B. Hallberg and R. H. Palmer, Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology, Nat Rev Cancer [Internet], vol.13, pp.685-700, 2013.

S. Dearden, J. Stevens, Y. Wu, and D. Blowers, Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap), Ann Oncol Off J Eur Soc Med Oncol. England, vol.24, pp.2371-2377, 2013.

J. P. Koivunen, C. Mermel, K. Zejnullahu, C. Murphy, E. Lifshits et al., EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer, Clin Cancer Res. United States, vol.14, pp.4275-83, 2008.

G. Recondo, F. Facchinetti, K. A. Olaussen, B. Besse, and L. Friboulet, Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or nextgeneration TKI?, Nat Rev Clin Oncol. England, 2018.

H. Y. Zou, L. Friboulet, D. P. Kodack, L. D. Engstrom, Q. Li et al., PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models, Cancer Cell. United States, vol.28, pp.70-81, 2015.

A. T. Shaw, E. Felip, T. M. Bauer, B. Besse, A. Navarro et al.,

, Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial, Lancet Oncol. England, vol.18, pp.1590-1599, 2017.

B. J. Solomon, B. Besse, T. M. Bauer, E. Felip, R. A. Soo et al.,

, Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study, Lancet Oncol. England, 2018.

S. Yoda, J. J. Lin, M. S. Lawrence, B. J. Burke, L. Friboulet et al., Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer, Cancer Discov. United States, 2018.

C. Massard, S. Michiels, C. Ferte, L. Deley, M. Lacroix et al., High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial, Cancer Discov. United States, vol.7, pp.586-95, 2017.

D. P. Kodack, A. F. Farago, A. Dastur, M. A. Held, L. Dardaei et al., Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care, Cell Rep. United States, vol.21, pp.3298-309, 2017.

L. Friboulet, N. Li, R. Katayama, C. C. Lee, J. F. Gainor et al., The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer, Cancer Discov. United States, vol.4, pp.662-73, 2014.

V. Plagnol, S. Woodhouse, K. Howarth, S. Lensing, M. Smith et al., Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling, PLoS One. United States, vol.13, p.193802, 2018.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics. England, vol.25, pp.1754-60, 2009.

C. A. Miller, B. S. White, N. D. Dees, M. Griffith, J. S. Welch et al., SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution, PLoS Comput Biol. United States, vol.10, p.1003665, 2014.

H. X. Dang, B. S. White, S. M. Foltz, C. A. Miller, J. Luo et al., ClonEvol: clonal ordering and visualization in cancer sequencing, Ann Oncol Off J Eur Soc Med Oncol. England, vol.28, pp.3076-82, 2017.

C. A. Miller, J. Mcmichael, H. X. Dang, C. A. Maher, L. Ding et al., Visualizing tumor evolution with the fishplot package for R, BMC Genomics. England, vol.17, p.880, 2016.

S. Raoof, I. J. Mulford, H. Frisco-cabanos, V. Nangia, D. Timonina et al., Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer, Oncogene. England, 2019.

E. Avizienyte and M. C. Frame, Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition, Curr Opin Cell Biol. England, vol.17, pp.542-549, 2005.

R. Katayama, A. T. Shaw, T. M. Khan, M. Mino-kenudson, B. J. Solomon et al., Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers, Sci Transl Med. United States, vol.4, pp.120-137, 2012.

M. E. Baser, L. Kuramoto, H. Joe, J. M. Friedman, A. J. Wallace et al., Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study, Am J Hum Genet. United States, vol.75, pp.231-240, 2004.

E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov. United States, vol.2, pp.401-405, 2012.

A. M. Petrilli and C. Fernandez-valle, Role of Merlin/NF2 inactivation in tumor biology, Oncogene. England, vol.35, pp.537-585, 2016.

A. T. Shaw, J. Martini, B. Besse, T. M. Bauer, C. Lin et al., Abstract CT044: Efficacy of lorlatinib in patients (pts) with advanced ALK-positive non-small cell lung cancer (NSCLC) and ALK kinase domain mutations, Cancer Res [Internet], vol.78, pp.44-044, 2018.

K. Okada, M. Araki, T. Sakashita, B. Ma, R. Kanada et al., Prediction of ALK mutations mediating ALK-TKIs resistance and drug repurposing to overcome the resistance, EBioMedicine. Netherlands, 2019.

A. S. Crystal, A. T. Shaw, L. Sequist, L. Friboulet, M. J. Niederst et al., Patient-derived models of acquired resistance can identify effective drug combinations for cancer, Science. United States, vol.346, pp.1480-1486, 2014.

J. F. Gainor, L. Dardaei, S. Yoda, L. Friboulet, I. Leshchiner et al., Molecular Mechanisms of Resistance to First-and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer, Cancer Discov. United States, vol.6, pp.1118-1151, 2016.

F. Guo, X. Liu, Q. Qing, Y. Sang, C. Feng et al., EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells, Biochem Biophys Res Commun. United States, vol.459, pp.398-404, 2015.

H. R. Kim, W. S. Kim, Y. J. Choi, C. M. Choi, J. K. Rho et al., Epithelial-References

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin. United States, 2018.

J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi et al., Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018, Eur J Cancer. England, vol.103, pp.356-87, 2018.

D. Morgensztern, S. H. Ng, F. Gao, and R. Govindan, Trends in Stage Distribution for Patients with Non-small Cell Lung Cancer: A National Cancer Database Survey, J Thorac Oncol, vol.5, pp.29-33, 2010.

P. Goldstraw, K. Chansky, J. Crowley, R. Rami-porta, H. Asamura et al., The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer, J Thorac Oncol. United States, vol.11, pp.39-51, 2016.

A. F. Gazdar, P. A. Bunn, and J. D. Minna, Small-cell lung cancer: what we know, what we need to know and the path forward, Nat Rev Cancer. England, vol.17, pp.725-762, 2017.

R. S. Herbst, D. Morgensztern, and C. Boshoff, The biology and management of non-small cell lung cancer, Nature. England, vol.553, pp.446-54, 2018.

E. L. Wyner and E. A. Graham, Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma; a study of 684 proved cases, J Am Med Assoc. United States, vol.143, pp.329-365, 1950.

P. M. De-groot, C. C. Wu, B. W. Carter, and R. F. Munden, The epidemiology of lung cancer, Transl lung cancer Res. AME Publishing Company, vol.7, pp.220-253, 2018.

S. S. Hecht, Tobacco smoke carcinogens and lung cancer, J Natl Cancer Inst. United States, vol.91, pp.1194-210, 1999.

H. P. Health, US) O. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General, 2014.

K. Asomaning, D. P. Miller, G. Liu, J. C. Wain, T. J. Lynch et al., Second hand smoke, age of exposure and lung cancer risk, Lung Cancer. Ireland, vol.61, pp.13-20, 2008.

H. A. Wakelee, E. T. Chang, S. L. Gomez, T. H. Keegan, D. Feskanich et al., Lung cancer incidence in never smokers, J Clin Oncol. United States, vol.25, pp.472-480, 2007.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, Global cancer statistics, CA Cancer J Clin. United States, vol.55, pp.74-108, 2002.

S. Sun, J. H. Schiller, and A. F. Gazdar, Lung cancer in never smokers--a different disease, Nat Rev Cancer. England, vol.7, pp.778-90, 2007.

J. M. Samet, Radiation and cancer risk: a continuing challenge for epidemiologists, Environ Health. England, vol.10, 2011.

J. H. Lubin, J. Boice, C. Edling, R. W. Hornung, G. R. Howe et al., Lung cancer in radon-exposed miners and estimation of risk from indoor exposure, J Natl Cancer Inst. United States, vol.87, pp.817-844, 1995.

B. T. Mossman, J. Bignon, M. Corn, A. Seaton, and J. B. Gee, Asbestos: scientific developments and implications for public policy, Science. United States, vol.247, pp.294-301, 1990.

. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA. United States, vol.287, pp.1132-1173, 2002.

O. Caron, T. Frebourg, P. R. Benusiglio, S. Foulon, and L. Brugieres, Lung Adenocarcinoma as Part of the Li-Fraumeni Syndrome Spectrum: Preliminary Data of the LIFSCREEN Randomized Clinical Trial, JAMA Oncol. United States, vol.3, pp.1736-1743, 2017.

S. Goodwin, J. D. Mcpherson, and W. R. Mccombie, Coming of age: ten years of next-generation sequencing technologies, Nat Rev Genet. England, vol.17, pp.333-51, 2016.

W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. Austin et al., The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification, J. Thorac. Oncol. United States, pp.1243-60, 2015.

, Comprehensive genomic characterization of squamous cell lung cancers, Nature. England, vol.489, pp.519-544, 2012.

T. Network, Comprehensive molecular profiling of lung adenocarcinoma, Nature. England, vol.511, pp.543-50, 2014.

X. Liu, Y. Jia, M. B. Stoopler, Y. Shen, H. Cheng et al., Next-Generation Sequencing of Pulmonary Sarcomatoid Carcinoma Reveals High Frequency of Actionable MET Gene Mutations, J Clin Oncol. United States, vol.34, pp.794-802, 2016.

D. S. Shames and I. I. Wistuba, The evolving genomic classification of lung cancer, J Pathol. England, vol.232, pp.121-154, 2014.

E. J. Jordan, H. R. Kim, M. E. Arcila, D. Barron, D. Chakravarty et al., Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies, Cancer Discov. United States, vol.7, pp.596-609, 2017.

F. Barlesi, J. Mazieres, J. Merlio, D. Debieuvre, J. Mosser et al., Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT), Lancet, 2016.

M. G. Kris, B. E. Johnson, L. D. Berry, D. J. Kwiatkowski, J. Iafrate-a et al., Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs, JAMA, vol.311, pp.1998-2006, 2014.

D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and E. R. Mardis, The nextgeneration sequencing revolution and its impact on genomics, Cell. United States, vol.155, pp.27-38, 2013.

B. Han, S. Tjulandin, K. Hagiwara, N. Normanno, L. Wulandari et al., EGFR mutation prevalence in Asia-Pacific and Russian patients with advanced NSCLC of adenocarcinoma and non-adenocarcinoma histology: The IGNITE study, Lung Cancer. Ireland, vol.113, pp.37-44, 2017.

S. Li, L. Li, Y. Zhu, C. Huang, Y. Qin et al., Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts, Br J Cancer, vol.110, pp.2812-2832, 2014.

C. Tseng, B. Tsuang, C. Chiang, K. Ku, J. Tseng et al., The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan, J Thorac Oncol. United States, vol.14, pp.784-92, 2019.

B. Melloni, Lung cancer in never-smokers: radon exposure and environmental tobacco smoke, Eur. Respir. J. England, pp.850-852, 2014.

L. J. Wilson, A. Linley, D. E. Hammond, F. E. Hood, J. M. Coulson et al., New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome, Cancer Res. United States, vol.78, pp.15-29, 2018.

M. A. Lemmon and J. Schlessinger, Cell signaling by receptor tyrosine kinases, Cell. United States, vol.141, pp.1117-1151, 2010.

X. Zhang, J. Gureasko, K. Shen, P. A. Cole, and J. Kuriyan, An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor, Cell. United States, vol.125, pp.1137-1186, 2006.

D. R. Singh, P. Kanvinde, C. King, E. B. Pasquale, and K. Hristova, The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures, Commun Biol. England, vol.1, p.15, 2018.

B. Nolen, S. Taylor, and G. Ghosh, Regulation of protein kinases; controlling activity through activation segment conformation, Mol Cell. United States, vol.15, pp.661-75, 2004.

J. B. Casaletto and A. I. Mcclatchey, Spatial regulation of receptor tyrosine kinases in development and cancer, Nat Rev Cancer. England, vol.12, pp.387-400, 2012.

M. Soda, Y. L. Choi, M. Enomoto, S. Takada, Y. Yamashita et al., Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer, Nature. England, vol.448, pp.561-567, 2007.

J. G. Paez, P. A. Janne, J. C. Lee, S. Tracy, H. Greulich et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy, Science. United States, vol.304, pp.1497-500, 2004.

T. K. Das and R. L. Cagan, KIF5B-RET Oncoprotein Signals through a Multikinase Signaling Hub, Cell Rep. United States, vol.20, pp.2368-83, 2017.

K. Bergethon, A. T. Shaw, S. Ou, R. Katayama, C. M. Lovly et al., ROS1 rearrangements define a unique molecular class of lung cancers, J Clin Oncol. United States, vol.30, pp.863-70, 2012.

M. M. Awad, G. R. Oxnard, D. M. Jackman, D. O. Savukoski, D. Hall et al., MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer, N Engl J Med. United States, vol.376, pp.629-669, 2017.

J. Soria, Y. Ohe, J. Vansteenkiste, T. Reungwetwattana, B. Chewaskulyong et al., Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer, N Engl J Med. Massachusetts Medical Society

J. P. Robichaux, Y. Y. Elamin, Z. Tan, B. W. Carter, S. Zhang et al., Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer, Nat Med. United States, vol.24, pp.638-684, 2018.

D. Planchard, M. J. Boyer, J. Lee, A. Dechaphunkul, P. K. Cheema et al., Postprogression Outcomes for Osimertinib versus Standard-of-Care EGFR-TKI in Patients with Previously Untreated EGFR-mutated

, Advanced Non-Small Cell Lung Cancer, Clin Cancer Res. United States, vol.25, pp.2058-63, 2019.

N. Ponde, M. Brandao, G. El-hachem, E. Werbrouck, and M. Piccart, Treatment of advanced HER2-positive breast cancer: 2018 and beyond, Cancer Treat Rev. Netherlands, vol.67, pp.10-20, 2018.

M. E. Arcila, J. E. Chaft, K. Nafa, S. Roy-chowdhuri, C. Lau et al., Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas, Clin Cancer Res. United States, vol.18, pp.4910-4918, 2012.

K. Sehgal, R. Patell, D. Rangachari, and D. B. Costa, Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors, Transl Cancer Res. China, vol.7, pp.779-86, 2018.

A. T. Shaw, S. Ou, Y. Bang, D. R. Camidge, B. J. Solomon et al., Crizotinib in ROS1-rearranged non-small-cell lung cancer, N Engl J Med. United States, vol.371, pp.1963-71, 2014.

S. M. Lim, H. R. Kim, J. Lee, K. H. Lee, Y. Lee et al., Open-Label, Multicenter, Phase II Study of Ceritinib in Patients With Non-Small-Cell Lung Cancer Harboring ROS1 Rearrangement, J Clin Oncol. American Society of Clinical Oncology, vol.35, pp.2613-2621, 2017.

A. Drilon, S. Siena, S. Ou, M. Patel, M. J. Ahn et al., Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1), Cancer Discov. United States, vol.7, pp.400-409, 2017.

A. Hegde, D. S. Hong, A. Behrang, S. M. Ali, L. Juckett et al., Activity of Brigatinib in Crizotinib and Ceritinib-Resistant ROS1-Rearranged Non-Small-Cell Lung Cancer, JCO Precis Oncol. American Society of Clinical Oncology, pp.1-6, 2019.

A. T. Shaw, E. Felip, T. M. Bauer, B. Besse, A. Navarro et al., Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial, Lancet Oncol. England, vol.18, pp.1590-1599, 2017.

A. Drilon, S. Ou, B. C. Cho, D. Kim, J. Lee et al., TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent-Front Mutations, Cancer Discov. United States, vol.8, pp.1227-1263, 2018.

S. L. Organ and M. Tsao, An overview of the c-MET signaling pathway, Ther Adv Med Oncol. England, vol.3, pp.7-19, 2011.

A. Petrelli, G. F. Gilestro, S. Lanzardo, P. M. Comoglio, N. Migone et al., The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met, Nature. England, vol.416, pp.187-90, 2002.

A. Drilon, F. Cappuzzo, S. Ou, and D. R. Camidge, Targeting MET in Lung Cancer: Will Expectations Finally Be MET?, J Thorac Oncol. United States, vol.12, pp.15-26, 2017.

J. A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science. United States, vol.316, pp.1039-1082, 2007.

L. Sequist, B. Waltman, D. Dias-santagata, S. Digumarthy, A. B. Turke et al., Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors, Sci Transl Med, vol.3, pp.75-101, 2011.

G. R. Oxnard, Y. Hu, K. F. Mileham, H. Husain, D. B. Costa et al., Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib, JAMA Oncol. United States, vol.4, pp.1527-1561, 2018.

M. Bahcall, T. Sim, C. P. Paweletz, J. D. Patel, R. S. Alden et al., Acquired METD1228V Mutation and Resistance to MET Inhibition in Lung Cancer, Cancer Discov. United States, vol.6, pp.1334-1375, 2016.

S. M. Jhiang, The RET proto-oncogene in human cancers, Oncogene. England, vol.19, pp.5590-5597, 2000.

S. R. Priya, C. S. Dravid, R. Digumarti, and M. Dandekar, Targeted Therapy for Medullary Thyroid Cancer: A Review, Front Oncol. Switzerland, vol.7, p.238, 2017.

R. Wang, H. Hu, Y. Pan, Y. Li, T. Ye et al., RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer, J Clin Oncol. United States, vol.30, pp.4352-4361, 2012.

T. Kohno, H. Ichikawa, Y. Totoki, K. Yasuda, M. Hiramoto et al., KIF5B-RET fusions in lung adenocarcinoma, Nat Med. United States, vol.18, pp.375-382, 2012.

R. Ferrara, N. Auger, E. Auclin, and B. Besse, Clinical and Translational Implications of RET Rearrangements in Non-Small Cell Lung Cancer, J Thorac Oncol. United States, vol.13, pp.27-45, 2018.

T. Kodama, T. Tsukaguchi, Y. Satoh, M. Yoshida, Y. Watanabe et al., Alectinib shows potent antitumor activity against RET-rearranged nonsmall cell lung cancer, Mol Cancer Ther. United States, vol.13, pp.2910-2918, 2014.

J. J. Lin, E. Kennedy, L. Sequist, P. K. Brastianos, K. E. Goodwin et al., Clinical Activity of Alectinib in Advanced RET-Rearranged Non-Small Cell Lung Cancer, J Thorac Oncol. United States, vol.11, pp.2027-2059, 2016.

V. Subbiah, J. F. Gainor, R. Rahal, J. D. Brubaker, J. L. Kim et al., Precision Targeted Therapy with BLU-667 for RET-Driven Cancers

, Cancer Discov. United States, vol.8, pp.836-885, 2018.

V. Subbiah, V. Velcheti, B. B. Tuch, K. Ebata, N. L. Busaidy et al., Selective RET kinase inhibition for patients with RET-altered cancers

, Ann Oncol Off J Eur Soc Med Oncol. England, vol.29, pp.1869-76, 2018.

Z. Gatalica, J. Xiu, J. Swensen, and S. Vranic, Molecular characterization of cancers with NTRK gene fusions, Mod Pathol an Off J United States Can Acad Pathol Inc. United States, vol.32, pp.147-53, 2019.

A. F. Farago, M. S. Taylor, R. C. Doebele, V. W. Zhu, S. Kummar et al., Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion, JCO Precis Oncol. United States, 2018.

A. Drilon, T. W. Laetsch, S. Kummar, S. G. Dubois, U. N. Lassen et al., Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children, N Engl J Med. United States, vol.378, pp.731-740, 2018.

A. Drilon, R. Nagasubramanian, J. F. Blake, N. Ku, B. B. Tuch et al., A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors, Cancer Discov. United States, vol.7, pp.963-72, 2017.

R. Yaeger and R. B. Corcoran, Targeting Alterations in the RAF-MEK Pathway, Cancer Discov. United States, vol.9, pp.329-370, 2019.

S. Tanimura and K. Takeda, ERK signalling as a regulator of cell motility, J Biochem, vol.162, pp.145-54, 2017.

F. Zassadowski, C. Rochette-egly, C. Chomienne, and B. Cassinat, Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway, Cell Signal, vol.24, pp.2369-77, 2012.

M. K. Ahmad, N. A. Abdollah, N. H. Shafie, N. M. Yusof, and S. Razak, Dualspecificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer, Cancer Biol Med. China, vol.15, pp.14-28, 2018.

A. L. Tetlow and F. Tamanoi, The Ras superfamily G-proteins, Enzym. United States, pp.33-34, 2013.

M. Roman, I. Baraibar, I. Lopez, E. Nadal, C. Rolfo et al., KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target, Mol Cancer. England, vol.17, p.33, 2018.

F. Skoulidis, M. E. Goldberg, D. M. Greenawalt, M. D. Hellmann, M. M. Awad et al., STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma, Cancer Discov. United States, vol.8, pp.822-857, 2018.

M. P. Patricelli, M. R. Janes, L. Li, R. Hansen, U. Peters et al., Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State, Cancer Discov. United States, vol.6, pp.316-345, 2016.

C. A. Pratilas, B. S. Taylor, Q. Ye, A. Viale, C. Sander et al., V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway, Proc Natl Acad Sci, vol.106, pp.4519-4543, 2009.

D. Planchard, B. Besse, H. Groen, P. Souquet, E. Quoix et al., Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an openlabel, multicentre phase 2 trial, Lancet Oncol. England, vol.17, pp.984-93, 2016.

L. Zhao and P. K. Vogt, Class I PI3K in oncogenic cellular transformation, Oncogene. England, vol.27, pp.5486-96, 2008.

M. Martini, D. Santis, M. C. Braccini, L. Gulluni, F. Hirsch et al., PI3K/AKT signaling pathway and cancer: an updated review, Ann Med. England, vol.46, pp.372-83, 2014.

R. A. Saxton and D. M. Sabatini, Metabolism, and Disease. Cell. United States, vol.168, pp.960-76, 2017.

H. Populo, J. M. Lopes, and P. Soares, The mTOR signalling pathway in human cancer, Int J Mol Sci. Switzerland, vol.13, pp.1886-918, 2012.

F. Janku and T. A. Yap, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway?, Nat Rev Clin Oncol. England, vol.15, pp.273-91, 2018.

E. Ilagan and B. D. Manning, Emerging role of mTOR in the response to cancer therapeutics, Trends in cancer. United States, vol.2, pp.241-51, 2016.

Y. Sancak, L. Bar-peled, R. Zoncu, A. L. Markhard, S. Nada et al.,

, Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell. United States, vol.141, pp.290-303, 2010.

R. J. Shaw, N. Bardeesy, B. D. Manning, L. Lopez, M. Kosmatka et al., The LKB1 tumor suppressor negatively regulates mTOR signaling, Cancer Cell. United States, vol.6, pp.91-100, 2004.

M. C. Mendoza, E. E. Er, and J. Blenis, The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation, Trends Biochem Sci. England, vol.36, pp.320-328, 2011.

W. Li, J. Cooper, L. Zhou, C. Yang, H. Erdjument-bromage et al.,

, Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus, Cancer Cell. United States, vol.26, pp.48-60, 2014.

S. Beltrami, R. Kim, and J. Gordon, Neurofibromatosis type 2 protein, NF2: an uncoventional cell cycle regulator, Anticancer Res. Greece, vol.33, pp.1-11, 2013.

M. F. James, S. Han, C. Polizzano, S. R. Plotkin, B. D. Manning et al., NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth, Mol Cell Biol. United States, vol.29, pp.4250-61, 2009.

M. Giovannini, N. Bonne, J. Vitte, F. Chareyre, K. Tanaka et al., mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma, Neuro Oncol. England, vol.16, pp.493-504, 2014.

M. A. Lopez-lago, T. Okada, M. M. Murillo, N. Socci, and F. G. Giancotti, Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling, Mol Cell Biol. United States, vol.29, pp.4235-4284, 2009.

L. C. Kim, L. Song, and E. B. Haura, Src kinases as therapeutic targets for cancer, Nat Rev Clin Oncol. England, vol.6, pp.587-95, 2009.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, pp.646-74, 2011.

G. Ichim and S. Tait, A fate worse than death: apoptosis as an oncogenic process, Nat Rev Cancer. England, vol.16, pp.539-587, 2016.

F. Luciano, A. Jacquel, P. Colosetti, M. Herrant, S. Cagnol et al., Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function
URL : https://hal.archives-ouvertes.fr/hal-00323924

. Oncogene and . England, , vol.22, pp.6785-93, 2003.

J. Tong, X. Zheng, X. Tan, R. Fletcher, Z. Nikolovska-coleska et al., Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins, Cancer Res. United States, vol.78, pp.4704-4719, 2018.

A. C. Faber, H. Ebi, C. Costa, and J. A. Engelman, Apoptosis in targeted therapy responses: the role of BIM, Adv Pharmacol. United States, vol.65, pp.519-561, 2012.

A. Tanimoto, S. Takeuchi, S. Arai, K. Fukuda, T. Yamada et al.,

, Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer, Clin Cancer Res. United States, vol.23, pp.3139-3188, 2017.

K. S. Bhullar, N. O. Lagaron, E. M. Mcgowan, I. Parmar, A. Jha et al., Kinase-targeted cancer therapies: progress, challenges and future directions, Mol Cancer. England, vol.17, p.48, 2018.

F. Zuccotto, E. Ardini, E. Casale, and M. Angiolini, Through the "gatekeeper door": exploiting the active kinase conformation, J Med Chem. United States, vol.53, pp.2681-94, 2010.

S. Zimmermann, S. Peters, T. Owinokoko, and S. M. Gadgeel, Immune Checkpoint Inhibitors in the Management of Lung Cancer, Am Soc Clin Oncol Educ B

, American Society of Clinical Oncology, pp.682-95, 2018.

L. Gandhi, D. Rodriguez-abreu, S. Gadgeel, E. E. Felip, E. et al., Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer, N Engl J Med. United States, vol.378, pp.2078-92, 2018.

J. Brahmer, K. L. Reckamp, P. Baas, L. Crinò, W. Eberhardt et al., Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer, N Engl J Med, pp.1-13, 2015.

S. J. Antonia, A. Villegas, D. Daniel, D. Vicente, S. Murakami et al., Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC, N Engl J Med. United States, vol.379, pp.2342-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02284390

J. F. Gainor, A. T. Shaw, L. Sequist, X. Fu, C. G. Azzoli et al., EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis, Clin Cancer Res. United States, vol.22, pp.4585-93, 2016.

C. Yang, J. Shepherd, F. A. Kim, D. Lee, G. Lee et al., Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M-Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report, J Thorac Oncol. United States, vol.14, pp.933-942, 2019.

D. R. Spigel, C. Reynolds, D. Waterhouse, E. B. Garon, J. Chandler et al., Phase 1/2 Study of the Safety and Tolerability of Nivolumab Plus Crizotinib for the First-line Treatment of ALK Translocation-Positive Advanced Non-Small Cell Lung Cancer (CheckMate 370), J Thorac Oncol. United States, 2018.

J. Mazieres, A. Drilon, A. Lusque, L. Mhanna, A. B. Cortot et al., Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry

, Ann Oncol Off J Eur Soc Med Oncol. England, 2019.

, Mol Cancer Res. United States, vol.16, pp.1724-1760, 2018.

J. C. Chang, L. Zhang, A. E. Drilon, C. P. Alaggio, R. Borsu et al., Expanding the Molecular Characterization of Thoracic Inflammatory Myofibroblastic Tumors beyond ALK Gene Rearrangements, J Thorac Oncol. United States, vol.14, pp.825-859, 2019.

G. Umapathy, P. Mendoza-garcia, B. Hallberg, and R. H. Palmer, Targeting anaplastic lymphoma kinase in neuroblastoma, APMIS. Denmark, vol.127, pp.288-302, 2019.

I. Janoueix-lerosey, D. Lequin, L. Brugieres, A. Ribeiro, L. De-pontual et al., Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma, Nature. England, vol.455, pp.967-70, 2008.

T. Sasaki, K. Okuda, W. Zheng, J. Butrynski, M. Capelletti et al., The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers, Cancer Res. United States, vol.70, pp.10038-10081, 2010.

Y. L. Choi, M. Soda, Y. Yamashita, T. Ueno, J. Takashima et al., EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors, N Engl J Med. United States, vol.363, pp.1734-1743, 2010.

M. Wass, T. Behlendorf, B. Schadlich, A. Mottok, A. Rosenwald et al., Crizotinib in refractory ALK-positive diffuse large B-cell lymphoma: a case report with a short-term response, Eur. J. Haematol. England, pp.268-70, 2014.

K. Shinmura, S. Kageyama, H. Tao, T. Bunai, M. Suzuki et al., EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas, Lung Cancer. Ireland, vol.61, pp.163-172, 2008.

S. R. Sabir, S. Yeoh, J. G. Bayliss, R. Eml4-alk, and . Variants, Biological and Molecular Properties, and the Implications for Patients, p.9, 2017.

R. Bayliss, J. Choi, D. A. Fennell, A. M. Fry, and M. W. Richards, Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs, Cell Mol Life Sci. Switzerland, vol.73, pp.1209-1233, 2016.

J. J. Lin, V. W. Zhu, S. Yoda, B. Y. Yeap, A. B. Schrock et al., Impact of EML4-ALK Variant on Resistance Mechanisms and Clinical Outcomes in ALK-Positive Lung Cancer, J Clin Oncol. United States, 2018.

Y. L. Choi, K. Takeuchi, M. Soda, K. Inamura, Y. Togashi et al., Identification of novel isoforms of the EML4-ALK transforming gene in nonsmall cell lung cancer, Cancer Res. United States, vol.68, pp.4971-4977, 2008.

J. P. Koivunen, C. Mermel, K. Zejnullahu, C. Murphy, E. Lifshits et al., EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer, Clin Cancer Res. United States, vol.14, pp.4275-83, 2008.

J. M. Heuckmann, H. Balke-want, F. Malchers, M. Peifer, M. L. Sos et al., Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants, Clin Cancer Res. United States, vol.18, pp.4682-90, 2012.

W. Wu, F. Haderk, and T. G. Bivona, Non-Canonical Thinking for Targeting ALK-Fusion Onco-Proteins in Lung Cancer, Cancers

M. W. Richards, L. O'regan, D. Roth, J. M. Montgomery, A. Straube et al., Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain, Biochem J. England, vol.467, pp.529-565, 2015.

D. R. Camidge, R. Dziadziuszko, S. Peters, T. Mok, J. Noe et al., Updated Efficacy and Safety Data and Impact of the EML4-ALK Fusion Variant on the Efficacy of Alectinib in Untreated ALK-Positive Advanced Non-Small Cell Lung Cancer in the Global Phase III ALEX Study, J Thorac Oncol. United States, 2019.

R. Sagawa, T. Ohba, E. Ito, and S. Isogai, ALK-Positive Squamous Cell Carcinoma Dramatically Responded to Alectinib, Case Rep. Oncol. Med. United States, p.4172721, 2018.

J. M. Boland, J. A. Wampfler, J. S. Jang, X. Wang, M. R. Erickson-johnson et al., Pulmonary adenocarcinoma with signet ring cell features: a comprehensive study from 3 distinct patient cohorts, Am J Surg Pathol. United States, vol.38, pp.1681-1689, 2014.

K. M. Kerr and F. Lopez-rios, Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?, Ann Oncol Off J Eur Soc Med Oncol. England, vol.27, issue.3, pp.16-24, 2016.

A. T. Shaw, B. Y. Yeap, M. Mino-kenudson, S. R. Digumarthy, D. B. Costa et al., Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK, J Clin Oncol. United States, vol.27, pp.4247-53, 2009.

X. Pan, T. Lv, F. Zhang, H. Fan, H. Liu et al., Frequent genomic alterations and better prognosis among young patients with non-small-cell lung cancer aged 40 years or younger, Clin Transl Oncol. Italy, vol.20, pp.1168-74, 2018.

A. M. Suidan, L. Roisman, B. Rozenblum, A. Ilouze, M. Dudnik et al., Lung Cancer in Young Patients: Higher Rate of Driver Mutations and Brain Involvement, but Better Survival, J Glob Oncol. United States, vol.5, pp.1-8, 2019.

D. B. Costa, A. T. Shaw, S. Ou, B. J. Solomon, G. J. Riely et al., Clinical Experience With Crizotinib in Patients With Advanced ALK-Rearranged Non-Small-Cell Lung Cancer and Brain Metastases, J Clin Oncol. American Society of Clinical Oncology, vol.33, pp.1881-1889, 2015.

D. Rangachari, N. Yamaguchi, P. A. Vanderlaan, E. Folch, A. Mahadevan et al., Brain metastases in patients with EGFR-mutated or ALKrearranged non-small-cell lung cancers, Lung Cancer. Ireland, vol.88, pp.108-119, 2015.

B. J. Solomon, T. Mok, D. Kim, Y. Wu, K. Nakagawa et al., First-Line Crizotinib versus Chemotherapy in ALK -Positive Lung Cancer, N Engl J Med, vol.371, pp.2167-77, 2014.

G. Recondo, F. Facchinetti, K. A. Olaussen, B. Besse, and L. Friboulet, Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or nextgeneration TKI?, Nat Rev Clin Oncol. England, 2018.

B. J. Solomon, B. Besse, T. M. Bauer, E. Felip, R. A. Soo et al.,

, Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study, Lancet Oncol. England, 2018.

S. Peters, D. R. Camidge, A. T. Shaw, S. Gadgeel, J. S. Ahn et al., Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer, N Engl J Med. United States, vol.377, pp.829-867, 2017.

J. Soria, D. Tan, R. Chiari, Y. Wu, L. Paz-ares et al., First-line ceritinib versus platinum-based chemotherapy in advanced ALKrearranged non-small-cell lung cancer (ASCEND-4): a randomised, openlabel, phase 3 study, Lancet, vol.389, pp.917-946, 2017.

D. R. Camidge, H. R. Kim, M. Ahn, J. Yang, J. Han et al., Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer

, N Engl J Med. United States, 2018.

J. J. Cui, M. Tran-dube, H. Shen, M. Nambu, P. Kung et al., Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK), J Med Chem. United States, vol.54, pp.6342-63, 2011.

J. G. Christensen, H. Y. Zou, M. E. Arango, Q. Li, J. H. Lee et al., Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma, Mol Cancer Ther. United States, vol.6, pp.3314-3336, 2007.

Y. Sun, K. A. Nowak, N. G. Zaorsky, C. Winchester, K. Dalal et al., ALK inhibitor PF02341066 (crizotinib) increases sensitivity to radiation in non-small cell lung cancer expressing EML4-ALK, Mol Cancer Ther. United States, vol.12, pp.696-704, 2013.

B. J. Solomon, D. Kim, Y. Wu, K. Nakagawa, T. Mekhail et al., Final Overall Survival Analysis From a Study Comparing First-Line Crizotinib Versus Chemotherapy in ALK-Mutation-Positive Non-Small-Cell Lung Cancer, J Clin Oncol. United States, 2018.

B. J. Solomon, T. Mok, D. Kim, Y. Wu, K. Nakagawa et al., First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer, N Engl J Med. Massachusetts Medical Society, vol.371, pp.2167-77, 2014.

B. J. Solomon, F. Cappuzzo, E. Felip, F. H. Blackhall, D. B. Costa et al., Intracranial Efficacy of Crizotinib Versus Chemotherapy in Patients With Advanced ALK-Positive Non-Small-Cell Lung Cancer: Results From PROFILE 1014, J Clin Oncol. United States, vol.34, pp.2858-65, 2016.

D. R. Camidge, Y. Bang, E. L. Kwak, A. J. Iafrate, M. Varella-garcia et al., Activity and safety of crizotinib in patients with ALK-positive non-smallcell lung cancer: updated results from a phase 1 study, Lancet Oncol. England, vol.13, pp.1011-1020, 2012.

E. L. Kwak, Y. Bang, D. R. Camidge, A. T. Shaw, B. Solomon et al., Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer, N Engl J Med. United States, vol.363, pp.1693-703, 2010.

F. Blackhall, R. Camidge, D. Shaw, A. T. Soria, J. Solomon et al., Final results of the large-scale multinational trial PROFILE 1005: efficacy and safety of crizotinib in previously treated patients with advanced/metastatic ALK-positive non-small-cell lung cancer, vol.2, 2017.

A. T. Shaw, D. W. Kim, K. Nakagawa, T. Seto, L. Crino et al., Crizotinib versus chemotherapy in advanced ALK-positive lung cancer, N Engl J Med, vol.368, pp.2385-94, 2013.

B. J. Solomon, D. Kim, Y. Wu, K. Nakagawa, T. Mekhail et al., Final Overall Survival Analysis From a Study Comparing First-Line Crizotinib With Chemotherapy: Results From PROFILE 1014, J Clin Oncol. United States, 2018.

T. H. Marsilje, P. W. Chen, B. Lu, W. Uno, T. Jin et al., Synthesis, structureactivity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulf onyl)phenyl)pyrimidine-2,4-dia, J Med Chem. United States

L. Friboulet, N. Li, R. Katayama, C. C. Lee, J. F. Gainor et al., The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer, Cancer Discov. United States, vol.4, pp.662-73, 2014.

A. T. Shaw, D. Kim, R. Mehra, D. Tan, E. Felip et al., Ceritinib in ALK -Rearranged Non-Small-Cell Lung Cancer, N Engl J Med, vol.370, pp.1189-97, 2014.

D. Kim, R. Mehra, D. Tan, E. Felip, L. Chow et al., Activity and safety of ceritinib in patients with ALK-rearranged non-smallcell lung cancer (ASCEND-1): updated results from the multicentre, openlabel, phase 1 trial, Lancet Oncol. England, vol.17, pp.452-63, 2016.

L. Crinò, M. Ahn, D. Marinis, F. Groen, H. Wakelee et al.,

, Multicenter Phase II Study of Whole-Body and Intracranial Activity With Ceritinib in Patients With ALK-Rearranged Non-Small-Cell Lung Cancer Previously Treated With Chemotherapy and Crizotinib: Results From ASCEND-2, J Clin Oncol. American Society of Clinical Oncology, vol.34, pp.2866-73, 2016.

A. T. Shaw, T. M. Kim, L. Crino, C. Gridelli, K. Kiura et al., Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, Lancet Oncol. England, vol.18, pp.874-86, 2017.

E. Felip, S. Orlov, K. Park, C. Yu, C. Tsai et al., ASCEND-3: A single-arm, open-label, multicenter phase II study of ceritinib in ALKi-naïve adult patients (pts) with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC), J Clin Oncol. American Society of Clinical Oncology, vol.33, p.8060, 2015.

H. Sakamoto, T. Tsukaguchi, S. Hiroshima, T. Kodama, T. Kobayashi et al., CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant, Cancer Cell. United States, vol.19, pp.679-90, 2011.

S. Novello, J. Mazieres, I. Oh, J. De-castro, M. R. Migliorino et al., Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study, Ann Oncol Off J Eur Soc Med Oncol. England, 2018.

R. Katayama, T. Sakashita, N. Yanagitani, H. Ninomiya, A. Horiike et al., P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

, EBioMedicine. Netherlands, vol.3, pp.54-66, 2016.

J. F. Gainor, C. A. Sherman, K. Willoughby, J. Logan, E. Kennedy et al., Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib, J Thorac Oncol. United States, vol.10, pp.232-238, 2015.

S. M. Gadgeel, A. T. Shaw, R. Govindan, L. Gandhi, M. A. Socinski et al., Pooled Analysis of CNS Response to Alectinib in Two Studies of Pretreated Patients With ALK-Positive Non-Small-Cell Lung Cancer, J Clin Oncol. United States, vol.34, pp.4079-85, 2016.

T. Seto, K. Kiura, M. Nishio, K. Nakagawa, M. Maemondo et al., CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study, Lancet Oncol. England, vol.14, pp.590-598, 2013.

T. Tamura, K. Kiura, T. Seto, K. Nakagawa, M. Maemondo et al., Three-Year Follow-Up of an Alectinib Phase I/II Study in ALK-Positive Non-Small-Cell Lung Cancer: AF-001JP, J Clin Oncol. United States, vol.35, pp.1515-1536, 2017.

S. M. Gadgeel, L. Gandhi, G. J. Riely, A. A. Chiappori, H. L. West et al., Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-smallcell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study, Lancet Oncol. England, vol.15, pp.1119-1147, 2014.

J. Yang, S. Ou, D. Petris, L. Gadgeel, S. Gandhi et al., Pooled Systemic Efficacy and Safety Data from the Pivotal Phase II Studies (NP28673 and NP28761) of Alectinib in ALK-positive Non-Small Cell Lung Cancer, J Thorac Oncol. United States, vol.12, pp.1552-60, 2017.

S. I. Ou, Pooled overall survival and safety data from the pivotal phase II studies (NP28673 and NP28761) of alectinib in ALK-positive nonsmall cell lung cancer (NSCLC), J Clin Oncol, vol.36, p.9072, 2018.

T. Hida, H. Nokihara, M. Kondo, Y. H. Kim, K. Azuma et al., Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial, Lancet, vol.390, pp.29-39, 2017.

S. Zhang, R. Anjum, R. Squillace, S. Nadworny, T. Zhou et al., The Potent ALK Inhibitor Brigatinib (AP26113) Overcomes Mechanisms of Resistance to First-and Second-Generation ALK Inhibitors in Preclinical Models, Clin Cancer Res. United States, vol.22, pp.5527-5565, 2016.

L. A. Bazhenova, S. N. Gettinger, C. J. Langer, R. Salgia, K. A. Gold et al., Brigatinib (BRG) in anaplastic lymphoma kinase (ALK)-positive nonsmall cell lung cancer (NSCLC): Long-term efficacy and safety results from a phase 1/2 trial, Ann Oncol, vol.28, 2017.

S. N. Gettinger, L. A. Bazhenova, C. J. Langer, R. Salgia, K. A. Gold et al., Activity and safety of brigatinib in <em>ALK</em>-rearranged nonsmall-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial, Lancet Oncol, vol.17, pp.1683-96, 2017.

D. Kim, M. Tiseo, M. Ahn, K. L. Reckamp, K. H. Hansen et al., Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial, J Clin Oncol. United States, vol.35, pp.2490-2498, 2017.

M. Huber, BRG) in crizotinib (CRZ)-refractory ALK+ nonsmall cell lung cancer (NSCLC): Efficacy updates and exploratory analysis of CNS ORR and overall ORR by baseline (BL) brain lesion status, J Clin Oncol, vol.36, p.9061, 2018.

C. M. Lovly and A. T. Shaw, Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies, Clin Cancer Res. United States, vol.20, pp.2249-56, 2014.

J. Rotow and T. G. Bivona, Understanding and targeting resistance mechanisms in NSCLC, Nat Rev Cancer. England, vol.17, pp.637-58, 2017.

M. Azam, M. A. Seeliger, N. S. Gray, J. Kuriyan, and G. Q. Daley, Activation of tyrosine kinases by mutation of the gatekeeper threonine, Nat Struct Mol Biol. United States, vol.15, pp.1109-1127, 2008.

J. F. Gainor, L. Dardaei, S. Yoda, L. Friboulet, I. Leshchiner et al., Molecular Mechanisms of Resistance to First-and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer, Cancer Discov. United States, vol.6, pp.1118-1151, 2016.

M. Warmuth, S. Kim, X. Gu, G. Xia, and A. F. , Ba/F3 cells and their use in kinase drug discovery, Curr Opin Oncol. United States, vol.19, pp.55-60, 2007.

K. Okada, M. Araki, T. Sakashita, B. Ma, R. Kanada et al., Prediction of ALK mutations mediating ALK-TKIs resistance and drug repurposing to overcome the resistance, EBioMedicine. Netherlands, 2019.

R. Katayama, A. T. Shaw, T. M. Khan, M. Mino-kenudson, B. J. Solomon et al., Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers, Sci Transl Med. United States, vol.4, pp.120-137, 2012.

C. M. Lovly and W. Pao, Escaping ALK inhibition: mechanisms of and strategies to overcome resistance, Sci Transl Med. United States, vol.4, pp.120-122, 2012.

J. M. Heuckmann, M. Holzel, M. L. Sos, S. Heynck, H. Balke-want et al., ALK mutations conferring differential resistance to structurally diverse ALK inhibitors, Clin Cancer Res. United States, vol.17, pp.7394-401, 2011.

R. C. Doebele, A. B. Pilling, D. L. Aisner, T. G. Kutateladze, A. T. Le et al., Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer, Clin Cancer Res. United States, vol.18, pp.1472-82, 2012.

G. Toyokawa, F. Hirai, E. Inamasu, T. Yoshida, K. Nosaki et al., Secondary mutations at I1171 in the ALK gene confer resistance to both Crizotinib and Alectinib, J Thorac Oncol. United States, vol.9, pp.86-93, 2014.

R. Katayama, L. Friboulet, S. Koike, E. L. Lockerman, T. M. Khan et al., Two novel ALK mutations mediate acquired resistance to the nextgeneration ALK inhibitor alectinib, Clin Cancer Res. United States, vol.20, pp.5686-96, 2014.

A. S. Crystal, A. T. Shaw, L. Sequist, L. Friboulet, M. J. Niederst et al., Patient-derived models of acquired resistance can identify effective drug combinations for cancer, Science. United States, vol.346, pp.1480-1486, 2014.

H. Taniguchi, T. Yamada, R. Wang, K. Tanimura, Y. Adachi et al., AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells, Nat Commun. England, vol.10, p.259, 2019.

S. Rani and L. O&apos;driscoll, Analysis of changes in phosphorylation of receptor tyrosine kinases: antibody arrays, Methods Mol Biol. United States, vol.1233, pp.15-23, 2015.

E. B. Krall, B. Wang, D. M. Munoz, N. Ilic, S. Raghavan et al., KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer, Elife. England, p.6, 2017.

M. J. Niederst and J. A. Engelman, Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer, Sci Signal. United States, issue.6, p.6, 2013.

Y. Zhao, Y. Yang, Y. Xu, S. Lu, and H. Jian, AZD0530 sensitizes drug-resistant ALK-positive lung cancer cells by inhibiting SRC signaling, FEBS Open Bio. England, vol.7, pp.472-478, 2017.

A. Vaishnavi, L. Schubert, U. Rix, L. A. Marek, A. T. Le et al., EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases, Cancer Res. United States, vol.77, pp.3551-63, 2017.

X. Dong, E. Fernandez-salas, L. E. Wang, and S. , Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells, Neoplasia. United States, vol.18, pp.162-71, 2016.

J. Tanizaki, I. Okamoto, T. Okabe, K. Sakai, K. Tanaka et al., Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer, Clin Cancer Res. United States, vol.18, pp.6219-6245, 2012.

F. H. Wilson, C. M. Johannessen, F. Piccioni, P. Tamayo, J. W. Kim et al., A functional landscape of resistance to ALK inhibition in lung cancer, Cancer Cell. United States, vol.27, pp.397-408, 2015.

T. Gouji, S. Takashi, T. Mitsuhiro, and I. Yukito, Crizotinib can overcome acquired resistance to CH5424802: is amplification of the MET gene a key factor?, J. Thorac. Oncol. United States, pp.27-35, 2014.

T. Yamada, S. Takeuchi, J. Nakade, K. Kita, T. Nakagawa et al., Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells, Clin Cancer Res. United States, vol.18, pp.3592-602, 2012.

R. Katayama, A. T. Shaw, T. M. Khan, M. Mino-kenudson, B. J. Solomon et al., Mechanisms of Acquired Crizotinib Resistance in ALK-Rearranged Lung Cancers, Sci Transl Med, vol.8, pp.120-137, 2012.

S. Mainardi, A. Mulero-sanchez, A. Prahallad, G. Germano, A. Bosma et al., SHP2 is required for growth of KRAS-mutant nonsmall-cell lung cancer in vivo, Nat Med. United States, vol.24, pp.961-968, 2018.

A. Dongre and R. A. Weinberg, New insights into the mechanisms of epithelialmesenchymal transition and implications for cancer, Nat Rev Mol Cell Biol. England, vol.20, pp.69-84, 2019.

J. Xu, S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal transition, Cell Res. England, vol.19, pp.156-72, 2009.

Y. Wu, C. Ginther, J. Kim, N. Mosher, S. Chung et al., Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells, Mol Cancer Res. United States, vol.10, pp.1597-606, 2012.

M. Natsuizaka, K. A. Whelan, S. Kagawa, K. Tanaka, V. Giroux et al., Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma, Nat Commun. England, vol.8, p.1758, 2017.

E. Avizienyte, A. W. Wyke, R. J. Jones, G. W. Mclean, M. A. Westhoff et al., Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling, Nat Cell Biol. England, vol.4, pp.632-640, 2002.

M. G. Ponzo, R. Lesurf, S. Petkiewicz, F. P. O&apos;malley, D. Pinnaduwage et al., Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer, Proc Natl Acad Sci, vol.106, pp.12903-12911, 2009.

Z. Zhang, J. C. Lee, L. Lin, V. Olivas, V. Au et al., Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer, Nat Genet. United States, vol.44, pp.852-60, 2012.

D. J. Webb, K. Donais, L. A. Whitmore, S. M. Thomas, C. E. Turner et al., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly, Nat Cell Biol. England, vol.6, pp.154-61, 2004.

S. Puram, I. Tirosh, A. S. Parikh, A. P. Patel, K. Yizhak et al., Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer, Cell. United States, vol.171, pp.1611-1624, 2017.

C. Schwayer, M. Sikora, J. Slovakova, R. Kardos, and C. Heisenberg, Actin Rings of Power, Dev Cell. United States, vol.37, pp.493-506, 2016.

T. Vallenius, Actin stress fibre subtypes in mesenchymal-migrating cells, Open Biol. England, vol.3, p.130001, 2013.

T. Shibue and R. A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications, Nat Rev Clin Oncol. England, vol.14, pp.611-640, 2017.

C. Wilson, K. Nicholes, D. Bustos, L. E. Song, Q. Stephan et al., Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition, Oncotarget. United States, vol.5, pp.7328-7369, 2014.

S. E. Witta, R. M. Gemmill, F. R. Hirsch, C. D. Coldren, K. Hedman et al., Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines, Cancer Res. United States, vol.66, pp.944-50, 2006.

K. Fukuda, S. Takeuchi, S. Arai, R. Katayama, S. Nanjo et al., Epithelial-to-Mesenchymal Transition Is a Mechanism of ALK Inhibitor Resistance in Lung Cancer Independent of ALK Mutation Status, Cancer Res. United States, vol.79, pp.1658-70, 2019.

J. M. Buonato and M. J. Lazzara, ERK1/2 blockade prevents epithelialmesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition, Cancer Res. United States, vol.74, pp.309-328, 2014.

L. Sequist, B. A. Waltman, D. Dias-santagata, S. Digumarthy, A. B. Turke et al., Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors, vol.3, 2011.

Z. Piotrowska, H. Isozaki, J. K. Lennerz, J. F. Gainor, I. T. Lennes et al., Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion, Cancer Discov. United States, vol.8, pp.1529-1568, 2018.

N. Marcoux, S. N. Gettinger, G. O&apos;kane, K. C. Arbour, J. W. Neal et al., EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes, J Clin Oncol. United States, vol.37, pp.278-85, 2019.

L. Ferrer, G. Levra, M. Brevet, M. Antoine, M. Mazieres et al., A Brief Report of Transformation From NSCLC to SCLC: Molecular and Therapeutic Characteristics, J Thorac Oncol. United States, vol.14, pp.130-134, 2019.

S. Park, J. Han, and J. Sun, Histologic transformation of ALK-rearranged adenocarcinoma to squamous cell carcinoma after treatment with ALK inhibitor, Lung Cancer. Ireland, vol.127, pp.66-74, 2019.

C. Hobeika, G. Rached, R. Eid, F. Haddad, S. Chucri et al., ALKrearranged adenocarcinoma transformed to small-cell lung cancer: a new entity with specific prognosis and treatment, Per Med. England, vol.15, pp.111-116, 2018.

Y. J. Cha, B. C. Cho, H. R. Kim, H. Lee, and H. S. Shim, A Case of ALK-Rearranged Adenocarcinoma with Small Cell Carcinoma-Like Transformation and Resistance to Crizotinib, J Thorac Oncol. United States, vol.11, pp.55-63, 2016.

N. Takegawa, H. Hayashi, N. Iizuka, T. Takahama, H. Ueda et al., Transformation of ALK rearrangement-positive adenocarcinoma to smallcell lung cancer in association with acquired resistance to alectinib

, Oncol. Off. J. Eur. Soc. Med. Oncol. England, pp.953-958, 2016.

S. Fujita, K. Masago, N. Katakami, and Y. Yatabe, Transformation to SCLC after Treatment with the ALK Inhibitor Alectinib, J Thorac Oncol. United States, vol.11, pp.67-72, 2016.

K. P. Ng, A. M. Hillmer, C. Chuah, W. C. Juan, T. K. Ko et al., A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer, Nat Med. United States, vol.18, pp.521-529, 2012.

J. Y. Lee, B. M. Ku, S. H. Lim, M. Lee, H. Kim et al., The BIM Deletion Polymorphism and its Clinical Implication in Patients with EGFR-Mutant Non-Small-Cell Lung Cancer Treated with EGFR Tyrosine Kinase Inhibitors, J Thorac Oncol. United States, vol.10, pp.903-912, 2015.

S. Sharma, D. Y. Lee, B. Li, M. P. Quinlan, F. Takahashi et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell. United States, vol.141, pp.69-80, 2010.

M. Ramirez, S. Rajaram, R. J. Steininger, D. Osipchuk, M. A. Roth et al., Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells, Nat Commun. England, vol.7, p.10690, 2016.

C. M. Blakely, E. Pazarentzos, V. Olivas, S. Asthana, J. J. Yan et al., NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer, Cell Rep. United States, vol.11, pp.98-110, 2015.

A. N. Hata, M. J. Niederst, H. L. Archibald, M. Gomez-caraballo, F. M. Siddiqui et al., Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition, Nat Med, vol.22, pp.262-271, 2016.

V. S. Viswanathan, M. J. Ryan, H. D. Dhruv, S. Gill, O. M. Eichhoff et al., Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature. England, vol.547, pp.453-460, 2017.

M. J. Hangauer, V. S. Viswanathan, M. J. Ryan, D. Bole, J. K. Eaton et al., Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition, Nature. England, vol.551, pp.247-50, 2017.

C. Choe, Y. Shin, C. Kim, S. Choi, J. Lee et al., Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition, Onco Targets Ther. New Zealand, vol.8, pp.3665-78, 2015.

T. Yoshida, G. Ishii, K. Goto, S. Neri, H. Hashimoto et al., Podoplaninpositive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation, Clin Cancer Res. United States, vol.21, pp.642-51, 2015.

H. Y. Zou, L. Friboulet, D. P. Kodack, L. D. Engstrom, Q. Li et al., PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models, Cancer Cell. United States, vol.28, pp.70-81, 2015.

T. W. Johnson, P. F. Richardson, S. Bailey, A. Brooun, B. J. Burke et al., Discovery, vol.10

, Med Chem. United States, vol.57, pp.4720-4764, 2014.

T. Akamine, G. Toyokawa, T. Tagawa, and T. Seto, Spotlight on lorlatinib and its potential in the treatment of NSCLC: the evidence to date, Onco Targets Ther. New Zealand, vol.11, pp.5093-101, 2018.

A. T. Shaw, B. J. Solomon, B. Besse, T. M. Bauer, C. Lin et al., ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer, J Clin Oncol. United States, vol.37, pp.1370-1379, 2019.

A. T. Shaw, L. Friboulet, I. Leshchiner, J. F. Gainor, S. Bergqvist et al., Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F, N Engl J Med. United States, vol.374, pp.54-61, 2016.

S. Redaelli, M. Ceccon, M. Zappa, G. G. Sharma, C. Mastini et al.,

, Lorlatinib Treatment Elicits Multiple On-and Off-Target Mechanisms of Resistance in ALK-Driven Cancer, Cancer Res. United States, vol.78, pp.6866-80, 2018.

T. Sasaki, J. Koivunen, A. Ogino, M. Yanagita, S. Nikiforow et al., A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors, Cancer Res. United States, vol.71, pp.6051-60, 2011.

S. Yoda, J. J. Lin, M. S. Lawrence, B. J. Burke, L. Friboulet et al., Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer, Cancer Discov. United States, 2018.

S. Marchini, R. Fruscio, L. Clivio, L. Beltrame, L. Porcu et al., Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer, Eur J Cancer. England, vol.49, pp.520-550, 2013.

X. Bu, K. M. Mahoney, and G. J. Freeman, Learning from PD-1 Resistance: New Combination Strategies, Trends Mol Med. England, vol.22, pp.448-51, 2016.

S. Dearden, J. Stevens, Y. Wu, and D. Blowers, Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap), Ann Oncol Off J Eur Soc Med Oncol. England, vol.24, pp.2371-2377, 2013.

C. Massard, S. Michiels, C. Ferte, L. Deley, M. Lacroix et al., High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial, Cancer Discov. United States, vol.7, pp.586-95, 2017.

D. P. Kodack, A. F. Farago, A. Dastur, M. A. Held, L. Dardaei et al., Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care, Cell Rep. United States, vol.21, pp.3298-309, 2017.

V. Plagnol, S. Woodhouse, K. Howarth, S. Lensing, M. Smith et al., Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling, PLoS One. United States, vol.13, p.193802, 2018.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics. England, vol.25, pp.1754-60, 2009.

C. A. Miller, B. S. White, N. D. Dees, M. Griffith, J. S. Welch et al., SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution, PLoS Comput Biol. United States, vol.10, p.1003665, 2014.

H. X. Dang, B. S. White, S. M. Foltz, C. A. Miller, J. Luo et al., ClonEvol: clonal ordering and visualization in cancer sequencing, Ann Oncol Off J Eur Soc Med Oncol. England, vol.28, pp.3076-82, 2017.

C. A. Miller, J. Mcmichael, H. X. Dang, C. A. Maher, L. Ding et al., Visualizing tumor evolution with the fishplot package for R, BMC Genomics. England, vol.17, p.880, 2016.

E. Avizienyte and M. C. Frame, Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition, Curr Opin Cell Biol. England, vol.17, pp.542-549, 2005.

M. E. Baser, L. Kuramoto, H. Joe, J. M. Friedman, A. J. Wallace et al., Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study, Am J Hum Genet. United States, vol.75, pp.231-240, 2004.

A. M. Petrilli and C. Fernandez-valle, Role of Merlin/NF2 inactivation in tumor biology, Oncogene. England, vol.35, pp.537-585, 2016.

A. T. Shaw, J. Martini, B. Besse, T. M. Bauer, C. Lin et al., Abstract CT044: Efficacy of lorlatinib in patients (pts) with advanced ALK-positive non-small cell lung cancer (NSCLC) and ALK kinase domain mutations, Cancer Res, vol.78, 2018.

F. Guo, X. Liu, Q. Qing, Y. Sang, C. Feng et al., EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells, Biochem Biophys Res Commun. United States, vol.459, pp.398-404, 2015.

H. R. Kim, W. S. Kim, Y. J. Choi, C. M. Choi, J. K. Rho et al., Epithelialmesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation, Mol Oncol. United States, vol.7, pp.1093-102, 2013.

K. Song, M. J. Niederst, T. L. Lochmann, A. N. Hata, H. Kitai et al.,

, Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM, Clin Cancer Res. United States, vol.24, pp.197-208, 2018.

A. Patel, H. Sabbineni, A. Clarke, and P. R. Somanath, Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis, Life Sci, vol.157, pp.52-61, 2016.

A. T. Shaw, L. Friboulet, I. Leshchiner, J. F. Gainor, S. Bergqvist et al., Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F, N Engl J Med, vol.374, pp.54-61, 2015.

E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov. United States, vol.2, pp.401-405, 2012.

S. Redaelli, M. Ceccon, L. Antolini, R. Rigolio, A. Pirola et al., Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-ALK positive lymphoma, Oncotarget. United States, vol.7, pp.72886-97, 2016.

C. E. Powell, Y. Gao, L. Tan, K. A. Donovan, R. P. Nowak et al., Chemically Induced Degradation of Anaplastic Lymphoma Kinase (ALK), J Med Chem. United States, vol.61, pp.4249-55, 2018.

L. Sequist, J. S. Lee, J. Han, W. Su, J. Yang et al., Abstract CT033: TATTON Phase Ib expansion cohort: Osimertinib plus savolitinib for patients (pts) with EGFR-mutant, and MET-amplified NSCLC after progression on prior third-generation epidermal growth factor receptor, Cancer Res, vol.79, pp.33-033, 2019.

P. Reclusa, R. Sirera, A. Araujo, M. Giallombardo, A. Valentino et al., Exosomes genetic cargo in lung cancer: a truly Pandora's box, Transl lung cancer Res. China, vol.5, pp.483-91, 2016.

V. Devita, A. Eggermont, S. Hellman, and D. J. Kerr, Clinical cancer research: the past, present and the future, Nat Rev Clin Oncol. England, vol.11, pp.663-672, 2014.

F. M. Ferguson and N. S. Gray, Kinase inhibitors: the road ahead, Nat Rev Drug Discov. England, vol.17, pp.353-77, 2018.

J. Tang, L. Pearce, J. O&apos;donnell-tormey, and V. M. Hubbard-lucey, Trends in the global immuno-oncology landscape, Nat Rev Drug Discov, vol.17, issue.11, pp.783-784

S. Verma, D. Miles, L. Gianni, I. E. Krop, M. Welslau et al., Trastuzumab emtansine for HER2-positive advanced breast cancer

, Engl J Med. United States, vol.367, pp.1783-91, 2012.

S. Verma, D. Miles, L. Gianni, I. E. Krop, M. Welslau et al., Trastuzumab emtansine for HER2-positive advanced breast cancer, N Engl J Med, vol.367, pp.1783-91, 2012.

V. Heinemann, L. F. Von-weikersthal, T. Decker, A. Kiani, U. Vehling-kaiser et al., FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial, Lancet Oncol. England, vol.15, pp.1065-75, 2014.

R. S. Finn, M. Martin, H. S. Rugo, S. Jones, S. Im et al., Palbociclib and Letrozole in Advanced Breast Cancer, N Engl J Med. United States, vol.375, pp.1925-1961, 2016.

T. M. Beer, A. J. Armstrong, D. E. Rathkopf, Y. Loriot, C. N. Sternberg et al., Enzalutamide in metastatic prostate cancer before chemotherapy, N Engl J Med. United States, vol.371, pp.424-457, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02169779

K. Moore, N. Colombo, G. Scambia, B. Kim, A. Oaknin et al., Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer, N Engl J Med. United States, 2018.

D. Planchard, E. F. Smit, H. Groen, J. Mazieres, B. Besse et al., Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an openlabel, phase 2 trial, Lancet Oncol. England, vol.18, pp.1307-1323, 2017.

A. E. Drilon, D. R. Camidge, S. Ou, J. W. Clark, M. A. Socinski et al., Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC), J Clin Oncol

, American Society of Clinical Oncology, vol.34, p.108, 2016.

C. E. Geyer, J. Forster, D. Lindquist, S. Chan, C. G. Romieu et al., Lapatinib plus capecitabine for HER2-positive advanced breast cancer

, N Engl J Med. United States, vol.355, pp.2733-2776, 2006.

C. D. Blanke, C. Rankin, G. D. Demetri, C. W. Ryan, M. Von-mehren et al., Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033, J Clin Oncol. United States, vol.26, pp.626-658, 2008.

T. W. Laetsch, S. G. Dubois, L. Mascarenhas, B. Turpin, N. Federman et al., Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study, Lancet Oncol. England, vol.19, pp.705-719, 2018.

M. Nishino, N. H. Ramaiya, H. Hatabu, and F. S. Hodi, Monitoring immunecheckpoint blockade: response evaluation and biomarker development

, Nat Rev Clin Oncol. England, vol.14, pp.655-68, 2017.

I. Dagogo-jack and A. T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nat Rev Clin Oncol. England, vol.15, pp.81-94, 2018.

G. Goss, C. Tsai, F. A. Shepherd, L. Bazhenova, J. S. Lee et al., Osimertinib for pretreated EGFR Thr790Met-positive advanced non-smallcell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study, Lancet Oncol. England, vol.17, pp.1643-52, 2016.

N. Mcgranahan and C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future, Cell. United States, vol.168, pp.613-641, 2017.

F. Koeppel, S. Blanchard, C. Jovelet, B. Genin, C. Marcaillou et al., Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients, PLoS One. United States, vol.12, p.188174, 2017.

L. Tourneau, C. Delord, J. Goncalves, A. Gavoille, C. Dubot et al., Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial, Lancet Oncol. England, vol.16, pp.1324-1358, 2015.

V. Papadimitrakopoulou, J. J. Lee, I. I. Wistuba, A. S. Tsao, F. Fossella et al., with the gentleMACsTM dissociator. Cells are cultured with DMEM/F-12+GlutamMAXTM 10% FBS and 10% enriched with hydrocortisone 0.4 µg/ml, cholera toxin 8,4 ng/ml, adenine 24 µg/ml and ROCK inhibitor 5 µM (Y-27632, J Clin Oncol. United States, vol.34, pp.3638-3685, 2016.

?. Ceritinib, = 189) versus platinum + pemetrexed (n = 187) ? First line 19.7 mo ? 72

?. Ne, 3 mo-NE) versus 26.2 mo (22.8 mo-NR, vol.29

?. Iii-?-pfs-?-ceritinib, = 115) versus pemetrexed or docetaxel (n = 116) ? Second line after crizotinib 16.5 mo ? 39

?. Af-001jp-?-i/ii and M. Dlt, phase I) or ORR (phase II) ? Alectinib

?. Nr, 3-year PFS: 62% ? NE; 3-year OS: 78%, vol.73, p.74

. Af-002jg-?-i/ii-?,

. Alur-?-iii-?-pfs-?-alectinib, = 72) versus docetaxel or pemetrexed (n = 35) ? Second line after crizotinib 6.5 mo ? 37

, 001) ? 12.6 mo, NR) versus NR

, NCT01449461 ? Recommended phase II dose (phase I) or ORR (phase II) ? Brigatinib

, ? First line (10%, n = 8), second line after crizotinib (85%, n = 68) or third line after crizotinib and ceritinib (5%

, >31 mo b First-line brigatinib (n = 8): ? 100% ? 34.2 mo ? NR (2-year OS 100%) Brigatinib after crizotinib (n = 71): ? 73% ? 13.2 mo ? 30

M. Das, Specific radiolabeling of a cell surface receptor for epidermal growth factor, Proc. Natl Acad. Sci. USA, vol.74, pp.2790-2794, 1977.

W. H. Ward, Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor, Biochem. Pharmacol, vol.48, pp.659-666, 1994.

T. Li, H. Kung, P. C. Mack, and D. R. Gandara, Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies, J. Clin. Oncol, vol.31, pp.1039-1049, 2013.

C. Fitzmaurice, Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, JAMA Oncol, vol.3, pp.524-548, 1990.

Y. Shi, A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER), J. Thorac. Oncol, vol.9, pp.154-162, 2014.

F. Barlesi, Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT), Lancet, vol.387, pp.1415-1426, 2016.

R. Rosell, Screening for epidermal growth factor receptor mutations in lung cancer, N. Engl. J. Med, vol.361, pp.958-967, 2009.

S. Murray, Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: an analytical database, J. Thorac. Oncol, vol.3, pp.832-839, 2008.

S. Dearden, J. Stevens, Y. Wu, and D. Blowers, Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap), Ann. Oncol, vol.24, pp.2371-2376, 2013.

J. P. Koivunen, EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer, Clin. Cancer Res, vol.14, pp.4275-4283, 2008.

S. Novello, Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol, vol.27, pp.1-27, 2016.

H. A. Yu, Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers, Clin. Cancer Res, vol.19, pp.2240-2247, 2013.

I. Dagogo-jack and A. T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nat. Rev. Clin. Oncol, vol.15, pp.81-94, 2018.

L. V. Sequist, Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors, Sci. Transl. Med, vol.3, pp.75-101, 2011.

C. Yun, The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP, Proc. Natl Acad. Sci. USA 105, pp.2070-2075, 2008.

A. Michalczyk, Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR, Bioorg. Med. Chem, vol.16, pp.3482-3488, 2008.

M. L. Sos, Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation, Cancer Res, vol.70, pp.868-874, 2010.

P. A. Janne, AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer, N. Engl. J. Med, vol.372, pp.1689-1699, 2015.

D. A. Cross, AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer, Cancer Discov, vol.4, pp.1046-1061, 2014.

S. Nanjo, High efficacy of third generation EGFR inhibitor AZD9291 in a leptomeningeal carcinomatosis model with EGFR-mutant lung cancer cells, Oncotarget, vol.7, pp.3847-3856, 2016.

T. S. Mok, Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer, N. Engl. J. Med, vol.376, pp.629-640, 2017.

B. J. Solomon, First-line crizotinib versus chemotherapy in ALK-positive lung cancer, N. Engl. J. Med, vol.371, pp.2167-2177, 2014.

J. F. Gainor, Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer, Cancer Discov, vol.6, pp.1118-1133, 2016.

L. Friboulet, The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer, Cancer Discov, vol.4, pp.662-673, 2014.

H. Sakamoto, CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant, Cancer Cell, vol.19, pp.679-690, 2011.

S. Zhang, The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first-and second-generation ALK inhibitors in preclinical models, Clin. Cancer Res, vol.22, pp.5527-5538, 2016.

H. Y. Zou, PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models, Cancer Cell, vol.28, pp.70-81, 2015.

J. Soria, Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer, N. Engl. J. Med, vol.378, pp.113-125, 2018.

S. Peters, Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer, N. Engl. J. Med, vol.377, pp.829-838, 2017.

T. Hida, Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial, Lancet, vol.390, pp.29-39, 2017.

T. J. Lynch, Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib, N. Engl. J. Med, vol.350, pp.2129-2139, 2004.

J. G. Paez, EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy, Science, vol.304, pp.1497-1500, 2004.

T. S. Mok, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma, N. Engl. J. Med, vol.361, pp.947-957, 2009.

M. Fukuoka, Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS), J. Clin. Oncol, vol.29, pp.2866-2874, 2011.

J. Han, First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung

, J. Clin. Oncol, vol.30, pp.1122-1128, 2012.

T. Mitsudomi, Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial, Lancet Oncol, vol.11, pp.121-128, 2010.

H. Yoshioka, Final overall survival results of WJTOG 3405, a randomized phase 3 trial comparing gefitinib (G) with cisplatin plus docetaxel (CD) as the first-line treatment for patients with non-small cell lung cancer (NSCLC) harboring mutations of the epidermal growt, J. Clin. Oncol, vol.32, p.8117, 2014.

M. Maemondo, Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR, N. Engl. J. Med, vol.362, pp.2380-2388, 2010.

A. Inoue, Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naive non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002), Ann. Oncol, vol.24, pp.54-59, 2013.

C. Zhou, Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study, Lancet Oncol, vol.12, pp.735-742, 2011.

C. Zhou, Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL. CTONG-0802), Ann. Oncol, vol.26, pp.1877-1883, 2015.

Y. Wu, First-line erlotinib versus gemcitabine/ cisplatin in patients with advanced EGFR mutationpositive non-small-cell lung cancer: analyses from the phase III, randomized, open-label

, Ann. Oncol, vol.26, pp.1883-1889, 2015.

R. Rosell, Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial, Lancet Oncol, vol.13, pp.239-246, 2012.

Y. K. Shi, First-line icotinib versus cisplatin/ pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study, Ann. Oncol, vol.28, pp.2443-2450, 2017.

Y. Shi, Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial, Lancet Oncol, vol.14, pp.953-961, 2013.

R. Rosell, Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial, Lancet Respir. Med, vol.5, pp.435-444, 2017.

T. Seto, Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study, Lancet Oncol, vol.15, pp.1236-1244, 2014.

L. V. Sequist, Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations, J. Clin. Oncol, vol.31, pp.3327-3334, 2013.

Y. Wu, Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial, Lancet Oncol, vol.15, pp.213-222, 2014.

J. C. Yang and .. , Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials, Lancet Oncol, vol.16, pp.141-151, 2015.

S. Laporte, Prediction of survival benefits from progression-free survival benefits in advanced non-small-cell lung cancer: evidence from a meta-analysis of 2334 patients from 5 randomised trials, BMJ Open, vol.3, p.1802, 2013.

J. J. Yang, A phase III randomised controlled trial of erlotinib versus gefitinib in advanced non-small cell lung cancer with EGFR mutations, Br. J. Cancer, vol.116, pp.568-574, 2017.

L. Paz-ares, Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial, Ann. Oncol, vol.28, pp.270-277, 2017.

K. Park, Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial, Lancet Oncol, vol.17, pp.577-589, 2016.

Y. Wu, Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, Lancet Oncol, vol.18, pp.1454-1466, 2017.

T. S. Mok, Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations, J. Clin. Oncol, 2018.

J. C. Yang and .. , Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component, J. Clin. Oncol, vol.35, pp.1288-1296, 2017.

G. Goss, Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study, Lancet Oncol, vol.17, pp.1643-1652, 2016.

T. Mitsudomi, Overall survival (OS) in patients (pts) with EGFR T790M-positive advanced non-small cell lung cancer (NSCLC) treated with osimertinib: results from two phase II studies, Ann. Oncol, vol.28, 2017.

J. J. Cui, Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK)

, J. Med. Chem, vol.54, pp.6342-6363, 2011.

D. R. Camidge, Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study, Lancet Oncol, vol.13, pp.1011-1019, 2012.

E. L. Kwak, Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer, N. Engl. J. Med, vol.363, pp.1693-1703, 2010.

F. Blackhall, Final results of the large-scale multinational trial PROFILE 1005: efficacy and safety of crizotinib in previously treated patients with advanced/metastatic ALK-positive non-small-cell lung cancer, ESMO Open, vol.2, p.219, 2017.

A. T. Shaw, Crizotinib versus chemotherapy in advanced ALK-positive lung cancer, N. Engl. J. Med, vol.368, pp.2385-2394, 2013.

B. J. Solomon, Final overall survival analysis from a study comparing first-line crizotinib with chemotherapy: results from PROFILE 1014, J. Clin. Oncol, 2018.

A. T. Shaw, Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial, Lancet Oncol, vol.18, pp.1590-1599, 2017.

A. T. Shaw, Ceritinib in ALK-rearranged non-small-cell lung cancer, N. Engl. J. Med, vol.370, pp.1189-1197, 2014.

D. Kim, Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial, Lancet Oncol, vol.17, pp.452-463, 2016.

L. Crinò, Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2, J. Clin. Oncol, vol.34, pp.2866-2873, 2016.

E. Felip, ASCEND-3: A single-arm, open-label, multicenter phase II study of ceritinib in ALKi-naïve adult patients (pts) with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC), J. Clin. Oncol, vol.33, p.8060, 2015.

J. Soria, First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study, Lancet, vol.389, pp.917-929, 2017.

A. T. Shaw, Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, Lancet Oncol, vol.18, pp.874-886, 2017.

T. Seto, CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study, Lancet Oncol, vol.14, pp.590-598, 2013.

T. Tamura, Three-year follow-up of an alectinib phase I/II study in ALK-positive non-small-cell lung cancer: AF-001JP, J. Clin. Oncol, vol.35, pp.1515-1521, 2017.

S. M. Gadgeel, Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study, Lancet Oncol, vol.15, pp.1119-1128, 2014.

J. C. Yang and .. , Pooled systemic efficacy and safety data from the pivotal phase II studies (NP28673 and NP28761) of alectinib in ALK-positive non-small cell lung cancer, J. Thorac. Oncol, vol.12, pp.1552-1560, 2017.

S. Novello, Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study, Ann. Oncol, vol.29, pp.1409-1416, 2018.

L. A. Bazhenova, Brigatinib (BRG) in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC): long-term efficacy and safety results from a phase 1/2 trial, Ann. Oncol, vol.28, 2017.

S. N. Gettinger, Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial, Lancet Oncol, vol.17, pp.1683-1696, 2017.

D. Kim, Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial, J. Clin. Oncol, vol.35, pp.2490-2498, 2017.

B. Solomon, OA 05.06 phase 2 study of lorlatinib in patients with advanced ALK+/ROS1+ non-small-cell lung cancer, J. Thorac. Oncol, vol.12, p.1756, 2017.

D. B. Costa, Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases, J. Clin. Oncol, vol.33, pp.1881-1888, 2015.

S. M. Gadgeel, Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer, J. Clin. Oncol, vol.34, pp.4079-4085, 2016.

D. R. Camidge, Exploratory analysis of brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials, J. Clin. Oncol, 2018.

S. Kobayashi, EGFR mutation and resistance of non-small-cell lung cancer to gefitinib, N. Engl. J. Med, vol.352, pp.786-792, 2005.

W. Pao, Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain, PLOS Med, vol.2, p.73, 2005.

J. A. Engelman, MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science, vol.316, pp.1039-1043, 2007.

Z. Zhang, Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer, Nat. Genet, vol.44, pp.852-860, 2012.

F. Morgillo, J. K. Woo, E. S. Kim, W. K. Hong, and H. Lee, Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib, Cancer Res, vol.66, pp.10100-10111, 2006.

K. Takezawa, HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation, Cancer Discov, vol.2, pp.922-933, 2012.

C. Ricordel, L. Friboulet, F. Facchinetti, and J. Soria, Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer, Ann. Oncol, vol.29, pp.28-37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744406

H. A. Yu, Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR Tyrosine kinase domain, JAMA Oncol, vol.1, pp.982-984, 2015.

K. S. Thress, Acquired EGFR C797S mediates resistance to AZD9291 in advanced non-small cell lung cancer harboring EGFR T790M, Nat. Med, vol.21, pp.560-562, 2015.

Z. Yang, Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients, Clin. Cancer Res, vol.24, pp.3097-3107, 2018.

M. J. Niederst, The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies, Clin. Cancer Res, vol.21, pp.3924-3933, 2015.

K. Uchibori, Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer, Nat. Commun, vol.8, p.14768, 2017.

Y. Jia, Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors, Nature, vol.534, pp.129-132, 2016.

Z. Wang, Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first-and third-generation EGFR TKIs and shifts allelic configuration at resistance, J. Thorac. Oncol, vol.12, pp.1723-1727, 2017.

S. Arulananda, Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer, J. Thorac. Oncol, vol.12, pp.1728-1732, 2017.

Y. L. Choi, EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors, N. Engl. J. Med, vol.363, pp.1734-1739, 2010.

R. C. Doebele, Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer, Clin. Cancer Res, vol.18, pp.1472-1482, 2012.

R. Katayama, Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers, Sci. Transl Med, vol.8, pp.120-117, 2012.

T. Sasaki, A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors, Cancer Res, vol.71, pp.6051-6060, 2011.

T. Sasaki, The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers, Cancer Res, vol.70, pp.10038-10043, 2010.

R. Katayama, Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib, Clin. Cancer Res, vol.20, pp.5686-5696, 2014.

T. W. Johnson, ), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros, J. Med. Chem, vol.15, pp.4720-4744, 2014.

J. J. Lin, Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer, J. Clin. Oncol, vol.2017762294, 2018.

A. T. Shaw, Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F, N. Engl. J. Med, vol.374, pp.54-61, 2015.

S. Yoda, Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer, 2018.

A. S. Crystal, Patient-derived models of acquired resistance can identify effective drug combinations for cancer, Science, vol.346, pp.1480-1486, 2014.

T. Kodama, Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases, Cancer Chemother. Pharmacol, vol.74, pp.1023-1028, 2014.

S. V. Sharma, A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell, vol.141, pp.69-80, 2010.

M. Ramirez, Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells, Nat. Commun, vol.7, p.10690, 2016.

C. M. Blakely, NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer, Cell Rep, vol.11, pp.98-110, 2015.

A. N. Hata, Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition, Nat. Med, vol.22, pp.262-269, 2016.

V. S. Viswanathan, Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature, vol.547, pp.453-457, 2017.

M. J. Hangauer, Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition, Nature, vol.551, pp.247-250, 2017.

M. Jamal-hanjani, Tracking the evolution of non-small-cell lung cancer, N. Engl. J. Med, vol.376, pp.2109-2121, 2017.

Z. Piotrowska, Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor, Cancer Discov, vol.5, pp.713-722, 2015.

S. S. Ramalingam, Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer, J. Clin. Oncol, vol.36, pp.841-849, 2018.

D. R. Camidge, Updated efficacy and safety data from the global phase III ALEX study of alectinib (ALC) versus crizotinib (CZ) in untreated advanced ALK+ NSCLC, J. Clin. Oncol, vol.36, p.9043, 2018.

F. De-marinis, ASTRIS: a real world treatment study of osimertinib in patients (pts) with EGFR T790M positive non-small cell lung cancer (NSCLC)

, J. Clin. Oncol, vol.35, p.9036, 2017.

M. Duruisseaux, Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study, Oncotarget, vol.8, pp.21903-21917, 2017.

A. P. Abernethy, Real-world first-line treatment and overall survival in non-small cell lung cancer without known EGFR mutations or ALK rearrangements in US community oncology setting, PLOS One, vol.12, p.178420, 2017.

Y. Q. Li, S. S. Song, S. H. Jiang, and X. Y. Zhang, Combination therapy of erlotinib/crizotinib in a lung adenocarcinoma patient with primary EGFR mutation plus secondary MET amplification and a novel acquired crizotinib-resistant mutation MET G1108C

, Ann. Oncol, vol.28, pp.2622-2624, 2017.

P. Ballard, Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity, Clin. Cancer Res, vol.22, pp.5130-5140, 2016.

J. C. Yang and .. , Osimertinib for patients (pts) with leptomeningeal metastases (LM) from EGFR-mutant non-small cell lung cancer (NSCLC): updated results from the BLOOM study, J. Clin. Oncol, vol.35, p.2020, 2017.

G. Goss, CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials, Ann. Oncol, vol.29, pp.687-693, 2017.

S. Peters, C. Bexelius, V. Munk, and N. Leighl, The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer, Cancer Treat. Rev, vol.45, pp.139-162, 2016.

G. Toyokawa and T. Seto, Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: Clinical and preclinical data, Oncol. Res. Treat, vol.38, pp.291-298, 2015.

W. Cai, Intratumoral heterogeneity of ALK-rearranged and ALK/EGFR coaltered lung adenocarcinoma, J. Clin. Oncol, vol.33, pp.3701-3709, 2015.

S. Schmid, Clinical outcome of ALK-positive non-small cell lung cancer (NSCLC) patients with de novo EGFR or KRAS co-mutations receiving tyrosine kinase inhibitors (TKIs), J. Thorac. Oncol, vol.12, pp.681-688, 2017.

G. R. Oxnard, Y. Hu, and M. K. , Osimertinib resistance mediated by loss of EGFR T790M is associated with early resistance and competing resistance mechanisms, J. Thorac. Oncol, vol.12, pp.1767-1768, 2017.

L. Dardaei, SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors, Nat. Med, vol.24, pp.512-517, 2018.

C. K. Lee, Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis

, J. Thorac. Oncol, vol.12, pp.403-407, 2017.

M. Ahn, 136O: Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial, J. Thorac. Oncol, vol.11, p.115, 2016.

D. R. Spigel, Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of ALK Translocation-positive advanced non-small cell lung cancer (CheckMate 370), J. Thorac. Oncol, vol.13, pp.682-688, 2018.

A. T. Shaw, Avelumab (anti-PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: phase 1b results from JAVELIN Lung 101, J.Clin. Oncol, vol.36, p.9008, 2018.

D. Kim, Safety and clinical activity results from a phase Ib study of alectinib plus atezolizumab in ALK+ advanced NSCLC (aNSCLC), J.Clin. Oncol, vol.36, 2018.

K. R. Broglio and D. A. Berry, Detecting an overall survival benefit that is derived from progression-free survival, J. Natl Cancer Inst, vol.101, pp.1642-1649, 2009.

T. S. Mok, Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-line gefitinib (IMPRESS): overall survival and biomarker analyses, J. Clin. Oncol, vol.35, pp.4027-4034, 2017.

A. J. Weickhardt, Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer, J. Thorac. Oncol, vol.7, pp.1807-1814, 2012.

P. N. Aguiar, Cost-effectiveness of osimertinib in the first-line treatment of patients with EGFR-mutated advanced non-small cell lung cancer

, JAMA Oncol, p.1395, 2018.

C. E. Mccoach, Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non-small cell lung cancer, Clin. Cancer Res, vol.24, pp.2758-2770, 2018.

J. Remon, The APPLE Trial: feasibility and activity of AZD9291 (Osimertinib) treatment on positive plasma T790M in EGFR-mutant NSCLC patients. EORTC 1613, Clin. Lung Cancer, vol.18, pp.583-588, 2017.

S. I. Ou, Pooled overall survival and safety data from the pivotal phase II studies (NP28673 and NP28761) of alectinib in ALK-positive non-small cell lung cancer (NSCLC), J. Clin. Oncol, vol.36, p.9072, 2018.

M. Huber, Brigatinib (BRG) in crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): efficacy updates and exploratory analysis of CNS ORR and overall ORR by baseline (BL) brain lesion status, J. Clin. Oncol, vol.36, p.9061, 2018.