, The Intelligence Report : Business Shifts in the Global Catalytic Process Industries, 2013.

P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. Loarer et al., Handbook of Porous Solids, pp.1591-1677, 2002.

R. Koerin, Influence du mode de synthèse de la boehmite sur l'état de surface de l'alumine gamma mise en forme : application au reformage catalytique, 2014.

S. Pega, Développement et caractérisation de matériaux fonctionnels à base d'aluminosilicates micro et mésoporeux : application { la catalyse acide, 2008.

S. Pega, C. Boissière, D. Grosso, T. Azais, A. Chaumonnot et al., Direct Aerosol Synthesis of Large-Pore Amorphous Mesostructured Aluminosilicates with Superior Acid-Catalytic Properties, Angew. Chem.-Int. Ed, vol.48, pp.2784-2787, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411436

A. Chaumonnot, F. Tihay, A. Coupé, S. Pega, C. Boissière et al., New Aluminosilicate Materials with Hierarchical Porosity Generated by Aerosol Process, Oil Gas Sci. Technol.-Rev. Ifp Energ. Nouv, vol.64, pp.681-696, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00480332

, Références bibliographiques

J. Jolivet and M. Henry, De la solution { l'oxyde: Condensation des cations en solution aqueuse. Chimie de surface des oxydes, 2012.

W. Jorgensen and L. Salem, The organic chemist's book of orbitals, 1973.

C. Baes and R. Mesmer, The hydrolysis of cations, 1976.

S. Sallard, M. Schröder, C. Boissière, D. Dunkel, and M. Etienne, Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability, Nanoscale, vol.5, pp.12316-12329, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01118857

R. Mehrotra, Aluminium Alkoxides, J. Indian Chem. Soc, vol.30, pp.585-591, 1953.

D. Bradley, Structural Theory for Metal Alkoxide Polymers, Nature, vol.182, pp.1211-1214, 1958.

D. Kleinschmidt, V. Shiner, and D. Whittaker, Interconversion Reactions of Aluminum Isopropoxide Polymers, J. Org. Chem, vol.38, pp.3334-3337, 1973.

N. Turova, V. Kozunov, A. Yanovskii, N. Bokii, Y. Struchkov et al., Physicochemical and Structural Investigation of Aluminum Isopropoxide, J. Inorg. Nucl. Chem, vol.41, pp.5-11, 1979.

O. Kriz, B. Casensky, A. Lycka, J. Fusek, and S. Hermanek, Al-27 Nmr Behavior of Aluminum Alkoxides, J. Magn. Reson, vol.60, pp.375-381, 1984.

U. Schubert, Chemical modification of titanium alkoxides for sol-gel processing, J. Mater. Chem, vol.15, pp.3701-3715, 2005.

J. Livage, M. Henry, and C. Sanchez, Sol-Gel Chemistry of Transition-Metal Oxides, Prog. Solid State Chem, vol.18, pp.259-341, 1988.

R. Poisson, J. Brunelle, and P. Nortier, Catalyst supports and supported catalysts: Theoretical and applied concepts, vol.34, 1988.

V. La-mer, R. Dinegar, and . Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

A. E. Nielsen, Kinetics of precipitation, 1964.

M. Haruta and B. Delmon, Preparation of Homodisperse Solids, J. Chim. Phys. Phys.-Chim

, Biol, vol.83, pp.859-868, 1986.

T. Sugimoto, Preparation of Monodispersed Colloidal Particles, Adv. Colloid Interface Sci, vol.28, pp.65-108, 1987.

J. Jolivet, S. Cassaignon, C. Chaneac, D. Chiche, and E. Tronc, Design of oxide nanoparticles by aqueous chemistry, J. Sol-Gel Sci. Technol, vol.46, pp.299-305, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348224

G. Christoph, C. Corbato, D. Hofmann, R. Tettenhorst, and . Crystal-structure-of-boehmite, Clays Clay Miner, vol.27, pp.81-86, 1979.

N. Lock, P. Hald, M. Christensen, H. Birkedal, and B. B. Iversen, Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles, J. Appl. Crystallogr, vol.43, pp.858-866, 2010.

P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen et al., Morphology and surface properties of boehmite (gamma-AlOOH): A density functional theory study, J. Catal, vol.201, pp.236-246, 2001.

B. Gates, J. Katzer, and G. A. Schuit, Chemistry of Catalytic Processes, 1979.

J. Mcketta, Reforming Processes for Aromatic Production -Encyclopedia of Chemical Processing and Design 47, 1994.

G. Schuit and B. Gates, Chemistry and Engineering of Catalytic Hydrodesulfurization, Aiche J, vol.19, pp.417-438, 1973.

W. Storck, Hydrotreatment and Hydrocracking of Oil Fractions, vol.106, 1997.

F. Morel, S. Kressman, V. Harlé, and S. Kasztelan, Hydrotreatment and Hydrocracking of Oil Fractions, vol.106, 1997.

X. Krokidis, P. Raybaud, A. Gobichon, B. Rebours, P. Euzen et al., Theoretical study of the dehydration process of boehmite to gamma-alumina, J. Phys. Chem. B, vol.105, pp.5121-5130, 2001.

K. Diblitz and T. Feldbaum, Recent Advances in Basic and Applied Aspects of Industrial Catalysis, 1998.

B. Yoldas, Hydrolysis of Aluminum Alkoxides and Bayerite Conversion, J. Appl. Chem. Biotechnol, vol.23, pp.803-809, 1973.

B. Imelik, M. Mathieu, M. Prettre, and S. Teichner, Preparation et proprietes d'alumines amorphes, J. Chim. Phys. Phys.-Chim. Biol, vol.51, pp.651-662, 1954.

M. Harris and K. Sing, The surface properties of precipitated alumina. 111. Samples prepared from aluminium isopropoxide, J. Appl. Chem, vol.8, pp.586-589, 1958.

J. Lucas, G. Newton, and K. Sing, Surface properties of precipitated alumina. IV. Adsorption of nitrogen on samples containing chloride ions, J. Appl. Chem, vol.13, pp.265-272, 1963.

D. Aldcroft, G. Bye, J. Robinson, and K. Sing, Surface Chemistry of Calcination of Gelatinous and Crystalline Aluminium Hydroxides, J. Appl. Chem, vol.18, pp.301-306, 1968.

B. Yoldas, Alumina Gels That Form Porous Transparent Al2o3, J. Mater. Sci, vol.10, pp.1856-1860, 1975.

B. Yoldas, Alumina Sol Preparation from Alkoxides, Am. Ceram. Soc. Bull, vol.54, pp.289-290, 1975.

B. Yoldas, Transparent Porous Alumina, Am. Ceram. Soc. Bull, vol.54, pp.286-288, 1975.

B. Yoldas, Thermal Stabilization of an Active Alumina and Effect of Dopants on Surface-Area, J. Mater. Sci, vol.11, pp.465-470, 1976.

B. Yoldas, Preparation of Glasses and Ceramics from Metal-Organic Compounds, J. Mater. Sci, vol.12, pp.1203-1208, 1977.

P. Buining, C. Pathmamanoharan, J. Jansen, and H. Lekkerkerker, Preparation of Colloidal Boehmite Needles by Hydrothermal Treatment of Aluminum Alkoxide Precursors, J. Am. Ceram. Soc, vol.74, pp.1303-1307, 1991.

T. Fukui and M. Hori, Control of micropore size distribution in alumina by the hydrothermal treatment of an alkoxide derived-alcogel, J. Mater. Sci, vol.31, pp.3245-3248, 1996.

M. Amini and M. Mirzaee, Effect of solution chemistry on preparation of boehmite by hydrothermal assisted sol-gel processing of aluminum alkoxides, J. Sol-Gel Sci. Technol, vol.36, pp.19-23, 2005.

Y. Mizushima and M. Hori, Properties of Alumina Aerogels Prepared Under Different Conditions, J. Non-Cryst. Solids, vol.167, pp.1-8, 1994.

B. Huang, C. Bartholomew, and B. Woodfield, Facile structure-controlled synthesis of mesoporous gamma-alumina: Effects of alcohols in precursor formation and calcination, Microporous Mesoporous Mater, vol.177, pp.37-46, 2013.

V. Gonzalez-pena, I. Diaz, C. Marquez-alvarez, E. Sastre, and J. Perez-pariente, Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines, Microporous Mesoporous Mater, vol.44, pp.203-210, 2001.

B. Huang, C. Bartholomew, S. Smith, and B. Woodfield, Facile solvent-deficient synthesis of mesoporous gamma-alumina with controlled pore structures, Microporous Mesoporous Mater, vol.165, pp.70-78, 2013.

B. Huang, C. Bartholomew, and B. Woodfield, Facile synthesis of mesoporous gammaalumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides, Microporous Mesoporous Mater, vol.183, pp.37-47, 2014.

F. Xiao, Hydrothermally stable and catalytically active ordered mesoporous materials assembled from preformed zeolite nanoclusters, Catal. Surv. Asia, vol.8, pp.151-159, 2004.

Y. Liu and T. Pinnavaia, Aluminosilicate mesostructures with improved acidity and hydrothermal stability, J. Mater. Chem, vol.12, pp.3179-3190, 2002.

S. Pega, C. Boissière, D. Grosso, T. Azais, A. Chaumonnot et al., Direct Aerosol Synthesis of Large-Pore Amorphous Mesostructured Aluminosilicates with Superior Acid-Catalytic Properties, Angew. Chem.-Int. Ed, vol.48, pp.2784-2787, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411436

A. Chaumonnot, F. Tihay, A. Coupé, S. Pega, C. Boissière et al., New Aluminosilicate Materials with Hierarchical Porosity Generated by Aerosol Process, Oil Gas Sci. Technol.-Rev. Ifp Energ. Nouv, vol.64, pp.681-696, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00480332

, Référence bibliographiques

S. Pega, C. Boissière, D. Grosso, T. Azais, A. Chaumonnot et al., Direct Aerosol Synthesis of Large-Pore Amorphous Mesostructured Aluminosilicates with Superior Acid-Catalytic Properties, Angew. Chem.-Int. Ed, vol.48, pp.2784-2787, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411436

A. Chaumonnot, F. Tihay, A. Coupé, S. Pega, C. Boissière et al., New Aluminosilicate Materials with Hierarchical Porosity Generated by Aerosol Process, Oil Gas Sci. Technol.-Rev. Ifp Energ. Nouv, vol.64, pp.681-696, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00480332

, Références bibliographiques

S. Pega, Développement et caractérisation de matériaux fonctionnels à base d'aluminosilicates micro et mésoporeux : application { la catalyse acide, 2008.

S. Pega, C. Boissière, D. Grosso, T. Azais, A. Chaumonnot et al., Direct Aerosol Synthesis of Large-Pore Amorphous Mesostructured Aluminosilicates with Superior Acid-Catalytic Properties, Angew. Chem.-Int. Ed, vol.48, pp.2784-2787, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411436

A. Chaumonnot, F. Tihay, A. Coupé, S. Pega, C. Boissière et al., New Aluminosilicate Materials with Hierarchical Porosity Generated by Aerosol Process, Oil Gas Sci. Technol.-Rev. Ifp Energ. Nouv, vol.64, pp.681-696, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00480332

J. Livage and C. Sanchez, Sol-Gel Chemistry, J. Non-Cryst. Solids, vol.145, pp.11-19, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00080383

C. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 2013.

C. Baes and R. Mesmer, The hydrolysis of cations, 1976.

R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, 1979.

C. Knight, A Two-Dimensional Si-29 Nuclear Magnetic-Resonance Spectroscopic Study, J. Chem. Soc.-Dalton Trans, pp.1457-1460, 1988.

C. Marcilly, Catalyse acido-basique: application au raffinage et à la pétrochimie, 2003.

A. Stein and B. Holland, Aluminum-Containing Mesostructural Materials, J. Porous Mater, vol.3, pp.83-92, 1996.

M. Xu, J. Lunsford, D. Goodman, and A. Bhattacharyya, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal. -Gen, vol.149, pp.289-301, 1997.

F. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaard, Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts, Catal. Commun, vol.6, pp.147-152, 2005.

B. Sabour, M. Peyrovi, T. Hamoule, and M. Rashidzadeh, Catalytic dehydration of methanol to dimethyl ether (DME) over Al-HMS catalysts, J. Ind. Eng. Chem, vol.20, pp.222-227, 2014.

R. Koerin, Influence du mode de synthèse de la boehmite sur l'état de surface de l'alumine gamma mise en forme : application au reformage catalytique, 2014.

F. Karouia, M. Boualleg, M. Digne, and P. Alphonse, Control of the textural properties of nanocrystalline boehmite (gamma-AlOOH) regarding its peptization ability, Powder Technol, vol.237, pp.602-609, 2013.

L. Yang, Y. Xu, Y. Zhu, L. Liu, X. Wang et al., Evaluation of Interaction Effect of Sulfate and Chloride Ions on Reinforcements in Simulated Marine Environment Using Electrochemical Methods, Int. J. Electrochem. Sci, vol.11, pp.6943-6958, 2016.

P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. Loarer et al., Handbook of Porous Solids, pp.1591-1677, 2002.

C. Froidefond, Contrôle morphologique et dimensionnel de particules d'(oxydr)oxyde d'aluminium, 2001.

J. Jolivet and M. Henry, De la solution { l'oxyde: Condensation des cations en solution aqueuse. Chimie de surface des oxyde, 2012.

H. Vanstraten and P. Debruyn, Precipitation from Supersaturated Aluminate Solutions .2. Role of Temperature, J. Colloid Interface Sci, vol.102, pp.260-277, 1984.

H. Bartos and J. Margrave, The Thermal Decomposition of Nano3, J. Phys. Chem, vol.60, pp.256-256, 1956.

T. Bauer, L. Dörte, K. Ulrike, and R. Tamme, Sodium nitrate for high temperature latent heat storage, 2009.

K. Hellgardt and D. Chadwick, Effect of pH of precipitation on the preparation of high surface area aluminas from nitrate solutions, Ind. Eng. Chem. Res, vol.37, pp.405-411, 1998.

J. Hochepied and P. Nortier, Influence of precipitation conditions (pH and temperature) on the morphology and porosity of boehmite particles, Powder Technol, vol.128, pp.268-275, 2002.

, des paramètres du procédé (températures et efficacité d'une configuration de vis favorisant le cisaillement

, Références bibliographiques

B. Huang, C. Bartholomew, S. Smith, and B. Woodfield, Facile solvent-deficient synthesis of mesoporous gamma-alumina with controlled pore structures, Microporous Mesoporous Mater, vol.165, pp.70-78, 2013.

B. Huang, C. Bartholomew, and B. Woodfield, Facile structure-controlled synthesis of mesoporous gamma-alumina: Effects of alcohols in precursor formation and calcination, Microporous Mesoporous Mater, vol.177, pp.37-46, 2013.

B. Huang, C. Bartholomew, and B. Woodfield, Facile synthesis of mesoporous gammaalumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides, Microporous Mesoporous Mater, vol.183, pp.37-47, 2014.

J. Cejka, Organized mesoporous alumina: synthesis, structure and potential in catalysis

, Appl. Catal. -Gen, vol.254, pp.327-338, 2003.

R. Poisson, J. Brunelle, and P. Nortier, Catalyst supports and supported catalysts: Theoretical and applied concepts, vol.34, 1988.

R. Koerin, Influence du mode de synthèse de la boehmite sur l'état de surface de l'alumine gamma mise en forme : application au reformage catalytique, 2014.

B. Lippens and J. Deboer, Study of Phase Transformations During Calcination of Aluminum Hydroxides, Acta Crystallogr, vol.17, pp.1312-1321, 1964.

F. Karouia, M. Boualleg, M. Digne, and P. Alphonse, Control of the textural properties of nanocrystalline boehmite (gamma-AlOOH) regarding its peptization ability, Powder Technol, vol.237, pp.602-609, 2013.

R. Bosco, B. Kamath, K. Rao, and K. Krishnamurthy, Alumina through sol-gel route: Influence of preparation parameters. in Recent Advances in Basic and Applied Aspects of Industrial Catalysis, vol.113, pp.591-598, 1998.

M. May, J. Navarrete, M. Asomoza, and R. Gomez, Tailored mesoporous alumina prepared from different aluminum alkoxide precursors, J. Porous Mater, vol.14, pp.159-164, 2007.

C. Marquez-alvarez, N. Zilkova, J. Perez-pariente, and J. Cejka, Synthesis, characterization and catalytic applications of organized mesoporous aluminas, Catal. Rev.-Sci. Eng, vol.50, pp.222-286, 2008.

W. Van-bronswijk, H. Watling, and Z. Yu, A study of the adsorption of acyclic polyols on hydrated alumina, Colloids Surf. -Physicochem. Eng. Asp, vol.157, pp.85-94, 1999.

S. Grant and M. Jaroniec, Effect of cosolvent organic molecules on the adsorption and structural properties of soft-templated ordered mesoporous alumina, J. Colloid Interface Sci, vol.367, pp.129-134, 2012.

D. Guertin, S. Wiberley, W. Bauer, and J. Goldenson, The Infrared Spectra of 3 Aluminum Alkoxides, J. Phys. Chem, vol.60, pp.1018-1019, 1956.

T. Tsukada, H. Segawa, A. Yasumori, and K. Okada, Crystallinity of boehmite and its effect on the phase transition temperature of alumina, J. Mater. Chem, vol.9, pp.549-553, 1999.

M. Nguefack, A. Popa, S. Rossignol, and C. Kappenstein, Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite, Phys. Chem. Chem. Phys, vol.5, pp.4279-4289, 2003.

, L'activité iso-masse peut être convertie en activité intrinsèque (ou iso-surface) en effectuant le rapport de Aim par la surface spécifique du matériau

, Seul l'activité { t = 10 minute est calculée et utilisée pour comparer nos matériaux et les références

, ?Sp n°1/n°2 : différence de surface spécifique entre une boehmites issue de la série n°1 et une boehmite issue de la série n°2

I. Figure, A17 -Propriétés texturales des boehmites issues de l'IPA, obtenues par extrusion réactive, sans mise en forme, lors des séries d'expériences n°1 et n°2

, ?Sp n°1/n°2 : différence de surface spécifique entre une boehmites issue de la série n°1 et une boehmite issue de la série n°2

I. Figure, A18 -Propriétés texturales des boehmites issues du SBA, obtenues par extrusion réactive, sans mise en forme, lors des séries d'expériences n°1 et n°2

I. Figure, A34 -Propriétés texturales des boehmites issues du SBA, obtenues par extrusion réactive, sans mise en forme, lors de la série d'expériences n°3

I. Figure, A42 -Propriétés texturales des alumines gamma issues du SBA, obtenues par extrusion réactive, sans mise en forme, lors de la série d'expériences n°3

D. Chiche, C. Chaneac, R. Revel, and J. Jolivet, Size and Shape Control of gamma-AlOOH Boehmite Nanoparticles, a Precursor of gamma-Al(2)O(3) Catalyst, 2006.

S. Brunauer, P. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.

E. Barrett, L. Joyner, and P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc, vol.73, pp.373-380, 1951.

J. De-boer, B. Lippens, B. Linsen, J. Broekhoff, J. Van-den-heuvel et al., The t-curve of multimolecular N2-adsorption, J. Colloid Interface Sci, vol.21, pp.405-414, 1966.

S. C. Gaspar, Mise en forme par extrusion de supports de catalyseurs { base d'alumine et à microstructure multi-échelles : Effet de la composition granulaire et du liant sur les propriétés des matériaux, 2013.

E. Trela, Test d'isomérisation du métaxylène. (IFP Energies Internes, 2007.