, Suivi du processus de séparation de phases dans un gel polymérique, p.70

. .. Met),

, 2.4. Analyse par spectroscopie à rayons X à dispersion d'énergie

, Analyse thermique différentielle et thermogravimétrique (ATD-ATG)

. .. Chapitre-iii-;-xérogels, 77 III.1. Matériaux à base d'oxyde d'étain, Élaboration des gels et

, 3.1.5. Saturation de la solution de lavage

, 3.3. Évolution du front de propagation de la solution de lavage au sein du gel, p.93

, 4.2. Influence de la surface en contact avec l'atmosphère de séchage

I. V. Chapitre, Séparation de phases et cristallisation dans les xérogels

, 2.2.3. Simulation d'un diagramme obtenu à partir d'un xérogel cristallisé contenant 10 % d'étain

, Étude quantitative de la cristallisation ex situ

. Iv, Étude couplée de diffusion centrale et de diffraction in situ

, Licence CC BY

, Références bibliographiques

C. Palmonari and G. Timellini, Special ceramics, vol.39, pp.2-14, 1986.

E. O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. London, vol.64, p.747, 1951.

N. J. Petch, The clivage strength of polycrystals, J. Iron Steel Inst, vol.174, pp.25-28, 1953.

R. Armstrong, I. Codd, R. M. Darthwaite, and J. Petch, The plastic deformation of polycrystalline aggregates, Phil. Mag, vol.7, p.45, 1962.

Y. Champion, P. Langlois, S. Guérin-mailly, C. Langlois, and M. J. Hÿtch, Mechanical Behaviour of Nanocrystalline Copper Related to Grain-boundary Structure, Mater. Res. Soc. Symp. Proc, vol.727, 2002.

A. Lasalmonie and J. L. Strudel, Influence of grain size on the mechanical behaviour of some high strength materials, J. Mater. Sci, vol.21, p.1837, 1986.

A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the Hall Petch relationship in nanocrystalline materials, Scripta Metal, vol.23, pp.1676-1684, 1989.

W. Qin, Z. Chen, P. Huang, and Y. Zhuang, Dislocation pileups in nanocrystalline materials, J. All. Comp, vol.289, pp.285-288, 1999.

C. C. Koch, Bulk behaviour of nanostructured materials, Nanostructure Science and Technology -A Worldwide Study, pp.93-111, 2000.

P. G. Sanders, J. A. Eastman, and J. R. Weertman, Elastic and tensile behaviour of nanocrystalline copper and palladium, Acta Mater, vol.45, pp.4019-4025, 1997.

S. Ranganathan, R. Divakar, and V. S. Ranganathan, Interface structure in nanocrystalline materials, Script. Mater, vol.44, pp.1169-1174, 2001.

B. Zhang, Optical properties of nanomaterials, Physical Fundamentals of Nanomaterials, Micro and Nano Technol, pp.291-335, 2018.

N. Bohr, On the Constitution of Atoms and Molecules, Phil. Mag, vol.26, pp.1-24, 1913.

E. Du-trémolet-de-lacheisserie, Magnétisme, vol.1, 2000.

C. Kittel, Theory of the Structure of Ferromagnetic Domains in Films and Small Particles, Phys. Rev, vol.70, p.965, 1946.

J. Degauque, Magnétisme et matériaux magnétiques : introduction, J. Phys. IV. Colloque C3, vol.2, pp.1-13, 1992.

C. P. Bean and J. D. Livingston, Superparamagnetism, J. Appl. Phys, vol.30, p.120, 1959.

R. W. Siegel, Nanostructured materials -mind over matter, Nanostruct. Mater, vol.3, issue.1-6, pp.1-18, 1993.

F. J. Rivera-gomez, J. T. Elizalde-galindo, and J. A. Matutes-aquino, Nanocrystalline PrCo5 alloy obtained by mechanical milling, J. All. Comp, vol.477, issue.1-2, pp.588-590, 2009.

E. Gaffet, N. Malhouroux-gaffet, M. Abdellaoui, and A. Malchère, Phase transitions under mechanical stresses: production, using mechanosynthesis, of nanomaterials (metallic alloys, semiconductors, ceramics), Rev. Met. Paris, vol.91, pp.757-770, 1994.

S. S. Lim, W. Hong, D. Qiao, S. Whitehurst, I. Yoon et al., Carbon nanofibers with radially oriented channels, Carbon, pp.173-179, 2007.

R. Longtin, L. Carignan, C. Fauteux, D. Therriault, and J. Pegnac, Selective area synthesis of aligned carbon nanofibers by laser-assisted catalytic chemical vapor deposition, Diam. rel. mater, vol.16, pp.1541-1549, 2007.

G. Xie, W. Zhang, D. V. Louzguine-luzgin, H. Kimura, and A. Inoue, Fabrication of porous Zr-Cu-Al-Ni bulk metallic glass by spark plasma sintering process, Script. Metal, vol.55, pp.687-690, 2006.

S. A. Kamaruddin, K. Chan, H. Yow, M. Z. Sahdan, H. Saim et al., Zinc oxide films prepared by sol-gel spin coating technique, Appl. Phys. A, vol.104, issue.1, pp.263-268, 2011.

L. Z. Zhang, I. Djerdj, M. Cao, M. Antonietti, and M. Niederberger, Nonaqueous Sol-Gel Synthesis of a Nanocrystalline InNbO4 Visible-Light Photocatalyst, Adv. Mater, vol.19, issue.16, pp.2083-2086, 2007.

G. S. Fox-rabinovich, K. Yamamoto, M. H. Aguirre, D. G. Cahill, S. C. Veldhuis et al., Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy, Surf. Coat. Technol, vol.204, issue.15, pp.2465-2471, 2010.

, The royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, 2004.

Y. Leconte, H. Maskrot, N. Herlin-boime, D. Porterat, C. Reynaud et al., Elaboration of SiC, TiC, and ZrC Nanopowders by Laser Pyrolysis: From Nanoparticles to Ceramic Nanomaterials, Glass Phys. Chem, vol.4, pp.510-518, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101245

A. Boulle, Z. Oudjedi, R. Guinebretière, B. Soulestin, and A. Dauger, Ceramic nanocomposites obtained by sol-gel coating of submicron powders, Acta Mater, vol.49, issue.5, pp.811-816, 2001.

T. Hungría, . Amorín, . Galy, M. Ricote, . Algueró et al., Nanostructured ceramics of 0.92PbZn1/3Nb2/3O3-0.08PbTiO3 processed by SPS of nanocrystalline powders obtained by mechanosynthesis, Nanotechnology, vol.19, p.155609, 2008.

J. J. Ebelmen, Sur les éthers siliciques, C. R. Acad. Sci, vol.19, pp.398-400, 1844.

, Sol-gel, Cahier Technologique, CERTECH asbl

B. B. Mandelbrot and ;. Freeman, The Fractal Geometry of Nature, 1982.

T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett, vol.47, pp.1400-1403, 1981.

P. Meakin, Aggregation kinetics, Phys. Scr, vol.46, pp.295-331, 1992.

J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem, vol.18, issue.4, pp.259-341, 1988.

I. Artaki, T. W. Zerda, and J. Jonas, Solvent effects on the condensation stage of the solgel process, J. Non-Cryst. Sol, vol.81, issue.3, pp.381-395, 1986.

, Licence CC BY

D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, Metal Alkoxides, 1978.

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors, J. Non-Cryst. Sol, vol.285, issue.1-3, pp.22-28, 2001.

W. Hamd, Y. C. Wu, A. Boulle, E. Thune, and R. Guinebretière, Microstructural study of SnO2 thin layers deposited on sapphire by sol-gel dip-coating, Thin Sol. Films, vol.518, pp.1-5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414140

D. W. Hoffman, R. Roy, and ;. S. Komarneni, Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2, J. Am. Ceram. Soc, vol.67, pp.468-471, 1984.

Y. C. Wu, W. Hamd, E. Thune, A. Boulle, C. Rochas et al., Synthesis of tin oxide nanosized crystals embedded in silica matrix through sol-gel process using alkoxyde precursors, J. Non-Cryst. Sol, vol.355, pp.951-959, 2009.

C. Sanchez, J. Livage, M. Henry, and F. Babonneau, Chemical modification of alkoxidePrecursors, J. Non-Cryst. Sol, vol.100, pp.65-76, 1988.

A. J. Vega and G. W. Scherer, Study of structural evolution of silica gel using 1H and 29Si NMR, J. Non-Cryst. Sol, vol.111, pp.153-166, 1989.

T. W. Zerda, I. Artaki, and J. Jonas, Study of polymerization processes in acid and base catalyzed silica sol-gels, J. Non-Cryst. Sol, vol.81, pp.365-379, 1986.

J. Zarzycki, M. Prassas, and J. Phalippou, Synthesis of glasses from gels: the problem of monolithic gels, J. Mater. Sci, vol.17, pp.3371-3379, 1982.

G. W. Scherer, S. A. Pardenek, and R. M. Swiatek, Viscoelasticity in silica gel, J. Non-Cryst. Solids, vol.107, pp.14-22, 1988.

G. W. Scherer, Effect of shrinkage on the modulus of silica gel, J. Non-Cryst. Solids, vol.109, issue.2-3, pp.183-190, 1989.

P. J. Davis, C. J. Brinker, D. M. Smith, and R. A. Assink, Pore structure evolution in silica gel during aging/drying II. Effect of pore fluids, J. Non-Cryst Sol, vol.142, pp.197-207, 1992.

T. Mizuno, H. Nagata, and S. Manabe, Attempts to avoid cracks during drying, J. Non-Cryst. Sol, vol.100, pp.236-240, 1988.

A. Fidalgo and L. M. Ilharco, The influence of the wet gels processing to avoid cracks during drying, Micropor. Mesopor. Mat, vol.84, pp.229-235, 2005.

R. Deshpande, D. W. Hua, D. M. Smith, and C. J. Brinker, Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension, J. Non-Cryst. Sol, vol.144, pp.32-44, 1992.

G. W. Scherer, S. Haereid, E. Nilsen, and M. A. Einarsrud, Shrinkage of silica gels aged in TEOS, J. Non-Cryst. Sol, vol.202, pp.42-52, 1996.

M. A. Einarsrud, M. B. Kirkedelen, J. Samseth, K. Mortensen, T. Grande et al., Washing of multicomponent gels prior to drying, J. Non-Cryst. Sol, vol.215, pp.169-175, 1997.

C. J. Brinker and G. W. Scherer, Sol-gel science, The physics and chemistry of sol-gel processing, 1990.

M. Nogami, Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxydes, J. Non-Cryst. Sol, vol.69, pp.415-423, 1985.

F. Shi, L. Wang, and J. Liu, Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process, Mater. Lett, vol.60, pp.3718-3722, 2006.

P. M. Shewale, A. V. Rao, and A. P. Rao, Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels, Appl. Surf. Sci, vol.254, pp.6902-6907, 2008.

J. L. Gurav, A. V. Rao, and U. K. Bangi, Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor, J. All. Comp, vol.471, pp.296-302, 2009.

G. Wu, Y. Yu, X. Cheng, and Y. Zhang, Preparation and surface modification mechanism of silica aerogels via ambient pressure drying, Mater. Chem. Phys, vol.129, pp.308-314, 2011.

R. W. Ford, Ceramics Drying, 1986.

L. L. Hench and G. Orcel, Proceedings of the Third International Workshop on Glasses and Glass Ceramics from Gels Physical-chemical and biochemical factors in silica solgels, J. Non-Cryst. Sol, vol.82, pp.1-10, 1986.

L. L. Hench and M. J. Wilson, Proceedings of the Fifth International Workshop on Glasses and Ceramics from Gels Processing of gel-silica monoliths for optics, J. Non-Cryst. Sol, vol.121, pp.234-243, 1990.

G. W. Morey, The property of glass, vol.2, 1954.

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Phys. Chem, vol.28, pp.258-267, 1958.

J. W. Cahn, On spinodal decomposition, Act. Met, vol.9, pp.795-801, 1961.

E. P. Favras and A. C. Mitropoulos, What is spinodal decomposition" Lecture note, Rev. E.S.T, pp.25-27, 2008.

Q. Dong, M. Wang, L. Shen, Y. Jia, and Z. Li, Diffraction analysis of ?-Fe precipitates in a polycrystalline Cu-Fe alloy, Mater. Charact, vol.105, pp.129-135, 2015.

Z. Wu, H. Wang, M. Xue, X. Tian, H. Zhou et al., Preparation of carbon nanotubes/waterborne polyurethane composites with the emulsion particles assisted dispersion of carbon nanotubes, Compos. Sci. Technol, vol.114, pp.50-56, 2015.

J. Ma, Y. Liu, Y. Bao, J. Liu, and J. Zhang, Research advances in polymer emulsion based on "core-shell" structure particle design, Adv. Coll. Inter. Sci, pp.118-131, 2013.

J. Yu, J. Yang, H. Li, X. Xi, and Y. Huang, Study on particle-stabilized Si3N4 ceramic foams, Mater. Lett, vol.65, pp.1801-1804, 2011.

J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Arts and Science, vol.3, pp.108-248

M. Volmer and A. Weber, Keimbildung in übersättigten gebilden, Z. Phys. Chem, vol.119, pp.277-301, 1926.

, Licence CC BY

R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Ann. Phys, vol.24, pp.719-752, 1926.

D. R. Neuville, L. Cormier, D. Caurant, and L. Montagne, Du verre au cristal, 2013.

P. R. Wolde and D. Frenkel, Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations, Science, vol.277, pp.1975-1978, 1997.

K. G. Soga, J. R. Melrose, and R. C. Ball, Metastable states and the kinetics of colloid phase separation, J. Chem. Phys, vol.110, pp.2280-2288, 1999.

R. J. Davey, S. L. Schroeder, and J. H. Horst, Nucleation of Organic Crystals -A Molecular Perspective, Angew. Chem. Int. Ed, vol.52, pp.2166-2179, 2013.

E. B. Treivus, The precrystallization state of aqueous salt solutions, Cryst. Rep, vol.46, pp.1039-1045, 2001.

P. G. Vekilov, Dense Liquid Precursor for the Nucleation of Ordered Solid Phases from Solution, Cryst. Growth Des, vol.4, pp.671-685, 2004.

J. W. Schmelzer, A. R. Gokhman, and V. M. Fokin, Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach, J. Coll. Inter. Sci, vol.272, pp.109-133, 2004.

J. W. Schmelzer, G. S. Boltachev, and V. G. Baidakov, Classical and generalized Gibbs' approaches and the work of critical cluster formation in nucleation theory, J. Chem. Phys, vol.124, p.194503, 2006.

W. Ostwald, Studien über die Bildung und umwandlung fester Körper, Z. Phys. Chem, vol.22, pp.289-330, 1897.

S. Y. Chung, Y. M. Kim, J. G. Kim, and Y. J. Kim, Multiphase transformation and Ostwald's rule of stages during crystallization of a metal phosphate, Nat. Phys, vol.5, pp.68-73, 2009.

S. Alahraché, K. Saghir, S. Chenu, E. Véron, D. De-sousa-meneses et al., Perfectly Transparent Sr3Al2O6 Polycrystalline Ceramic Elaborated from Glass Crystallization, Chem. Mater, vol.25, pp.4017-4024, 2013.

G. A. Chahine, N. Blanc, S. Arnaud, F. De-geuser, R. Guinebretière et al., Advanced non-destructive in situ characterization of metals at the French CRG D2AM/BM02 beamline at the ESRF, Metals, vol.9, p.352, 2019.

N. Boudet and J. Bérar, D2AM, status; highlights and plans for upgrade of the French anomalous CRG beam line at ESRF, 2009.

R. Guinebretière, Diffraction des rayons X sur échantillons polycristallins, 2006.

R. A. Young, The Rietveld Method, IUCr Monographs on Crystallography, 1993.

H. M. Rietveld, The crystal structure of some alkaline earth metal uranates of the type M3UO6, Acta Cryst, vol.20, p.508, 1966.

H. M. Rietveld, Research Report RCN-104. Reactor Centrum Nederland, 1969.

A. K. Cheetham and J. C. Taylor, Profile analysis of powder neutron diffraction data: Its scope, limitations, and applications in solid state chemistry, J. Sol. State Chem, vol.21, issue.6, pp.253-275, 1977.

G. Malmros and J. O. Thomas, Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer, J. Appl. Cryst, vol.10, pp.7-11, 1977.

R. A. Young, P. E. Mackie, and R. B. Von-dreele, Application of the pattern-fitting structurerefinement method of X-ray powder diffractometer patterns, J. Appl. Cryst, vol.10, pp.262-269, 1977.

C. P. Khattak and D. E. Cox, Profile analysis of X-ray powder diffractometer data: structural refinement of La0. 75Sr0. 25CrO3, J. Appl. Cryst, vol.10, pp.405-411, 1977.

V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterisation of Materials, p.713, 2003.

K. V. Shafi, A. Gedanken, R. B. Goldfarb, and I. Felner, Sonochemical preparation of nanosized amorphous Fe-Ni alloys, J. Appl. Phys, vol.81, pp.6901-6905, 1997.

E. M. Phillips, An approach to estimate the amorphous content of pharmaceutical powders using calorimetry with no calibration standards, Int. J. Pharm, vol.149, pp.267-271, 1997.

I. Fix and K. J. Steffens, Quantifying low amorphous or crystalline amounts of alpha lactose monohydrate using X-ray powder diffraction and near infrared spectroscopy, International Meeting on Pharmaceutics, 2004.

R. G. Miller and H. A. Willis, An Independent Measurement of the Amorphous Content of Polymers, J. Polym. Sci, vol.19, pp.485-494, 1956.

B. C. Hancock and G. Zografi, Characteristics and Significance of the Amorphous State in Pharmaceutical Systems, J. Pharm. Sci, vol.86, pp.1-12, 1997.

R. C. Jones, C. J. Babcock, and W. B. Knowlton, Estimation of the Total Amorphous Content of Hawai'i Soils by the Rietveld Method, Soil Sci. Soc. Am. J, vol.64, pp.1108-1117, 2000.

P. Kumar and P. K. Nair, Effect of phosphorus content on the relative proportions of crystalline and amorphous phases in electroless NiP deposits, J. Mater. Sci. Lett, vol.13, pp.671-674, 1994.

G. Walenta and T. Füllmann, Advances In Quantitative XRD Analysis For Clinker, Cements, and Cementitious Additions, vol.47, pp.287-296, 2004.

. Bruker-axs, Determination of the Amorphous Content in Nanocrystalline Silicon Powder with GADDS, Lab Report XRD7, 1999.

S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley et al., Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns, Pharm. Res, vol.23, pp.2333-2348, 2006.

, Licence CC BY

O. P. Rachek, X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest's formula, J. Non-Cryst. Sol, vol.352, pp.3781-3786, 2006.

J. P. Cline, R. B. Von-dreele, R. Winburn, P. W. Stephens, and J. J. Filliben, Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of Nist Standard Reference Material 676a, Acta Cryst, vol.67, pp.357-367, 2011.

B. H. O'connor and M. D. Raven, Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures, Powder Diffraction, vol.3, issue.1, pp.2-6, 1988.

A. L. Bail, Modelling the silica glass structure by the Rietveld method, J. Non-Cryst. Sol, vol.183, pp.39-42, 1995.

T. F. Barth and E. Posnjak, Silicate structures of the cristobalite type: III. Structural relationship of high-cristobalite, ?-carnegieite, and Na2CaSiO4, Z. Kristallogr, vol.81, p.376, 1932.

L. Lutterotti, R. Ceccato, R. Maschio, and E. Pagani, Quantitative analysis of silicate glass in ceramic materials by the Rietveld method, Mater. Sci. Forum, vol.87, pp.278-281, 1998.

L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Inst. Methods Phys. Res. B, vol.268, p.334, 2010.

S. A. Sanchez, S. Ponce-castaneda, J. R. Martinez, F. Ruiz, Y. Chumakov et al., Quantitative analysis of iron oxide particles embedded in an amorphous xerogels matrix, J. Non-Cryst. Sol, vol.325, pp.251-257, 2003.

D. L. Bish and S. A. Howard, Quantitative phase analysis using the Rietveld method, J. Appl. Cryst, vol.21, pp.86-91, 1988.

A. Bernasconi, M. Dapiaggi, and A. F. Gualtieri, Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of zircon-rich sanitary-ware glazes, J. Appl. Cryst, vol.47, pp.136-145, 2014.

M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Z. Phys. Chem, vol.119, p.227, 1926.

W. A. Johnson and R. F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. Am. Inst. Miner. (Metall.) Eng, vol.135, p.416, 1939.

M. Avrami, Kinetics of phase change. I General Theory, J. Chem. Phys, vol.7, pp.1103-1112, 1939.

M. Avrami, Kinetics of phase change. II Transformation-time relations for random distribution of nuclei, J. Chem. Phys, vol.8, pp.212-224, 1940.

M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys, vol.9, pp.177-184, 1941.

A. N. Kolmogorov, On the Statistical Theory of Crystallization of Metals, Izv. Akad. Nauk SSSR, Ser. Mat, vol.3, pp.355-359, 1937.

J. Malek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta, vol.267, pp.61-73, 1995.

J. W. Christian, The Theory of Transformations in Metals and Alloys

. Pergamon, , 1975.

M. Marinovic-cincovic, B. Jankovic, B. Milicevic, Z. Antic, R. Krsmanovic-whiffen et al., The comparative kinetic analysis of the non-isothermal crystallization process of Eu 3+ doped Zn2SiO4 powders prepared via polymer induced sol-gel method, Powder Technol, vol.249, pp.497-512, 2013.

A. Guinier, La diffusion centrale des rayons X sous très faibles angles appliquée à l'étude de fines particules et suspension colloidale, C. R. Acad. Sci, vol.206, p.1374, 1938.

G. Porod, Die rontgenkleinwinkelstreuung von dichtgepackten kolloiden systemen, Kolloid-Zeitschrift, vol.124, pp.83-114, 1951.

G. Beaucage, Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, J. Appl. Cryst, vol.28, pp.717-728, 1995.

G. Beaucage, Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension, J. Appl. Cryst, vol.29, pp.134-146, 1996.

A. Guinier and G. Fournet, Small-Angle Scattering of X-rays, 1955.

D. J. Kinning and E. L. Thomas, Hard-sphere interactions between spherical domains in diblock copolymers, Macromolecules, vol.17, pp.1712-1718, 1984.

J. P. Hansen and J. Penfold, An analytic structure factor for macroion solutions, Mol. Phys, vol.42, pp.109-118, 1981.

J. P. Hansen and J. B. Hayter, A rescaled MSA structure factor for dilute charged colloidal dispersions, Mol. Phys, vol.46, pp.651-656, 1982.

M. Dumoulin, Verres nanostructurés par séparation de phases dans le système silice -oxyde d'étain. Elaboration par voie sol-gel et caractérisation microstructurale, 2013.

D. B. Williams and C. Carter, Transmission Electron Microscopy, 2009.

S. J. Pennycook, A. R. Lupini, M. Varela, A. Y. Borisevich, Y. Peng et al., Scanning Transmission Electron Microscopy for Nanostructure Characterization, in Scanning Microscopy for Nanotechnology: Techniques and Applications, pp.152-191, 2006.

E. Thune, A. Boulle, D. Babonneau, F. Pailloux, W. Hamd et al., Nanostructured sapphire vicinal surfaces as templates for the growth of self-organized oxide nanostructures, App. Surf. Sci, vol.256, pp.924-928, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00434428

M. H. Klaproth, Untersuchung der Zinnsteine, Beiträge zur chemischen Kenntniss der Mineralkörper, pp.245-256

M. H. Sainte-claire-deville, De la reproduction de l'étain oxydé et du rutile, C. R. Acad. Sci, vol.53, pp.161-164, 1861.

J. Maier and W. Goepel, Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide, J. Sol. State Chem, vol.72, pp.293-302, 1988.

W. Goepel, K. Schierbaum, H. D. Wiemhoefer, and J. Maier, Defect chemistry of tin(IV)-oxide in bulk and boundary layers, Sol. State Ion, pp.440-443, 1989.

M. Nagasawa, S. Shionoya, and S. Makishima, Vapor reaction growth of SnO2 single crystals and their properties, Japan. J. Appl. Phys, vol.4, pp.195-202, 1965.

, Licence CC BY

S. R. Shief, High pressure phases in SnO2 to 117 GPa, Phys. Rev. B, vol.73, p.14105, 2006.

W. E. Matthes, Emaux et Glaçures Céramiques », 2ème éd. Editions Eyrolles, p.500, 2010.

J. Bartons, J. , C. Guillemet, and . Le-verre, Sciences et Technologie, 2005.

Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda, and S. Kagawa, Selective reduction of nitrogenmonoxide with hydrocarbons over tin dioxide catalyst, Chem. Lett, vol.4, pp.773-776, 1993.

D. Amalric-popescu and F. Bozon-verduraz, SnO2-supported palladium catalysts: activity in deNOx at low temperature, Catal. Lett, vol.64, pp.125-128, 2000.

N. Tagushi, Gas-detecting device" US Patent N° 3631436, 1970.

N. Jaffrezic-renault, C. Pijolat, A. Pauly, J. Brunet, C. Varenne et al., Materials for chemical sensors, Actualité Chimique, pp.157-172, 2002.

K. Takahata, In chemical sensors technology, T. Sci, p.1, 1988.

E. Giacobino, Optique des milieux matériels, 1993.

S. Brovelli, N. Chiodini, R. Lorenzi, A. Lauria, M. Romagnoli et al., Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices, Nat. Comm, vol.3, p.690, 2012.

M. Dumoulin, W. Hamd, E. Thune, C. Rochas, and R. Guinebretiere, In situ time-resolved small-angle X-ray scattering observation of the fractal aggregation process in tin alkoxide polymeric solution, J. Appl. Cryst, vol.49, pp.366-374, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482434

W. Hamd, Élaboration par voie sol-gel et étude microstructurale de gels et de couches minces de SnO2, 2009.

W. Hamd, A. Boulle, E. Thune, and R. Guinebretiere, A new way to prepare tin oxide precursor polymeric gels, J. Sol-gel Sci. Technol, vol.55, pp.15-18, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00496733

M. Nogami, Section 3. Sol-gel processing and chemical processing of glass, J. Non-Cryst. Sol, vol.178, pp.320-326, 1994.

A. Gaudon, Matériaux composites nanostructurés par séparation de phases dans le système silice -zircone, 2005.

B. W. Peace, K. G. Mayhan, and J. F. Montle, Polymers from the hydrolysis of tetraethoxysilane, Polymer, vol.14, pp.420-422, 1973.

S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, vol.24, issue.1898, pp.1-39

Y. S. Ho and G. Mckay, Pseudo-second order model for sorption processes, Process Biochem, vol.34, pp.451-465, 1999.

L. L. Hench and M. J. Wilson, Processing of gel-silica monoliths for optics, J. Non-Cryst. Sol, vol.121, pp.234-243, 1990.

A. Midilli, H. Kucuk, and Z. Yapar, A new model for single-layer drying, Drying Technol, vol.20, pp.1503-1513, 2002.

E. Prince, International Table for Crystallography, 2011.

C. Z. Tan and J. Arndt, X-ray diffraction of densified silica glass, J. Non-Cryst. Solids, pp.47-50, 1999.

N. Chiodini, A. Paleari, D. Dimartino, and G. Spinolo, SnO2 nanocrystals in SiO2: A wideband-gap quantum-dot system, Appl. Phys. Lett, vol.81, p.1702, 2002.

A. D. Rollett, D. J. Srolovitz, R. D. Doherty, and M. P. Anderson, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall, vol.37, pp.627-639, 1989.

M. Marinovic-cincovic, B. Jankovic, B. Milicevic, Z. Antic, R. K. Whiffen et al., The comparative kinetic analysis of the non-isothermal crystallization process of Eu 3+ doped Zn2SiO4 powders prepared via polymer induced sol-gel method, Powder Technol, vol.249, pp.497-512, 2013.

J. Bartons and C. Guillemet, Le Verre : Sciences et Technologies, EDP Science, 2005.

C. J. Brinker and G. W. Scherer, Sol gel glass: I. Gelation and gel structure, J. Non-Cryst. Solids, vol.70, issue.3, pp.301-322, 1985.

M. Misheva, N. Djourelov, F. M. Margaca, and I. M. Miranda-salvado, Positronium study of porous structure of sol-gel prepared SiO2: Influence of pH, J. Non-Cryst. Sol, vol.279, pp.196-203, 2001.