, Coord. Chem. Rev, pp.991-1010, 2010.

J. G. Bünzli, Lanthanide light for biology and medical diagnosis, J. Lumin., v, vol.170, pp.866-878, 2016.

O. L. Malta, H. F. Brito, J. F. Menezes, F. R. Silva, S. Alves et al.,

. Eu, A theoretical analysis based on structural data obtained from a sparkle model, J. Lumin, issue.2, pp.255-268, 1997.

K. Binnemans, Lanthanide-based luminescent hybrid materials, Chem. Rev., v, vol.109, issue.9, pp.4283-4374, 2009.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, Recent advances in instrumentation for absolute emission quantum yield measurements, Coord. Chem. Rev, pp.2449-2458, 2010.

N. M. Shavaleev, S. J. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, Visible-light sensitisation of near-infrared luminescence from Yb(III), Nd(III) and Er(III) complexes of 3,6-bis(2-pyridyl)tetrazine, Dalton Trans., n, vol.5, pp.808-814, 2003.

M. B. Botelho, M. D. Gálvez-lópez, L. De-cola, R. Q. Albuquerque, A. S. Camargo et al., Towards the design of highly luminescent europium(III) complexes, Eur. J. Inorg. Chem, vol.29, pp.5064-5070, 2013.

Y. Xiao, R. Zhang, Z. Ye, Z. Dai, H. An et al., Lanthanide complex-based luminescent probes for highly sensitive time-gated luminescence detection of hypochlorous acid, Anal. Chem, pp.10785-10792, 2012.

X. Wang, H. Chang, J. Xie, B. Zhao, B. Liu et al., Recent developments in lanthanide-based luminescent probes, Coord. Chem. Rev, pp.201-212, 2014.

E. S. Andreiadis, N. Gauthier, D. Imbert, R. Demadrille, J. Peaut et al., Lanthanide complexes based on ?-diketonates and a tetradentate chromophore highly luminescent as powders and in polymers, Inorg. Chem., v, vol.52, pp.14382-14390, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02264998

N. B. Lima, A. I. Silva, P. C. Gerson, S. M. Gonçalves, and A. M. Simas, Faster synthesis of beta-diketonate ternary europium complexes: elapsed times & reaction yields, PLoS One, vol.12, issue.10, 2015.

G. F. Sá and . De,

O. L. Malta, C. Donegá, M. De, A. M. Simas, R. L. Longo et al., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, Coord. Chem. Rev, pp.165-195, 2000.

M. D. Ward, Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays, Coord. Chem. Rev, pp.1663-1677, 2007.

Z. Ahmed and K. Iftikhar, Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole, J. Phys. Chem. A, v, vol.117, pp.11183-11201, 2013.

A. W. Woodward, A. Frazer, A. R. Morales, J. Yu, A. F. Moore et al., Two-photon sensitized visible and near-IR luminescence of lanthanide complexes using a fluorene-based donor-?-acceptor diketonate

, Dalton Trans., v, vol.43, pp.16626-16639, 2014.

T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri, and M. D. Ward, On the mechanism of d-f energy transfer in RuII/LnIII and OsII/LnIII Dyads: Dexter-type energy transfer over a distance of 20 Å, Chem. -Eur. J, pp.9389-9399, 2008.

T. Lazarides, N. M. Tart, D. Sykes, S. Faulkner, A. Barbieri et al., Ru(bipy)3] 2+ and [Os(bipy)3] 2+ chromophores as sensitisers for near-infrared luminescence from Yb(III) and Nd(III) in d/f dyads: contributions from Förster, Dexter, and redox-based energy-transfer mechanisms, Dalton Trans., n, vol.20, pp.3971-3979, 2009.

N. M. Shavaleev, L. P. Moorcraft, S. J. Pope, Z. R. Bell, S. Faulkner et al., Sensitized near-infrared emission from complexes of YbIII, NdIII and ErIII by energytransfer from covalently attached PtII-based antenna units, Chem. -Eur. J, vol.21, issue.9, pp.5283-5291, 2003.

G. Shi, W. Feng, D. Zou, X. Lü, Z. Zhang et al., Hetero-binuclear near-infrared (NIR) luminescent ZnLn (Ln = Nd, Yb or Er) complexes self-assembled from the benzimidazole-based ligand, Inorg. Chem. Commun, pp.126-130, 2012.

D. Zou, W. Feng, G. Shi, X. Lü, Z. Zhang et al., Hetero-binuclear near-infrared (NIR) luminescent Zn-Nd complexes selfassembled from the benzimidazole-based ligands, Spectrochim. Acta Part A, vol.98, pp.359-366, 2012.

L. Li, S. Zhang, L. Xu, Z. Chen, and J. Luo, Highly sensitized near-infrared luminescence in Ir-Ln heteronuclear coordination polymers via light-harvesting antenna of Ir(III) unit, J. Mater. Chem. C, issue.9, pp.1698-1703, 2014.

F. Chen, H. Wei, Z. Bian, Z. Liu, E. Ma et al., Sensitized nearinfrared emission from Ir III-Ln III (Ln = Nd, Yb, Er) bimetallic complexes with a (N?O)(N?O) bridging ligand, Organometallics, vol.13, pp.3275-3282, 2014.

A. Jana, E. Baggaley, A. Amoroso, and M. D. Ward, A new ligand skeleton for imaging applications with d-f complexes: combined lifetime imaging and high relaxivity in an Ir/Gd dyad, Chem. Commun, pp.8833-8836, 2015.

E. Baggaley, D. Cao, D. Sykes, S. W. Botchway, J. A. Weinstein et al., Combined two-photon excitation and d?f energy transfer in a water-soluble Ir III /Eu III dyad: two luminescence components from one molecule for cellular imaging, Chem. -Eur. J, pp.8898-8903, 2014.

D. Sykes, A. J. Cankut, N. M. Ali, A. Stephenson, S. J. Spall et al., Sensitisation of Eu(III)-and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms, Dalton Trans., v, vol.43, pp.6414-6428, 2014.

A. Jana, B. J. Crowston, J. R. Shewring, L. K. Mckenzie, H. E. Bryant et al., Heteronuclear Ir(III)-Ln(III) luminescent complexes: small-molecule probes for dual modal imaging and oxygen sensing, Inorg. Chem., v, vol.55, issue.11, pp.5623-5633, 2016.

S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, and V. Balzani, Photochemistry and phophysics of coordinations compounds: ruthenium, pp.117-214, 2007.

Y. Chen, R. Guan, C. Zhang, J. Huang, L. Ji et al., Two-photon luminescent metal complexes for bioimaging and cancer phototherapy, Coord. Chem. Rev., v, vol.310, pp.16-40, 2016.

W. Xu, J. Zuo, L. Wang, L. Ji, and H. Chao, Dinuclear ruthenium(II) polypyridyl complexes as single and two-photon luminescence cellular imaging probes, Chem. Commun., v, vol.50, pp.2123-2025, 2014.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich et al., Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA

, Angew. Chem. Int. Ed., v, vol.53, pp.3367-3371, 2014.

S. E. Greenough, M. D. Horbury, N. A. Smith, P. J. Sadler, M. J. Paterson et al., Excited-state dynamics of a two-photon-activatable ruthenium prodrug, ChemPhysChem, issue.2, pp.221-224, 2016.

Q. Wei, Y. Lei, W. Xu, J. Xie, and G. Chen, Ru(II) sensitized lanthanide luminescence: synthesis, photophysical properties, and near-infrared luminescent determination of alpha-fetal protein (AFP), Dalton Trans., v, vol.41, pp.11219-11225, 2012.

L. Zhang, Y. Hou, M. Pan, L. Chen, Y. Zhu et al., Near-infrared (NIR) emitting Nd/Yb(III) complexes sensitized by MLCT states of Ru(II)/Ir(III) metalloligands in the visible light region, Dalton Trans., v, vol.44, pp.15212-15219, 2015.

S. Singaravadivel, E. Babu, M. Velayudham, K. Lu, and S. Rajagopal, Sensitized near-infrared luminescence of NdIII, YbIII and ErIII complexes by energy transfer from a ruthenium antenna, J. Organomet. Chem., v, vol.738, issue.6, pp.49-54, 2013.

N. M. Shavaleev, G. Accorsi, D. Virgili, Z. R. Bell, T. Lazarides et al., Syntheses and crystal structures of dinuclear complexes containing d-block and f-block luminophores. sensitization of NIR luminescence from Yb(III), Nd(III), and Er(III) centers by energy transfer from Re(I)? and Pt(II)?bipyrimidine metal centers, Inorg. Chem, pp.61-72, 2005.

A. Fratini, G. Richards, E. Larder, and S. Swavey, Neodymium, gadolinium, and terbium complexes containing hexafluoroacetylacetonate and 2,2'-bipyrimidine: structural and spectroscopic characterization, Inorg. Chem., v, vol.47, issue.3, pp.1030-1036, 2008.

G. Zucchi, O. Maury, P. Thuéry, and M. Ephritikhine, Structural diversity in neodymium bipyrimidine compounds with near infrared luminescence: from mono-and binuclear complexes to metal-organic frameworks, Inorg. Chem., v, vol.47, pp.10398-10406, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00843070

G. Zucchi, O. Maury, P. Thuéry, F. Gumy, J. G. Bünzli et al., 2?-Bipyrimidine as efficient sensitizer of the solid-state luminescence of lanthanide and uranyl ions from visible to near-infrared, Chem. -A Eur. J, vol.2, pp.9686-9696, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00843061

M. D. Ward, Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads, Coord. Chem. Rev, pp.2634-2642, 2010.

T. Lazarides, H. Adams, D. Sykes, S. Faulkner, G. Calogero et al., Heteronuclear bipyrimidine-bridged Ru-Ln and Os-Ln dyads: low-energy 3 MLCT states as energy-donors to Yb(III) and Nd(III), pp.691-698, 2008.

S. Faulkner, L. S. Natrajan, W. S. Perry, and D. Sykes, Sensitised luminescence in lanthanide containing arrays and d-f hybrids, Dalton Trans., n, vol.20, pp.3890-3899, 2009.

L. A. Rocha, J. M. Caiut, Y. Messaddeq, S. J. Ribeiro, M. A. Martines et al., Non-leachable highly luminescent ordered mesoporous SiO2 spherical particles, Nanotechnology, vol.15, 2010.

L. A. Rocha, J. Freiria, C. Caiut, J. M. Ribeiro, S. J. Messaddeq et al., Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process, Nanotechnology, vol.33, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01760879

M. B. Botelho,

H. Eckert, A. S. Camargo, and . De, Efficient luminescent materials based on the incorporation of a Eu(III)tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts, J. Lumin, vol.170, pp.619-626, 2016.

B. Fadeel and A. E. Garcia-bennett, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications

, Adv. Drug Deliv. Rev, pp.362-374, 2010.

Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, and J. I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev, issue.7, pp.2590-2605, 2012.

J. Lu, M. Liong, Z. Li, J. I. Zink, and F. Tamanoi, Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals, Small, vol.16, pp.1794-1805, 2010.

K. K. Cotí, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau et al., Mechanised nanoparticles for drug delivery, Nanoscale, issue.1, pp.16-39, 2009.

J. G. Croissant, S. Picard, D. Aggad, M. Klausen, C. M. Jimenez et al., Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for twophoton photodynamic therapy in cells, J. Mater. Chem. B, pp.5567-5574, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356686

Y. Nakahara, Y. Tatsumi, I. Akimoto, S. Osaki, M. Doi et al., Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water, New J. Chem, pp.1452-1458, 2015.

H. Zhang, B. Lei, H. Dong, Y. Liu, M. Zheng et al., Temperature and oxygen sensing properties of Ru(II) covalently-grafted sol-gel derived ormosil hybrid materials, J. Nanosci. Nanotechnol, pp.4023-4028, 2016.

E. Oliveira, C. R. Neri, O. A. Serra, and A. G. Prado, Antenna effect in highly luminescent Eu 3+ anchored in hexagonal mesoporous silica, Chem. Mater, pp.5437-5442, 2007.

L. Sun, H. Zhang, C. Peng, J. Yu, Q. Meng et al., Covalent linking of near-infrared luminescent ternary lanthanide (Er 3+ , Nd 3+ , Yb 3+ ) complexes on functionalized mesoporous MCM-41 and SBA-15, J. Phys. Chem. B, pp.7249-7258, 2006.

D. B. Raj, S. Biju, and M. L. Reddy, Highly luminescent europium(III) complexes containing organosilyl 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dionate ligands grafted on silica nanoparticles, J. Mater. Chem, pp.7976-7983, 2009.

V. Divya, S. Biju, R. L. Varma, and M. L. Reddy, Highly efficient visible light sensitized red emission from europium tris[1-(4-biphenoyl)-3-(2-fluoroyl)propanedione](1,10-phenanthroline) complex grafted on silica nanoparticles, J. Mater. Chem, pp.5220-5227, 2010.

M. Ilibi, T. B. Queiroz, and . De,

J. ;. Ren, L. De-cola, A. S. Camargo, and . De,

H. Eckert, Luminescent hybrid materials based on covalent attachment of Eu(III)-tris(bipyridinedicarboxylate) in the mesoporous silica host MCM-41, Dalton Trans., v, vol.43, pp.8318-8330, 2014.

S. Lechevallier, J. Jorge, R. M. Silveira, N. Ratel-ramond, D. Neumeyer et al., Luminescence properties of mesoporous silica nanoparticles encapsulating different europium complexes: application for biolabelling, J. Nanomater, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02324746

S. Cousinié, M. Gressier, P. Alphonse, and M. Menu, Silica-based nanohybrids containing dipyridine, urethan, or urea derivatives, Chem. Mater., v, vol.19, pp.6492-6503, 2007.

A. P. Duarte, M. Gressier, M. Menu, J. Dexpert-ghys, J. M. Caiut et al., Structural and luminescence properties of silica-based hybrids containing new silylateddiketonato europium(III) complex, J. Phys. Chem. C, vol.116, issue.1, pp.505-515, 2012.

S. Cousinié, L. Mauline, M. Gressier, S. R. Kandibanda, L. Datas et al., Bulk or surface grafted silylated Ru(II) complexes on silica as luminescent nanomaterials, New J. Chem., v, vol.36, issue.6, pp.1355-1367, 2012.

L. Mauline, M. Gressier, C. Roques, P. Hammer, S. J. Ribeiro et al., Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa, Biofouling, issue.7, pp.775-788, 2013.

R. M. Sábio, M. Gressier, J. M. Caiut, M. Menu, and S. J. Ribeiro, Luminescent multifunctional hybrids obtained by grafting of ruthenium complexes on mesoporous silica, Mater. Lett, vol.174, pp.1-5, 2016.

S. Cousinié, M. Gressier, C. Reber, J. Dexpert-ghys, and M. Menu, Europium (III) complexes containing organosilyldipyridine ligands grafted on silica nanoparticles, Langmuir, v, vol.24, pp.6208-6214, 2008.

A. P. Duarte, L. Mauline, M. Gressier, J. Dexpert-ghys, C. Roques et al., )3(Bpy-Si)]: a bifunctional moiety for the engeneering of luminescent silica-based nanoparticles for bioimaging, Langmuir, pp.5878-5888, 2013.

A. P. Duarte, Híbridos luminescentes à base de sílica e complexos de európio: ferramenta para análise em meio biológico. 2012. 203 f. Tese (Doutorado em Química) -Instituto de Química, Universidade Estadual Paulista, 2012.

A. B. Nandiyanto, S. G. Kim, F. Iskandar, and K. Okuyama, Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters, Micropor. Mesopor. Mater., v, vol.120, issue.3, pp.447-453, 2009.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem., v, vol.40, issue.1, pp.70-76, 2002.

A. G. Palmer, J. Cavanagh, P. E. Wright, and M. Rance, Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy, J. Magn. Reson, issue.1, pp.151-170, 1991.

D. M. Corsi, C. Platas-iglesias, H. Van-bekkum, and J. A. Peters, Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra, Magn. Reson. Chem, pp.723-726, 2001.

K. S. Helm and L. , Water exchange on [Ln(DO3A)(H2O)2] and [Ln(DTTA-Me)(H2O)2] ? studied by variable temperature, pressure, and magnetic field NMR, Inorg. Chem., v, vol.55, issue.9, pp.4555-4563, 2016.

G. Pintacuda, M. John, X. C. Su, and G. Otting, NMR structure determination of proteinligand complexes by lanthanide labelling, Acc. Chem. Res., v, vol.40, issue.3, pp.206-212, 2007.

L. Mauline, Elaboration de nanoparticules de silice bifonctionnelles outils innovants pour l'exploration de biofilms a Pseudomonas Aeruginosa, 2012.

V. Tsaryuk, V. Zolin, J. Legendziewicz, R. Szostak, and J. Sokolnicki, Effect of ligand radicals on vibrational IR, Raman and vibronic spectra of europium b-diketonates

, Spectrochim. Acta -Part A, issue.2, pp.185-191, 2005.

A. K. Trikha, A. Kumar, and S. Kaur, Complexes of LnIII theonyltrifluoroacetylacetonates with 1-phenylpiperazine: (synthesis and characterisation), J. Fluor. Chem., v, vol.78, issue.2, pp.109-112, 1996.

D. W. Silverstein, C. B. Milojevich, J. P. Camden, and L. Jensen, Investigation of linear and nonlinear Raman scattering for isotopologues of Ru(bpy)3 2+, J. Phys. Chem. C, vol.40, pp.20855-20866, 2013.

M. Koko?ková, M. Procházka, I. ?loufová, and B. Vl?ková, SERRS spectra and Excitation profiles of Ru(II) polypyridine complexes attached to Ag nanoparticle aggregates: structural, electronic, and resonance damping effects of chemisorption, J. Phys. Chem. C, v, vol.117, issue.2, pp.1044-1052, 2013.

R. M. Sábio, Ancoragem de complexos de rutênio com ligantes siliados em sílica mesoporosa obtida via pirólise de spray. 2012. 124 f. Dissertação (Mestrado em Química) -Instituto de Química, Universidade Estadual Paulista, 2012.

G. Blasse, A. Meijerink, and C. Donegá, Vibronic rare earth spectroscopy: results and pitfalls, J. Alloys Compd, pp.24-27, 1995.

L. Norel, E. Di-piazza, M. Feng, A. Vacher, X. He et al., Lanthanide sensitization with ruthenium carbon-rich complexes and redox commutation of near-IR luminescence, Organometallics, vol.18, pp.4824-4835, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01151676

P. Martín-ramos, P. S. Silva, V. Lavín, I. R. Martín, F. Lahoz et al., Structure and NIR-luminescence of ytterbium(III) beta-diketonate complexes with 5-nitro-1,10-phenanthroline ancillary ligand: assessment of chain length and fluorination impact, Dalton. Trans., v, vol.42, pp.13516-13526, 2013.

S. J. Pope, B. J. Coe, S. Faulkner, and R. H. Laye, Metal-to-ligand charge-transfer sensitisation of near-infrared emitting lanthanides in trimetallic arrays M2Ln

. Ln=nd, Er or Yb), Dalton Trans., n, vol.8, pp.1482-1490, 2005.

V. Oliveira and M. De, Estudo da porosidade de pelotas de minério de ferro para altosfornos através de adsorção física, vol.86, 2010.

J. A. Portella, Características estruturais de géis de sílica preparados a partir da sonohidrólise do tetraetilortosilicato com adições de álcool polivinílico, vol.55, 2008.

. Dissertação, Mestrado em Física) -Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, 2008.

L. F. Chen, L. E. Noreña, J. Navarrete, and J. A. Wang, Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41, Mater. Chem. Phys., v, issue.2, pp.236-242, 2006.

J. Méndez-vivar, R. Mendoza-serna, and L. Valdez-castro, Control of the polymerization process of multicomponent (Si, Ti, Zr) sols using chelating agents, J. Non. Cryst. Solids, issue.1, pp.200-209, 2001.

S. Cousinie, Nanoluminophores inorganiques greffage de complexes de ruthénium(II) et d'europium(III) sur nanoparticules de silice, vol.169, 2007.

P. Innocenzi, H. Kozuka, and T. Yoko, Fluorescence properties of the Ru(bpy)3 2+ complex incorporated in sol?gel-derived silica coating films, J. Phys. Chem. B, v, vol.101, pp.2285-2291, 1997.

K. Matsui and F. Momose, Luminescence properties of tris(2,2'-bipyridine)ruthenium(II) in sol?gel systems of SiO2, Chem. Mater., v, vol.9, issue.11, pp.2588-2591, 1997.

L. Sun, H. Zhang, Q. Meng, F. Liu, L. Fu et al., Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application, J. Phys. Chem. B, pp.6174-6182, 2005.

J. Feng, S. Song, R. Deng, W. Fan, and H. Zhang, Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with nearinfrared luminescent lanthanide complexes, Langmuir, issue.5, pp.3596-3600, 2010.

Y. Liu, L. Sun, J. Liu, Y. Peng, X. Ge et al., Vis-NIR) mesoporous silica nanospheres linked with lanthanide complexes using 2-(5-bromothiophen)imidazo[4,5-f][1,10]phenanthroline for in vitro bioimaging, Dalton Trans., v, vol.44, issue.1, pp.237-246, 2015.

. .. Contexte-bibliographique, Complexes de Ru(II) en tant que sensibilisateur pour les Ln(III) émettant dans l'IR

. .. Objectifs,

, Caractérisation de complexes hétérobimétalliques d-f silylés, Complexes monomères précurseurs et complexes hétérobimétalliques d-f silylés

. .. Silylés,

, 236 5.1. Greffage et caractérisation des complexes précurseurs monomères et hétérobimétallique d-f silylés sur la matrice de silice mésoporeuse

. .. Conclusion,

. .. Perspectives, 243 permettent de sensibiliser les ions lanthanides émettant dans l'IR de façon efficace, Des plus l'état excité de

, Alternativement, des efforts ont été réalisés pour modifier les ligands 2-2'-bipyridine

. Ru, Ln(III) et ainsi avoir la possibilité de transfert d'électron et d'énergie efficaces

. Lazarides, Les complexes bimétalliques d-f obtenus en utilisant des ligands pontants saturés (-CH2CH2-) et des ligands pontant insaturés et conjugués (p-C6H4 et de complexes silylés, monomères et dimères, ont été confirmées par RMN en solution et à l'état solide, spectroscopie infrarouge, UV/Visible, FT-Raman, spectrométrie de masse et analyse élémentaire. Les complexes précurseurs monomères RuL (80 % de rendement) et Ru (85 % de rendement) ont été caractérisés par mesures de CP MAS du 13 C et RMN du 1 H (liquide), respectivement. L'utilisation de différentes séquence RMN a permis d'identifier sans ambiguïté la structure des complexes notamment en présence de ligands bipyridine et bipyrimidine, 28 ont étudiés les processus de transfert d'énergie (EnT) Ru(II)-Ln(III) à partir du chromophores [M(bpy)3] 2+, p.107

. 2d-(hsqc and . Hmbc, et 109, respectivement) montrent distinctement les signaux attribués aux ligands bpy et bpmd, ce qui nous permet de confirmer la structure du complexe proposé. De façon similaire, vol.34, p.111

, Si par RMN du proton il n'a pas été possible de distinguer et d'attribuer les signaux des différents ligands, des mesures de TOCSY 1D (figure 39, pages 115 et 116), HSQC (figure 40, page 117) et HMBC (figure 41, page 118) ont été réalisées et ont permis d'identifier les signaux attribués aux ligands bpy

L. Spectroscopies-infrarouge and . Ft-raman, et 129, respectivement) ont confirmés la présence des différentes fonctions notamment la fonction alkoxysilane par la présence de bandes de vibration caractéristiques, Particulièrement, les bandes ?(Si-O-CH3), ?(O-CH3) et ?(Si-O-C), vol.48, p.126

, Le spectre d'absorption dans la région UV-visible des complexes, mesurés en solution dans l'éthanol

, nm ont été attribuées à la transition 1 TCML (d??*, caractéristiques du Ru vers les ligands bpy, bpy-Si et bpmd), et la bande à 287 nm est attribuée aux transitions ???* des ligands bpy

, Propriétés photophysiques de complexes hétérobimétalliques Ru(II)-Nd/Yb(III) silylés

, Après avoir isolé et entièrement caractérisé les complexes hétérobimétalliques d-f

C. Dans-ce, lorsque l'excitation est faite sur le chromophore Ru(II), l'émission dans