwithstanding, all the 294	

predicted cellular targets could be experimentally verified, which led us to gain new insight 295	

on the role of TNF and IL-10 auto-regulatory loops during bacterial activation of DC. 296	

Exogenous TNF functional effect on dendritic cells has been described by many. It was found 297	

to induce maturation (35) and more specifically – induce and increase surface costimulatory 298	

molecules such as CD40, CD80, CD86, CD83 and HLA-DR (35-37). Exogenous IL-10, 299	

however,  was found to have an opposite effect on the expression of these costimulatory 300	

molecules and led to their downregulation (8)	 (38). Contrasting effects on DC development 301	

were also described when comparing TNF to another anti-inflammatory cytokine, TGF beta 302	

(39). Taken together, one might expect to find contradicting effects of the TNF and IL-10 303	

endogenous loops on DC, with an opposite directionality of gene regulation, including 304	
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communication molecules. Our data, however, uncover a very different scenario. Distinct and 305	

non-overlapping set of genes were controlled by either loop, and the intercellular 306	

communication function was regulated almost exclusively by the IL-10 loop. 307	

We identified IL-10 as a molecular switch able to regulate the connectivity of DC with 12 308	

other cell types, and thereby to modify their activation and functional states. IL-10 was 309	

already shown to regulate DC-derived inflammatory cytokines and chemokines, in particular 310	

IL-12 (8, 40). Through our systems approach, we identified a large number of communication 311	

molecules not previously associated to IL-10 function. Most importantly, we could 312	

demonstrate that endogenous DC-derived IL-10 governs the global connectivity of DC with 313	

multiple cell types, subsequently affecting their activation state, which brings new insight into 314	

how IL-10 regulates inflammation. We propose that the intensity and efficiency of 315	

communication may constitute a novel paradigm underlying the regulation of inflammatory 316	

processes, with increased intercellular connectivity being associated to enhanced 317	

inflammation. This warrants further studies in disease settings, in vivo and ex vivo, in order to 318	

precisely define the physiopathological relevance to specific inflammatory disorders.  319	

Interestingly, IL-10 functions as an auto-regulatory switch controlling the structure and 320	

intensity of communication within cell networks while it was not predicted to be a direct 321	

effector on other cell types (Supplementary table S3A-L). On the contrary, TNF was 322	

predicted and validated to be a direct effector in most communication channels, leading to 323	

activation of target cells, while in the context of a feedforward loop it did not play a major 324	

role in determining the intensity of the global communication network. Thus, IL-10 and TNF 325	

act at different hierarchical levels to regulate cell-cell communication: IL-10 as an upstream 326	

molecular switch, TNF as a downstream effector communication molecule. This may have 327	

implications to understand the impact of IL-10 and TNF targeting in inflammation. 328	

Our study revealed that connectivity within cell networks could be controlled by a single 329	

molecule. This predicts that, within the inflammatory microenvironment, the impact of 330	

targeted therapies to soluble mediators or surface receptors may be much broader than 331	

anticipated, due to a global re-programming of intercellular communication. Our systems and 332	

quantitative approach to cell connectivity may provide a valuable tool to evaluate such 333	

impact. Future studies should prove useful in identifying other regulators of immune cell 334	

connectivity in various physiopathological contexts, leading to important biological insight 335	

and helping to direct pharmacological manipulation. 336	
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Methods 337	

Purification of Peripheral blood mononuclear cells (PBMCs) from adult blood 338	

Fresh blood samples were collected from healthy donors and obtained from Hôpital Crozatier 339	

Établissement Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical 340	

guidelines. In agreement with EFS rules, all informed consent and consent to publish were 341	

obtained. PBMCs were isolated by centrifugation on a Ficoll gradient (Ficoll-Paque PLUS, 342	

GE Healthcare Life Sciences). 343	

Monocyte-derived dendritic cells generation and activation 344	

Monocytes were selected from PBMCs using antibody-coated magnetic beads and magnetic 345	

columns according to manufacturer’s instructions (CD14 MicroBeads, MiltenyiBiotec). To 346	

generate immature DCs, CD14+ cells were cultured for 5 days with IL-4 (50 ng/mL) and GM-347	

CSF (10 ng/mL) in RPMI 1640 Medium, GlutaMAX (Life Technologies) with 10% FCS. 348	

Monocyte-derived DCs were pre-treated for one hour with mouse IgG1 (20 µg/mL, R&D 349	

Systems), mouse anti-IL10R blocking antibody (10 µg/mL, R&D Systems) or mouse anti-350	

TNFα Receptors 1 and 2 (10 µg/mL, R&D Systems) (see Figure 1-Figure Supplement 4B) 351	

and then cultured with medium or LPS (100 ng/mL, LPS-EB Ultrapure, activates TLR4 only, 352	

Invivogen) for 24 hours. DCs from donors which responded to (a) LPS and (b) IL-10R 353	

blocking antibody, as evaluated by maturation markers, were included in this study. The 354	

following cytokines were measured in culture supernatants by CBA (BD Bioscience): IL-6, 355	

IL-12p70 and OSM. IL-23 was measured using ELISA (eBioscience). 356	

Gene expression profiling  357	

Monocyte-derived DCs were pre- treated with blocking Abs as described above for one hour 358	

and then cultured with medium or LPS (100 ng/mL, Invivogen) for additional 4 or 8 hours. 359	

Total RNA was extracted using the RNeasy micro kit (Qiagen). Samples were then amplified 360	

and labelled according to the protocol recommended by Affymetrix for hybridization to 361	

Human Genome U133 Plus 2.0 arrays. 362	

The gene expression profiles generated for this publication have been deposited in NCBI's 363	

Gene Expression Omnibus and are accessible through GEO Series accession number 364	

GSE89342 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89342).	365	

	366	

Purification of naive CD4+ T lymphocytes. 367	
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CD4+T lymphocytes were purified from PBMCs by immunomagnetic depletion with the 368	

human CD4+T cell Isolation KitII (MiltenyiBiotec), followed by staining with allophyco-369	

cyanin-anti CD4 (VIT4 ; MiltenyiBiotec), phycoerythrin-anti-CD45RA (BD), fluorescein-370	

isothiocyanate-anti-CD45RO (BD Bioscience) and phycoerythrin-7-anti-CD25 (BD 371	

bioscience). Naive CD4+T cells sorting of CD4+CD45RA+CD45RO-CD25- had a purity of 372	

over 99% with a FACSAria (BD Bioscience). 373	

DC- T cells Coculture assays.  374	

To analyze T cell polarization, 24 hours activated DC and T cells were incubated in 96 well 375	

plates at a DC/T ratio 1:5 in Xvivo15 medium (Lonza). After 6 days, T cells were 376	

resuspended in fresh Xvivo15 medium at a concentration of 1 million cells per ml and 377	

restimulated with anti-CD3/CD28 beads (life Technologies) at a ratio bead/cell 1:1. 378	

Supernatants of T cells were collected after 24 hours of restimulation. The following 379	

cytokines were measured in naive culture supernatants by CBA (BD Bioscience) according to 380	

the manufacturer’s instructions: IL-2, IL-3, IL-4, IL-9, IL-10, IL-17A, IL-17F and IFN-g. 381	

Additional cytokines were measured in memory T cells supernatant: IL-5, IL-13 TNF and 382	

GM-CSF. 383	

Cytokines producing cells were analyzed by intracellular staining after addition of brefeldinA 384	

(10ug/mL) during the last 3 hours of the 5 hours restimulation in PMA and ionomycine 385	

respectively 100ng/mL and 500ng/ml. Cells were stained 30 minutes with the yellow live 386	

dead kit (Invitrogen). Finally, cells were fixed and permeabilized using the Staining Buffer 387	

Set (eBioscience) and stained with anti-IL9, anti-IFNg, and anti-IL17A (ebioscience), and 388	

analyzed by flow cytometry (BD Fortessa).   389	

Measurement of surface molecules expression by plasmacytoid dendritic cells 390	

In order to enrich plasmacytoid dendritic cells (pDCs), cells expressing CD3, CD9, CD14, 391	

CD16, CD19, CD34, CD56, CD66b and glycophorin A were depleted from PBMCs using 392	

magnetic sorting (Human Pan-DC Pre-Enrichment Kit, StemCell Technologies), pDCs were 393	

then sorted on a FACS Vantage instrument (BD Biosciences). pDCs were cultured for 24 394	

hours at 37°C and 5% CO2 with medium RPMI 1640 Medium, GlutaMAX (Life 395	

Technologies) with 10% FCS, GM-CSF (10 ng/mL) used as a positive control or DC 396	

supernatants. Cells were stained for 15 min at 4°C using a FITC-anti-CD86 (BD), an APC-397	
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anti-ICOSL (R&D Systems) and Alexa-Fluor-700-anti-HLA-DR (Biolegend) or with the 398	

corresponding isotypes. Cells were analyzed on a LSR II instrument (BD Biosciences). 399	

Measurement of adhesion molecules expression at the Neutrophil surface 400	

Whole-blood samples were obtained from healthy donors from Hôpital Crozatier 401	

Établissement Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical 402	

guidelines. Blood samples were stimulated for an hour at 37°C with medium, LPS (100 403	

ng/mL) used as a positive control or DC supernatants. Cells were stained at 4°C for 15 min 404	

with an APC-anti-Human-CD62L (clone DREG-56, BD Pharmingen), a BV650-anti-Human-405	

CD11b (BioLegend) and a PE-anti-Human-CD15 (MiltenyiBiotec) or with the corresponding 406	

isotypes. Erythrocytes were lysed with 1X BD Pharm Lyse Solution (BD Pharmingen), white 407	

cells were resuspended in PBS supplemented with 1% human serum and 2 mM EDTA and 408	

analyzed on a LSR Fortessa instrument (BD Biosciences). 409	

 410	

Real-time quantitative RT-PCR 411	

The keratinocyte cell line HaCaT was cultured in DMEM (Gibco) supplemented with 10% 412	

FBS and 1% penicillin/streptomycin. Cells were cultured with medium, LPS (100 ng/ml), or 413	

with DC supernatant diluted 1:10 for 4h. Total RNA was extracted by RNeasy Mini kit 414	

(Qiagen). RNA was then transcribed to cDNA using Superscript II reverse transcriptase based 415	

on the manufacture’s protocol (Invitrogen). The Taqman method was used for real-time PCR 416	

with primers from Life technologies. The expression of mRNA was normalized to the 417	

geometrical mean of 3 house-keeping genes: β-actin, GAPDH and RPL34. HaCaT cells were 418	

negative for Mycoplasma contamination, standardized and regular tests were performed by 419	

PCR for mycoplasma detection.  420	

Statistical analysis of gene expression data 421	

Expression data were normalized with Plier. Transcriptomics analysis was performed in a 422	

Matlab environment. For independent filtering, we used the function geneverfilter, which 423	

calculates the variance of each probe across the samples and identifies the ones with low 424	

variance. Probes with variance less than 40th percentile were filtered out because poorly 425	

informative. Differential analysis was performed using an ANOVA test (function anova1) at 4 426	

hours and 8 hours. P-values were adjusted for multiple testing using the Benjamini-Hochberg 427	

correction using the function mafdr. Adjusted p-values <5% were considered significant (see 428	

supplementary table 1A-B). To detect genes whose expression pattern was specific for the 429	
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conditions LPS, LPS+αIL10R, or LPS+ αTNFR, we used the function rankfeature. This 430	

function returns a separability score based on binary classification, which measures how well 431	

each gene separates a given experimental condition from all the others based on its expression 432	

profile. By inspecting the distribution of the separability score over all differentially expressed 433	

genes, we determined an empirical cutoff of 4. Genes with separability score larger than this 434	

cut off (supplementary table 1C-E) were further analyzed for functional interpretation using 435	

the Molecular Signature Database (41) (supplementary table 1F-H). The following 436	

databases were considered: KEGG, REACTOME and BIOCARTA.  To compute the 437	

enrichment of the TNF and IL10 loop signatures in genes annotated in the GO term “positive 438	

regulation of cell communication” (GO:0010647) (supplementary table 2A), we performed a 439	

standard hypergeometric test. 440	

Reconstruction of inter-cellular networks 441	

To reconstruct the inter-cellular communication networks, we systematically extracted a list 442	

of ligands and receptors contained in the genes whose expression pattern was specific for the 443	

condition LPS, LPS+αIL10R, or LPS+ αTNFR (see the section above). Surveying the 444	

literature for any potential interactions, we manually curated a ligand-receptor database using 445	

STRING (http://string-db.org/) and Ingenuity (http://www.ingenuity.com/) online tools to 446	

verify protein-protein interactions. Logical rules were applied to address requirement for 447	

multiple chains as well as multiple ligand subunits (http://www.genome.jp/kegg-448	

bin/show_pathway?hsa04060). 449	

The database of ligand-receptor interactions is contained in the supplementary table 2B. To 450	

get the cell-specific expression level of the receptors of the ligands of interest, we used a 451	

database of transcriptional data from human primary cells (12)	 (13) and a dataset of SUM149 452	

inflammatory breast cancer cell line transcriptional profile from literature (Wang et al. Cancer 453	

Res 2013). All the cell-specific transcriptional profiles used in the analysis were generated 454	

with the U133 Plus 2.0 Array, which limits the platform-related bias. If multiple probes 455	

corresponded to the same receptor, we selected the optimal probe based on the Jetset 456	

optimality condition (42). The results are contained in supplementary table 2C-E. To score 457	

the intensity of a particular ligand-receptor interaction between DC and a given target cell, we 458	

considered the product of the expression of the ligand in DC and of the cognate receptor in the 459	

target cells.  Formally, if !"#  is the average expression level of ligand i by DC in the 460	

experimental condition j, and $%#  is the average expression of the corresponding receptor by 461	
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cell type k, the intensity &",%#  of the corresponding interaction was quantified by  &",%# = !"# ∙ 	 $%# . 462	

For interactions requiring multiple components of the ligand and/or of the receptor, we 463	

considered a geometric average of the receptor components. For example, if a given 464	

interaction corresponding to ligand i required two chains of the receptor, the score was 465	

computed as !"# ∙ $%#,,. $%#,-, where $%#,, and $%#,- are the expression levels of the two receptor 466	

chains in cell type k. To assign a global score .",%to the communication between DC in the 467	

condition j and cell type k, a composite score was defined by summing up the intensity of all 468	

the possible ligand-receptor interactions, i.e.,  .",% = &",%#/
#0, , N being the total number of 469	

interactions. Four DC experimental conditions were considered: Medium (j=0), LPS (j=1), 470	

blocking TNF loop (j=2), blocking IL10 loop.  To emphasize comparisons .",% across the four 471	

conditions, the global scores .",% were normalized to the Medium condition (j=0). Thus, the 472	

final scores .1,% used to measure the communication intensity between DC in the condition j 473	

and the target cell k were computed using the following formula .1,% = .",%/.3,%.=
45,678

79:
4;,678

79:
.	The 474	

scores corresponding to each interaction and each target cell in the experimental condition of 475	

IL10R blocking are provided in supplementary table 3A-L. The generation of the inflow 476	

connectivity maps was done by reversing the role of DC and their cellular targets. See 477	

supplementary figure 5. Global communication scores for both inflow and outflow 478	

connectivity maps are contained in supplementary table 3M-N.  479	

Statistical analysis of DC-T cell protein data  480	

All analyses have been generated with R 3.1. For principal component analysis (PCA) of the 481	

T cell secretion profile, a data matrix was formed whose rows corresponded to conditions and 482	

columns to the different cytokines (each column was scaled using zscore). PCA was done 483	

using the function princomp. When appropriate, a paired student t-test was performed. 484	

Significant differences were considered with p<0.05. The correlation heatmap based 485	

on Spearman was generated on the logged data. Correlations with p values<0.05 were 486	

considered as significant. 487	

Calculation of the activation score of target cells 488	

To compute a global activation score of keratinocytes, neutrophils and pDC, each activation 489	

marker output was first normalized in the range 0-1, 0 being to the untreated condition and 1 490	

being to the maximum value observed in all the conditions. An average of the normalized 491	
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outputs corresponding to the same cell type was then considered. All of the measured factors, 492	

with the exception of CD62L in neutrophils, were positively correlated with cell activation. In 493	

order to make CD62L consistent with the other factors, we considered the reciprocal of its 494	

value. The numerical results are in the supplementary table 3M-N.  495	
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Figure legends 617	

Fig. 1: Development of a communication score based on transcriptomic profiles. (A) 618	

Pipeline used to create the intercellular communication score and network reconstruction. (B) 619	

Connectivity maps describing outgoing communication from SUM149 cells to primary cells 620	

in the conditions: siRNA control and siTIG1. The width of the edges corresponds to a global 621	

score combining the intensity of all the individual ligand/receptor interactions. A scale 622	

ranging from 400000 to 1600000, corresponding to minimum and maximum communication 623	

scores, is shown in the legend. 624	

Fig. 2: IL-10R blocking activates a cell-to-cell communication module in LPS-stimulated 625	

DCs. (A) Depicted are the 4 experimental conditions for which transcriptomics was generated 626	

(n = 6). (B) Distribution of the separability score corresponding to the conditions 627	

LPS+aTNFR and LPS+aIL10R after 4 and 8 hours of cell culture. Genes with separability 628	

score ³ 4 were included in each condition’s signature. Bottom: separability criterion used to 629	

define the signatures. (C) Expression pattern of 4 example genes with high separability score 630	

from the IL-10 loop signature (means± SEM, n=6). (D) Top 3 KEGG and REACTOME 631	

annotation terms over-represented in the IL-10 loop signature, together with the number of 632	

hits and the enrichment significance. (E) log-transformed enrichment significance of the 633	

overlap between the TNF and IL10 loop signatures, with the Gene Ontology term “positive 634	

regulation of cell communication”. (F) Gene products corresponding to ligands (white) and 635	

receptors (black) counted in each loop signature and plotted according to regulation 636	

directionality: upregulated (Up) or downregulated (Down). (G) Protein levels of IL-6, OSM, 637	

IL-23 and IL-12p70 (means ± SEM), demonstrating increased secretion in LPS+aIL-10R DC 638	

supernatant. 639	

Fig. 3: IL-10 loop controls DC intercellular connectivity. (A) Flowchart illustrating the 640	

strategy used for intercellular networks reconstruction. (B) Expression values of 8 example 641	

ligands in DCs (means ± SEM) side-by-side with the expression of their cognate receptor in 642	

12 different cell types from four compartments: epithelium, stroma, innate and adaptive 643	

immune cells. Color code indicates different compartments. Box plots show cell-specific 644	

expression of the receptors in control and stimulated conditions, as provided by the BioGPS 645	

database (supplementary table 2C-E) (C) Connectivity maps describing outgoing 646	

communication from DCs to putative target cells in the conditions: Med, LPS, LPS+aTNFR 647	

and LPS+aIL-10R. The width of the edges corresponds to a global score combining the 648	
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intensity of all the individual ligand/receptor interactions, normalized to the medium 649	

condition. A scale ranging from 1 to 7, corresponding to minimum and maximum 650	

communication scores, is shown in the legend.  651	

Fig. 4: IL-10 but not TNF loop dictates T helper polarization by LPS-DC. (A-B) 652	

Supernatants of CD4+ naive (A) and memory (B) T cells, co-cultured with the indicated DCs, 653	

were analyzed for the presence of T helper cytokines by CBA: IL-2, IL-3, IL-4, IL-9, IL-10, 654	

IL-17A, IL-17F and IFN-g (A) and all the above in addition to IL-5, IL-13 TNF and GM-CSF 655	

(B). Results are shown in a 2D PCA. Dots represent mean of 9 (A) or 6 (B) independent co-656	

culture experiments. (C) Histogram representation (means ± SEM, n = 16) of 4 cytokines 657	

present in the supernatant of naive (white bars, left axis) or memory (black bars, right axis) 658	

supernatant. (D) CD4+ naive T cells were analyzed for IL-17A, IL-9 and IFNg production 659	

using intracellular staining FACS. Percentage of positive producers is given. Shown is one 660	

representative out of 3 independent experiments. (E)The matrix plot presents the significant 661	

(p value < 0.05) Spearman correlation values between DC soluble factors and T helper-662	

secreted cytokines (9 independent co-culture experiments).  663	

Fig. 5: IL-10 loop controls DC communication with keratinocytes, neutrophils and 664	

pDCs. (A) RT-PCR analysis of the expression of TNF and IL-1b mRNA in HaCat cells 665	

incubated with medium, LPS or with supernatant (diluted 1:10) of the indicated DCs for 4h. 666	

Blocking antibodies for the cytokines IL-19, IL-36g, OSM and TNF were added to LPS+aIL-667	

10R-DC supernatant for 1h incubation before culturing with HaCat cells. Data represent mean 668	

± SEM, n=4, * p<0.05. (B-C) Expression of maturation markers CD86, HLA-DR and ICOSL 669	

(B) or DC11b and CD62L (C) analyzed by flow cytometry with surface staining on pDCs 670	

(n=12) cultured with supernatant (diluted 1:10) of the indicated DC for 24h (b) and 671	

neutrophils (n=9) cultured with supernatant (diluted 1:100) of the indicated DC for 1h. 672	

Blocking antibodies for the cytokines GCSF, GM-CSF, TNF and IL-12 (for pDC) or IL-6 673	

(neutrophils) were added to LPS+aIL-10R-DC supernatant for 1h incubation before culture. 674	

Each biological replicate comprised independent DC donor paired to independent pDCs / 675	

neutrophils donor. Data represent mean ± SEM, * p<0.05; ** p<0.01; *** p<0.001 (paired t-676	

test). (D)   For each target cell, we reduced the different activation markers to a single 677	

parameter normalized between 0 (Ø) and 1 (max) in the rectangles. The value 0 corresponds 678	

to the activation level induced by supernatants from untreated DC, while 1 corresponds to the 679	

maximum activation level from all the observed conditions. These experimentally validated 680	
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activation scores were in qualitative agreement with the model predictive intensity scores of 681	

communication between DC and the target cells, represented by the width of the edges.  682	

Table 1: Communication factors in signatures by separability.  Communication factors 683	

(ligands and receptors) identified in the signatures corresponding to the DC conditions LPS, 684	

LPS+aTNFR, LPS+aIL10R. 685	

 686	

 687	

Table	1	: Communication factors in signatures by separability	

Factor	 Direction	 LPS	 LPS+αTNFR	 LPS+αIL10R	

Ligand	

Down	 EFNB1	 ICOSLG	
EFNA4,	PLAU,	SLIT1,	

WNT5B	

Up	 PDGFA,	PVR	 PLAU,	VCAN	

AREG,	C3,	CCL1,	CCL20,	
CCL3,	CCL4,	CD58,	
CD70,	CD80,	CLCF1,	
CSF1,	CSF2,	CSF3,	

EDN1,	GAST,	GUCA2A,	
HBEGF,	ICOSLG,	IFNB1,	
IGHG1,	IL12A,	IL12B,	
IL19,	IL23A,	IL36G,	
IL36RN,	IL6,	INHBA,	
JAG1,	OSM,	OSTN,	
PDGFB,	RSPO4,	

SEMA4D,	SEMA7A,	
TGFA,	TNF,	TNFSF10,	
TNFSF15,	TNFSF18,	

TNFSF4,	TNFSF9,	TSLP	

Receptor	

Down	 CXCR1	 	

CCR2,	CSF1R,	FZD2,	
GFRA2,	IFNGR1,	IL17RA,	
IL17RB,	LTBR,	PLXNB2,	

TNFRSF6B	

Up	
IL20RB,	ITGAV,	

PDGFRA,	NFRSF1B	

CCR5,	FZD5,	
ITGA9,	LILRB1,	

MERTK	

CALCRL,	CCR7,	CCRL2,		
CD40,	GALR2,	IL15RA,	
LMBR1L,	NRP2,	PLAUR,	

PRLR,	TNFRSF18,	
TNFRSF4,	TNFRSF9	
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Supplementary Figure Legends: 

Figure S1: Viability is not affected by LPS activation or by receptor blocking antibodies. 

Cell viability of DC cultured 24 hours in the indicated blocking conditions were assessed by 

DAPI staining. Histograms represent the mean ± SEM of DAPI negative cell percentage. 

Figure S2: Additional expression data analysis revealed distinct functions for the TNF-

alpha and IL-10 loops. Listed are the top 3 functional annotations predicted/ proposed for 

the TNF-alpha loop signature with the matching corrected p-value by MSigDB (Liberzon et 

al., 2011). 

Figure S3: Exogenous IL-10 inhibits LPS-induced secretion of factors for the IL-10 loop 

signature. Histogram representation (means ± SD) demonstrating inhibited secretion of four 

factors by LPS-DC in the presence of exogenous IL-10 (10ng/ml) or blocking IL10R. Data 

represent mean ± SD, n=7, * p<0.05, ** p<0.01, *** p<0.001 (paired t-test).    

Figure S4: Quantification of global communication scores. (A) Numerical details related 

to the connectivity maps from DC to the selected target cells. Starting from 51 ligands present 

in one of the signatures corresponding to LPS, LPS+aTNFR, LPS+aIL10R, 96 possible 

ligand/receptor interactions were identified from our curated database. However, 4 

ligand/receptor interactions could not be assessed because one of the components necessary 

for the interactions had been filtered out during pre-processing of DC data, or because it was 

not annotated in Jetset. (B) The global communication score from DC to target cells (see 

methods or details). The numerical values are contained in the supplementary table 2C-E. (C) 

Numerical details related to the connectivity maps from the selected target cells to DC. 

Criteria for excluding interactions were defined as for panel. (D) The global communication 

score from the target cells to DC (see methods or details). The numerical values are contained 

in the supplementary table 3M-N.  

Figure S5: Observed effect on communication partner-cells is not due to the presence of 

residual aIL10R antibody or a potent LPS dose. (A) Neutrophils cultured for 1h with 

1ng/ml LPS were not significantly activated compared to medium as assessed by surface 

expression of CD11b and CD62L by flow cytometry. Data represent mean ±SEM, n=3. (B) 

CD4 Naive T cells were pre-treated with blocking antibody for IL-10 receptor or a non-

specific one and then put in culture with DC as indicated for 6d. After restimulation with anti-



CD3/anti-CD28 for 24h, supernatants were analyzed for the presence of IL-17F.  Histogram 

represent means ± SEM (n= 4 donors). (C) HaCat cells were pre-treated with blocking 

antibody for IL-10 receptor or a non-specific one and then put in culture with DCs supernatant 

(diluted 1:10)  as indicated for 4h. RNA was then extracted from cells and the expression of 

TNF and IL-1b was assayed using qRT-PCR. Data represent mean ±SD, n=4. (D) pDCs were 

pre-treated with blocking antibody for IL-10 receptor or a non-specific one and then put in 

culture with DCs supernatant (diluted 1:10)  as indicated for 24h. Expression of maturation 

markers CD86 and ICOSL analysed by flow cytometry. Data represent mean ± SEM, n=6. 

Figure S6: T cells polarization is linked to ligands found in the IL-10 loop signature. 

Correlation circle of a scaled PCA performed on the mean of DC outputs (grey line). 7 T-

helper secreted cytokines were added to the graph (black dashed line) (n=10). 

Supplementary Tables Legends: 

Supplementary Table 1: (A,B) Lists of the differential expressed genes at 4 hours (A) or 8 

hours (B), differential analysis was performed using an ANOVA test (function anova1) for 

these two time points. P-values were adjusted for multiple testing using the Benjamini-

Hochberg correction using the function mafdr. Adjusted p-values <5% were considered 

significant. (C, D, E) List of genes whose expression pattern was specific for the conditions 

LPS (C), LPS+ αTNFR (D) or LPS+αIL10R (E), determined by the function rankfeature 

using a cutoff of 4. (F, G, H)	Analysis of functional inference using the Molecular Signature 

Databases. Two cut-offs are presented, a more stringent cutoff (G) and a less stringent cutoff 

(H).  

Supplementary Table 2: (A) List of the genes annotated in the GO term “positive regulation 

of cell communication” (GO:0010647) (B) Manually curated database of ligand and their 

corresponding receptors. The different receptor and ligand chains are detailed. (C,D) cell-

specific expression level of the ligands (C) and receptors (D) of interest extracted from a  

database of transcriptional data from human primary cells . All the cell-specific transcriptional 

profiles used in the analysis were generated with the U133 Plus 2.0 Array, which limits the 

platform-related bias. If multiple probes corresponded to the same receptor, we selected the 

optimal probe based on the Jetset optimality condition. (E) Table showing the different 

abbreviations used in the analysis together with their full names.  



Supplementary Table 3: (A-L) Scores corresponding to each interaction and each target cell 

in the experimental condition of IL10R blocking. The name of each target cell from A to L is 

indicated as the first entry of each table. (M-N) Global communication scores for both 

outflow (M) and inflow (N) connectivity maps. The inflow connectivity maps was done by 

reversing the role of DC and their cellular targets.  
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Chapter 4

General discussion et perspectives
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Inflammation of a tissue induces changes in communication between cells cre-
ating a specific microenvironment [L. Chen et al. 2017]. The TME is a complex
inflammatory network not only composed of malignant cells but also stromal and
immune cells. Communications among tumor and stromal cells create a distinct cel-
lular environment that plays a significant role in tumor development and progression
[Tlsty and Coussens 2006]. In my thesis work, I aimed at understanding how the
breast TME modulates the intra- and intercellular communication network formed
by APCs, using a systems-level analysis.

First, I will discuss the relevance of characterizing APC subsets in breast can-
cer and how this work is positioned in relation to the literature. I will consider
how cancer heterogeneity can impact cellular communications. Regarding the bi-
ological results I obtained, I will discuss the interferon signature found in TNBC.
Additionally, I want to review the relevance of using transcriptomic data to study
the intercellular communication and the microenvironmental impact on cellular be-
havior. I will include future perspectives on the use of a new technology that is
single-cell RNA-seq to this field. Finally, I will discuss the interest and the complex-
ity of understanding cell-to-cell communication and future developments that can
be done to improve the ICELLNET tool.

4.1 Breast tumor-infiltrating APC subsets char-

acterization

At the interface of innate and adaptive immunity, APCs are essential cells in trig-
gering immune responses. Monocytes, macrophages and DCs present a diversity
of cell types defined by their distinct phenotypes, functions and tissue localization
[Collin, McGovern, and Haniffa 2013; Mildner and Jung 2014]. Several subsets have
been characterized in tissues and inflammatory conditions [Mantovani et al. 2008;
Segura and Amigorena 2013]. In the context of cancer, APCs and particularly DC
subsets have not been described with a level of detail as we proposed in this work.
In breast TME, we identified and characterized four subsets of DCs and a mix of
monocytes and macrophages. pDC subset appears to be the most distinct subset
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as described in other tissues [Hanahan and Weinberg 2011; Heidkamp et al. 2016;
Lindstedt, Lundberg, and Borrebaeck 2005] while CD14+ DCs, apparented to in-
flammatory DCs [Segura, Touzot, et al. 2013], were close to cDC2 and Monomacs.
The subset-specific signatures that we generated could be used in deconvolution
tools, to mine publicly available transcriptomic datasets of bulk tissues. This enable
to infer the immune infiltration and especially APC infiltration in breast cancer
datasets as well as in other inflammatory contexts. These signatures could also be
used to identify clusters of cells in single-cell RNA-seq (scRNA-seq) experiments.
APCs are plastic and able to adapt to the inflammatory environment, such as dur-
ing pathogen infection [Huang et al. 2001; Soumelis et al. 2015]. They can adapt
according to a specific tissue-imprinting [Mora, Bono, et al. 2003]. At steady-state,
however, the ontogeny is described as the predominant driver of DC subsets defini-
tion [Heidkamp et al. 2016; Miller et al. 2012]. When we compared LBC tumor- and
juxta-tumor-infiltrating APC subsets, we observed that they display subset-specific
transcriptional programs. This implies that APCs are able to integrate signals from
the tumor and adapt their functions in a subset-dependent manner, highlighting the
complex interplay between intrinsic origin of the cells and plasticity to their envi-
ronment (i.e. tumor imprinting). This is a new vision of APC subset adaptation in
a peculiar inflammatory microenvironment and it would be interesting to compare
these results to APCs in other anatomical location under inflammatory conditions
including invaded lymph nodes, other cancer types (e.g. lung cancer, head and neck
cancer, lymphoma). These potential studies would shed new lights on the impact of
tumor imprinting versus tissue imprinting and ontogeny on APC subset functional
specialization.

4.2 Heterogeneity of tumors and impact on cellu-

lar communication

In the literature, the concept of “hot” versus “cold” tumors discriminates tumors
according to the level of immune infiltration [Wargo et al. 2016]. Hot tumors present
a greater T cell infiltration, chemokine and interferon expression, than cold tumors
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which display lack of T cell infiltration, poor chemokine expression and minimal pres-
ence of defined immune inhibitory pathways [Gajewski, H. Schreiber, and Fu 2013].
LBCs display poor immune-infiltration on contrary to TNBCs [Stanton, Adams,
and Disis 2016]. Comparing LBC tumor- and juxtatumor-infiltrating APC subsets
transcriptional profiles, we did not reveal differential gene expression or functions
related to immune signaling. In LBC tumor tissue, DCs do not integrate signals
activating immune responses or inducing an immunosuppressive phenotype. Tar-
geting DCs to activate them and induce anti-tumor response could have beneficial
therapeutic aftermaths in LBC. On the other hand, we observed that all TNBC-
infiltrating APC subsets up-regulate genes related to interferon pathways as com-
pared to LBC-infiltrating APCs. At the light of our results and literature concepts,
we can hypothesize that the heterogeneity of T cells infiltration across breast cancer
subtypes modify the TME and its signaling network. Immune cell communication
network is a component of the TME which has to be evaluated in order to better
understand mechanisms of immune escape. As a future perspective, we want to com-
pare APCs infiltrating cancers of a different anatomical location to find clues on the
link between immune infiltration, signaling and APC subset-specific functions. We
want to further study the adaptation of APC subsets in other cancer types to better
understand the contributions of DCs and Monomacs to immune escape mechanisms.
In the lab, we already generated transcriptional profiles of head and neck (HNSCC)
tumor-infiltrating APC subsets, using the same strategy as in the breast. Analysis
the three different cancer datasets (i.e. LBC, TNBC and HNSCC) would be a first
step to evaluate how the tumor type influence the transcriptional reprogramming
of APC subsets. It would also be insightful to transpose these results in another
type of inflammatory disease such as autoimmune disease in order to see if APCs
contribute to the inflammatory environment as in TNBC or if they are quite passive
in term of immune-related functions as in LBC.
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4.3 Myeloid cells and interferon, a potential ther-

apeutic axis in TNBC?

One interesting biological feature we observed in TNBC-infiltrating APC transcrip-
tome is the common interferon signature, which include genes related to interferon
production and response with an increased expression of IFNλ (type III interferon)
and IFNβ (type I interferon) in TNBC-infiltrating cDC2 and cDC1e (data not
shown).

Interferons are cytokines produced by immune cells, such as dendritic cells and
macrophages, following activation of innate sensors of pathogen infection, and lym-
phocytes. pDC are the “professional” interferon-producing cells since they con-
stitutively express IRF7, an interferon regulatory factor. Myeloid or classical DC
(mDC or cDC) also produce type I interferon, and Lauterbach et al. have shown
that BDCA3+ DCs from PBMCs stimulated with poly-IC are the main producers
of type III interferon (IFNλ)[Lauterbach et al. 2010]. IFNγ is a potent proinflam-
matory cytokine secreted by CD4+ Th1 lymphocytes, CD8+ cytotoxic lymphocytes
and NK cells.

In the context of cancer, some findings highlighted the important role and func-
tions of type I interferons (IFNα and IFNβ) in antitumor immunity [Gough et al.
2012]. Endogenous interferon has also been shown to modulate the antitumor im-
mune response [Gavin P Dunn et al. 2005]. In the context of TNBC tumors that
fail to respond to chemotherapy, Doherty et al. showed that treatment with IFNβ
represses thier cancer stem cell properties and could be used as a therapy in highly
aggressive TNBC tumors [Doherty et al. 2017]. Regarding type III interferon, it can
target tumor cells directly to inhibit proliferation, alter the cell cycle and induce
apoptosis, as well as activate antitumor immunity [Stiff and Carson 2015].

Tumor cells, similarly to infiltrating innate immune cells and lymphocytes, are
capable of producing type I interferon. Bidwell et al. described a novel immune-
evasion mechanism whereby tumor cells suppressed their intrinsic secretion of type
I interferon in order to metastasize successfully [Bidwell et al. 2012]. In mice, type I
interferons can activate CD8+ T cells and induce CTL activity [Diamond et al. 2011;
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Fuertes et al. 2011]. However, it has been shown that CD8+ T cells can produce
IFNγ which promotes tolerogenic DCs [Jurgens et al. 2009; Mojic, Takeda, and
Hayakawa 2017]. It would be interesting to perform further experiments to study
the communication between interferon-producing DCs and CD8+ T cells, to see if
there is a feedback loop in interferon signaling in favor of tumor escape or antitumor
immunity.

There is a certain interest of using interferon in cancer therapies, as it is seen
in available patents and clinical trials using interferon DC-vaccine to activate T cell
and induce a proper immune response [Baek et al. 2015; B. S. Parker, Rautela, and
Hertzog 2016; Santini et al. 2000]. Trials of interferon therapies in solid malignancies
such as melanoma, renal cell carcinoma and Kaposi sarcoma have met with varied
success. The source, inducer, subtype, dose, duration and stability of the endogenous
or exogenous IFN also have a major impact on outcome; as does the requirement
for IFNα/β receptor (IFNAR) expression. The presence of IFNAR on T cells should
be assessed to verify if type I interferon production by myeloid cells is efficient
to induce activation of CD8+ T cells in the TME. As suggested by Parker and
collegues, the use of IFN therapy in combination with PD1targeted therapies could
hold particular promise in the aggressive TNBC [B. S. Parker, Rautela, and Hertzog
2016]. This subtype of breast cancer expresses high levels of PDL1 and they have
demonstrated an important role for IFN signaling in metastatic breast cancer, hence
such a combination may hold great promise in a breast cancer subtype that currently
has limited and untargeted treatment options. However, interferon therapies reach
dose-limiting toxicities.

Finding interferon signature and correlation with checkpoint expression in myeloid
cells gives hint for developing targeted therapies. However, further experiments and
validation must be performed. Previously in the lab, Ghirelli et al. [Ghirelli et
al. 2015] showed that IFNγ and IFNα were undetectable in breast cancer cell line
supernatants. However, it would be relevant to check the level of interferons in su-
pernatants of fresh human breast cancer samples, taking into account the complexity
of the TME, and comparing LBC and TNBC. We could also consider performing
a co-culture of blood DCs activated with interferon (type I and/or type III) or
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tumor-infiltrating DCs and naive CD8+ T cells. Then, we could study cytokines ex-
pression, T cell activation profile and DC profile using transcriptomic data analysis
for instance.

4.4 Relevance of using transcriptomic data

We can argue that transcriptional profiles do not provide all information needed to
assess the cell-to-cell communication. It only reveals what happen at the transcript
level and not at the protein level which is the final message sensed by cells. However,
it gives huge hint to infer the cellular functions impacted by a specific context and
enable to study more than one molecule at a time. Using transcriptomic data of
communication molecules, we were able to i) characterize tumor-infiltrating APC
subsets and study their adaptation to breast TME, ii) derive subset-specific sig-
nature to assess the clinical outcome of patients, and iii) derive a communication
score and find clues of cell-to-cell communication in response to specific stimuli that
was experimentally validated. We can also monitor proteins to study intercellular
communication but depending on the experimental setting we used, the number of
parameters can become a limitation. Recently, a study described the social net-
work architecture of immune cells and their altered communication associated with
pathology using quantitative proteomics [Rieckmann et al. 2017].

4.5 Single-cell RNA-seq technology

Using single-cell RNA-seq (scRNA-seq), recent studies identified new subsets of
DC in peripheral blood and proposed a new classification [See et al. 2017; Villani
et al. 2017]. Single-cell technology is, indeed, a helpful tool to decipher cellular
heterogeneity in tissues. In my thesis work, I analyzed APC transcriptomic profiles
at the population-level, with a priori knowledge on the subset present in the breast
TME. To go further on describing the heterogeneity of APCs in the context of breast
cancer, we generated scRNA-seq profiles of immune cells from one sample of LBC.
As preliminary results, I identified a cluster of DC which does not express genes
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coding for lineage markers classically used to identify DCs [See et al. 2017; Villani
et al. 2017] but express genes coding for maturation markers (e.g. CCR7) and
checkpoint molecules (e.g. IDO) (Figure 4.1). In the literature, mature DCs have
been characterized at the periphery of tumor but not in the tumor bed of carcinoma
cells whereas tumor-infiltrating DCs exhibit an immature phenotype [Bell et al.
1999; Janco et al. 2015]. Upon maturation, DCs increase their efficacy to present
processed antigens and consequently improve their capability to activate T cells
[Dudek et al. 2013] whereas immature DCs found in tumors exhibit a tolerogenic
phenotype, expressing PD-L1 and suppressing T cell activation [Krempski et al.
2011]. Complementary studies including experimental validation are required to
define phenotype and functions of this population. If it corresponds to mature DCs,
we will have to investigate why this particular LBC sample is infiltrated by mature
DCs and we will need to experimentally validate the presence of this DC subset in
breast cancer, for instance by FACS or processing and analysis of public single-cell
datasets of immune cells infiltrating breast cancers [Azizi et al. 2018; Yin et al. 2018].
From the scRNAseq analysis, we can derive a specific gene signature for this small
population. Mining public databases of breast cancer profiles with clinical outcome,
as I performed in the first part of my thesis project, we can assess the correlation
between this cluster of DCs and clinical outcome. These results would give cues
on the relevance of targeting this population for the development of DC-targeted
cancer therapy.
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Figure 4.1: Characterization of breast tumor-infiltrating DC subsets using scRNA-
seq (preliminary results). a: tSNE representation of DCs (n= 253 cells) purified from
one LBC sample. Color code and ellipses indicate clusters identified by graph-based
clustering, five top discriminator genes are listed next to each cluster. b: Violin plot
representation of lineage markers expression in each cluster. Each dot represent a
unique cell. Color code indicate the same clusters as in (a).

174



4.6 Complexity of intercellular communication, a

challenge to study

Understanding cell-to-cell communication, and its underlying mechanisms that drive
the development of cancer is essential. From a cell-to-cell communication view,
mechanisms of tumor immune escape are poorly described due to the complex-
ity and dynamic of the system: multiple cell types with distinct phenotypes and
functions, multiple signals in this environment which impact cell functions and in-
tercellular communication. To reduce this complexity, we introduced a global score
summing up the intensity of all the individual channels. This greatly simplifies
the interpretation and visualization of intercellular networks, but also introduces
some arbitrariness when choosing to combine the individual scores. Moreover, the
database of communication molecules was manually curated, despite the robustness
and validity of the information it provides, the resource is focusing on immune inter-
action and is not exhaustive. It could be completed by adding molecules implicated
in other communication modules such as cellular migration signaling. To follow up
on characterizing APC subsets in the breast TME, we could also apply our ICELL-
NET score focusing only on immune checkpoint expression. We could generate in
silico prediction of checkpoint activation or inhibition to assess the changes on the
connectivity maps. In cancer, it can give clues on which checkpoint(s) could be
an interesting target for immunotherapy development. In my thesis work, I ap-
plied the ICELLNET tool to datasets of cells from in vitro generated context. We
hypothesize that the cellular communication network of stemming from various tis-
sues (e.g. blood, skin, brain) and diseases (e.g. tumors, autoimmune disorders,
pathogen infection) will harbour different communication patterns. As a long term
future perspective, the integration of dynamical aspects of communications in the
network reconstruction would give a more realistic view of cell-to-cell communication
in the human body. Cells are not all frozen in one location but are able to migrate
throughout the body. The interactions between cells then, appear to be part of a
dynamic process in space and time which is not taken into account in most of cell-
to-cell communication studies . Finally, the use of scRNA-seq data can be helpful to
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decipher intercellular communication between individual cells but it is a challenging
project in term of methodological development and biological interpretation [Rodda
et al. 2018; Thurley, L. F. Wu, and Altschuler 2018; Yin et al. 2018].
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Key Points     

• Clonal CD123high cells that infiltrate the bone marrow of chronic 
myelomonocytic leukemia patients are bona fide plasmacytoid dendritic cells. 

• Their presence correlates with Ras pathway mutations, progenitor 
hypersensitivity to FLT-3L and an increased risk of leukemic transformation. 

 
 
 

Abstract      
 

Islands of CD123high cells have been commonly described in the bone marrow of 
patients with chronic myelomonocytic leukemia (CMML). Using a multiparameter flow 
cytometry assay, we detected an excess of CD123+ mononucleated cells that are 
lineage-negative, CD45+, HLA-DR+, BDCA-2+, BDCA-4+ in the bone marrow of 
32/159 (20%) CMML patients. Conventional and electron microscopy, cell surface 
markers and gene expression analyses identify these cells as bona fide plasmacytoid 
dendritic cells (pDC). These cells belong to the leukemic clone, as demonstrated by 
whole exome sequencing of sorted monocytes and pDC. CD34+ cells collected from 
these patients generate pDC in response to low concentrations of FMS-like tyrosine 
kinase 3-ligand (FLT-3L). Somatic mutations in genes encoding proteins of the Ras 
pathway were identified in every pDC-rich patient. An excess of pDC, which respond 
to Toll-like receptor agonists by producing interferon alpha and interleukin-8, 
correlates with regulatory T cell accumulation and an increased risk of acute 
leukemia transformation. Collectively, these results suggest that clonal evolution of 
CMML with mutated Ras pathway can generate pDC that promote disease 
progression.    



Introduction  

Plasmacytoid dendritic cells (pDC) are bone-marrow derived cells whose 
development relies mostly on Fms-like tyrosine kinase 3 ligand (Flt-3L)1 and the 
master transcription factor TCF4.2 Mature pDC lack most of the lineage surface 
markers for B, T, NK cells and monocytes but express HLA-DR, CD123 (Interleukin-3 
receptor alpha, IL-3R ), CD303 (BDCA2) and CD304 (BDCA4/Neuropilin-1).3 These 
cells are the most important source of type I interferons (IFN-I) following recognition 
of viruses or nucleic acids through Toll-Like Receptor-7 (TLR7) and TLR9.4  They can 
also capture, process, and present or cross-present antigens,5 bridging innate and 
adaptive immune response.6  pDC infiltrate a variety of human neoplasms.7  In most 
cases, these tumor-associated pDC are defective in IFN-I production and exert a 
suppressive or tolerogenic function, primarily by inducing IL-10 producing regulatory 
T cells.8-11 Paradoxically, a decrease in the number of circulating pDC can also be 
associated with disease progression.12,13   

Chronic myelomonocytic leukemia (CMML) is a myeloid malignancy that arises from 
the age-related accumulation of somatic mutations in a hematopoietic stem or 
progenitor cell (HSPC).14 This disease associates cellular dysplasia with proliferative 
features including monocytosis.15 Although not specific, the high incidence of TET2, 
SRSF2, ASXL1 and signaling mutations (NRAS, KRAS and CBL) is characteristic of 
this disease.16-17 Myeloid progenitors commonly demonstrate hypersensitivity to 
granulocyte macrophage-colony stimulating factor (GM-CSF).18-19 Median overall 
survival of CMML patients ranges between 15 and 30 months. Approximately 25% of 
these patients die from disease transformation into acute myeloid leukemia (AML).20 
Allogeneic stem cell transplantation is a potentially curative therapeutic option,21 
while cytoreductive drugs and hypomethylating agents have limited impact on long-
term outcome.22      

In the 1980s, pathologists identified the presence of irregular islands of CD123-
positive cells in the bone marrow and tissues of a fraction of patients with acute and 
chronic myeloid neoplasms, with a strong predominance in CMML.23-26 These cells 
were initially described as plasmacytoid T cells because of their plasma cell-like 
morphology and the expression of CD4,27 then as plasmacytoid monocytes because 
of the expression of monocyte markers28. Their precise identity, the mechanisms 



promoting their generation, and their impact on disease evolution had not been 
explored thus far.  

We show that CD123+ cells infiltrating the bone marrow of CMML patients are bona 
fide pDC according to the most recent classification.29-30 The emergence of pDC 
islands is selectively observed in Ras-mutated CMML in which stem and progenitor 
cell differentiation into pDC has become hypersensitive to FLT3L. An increase in the 
number of pDC, which produce type I IFN and IL-8 upon TLR stimulation, correlates 
with an increased risk of leukemic transformation, bringing novel insights into CMML 
physiopathology.  

 

Patients and methods 

Cell collection. The two cohorts were approved by institutional review boards, 
disease diagnoses fulfilled the WHO 2016 classification criteria,15 cytogenetic risk 
was evaluated according to the CMML-specific prognostic scoring system (CPSS),31 
and samples were collected with informed content. The French cohort characteristics 
are in Table 1.  Cell collection and sorting procedures are in supplemental methods. 
The US cohort characteristics are in Table S1.  Biopsies were obtained at diagnosis. 
Cytogenetic information was available on 198 (98%), while bone marrow 
mononucleated cell (BMNC) DNA was available on 167 (83%) patients and subjected 
to a 29 gene panel targeted capture assay.32   

Flow cytometry 

BMNC and PBMC were incubated for 15 min at room temperature with Fc blocking 
reagent (Miltenyi Biotech) before being stained for 45-60 min at 4°C with antibodies. 
Subsequent intracellular staining was obtained by cell fixation with Perm/Fix (BD 
Biosciences) for 20 min at room temperature and Perm/Wash washing before 
incubation with antibodies for 60 min at 4°C. Flow analysis was performed on a BD 
LSRFortessa X-20 with BD FACSDiva software (BD biosciences). pDC (Figure S1 
and supplemental methods) were quantified as the fraction of PBMC or BMMC, 
whose count was refined using a CD33 vs side structure (SSC) plot, which enables 
elimination of residual dysplastic immature myeloid cells. We used Kaluza (Beckman 
Coulter, Brea, California, USA) and ModFit LT (BD biosciences) softwares for 



standard flow and CFSE experiments analyses, respectively. Antibodies and cell 
sorting methods are in supplemental methods. 

 

Cell morphology and immunohistochemistry 

Sorted pDC were analyzed on May-Grunwald Giemsa stained cytospins. For 
ultrastructural studies, they were fixed in 1.6 % glutaraldehyde (v/v in 0.1 M 
phosphate buffer) and post fixed with 2 % osmium tetroxide (w/v in 0.1 M phosphate 
buffer). Following dehydration through a graded ethanol series, they were embedded 
in Epon™ 812 and ultrathin sections were stained with standard uranyl acetate and 
lead citrate. Images were taken using a Tecnai 12 electron microscope (FEI, 
Eindhoven, The Netherlands). Immunohistochemistry was performed on formalin-
fixed and decalcified paraffin-embedded BM biopsies (details in supplemental 
methods).  

pDC generation and stimulation 

BMNC and PBMC (2.106 cells/mL) were incubated for 3 hours at 37°C with TLR 
agonists. After washing with cold PBS (Gibco), cells were stained extracellularly, 
fixed, permeabilized and stained intracellularly. Analysis of intracellular cytokines is in 
supplemental methods. To generate pDC, CD34+ cells were cultured in X-vivo 15 
(Lonza, Amboise, France) supplemented with insulin 10ng/mL, liposomes 20ng/mL, 
thrombopoietin (TPO 50ng/mL), Stem Cell Factor (SCF 50ng/mL), Fms-Like Tyrosine 
Kinase 3 ligand (FLT3L 100ng/mL), and Interleukin-3 (IL-3 20ng/mL) before flow 
cytometry detection and analysis of generated pDC (see supplemental methods)   

Cytokine measurement in bone marrow supernatants 

Fresh bone marrow samples were centrifuged at 150 G for 10 min. Supernatants 
were collected and frozen at -80°C until analysis using mesoscale (Meso Scale 
Diagnostics, Rockville, Maryland, USA) technology with two panels, including a 10-
plex (IFN , IL1R , MIF, FLT3-L, GM-CSF, CXCL12, VEGF, TNF , IL10 et IL17a) 
and a 9-plex (: IL1b, IL6, IL8, IL4, IL2R , IFN , M-CSF, MIP-1  (CCL4), TPO) 
panels.  

Exome and transcriptome analyses 



Whole exome sequencing was performed on DNA collected from sorted bone 
marrow T-cells (CD3+), monocytes (CD14+) and pDC (Lin- HLA-DR+ CD123high 
CD11c- BDCA4+). Total RNA was isolated from sorted cells with Single Cell RNA 
Purification Kit (Norgen Biotek Corp, Canada). Detailed methods are in supplemental 
material.    

Statistical analyses 

Given the number of samples, we used nonparametric tests, including Mann Whitney 
test to compare continuous variables, Fischer exact to compare categorical variables 
and Kendall’s correlation test to compare ordinal variables. The Kaplan-Meier method 
was used to evaluate survival data from diagnosis to death or last news. Cumulative 
incidence of AML transformation was computed considering death as a competing 
risk and univariate and multivariate analyses performed with Fine & Gray’s 
proportional subhazards model. Multivariate analysis was performed on all variables 
with significant impact in univariate analyses, followed by backward stepwise 
selection. All statistical analyses were two-sided, retaining p<0.05 as statistically 
significant and were realized with STATA or Prism 7. 

 

Results 

CD123-positive cells infiltrate hematopoietic tissues in a fraction of CMML 
patients 

CD123-positive cells that form irregular nodules in the bone marrow of a fraction of 
CMML patients (Figure 1A) were suggested to be pDC. To further explore the 
presence of pDC in bone marrow aspirate and peripheral blood, we set up a 
multiparametric flow cytometry assay that detects lineage-negative (CD3-, CD14-, 
CD15-, CD16-, CD19-, CD24-), CD33-negative and CD11c-negative mononucleated 
cells expressing CD45, CD123, HLA-DR, BDCA-2, BDCA-4 and CD4 (Figure 1B 
and S1). Compared to age-matched healthy donor controls (24 bone marrow and 34 
peripheral blood), an increased fraction of these cells was detected in 
mononucleated cells collected from the bone marrow of 32/159 (20%) and the 
peripheral blood of 22/198 (11%) CMML patients, respectively (Figure 1C, 1D and 
table 1). The cut-off value defining an increased fraction of pDC in mononucleated 



cells (mean + 2SD in age-matched control samples) was calculated to be 1.2% in the 
bone marrow and 0.6% in the peripheral blood, respectively (Figure 1C, 1D and S2). 
Analysis of 106 matched bone marrow and peripheral blood samples demonstrated 
that the fraction of pDC in mononucleated cells was always higher in bone marrow 
than in peripheral blood (median %pDC 0.32 [0.04-0.81] in bone marrow vs 0.10 

[0.02-0.26] in peripheral blood, p<0.0001, Wilcoxon signed rank test, Figure S2A). 
Importantly, in patients whose pDC number was below the cut-off value (pDC-poor 
CMML patients), the fraction of pDC was significantly lower than in healthy donor 
tissues (p=0.0002 and p=0.004 in bone marrow and peripheral blood, respectively, 
Figure S2B & S2C). Comparison of cell surface marker staining index only detected 
a slightly lower expression of BDCA-2 in pDC-poor CMML samples (Figure S2D to 
S2G).  A significant correlation was observed between the fraction of pDC measured 
in matched blood and bone marrow samples collected from 106 individual patients 
(linear regression, R2=0.75, p<0.001; Figure 1E). This translated into a good 
agreement between pDC bone marrow and peripheral blood infiltration (91.5%, 
Cohen’s kappa coefficient=0.66). Of these 106 cases, the 11 (10%) patients with an 
excess of pDC in peripheral blood had pDC excess in bone marrow, whereas 9 of the 
20 patients with a pDC excess in bone marrow had a normal count in peripheral 
blood.   

CD123-positive cells that infiltrate CMML bone marrow are bona fide pDC. 

To further validate the presence of pDC in CMML patients using a rigorous definition, 
we sorted CD45+, Lin-, HLA-DR+, CD123+, CD11c-, BDCA-4+ cells from CMML 
patient bone marrow and performed Giemsa staining demonstrating a typical plasma 
cell-like morphology that included a round or oval shape, an eccentric nucleus, 
basophilic cytoplasm, and a pale Golgi zone known as the arcoplasm (Figure 2A). 
Electron microscopic analysis of these cells showed a well-developed rough 
endoplasmic reticulum (RER) in an electron-dense cytoplasm (Figure 2B) congruent 
with pDC. In some cases, we also noticed cytoplasmic hyaline inclusions made of 
aggregates of filaments (Figure 2B, lower panels, arrow). Flow cytometry analyses 
indicated that a small fraction of these cells (always lower than 16%) expressed AXL 
and, among CD33- AXL- cells, a small fraction (25.4 +/- 17.7%, n = 17) expressed 
CD2 (Figure 2C and Figure S2H and S2I), two markers that were recently 
demonstrated to define independent cell populations.29,30   



We then explored the ability of CMML pDC to produce IFN by intracellular flow 
cytometry analysis of mononucleated cells treated with brefeldin A, which induces the 
cytoplasmic retention of synthesized cytokines. With this method, IFN was detected 
in the cytoplasm of a fraction of bone marrow (Figure 2D) and peripheral blood 
(Figure 2E) pDC stimulated for 6 hours with a TLR7 agonist (the guanosine analog 
loxoribine, 2 mM) or a TLR9 agonist (CpG ODN2395, 1 µM). We also stimulated 
sorted pDC with either lipopolysaccharides (LPS, 1 µg/ml), or loxoribine (2 mM), or 
CpG ODN2395 (1 µM), or IL-3 (10 ng/ml) for 24 hours. Those collected from pDC-
rich CMML patients secreted various amounts of IFN  (Figure 2F), tumor necrosis 
factor (TNF) (Figure 2G), IL-6 (Figure 2H) and IL-8 (Figure 2I) in response to CpG 
ODN2395. All of them produced IL-8 in response to loxoribine (Figure 2I). None of 
these samples had any response to LPS (Figure 2F-I), compatible with the lack of 
TLR-4 expression in human pDC.33   

Since pDC accumulation in solid tumors has been associated with an expansion of 
regulatory T cells (Tregs), we measured the fraction of CD3+, CD4+, CD25high, 
CD127low Tregs (Figure S1) in bone marrow and peripheral blood mononucleated 
cells of CMML patients with and without excess pDC, and in healthy donors. The 
fraction of Tregs among T cells was significantly higher in the bone marrow and 
peripheral blood of CMML patients compared to healthy donors (Figure 2J and 2K). 
The fraction of TRegs among T cells was also significantly higher in the bone marrow 
(Figure 2J) and peripheral blood (Figure 2K) of pDC-rich bone marrow patients. A 
significant correlation between pDC infiltration and the fraction of Tregs was 
measured in bone marrow and peripheral blood, respectively (Figure 2J and 2K).  

CMML pDC are close to healthy donor pDC 

RNA-sequencing was performed in pDC sorted from pDC-rich (n=11) and poor (n=5) 
CMML bone marrow samples as well as pDC-rich (n=3) and pDC poor (n-4) CMML 
peripheral blood samples. Gene expression in these cells were similar to that 
observed in pDC sorted from age-matched healthy donors (n=7) (Figure 3A). More 
specifically, genes that are known to be highly expressed in healthy donor pDC, 
including HLA-DR, CD123, CLEC4C (BDCA2), TLR9, TLR7, NRP1 (BDCA4), IRF7, 
LILRA4 (ILT7) and TCF4 (E2.2) genes were also highly expressed in CMML-
associated pDC. CMML derived pDC expressed lower levels of CD5, CD2, and 
SIGLEC6 genes that characterize the recently described “AS DC” (AXL+ SIGLEC-6+ 



Dendritic Cell) population and low levels of lineage specific genes (Figure 3A).29 Of 
note, while AXL mRNA was expressed in all groups tested, low levels of the protein 
were detected by flow analysis (Figure 3C). Principal component analysis performed 
on the 500 most variable genes across pDC from different sample origin, did not 
distinguish pDC sorted from pDC-rich and -poor CMML bone marrow samples and 
from healthy donor bone marrow (Figure 3B).  

We also performed differential gene expression analysis. To eliminate any batch 
effect, we focused on a series of simultaneously analyzed bone marrow pDC 
collected from pDC-rich CMML (n=6), pDC-poor CMML (n=4) and healthy donor 
(n=3) bone marrow samples. We detected 74 differentially expressed genes (DEG) 
between pDC-poor and pDC-rich CMML, 13 DEG between pDC-rich CMML and 
healthy-donor pDC, and 144 DEG between pDC-poor CMML and healthy-donor pDC. 
Unsupervised hierarchical clustering indicated that these genes could discriminate 
the three sample categories (Figure 3C). Gene Ontology enrichment analysis 
performed using over-representation test34,35 demonstrated a trend toward 
enrichment in type I interferon signaling pathway, response to type I interferon and 
cellular defense response  in pDC from pDC-rich compared to pDC-poor CMML. 

pDC bone marrow infiltration correlates with increased leukemic 
transformation  

Since pDC infiltration has been associated with a poor outcome in diverse solid 
tumors, we hypothesized that pDC-rich CMML had an inferior prognostic outlook in 
comparison to pDC-poor CMML. The follow-up was not sufficient to analyze the 
outcome of CMML patients whose pDC infiltration was prospectively evaluated by 
flow cytometry at diagnosis. Therefore, we performed this prognostic analysis on an 
independent retrospective cohort of 202 patients in which pDC were detected by 
immunohistopathology (Table S1). Bone marrow was considered as “pDC-rich” when 
> 5% of the bone marrow cellularity per field had CD123+ and TCL1+ cells. pDC 
infiltration measured in the peripheral blood of 56 of these patients by flow cytometry 
was in good accordance with immunohistochemistry analyses, i.e. pDC over 0.6% of 
peripheral blood mononucleated cells were detected only in patients with pDC > 5% 
in the bone marrow by immunohistochemistry (Figure 4A). pDC enrichment of CMML 
bone marrow was not statistically associated with overall survival outcomes, even 



when higher percentages of pDC were used as cut-offs for being considered “pDC-
rich” CMML (>10%, >25% and >50%) (not shown). However, pDC-rich CMML 
according to bone marrow immunohistochemistry was associated with a significantly 
higher cumulative incidence of leukemic transformation, considering death as a 
competing risk (Figure 4B, standardized hazard ratio 2.59 [95% confidence interval 
(CI) 1.21-5.51]; P=0.014). Importantly, an increased bone marrow infiltration with 
pDC remained an independent prognostic factor in multivariate analysis (sHR 3.3 
[95% CI: 1.47-7.]; p=0.004), together with peripheral blood blast cell count and 
immature myeloid cell fraction (Table S2). 

Bone marrow infiltrating pDC are detected in Ras-mutated CMML 

Having demonstrated that CD123high cells that accumulate in the bone marrow of 
20% of patients with CMML are bona-fide pDC, we wanted to determine if their 
accumulation was related to specific genetic events. Using a panel of 38 genes 
analyzed by NGS, we first identified similar gene alterations and variant allele 
frequencies in sorted peripheral blood monocytes and bone marrow pDC of two 
CMML patients, validating that pDC were part of the leukemic clone (not shown). In 
the cohort of patients analyzed by flow cytometry (French cohort), we noticed that 
CMML with pDC-rich bone marrow demonstrated a significantly higher incidence of 
NRAS + KRAS + CBL mutations in their sorted monocytes (Table 1). We validated 
this observation in the above-mentioned, independent cohort of 202 patients 
analyzed by immunohistochemistry (Mayo Clinic cohort), in which we observed a 
significant association between the presence of NRAS and CBL mutations analyzed 
in bulk bone marrow mononucleated cells and bone marrow enrichment in pDC 
(Table S1).   

We then sorted bone marrow pDC, peripheral blood CD14+ monocytes, and CD3+ T 
cells from 10 CMML patients, one patient developing an FLT3-ITD+ AML as a result 
of CMML transformation (sample #2202) and a patient with atypical CML, another 
MDS/MPN (#1996). All 12 cases displayed marrow pDC enrichment, thus enabling 
for the sorting of a sufficient amount of pDC to perform whole exome sequencing. 
Whole exome sequencing of each sorted cell population was performed (Figure 5A 
and Table S2). In every CMML patient, we detected at least one (7 cases) and 
sometimes two or more (5 cases) somatic mutations in genes encoding proteins of 
the Ras pathway. These heterogeneous mutations included variants in NRAS, KRAS, 



NF1, CBL, PTPN11 and MAP2K1 genes (Figure 5A). A significant correlation was 
observed between variant allele frequencies measured in monocytes and in pDC 
(linear regression, r2 =0.74, p<0.0001, Figure 5B). Nevertheless, some clonal 
heterogeneity could be detected, e.g. in sample #2048, NRAS G13D identified in 
sorted pDC was not detected in sorted monocytes (Figure 5C) whereas, of the three 
mutations of the Ras pathway detected in sample #1829, NRASA59D was almost 
exclusively identified in sorted monocytes (Figure 5D). Patient #2202 developed 
FLT3-ITD-driven secondary AML with NRASG12V being mostly detected in sorted 
residual monocytes (Figure S3A). Finally, in one bone marrow sample (#2387), we 
were able to sort progenitor populations.36,37 This sample was collected from the 
same patient as sample # 2062 with a 10.4 months interval between the two samples 
collection. Analysis of somatic mutations in sorted monocytes detected the loss of a 
KRASG60V subclone. Five other somatic mutations showed a similar variant allele 
frequency in every cell compartment (Figure S3B).   

CD34+ cells from pDC-rich CMML are hypersensitive to FLT-3L  

We then analyzed the ability of CD34+ cells from CMML patients to generate pDC in 
vitro by culturing these cells in the presence of SCF, TPO, IL-3 and FLT3L for 30 
days.38,39 From day 15 to day 25, CD34+ cells from pDC-rich CMML demonstrated a 
significantly increased ability to generate pDC in culture when compared to CD34+ 
cells from pDC-poor CMML, as shown by serial flow analysis of CD34+cells-derived 
pDC (Figure 6A and 6B). Morphological analysis of the generated cells using 
conventional microscopy (Figure 6C, left panel) and electron microscopy (Figure 
6C, right panel) confirmed pDC features. Analysis of somatic variants detected the 
same abnormalities with similar allele frequencies in sorted fresh pDC and pDC 
generated in culture from CD34+ cells (Figure 6D). Under these culture conditions, 
CD34+ cells from pDC-rich CMML also produced a greater number of pDC as 
compared to cord blood CD34+ cells, usually tested for pDC generation in vitro 
(Figure 6E & 6F). We repeated the experiments in the absence or presence of 
increasing amount of FLT-3L, demonstrating the ability of CD34+ cells from pDC-rich 
CMML to produce pDC in the absence of FLT-3L and to produce more pDC in 
response to low concentrations of FLT-3L (Figure 6G). Interestingly, the level of FLT-
3L measured in the supernatant of bone marrow was observed to be significantly 
lower in CMML patients, and this decreased FLT-3L level was more significant in 



pDC-rich CMML (Figure 6H).  

  



Discussion 

While the number of bone marrow pDC is decreased in a majority of CMML patients 
in comparison to age-matched healthy controls, an increased number of pDC is 
detected in the bone marrow of about 20% of these patients. All the studied patients 
with bone marrow pDC excess demonstrated genetic alterations of the oncogenic 
Ras pathway and their bone marrow CD34+ cells were hypersensitive to FLT3-L 
when induced to differentiate into pDC. The accumulation of leukemic pDC also 
correlated with a higher rate of regulatory T cells in the bone marrow and peripheral 
blood and a higher risk of AML transformation. 

The presence of CD123high cell islands in the bone marrow of a fraction of patients 
has long been identified in CMML and other myeloid neoplasms.25,40,41 This 
pathologic finding is distinct from blastic plasmacytoid dendritic cell neoplasms 
(BPDCN), a rare clonal proliferation of pDC precursors that affects elderly people and 
involves alterations in MYC, RB1 and IKAROS gene family members.41 Because of 
their plasmacytoid morphology, CD123high cells were considered as pDC but a 
definitive proof of their identity was missing. Recent analyses have suggested that 
CD123high cell population was more complex than anticipated.29,30 Flow analysis 
combined with conventional and electron microscopy, gene expression analyses and 
cytokine production profiling in response to TLR9 and TLR7 agonists, establish these 
cells as authentic pDC that can be distinguished from CD123high “AS DC” (AXL+, 
SIGLEC6+) or “pre-DC” cells.42 

pDC are the main type I IFN-producing cells.43 IFN  has demonstrated antineoplastic 
effects through the activation of pDC, cytotoxic T-cells and NK cells while having 
context-dependent effects of CD4 T cells44  and therapeutic benefits of IFN  was 
demonstrated in myeloproliferative neoplasms.45  In multiple myeloma, in which bone 
marrow pDC mediate immune deficiency and promote plasma cell growth and drug 
resistance, CpG oligodeoxynucleotides could restore pDC immune function and 
abrogate pDC-induced plasma cell growth.46 We show that CMML-associated pDC 
could produce IFN  after stimulation with a TLR9 agonist, although at lower level 
than peripheral blood  pDC from young healthy donors. CMML is a disease 
associated with ageing17 and pDC from age-matched healthy donors also produced 
lower levels of IFN  than pDC from younger healthy donors. The heterogeneous 
level of IFN  produced by CMML pDC could indicate the differential amplification of 



pDC subpopulations that diversely react to a given individual stimulus under control 
of a TNF autocrine and/or paracrine communication loop.47 Therefore, pDC 
stimulation may not necessarily be sufficient to restore pDC immune function and 
generate therapeutically active levels of IFN .  

An alternative approach would be to inhibit the effect of cytokines produced by pDC. 
Cytokines produced by mature cells of the leukemic clone modulate normal and 
leukemic progenitor differentiation in a mouse model of myeloproliferative 
neoplasm,48 a regulatory loop demonstrated to be a potential therapeutic target in 
chronic myeloid leukemia.49 The heterogeneous production of IFN  by CMML 
associated pDC contrasts with IL-8 production, especially when these cells are 
stimulated with TLR7 agonists. While the primary function of this chemokine is the 
attraction and degranulation of neutrophils,50 IL-8 can also promote the survival and 
self-renewal of hematopoietic stem cells. 51 Elevated IL-8 secretion has been 
detected in AML and MDS52,53 and inhibition of its receptor CXCR2 could selectively 
inhibit the proliferation of MDS/AML cells,54 indicating IL-8 as a potential therapeutic 
target in CMML patients with an excess of pDC. 

Flt3-L and GM-CSF have a concerted effect on myeloid cell homeostasis55 with Flt3-
L supporting the development of pDC through TCF4 and IRF8 and GM-CSF 
antagonizing this effect through STAT5 activation.56  Hypersensitivity to GM-CSF is a 
common feature of CMML myeloid progenitors,19 which could account for the 
decreased number of pDC in the bone marrow of most CMML patients. The 
contrasting amplification of pDC detected in 20% of these patients suggests that pDC 
development escapes the inhibitory effect of GM-CSF, which may be related to 
additional genetic alterations of signaling pathways, including Ras pathway 
alterations and FLT3-ITD, promoting pDC development through enhanced progenitor 
sensitivity to FLT3-L. This is in contrast with a significantly decreased level of FLT-3L 
in the bone marrow environment (this paper) and the peripheral blood of CMML 
patients,57 which appears to be unique among myeloid malignancies.58  

High risk MDS clones expand in a tolerant and immunosuppressive environment that 
involves CD4+ Treg expansion and myeloid-derived suppressive cells.59-61 Similarly, 
IFN- -deficient pDC that accumulate in aggressive human tumors promote the 
expansion of disease-associated Tregs, which contribute to tumor immune tolerance 
and poor clinical outcome.62  In CMML, the correlated expansion of pDs and 



CD4+ Tregs may contribute to the higher risk of progression into acute leukemia. 
Whatever their biological effects, therapeutic targeting of pDC, e.g. through the use of 
an IL-3R -targeted monoclonal antibody,63 could deserve to be tested in CMML 
patients with clonal pDC expansion.      

  



Acknowledgements: This work was supported by grants from the Ligue Nationale 
Contre le Cancer (Equipe Labellisée), the National Cancer Institute (INCa PL-BIO 
and PRT-K calls), the Molecular Medicine in Oncology program supported by the 
Agence Nationale de la Recherche, and the SIRIC SOCRATE program. NL was 
supported by a grant from the Ligue Nationale Contre le Cancer, MD by the ITMO 
Cancer (Plan cancer 2014-2019). Part of high-throughput sequencing was performed 
by the genomic platform of the Institut Curie, which is supported by grants ANR-10-
EQPX-03 and ANR10-INBS-09-08 from the Agence Nationale de la Recherche 
(Investissements d’Avenir) and by Cancéropole Ile de France. We are grateful to 
Sylvain Baulande and Patricia Legoix-Ne from the genomic platform of Curie Institute 
and Karine Bailly from the Cochin Institute cytometry and immunobiology facility for 
their technical support, and to Abdelkrim Achibet from the orthopedic surgery 
department from the hospital of Le Mans for providing us with bone marrow controls. 

 

Authorship contribution: NL and MD collected the samples and performed the 
experiments, PR set up and performed flow analyses, FN and PM analyzed RNA 
sequencing data, VS and OK performed conventional microscopy, GP the electron 
microcopy analysis, MEFZ, MTH and RLK the immunohistochemistry, SN and EP 
measured FLT-3L in bone marrow plasma, MKD analyzed whole exome sequencing 
data, PF, RI, CW, VR and MF provided patient samples, ND supervised genomic 
analyses, ES wrote the manuscript, MF, VS, MMP corrected the manuscript, MMP 
and ES supervised the whole project.  

 

Disclosure of Conflicts of Interest : None 
 

 

  



References   
1. Waskow, C., Liu, K., Darrasse-Jèze, G., et al. FMS-like tyrosine kinase 3 is required for 
dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9(6):676-683. 

2. Cisse B, Caton ML, Lehner M, et al. Transcription Factor E2-2 Is an Essential and Specific 
Regulator of Plasmacytoid Dendritic Cell Development.Cell. 2008;135(1):37 48.  

3. Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: 
a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571 8.  

4. Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-
producing cells in human blood. Science. 1999;284(5421):1835 7.  

5. Villadangos JA, Young L. Antigen-Presentation Properties of Plasmacytoid Dendritic Cells. 
Immunity. 2008;29(3):352 61.  

6. Kadowaki N, Antonenko S, Lau JY-N, Liu Y-J. Natural Interferon / –Producing Cells Link 
Innate and Adaptive Immunity. J Exp Med. 2000;192(2):219 26.  

7. Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells and 
cancer. J Leukoc Biol. 2011;90(4):681 90.  

8. Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors 
recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 
2001;7(12):1339 46.  

9. Wei S, Kryczek I, Zou L, et al. Plasmacytoid Dendritic Cells Induce CD8+ Regulatory T 
Cells In Human Ovarian Carcinoma. Cancer Res. 2005;65(12):5020 6.  

10. Conrad C, Gregorio J, Wang Y-H, et al. Plasmacytoid Dendritic Cells Promote 
Immunosuppression in Ovarian Cancer via ICOS Costimulation of Foxp3+ T-Regulatory 
Cells. Cancer Res. 2012;72(20):5240 9.  

11.Demoulin S, Herfs M, Delvenne P, Hubert P. Tumor microenvironment converts 
plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the 
molecular mechanisms. J Leukoc Biol. 2013;93(3):343 52.  

12. Hishizawa M, Imada K, Kitawaki T, Ueda M, Kadowaki N, Uchiyama T. Depletion and 
impaired interferon- -producing capacity of blood plasmacytoid dendritic cells in human T-
cell leukaemia virus type I-infected individuals. Br J Haematol. 2004;125(5):568 75.  

13. Mami NB, Mohty M, Aurran-Schleinitz T, Olive D, Gaugler B. Blood dendritic cells in 
patients with chronic lymphocytic leukaemia. Immunobiology. 2008;213(6):493 8.  

14. Deininger MWN, Tyner JW, Solary E. Turning the tide in myelodysplastic / 
myeloproliferative neoplasms. Nat Rev Cancer. 2017;17(7):425 40.  

15. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health 
Organization classification of myeloid neoplasms and acute leukemia. Blood. 
2016;127(20):2391 405.  



16. Itzykson R, Kosmider O, Renneville A, et al. Prognostic score including gene mutations in 
chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428 36.  

17. Merlevede J, Droin N, Qin T, et al. Mutation allele burden remains unchanged in chronic 
myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 
2016;7:10767. doi:10.1038/ncomms10767. 

18. Itzykson R, Kosmider O, Renneville A, et al. Clonal architecture of chronic 
myelomonocytic leukemias. Blood. 2013; 121(12):2186 98.  

19. Padron E, Painter JS, Kunigal S, et al. GM-CSF–dependent pSTAT5 sensitivity is a 
feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 
2013;121(25):5068.  

20. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk 
stratification, and management. Am J Hematol. 2016;91(6):631 42.  

21. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation 
for MDS and CMML: recommendations from an international expert panel. Blood. 
2017;129(13):1753 62.  

22. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 
2017;130(2):126 36.  

23.  Chen Y-C, Chou J-M, Ketterling RP, Letendre L, Li C-Y. Histologic and 
Immunohistochemical Study of Bone Marrow Monocytic Nodules in 21 Cases With 
Myelodysplasia. Am J Clin Pathol. 2003;120(6):874 81.  

24. Vermi W, Facchetti F, Rosati S, et al. Nodal and extranodal tumor-forming accumulation 
of plasmacytoid monocytes/interferon-producing cells associated with myeloid disorders. Am 
J Surg Pathol. 2004;28(5):585 95.  

25. Orazi A, Chiu R, O’Malley DP, et al. Chronic myelomonocytic leukemia: the role of bone 
marrow biopsy immunohistology. Mod Pathol. 2006;19(12):1536 45.  

26. Harris NL, Demirjian Z. Plasmacytoid T-zone cell proliferation in a patient with chronic 
myelomonocytic leukemia. Histologic and immunohistologic characterization. Am J Surg 
Pathol. 1991;15(1):87 95.  

27. Müller-Hermelink HK, Stein H, Steinmann G, Lennert K. Malignant lymphoma of 
plasmacytoid T-cells. Morphologic and immunologic studies characterizing a special type of 
T-cell. Am J Surg Pathol.7(8):849 62.  

28.Facchetti F, de Wolf-Peeters C, Mason DY, Pulford K, Van den Oord JJ, Desmet VJ. 
Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. 
Am J Pathol. 1988;133(1):15.  

29. Villani A-C, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human 
blood dendritic cells, monocytes, and progenitors. Science. 2017;356(6335):eaah4573.  



30. See P, Dutertre C-A, Chen J, et al. Mapping the human DC lineage through the 
integration of high-dimensional techniques. Science. 2017;356(6342):eaag3009.  

31. Such E, Germing U, Malcovati L, et al. Development and validation of a prognostic 
scoring system for patients with chronic myelomonocytic leukemia. Blood. 
2013;121(15):3005 15.  

32. Patnaik MM, Lasho TL, Vijayvargiya P, et al. Prognostic interaction between ASXL1 and 
TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6(1):e385.31.   

33. Liu Y-J. IPC: Professional Type 1 Interferon-Producing Cells and Plasmacytoid Dendritic 
Cell Precursors. Annu Rev Immunol. 2005;23(1):275 306.  

34. Boyle EI, Weng S, Gollub J, et al. GO::TermFinder—open source software for accessing 
Gene Ontology information and finding significantly enriched Gene Ontology terms 
associated with a list of genes. Bioinformatics. 2004;  20(18), 3710–3715.  

35. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological 
Themes Among Gene Clusters. OMICS : a Journal of Integrative Biology. 2012;16(5):284-
287. doi:10.1089/omi.2011.0118.  

36. Lee J, Breton G, Oliveira TYK, et al. Restricted dendritic cell and monocyte progenitors in 
human cord blood and bone marrow. J Exp Med. 2015;212(3):385 99.  

37. Lee J, Breton G, Aljoufi A, et al. Clonal analysis of human dendritic cell progenitor using a 
stromal cell culture. J Immunol Methods. 2015;425:21.  

38. Chen W, Antonenko S, Sederstrom JM, et al. Thrombopoietin cooperates with FLT3-
ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic 
progenitors. Blood. 2004;103(7):2547 53.  

39. Demoulin S, Roncarati P, Delvenne P, Hubert P. Production of large numbers of 
plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor 
cells: Use of interleukin-3. Exp Hematol. 2012;40(4):268 78.  

40. Pardanani A, Reichard KK, Zblewski D, et al. CD123 immunostaining patterns in 
systemic mastocytosis: differential expression in disease subgroups and potential prognostic 
value. Leukemia. 2016;30(4):914 8. 

41. Tzankov A, Hebeda K, Kremer M, et al. Plasmacytoid dendritic cell proliferations and 
neoplasms involving the bone marrow: Summary of the workshop cases submitted to the 
18th Meeting of the European Association for Haematopathology (EAHP) organized by the 
European Bone Marrow Working Group, Basel 2016. Ann Hematol. 2017;96(5):765 77.  

42. Matsui T, Connolly JE, Michnevitz M, et al. CD2 Distinguishes Two Subsets of Human 
Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions. J Immunol. 
2009;182(11):6815 23.  

43. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer 
immunity. Nat Rev Immunol. 2015 ; 15:405-414. 



44. Touzot M, Grandclaudon M, Cappuccio A, et al. Combinatorial flexibility of cytokine 
function during human T helper cell differentiation. Nat Commun. 2014; 5:3987.  

45. Kiladjian J-J, Giraudier S, Cassinat B. Interferon-alpha for the therapy of 
myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30(4):776 81.  

46. Chauhan D, Singh AV, Brahmandam M, et al. Functional Interaction of Plasmacytoid 
Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell. 
2009;16(4):309 23. 

47. Alculumbre SG, Saint-André V, Di Domizio J, et al. Diversification of human plasmacytoid 
predendritic cells in response to a single stimulus. Nat Immunol. 2018;19(1):63-75.  

48. Reynaud D, Pietras E, Barry-Holson K, et al. IL-6 controls leukemic multipotent 
progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer 
Cell. 2011;20(5):661.  

49. Welner RS, Amabile G, Bararia D, et al. Treatment of chronic myelogenous leukemia by 
blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell. 
2015;27(5):671.  

50. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, et al. Interleukin-8 in cancer 
pathogenesis, treatment and follow-up. Cancer Treat Rev. 2017;60(Supplement C):24 31.  

51. Sinclair A, Park L, Shah M, et al. CXCR2 and CXCL4 regulate survival and self-renewal 
of hematopoietic stem/progenitor cells. Blood. 2016;128(3):371.  

52. Tobler A, Moser B, Dewald B, et al. Constitutive expression of interleukin-8 and its 
receptor in human myeloid and lymphoid leukemia. Blood. 1993;82(8):2517 25. 

53. Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-Induced Stromal PKC /IL8 Is Essential 
in Human Acute Myeloid Leukemia. Cancer Res. 2017;77(2):303 11. 

54. Schinke C, Giricz O, Li W, et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy 
against MDS and AML stem cells. Blood. 2015;125(20):3144.  

55. Kingston D, Schmid MA, Onai N, Obata-Onai A, Baumjohann D, Manz MG. The 
concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood. 
2009;114(4):835 43.  

56. Esashi E, Wang Y-H, Perng O, Qin X-F, Liu Y-J, Watowich SS. The Signal Transducer 
STAT5 Inhibits Plasmacytoid Dendritic Cell Development by Suppressing Transcription 
Factor IRF8. Immunity. 2008;28(4):509 20.  

57. Niyongere S, Lucas N, Zhou JM , et al. Heterogeneous expression of cytokines accounts 
for clinical diversity and refines prognostication in CMML. Leukemia, in press 

58. Desterke C, Bilhou-Nabéra C, Guerton B, et al. FLT3-Mediated p38–MAPK Activation 
Participates in the Control of Megakaryopoiesis in Primary Myelofibrosis. Cancer Res. 
2011;71(8):2901 15.  



59. Kordasti SY, Ingram W, Hayden J, et al. CD4+CD25high Foxp3+ regulatory T cells in 
myelodysplastic syndrome (MDS). Blood. 2007;110(3):847 50.  

60. Kotsianidis I, Bouchliou I, Nakou E, et al. Kinetics, function and bone marrow trafficking 
of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 
2008;23(3):510 8.  

61. Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells 
correlates with number of T regulatory cells and disease progression in myelodysplastic 
syndrome. Oncoimmunology. 2016;5(2):e1062208. 

62. Sisirak V, Faget J, Gobert M, et al. Impaired IFN-  Production by Plasmacytoid Dendritic 
Cells Favors Regulatory T-cell Expansion That May Contribute to Breast Cancer 
Progression. Cancer Res. 2012;72(20):5188 97.  

63. Ray A, Das DS, Song Y, et al. A novel agent SL-401 induces anti-myeloma activity by 
targeting plasmacytoid dendritic cells, osteoclastogenesis and cancer stem-like cells. 
Leukemia. 2017;31(12):2652-2660.   

  

 



Table 1. Characteristics of CMML patients whose bone marrow mononucleated cells 
were prospectively analyzed by flow cytometry (French cohort). pDC defined as Lin- 
(CD3-, CD14-, CD15-, CD16-, CD19-, CD24-), CD33- and CD11c- mononucleated cells 
expressing CD45, CD123, HLA-DR, BDCA-2, BDCA-4 and CD4. pDC rich samples 
defined as pDC > 1.2% of bone marrow mononucleated cells. 
 

Variables Availabl
e 

All patients 
n=159 

pDC-rich  
n=32 (20%) 

pDC-poor  
n=127 (80%) P-value 

General characteristics 
Age in years, mean [range] 158 74 [68-81] 78 [73-83] 74 [68-80] 0.04 
Male, number (%) 126 81 (64%) 16 (59%) 65 (66%) NS 
Blood cell parameters 
Hemoglobin g/dL, median 
[IQR] 140 11.1 [9.4-12.9] 11.3 [9.7-12.2] 11.1 [9.2-12.9] NS 

WBC x 109/L , median [IQR] 140 11.1 [7.0-18.9] 12.0 [8.4-24.1] 11.1 [6.7-18.6] NS 
ANC x 109 /L, median [IQR] 138 5.5 [2.9-10.6] 7.1 [4.1-13.7] 5.4 [2.8-10.4] NS 
ALC x 109 /L, median [IQR] 140 2.0 [1.2-2.8] 1.6 [1.0-2.6] 2.0 [1.2-2.8] NS 
AMC x 109 /L, median [IQR] 140 2.4 [1.3-4.9] 2.4 [1.8-4.8] 2.4 [1.2-4.9] NS 
Platelets x 109/L, median [IQR] 137 102 [54-191] 93 [52-187] 104 [54-197] NS 
BM blast %, median [IQR] 127 6 [3-8] 6 [4-8] 5 [3-8] NS 
WHO 2016 classification 
CMML-0, number (%) 
CMML-1, number (%) 
CMML-2, number (%) 

127 
53 (42%)  
52 (41%)  
22 (17%) 

8 (29%)  
17 (61%)  
3 (11%) 

45 (46%)  
35 (35%)  
19 (19%) 

NS 

Myelodysplastic, number (%) 
Myeloproliferative, number (%) 140 79 (56%)  

61 (44%) 
15 (50%)  
15 (50%) 

64 (58%)  
46 (42%) 

NS 

Cytogenetic risk according to CPSS 
Low, number (%) 
Intermediate, number (%) 
High, number (%) 

81 
66 (80%)  
8 (10%)  
8 (10%) 

14 (82%)  
 0  

3 (18%) 

52 (80%)  
 8 (12%)  
 5 (8%) 

NS 

Mutated genes by NGS analysis, number (%)  
ASXL1 126 60 (48%) 12 (46%) 48 (48%) NS 
CBL 126 19 (15%) 6 (23%) 13 (13%) NS 
C-KIT 126 4 (3%) 0 4 (4%) NS 
CSF3R 126 9 (7%) 1 (4%) 8 (8%) NS 
DNMT3A 126 6 (5%) 2 (8%) 4 (4%) NS 
EZH2 126 11 (9%) 2 (8%) 9 (9%) NS 
FLT3-TKD 126 1 (1%) 1 (4%) 0 NS 
IDH1 126 2 (2%) 0 2 (2%) NS 
IDH2 126 5 (4%) 2 (8%) 3 (3%) NS 
JAK2 126 9 (7%) 0 9 (9%) NS 
KRAS 126 19 (15%) 5 (19%) 14 (14%) NS 
NF1 126 3 (8%) 2 (25%) 1 (4%) NS 
NRAS 126 24 (19%) 9 (35%) 15 (15%) 0.046 
RUNX1 126 23 (18%) 3 (12%) 20 (20%) NS 
SETBP1 126 8 (6%) 3 (12%) 5 (5%) NS 
SF3B1 126 9 (7%) 3 (12%) 6 (6%) NS 
SRSF2 126 53 (42%) 7 (27%) 46 (46%) NS 
TET2 126 87 (69%) 18 (58%) 72 (72%) NS 
Tp53 126 3 (2%) 0 3 (3%) NS 
U2AF1 126 9 (7%) 2 (8%) 7 (7%) NS 
ZRSR2 126 5 (4%) 2 (8%) 3 (3%) NS 
Combined mutations of genes encoding proteins of the Ras pathway, number (%) 
NRAS + KRAS + CBL 126 58 (46%) 18 (69%) 40 (40%) 0.014 
WBC, white blood cells ; ANC, Absolute neutrophil count ; ALC, Absolute lymphocyte count ; 
AMC, absolute monocyte count ; CMML, chronic myelomonocytic leukemia ; BM, bone 
marrow; CPSS: CMML-specific prognostic scoring system; NS, non significant.  



Figures legends  
Figure 1. Identification of CD123high cells in bone marrow and peripheral blood 
of CMML patients.  A. Histological and immunohistochemical analysis of bone 
marrow trephine biopsy sections of CMML patients. Two representative cases are 
shown (magnification x 20). Upper panel: CD123+,TCL1+ cell-rich CMML; Lower 
panel: CD123+,TCL1+ cell-poor CMML. Left column: hematoxylin/eosin staining; 
middle column: CD123 staining; right column: TCL1 staining. B. Multiparameter flow 
cytometry analysis of putative pDC in bone marrow aspirate and peripheral blood 
samples collected from CMML patients and age-matched healthy controls. 
Mononuclear cells were identified among CD45+ cells using Side Scatter (SSC) and 
CD33 staining. Putative pDC were identified among mononucleated cells as HLA-
DR+ Lineage (CD3, CD14, CD15, CD16, CD19, CD24)-, CD33-, CD11c-, CD123+, 

BDCA-2+, BDCA-4+, CD4+ cells. C,D. pDC richness was quantified as percentage of 
pDC among mononuclear cells in bone marrow (BMNC; Controls = 24, CMML = 159) 
(C) and peripheral blood (PBMC; Controls = 34, CMML = 198)  (D). E. Linear 
regression of pDC in peripheral blood, expressed as the fraction of PBMC, versus 
pDC in bone marrow, expressed as the fraction of BMNC, in 106 CMML patients with 
matched samples (R2 0.75; p<0.0001).  

Figure 2. Characteristics of  CD123high cells in CMML patients and age-matched 
controls. A-C. The fraction of pDC in mononuclear cells was determined in bone 
marrow samples collected from 159 CMML patients and 24 healthy donors (controls) 
and peripheral blood samples collected from 198 CMML patients and 34 healthy 
donors (controls). A. Fraction of pDC among mononuclear cells in peripheral blood 
and bone marrow of CMML patients (**** P<0.0001, Wilcoxon signed rank test). B. 
Fraction of pDC among bone marrow mononucleated cells collected from healthy 
donors and CMML patients, separating pDC-poor (<1.2% MNC) from pDC-rich 
CMML samples, showing a significant decrease in pDC fraction in pDC-poor CMML 
compared to healthy donors (**** P<0.0001, Mann Whitney test). C. Fraction of pDC 
among peripheral blood mononucleated cells collected from healthy donors and 
CMML patients, separating pDC-poor (<0.6% MNC) from pDC-rich CMML samples, 
showing a significant decrease in pDC fraction in pDC-poor CMML compared to 
healthy donors (**P<0.01, Mann Whitney test)). D-G. Staining index of indicated cell 
surface markers in indicated bone marrow samples. The only detected difference 



was a lower expression of BDCA-2 in pDC-poor CMML samples (*P<0.05).  H. 
Fraction of CD2 expressing pDC in indicated bone marrow mononucleated cell 
samples (**P<0.01, ***P<0.001; Mann-Whitney test).  I. Staining index of CD2 in 
CD2+pDC in indicated bone marrow samples (*P<0.05, ***P<0.001; Mann-Whitney 
test). J, K. Correlation between pDC in bone marrow, expressed as the fraction of 
BMNC, and Treg in bone marrow (J) or matched peripheral-blood (K), expressed as 
the fraction of T-cells. 

Figure 3. Gene expression analysis confirms that CD123+cells are bona fide 
plasmacytoid dendritic cells. A. Heat-map of gene expression measured by RNA 
sequencing in sorted pDC from healthy donors (n=7), pDC-rich (n = 11) and pDC-
poor (n = 5) bone marrow CMML samples, and pDC-rich (n = 3) and pDC-poor (n = 
4) peripheral blood CMML samples, distinguishing genes highly expressed in typical 
pDC from those defining “AS DCs” and other cell lineages. B. Principal component 
analysis of gene expression in pDC sorted from healthy donors (blue), pDC-poor 
CMML (green) and pDC-rich CMML (red) bone marrow samples (LogCPM gene 
expression). C. Unsupervised hierarchical clustering of bone marrow pDC, based on 
differentially expressed genes (DEG) as identified by RNA sequencing in pDC sorted 
from a cohort of 4 healthy donors, 6 pDC-rich CMML and 3 pDC-poor CMML bone 
marrow samples (DEG between pDC-poor and pDC-rich CMML = 74; DEG between 
pDC-rich CMML and healthy-donor pDC =13; DEG between pDC-poor CMML and 
healthy-donor pDC =144).  

Figure 4. pDC bone marrow infiltration increases the risk of acute leukemia 
transformation. A. Relationship between immunohistochemistry analysis of bone 
marrow CD123+, TCL1+ cells (pDC rich > 5% of bone marrow cells) and flow 
cytometry measurement of pDC fraction in peripheral blood samples (pDC rich > 
0.6% of mononucleated cells) analyzed in 56 patients. P<0.001; Mann Whitney test. 
Agreement in 92% of cases, Kohen’s kappa 0.75. B. Cumulative incidence of acute 
myeloid leukemia transformation in 202 CMML patients according to pDC infiltration, 
as defined by immunohistochemistry analysis of bone marrow biopsies (pDC-rich > 
5% CD123+ TCL1+ cells), considering death as a competing risk (Hazard ratio 2.59 
[95% confidence interval (CI) 1.21-5.51]; P=0.014).   

Figure 5. Bone marrow infiltrating pDC are observed in Ras-pathway mutated 
CMML. A. Whole exome sequencing was performed in monocytes, T cells and pDC 



sorted from 10 CMML, 1 CMML transformed into AML (#2202) and 1 aCML (#1996) 
bone marrow samples. Most mutations or loss of heterozygosis were found in both 
pDC (red left up corner) and monocytes (blue right low corner). In all cases, one or 
more mutations in genes encoding proteins of the Ras pathway were identified in 
monocytes. In 11 cases, these mutations were also identified in pDC. The last case 
(#2202) harbored an internal tandem duplication of Flt3 (Flt3-ITD). Variant categories 
based on their function and their frequency in sorted monocytes and pDC are 
indicated on the right B. Relationship between variant allele frequencies (VAF) 
measured in sorted monocytes and sorted pDC from the 12 samples sequenced in A 
(Linear regression, r2 = 0.74 ; p<0.0001).  Ras pathway mutations are in red, other 
variants in black. C. VAF of two TET2 gene mutations and NRASG13D mutation in 
sorted pDC and monocytes of patient #2048; D. VAF of PTPN11F285I, NRASA59D and 
KRASA146T mutation in sorted pDC and monocytes of patient #1829. 

Figure 6. CD34+ cells from pDC-rich CMML are hypersensitive to FLT-3L. A-C. 
CD34+ cells from pDC-rich CMML, pDC-poor CMML and cord blood were cultured in 
the presence of SCF, TPO, Flt3-L and IL-3 for indicated times before flow analysis of 
generated cells. A,B. Flow cytometry detection of pDC at day 30 of culture, based on 
HLA-DR, CD123 and BDCA4 expression; A, CD34+ cells from pDC-rich CMML bone 
marrow; B, CD34+ cells from pDC-poor CMML bone marrow. One representative of 
10 independent experiments is shown. C. Generated pDC were sorted and examined 
by conventional (upper panel) and electronic (lower panel) microscopy. D. Somatic 
variants were detected by NGS in sorted bone marrow CD34+ cells, sorted bone 
marrow pDC and pDC generated by ex vivo differentiation of CD34+ cells at day 30. 
E. Time dependent generation of pDC by ex vivo culture of CD34+ cells collected 
from 5 pDC-rich (in red) and 8 pDC-poor (in green) CMML bone marrow samples 
(mean +/- SEM; * P<0.05, Mann-Whitney test); F.  Fraction of pDC generated at day 
25 by ex vivo culture of CD34+ cells sorted from the 5 pDC-rich (red) and 8 pDC-poor 
(green) CMML bone marrow samples (shown on panel E) compared to 5 cord blood 
CD34+ cell samples; (mean +/- SEM; * P<0.05, Mann-Whitney test); G. Fraction of 
pDC in cells generated by CD34+ cells sorted from 2 pDC-rich CMML bone marrow 
(in red) and 5 cord blood samples (in blue) and cultured for 30 days as above with 
indicated concentrations of Flt3-L. F. Flt3-L level was measured in bone marrow 
supernatant of 28 pDC-rich CMML patients (red) and 78 pDC-rich CMML patients 



(green) compared to 13 age-matched healthy controls (blue). Boxes: Median, 
interquartiles and ranges; *** P<0.001; **** P<0.0001 (Mann-Whitney test).  



pDCs (% of PBMC)����� ���� ��� � �� ���

�����

����

���

�

��

���

�
	������
����	�

�
�

	
��
�
�
�
	

0.01

0.1

1

10

0.01 0.1 1 10

E.

��
����� �

	

���

���

���

���

���

���

D.

pD
Cs

 (%
 o

f B
M

N
C)

r2=0.75
p <0.0001

%
 o

f m
on

on
uc

le
at

ed
 c

el
ls

0.0

0.5

1.0

2.0

3.0

4.0

Controls CMML

Peripheral
Blood

	�����
� 	��


����

���

���

���

���

���

���

���

����

����

����

C.

%
 o

f m
on

on
uc

le
at

ed
 c

el
ls

Controls CMML

0.0

0.5

1.0

2.0

3.0

5.0

4.0

10.0

15.0

20.0 Bone
Marrow

SS
C

BD
CA

-2

BD
CA

-4

CD123 CD123

CD
4

CD123

CD33

H
LA

-D
R

Lin

CD
11

c

CD123CD33

SS
C pDCs

CD45+ MNC

MNC HLA-DR+Lin-CD33-

B.

MNC HLA-DR+Lin-CD33- MNC HLA-DR+Lin-CD33-

MNC HLA-DR+Lin-CD33-MNC HLA-DR+Lin-

A. HES CD123 TCL1

pD
C-

ric
h

pD
C-

po
or

Figure 1.



 p
D

C 
IF

N
 α

 +
 (%

)

E.

����!��&!+
����!(�

+�)
�$�'( "

����!��&!+
����!(�

+����

����!��&!+
����!(�

+��$*$& �
 #�

����!��&!+
����!(�

+���
��
��


����
����)

�$�'( "

����
�������

����
�����$*$& �

 #�

����
�����

���
��


�




	�

	



�





��

��


�

%�
�'

���
��

��
��

�$
��%

��
'�

�
�

 p
D

C 
IF

N
 α

 +
 (%

)

D.

-
-
-

+
-
-

-
+
-

pDC-rich CMMLAge-matched controls
LPS

Loxoribine
ODN-2395

-
-

+
-

-
+

-
-

+
-

-
+

-
-

+
-

-
+

pDC-rich
CMML

Age-matched
controls

Young
controls

Loxoribine
ODN-2395

 0

 5

 10

 15

 20

 30
 40
 50

-
-
+

-
-
-

+
-
-

-
+
-

-
-
+

�

�*"
'!
���
��
�&�
*��
(�
"�%
&� 

�

�*"
'!
���
��
�&�
*��
")
"$�
��!
�

�

�&"
'!
���
��
�&�
*��
��
�	

��

�

���
��
�*�
��
��&
�*
�(
�"�
%&�
 

�

���
��
$�*
���
��&
�*
��"
)"
$��
�!�

�

���
��
$�*
���
��&
�*
��
��
�	

��

�

��
��
��(
�"�
%&�
 

�

��
��
���
")
"$�
��!
�

�

��
��
���
��
�	

��

�

��

	�


�

#�
�
%�
��
�
�
��
��
�"
��#
�
�
%�

Bone
Marrow

Peripheral
Blood

��
���
��
�
��
�
��
��

��
�� ���

�

���

	��


��

�

�
�
���
��
�
��

F.

Ø TLR7 TLR9LPS IL3

IF
N

α 
 (p

g/
m

L)

600

400

200

��
���
��
�
��
�
��
��

��
�
 ��	

�


�

���

�
�

����

	���

��
��
���
��
�
��

Ø TLR7 TLR9LPS IL3

H.

Ø TLR7 TLR9LPS IL3

IL
-8

  (
pg

/m
L)

3000

50

0

100

150

3000

1000

��
���
��
�
��
�
��
��

��
�
 ��


�

��

	�


�

��
��
���
��
�
��

I.

Ø TLR7 TLR9LPS IL3

IL
-6

  (
pg

/m
L)

30

20

10

 0

IL
-8

  (
pg

/m
L)

��
���
��
�
��
�
��
��

��
�� ��	

�

��

��

	�


�

��

�
���
��
�
��

G.

Ø TLR7 TLR9LPS IL3

TN
Fα

  (
pg

/m
L) 30

20

10

40

�

�

��

��

��

�

��

��

Controls

pDC-poor

pDC-ric
h

T-
re

g 
(%

 o
f B

M
 T-

ce
lls

)

5

10

15

20

J.

�
����� �	����������
�	����������


�

�

��

��

�� ��
�

T-
re

g 
(%

 o
f P

B 
T-

ce
lls

)

5

10

15

20

Controls

pDC-poor

pDC-ric
h

K.

C.

BDCA-2 CD123

AXL CD2

CD
33

CD
5

CD
12

3

CD
11

c

MNC HLA-DR+Lin- MNC HLA-DR+Lin

pDCs AXL-CD33-

pDCs

pDCs

87.3%

11.0%

0.2%

1.5%

61.5%

5.3%

30.6%

2.6%

2µm 2µm

1µm 500nm

CMMLControl

Control CMML

CMML CMML

Figure 2.
A.

B.



6 8 10 12 14 16

CMML.BM.poor

CMML.BM.poor

CMML.BM.poor

healthy.BM.N/A

healthy.BM.N/A

healthy.BM.N/A

healthy.BM.N/A
CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

DEG selection Expression in BM samples

Gene expression (logCPM)

C.

6 8 10 12 14 16

CMML.BM.poor

CMML.BM.poor

CMML.BM.poor

healthy.BM.N/A

healthy.BM.N/A

healthy.BM.N/A

healthy.BM.N/A
CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

CMML.BM.rich

DEG selection Expression in BM samples

B.

PC1: 54.6% variance

PC
2:

 5
.1

2%
 v

ar
ia

nc
e

BM pDCs controls
BM pDCs-poor CMML
BM pDCs-rich CMML

-20 -10 0 10

-10

20

-5

0

5

!"#$%&#
'"(&#

)"*)+)
,"&-
,"&.
/&01
'&2.

"'"&#+
,)2+
#3"
)%4
)%5

6'7"*)8
',7#9
)621&
)%((
)%1+
',7#3

2)7&(#
)%(7
)%(%
)%1-

96+#1
/)#91

:',
*/00(
)(#&1
)4#&1
))&1
))&(

9;<=><?@*AB<>??CDE@CE@B%)

!>
;FGH

I@J
9

)9
9"
@J9

@<CK
H

)9
9"
@J9

@BD
D<

)9
9"
@JF
DD
L@B
DD
<

)9
9"
@JF
DD
L@<
CKH

+ 8 M 1N 15 1+ 18

"DO)09Gene expression (logCPM)

4 6 8 10 12 14 16

6 8 10 12 14 16

A.

!"#$%&#
'"(&#

)"*)+)
,"&-
,"&.
/&01
'&2.

"'"&#+
,)2+
#3"
)%4
)%5

6'7"*)8
',7#9
)621&
)%((
)%1+
',7#3

2)7&(#
)%(7
)%(%
)%1-

96+#1
/)#91

:',
*/00(
)(#&1
)4#&1
))&1
))&(

9;<=><?@*AB<>??CDE@CE@B%)

!>
;FGH

I@J
9

)9
9"
@J9

@<CK
H

)9
9"
@J9

@BD
D<

)9
9"
@JF
DD
L@B
DD
<

)9
9"
@JF
DD
L@<
CKH

+ 8 M 1N 15 1+ 18

"DO)09

HLA-DR
IL3RA

CLEC4C
TLR9
TLR7

NRP1
IRF7

LILRA4
TCF4

AXL
CD5
CD2

SIGLEC6
ITGAM
CSF1R
CD33
CD14

ITGAX
FCGR3A

CD3G
CD3D
CD19

MS4A1
NCAM1

KIT
ENPP3
C3AR1
C5AR1
 CCR1
CCR3

pD
Cs

 
ge

ne
s

AS
 D

Cs
ge

ne
s

Li
ne

ag
e

ge
ne

s

Status Healthy

Material BM pDCs PB pDCs

CMML

pDC-rich + - + -

CM
M

L
pD

C-
ric

h
CM

M
L

pD
C-

po
or

Co
nt

ro
ls

Figure 3.



��������������
���������������
������	��

��

�


��

��

��

��

�����

����

���

�

��

���

��

�

���
��

�

�

����

Figure 4.

0
.1

.2
.3

Cu
m

. I
nc

 o
f A

M
L 

tra
ns

fo
rm

at
ion

 (%
)

0 50 100 150
Time (months)

pdcyn=0 pdcyn=1

Cu
m

ul
at

iv
e 

In
ci

de
nc

e 
of

AM
L 

tr
an

sf
or

m
at

io
n 

(%
)

0

10

20

30

0 50 100 150

Time (months)

pDC-rich CMML (n=45)

pDC-poor CMML (n=157)

A. B.

10-3

10-2

10-1

100

101

102

pDCs ≤5% pDCs >5%

pD
Cs

 (%
 o

f P
BM

C)

0.6%



E.

�

�

	�
�
�
��
��

�

�

	�
�
�
��
��

�

�

	�
�
�
��
��

�

��

��

��

���

�

��
��
�

��������
	��
��������
��
�

���������������

������������

M
on

o
pD

Cs

M
on

o
pD

Cs

M
on

o
pD

Cs

VA
F 

(%
)

0

25

50

75

100
Sample 1829

PTPN11F285I

NRASA59D

NRASA146T

M
on

o
pD

Cs

M
on

o
pD

Cs

M
on

o
pD

Cs

VA
F 

(%
)

�

�

	�
�
�
��
��

�

�

	�
�
�
��
��

�

�

	�
�
�
��
��

�

��

��

��

���

��
��
��
�

���������������	

����������
�

���������
�
���
����������	


0

25

50

75

100
D.

Sample 2048
TET2M1701Afs

TET2S424Kfs

NRASG13D

� �� �� �� �� ���

�

��

��

��

��

���

����	��
��������

��
��
	�
�

�
�
�

B.

RAS pathway mutations
Other mutations

0

0

20

20

40

40 60

60

80

80 100

100
B.

VA
F 

in
 p

D
Cs

 (%
)

VAF in monocytes (%)

NRAS
KRAS

NF1
CBL

LZTR1
GPS2

PTPN11
PTPN13

MAP2K1
FLT3-ITD

CFS3R
IRAK4
BLNK

DNM2
PIK3R6
PIK3R2
APPL1

VAV3
NEDD8

IRS2
HIVEP3

DGKD
TET2

ASXL1
EZH2
IDH2

SETBP1
CTCF
OGT

SRSF2
SUPT5H

ZFP36L2
RQCD1 

FOS
E2F3

FOXO1
NMI

RAC2
PER3

STAG2
ATXN3

Mutated in pDCs

Mutated in monocytes

RAS-pathway

effectors

Monocytes: 92%
pDCs: 92%

Other signal 

transducers

Monocytes: 58%
pDCs: 50%

Epigenetic

regulators

Monocytes: 92%
pDCs: 92%

RNA processing

Monocytes: 42%
pDCs: 42%

Others

Monocytes: 33%
pDCs: 50%

A.

Figure 5.



	��
��

� �
��

���
��

 ��
��

��

���

��
�


��


��

���

��
�


��


���

���

���

���

���

��
��

��
��


�
��

���
��

��



����
����

����

Healthy
Controls

pDC-poor
CMML

pDC-rich
CMML

H.

10

20

30

40

60

G
en

er
at

ed
 p

D
Cs

 (%
)

101

102

103

104

Healthy
Controls

pDC-poor
CMML

pDC-rich
CMML

�

��

��

��

��

��

��

�
�

50

10

20

30

40

50

D0 D5 D10 D15 D20 D25

G
en

er
at

ed
 p

D
Cs

 (%
)

E.

0

10

20

30

G
en

er
at

ed
 p

D
Cs

 (%
)

FL
T3

L 
(p

g/
m

L)

pDC-rich CMML
pDC-poor CMML

pDC-rich CMML
Cord-blood

� � �� �� �� ��
�

��

��

��

��

��

���������	�����
���
��� �
����������������	��
�
������������
��	��

�
�

��

40

50

��
��




�

��
�	
�

��
��

��
��
�

�

��

��

��

���

��	�����

TET2H762fs OGT2L293P SRSF2P95R KRASG12R ASXL1E727fs

D.

0

25

50

75

100

F.

G.

No
FLT3L

FLT3L
[10ng/mL]

FLT3L
[100ng/mL]

� � �� ��
�

�

��

��

��

��

��

��������
	����
��������������
��

��
������
��������	��


����������
�
��

FLT3L
[1ng/mL]

2µm

C.

Sorted BM CD34+

Sorted BM pDCs
Sorted in vitro pDCs

Singulets CD45+ CD45+HLA-DR+Lin- HLA-DR+Lin-CD11c-CD123+

CD123 CD34

A.

FSC

SS
C

All events

Lin

H
LA

-D
R

CD
11

c

BD
CA

4

SS
C

H
LA

-D
R

CD
11

c

BD
CA

4

Singulets CD45+ CD45+HLA-DR+Lin- HLA-DR+Lin-CD11c-CD123+All events

CD123 CD34FSC Lin

VA
F 

(%
)

B.

Figure 6.



B Article 2: collaborative work

233



234



1 
 

Alongside PD-1+ T cells within tumors, CD8+PD-1–ILT2+ T cells are a major intratumor 

cytotoxic population selectively inhibited by the immune checkpoint HLA-G 

Clement Dumont1,2,3, Alix Jacquier1,2, Jerome Verine1,2,5, Floriane Noel 7, Annabelle 

Goujon1,2,4, Ching-Lien Wu1,2, Tzu-Min Hung1,6, François Desgrandchamps1,2,4, Stephane 

Culine1,2,3, Edgardo D. Carosella1,2, Nathalie Rouas-Freiss1,2* and Joel LeMaoult1,2* 

* These two authors contributed equally to this work 

1 Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France  

2 Paris-Diderot University, Sorbonne-Paris-Cité Paris, France 

3 Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de 

Paris, France  

4 Department of Urology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, 

France  

5 Department of Pathology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, 1 

avenue Claude-Vellefaux, 75010 Paris, France & Paris-Diderot University, Paris, France 

6 National Taiwan University Hospital, Taipei City, Taiwan, Republic of China University of 

Taipei & E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, 

Republic of China 



2 
 

7 Institut Curie, PSL Research University, France & INSERM, UMR 932, Paris, France & 

Université Paris Sud, Université Paris-Saclay, Orsay, France 

Running Title: Intratumor cytotoxic CD8+PD1-ILT2+ T cells 

Keywords: Immune checkpoints, HLA-G, ILT2, PD-1, infiltrating T cells 

Author informations: 

Address correspondence to: Joel LeMaoult 

Email: joel.lemaoult@cea.fr 

Address: CEA-SRHI, IUH-Hopital St Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France 

Tel:   +33 (0)1 57 27 68 02 

Conflict of interest statement: the authors declare no potential conflicts of interest. 

Research Article, word count: 4182 words 

Total number of figures: 7 

Total number of supplementary figures: 1 

Total number of tables: 1 

Total number of supplementary tables: 1 

  



3 
 

Abstract 

Current immune checkpoint inhibitors yield clinical responses in only some cancer patients, 

and other therapeutic target are currently researched. Here, we investigated the HLA-G:ILT2 

checkpoint in clear-cell renal-cell carcinoma (ccRCC) patients, and focused on tumor-

infiltrating CD8+ lymphocytes (TILs) expressing HLA-G receptor ILT2, a population that 

quantitatively matches CD8+PD1+ TILs. 

Using transcriptomics and flow cytometry, we characterized both peripheral blood and tumor-

infiltrating CD8+ILT2+ T cells from cancer patients as late-differentiated CD27-CD28-CD57+ 

cytotoxic effectors. We observed a clear dichotomy between CD8+ILT2+ and CD8+PD-1+ TIL 

subsets. These two quantitatively matched populations barely overlapped phenotypically and 

were easily distinguished by their exclusive expression of sets of surface molecules that 

included checkpoint molecules, and activatory and inhibitory receptors. Furthermore, 

CD8+ILT2+ TILs displayed a more mature phenotype and higher expression of cytotoxic 

molecules. In ex vivo functional experiments with both peripheral blood T cells and TILs, 

CD8+ILT2+ T cells displayed significantly higher cytotoxicity and IFNγ production than their 

ILT2neg (PBMC) and PD-1+ (TILs) counterparts. HLA-G expression by target cells specifically 

inhibited CD8+ILT2+ T cell cytotoxicity but not that of their CD8+ILT2neg (PBMC) or CD8+PD-1+ 

(TILs) counterparts, an effect counteracted by blocking the HLA-G:ILT2 interaction. 

CD8+ILT2+ TILs may therefore constitute an untapped reservoir of fully differentiated 

cytotoxic T cells within the tumor microenvironment, independent of the PD1+ TILs targeted 

by current immune therapies, and specifically inhibited by HLA-G. These results emphasize 
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the interest of therapeutic targeting of the HLA-G:ILT2 checkpoint in HLA-G-positive tumors, 

either concomitantly to anti-PD1/PD-L1, or in case of non-responsiveness to anti-PD1/PD-L1. 
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INTRODUCTION 

Mechanisms allowing for the evasion of cancer cells from immune surveillance can be 

targeted in order to restore the host’s antitumor immune response. In recent years, this has 

been universally accepted in light of the therapeutic efficacy of immune checkpoint inhibitors. 

Those currently most advanced in their development target exhausted tumor-infiltrating 

lymphocytes (TILs), which are chronically stimulated T cells fallen into a state of anergy 

maintained by the engagement of inhibitory receptors, such as PD-1 or CTLA-4. Anti-PD-1 

antibodies are active in multiple cancer types albeit only in a subset of patients, as 

exemplified by metastatic renal-cell-carcinoma (mRCC): the anti-PD-1 antibody Nivolumab 

(1) is effective in about one-fourth of patients with pretreated mRCC, and the combination of 

Nivolumab with the anti-CTLA-4 antibody Ipilimumab in about half of the patients with 

treatment-naive intermediate- or high-risk mRCC (2). Although this illustrates the interest of 

targeting multiple checkpoints, still, not all patients benefit from immunotherapy. One 

explanation is that several checkpoints are active in a single tumor, as we recently showed in 

localized clear-cell renal cell carcinoma (ccRCC) (3): in a series of 19 tumors, we observed 

that expression of PD-L1 was heterogeneous and could coexist with expression of the 

immune checkpoint HLA-G. 

HLA-G is a non-classical MHC class I molecule primarily found at the maternal-fetal interface 

(4) which exerts direct inhibitory functions on B, T and NK cells through its receptor ILT2 

(Immunoglobulin-like transcript 2, product of the gene LILRB1) and on 

monocytes/macrophages through receptors ILT2 and ILT4 (5), as well as indirect 
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immunosuppressive effects through induction of regulatory T cells (6) or myeloid-derived 

suppressor cells (MDSCs) (7). HLA-G is frequently neo-expressed in immunotherapy-

sensitive cancer types such as ccRCC (3,8-10), melanoma (11-13) or non-small cell lung 

cancer (14,15), especially in advanced-stage disease, and is associated with impaired 

prognosis (13-15). These elements strongly suggest a role in tumor escape from immune 

surveillance, which was confirmed by animal studies (7,16). We recently showed  that TILs 

expressing ILT2 were present in the tumor microenvironment (TME) of ccRCC (3). 

ILT2 is an inhibitory receptor with high affinity for HLA-G and lower affinity for classical MHC 

class I ligands (17). In the peripheral blood, ILT2 is expressed by a subset of CD8+ T cells: 

from about 20% in younger healthy subjects (18-21), the proportion of ILT2-positive CD8+ T 

cells may rise to over 50% with age and chronic viral infections (22,23). Previous reports 

have associated ILT2 expression by peripheral blood CD8+ T cells with a differentiated 

phenotype (CD28-CD27-CD57+, CCR7-CD45RA+) (21-25) and perforin expression (21,25). 

No characterization of CD8+ILT2+ TILs has ever been published. Furthermore, the impact of 

ILT2 on effector T cell functions remains unclear (21,23,26).  

Here, using transcriptomics and flow cytometry, we characterize peripheral blood and tumor-

infiltrating ILT2+CD8+ T cells as a differentiated cytotoxic population distinct from PD-1 

expressing, exhausted T cells. Using ex vivo assays, we demonstrate that their effector 

functions are directly inhibited by target-expressed HLA-G through ILT2. Finally, we discuss 

HLA-G tumor expression as a mechanism of resistance to current cancer immunotherapy. 
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METHODS 

 

Patients 

T cells used for our experiments were isolated from cancer patients as well as control 

patients. Cancer patients were either patients who underwent transurethral resection for non-

muscle-invasive bladder cancer (NMIBC patients) or patients who underwent nephrectomy 

for localized ccRCC (ccRCC patients) at our center (Urology Department, Saint-Louis 

Hospital, Paris, France); control patients were patients aged over 40 with no personal history 

of cancer, and admitted for planned, non-carcinologic, surgery. Patients provided written 

informed consent before sampling. 

Peripheral blood cells 

Blood sampling was performed upon admission to the Urology department prior to surgery. 

After sampling, peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll 

gradient (Ficoll-Paque, LifeSciences) as per the manufacturer’s instructions and stored at -

150°C. 

Cell sorting and transcriptomics analysis of peripheral blood CD8+ T cells 

For the sorting of CD8+ILT2- and CD8+ILT2+ subpopulations, PBMC were labelled with 

antibodies specific for CD3, CD4, CD8, CD19 and ILT2. The CD8 subpopulations were then 

sorted according to ILT2 expression on a BD FacsAria II cell sorter, then immediately lyzed 

in RNA WIZ reagent (Ambion) and total RNA was extracted using the RNeasy micro kit 

(Qiagen). Samples were amplified and labelled according to the manufacturer’s protocol for 
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hybridization to Affymetrix Human Gene 2.0 ST arrays. Sample preparation, hybridization, 

washing, staining, scanning and quality control were performed by the Institut Curie 

Genomics core facility, Paris, France.  

Regulatory network and functional inference   

We extracted the expression matrix of the differentially expressed genes between ILT2+CD8+ 

and ILT2ˉCD8+ T cells. We then imported the matrix on Cytoscape software version 3.5.1. 

Analysis was performed in parallel for the ILT2+ and the ILT2ˉ up-regulated genes expression 

matrix. Network inference was performed using ARACNe application. After selecting genes 

of the output network from ARACNe, we utilized the ClueGO and CluePedia Applications to 

determine pathway enrichment. Public datasets of Gene Ontology (GO) – Biological process-

GOA, - ImmuneSystemProcess-GOA, - Molecular Function-GOA, KEGG, Reactome, and 

WikiPathways were used. Only pathways with a “Bonferroni step down” corrected p-value 

below 0.05 were kept. 

Tumor-infiltrating lymphocytes 

Tumor-infiltrating lymphocytes (TILs) were extracted from ccRCC specimens. Fresh tumor 

samples were selected on nephrectomy specimens by a pathologist, rinsed with phosphate-

buffered saline (PBS) and placed in RPMI culture medium for 30 minutes before being 

manually dissociated. Extemporaneous counting and phenotyping of TILs was performed 

using a MACSQuant 10 flow cytometer (Miltenyi biotec) and cells were then stored at -150°C 
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for further phenotyping and functional assays. To rule out contamination with peripheral 

blood cells, a simultaneous flow cytometry analysis of PBMCs was performed. 

Immunohistochemistry 

Formalin-fixed paraffin-embedded (FFPE) samples from the same ccRCC specimens were 

analyzed by immunohistochemistry for tumor expression of HLA-G (clone 4H84) and PD-L1 

(clone E1L3N) as previously described (3). Percentages of PD-L1 positivity in tumor cells 

and tumor-infiltrating cells were reported and HLA-G expression was estimated by the 

percentage of tumor cells positive for membrane staining. 

Flow cytometry analysis 

The following antibodies were used for cell surface staining and analysis: from Miltenyi 

Biotec: CD3-PerCP, CD3-VioBlue, CD4-PE-Vio770, CD4-VioBright-FITC, CD4-APC-Vio770, 

CD45RA-VioGreen, CD8-APC-Vio770, CD8-PerCP-Vio770, CD8-VioGreen, CD11b-FITC, 

CD38-PE-Vio770, CD45RA-VioGreen, CD57-VioBlue, CD127-PE-Vio770, CCR7-APC, IFNγ-

FITC, KLRG1-FITC, NKp80-APC, Perforin-VioBlue, Granzyme B-PE, PD-1 PE-Vio770; from 

Beckman Coulter:  CD27-PE, CD62L-FITC, CD69-PE, CD127-PE; from BD Pharmingen: 

CD28-FITC, CD137-PE; from eBioscience: ILT2-PE or ILT2-APC (Clone HP-F1), Tim-3-

FITC; from Biolegend: PD-1-BV421.  

Intracellular staining was performed using the Inside Stain kit (Miltenyi biotec), according to 

the manufacturer’s instructions. Acquisition was made on a MACSQuant 10 flow cytometer 
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(Miltenyi biotec); analysis was performed using the MACSQuantify software (Miltenyi biotec) 

and Flowjo software. 

Cell lines 

For functional studies, the monocytic cell line THP-1 (ATCC) transduced or not to express 

membrane-bound HLA-G1 (THP1-HLA-G1) was used as target cells. Cell-surface expression 

of HLA-G on THP-1-HLA-G1 cells was confirmed by flow cytometry, using a PE-conjugated 

anti-HLA-G mAb (clone MEM-G9, Exbio).  

Peripheral blood T cell degranulation and IFNγ secretion assays 

THP1 or THP1-HLA-G1 cells were placed in a 96-well culture plate in RPMI culture medium 

(Sigma) supplemented with 10% fetal calf serum (Sigma), L-glutamine, gentamicine and 

amphothericin B (Gibco), and containing 50ng/mL phorbol 12-myristate 13-acetate (PMA, 

Sigma). Cells were cultured with PMA for 72h in order to obtain a confluent macrophage 

layer (mTHP1/mTHP1-HLA-G1). Then, cells were coated for 15 minutes with αCD3 mAb 

(clone OKT3, Orthoclone). Coating concentrations of OKT3 for CD107a and interferon-

gamma (IFNγ) secretion assays were 20 and 10ng/mL, respectively. PBMCs from NMIBC 

patients were incubated for 20 minutes at 37°C with 20µg/mL of a blocking anti-ILT2 antibody 

(clone GHI/75, BioLegend) or a control antibody. PBMCs were then added to the OKT3-

coated mTHP1/mTHP1-HLA-G1 target cells in culture medium supplemented with monensin 

and brefeldin A (Protein Transport Inhibitor Cocktail, eBioscience) in the presence of PE-

conjugated anti-CD107a antibody (clone H4A3, BioLegend) or isotype control.  
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After 4h of co-incubation at 37°C, cells were washed and stained for flow cytometry analysis. 

For IFNγ secretion assays intracellular staining was then performed using the Inside Stain kit 

(Miltenyi biotec) according to the manufacturer’s instructions.  

The cytolytic degranulation and IFNγ secretion of CD3+CD8+ T cell subsets were evaluated 

using the percentage of CD107a- and IFNγ-positive cells respectively. CD8+ T cell subsets 

were defined by the expression of ILT2 and CD57. Because of interference between the anti-

ILT2 mAb GHI/75 used for blocking and the anti-ILT2 mAb HP-F1 used for staining we used 

the CD57high subset, which was constantly made up of more than 75% ILT2-positive T cells in 

selected patients as opposed to the CD57- subset, as a surrogate population for ILT2-

positive T cells in blocking experiments. 

TIL effector functions assays 

THP1 or THP1-HLA-G1 cells were differentiated into macrophage target cells as described 

above. TILs were incubated with the anti-ILT2 mAb or isotype control and added to the target 

cells in culture medium supplemented with monensin and brefeldin A (Protein Transport 

Inhibitor Cocktail, eBioscience) and PE-conjugated anti-CD107a mAb or control isotype as 

described above. TILs stimulated by PMA and ionomycin (Cell stimulation cocktail, 

eBioscience) served as positive controls and TILs incubated with non-OKT3-coated target 

cells served as negative controls. After a 4-hour co-incubation, cells were washed and 

stained for flow cytometry analysis as described above. Results from a preliminary 

phenotypical characterization of TILs served to select the best surrogate markers for the 

CD8+ILT2+ TIL population in each sample (either CD57high or CD45RA+ TILs).  
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Statistical analyses 

For transcriptomic experiments, gene expression data were normalized using RMA algorithm 

on custom Brainarray CDF. We selected the 500 most variant genes by IQR (27) to perform 

unsupervised analyses. Differential subgroups were identified by hierarchical clustering using 

Pearson correlation metric and Ward distance. Differentially expressed genes between two 

groups were defined using limma R-package (p≤0.05 adjusted with Benjamini & Hochberg 

and |log fold-change|> 1.5). All these analyses were performed with R software environment. 

For flow cytometry phenotyping, comparisons between T cell subsets were made using t-

tests paired by sample. 

For functional studies, differences in terms of cytolytic degranulation or IFNγ production 

between different T cell subsets from the same PBMC or TIL samples  were evaluated with t-

tests paired by sample. The impact of HLA-G expression by the target cells and of ILT2 

blocking on a specific T cell subset was evaluated using unpaired t-tests. 
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RESULTS 

Transcriptomic profiling of the CD8+ILT2+ T cell subpopulation 

First, we performed transcriptomic analysis to identify key features of ILT2 positive 

subpopulation. Peripheral blood CD8+ T cells from 4 NMIBC patients were sorted with 

respect to ILT2 cell-surface expression and transcriptome analysis was performed on the 

CD8+ILT2+ vs CD8+ILT2– T cell subpopulations. Hierarchical clustering demonstrated that 

these two cell populations could easily be distinguished (Figure 1A). 71 genes were 

specifically upregulated in the CD8+ILT2+ T cell population while 113 upregulated genes 

characterized their CD8+ILT2– counterparts (Figure 1B). A list of these genes is provided in 

Supplementary Table 1. Functional network inference revealed that the genes upregulated in 

the CD8+ILT2+ population belonged to effector function- and effector function regulation-

related categories (Figure 1C), centered around NK cell-type categories (natural killer cell-

mediated cytotoxicity / natural killer cell-mediated immunity) and immune regulation (immune 

response-inhibiting cell surface receptor signaling pathways / regulation of alpha-beta T cell 

activation / immunoregulation interactions between a lymphoid and a non-lymphoid cell). 

Comparatively, the functional network inference of down-regulated genes in ILT2-positive vs 

ILT2-negative CD8+ T cell populations was less restricted, but nevertheless centered around 

function-related categories (e.g. Cytokine-cytokine receptor interaction / regulation of cell-cell 

adhesion, positive regulation of chemotaxis), and differentiation (T cell differentiation / 

myeloid leukocyte differentiation, binding of TCF/LEF:CTNNB1 to target gene promoters). 

The aim of this analysis was originally to characterize the CD8+ILT2+ T cell subpopulation 
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using phenotyping in the context of an anti-tumor function. Thus, we next focused on cell-

surface-expressed markers and function or differentiation-related genes. Out of the 184 

genes found to be differently expressed between CD8+ILT2+ and CD8+ILT2– subsets, 46 

matched these criteria, including 19 upregulated and 27 down-regulated in CD8+ILT2+ T cells 

(Figure 1D). As suggested by the functional inference network data, upregulated genes in the 

CD8+ILT2+ population were mostly involved in NK and/or cytotoxic T cell functions. Cytotoxic 

T/NK-related genes were TBX21 (T-bet), GNLY (granulysin), GZMB and GZMH (granzymes 

B and H), ITGAM (CD11b), and FCRL6. Genes usually associated with NK cells were 

NCAM1 (CD56), cytotoxicity-triggering receptors NCR1 (NKp46), KLRF1 (NKp80) and 

CD244, lectin-like receptors KLRK1, KLRC3 and KLRC4 (NKG2D, NKG2E and NKG2F), and 

immunoglobulin-like receptors KIR2DL1, KIR2DL3, KIR3DL2. 

Downregulated genes in the CD8+ILT2+ population were more diverse, but two categories 

stood out: genes involved in T cell stimulation/costimulation (CD28, CD28H (TMIGD2), 

CD27, TNFRSF8, CD40LG, TESPA1), and genes associated with T-cell differentiation 

(CD28, CD27, CCR7, CCR4, SELL, IL7R, TCF7). 

These data clearly indicated that ILT2-positive CD8+ T cells were likely to be antigen-

experienced T cells with a high cytotoxic function, and expressing NK surface molecules 

(activating and inhibitory).  
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ILT2 cell-surface expression is a feature of differentiated cytotoxic CD8+ T cells 

Frozen PBMCs from 4 NMIBC patients, 4 ccRCC patients and 2 control patients were used 

for phenotypical validation of transcriptomics findings using flow cytometry. No differences 

were observed across these various clinical settings regarding the phenotype of CD8+ILT2+ T 

cells. 

In accordance with transcriptomics findings, flow cytometry showed significantly lower 

expression of surface markers CD28, CD27 and CD127 on ILT2-positive CD8+ T cells 

(Figure 2A-B). These cells also frequently expressed CD57 and virtually all ILT2-positive 

cells expressed KLRG1.  

Conversely, the proportion of ILT2-positive cells was significantly higher in CD28-negative, 

CD57-positive or KLRG1-positive subpopulations (Figure 3A). Most NKp80-positive and 

perforin-positive CD8+ T cells also expressed ILT2 . Progressive acquisition of ILT2 during 

CD8+ T cell differentiation was apparent through the rising proportion of ILT2-positive cells 

between the CD27-high, CD27-low and CD27-negative subpopulations, in that order. ILT2-

positive cells were constantly CCR7-negative (Figure 3B-C), consistent with antigen-

experienced effector-memory CD8+ T cells (28); ILT2 expression was most frequent in the 

CCR7–CD45RA+  subset of CD8+ T cells (TEMRA or effector T cells). 
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CD8+ILT2+ T cells display enhanced cytotoxic functions selectively impaired by target-

expressed HLA-G 

After having characterized their phenotype, we studied the cytotoxicity of CD8+ILT2+ T cells 

through the assessment of IFNγ secretion and cytolytic degranulation of peripheral blood T 

cells after ex vivo co-incubation with αCD3-coated target cells.  

As the previous results let figure, ILT2-positive CD8+ T cells constantly showed higher 

degranulation levels than their ILT2-negative counterparts (Figure 4A-B). Expression of HLA-

G1 by the target cells significantly reduced degranulation levels of CD8+ILT2+ T cells by a 

mean 33% (range 18% to 47%) whereas CD8+ILT2– cells were unaffected (Figure 4B). In 

restoration experiments, when ILT2 staining was impossible because of previous ILT2 

blocking, this could also be observed in surrogate T cell subpopulations defined by CD57 

expression: expression of HLA-G1 by the target cells reduced degranulation levels in the 

ILT2-enriched CD8+CD57high subpopulation by a mean 34% (range 21% to 43%), whereas 

ILT2-negative CD8+CD57– T cell subpopulation was unaffected (Figure 4C). ILT2 blocking 

significantly increased the degranulation levels of CD8+CD57high T cells in the presence of 

HLA-G1, reversing HLA-G1-associated inhibition by a mean 86% (range 63% to 112%) 

whereas CD8+CD57– T cells were unaffected. 

Similarly, CD8+ILT2+ T cells showed higher IFNγ secretion than their ILT2-negative 

counterparts  (Figure 4D-E), which was reduced by a mean 30% (range 13% to 56%) in the 

presence of HLA-G1 whereas CD8+ILT2– cells were unaffected (Figure 4E). Expression of 

HLA-G1 by the target cells reduced IFNγ secretion by CD8+CD57high T cells by a mean 40% 
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(range 24% to 56%), CD8+CD57– T cells were typically unaffected (Figure 4F). ILT2 blocking 

significantly restored IFNγ secretion by CD8+CD57high T cells in the presence of HLA-G1 by a 

mean 113% (range 57% to 177%) whereas CD8+CD57– T cells were unaffected. 

ILT2 is expressed by tumor-infiltrating CD8+ cytotoxic effectors in ccRCC  

After studying the peripheral blood T cells of patients, tumor-infiltrating cells from 8 ccRCC 

specimens were investigated. Expression of immune checkpoint ligands HLA-G and PD-L1 

in these tumors as well as the distribution of PD-1+ and ILT2+ TILs are summarized in Table 

1 and Figure 5. Blood contamination was deemed minimal in all TIL samples, as shown by 

clear-cut phenotypical discrepancies between PBMCs and TILs such as the absence of 

specific subpopulations in the tumor, eg. CD8+CCR7+ T cells (Supplementary Figure 1). 

As we previously reported (3), the proportions of CD8+PD-1+ and CD8+ILT2+ TILs varied 

among specimens. Most strikingly, we observed that PD-1 expression and ILT2 expression 

by tumor-infiltrating CD8+ T cells defined two subpopulations that were mutually exclusive 

(Figure 6A). CD8+ILT2+ TILs harbored a phenotype similar to that of their peripheral blood 

counterparts, expressing high levels of CD57 and being strictly KLRG1+CD28- CD27- (Figure 

6B) and most of them displayed an effector phenotype (CCR7-CD45RA+; Figure 6C). Perforin 

expression was again a specific feature of ILT2-positive cells (Figure 6B). Conversely, 

CD8+PD-1+ TILs displayed a less mature phenotype with negative-to-low expression of 

CD57, CD28 and CD27 and no expression of KLRG1 or perforin (Figure 6B); they typically 

pertained of the effector-memory phenotype (CCR7-CD45RA-; Figure 6C). In accordance 

with previous large-scale studies (29), expression of exhaustion-associated markers Tim-3, 
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CD38, CD69 and 4-1BB/CD137 was only seen on PD-1-positive cells and never on ILT2-

positive cells (Figure 6B). Conversely, most cells expressing CD11b were ILT2-positive 

(Figure 6B). 

HLA-G specifically inhibits the effector functions of tumor-infiltrating CD8+ effectors through 

ILT2 

Finally, to compare with the results obtained on PBMCs, the effector functions of tumor-

infiltrating CD8+ T cells were investigated. Again, cytolytic degranulation levels after ex vivo 

co-incubation with αCD3-coated target cells were higher in CD8+ILT2+ TILs than in CD8+PD-

1+ TILs (Figure 7A). HLA-G1 expression by the target cells reduced the degranulation levels 

of CD8+ILT2+ TILs by a mean 32% (range 17% to 44%), whereas no such effect was 

observed with CD8+PD-1+ TILs. When considering ILT2-enriched surrogate TIL subsets 

selected for each individual sample (namely CD8+PD-1–CD45RA+ or CD8+PD-1–CD57high 

cells), expression of HLA-G1 by the target cells reduced degranulation levels by a mean 27% 

(range 25% to 28%). Interestingly, while this was not apparent in our preliminary assays with 

PBMCs, ILT2 blocking in the absence of HLA-G1 resulted in an increase in the degranulation 

of these surrogate ILT2+ TILs, consistent with the removal of a HLA-G-independent lower-

level inhibition due to the engagement of ILT2 by target-expressed classical MHC class I 

molecules. In any case, ILT2 blocking fully counteracted HLA-G1-mediated inhibition, as 

shown by a mean 197% reversion (range 127% to 318%). 

As with cytolytic degranulation, IFNγ secretion by CD8+ILT2+ TILs was higher than that of 

CD8+PD-1+ TILs (Figure 7B). HLA-G1 expression by the target cells reduced the 
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degranulation levels of CD8+ILT2+ TILs by a mean 34% (range 28% to 42%) and of surrogate 

ILT2+ populations by a mean 34% (range 19% to 46%). Again, ILT2 blocking resulted in an 

increase in IFNγ secretion by surrogate ILT2+ TIL subsets in the absence of HLA-G1 as well 

as in full reversion of HLA-G1-mediated inhibition (mean 243% reversion, range 222% to 

256%). 
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DISCUSSION 

Since we recently described for the first time the presence of CD8+ILT2+ TILs in the stroma of 

ccRCC (3), their functional nature was a crucial question. The phenotypical and functional 

studies described here definitely associate ILT2+ TILs and their peripheral-blood counterparts 

with late differentiation and strong cytotoxic capacity. A most striking finding was the clear 

dichotomy between ILT2+ and PD-1+ TILs in the tumor microenvironment, which was 

especially relevant considering that the latter are the prime target of current cancer 

immunotherapy despite being less cytotoxic and sometimes less numerous than the former. 

Our transcriptomics and flow cytometry analyses provide a definitive characterization of both 

peripheral blood and tumor-infiltrating CD8+ILT2+ T cells as late-differentiated (CD28-CD27-

CD57+) T cells in accordance with previous reports (19-22), ILT2 expression being a specific 

feature of effector-memory (CCR7-) cells, even more prevalent in terminally differentiated 

(CCR7-CD45RA+) TEMRA/effector T cells (30). The CD8+ILT2+ T cell subpopulation overlaps 

with those defined by trans-lineage cell-surface markers of cytotoxicity KLRG1 (31) and 

NKp80 (32) and indeed these cells display high expression of perforin and granzyme B at the 

transcript and protein levels. Consistent with these cytotoxic and innate-like phenotypical 

traits, CD8+ILT2+ T cells exhibit the highest degranulation levels upon CD3 engagement, 

appearing to be “ready-to-kill” effector cells. Interestingly, the cytotoxic functions of CD8+ T 

cells expressing the costimulatory receptor NKp80 have also been shown to be triggered 

without engagement of the TCR/CD3 complex (33) through NK-like costimulation. Whether 
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such T cell-borne antigen-independent cytotoxicity is a component of antitumor immunity, 

possibly kept in check through ILT2, is of the highest interest.  

We chose to characterize CD8+ILT2+ T cells as a cytotoxic population characterized by its 

differentiation stage, rather than antigen specificity, by performing CD3-mediated polyclonal 

activation of uncultured PBMCs or TILs ex vivo, since the culture and cloning of T cells 

strongly alters their properties and phenotype, including ILT2 expression (21). This allowed 

us to observe the immediate effects of HLA-G on its native T cell targets. Indeed, the 

historical demonstration that HLA-G could inhibit T cell cytotoxicity was made using a 

cultured virus-specific cytotoxic T lymphoid (CTL) clone, with no regard to ILT2 expression, 

leaving doubts as to its relevance in vivo (34). Furthermore, previous studies of the impact of 

ILT2 on T cell functions did not test its engagement by HLA-G (21,23,26), and we believe 

that in such conditions the blocking of ILT2 could only lift the lower-level inhibition 

consecutive to its engagement by classical MHC class I molecules (17). Of note, we only 

inconsistently observed such an effect with uncultured PBMCs, as already reported (23), but 

we did observe it with TILs here. We hypothesize that TILs within the tumor 

microenvironment, while having been exposed to prolonged stimulation, had also been 

rendered more sensitive to classical MHC class I-mediated inhibition. This would reunite our 

observations with the enhancement of in vitro cytotoxicity through ILT2 blocking which was 

observed in functional assays that used T cells expanded through repeated in vitro 

stimulation (21,25). In any case, our experiments clearly evidenced superior ILT2-mediated 

inhibition of T cell cytotoxicity when HLA-G was expressed by the target cells. 
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Apart from a single observation of circulating melanoma-specific CD8+ILT2+ T cells (19), a 

possible role for CD8+ILT2+ T cells in antitumor response has been overlooked. We 

previously observed that CD8+ILT2+ T cells were abundant in the microenvironment of 

ccRCC (3), and we show here that they are effective cytotoxic effectors, functionally and 

phenotypically distinct from exhausted T cells, and readily inhibited by target-borne HLA-G.  

Although HLA-G expression by normal adult tissue is extremely restricted, it is frequently 

neo-expressed in immunotherapy-sensitive cancer types (35), including ccRCC (3,10). Our 

findings suggest that tumor-expressed HLA-G, through ILT2, could be a major inhibitory 

checkpoint for the effector functions of the naturally-occurring CD8+ILT2+ cytotoxic T cells in 

the tumor microenvironment. Apart from our own observations, the relevance of this 

phenomenon may be inferred from a mass cytometry study of 77 ccRCC cases by Chevrier 

et al., who described 22 TIL clusters as well as their frequent associations (29). Based on our 

flow cytometry data, we postulate that ILT2-positive effector CD8+ TILs may be found in 

several of their PD-1-negative clusters, namely the T-11 (CD11b-positive), T-14 (CD45RA-

positive) and T-4 (PD-1-negative with no other positive discriminatory marker) clusters. 

Interestingly, these clusters segregate together and may be more represented than PD-1-

positive clusters in about one-third of ccRCC cases: it still remains to be clarified whether this 

constitutes an “effector-infiltrated” subset of ccRCCs in which targeting HLA-G may be of 

particular interest. 

Therapeutic targeting of the PD-1/PD-L1 checkpoint is the backbone of modern cancer 

immunotherapy. In metastatic renal cell carcinoma, anti-PD-1 monotherapy yields clinical 
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responses in about one-fourth of patients (1), despite frequent PD-1 expression on TILs. We 

show here that naturally-occurring CD8+PD-1+ TILs display an incompletely differentiated 

phenotype, less mature than that of CD8+ILT2+ TILs, and a much lower expression of 

perforin. We postulate that efficient PD-1 blockade and release from exhaustion may allow 

CD8+PD-1+ TILs to undergo proliferation and full differentiation towards ILT2-positive 

effectors, as suggested by the study by Choueiri et al. (36) in which transcriptomics analyses 

were performed on ccRCC biopsy specimens from patients before and on treatment with 

Nivolumab. Their data showed that anti-PD-1 treatment led to higher expression of CD3 and 

CD8 transcripts, suggestive of CD8+ T cell proliferation, as well as higher expression of 

PRF1, GZMB or IFNG, suggestive of full cytotoxic differentiation. Among other genes 

overexpressed under PD-1 blockade were KLRG1 and LILRB1, the ILT2 gene. Regarding 

KLRG1, Choueiri et al. suggested that PD-1 blockade may lead to NK cell proliferation since 

KLRG1 is primarily known to be expressed by NK cells; LILRB1, which they classify as a 

myeloid cell gene, is not discussed. When completed by our present observations, this can 

be interpreted as revealing the expansion on PD-1 blockade of differentiated cytotoxic 

CD8+KLRG1+ILT2+ TILS such as one can also observe in untreated patients. In this 

perspective, we hypothesize that HLA-G expression by cancer cells could be a mechanism 

of resistance to PD-1/PD-L1 blockade in ccRCC patients, since these newly-generated 

effectors would eventually be inhibited by tumor-borne HLA-G. Studies are ongoing at our 

center to confirm this hypothesis and may plead in favor of combined PD-1/PD-L1 and HLA-

G/ILT2 blockade in selected patients. 
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In conclusion, ILT2 expression is a key feature of differentiated cytotoxic CD8+ T cells, 

rendering them susceptible to HLA-G-mediated inhibition. ILT2-positive, HLA-G-sensitive, 

effector T cells are present in the tumor microenvironment of ccRCC, a solid cancer type in 

which HLA-G is frequently neo-expressed. This suggests that direct effector inhibition 

through the HLA-G/ILT2 checkpoint could be a mechanism of tumor escape from immune 

surveillance as well as of resistance to current checkpoint blockade therapy. This 

strengthens the rationale for targeting HLA-G concomitantly with other immune checkpoints 

in selected cancer patients. 
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Table 1. Immune checkpoint expression in ccRCC  

Expression of immune checkpoint molecules in ccRCC samples used for this study. 
Expression of immune checkpoint ligands PD-L1 and HLA-G were determined using 
immunohistochemistry. Distribution of TIL subsets expressing immune checkpoint receptors 
PD-1 and ILT2 were determined using flow cytometry. A range of values denotes spatial 
heterogeneity when several tumor zones were studied. 
 
Sample PD-L1 

expression 
(tumor cells) 

PD-L1 
expression 
(infiltrating cells) 

HLA-G 
expression 
(tumor cells) 

% CD8+PD-1+ 
TILs 

% CD8+ILT2+ 
TILs 

23 0% 0% 10-50% 17-56% 26-56% 
24  >50% 20%  100% 85-91% 9-14% 
25 0% 5% 1% 92% 2-4% 
26 0% <10% 80% 64% 22-31% 
0 0% 0%  <5% 43% 32% 
27 0% 0% 5% 42% 30% 
28 0% 0% 0% 38% 13% 
29 0% 0% 1% 59% 45-55% 
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FIGURE LEGENDS 

 

Figure 1. Characterization of peripheral blood ILT2-positive CD8+ T cells using 

transcriptomic data analysis 

(A) mRNA expression profiles of ILT2-positive and ILT2-negative CD8+ T cells. Heatmap 

generated using the 500 most variant genes accross all samples. Red indicates an increase 

of mRNA expression and green indicates a decrease. Hierachical clustering was performed 

on genes (rows) and samples (columns) using Pearson correlation method and Ward 

distance. (B) Volcano plot of genes comparing ILT2-positive versus ILT2-negative. Down-

regulated genes in ILT2-positive compared to ILT2-negative (Log2 Fold Change <1.5 and 

FDR < 0.05) are colored in grey, up-regulated genes in ILT2-positive compared to ILT2-

negative (Log2 Fold Change >1.5 and FDR < 0.05) are colored in black. The number of DEG 

(Down-expressed Genes) for each condition is described. (C) Functional network inference 

allows distinguishing the most significantly overrepresented biological pathways for ILT2-

positive networks on top panel and ILT2-negative networks on bottom panel. Different colors 

represent distinct pathways. Only pathways with Bonferroni corrected pvalue < 0.05 are 

shown. (D) Barplot of the moderated t-statistics of selected differentially expressed genes 

between ILT2-positive and ILT2-negative CD8+ T cells. Genes up regulated in ILT2-

positiveCD8+ T cells are colored in black, genes downregulated in ILT2-positive CD8+ T cells 

are in grey. Adjusted p-values are shown on the plot (* p<0.05, ** p<0.01, *** p<0.001). 
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Figure 2. Phenotypical characterization of peripheral blood ILT2-positive CD8+ T cells.  

(A) Flow cytometry plots from a representative NMIBC patient showing expression of ILT2 

(vertical axis) and selected markers (horizontal axis) on peripheral blood CD3+CD8+ 

lymphocytes. (B) Positivity of ILT2-negative (white boxes) and ILT2-positive (grey boxes) 

peripheral blood CD3+CD8+ lymphocytes for selected cell-surface and intracytosolic markers. 

Data is pooled from 4 NIMBC patients and 2 control patients. GzmB: Granzyme B; ** p<0,01 

and *** p<0,001 by t-test paired by sample. Error bars represent minimal and maximal 

values, + represent mean values. 

Figure 3. ILT2 cell-surface expression is a feature of differentiated cytotoxic CD8+ T 

cells.  

(A) Percentage of ILT2-positive cells on peripheral blood CD3+CD8+ lymphocytes subsets 

defined by expression of selected single markers. Data is pooled from 4 NIMBC patients and 

2 control patients. GzmB: Granzyme B; ** p<0,01 and *** p<0,001 by t-test paired by sample. 

Error bars represent minimal and maximal values, + represent mean values. (B) 

Representative flow cytometry plots from a NMIBC patient showing the repartition of ILT2-

negative (left) and ILT2-positive (right) CD3+CD8+ lymphocytes among memory subtypes 

defined by expression of CCR7 and CD45RA. (C) Percentage of ILT2-positive cells among 

memory subtypes of peripheral blood CD3+CD8+ lymphocytes defined as follows: naïve T 

cells (TN) CCR7+CD45RA+, central memory T cells (TCM) CCR7+CD45RA-, effector memory 

T cells (TEM) CCR7-CD45RA-, effector T cells/effector memory T cells reexpressing 



30 
 

CD45RA (TEMRA) CCR7-CD45RA+. Data is pooled from 3 NMIBC patients and 2 control 

patients. GzmB: Granzyme B; * p<0,05 ** p<0,01 and *** p<0,001 by t-test paired by sample. 

Error bars represent minimal and maximal values, + represent mean values.  

Figure 4. HLA-G1 inhibits the CD3-mediated cytolytic degranulation of CD8+ T cells 

through ILT2  

(A) Representative flow  cytometry analysis of staining with an PE-conjugated anti-CD107a) 

mAb on CD8+ T cells after a 4-hour co-incubation of PBMCs with target cells (mTHP1, left) 

and target cells coated with an agonist anti-CD3 antibody (αCD3 right). (B) Percentage of 

CD107a-positive cells on ILT2-negative (left) and ILT2-positive (right) CD8+ T cells after a 4-

hour co-incubation with αCD3-coated parental (mTHP1, white) or HLA-G1-expressing 

(mTHP1-HLA-G1, grey) target cells. (C) Percentage of CD107a-positive cells on CD57- (left) 

and CD57high (right) CD8+ T cells after a 4-hour  co-incubation with αCD3-coated parental 

(mTHP1, white) or HLA-G1-expressing (mTHP1-HLAG1, grey) target cells in the presence of 

a control IgG2b (Ctrl, plain) or the anti-ILT2 mAb GHI/75 (αILT2, striped). For (B) and (C) 

conditions were reproduced in sextuplicates using PBMCs from a NMIBC patient with 20% 

and 71% ILT2-positive cells in the CD57- and CD57high subpopulations, respectively. Wells 

with the highest and lowest global degranulation levels (appreciated using the percentage of 

CD107a-positive cells on the total CD3+CD8+ cells) were exluded from the analysis for all T 

cell subsets. Representative of 3 independent experiments with samples from 3 different 

NMIBC patients. * p<0,05 ** p<0,01 and *** p<0,001. (D) Representative flow  cytometry 

analysis of staining with an FITC-conjugated anti-IFNg mAb on CD8+ T cells after a 3-hour 

co-incubation of PBMCs with target cells (mTHP1, left) and target cells coated with an 
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agonist anti-CD3 antibody (αCD3 right)  (E) Percentage of IFNγ-positive cells on ILT2-

negative (left) and ILT2-positive (right) CD8+ T cells after a 3-hour co-incubation with αCD3-

coated parental (mTHP1, white) or HLA-G1-expressing (mTHP1-HLA-G1, grey) target cells. 

(F) Percentage of IFNγ-positive cells on CD57- (left) and CD57high (right) CD8+ T cells after a 

3-hour co-incubation with αCD3-coated parental (mTHP1, white) or HLA-G1-expressing 

(mTHP1-HLAG1, grey) target cells in the presence of a control IgG2b (Ctrl, plain) or the anti-

ILT2 mAb GHI/75 (αILT2, striped). For (D) and (E) conditions were reproduced in 

sextuplicates using PBMCs from a ccRCC patient with 13% and 93% ILT2-positive cells in 

the CD57- and CD57high subpopulations respectively. Figure representative of 3 independent 

experiments with samples from 3 (D) or 4 (E) different ccRCC patients. * p<0,05 ** p<0,01 

and *** p<0,001.  

Figure 5: Representative examples of HLA-G staining in tumor tissue specimens from 

two ccRCC patients.  

(A) and (C): H&E staining is shown with the cytoplasm in pink and the nuclei in purple. (B) 

and (D) HLA-G expression in tumor cells is detected with the 4H84 mAb. Brown labeling 

indicates HLA-G positivity. Original magnification x 200. 

Figure 6. ILT2-positive tumor-infiltrating T cells are differentiated cytolytic effectors 

that do not present an exhausted phenotype.   

(A) Flow cytometry plot of tumor-infiltrating CD8+ T cells from 1 representative ccRCC patient 

showing ILT2-positive and PD-1-positive cells as distinct subpopulations. Figure 

representative of 8 ccRCC patients. (B) Flow cytometry plots of tumor-infiltrating CD8+ T cells 
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from 1 representative ccRCC showing the expression of perforin and selected cell-surface 

markers according to PD-1 (upper) or ILT2 (lower) expression on tumor-infiltrating CD8+ T 

cells. Figures representative of 3 ccRCC patients except for CD57 (6 patients) and CD11b (2 

patients). (C) Flow cytometry plots of expression of memory markers CCR7 and CD45RA on 

PD-1-positive (left) and ILT2-positive (right) CD8+ T cells from 1 representative ccRCC 

patient. Representative of 5 ccRCC patients. 

Figure 7. Target-borne HLA-G1 inhibits the effector functions of ILT2-positive tumor-

infiltrating CD8+ T cells 

(A) Percentage of CD107a-positive cells on the PD-1-positive, ILT2-positive and ILT2-

enriched surrogate subsets of CD8+ TILs (CD45RA+PD1-) after a 4-hour co-incubation with 

αCD3-coated parental target cells (white bars) or HLA-G1-expressing (mTHP1-HLA-G1) 

target cells (grey bars) in the absence (Ctrl: plain bars) or in the presence of the anti-ILT2 

mAb GHI/75 (αILT2: striped bars). Conditions were reproduced in triplicate using TILs from a 

ccRCC sample. Representative of 3 independent experiments performed on TIL samples 

from 2 patients. * p<0,05 ** p<0,01 and *** p<0,001. 

(B) Percentage of IFNγ-positive cells on the PD-1-positive, ILT2-positive and ILT2-enriched 

surrogate subsets of CD8+ TILs (CD57+PD1-) after a 3-hour co-incubation with αCD3-coated 

parental target cells (white bars) or HLA-G1-expressing (mTHP1-HLA-G1) target cells (grey 

bars) in the absence (Ctrl: plain bars) or in the presence of the anti-ILT2 mAb GHI/75 (αILT2: 

striped bars). Conditions were reproduced in sextuplicate using TILs from a ccRCC sample. 
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Representative of 2 independent experiments performed on TIL samples from 2 patients. 

* p<0,05 ** p<0,01 and *** p<0,001. 
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Figure S1. Control of non-presence of peripheral subpopulations among the tumor 
infiltrate 
Flow cytometry plots from a representative ccRCC patient showing expression of CD45RA 
(vertical axis) and CCR7 (horizontal axis) on peripheral blood CD3+CD8+ cells (PBMC, left 
panel) and intratumoral CD3+CD8+ lymphocytes (TILs, right panel). The absence of 
CD45RA+CCR7+ subpopulation in TILS indicates minimal blood contamination
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Supplementary Table I. Specifically upregulated and downregulated genes in CD8+ILT2+ T cells vs CD8+ILT2- T cells

Probeset adjusted P Value Fold difference SYMBOL GENENAME
10859_at 2.09E-04 8.81 LILRB1 leukocyte immunoglobulin like receptor B1
353345_at 9.81E-04 6.69 GPR141 G protein-coupled receptor 141
162966_at 1.25E-03 6.29 ZNF600 zinc finger protein 600
353189_at 1.63E-03 5.79 SLCO4C1 solute carrier organic anion transporter family member 4C1
59084_at 1.63E-03 5.76 ENPP5 ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative)
10578_at 1.75E-03 5.64 GNLY granulysin
3684_at 1.75E-03 5.64 ITGAM integrin subunit alpha M
64097_at 2.13E-03 5.33 EPB41L4A erythrocyte membrane protein band 4.1 like 4A
81553_at 2.13E-03 5.35 FAM49A family with sequence similarity 49 member A
3804_at 2.24E-03 5.24 KIR2DL3 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3
9788_at 2.36E-03 5.15 MTSS1 MTSS1, I-BAR domain containing
81563_at 2.99E-03 4.93 C1orf21 chromosome 1 open reading frame 21
102724104_at 3.61E-03 4.74 LOC102724104 uncharacterized LOC102724104
10875_at 3.91E-03 4.65 FGL2 fibrinogen like 2
284367_at 3.94E-03 4.60 SIGLEC17P sialic acid binding Ig like lectin 17, pseudogene
30009_at 3.97E-03 4.57 TBX21 T-box 21
23314_at 4.01E-03 4.48 SATB2 SATB homeobox 2
53637_at 4.01E-03 4.45 S1PR5 sphingosine-1-phosphate receptor 5
5874_at 4.01E-03 4.46 RAB27B RAB27B, member RAS oncogene family
4646_at 4.75E-03 4.16 MYO6 myosin VI
445347_at 5.02E-03 4.09 TARP TCR gamma alternate reading frame protein
11098_at 5.62E-03 3.95 PRSS23 protease, serine 23
79899_at 5.62E-03 3.94 PRR5L proline rich 5 like
105370660_at 5.67E-03 3.91 LOC105370660 uncharacterized LOC105370660
79180_at 5.78E-03 3.85 EFHD2 EF-hand domain family member D2
4067_at 5.91E-03 3.73 LYN LYN proto-oncogene, Src family tyrosine kinase
124221_at 6.52E-03 3.59 PRSS30P protease, serine, 30 pseudogene
3002_at 6.64E-03 3.55 GZMB granzyme B
51314_at 6.85E-03 3.49 NME8 NME/NM23 family member 8
3823_at 6.87E-03 3.46 KLRC3 killer cell lectin like receptor C3
5782_at 7.66E-03 3.29 PTPN12 protein tyrosine phosphatase, non-receptor type 12
105376387_at 8.15E-03 3.17 LOC105376387 uncharacterized LOC105376387
4684_at 8.15E-03 3.16 NCAM1 neural cell adhesion molecule 1
9832_at 8.41E-03 3.08 JAKMIP2 janus kinase and microtubule interacting protein 2
105369656_at 8.98E-03 2.99 LOC105369656 uncharacterized LOC105369656
59352_at 9.05E-03 2.93 LGR6 leucine rich repeat containing G protein-coupled receptor 6
9839_at 9.26E-03 2.90 ZEB2 zinc finger E-box binding homeobox 2
343413_at 9.91E-03 2.78 FCRL6 Fc receptor like 6
57458_at 9.91E-03 2.77 TMCC3 transmembrane and coiled-coil domain family 3
100507195_at 9.93E-03 2.75 LINC02384 long intergenic non-protein coding RNA 2384
3574_at 1.00E-02 2.73 IL7 interleukin 7
114879_at 1.12E-02 2.54 OSBPL5 oxysterol binding protein like 5
401124_at 1.12E-02 2.53 DTHD1 death domain containing 1
10417_at 1.16E-02 2.49 SPON2 spondin 2
11314_at 1.23E-02 2.37 CD300A CD300a molecule
9437_at 1.27E-02 2.30 NCR1 natural cytotoxicity triggering receptor 1
51744_at 1.31E-02 2.22 CD244 CD244 molecule
100528032_at 1.33E-02 2.15 KLRC4-KLRK1 KLRC4-KLRK1 readthrough
313_at 1.33E-02 2.17 AOAH acyloxyacyl hydrolase
692229_at 1.33E-02 2.16 SNORD105 small nucleolar RNA, C/D box 105
9331_at 1.37E-02 2.11 B4GALT6 beta-1,4-galactosyltransferase 6
5911_at 1.47E-02 1.99 RAP2A RAP2A, member of RAS oncogene family
3904_at 1.61E-02 1.83 LAIR2 leukocyte associated immunoglobulin like receptor 2
5351_at 1.64E-02 1.78 PLOD1 procollagen-lysine,2-oxoglutarate 5-dioxygenase 1
5341_at 1.85E-02 1.57 PLEK pleckstrin
80310_at 1.97E-02 1.42 PDGFD platelet derived growth factor D
117157_at 2.03E-02 1.34 SH2D1B SH2 domain containing 1B
79815_at 2.04E-02 1.33 NIPAL2 NIPA like domain containing 2
55026_at 2.18E-02 1.22 TMEM255A transmembrane protein 255A
221895_at 2.20E-02 1.21 JAZF1 JAZF zinc finger 1
3802_at 2.25E-02 1.18 KIR2DL1 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1
23209_at 2.36E-02 1.05 MLC1 megalencephalic leukoencephalopathy with subcortical cysts 1
9289_at 2.50E-02 0.93 ADGRG1 adhesion G protein-coupled receptor G1
387895_at 2.53E-02 0.89 LINC00944 long intergenic non-protein coding RNA 944
84131_at 2.77E-02 0.77 CEP78 centrosomal protein 78
3812_at 3.20E-02 0.50 KIR3DL2 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 2
107984889_at 3.34E-02 0.43 LOC107984889 uncharacterized LOC107984889
51348_at 3.66E-02 0.29 KLRF1 killer cell lectin like receptor F1
23603_at 3.83E-02 0.22 CORO1C coronin 1C
90011_at 3.98E-02 0.13 KIR3DX1 killer cell immunoglobulin like receptor, three Ig domains X1
2999_at 4.93E-02 -0.27 GZMH granzyme H
105373204_at 2.09E-04 8.95 LOC105373204 uncharacterized LOC105373204
4050_at 2.56E-04 8.51 LTB lymphotoxin beta
940_at 2.77E-04 8.31 CD28 CD28 molecule
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340547_at 5.65E-04 7.77 VSIG1 V-set and immunoglobulin domain containing 1
11123_at 8.78E-04 7.37 RCAN3 RCAN family member 3
360_at 8.94E-04 7.25 AQP3 aquaporin 3 (Gill blood group)
1236_at 9.63E-04 7.08 CCR7 C-C motif chemokine receptor 7
1803_at 9.63E-04 7.02 DPP4 dipeptidyl peptidase 4
126259_at 9.77E-04 6.92 TMIGD2 transmembrane and immunoglobulin domain containing 2
145864_at 9.77E-04 6.75 HAPLN3 hyaluronan and proteoglycan link protein 3
4609_at 9.77E-04 6.82 MYC MYC proto-oncogene, bHLH transcription factor
944_at 9.77E-04 6.76 TNFSF8 TNF superfamily member 8
399665_at 1.14E-03 6.53 FAM102A family with sequence similarity 102 member A
5820_at 1.15E-03 6.47 PVT1 Pvt1 oncogene (non-protein coding)
105370652_at 1.19E-03 6.40 LINC02295 long intergenic non-protein coding RNA 2295
256987_at 1.25E-03 6.28 SERINC5 serine incorporator 5
114804_at 1.37E-03 6.05 RNF157 ring finger protein 157
120425_at 1.37E-03 6.10 JAML junction adhesion molecule like
3572_at 1.37E-03 6.10 IL6ST interleukin 6 signal transducer
4753_at 1.37E-03 5.99 NELL2 neural EGFL like 2
60468_at 1.37E-03 6.02 BACH2 BTB domain and CNC homolog 2
9057_at 1.37E-03 6.05 SLC7A6 solute carrier family 7 member 6
8718_at 1.41E-03 5.94 TNFRSF25 TNF receptor superfamily member 25
6920_at 1.75E-03 5.62 TCEA3 transcription elongation factor A3
196_at 1.92E-03 5.52 AHR aryl hydrocarbon receptor
7294_at 2.09E-03 5.42 TXK TXK tyrosine kinase
3655_at 2.13E-03 5.34 ITGA6 integrin subunit alpha 6
100750325_at 2.24E-03 5.26 RCAN3AS RCAN3 antisense
8728_at 2.27E-03 5.21 ADAM19 ADAM metallopeptidase domain 19
5578_at 3.97E-03 4.55 PRKCA protein kinase C alpha
1880_at 4.01E-03 4.44 GPR183 G protein-coupled receptor 183
6402_at 4.01E-03 4.51 SELL selectin L
9805_at 4.01E-03 4.46 SCRN1 secernin 1
28567_at 4.06E-03 4.41 TRBV20-1 T cell receptor beta variable 20-1
51176_at 4.33E-03 4.32 LEF1 lymphoid enhancer binding factor 1
10207_at 4.65E-03 4.21 PATJ PATJ, crumbs cell polarity complex component
55061_at 4.65E-03 4.21 SUSD4 sushi domain containing 4
90139_at 4.69E-03 4.18 TSPAN18 tetraspanin 18
3570_at 5.25E-03 4.03 IL6R interleukin 6 receptor
100506915_at 5.67E-03 3.88 CHRM3-AS2 CHRM3 antisense RNA 2
2053_at 5.67E-03 3.90 EPHX2 epoxide hydrolase 2
51301_at 5.81E-03 3.83 GCNT4 glucosaminyl (N-acetyl) transferase 4, core 2
101929623_at 5.84E-03 3.77 LINC01215 long intergenic non-protein coding RNA 1215
28685_at 5.84E-03 3.79 TRAV8-1 T cell receptor alpha variable 8-1
5924_at 5.84E-03 3.78 RASGRF2 Ras protein specific guanine nucleotide releasing factor 2
104326191_at 5.89E-03 3.74 LINC01336 long intergenic non-protein coding RNA 1336
4747_at 6.52E-03 3.60 NEFL neurofilament light
105377225_at 6.85E-03 3.49 LOC105377225 uncharacterized LOC105377225
4118_at 6.85E-03 3.48 MAL mal, T-cell differentiation protein
101927777_at 6.87E-03 3.41 SATB1-AS1 SATB1 antisense RNA 1
130367_at 6.87E-03 3.44 SGPP2 sphingosine-1-phosphate phosphatase 2
80824_at 6.87E-03 3.43 DUSP16 dual specificity phosphatase 16
3003_at 7.49E-03 3.32 GZMK granzyme K
55824_at 7.73E-03 3.26 PAG1 phosphoprotein membrane anchor with glycosphingolipid microdomains 1
203328_at 7.98E-03 3.21 SUSD3 sushi domain containing 3
23406_at 8.26E-03 3.13 COTL1 coactosin like F-actin binding protein 1
22866_at 8.57E-03 3.05 CNKSR2 connector enhancer of kinase suppressor of Ras 2
101954266_at 8.80E-03 3.02 RNVU1-14 RNA, variant U1 small nuclear 14
28674_at 9.05E-03 2.94 TRAV12-1 T cell receptor alpha variable 12-1
6322_at 9.91E-03 2.78 SCML1 sex comb on midleg like 1 (Drosophila)
1606_at 1.07E-02 2.65 DGKA diacylglycerol kinase alpha
129293_at 1.11E-02 2.59 TRABD2A TraB domain containing 2A
351_at 1.12E-02 2.54 APP amyloid beta precursor protein
51522_at 1.16E-02 2.49 TMEM14C transmembrane protein 14C
55423_at 1.20E-02 2.42 SIRPG signal regulatory protein gamma
199_at 1.23E-02 2.38 AIF1 allograft inflammatory factor 1
9840_at 1.23E-02 2.36 TESPA1 thymocyte expressed, positive selection associated 1
5217_at 1.25E-02 2.33 PFN2 profilin 2
6812_at 1.27E-02 2.30 STXBP1 syntaxin binding protein 1
7074_at 1.27E-02 2.29 TIAM1 T-cell lymphoma invasion and metastasis 1
28594_at 1.27E-02 2.27 TRBV7-4 T cell receptor beta variable 7-4 (gene/pseudogene)
3575_at 1.33E-02 2.19 IL7R interleukin 7 receptor
101927596_at 1.39E-02 2.07 LOC101927596 uncharacterized LOC101927596
54674_at 1.39E-02 2.08 LRRN3 leucine rich repeat neuronal 3
101927613_at 1.46E-02 2.01 LOC101927613 uncharacterized LOC101927613
28692_at 1.46E-02 2.01 TRAV1-2 T cell receptor alpha variable 1-2
1233_at 1.47E-02 1.98 CCR4 C-C motif chemokine receptor 4
6932_at 1.51E-02 1.94 TCF7 transcription factor 7 (T-cell specific, HMG-box)
23508_at 1.59E-02 1.86 TTC9 tetratricopeptide repeat domain 9
106481624_at 1.64E-02 1.78 RNU1-106P RNA, U1 small nuclear 106, pseudogene
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105379362_at 1.82E-02 1.63 LOC105379362 uncharacterized LOC105379362
196264_at 1.83E-02 1.59 MPZL3 myelin protein zero like 3
7273_at 1.84E-02 1.58 TTN titin
6959_at 1.97E-02 1.41 TRBV21OR9-2 T cell receptor beta variable 21/OR9-2 (pseudogene)
959_at 1.97E-02 1.41 CD40LG CD40 ligand
57124_at 1.99E-02 1.40 CD248 CD248 molecule
9934_at 1.99E-02 1.38 P2RY14 purinergic receptor P2Y14
8821_at 2.03E-02 1.34 INPP4B inositol polyphosphate-4-phosphatase type II B
641518_at 2.36E-02 1.05 LEF1-AS1 LEF1 antisense RNA 1
1263_at 2.39E-02 1.03 PLK3 polo like kinase 3
220158_at 2.44E-02 0.97 GTSCR1 Gilles de la Tourette syndrome chromosome region, candidate 1
28715_at 2.44E-02 0.97 TRAJ40 T cell receptor alpha joining 40
28751_at 2.45E-02 0.96 TRAJ4 T cell receptor alpha joining 4
28738_at 2.51E-02 0.92 TRAJ17 T cell receptor alpha joining 17
939_at 2.60E-02 0.85 CD27 CD27 molecule
8609_at 2.77E-02 0.76 KLF7 Kruppel like factor 7
387748_at 2.83E-02 0.73 OR56B1 olfactory receptor family 56 subfamily B member 1
5324_at 2.94E-02 0.65 PLAG1 PLAG1 zinc finger
131450_at 2.98E-02 0.62 CD200R1 CD200 receptor 1
57282_at 3.04E-02 0.59 SLC4A10 solute carrier family 4 member 10
107986485_at 3.13E-02 0.55 LOC107986485 uncharacterized LOC107986485
27018_at 3.30E-02 0.44 BEX3 brain expressed X-linked 3
28680_at 3.41E-02 0.39 TRAV8-6 T cell receptor alpha variable 8-6
105375547_at 3.45E-02 0.37 LOC105375547 uncharacterized LOC105375547
105376892_at 3.60E-02 0.32 LOC105376892 uncharacterized LOC105376892
28659_at 3.64E-02 0.30 TRAV24 T cell receptor alpha variable 24
107984947_at 3.88E-02 0.20 LOC107984947 uncharacterized LOC107984947
2776_at 3.90E-02 0.19 GNAQ G protein subunit alpha q
149233_at 3.98E-02 0.13 IL23R interleukin 23 receptor
28984_at 4.07E-02 0.07 RGCC regulator of cell cycle
6285_at 4.18E-02 0.02 S100B S100 calcium binding protein B
814_at 4.18E-02 0.02 CAMK4 calcium/calmodulin dependent protein kinase IV
28595_at 4.33E-02 -0.05 TRBV7-3 T cell receptor beta variable 7-3
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Titre : Analyse systémique des sous-populations immunitaires et réseaux de communication intercellulaires 
dans les tumeurs du sein humaines 
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Résumé :	La communication intercellulaire est à la 
base de l'organisation d'ordre supérieur observée dans 
les tissus, les organes et l'organisme. Comprendre la 
communication intercellulaire et ses mécanismes 
sous-jacents qui sont impliqués dans le cancer est 
essentiel. Le microenvironnement des tumeurs du sein 
est composé d'une grande diversité cellulaire, telle 
que les cellules endothéliales, stromales ou 
immunitaires, qui peuvent influencer la progression 
tumorale ainsi que la réponse au traitement. Parmi les 
différentes populations de cellules immunitaires, les 
sous-populations de cellules dendritiques (DCs) 
intègrent les signaux du microenvironnement puis 
joue un rôle critique en orchestrant le développement 
d’une réponse immunitaire spécifique par activation 
des lymphocytes T. Cependant, les différentes 
fonctions de ces sous-populations et leurs interactions 
au sein du microenvironnement tumoral restent mal 
décrites.  
L’objectif principal de ma thèse a été de comprendre 
l'impact du microenvironnement tumoral du sein sur 
les sous-populations de DCs par analyse systémique. 
Nous avons utilisé le séquençage de l'ARN pour 
analyser systématiquement les transcriptomes des 
pré-DC plasmacytoïdes infiltrant les tumeurs, les  

populations cellulaires enrichies pour les DC 
classiques de type 1, les DC classiques de type 2, les 
DC CD14+ et les monocytes-macrophages chez des 
patientes atteintes de cancer primitif du sein luminal 
et cancer du sein triple négatif. Nous avons constaté 
que la reprogrammation transcriptionnelle des 
cellules présentatrices d’antigène infiltrant la tumeur 
est spécifique à un sous-ensemble. Ces résultats 
suggèrent une interaction complexe entre 
l'ontogenèse et l'empreinte tissulaire dans le 
conditionnement de la diversité des DCs et de leur 
fonction dans le cancer. En second lieu, j'ai cherché à 
étudier les communications intercellulaires afin de 
comprendre comment les cellules intègrent les 
signaux de leur environnement. Nous avons 
développé ICELLNET, un outil pour reconstruire les 
réseaux de communication intercellulaires. Cette 
méthode quantitative originale, intégrant les 
interactions ligand-récepteur et l'expression génique 
spécifique à un type cellulaire, peut être appliquée 
automatiquement à tous profils transcriptomiques de 
population cellulaire, que ce soit dans divers 
contextes pathologiques ou d’autres domaines de la 
biologie. 

 

 

Title: Systems level analysis of immune cell subsets and intercellular communication networks in human breast 
cancer 
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Abstract: Cell-to-cell communication is at the basis 
of the higher order organization observed in tissues, 
organs, and organism. Understanding cell-to-cell 
communication, and its underlying mechanisms that 
drive the development of cancer is essential. Breast 
tumor microenvironment (TME) is composed of a 
great cellular diversity, such as endothelial, stromal 
or immune cells that can influence tumor progression 
as well as its response to treatment. Among the 
different immune cell populations, dendritic cells 
(DCs) subsets integrate signals from their 
microenvironment and are subsequently essential in 
orchestrating specific immune response through T 
cell activation. However, the differential function of 
these subsets, and their interactions within the TME 
remain poorly described.  
My main objective was to understand the impact of 
the breast TME on DC subsets using systems-level 
analysis. We used RNA sequencing to systematically 
analyze the transcriptomes of tumor-infiltrating  

plasmacytoid pre-DCs, cell populations enriched for 
type 1 classical DCs, type 2 classical DCs, CD14+DCs, 
and monocytes-macrophages from human primary 
luminal breast cancer and triple-negative breast cancer. 
We found that transcriptional reprogramming of tumor-
infiltrating antigen-presenting cells is subset-specific. 
These results suggest a complex interplay between 
ontogeny and tissue imprinting in conditioning DC 
diversity and function in cancer.  
As a second objective, I aimed at studying the cellular 
communications in order to understand how cells 
integrate signals from their environment. I developed 
ICELLNET, a tool to reconstruct intercellular 
communication networks. This original quantitative 
method, integrating ligand-receptor interactions and cell 
type specific gene expression, can be automatically 
applied to any cell population level transcriptomic 
profile opening perspectives of application in several 
disease contexts and biology fields. 
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