W. Abasolo, M. Eder, K. Yamauchi, N. Obel, A. Reinecke et al., Pectin May Hinder the Unfolding of Xyloglucan Chains during Cell Deformation: Implications of the Mechanical Performance of Arabidopsis Hypocotyls with Pectin Alterations, Mol. Plant, vol.2, pp.990-999, 2009.

T. I. Baskin, Anisotropic Expansion of the Plant Cell Wall, Annu. Rev. Cell Dev. Biol, vol.21, pp.203-222, 2005.

A. Bichet, T. Desnos, S. Turner, O. Grandjean, and H. Höfte, BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis, Plant J, vol.25, pp.137-148, 2001.

A. Boudaoud, A. Burian, D. Borowska-wykr?t, M. Uyttewaal, R. Wrzalik et al., FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images, Nat. Protoc, vol.9, pp.457-463, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204146

D. H. Burk, Y. , and Z. , Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein, Plant Cell, vol.14, pp.2145-2160, 2002.

D. H. Burk, B. Liu, R. Zhong, W. H. Morrison, Y. et al., A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation, Plant Cell, vol.13, pp.807-828, 2001.

C. Cameron and A. Geitmann, Cell mechanics of pollen tube growth, Curr. Opin. Genet. Dev, vol.51, pp.11-17, 2018.

D. M. Cavalier, O. Lerouxel, L. Neumetzler, K. Yamauchi, A. Reinecke et al., Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component, Plant Cell, vol.20, pp.1519-1537, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352498

B. C. Crawford and M. F. Yanofsky, The Formation and Function of the Female Reproductive Tract in Flowering Plants, Curr. Biol, vol.18, pp.972-978, 2008.

E. F. Crowell, H. Timpano, T. Desprez, T. Franssen-verheijen, A. Emons et al., Differential Regulation of Cellulose Orientation at the Inner and Outer Face of Epidermal Cells in the Arabidopsis Hypocotyl, Plant Cell, vol.23, pp.2592-2605, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004333

D. E. Discher, P. Janmey, W. , and Y. , Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, pp.1139-1143, 2005.

J. Dong, S. T. Kim, and E. M. Lord, Plantacyanin Plays a Role in Reproduction in Arabidopsis, Plant Physiol, vol.138, pp.778-789, 2005.

T. Dresselhaus and N. Franklin-tong, Male-Female Crosstalk during Pollen Germination, Tube Growth and Guidance, and Double Fertilization, Mol. Plant, vol.6, pp.1018-1036, 2013.

M. Ermis, E. Antmen, and V. Hasirci, Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective, Bioact. Mater, vol.3, pp.355-369, 2018.

M. Fagard, T. Desnos, T. Desprez, F. Goubet, G. Refregier et al., PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis, Plant Cell, vol.12, pp.2409-2423, 2000.

I. Fobis-loisy, P. Chambrier, and T. Gaude, Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues, Plant Cell Rep, vol.26, pp.745-753, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189103

Y. Fu, The cytoskeleton in the pollen tube, Curr. Opin. Plant Biol, vol.28, pp.111-119, 2015.

J. Fu, Y. Wang, M. T. Yang, R. A. Desai, X. Yu et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates, Nat. Methods, vol.7, pp.733-736, 2010.

M. Fujita, R. Himmelspach, J. Ward, A. Whittington, N. Hasenbein et al., The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes, Plant Physiol, vol.162, pp.74-85, 2013.

O. Gossot and A. Geitmann, Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton, Planta, vol.226, pp.405-416, 2007.

R. P. Hellens, E. A. Edwards, N. R. Leyland, S. Bean, and P. M. Mullineaux, pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation, Plant Mol. Biol, vol.42, pp.819-832, 2000.

T. Higashiyama and Y. Hamamura, Gametophytic pollen tube guidance, Sex. Plant Reprod, vol.21, pp.17-26, 2008.

T. Higashiyama, Y. , and W. , Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors, Plant Physiol, vol.173, pp.112-121, 2017.

I. His and A. Driouich, Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis defcient in a membrane-bound endo-1,4-b-glucanase, vol.11, 2001.

J. L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum, vol.64, pp.1868-1873, 1993.

M. Iwano, H. Shiba, K. Matoba, T. Miwa, M. Funato et al., Actin Dynamics in Papilla Cells of Brassica rapa during Self-and Cross-Pollination, Plant Physiol, vol.144, pp.72-81, 2007.

M. K. Kandasamy, J. B. Nasrallah, and M. E. Nasrallah, Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis, Development, vol.120, pp.3405-3418, 1994.

M. Karimi, D. Inzé, and A. Depicker, GATEWAY TM vectors for Agrobacteriummediated plant transformation, Trends Plant Sci, vol.7, pp.193-195, 2002.

D. E. Koser, A. J. Thompson, S. K. Foster, A. Dwivedy, E. K. Pillai et al., Mechanosensing is critical for axon growth in the developing brain, Nat. Neurosci, vol.19, pp.1592-1598, 2016.

B. Landrein and O. Hamant, How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories, Plant J, vol.75, pp.324-338, 2013.

L. Lei, T. Zhang, R. Strasser, C. M. Lee, M. Gonneau et al., The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis, Plant Cell, vol.26, pp.2601-2616, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204107

K. A. Lennon and E. M. Lord, In vivo pollen tube cell of Arabidopsis thaliana I. Tube cell cytoplasm and wall, Protoplasma, vol.214, pp.45-56, 2000.

R. Lévy and M. Maaloum, Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods, Nanotechnology, vol.13, p.33, 2002.

D. Lin, L. Cao, Z. Zhou, L. Zhu, D. Ehrhardt et al., Rho GTPase Signaling Activates Microtubule Severing to Promote Microtubule Ordering in Arabidopsis, Curr. Biol, vol.23, pp.290-297, 2013.

E. Logemann, R. P. Birkenbihl, B. Ülker, and I. E. Somssich, An improved method, 2006.

J. Sampedro, B. Pardo, C. Gianzo, E. Guitián, G. Revilla et al., Lack of ?-Xylosidase Activity in Arabidopsis Alters Xyloglucan Composition and Results in Growth Defects, Plant Physiol, vol.154, pp.1105-1115, 2010.

M. A. Samuel, W. Tang, M. Jamshed, J. Northey, D. Patel et al., Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses, Mol. Cell. Proteomics MCP, vol.10, 2011.

A. Sanati-nezhad and A. Geitmann, The cellular mechanics of an invasive lifestyle, J. Exp. Bot, vol.64, pp.4709-4728, 2013.

A. Sanati-nezhad, M. Naghavi, M. Packirisamy, R. Bhat, and A. Geitmann, , 2013.

, Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling, Proc. Natl. Acad. Sci, vol.110, pp.8093-8098

M. Sassi, O. Ali, F. Boudon, G. Cloarec, U. Abad et al., An Auxin-Mediated Shift toward Growth Isotropy Promotes Organ Formation at the Shoot Meristem in Arabidopsis, Curr. Biol, vol.24, pp.2335-2342, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074821

T. Shigeyama, A. Watanabe, K. Tokuchi, S. Toh, N. Sakurai et al., ?-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana, J. Exp. Bot, vol.67, pp.5615-5629, 2016.

T. Shoji, N. N. Narita, K. Hayashi, J. Asada, T. Hamada et al., Plant-Specific Microtubule-Associated Protein SPIRAL2 Is Required for Anisotropic Growth in Arabidopsis, Plant Physiol, vol.136, pp.3933-3944, 2004.

D. R. Smyth, J. L. Bowman, and E. M. Meyerowitz, Early flower development in Arabidopsis, Plant Cell, vol.2, pp.755-767, 1990.

T. Taká?, O. ?amajová, T. Pechan, I. Luptov?iak, and J. ?amaj, Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants, Mol. Cell. Proteomics, vol.16, pp.1591-1609, 2017.

M. Uyttewaal, A. Burian, K. Alim, B. Landrein, D. Borowska-wykr?t et al., Mechanical Stress Acts via Katanin to Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis, Cell, vol.149, pp.439-451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004210

S. Verger, Y. Long, A. Boudaoud, and O. Hamant, A tension-adhesion feedback loop in plant epidermis, 2018.

C. Xiao, A. , and C. T. , Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences, Plant Signal. Behav, vol.11, 2016.

Q. An, R. Huckelhoven, K. Kogel, and A. J. Van-bel, Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus, Cellular Microbiology, vol.8, pp.1009-1019, 2006.

A. Attard, M. Gourgues, E. Galiana, F. Panabières, M. Ponchet et al., Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan), Journal of Plant Physiology, vol.165, pp.83-94, 2007.

A. Attard, E. Evangelisti, N. Kebdani-minet, F. Panabières, E. Deleury et al., Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica, BMC Genomics, vol.15, pp.1-20, 2014.

T. O. Bozkurt, K. Belhaj, Y. F. Dagdas, A. Chaparro-garcia, C. Wu et al., Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface: Rerouting of Endocytic Pathway to Pathogen Interface, Traffic, vol.16, pp.204-226, 2015.

R. Branco, E. Pearsall, C. A. Rundle, R. G. White, J. E. Bradby et al., Quantifying the plant actin cytoskeleton response to applied pressure using nanoindentation, Protoplasma, vol.254, pp.1127-1137, 2017.

L. A. Chapman and D. R. Goring, Pollen-pistil interactions regulating successful fertilization in the Brassicaceae, Journal of Experimental Botany, vol.61, pp.1987-1999, 2010.

Y. Dai and S. E. Law, Modeling the transient electric field produced by a charged pollen cloud entering a flower, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting, pp.1395-1402, 1995.

J. L. Dangl, C. Ritter, M. J. Gibbon, L. A. Mur, J. R. Wood et al., Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea, Plant Cell, vol.4, pp.1359-1369, 1992.

J. Dettmer, A. Hong-hermesdorf, Y. Stierhof, and K. Schumacher, Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis, Plant Cell, vol.18, pp.715-730, 2006.

B. J. Deverall, Defence Mechanisms of Plants, 1977.

H. Dickinson, Dry stigmas, water and self-incompatibility in Brassica, Sexual Plant Reproduction, vol.8, pp.1-10, 1995.

P. Dörmann, H. Kim, T. Ott, P. Schulze-lefert, M. Trujillo et al., Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions, New Phytologist, vol.204, pp.815-822, 2014.

T. Dresselhaus and M. L. Márton, Micropylar pollen tube guidance and burst: adapted from defense mechanisms?, Current Opinion in Plant Biology, vol.12, pp.773-780, 2009.

E. Durand, R. Méheust, M. Soucaze, P. M. Goubet, S. Gallina et al., Dominance hierarchy arising from the evolution of a complex small RNA regulatory network, Science, vol.346, pp.1200-1205, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110837

A. F. Edlund, R. Swanson, and D. Preuss, Pollen and Stigma Structure and Function: The Role of Diversity in Pollination, The Plant Cell, vol.16, pp.84-97, 2004.

C. J. Elleman and H. G. Dickinson, Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea, New Phytologist, vol.133, pp.197-205, 1996.

C. J. Elleman, V. Franklin-tong, and H. G. Dickinson, Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes, New Phytologist, vol.121, pp.413-424, 1992.

A. Era, M. Tominaga, K. Ebine, C. Awai, C. Saito et al., Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha, Plant Cell Physiol, vol.50, pp.1041-1048, 2009.

S. Fawke, M. Doumane, and S. Schornack, Oomycete Interactions with Plants: Infection Strategies and Resistance Principles, Microbiology and Molecular Biology Reviews, vol.79, pp.263-280, 2015.

I. Fobis-loisy, P. Chambrier, and T. Gaude, Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues, Plant Cell Rep, vol.26, pp.745-753, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189103

E. Galiana, M. Rivière, S. Pagnotta, E. Baudouin, F. Panabières et al., Plant-induced cell death in the oomycete pathogen Phytophthora parasitica, Cellular Microbiology, vol.7, pp.1365-1378, 2005.

A. Genre, M. Chabaud, T. Timmers, P. Bonfante, and D. G. Barker, Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection, The Plant Cell, vol.17, pp.3489-3499, 2005.

A. Genre, G. Ortu, C. Bertoldo, E. Martino, and P. Bonfante, Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi, Plant Physiol, vol.149, pp.1424-1434, 2009.

A. R. Hardham, Cell biology of plant -oomycete interactions, Cellular Microbiology, vol.9, pp.31-39, 2007.

A. R. Hardham, D. Takemoto, and R. G. White, Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack, BMC Plant Biol, vol.8, pp.1-14, 2008.

R. P. Hellens, E. A. Edwards, N. R. Leyland, S. Bean, and P. M. Mullineaux, pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation, Plant Molecular Biology, vol.42, pp.819-832, 2000.

M. Hermanns, A. J. Slusarenko, and N. L. Schlaich, The early organelle migration response of Arabidopsis to Hyaloperonospora arabidopsidis is independent of RAR1, SGT1b, PAD4 and NPR1, Physiological and Molecular Plant Pathology, vol.72, pp.96-101, 2008.

S. Hok, E. G. Danchin, V. Allasia, F. Panabières, A. Attard et al., An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease: An LRR-RLK involved in disease susceptibility, Plant, Cell & Environment, vol.34, pp.1944-1957, 2011.

S. Hok, V. Allasia, E. Andrio, E. Naessens, E. Ribes et al., The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis, Plant Physiol, vol.166, pp.1506-1518, 2014.

S. Hosseini, F. Heyman, U. Olsson, A. Broberg, D. Funck-jensen et al., Zoospore chemotaxis of closely related legume-root infecting Phytophthora species towards host isoflavones, Plant Pathology, vol.63, pp.708-714, 2014.

S. Huang, Y. Q. An, J. M. Mcdowell, E. C. Mckinney, and R. B. Meagher, The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules, Plant Mol. Biol, vol.33, pp.125-139, 1997.

M. Iwano, H. Shiba, K. Matoba, T. Miwa, M. Funato et al., Actin Dynamics in Papilla Cells of Brassica rapa during Self-and Cross-Pollination, Plant Physiol, vol.144, pp.72-81, 2007.

M. Iwano, M. Igarashi, Y. Tarutani, P. Kaothien-nakayama, H. Nakayama et al., A Pollen Coat-Inducible Autoinhibited Ca2+-ATPase Expressed in Stigmatic Papilla Cells Is Required for Compatible Pollination in the Brassicaceae, The Plant Cell, vol.26, pp.636-649, 2014.

M. K. Kandasamy, J. B. Nasrallah, and M. E. Nasrallah, Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis, Development, vol.120, pp.3405-3418, 1994.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-361, 2017.

M. Karimi, D. Inzé, and A. Depicker, GATEWAY TM vectors for Agrobacteriummediated plant transformation, Trends in Plant Science, vol.7, pp.193-195, 2002.

H. Kitashiba, P. Liu, T. Nishio, J. B. Nasrallah, and M. E. Nasrallah, Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana, Proc Natl Acad Sci U S A, vol.108, pp.18173-18178, 2011.

C. Kodera, J. Just, M. D. Rocha, A. Larrieu, L. Riglet et al., The molecular signatures of compatible and incompatible pollination, BioRxiv, vol.374843, 2018.

M. Latijnhouwers, P. J. De-wit, and F. Govers, Oomycetes and fungi: similar weaponry to attack plants, Trends in Microbiology, vol.11, pp.462-469, 2003.

,. Le-berre, M. Gourgues, B. Samans, H. Keller, F. Panabières et al., Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection, PLOS ONE, vol.12, 2017.

E. Logemann, R. P. Birkenbihl, B. Ülker, and I. E. Somssich, An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol, Plant Methods, vol.2, p.16, 2006.

Y. Lu, S. Schornack, T. Spallek, N. Geldner, J. Chory et al., Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking: Oomycete host cell reprogramming, Cellular Microbiology, vol.14, pp.682-697, 2012.

A. J. Mackie, A. M. Roberts, J. A. Callow, and J. R. Green, Molecular differentiation in pea powdery-mildew haustoria, Planta, vol.183, pp.399-408, 1991.

Y. Meng, Q. Zhang, W. Ding, and W. Shan, Phytophthora parasitica: a model oomycete plant pathogen, Mycology, vol.5, pp.43-51, 2014.

M. Mondragón-palomino, A. John-arputharaj, M. Pallmann, and T. Dresselhaus, Similarities between Reproductive and Immune Pistil Transcriptomes of Arabidopsis Species, Plant Physiology, vol.174, pp.1559-1575, 2017.

J. B. Nasrallah, Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility, Trends in Immunology, vol.26, pp.412-418, 2005.

L. Riglet, F. Rozier, C. Kodera, I. Fobis-loisy, and T. Gaude, KATANINdependent mechanical properties of the stigmatic cell wall regulate pollen tube pathfinding, BioRxiv, vol.384321, 2018.

N. Rotman, F. Rozier, L. Boavida, C. Dumas, F. Berger et al., , 2003.

, Female Control of Male Gamete Delivery during Fertilization in Arabidopsis thaliana, Current Biology, vol.13, pp.432-436

L. S. Ryder and N. J. Talbot, Regulation of appressorium development in pathogenic fungi, Current Opinion in Plant Biology, vol.26, pp.8-13, 2015.

D. Safavian and D. R. Goring, Secretory Activity Is Rapidly Induced in Stigmatic Papillae by Compatible Pollen, but Inhibited for Self-Incompatible Pollen in the Brassicaceae, PLoS One, vol.8, p.84286, 2013.

D. Safavian, Y. Zayed, E. Indriolo, L. Chapman, A. Ahmed et al., , 2015.

, RNA Silencing of Exocyst Genes in the Stigma Impairs the Acceptance of Compatible Pollen in Arabidopsis, Plant Physiol, vol.169, pp.2526-2538

M. A. Samuel, Y. T. Chong, K. E. Haasen, M. G. Aldea-brydges, S. L. Stone et al., Cellular Pathways Regulating Responses to Compatible and Self-Incompatible Pollen in Brassica and Arabidopsis Stigmas Intersect at Exo70A1, a Putative Component of the Exocyst Complex, Plant Cell, vol.21, pp.2655-2671, 2009.

M. A. Samuel, W. Tang, M. Jamshed, J. Northey, D. Patel et al., Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses, Mol Cell Proteomics, vol.10, 2011.

N. Sanabria, D. Goring, T. Nürnberger, and I. Dubery, Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity, New Phytologist, vol.178, pp.503-514, 2008.

A. Sanati-nezhad and A. Geitmann, The cellular mechanics of an invasive lifestyle, Journal of Experimental Botany, vol.64, pp.4709-4728, 2013.

L. Schreiber, Transport barriers made of cutin, suberin and associated waxes, Trends in Plant Science, vol.15, pp.546-553, 2010.

M. L. Simon, M. P. Platre, S. Assil, R. Van-wijk, W. Y. Chen et al., A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis, Plant J, vol.77, pp.322-337, 2014.

D. R. Smyth, J. L. Bowman, and E. M. Meyerowitz, Early flower development in Arabidopsis, The Plant Cell, vol.2, pp.755-767, 1990.

D. Takemoto, D. A. Jones, and A. R. Hardham, GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens, The Plant Journal, vol.33, pp.775-792, 2003.

D. Takemoto, D. A. Jones, and A. R. Hardham, Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei, Molecular Plant Pathology, vol.7, pp.553-563, 2006.

B. M. Tyler, Molecular basis of recognition between Phytophtora pathogens and their hosts, Annual Review of Phytopathology, vol.40, pp.137-167, 2002.

Y. Vaknin, S. Gan-mor, A. Bechar, B. Ronen, and D. Eisikowitch, Are flowers morphologically adapted to take advantage of electrostatic forces in pollination, New Phytologist, vol.152, pp.301-306, 2001.

P. Van-west, B. M. Morris, B. Reid, A. A. Appiah, M. C. Osborne et al., Oomycete Plant Pathogens Use Electric Fields to Target Roots, Molecular Plant-Microbe Interactions, vol.15, pp.790-798, 2002.

K. Yamada, K. Fuji, T. Shimada, M. Nishimura, and I. Hara-nishimura, , 2005.

, Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway, The Plant Journal, vol.41, pp.888-898

M. Yi and B. Valent, Communication Between Filamentous Pathogens and Plants at the Biotrophic Interface, Annual Review of Phytopathology, vol.51, pp.587-611, 2013.

K. Yoneyama and M. Natsume, 4.13 Allelochemicals for Plant-Plant and Plant-Microbe Interactions, pp.539-561, 2010.

T. Zhang, C. Gao, Y. Yue, Z. Liu, C. Ma et al., Time-Course Transcriptome Analysis of Compatible and Incompatible Pollen-Stigma Interactions in Brassica napus L, Front Plant Sci, vol.8, pp.1-15, 2017.

C. G. Agudelo, A. Sanati, M. Ghanbari, M. Packirisamy, and A. Geitmann, A microfluidic platform for the investigation of elongation growth in pollen tubes, J. Micromechanics Microengineering, vol.22, 2012.

C. G. Agudelo, A. Sanati-nezhad, M. Ghanbari, M. Naghavi, M. Packirisamy et al., TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells, Plant J, vol.73, pp.1057-1068, 2013.

C. Albenne, H. Canut, and E. Jamet, Plant cell wall proteomics: the leadership of Arabidopsis thaliana, Front. Plant Sci, vol.4, 2013.

C. Albenne, H. Canut, L. Hoffmann, J. , and E. , Plant Cell Wall Proteins: A Large Body of Data, vol.2, pp.224-242, 2014.

P. Albersheim, A. Darvill, K. Roberts, R. Sederoff, and A. Staehelin, Plant Cell Walls, 2010.

C. J. Alexopoulos, M. Blackwell, and C. W. Mims, Introductory mycology, 1996.

T. Arioli, L. Peng, A. S. Betzner, J. Burn, W. Wittke et al., Molecular Analysis of Cellulose Biosynthesis in Arabidopsis, Science, vol.279, pp.717-720, 1998.

M. A. Atmodjo, Z. Hao, and D. Mohnen, Evolving Views of Pectin Biosynthesis, Annu. Rev. Plant Biol, vol.64, pp.747-779, 2013.

T. I. Baskin and O. E. Jensen, On the role of stress anisotropy in the growth of stems, J. Exp. Bot, vol.64, pp.4697-4707, 2013.

T. I. Baskin, G. T. Beemster, J. E. Judy-march, M. , and F. , Disorganization of Cortical Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment among Cells in the Root of Arabidopsis, Plant Physiol, vol.135, pp.2279-2290, 2004.

L. Beauzamy, M. Louveaux, O. Hamant, and A. Boudaoud, Mechanically, the Shoot Apical Meristem of Arabidopsis Behaves like a Shell, 2015.

, MPa. Front. Plant Sci, vol.6

A. Bichet, T. Desnos, S. Turner, O. Grandjean, and H. Höfte, BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis, Plant J, vol.25, pp.137-148, 2001.

A. Boisson-dernier, S. Roy, K. Kritsas, M. A. Grobei, M. Jaciubek et al., Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge, Dev. Camb. Engl, vol.136, pp.3279-3288, 2009.

M. Bosch, A. Y. Cheung, and P. K. Hepler, Pectin methylesterase, a regulator of pollen tube growth, Plant Physiol, vol.138, pp.1334-1346, 2005.

T. Bouquin, O. Mattsson, H. Naested, R. Foster, and J. Mundy, The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth, J. Cell Sci, vol.116, pp.791-801, 2003.

M. Bringmann, B. Landrein, C. Schudoma, O. Hamant, M. Hauser et al., Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled, Trends Plant Sci, vol.17, pp.666-674, 2012.

M. Bringmann, E. Li, A. Sampathkumar, T. Kocabek, M. Hauser et al., POM-POM2/CELLULOSE SYNTHASE INTERACTING1 Is Essential for the Functional Association of Cellulose Synthase and Microtubules in Arabidopsis, Plant Cell, vol.24, pp.163-177, 2012.

D. H. Burk, Y. , and Z. , Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein, Plant Cell, vol.14, pp.2145-2160, 2002.

D. H. Burk, B. Liu, R. Zhong, W. H. Morrison, Y. et al., A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation, Plant Cell, vol.13, pp.807-828, 2001.

J. T. Burri, H. Vogler, N. F. Läubli, C. Hu, U. Grossniklaus et al., Feeling the force: how pollen tubes deal with obstacles, New Phytol, 2018.

H. Buschmann, C. O. Fabri, M. Hauptmann, P. Hutzler, T. Laux et al., Helical Growth of the Arabidopsis Mutant tortifolia1 Reveals a Plant-Specific Microtubule-Associated Protein, Curr. Biol, vol.14, pp.1515-1521, 2004.

C. Cameron and A. Geitmann, Cell mechanics of pollen tube growth, Curr. Opin. Genet. Dev, vol.51, pp.11-17, 2018.

D. M. Cavalier, O. Lerouxel, L. Neumetzler, K. Yamauchi, A. Reinecke et al., Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component, Plant Cell, vol.20, pp.1519-1537, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352498

K. Chae, C. A. Kieslich, D. Morikis, S. Kim, and E. M. Lord, A Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization, Plant Cell, vol.21, pp.3902-3914, 2009.

L. A. Chapman and D. R. Goring, Pollen-pistil interactions regulating successful fertilization in the Brassicaceae, J. Exp. Bot, vol.61, 1987.

Y. Chebli and A. Geitmann, Cellular growth in plants requires regulation of cell wall biochemistry, Curr. Opin. Cell Biol, vol.44, pp.28-35, 2017.

J. Chen, C. Gutjahr, A. Bleckmann, and T. Dresselhaus, Calcium Signaling during Reproduction and Biotrophic Fungal Interactions in Plants, Mol. Plant, vol.8, pp.595-611, 2015.

E. Coen and A. B. Rebocho, Resolving Conflicts: Modeling Genetic Control of Plant Morphogenesis, Dev. Cell, vol.38, pp.579-583, 2016.

F. Corson, O. Hamant, S. Bohn, J. Traas, A. Boudaoud et al., Turning a plant tissue into a living cell froth through isotropic growth, Proc. Natl. Acad. Sci, vol.106, pp.8453-8458, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00412929

D. J. Cosgrove, Expansive growth of plant cell walls, Plant Physiol. Biochem. PPB, vol.38, pp.109-124, 2000.

D. J. Cosgrove, Wall Structure and Wall Loosening. A Look Backwards and Forwards, Plant Physiol, vol.125, pp.131-134, 2001.

D. J. Cosgrove, Re-constructing our models of cellulose and primary cell wall assembly, Curr. Opin. Plant Biol, vol.22, pp.122-131, 2014.

D. J. Cosgrove, Catalysts of plant cell wall loosening, 1000.

D. J. Cosgrove, Diffuse Growth of Plant Cell Walls, Plant Physiol, vol.176, pp.16-27, 2018.

E. F. Crowell, H. Timpano, T. Desprez, T. Franssen-verheijen, A. Emons et al., Differential Regulation of Cellulose Orientation at the Inner and Outer Face of Epidermal Cells in the Arabidopsis Hypocotyl, Plant Cell, vol.23, pp.2592-2605, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004333

F. B. Daher and A. Geitmann, Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory Vesicles, Traffic, vol.12, pp.1537-1551, 2011.

D. S. Damineli, M. T. Portes, and J. A. Feijó, One Thousand and One Oscillators at the Pollen Tube Tip: The Quest for a Central Pacemaker Revisited, Pollen Tip Growth: From Biophysical Aspects to Systems Biology, pp.391-413, 2017.

J. D. Dearnaley, K. M. Clark, I. B. Heath, R. R. Lew, and D. R. Goring, Neither compatible nor self-incompatible pollinations of Brassica napus involve reorganization of the papillar cytoskeleton, New Phytol, vol.141, pp.199-207, 1999.

L. F. Delph, C. Weinig, and K. Sullivan, Why Fast-Growing Pollen Tubes Give Rise to Vigorous Progeny: The Test of a New Mechanism, Proc. Biol. Sci, vol.265, pp.935-939, 1998.

A. Desai and T. J. Mitchison, MICROTUBULE POLYMERIZATION DYNAMICS, 1997.

, Annu. Rev. Cell Dev. Biol, vol.13, pp.83-117

T. Desprez, M. Juraniec, E. F. Crowell, H. Jouy, Z. Pochylova et al., Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.15572-15577, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00198484

H. Dickinson, Dry stigmas, water and self-incompatibility in Brassica, Sex. Plant Reprod, vol.8, pp.1-10, 1995.

M. Dick-pérez, Y. Zhang, J. Hayes, A. Salazar, O. A. Zabotina et al., , 2011.

, Structure and Interactions of Plant Cell-Wall Polysaccharides by Two-and Three-Dimensional Magic-Angle-Spinning Solid-State NMR, Biochemistry, vol.50, pp.989-1000

J. Dong, S. T. Kim, and E. M. Lord, Plantacyanin Plays a Role in Reproduction in Arabidopsis, Plant Physiol, vol.138, pp.778-789, 2005.

J. Doughty, Cysteine-rich Pollen Coat Proteins (PCPs) and their Interactions with StigmaticS (Incompatibility) and S -Related Proteins in Brassica: Putative Roles in SI and Pollination, Ann. Bot, vol.85, pp.161-169, 2000.

P. Durand-smet, N. Chastrette, A. Guiroy, A. Richert, A. Berne-dedieu et al., A Comparative Mechanical Analysis of Plant and Animal Cells Reveals Convergence across Kingdoms, Biophys. J, vol.107, pp.2237-2244, 2014.

H. Duruflé, H. S. Clemente, T. Balliau, M. Zivy, C. Dunand et al., Cell wall proteome analysis of Arabidopsis thaliana mature stems, Proteomics, vol.17, p.1600449, 2017.

C. J. Elleman and H. G. Dickinson, The role of the exine coating in pollen-stigma interactions in Brassica oleracea L, New Phytol, vol.114, pp.511-518, 1990.

C. J. Elleman and H. G. Dickinson, Pollen-stigma interaction during sporophytic self-incompatibility in Brassica oleracea, Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, pp.67-87, 1994.

C. J. Elleman and H. G. Dickinson, Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea, New Phytol, vol.133, pp.197-205, 1996.

C. J. Elleman, V. Franklin-tong, and H. G. Dickinson, Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes, New Phytol, vol.121, pp.413-424, 1992.

A. Elliott and S. L. Shaw, Update: Plant Cortical Microtubule Arrays, Plant Physiol, vol.176, pp.94-105, 2018.

A. Endler, C. Kesten, R. Schneider, Y. Zhang, A. Ivakov et al., A Mechanism for Sustained Cellulose Synthesis during Salt Stress, Cell, vol.162, pp.1353-1364, 2015.

J. Escobar-restrepo, N. Huck, S. Kessler, V. Gagliardini, J. Gheyselinck et al., The FERONIA Receptor-like Kinase Mediates Male-Female Interactions During Pollen Tube Reception, Science, vol.317, pp.656-660, 2007.

Y. Fan, G. M. Burkart, and R. Dixit, The Arabidopsis SPIRAL2 Protein Targets and Stabilizes Microtubule Minus Ends, Curr. Biol, vol.28, pp.987-994, 2018.

S. Fawke, M. Doumane, and S. Schornack, Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiol, Mol. Biol. Rev, vol.79, pp.263-280, 2015.

J. A. Feijó, J. Sainhas, T. Holdaway-clarke, M. S. Cordeiro, J. G. Kunkel et al., Cellular oscillations and the regulation of growth: the pollen tube paradigm, BioEssays, vol.23, pp.86-94, 2001.

A. Fiebig, J. A. Mayfield, N. L. Miley, S. Chau, R. L. Fischer et al., , 2000.

, Alterations in CER6, a Gene Identical to CUT1, Differentially Affect Long-Chain Lipid Content on the Surface of Pollen and Stems, Plant Cell, vol.12, 2001.

D. D. Fisher and R. J. Cyr, Extending the Microtubule/Microfibril Paradigm: Cellulose Synthesis Is Required for Normal Cortical Microtubule Alignment in Elongating Cells, Plant Physiol, vol.116, pp.1043-1051, 1998.

I. Fobis-loisy, P. Chambrier, and T. Gaude, Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues, Plant Cell Rep, vol.26, pp.745-753, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189103

M. J. Frank and L. G. Smith, A Small, Novel Protein Highly Conserved in Plants and Animals Promotes the Polarized Growth and Division of Maize Leaf Epidermal Cells, Curr. Biol, vol.12, pp.849-853, 2002.

Y. Fu, H. Li, Y. , and Z. , The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis, Plant Cell, vol.14, pp.777-794, 2002.

Y. Fu, Y. Gu, Z. Zheng, G. Wasteneys, Y. et al., Arabidopsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis, Cell, vol.120, pp.687-700, 2005.

I. Furutani, Y. Watanabe, R. Prieto, M. Masukawa, K. Suzuki et al., The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana, Development, vol.127, pp.4443-4453, 2000.

Z. Gao, A. Daneva, Y. Salanenka, M. Van-durme, M. Huysmans et al., KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis, 2018.

T. Gaude and C. Dumas, Organization of stigma surface components in Brassica: a cytochemical study, J. Cell Sci, vol.82, pp.203-216, 1986.

M. Ghanbari, A. S. Nezhad, C. G. Agudelo, M. Packirisamy, and A. Geitmann, , 2014.

, Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis, J. Biosci. Bioeng, vol.117, pp.504-511

R. H. Goddard, S. M. Wick, C. D. Silflow, and D. P. Snustad, Microtubule Components of the Plant Cell Cytoskeleton, Plant Physiol, vol.104, pp.1-6, 1994.

D. R. Goring, Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions, J. Exp. Bot, vol.69, pp.69-78, 2018.

O. Gossot and A. Geitmann, Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton, Planta, vol.226, pp.405-416, 2007.

F. Govers, Misclassification of pest as "fungus" puts vital research on wrong track, 2001.

T. Hamada, Microtubule-associated proteins in higher plants, J. Plant Res, vol.120, pp.79-98, 2007.

T. Hamada, Chapter One -Microtubule Organization and Microtubule-Associated Proteins in Plant Cells, In International Review of Cell and Molecular Biology, pp.1-52, 2014.

O. Hamant, M. G. Heisler, H. Jönsson, P. Krupinski, M. Uyttewaal et al., Developmental Patterning by Mechanical Signals in Arabidopsis, Science, vol.322, pp.1650-1655, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412612

H. Hammami, A. Aliverdi, and M. Parsa, Effectiveness of Clodinafop-Propargyl, Haloxyfop-p-methyl and Difenzoquat-methyl-sulfate Plus Adigor® and Propel TM Adjuvants in Controlling Avena ludoviciana Durieu, J. Agric. Sci. Technol, vol.16, pp.291-299, 2014.

A. R. Hardham, D. Takemoto, and R. G. White, Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack, BMC Plant Biol, vol.8, pp.1-14, 2008.

J. Harholt, A. Suttangkakul, and H. V. Scheller, Biosynthesis of Pectin, Plant Physiol, vol.153, pp.384-395, 2010.

J. J. Hartman and R. D. Vale, Microtubule Disassembly by ATP-Dependent Oligomerization of the AAA Enzyme Katanin, Science, vol.286, pp.782-785, 1999.

B. He, F. Xi, X. Zhang, J. Zhang, and W. Guo, Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane, EMBO J, vol.26, pp.4053-4065, 2007.

I. Heilmann and T. Ischebeck, Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth, Plant Reprod, vol.29, pp.3-20, 2016.

K. Hématy, P. Sado, A. Van-tuinen, S. Rochange, T. Desnos et al., A Receptor-like Kinase Mediates the Response of Arabidopsis Cells to the Inhibition of Cellulose Synthesis, Curr. Biol, vol.17, pp.922-931, 2007.

W. Herth, Arrays of plasma-membrane "rosettes" involved in cellulose microfibril formation of Spirogyra, Planta, vol.159, pp.347-356, 1983.

N. Hervieux, M. Dumond, A. Sapala, A. Routier-kierzkowska, D. Kierzkowski et al., A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis, Curr. Biol, vol.26, pp.1019-1028, 2016.

Y. Heslop-harrison and K. R. Shivanna, The Receptive Surface of the Angiosperm Stigma, Ann. Bot, vol.41, pp.1233-1258, 1977.

T. Higashiyama, H. Kuroiwa, S. Kawano, and T. Kuroiwa, Guidance in Vitro of the Pollen Tube to the Naked Embryo Sac of Torenia fournieri, Plant Cell, vol.10, pp.2019-2031, 1998.

R. Himmelspach, R. E. Williamson, and G. O. Wasteneys, Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization, Plant J, vol.36, pp.565-575, 2003.

I. His and A. Driouich, Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis defcient in a membrane-bound endo-1,4-b-glucanase, vol.11, 2001.

H. Höfte, The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling, Plant Cell Physiol, vol.56, pp.224-231, 2015.

H. Höfte and A. Voxeur, Plant cell walls, Curr. Biol, vol.27, pp.865-870, 2017.

N. Huck, J. M. Moore, M. Federer, and U. Grossniklaus, The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception, Development, vol.130, pp.2149-2159, 2003.

M. Hulskamp, K. Schneitz, and R. E. Pruitt, Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis, Plant Cell, vol.7, pp.57-64, 1995.

E. Indriolo, D. Safavian, and D. R. Goring, The ARC1 E3 Ligase Promotes Two Different Self-Pollen Avoidance Traits in Arabidopsis, Plant Cell, vol.26, pp.1525-1543, 2014.

M. Iwano, H. Shiba, T. Miwa, F. Che, S. Takayama et al., Ca2+ Dynamics in a Pollen Grain and Papilla Cell during Pollination of Arabidopsis, Plant Physiol, vol.136, pp.3562-3571, 2004.

M. Iwano, H. Shiba, K. Matoba, T. Miwa, M. Funato et al., Actin Dynamics in Papilla Cells of Brassica rapa during Self-and Cross-Pollination, Plant Physiol, vol.144, pp.72-81, 2007.

M. Iwano, M. Igarashi, Y. Tarutani, P. Kaothien-nakayama, H. Nakayama et al., A Pollen Coat-Inducible Autoinhibited Ca2+-ATPase Expressed in Stigmatic Papilla Cells Is Required for Compatible Pollination in the Brassicaceae, Plant Cell, vol.26, pp.636-649, 2014.

J. Janson, M. C. Reinders, J. M. Tuyl, and C. J. Keijzer, Pollen tube growth in Lilium longiflorum following different pollination techniques and flower manipulations, Acta Bot. Neerlandica, vol.42, pp.461-472, 1993.

K. L. Johnson, M. J. Gidley, A. Bacic, and M. S. Doblin, Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose, Curr. Opin. Biotechnol, vol.49, pp.163-171, 2018.

H. S. Judelson, Metabolic Diversity and Novelties in the Oomycetes, Annu. Rev. Microbiol, vol.71, pp.21-39, 2017.

M. K. Kandasamy, J. B. Nasrallah, and M. E. Nasrallah, Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis, Development, vol.120, pp.3405-3418, 1994.

T. Ketelaar, The actin cytoskeleton in root hairs: all is fine at the tip, Curr. Opin. Plant Biol, vol.16, pp.749-756, 2013.

T. Ketelaar, H. J. Meijer, M. Spiekerman, R. Weide, and F. Govers, Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans, Fungal Genet. Biol, vol.49, pp.1014-1022, 2012.

S. Kim, J. Mollet, J. Dong, K. Zhang, S. Park et al., , 2003.

, Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism, Proc. Natl. Acad. Sci, vol.100, pp.16125-16130

M. Knoblauch, M. Vendrell, E. De-leau, A. Paterlini, K. Knox et al., Multispectral Phloem-Mobile Probes: Properties and Applications1, vol.167, pp.1211-1220, 2015.

J. H. Kroeger, F. B. Daher, M. Grant, and A. Geitmann, Microfilament Orientation Constrains Vesicle Flow and Spatial Distribution in Growing Pollen Tubes, Biophys. J, vol.97, pp.1822-1831, 2009.

S. Kurdyukov, A. Faust, C. Nawrath, S. Bär, D. Voisin et al., The Epidermis-Specific Extracellular BODYGUARD Controls Cuticle Development and Morphogenesis in Arabidopsis, Plant Cell, vol.18, pp.321-339, 2006.

B. A. Lalonde, M. E. Nasrallah, K. G. Dwyer, C. H. Chen, B. Barlow et al., A highly conserved Brassica gene with homology to the S-locus-specific glycoprotein structural gene, Plant Cell, vol.1, pp.249-258, 1989.

E. R. Lampugnani, G. A. Khan, M. Somssich, and S. Persson, Building a plant cell wall at a glance, J Cell Sci, vol.131, 2018.

B. Landrein and O. Hamant, How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories, Plant J, vol.75, pp.324-338, 2013.

B. Landrein, R. Lathe, M. Bringmann, C. Vouillot, A. Ivakov et al., Impaired Cellulose Synthase Guidance Leads to Stem Torsion and Twists Phyllotactic Patterns in Arabidopsis, Curr. Biol, vol.23, pp.895-900, 2013.

M. Latijnhouwers, P. J. De-wit, and F. Govers, Oomycetes and fungi: similar weaponry to attack plants, Trends Microbiol, vol.11, pp.462-469, 2003.

M. D. Lazzaro, J. M. Donohue, and F. M. Soodavar, Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes, Protoplasma, vol.220, pp.201-207, 2003.

M. C. Ledbetter and K. R. Porter, A "Microtubule" in Plant Cell Fine Structure, J. Cell Biol, vol.19, pp.239-250, 1963.

K. A. Lennon, S. Roy, P. K. Hepler, and E. M. Lord, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sex. Plant Reprod, vol.11, pp.49-59, 1998.

H. Li, J. Shen, Z. Zheng, Y. Lin, Y. et al., The Rop GTPase Switch Controls Multiple Developmental Processes in Arabidopsis, Plant Physiol, vol.126, pp.670-684, 2001.

S. Li, L. Lei, C. R. Somerville, and Y. Gu, Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.185-190, 2012.

D. Lin, L. Cao, Z. Zhou, L. Zhu, D. Ehrhardt et al., Rho GTPase Signaling Activates Microtubule Severing to Promote Microtubule Ordering in Arabidopsis, Curr. Biol, vol.23, pp.290-297, 2013.

J. J. Lindeboom, M. Nakamura, A. Hibbel, K. Shundyak, R. Gutierrez et al., A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing, Science, vol.342, p.1245533, 2013.

S. J. Lolle and A. Y. Cheung, Promiscuous Germination and Growth of Wildtype Pollen from Arabidopsis and Related Species on the Shoot of the Arabidopsis Mutant, fiddlehead, Dev. Biol, vol.155, pp.250-258, 1993.

S. J. Lolle, A. Y. Cheung, and I. M. Sussex, Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells, Dev. Biol, vol.152, pp.383-392, 1992.

S. J. Lolle, G. P. Berlyn, E. M. Engstrom, K. A. Krolikowski, W. D. Reiter et al., Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle, Dev. Biol, vol.189, pp.311-321, 1997.

M. Louveaux, S. Rochette, L. Beauzamy, A. Boudaoud, and O. Hamant, The impact of mechanical compression on cortical microtubules in Arabidopsis: a quantitative pipeline, Plant J, vol.88, pp.328-342, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602499

I. Luptov?iak, D. Samakovli, G. Komis, and J. ?amaj, KATANIN 1 Is Essential for Embryogenesis and Seed Formation in Arabidopsis, Front. Plant Sci, vol.8, 2017.

J. F. Ma, Z. H. Liu, C. P. Chu, Z. Y. Hu, X. L. Wang et al., Different regulatory processes control pollen hydration and germination in Arabidopsis, Sex. Plant Reprod, vol.25, pp.77-82, 2012.

S. L. Maas, X. O. Breakefield, and A. M. Weaver, Extracellular vesicles: unique intercellular delivery vehicles, Trends Cell Biol, vol.27, pp.172-188, 2017.

M. Majda, P. Grones, I. Sintorn, T. Vain, P. Milani et al., Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells, Dev. Cell, vol.43, pp.290-304, 2017.

G. Mao, H. Buschmann, J. H. Doonan, and C. W. Lloyd, The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation, J. Cell Sci, vol.119, pp.753-758, 2006.

J. Mascarenhas, Molecular Mechanisms of Pollen Tube Growth and Differentiation, Plant Cell, vol.5, pp.1303-1314, 1993.

J. A. Mayfield and D. Preuss, Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17, Nat. Cell Biol, vol.2, p.128, 2000.

R. S. Mcclinton, J. S. Chandler, and J. Callis, cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from Arabidopsis thaliana, Protoplasma, vol.216, pp.181-190, 2001.

F. J. Mcnally and R. D. Vale, Identification of katanin, an ATPase that severs and disassembles stable microtubules, Cell, vol.75, pp.419-429, 1993.

Y. Mei, H. Gao, M. Yuan, and H. Xue, The Arabidopsis ARCP Protein, CSI1, Which Is Required for Microtubule Stability, Is Necessary for Root and Anther Development, Plant Cell, vol.24, pp.1066-1080, 2012.

Y. Meng, Q. Zhang, W. Ding, and W. Shan, Phytophthora parasitica: a model oomycete plant pathogen, Mycology, vol.5, pp.43-51, 2014.

E. Michard, A. A. Simon, B. Tavares, M. M. Wudick, and J. A. Feijó, Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes, Plant Physiol, vol.173, pp.91-111, 2017.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

V. Mirabet, P. Das, A. Boudaoud, and O. Hamant, The Role of Mechanical Forces in Plant Morphogenesis, Annu. Rev. Plant Biol, vol.62, pp.365-385, 2011.

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, pp.237-242, 1984.

S. Miyazaki, T. Murata, N. Sakurai-ozato, M. Kubo, T. Demura et al., ANXUR1 and 2, Sister Genes to FERONIA/SIRENE, Are Male Factors for Coordinated Fertilization, Curr. Biol, vol.19, pp.1327-1331, 2009.

A. G. Mizukami, R. Inatsugi, J. Jiao, T. Kotake, K. Kuwata et al., The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance, Curr. Biol, vol.26, pp.1091-1097, 2016.

Y. Mizuta and T. Higashiyama, Chemical signaling for pollen tube guidance at a glance, J. Cell Sci, vol.131, p.208447, 2018.

J. Mollet, S. Park, E. A. Nothnagel, and E. M. Lord, A Lily Stylar Pectin Is Necessary for Pollen Tube Adhesion to an in Vitro Stylar Matrix, Plant Cell, vol.12, pp.1737-1749, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02121618

M. Munson and P. Novick, The exocyst defrocked, a framework of rods revealed, Nat. Struct. Mol. Biol, vol.13, pp.577-581, 2006.

M. Nakamura, J. J. Lindeboom, M. Saltini, B. M. Mulder, and D. W. Ehrhardt, , 2018.

, SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays, J. Cell Biol, vol.217, pp.915-927

N. Nakayama, R. S. Smith, T. Mandel, S. Robinson, S. Kimura et al., Mechanical Regulation of Auxin-Mediated Growth, Curr. Biol, vol.22, pp.1468-1476, 2012.

B. T. Nixon, K. Mansouri, A. Singh, J. Du, J. K. Davis et al., Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex, Sci. Rep, vol.6, p.28696, 2016.

G. Obermeyer and J. Feijó, Pollen Tip Growth: From Biophysical Aspects to, Systems Biology, 2017.

S. Okuda, H. Tsutsui, K. Shiina, S. Sprunck, H. Takeuchi et al., Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells, Nature, vol.458, pp.357-361, 2009.

E. Onelli, A. I. Idilli, and A. Moscatelli, Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues, Front. Plant Sci, vol.6, 2015.

R. Palanivelu and D. Preuss, Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro, BMC Plant Biol, vol.6, p.7, 2006.

E. Panteris and I. S. Adamakis, Aberrant microtubule organization in dividing root cells of p60-katanin mutants, Plant Signal. Behav, vol.7, pp.16-18, 2012.

E. Panteris, I. D. Adamakis, G. Voulgari, and G. Papadopoulou, A role for katanin in plant cell division: Microtubule organization in dividing root cells of fra2 and lue1 Arabidopsis thaliana mutants, Cytoskeleton, vol.68, pp.401-413, 2011.

A. R. Paredez, C. R. Somerville, and D. W. Ehrhardt, Visualization of Cellulose Synthase Demonstrates Functional Association with Microtubules, Science, vol.312, pp.1491-1495, 2006.

Y. B. Park and D. J. Cosgrove, A Revised Architecture of Primary Cell Walls Based on Biomechanical Changes Induced by Substrate-Specific Endoglucanases1, Plant Physiol, vol.158, pp.1933-1943, 2012.

Y. B. Park and D. J. Cosgrove, Xyloglucan and its Interactions with Other Components of the Growing Cell Wall, Plant Cell Physiol, vol.56, pp.180-194, 2015.

S. Park, G. Jauh, J. Mollet, K. J. Eckard, E. A. Nothnagel et al., A Lipid Transfer-like Protein Is Necessary for Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix, Plant Cell, vol.12, pp.151-163, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02121636

E. Parre and A. Geitmann, More Than a Leak Sealant. The Mechanical Properties of Callose in Pollen Tubes, Plant Physiol, vol.137, pp.274-286, 2005.

A. Peaucelle, R. Louvet, J. N. Johansen, H. Höfte, P. Laufs et al.,

, Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins, Curr. Biol, vol.18, pp.1943-1948

A. Peaucelle, S. A. Braybrook, L. Le-guillou, E. Bron, C. Kuhlemeier et al., Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis, Curr. Biol, vol.21, pp.1720-1726, 2011.

J. Pelloux, C. Rustérucci, and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends Plant Sci, vol.12, pp.267-277, 2007.

S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin et al., Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis, Proc. Natl. Acad. Sci, vol.104, pp.15566-15571, 2007.

R. Pleskot, L. Cwiklik, P. Jungwirth, V. ?árský, and M. Potocký, Membrane targeting of the yeast exocyst complex, Biochim. Biophys. Acta, vol.1848, pp.1481-1489, 2015.

D. Preuss, B. Lemieux, G. Yen, and R. W. Davis, A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization, Genes Dev, vol.7, pp.974-985, 1993.

S. M. Ray, S. S. Park, and A. Ray, Pollen tube guidance by the female gametophyte, Dev. Camb. Engl, vol.124, pp.2489-2498, 1997.

T. A. Richmond and C. R. Somerville, The Cellulose Synthase Superfamily, Plant Physiol, vol.124, pp.495-498, 2000.

C. Ringli, Monitoring the Outside: Cell Wall-Sensing Mechanisms, PLANT Physiol, vol.153, pp.1445-1452, 2010.

J. B. Ristaino, Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect, vol.4, pp.1369-1377, 2002.

P. A. Roelofsen and A. L. Houwink, Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophore, Acta Bot. Neerlandica, vol.2, pp.218-225, 1953.

E. R. Rojas, S. Hotton, and J. Dumais, Chemically Mediated Mechanical Expansion of the Pollen Tube Cell Wall, Biophys. J, vol.101, pp.1844-1853, 2011.

N. Rotman, F. Rozier, L. Boavida, C. Dumas, F. Berger et al., , 2003.

, Female Control of Male Gamete Delivery during Fertilization in Arabidopsis thaliana, Curr. Biol, vol.13, pp.432-436

D. Safavian and D. R. Goring, Secretory Activity Is Rapidly Induced in Stigmatic Papillae by Compatible Pollen, but Inhibited for Self-Incompatible Pollen in the Brassicaceae, PLoS ONE, vol.8, p.84286, 2013.

D. Safavian, Y. Zayed, E. Indriolo, L. Chapman, A. Ahmed et al., , 2015.

, RNA Silencing of Exocyst Genes in the Stigma Impairs the Acceptance of Compatible Pollen in Arabidopsis, Plant Physiol, vol.169, pp.2526-2538

A. Sampathkumar, P. Krupinski, R. Wightman, P. Milani, A. Berquand et al., Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells, vol.3, p.1967, 2014.

M. A. Samuel, Y. T. Chong, K. E. Haasen, M. G. Aldea-brydges, S. L. Stone et al., Cellular Pathways Regulating Responses to Compatible and Self-Incompatible Pollen in Brassica and Arabidopsis Stigmas Intersect at Exo70A1, a Putative Component of the Exocyst Complex, Plant Cell, vol.21, pp.2655-2671, 2009.

M. A. Samuel, W. Tang, M. Jamshed, J. Northey, D. Patel et al., Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses, Mol. Cell. Proteomics MCP, vol.10, 2011.

A. Sanati-nezhad and A. Geitmann, The cellular mechanics of an invasive lifestyle, J. Exp. Bot, vol.64, pp.4709-4728, 2013.

A. Sanati-nezhad, M. Naghavi, M. Packirisamy, R. Bhat, and A. Geitmann, , 2013.

, Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling, Proc. Natl. Acad. Sci, vol.110, pp.8093-8098

M. Sassi, O. Ali, F. Boudon, G. Cloarec, U. Abad et al., An Auxin-Mediated Shift toward Growth Isotropy Promotes Organ Formation at the Shoot Meristem in Arabidopsis, Curr. Biol, vol.24, pp.2335-2342, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074821

H. V. Scheller and P. Ulvskov, Hemicelluloses, Annu. Rev. Plant Biol, vol.61, pp.263-289, 2010.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

R. Schneider, T. Hanak, S. Persson, and C. A. Voigt, Cellulose and callose synthesis and organization in focus, what's new?, Curr. Opin. Plant Biol, vol.34, pp.9-16, 2016.

H. Shih, N. D. Miller, C. Dai, E. P. Spalding, and G. B. Monshausen, The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings, Curr. Biol, vol.24, pp.1887-1892, 2014.

T. Shoji, N. N. Narita, K. Hayashi, J. Asada, T. Hamada et al., Plant-Specific Microtubule-Associated Protein SPIRAL2 Is Required for Anisotropic Growth in Arabidopsis, Plant Physiol, vol.136, pp.3933-3944, 2004.

D. R. Smyth, J. L. Bowman, and E. M. Meyerowitz, Early flower development in Arabidopsis, Plant Cell, vol.2, pp.755-767, 1990.

A. Sogo, T. , and H. , Intermittent pollen-tube growth in pistils of alders (Alnus), 2005.

, Proc. Natl. Acad. Sci, vol.102, pp.8770-8775

V. Stoppin-mellet, J. Gaillard, and M. Vantard, Functional evidence for in vitro microtubule severing by the plant katanin homologue, Biochem. J, vol.365, pp.337-342, 2002.

K. Sugimoto, R. Himmelspach, R. E. Williamson, and G. O. Wasteneys, Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells, Plant Cell, vol.15, pp.1414-1429, 2003.

D. Suslov and J. Verbelen, Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls, J. Exp. Bot, vol.57, pp.2183-2192, 2006.

P. M. Szyjanowicz, I. Mckinnon, N. G. Taylor, J. Gardiner, M. C. Jarvis et al., The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana, Plant J, vol.37, pp.730-740, 2004.

D. Takemoto, D. A. Jones, and A. R. Hardham, GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens, Plant J, vol.33, pp.775-792, 2003.

H. Takeuchi and T. Higashiyama, A Species-Specific Cluster of Defensin-Like Genes Encodes Diffusible Pollen Tube Attractants in Arabidopsis, PLOS Biol, vol.10, p.1001449, 2012.

L. Tan, S. Eberhard, S. Pattathil, C. Warder, J. Glushka et al., An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein, Plant Cell, vol.25, pp.270-287, 2013.

N. G. Taylor, Cellulose biosynthesis and deposition in higher plants, New Phytol, vol.178, pp.239-252, 2008.

C. Thomas, Bundling actin filaments from membranes: some novel players, Front. Plant Sci, vol.3, 2012.

L. H. Thomas, V. T. Forsyth, A. ?turcová, C. J. Kennedy, R. P. May et al., Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma, Plant Physiol, vol.161, pp.465-476, 2013.

S. Turner and M. Kumar, Cellulose synthase complex organization and cellulose microfibril structure, Philos. Transact. A Math. Phys. Eng. Sci, vol.376, 2018.

M. Uyttewaal, A. Burian, K. Alim, B. Landrein, D. Borowska-wykr?t et al., Mechanical Stress Acts via Katanin to Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis, Cell, vol.149, pp.439-451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004210

T. Vain, E. F. Crowell, H. Timpano, E. Biot, T. Desprez et al., The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex1, Plant Physiol, vol.165, pp.1521-1532, 2014.

L. Wang, L. A. Clarke, R. J. Eason, C. C. Parker, B. Qi et al., PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions, New Phytol, 2016.

Q. Wang, L. Kong, H. Hao, X. Wang, J. Lin et al., Effects of Brefeldin A on Pollen Germination and Tube Growth, Plant Physiol, vol.139, pp.1692-1703, 2005.

T. Wang, Y. B. Park, D. J. Cosgrove, and M. Hong, Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance, Plant Physiol, vol.168, pp.871-884, 2015.

G. O. Wasteneys, A. , and J. C. , Spatial organization of plant cortical microtubules: close encounters of the 2D kind, Trends Cell Biol, vol.19, pp.62-71, 2009.

G. O. Wasteneys and M. E. Galway, Remodeling the cytoskeleton for growth and form: an overview with some new views, Annu. Rev. Plant Biol, vol.54, pp.691-722, 2003.

A. T. Whittington, O. Vugrek, K. J. Wei, N. G. Hasenbein, K. Sugimoto et al., MOR1 is essential for organizing cortical microtubules in plants, Nature, vol.411, pp.610-613, 2001.

R. Wightman and S. R. Turner, Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays: Microtubule dynamics, Plant J, vol.52, pp.742-751, 2007.

R. Wightman, G. Chomicki, M. Kumar, P. Carr, and S. R. Turner, , p.2, 2013.

, Determines Plant Microtubule Organization by Modulating Microtubule Severing, Curr. Biol, vol.23, pp.1902-1907

S. Wolf and S. Greiner, Growth control by cell wall pectins, Protoplasma, vol.249, pp.169-175, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004180

S. Wolf, K. Hématy, and H. Höfte, Growth Control and Cell Wall Signaling in Plants, Annu. Rev. Plant Biol, vol.63, pp.381-407, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053127

C. Xiao, T. Zhang, Y. Zheng, D. J. Cosgrove, A. et al., Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis, Plant Physiol, vol.170, pp.234-249, 2016.

N. Yanagisawa, N. Sugimoto, H. Arata, T. Higashiyama, and Y. Sato, Capability of tip-growing plant cells to penetrate into extremely narrow gaps, Sci. Rep, vol.7, p.1403, 2017.

A. Yephremov, E. Wisman, P. Huijser, C. Huijser, K. Wellesen et al., Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis, Plant Cell, vol.11, pp.2187-2201, 1999.

V. ?árský, I. Kulich, M. Fendrych, and T. Pe?enková, Exocyst complexes multiple functions in plant cells secretory pathways, Curr. Opin. Plant Biol, vol.16, pp.726-733, 2013.

R. Zerzour, J. Kroeger, and A. Geitmann, Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties, Dev. Biol, vol.334, pp.437-446, 2009.

Q. Zhang, E. Fishel, T. Bertroche, and R. Dixit, Microtubule Severing at Crossover Sites by Katanin Generates Ordered Cortical Microtubule Arrays in Arabidopsis, Curr. Biol, vol.23, pp.2191-2195, 2013.

T. Zhang, S. Mahgsoudy-louyeh, B. Tittmann, and D. J. Cosgrove, Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis, Cellulose, vol.21, pp.853-862, 2014.

T. Zhang, D. Vavylonis, D. M. Durachko, and D. J. Cosgrove, Nanoscale movements of cellulose microfibrils in primary cell walls, Nat. Plants, vol.3, p.17056, 2017.

Y. Zhang, C. Liu, A. C. Emons, and T. Ketelaar, The Plant Exocyst, J. Integr. Plant Biol, vol.52, pp.138-146, 2010.

Y. Zheng, D. J. Cosgrove, and G. Ning, High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls, Microsc. Microanal, vol.23, pp.1048-1054, 2017.

G. M. Zinkl, B. I. Zwiebel, D. G. Grier, and D. Preuss, Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine, Development, vol.126, pp.5431-5440, 1999.

, the transcriptomic data. CK is responsible for all experiments and analysis performed in the study except described below. FR produced and characterized Col-0/SRK14 and C24/SCR14 lines. CK and LR performed the image acquisition by scanning electron microscope. CK, LR, FR, IFL harvested plant materials and extracted RNA. CK, TG, IFL designed the study and CK, JJ