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Abstract 

 
The epidermis is the first cellular barrier in direct contact with the environment in 

both animal and plant organisms. In plants, the result of the cell-to-cell communication 

that occurs between the pollen grain and the epidermal cells of the stigma, also called 

papillae, is crucial for successful reproduction. When accepted, the pollen grain 

germinates and emits a pollen tube that transports the male gametes towards the ovules. 

Effective fertilization in angiosperms depends on the proper trajectory that pollen tubes 

take while progressing within the pistil tissues to reach the ovules. 

Pollen tubes grow within the cell wall of the papilla cells, applying pressure to the 

wall. Such forces are known to alter the cortical microtubule (CMT) network and cell 

behaviour. The first part of my PhD thesis aimed at investigating the role of the 

microtubule cytoskeleton of stigmatic cells in pollen tube growth. By combining cell 

imaging and genetic approaches, we found that CMT network of papilla cells is modified 

with ageing, CMT bundles being anisotropic at anthesis and becoming isotropic at later 

stages of stigma development. This change in CMT organisation was accompanied by a 

modification of the pollen tube growth direction, which passes from predominantly straight 

to coiled. In the Arabidopsis katanin1-5 (ktn1-5) mutant, papillae have a highly isotropic 

CMT array, associated with a marked tendency of wild-type (WT) pollen tube to turn 

around the papillae. We could partially phenocopy this coiled growth of pollen tubes by 

treating WT papillae with the microtubule-depolymerizing drug oryzalin. As CMT pattern is 

linked to cellulose microfibrils organisation, and hence possibly to cell-wall stiffness, we 

assessed the stiffness of ktn1-5 and aged papillae using Atomic Force Microscopy. We 

found that both papillae have a softer cell wall compared with WT cells, suggesting that 

the pollen tube growth phenotype might be dependent on cell wall alteration. We tested a 

series of cell wall mutants, including mutants described to exhibit CMT disorganisation 

and decreased cell wall rigidity and, astonishingly, none of them used as female induced 

turns of WT pollen tubes. Altogether, our results suggest that both organisation of CMT 

and cell wall properties dependent on KATANIN have a major role in guiding early pollen 

tube growth in stigma papillae. 

Similarly to pollen tube growth within the stigmatic papilla, hypha of filamentous 

pathogens penetrates the epidermal tissue of the host. During pathogen attacks, 

epidermal cells promptly react to the invading organisms to adjust the most relevant 

response. Early response of the first cell layers including epidermal cells is decisive for the 

result of plant-pathogen interactions. The second part of my PhD work aimed at 

comparing the cellular response of stigmatic cells challenged by two types of invaders, the 

pollen tube during pollination and hyphae of two oomycete filamentous pathogens, 
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Phytophtora parasitica and Hyaloperonospora arabidopsidis, during the infection process. 

While H. arabidopsidis was unable to penetrate the stigma surface, pollen tubes and P. 

parasitica hyphae invaded the papilla cell wall, triggering specific cellular features, 

respectively. For instance, they did not deform the plasma membrane of papilla cells in 

the same manner. By real-time cell imaging, we found that both invaders mobilized actin 

and late endosome compartments at the contact site with the papilla, but only P. 

parasitica hyphae lead to trans-Golgi Network polarization at the infection site. Thus, we 

demonstrate that a stigmatic cell challenged by a pollen tube or an oomycete hypha 

adapts its response to the invader’s identity. 
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Résumé 

 
Chez les plantes à fleurs, la communication entre les grains de pollen et les cellules 

épidermiques du stigmate, aussi appelées papilles, est cruciale pour le succès de la 

reproduction. Lorsqu’il est accepté, le grain de pollen germe et émet un tube pollinique qui 

transporte les gamètes mâles jusqu’aux ovules. La rencontre et la fusion entre les 

gamètes mâles et femelles reposent par conséquent sur la bonne trajectoire des tubes 

polliniques lors de leur progression dans les différents tissus du partenaire femelle pour 

atteindre les ovules.  

Les tubes polliniques croissent dans la paroi cellulaire des papilles stigmatiques et 

génèrent une pression sur ces dernières. De telles forces sont connues pour modifier le 

réseau de microtubules corticaux (MTC) ainsi que le comportement de la cellule. La 

première partie de mon travail de thèse a consisté à étudier le rôle des MTC du stigmate 

dans le contrôle de la croissance du tube pollinique. En combinant imagerie cellulaire et 

approches génétiques, nous avons mis en évidence que le réseau de MTC de la papille 

évolue au cours de son développement, passant d’un réseau anisotrope à l’anthèse, pour 

devenir isotrope à des stades plus âgés. Ce changement d’organisation s’accompagne 

d’une modification de la direction de croissance des tubes polliniques, passant de droite à 

spiralée. Chez le mutant katanin1-5 (ktn1-5) d’Arabidopsis, les papilles ont un réseau de 

MTC très isotrope, associé à une forte tendance des tubes polliniques sauvages à faire 

des spires autour des papilles. Ce phénotype « spiralé » a pu être partiellement reproduit 

par traitement des papilles avec un agent dépolymérisant les MTC, l’oryzaline. Compte 

tenu que le réseau de MTC est fortement lié à l’organisation des fibres de cellulose, et 

donc potentiellement à la rigidité de la paroi, nous avons mesuré la rigidité des papilles 

âgées, ainsi que celles du mutant ktn1-5 grâce au microscope à force atomique. Nos 

résultats montrent que ces papilles sont plus molles que les papilles sauvages à un stade 

anthèse, suggérant que le phénotype spiralé des tubes polliniques pourrait être 

dépendant d’une modification des propriétés mécaniques de la paroi cellulaire. Nous 

avons ensuite testé une série de mutants de paroi, présentant pour certains une 

diminution de la rigidité de leur paroi, associée ou non à un défaut d’organisation des 

MTC. Etonnamment, les tubes polliniques sauvages ne font pas de spires sur ces papilles 

mutées. L’ensemble de ces résultats suggère que la KATANIN, en régulant l’organisation 

des MTC et conférant des propriétés mécaniques particulières à la paroi cellulaire, joue 

un rôle primordial dans le guidage des tubes polliniques lors de leur croissance dans les 

papilles stigmatiques.  

De façon similaire à la croissance des tubes dans les papilles, les hyphes des 

pathogènes filamenteux pénètrent les tissus épidermiques de leur hôte. Lors d’une 

attaque par un pathogène, les cellules de l’épiderme de l’hôte réagissent rapidement pour 
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mettre en place une réponse appropriée. Cette réponse précoce est décisive sur le 

résultat de l’interaction plante-pathogène. La seconde partie de mon travail de thèse a eu 

pour objectif de comparer la réponse cellulaire des papilles stigmatiques suite à l’invasion 

par deux types d’organismes, le tube pollinique lors de la pollinisation et les hyphes de 

deux Oomycètes pathogènes, Phytophtora parasitica et Hyaloperonospora arabidopsidis 

durant leurs processus d’infection. Alors que H. arabidopsidis n’est pas capable de 

pénétrer la surface du stigmate, le tube pollinique ainsi que l’hyphe de P. parasitica ont la 

capacité d’envahir la paroi de la papille, provoquant chacun des réponses cellulaires 

spécifiques de cette dernière. Par exemple, les deux organismes invasifs ne déforment 

pas la membrane plasmique des papilles de la même manière. Grâce à un système 

d’imagerie en temps réel, nous avons mis en évidence une mobilisation de l’actine et des 

compartiments endosomaux tardifs dans la cellule stigmatique au site de contact avec le 

tube pollinique ou l’hyphe. Cependant, seul l’hyphe de P. parasitica entraîne une 

polarisation du réseau trans-Golgien au site d’infection. Ces résultats démontrent que la 

papille stigmatique est capable d’adapter sa réponse en fonction de l’identité de 

l’envahisseur.  
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Fig. 1 / Pollen tube path within the pistil in Arabidopsis thaliana.  

a, A. thaliana flower. Bar, 5 mm. b, Scanning Electron Microscopy (SEM) view of the upper part of 

the flower. In green, the stigma composed of unicellular papillae (pa). In red, the pollen grains (pg). 

c, Confocal image of a pollen grain germinated on a papilla. The pollen tube penetrates the papilla 

external wall layer (green line) and is growing towards the base of the stigma. d, Pollen tube 

pathway within the female partner. (1) Dehydrated pollen grains are deposited on the stigmatic 

papillae. (2) Pollen grains hydrate and stay attached to the papilla by the formation of an interface 

made up of compounds derived from both partners, called the “foot”. (3) The pollen grain emits a 

pollen tube that penetrates the papilla cell wall. (4) The pollen tube grows within the transmitting 

tract (tt) from the style to the ovary, to reach (5) the ovules (ov). (1-3, left) are SEM images. (3-5, 

right) are aniline blue staining images allowing the visualization of pollen grains and pollen tubes in 

bright blue. Bars, 10 µm when not specified on the images. Legends: Female partner: st = stigma, 

pa = papilla, tt = transmitting tract, ova = ovary, ov = ovules, fu = funiculus, mi = micropyle. Male 

partner: an = anther, pg = pollen grain, pt = pollen tube. Personal images.  
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The epidermis is the outer layer of plant and animal organisms acting as a boundary 

with the environment. In plants, the epidermis protects the internal tissues from outside 

chemical or mechanical damages associated with biotic or abiotic stresses, while 

specifically controlling exchanges with the environment and preventing water loss. In most 

cases, plant epidermis consists of a continuous and monolayer of cells that are 

structurally and functionally different depending on the organ they cover. For instance, 

tubular epidermal cells of the roots, called root hairs, are involved in water and nutrient 

absorption, guard cells of stomata at the surface of the leaves regulate gas exchanges 

and bulliform cells of Ammophila arenaria leaves mediate leaf rolling in stress condition to 

limit evapotranspiration. In flowers, epidermal cells play major roles in the reproduction 

process, such as the petal conical cells that accumulate scent to attract pollinators or the 

stigmatic cells at the extremity of the female organ that capture the male gametophytes. 

I. The stigmatic epidermis, the first barrier to overcome to 

access the ovules 

Success of fertilization is tightly linked to the result of the early communication event 

occurring at the female epidermal surface. Indeed, the first interaction that happens 

between male and female partners is the contact between the pollen grain, carrying the 

immotile sperm cells and the epidermal cells of the female organ (pistil). The upper side of 

the pistil terminates with a very specific tissue, the stigma, which in Brassicaceae species 

is composed of hundreds of unicellular elongated epidermal cells, called stigmatic cells or 

papillae (Heslop-Harrison and Shivanna, 1977). Once deposited on a stigmatic cell, a 

pollen grain adheres to the papilla surface and hydrates. After hydration, it germinates and 

produces a pollen tube that penetrates the stigma surface and then grows within the 

female tissues through the transmitting tissue of the style and the ovary to transport the 

male gametes towards the ovules where fertilization occurs. Fig. 1 illustrates the male – 

female interactions during the reproduction process that will be discussed in this 

introduction part.  

I.1. An active interface 

In Angiosperms, depending on plant families and species, stigmas have been 

classified into two groups: wet and dry stigmas (Heslop-Harrison and Shivanna, 1977). 

Wet stigmas, as in tobacco, are covered with viscous surface secretions containing 

proteins, lipids, and polysaccharides on which pollen grains hydrate spontaneously (Fig. 

2a). On the contrary, in the Brassicaceae family, including for instance Arabidopsis 
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thaliana, Arabidopsis lyrata, Brassica oleracea and Brassica napus, stigmas are dry, 

which refers to the absence of abundant surface secretions, allowing early pollen 

selectivity by the female partner (Fig. 1, Fig. 2b). Binding assays suggest that the initial 

step of pollen adhesion onto the stigma surface is mediated by the pollen outer cell layer 

(Zinkl et al., 1999). Following adhesion, proteins and lipids from the pollen surface, 

composing the pollen coat, spread out and intermix with components of the stigma 

surface to establish a meniscus, called “foot”, required to create a hydrophilic environment 

essential for pollen hydration (Chapman and Goring, 2010). Formation of this interface is 

extremely rapid, within minutes after the first pollen contact in A. thaliana, and requires 

components of both surfaces. On the pollen side, pollen grains of eceriferum (cer) 

mutants, which are impaired in long-chain lipid synthesis normally present in the pollen 

coat, fail to hydrate on the stigma surface (Fiebig et al., 2000; Hulskamp et al., 1995; 

Preuss et al., 1993). Likewise, pollen hydration defects have been reported in mutants for 

the Glycine-Rich Protein 17 (GRP17), one of the most abundant pollen coat proteins 

(Mayfield and Preuss, 2000), as well as for Pollen Coat Protein (PCP)-class A and PCP-

class B, both belonging to the small Cysteine Rich Protein family (Doughty 2000; Wang et 

al. 2017). On the stigma side, the papilla cell wall, covered with a waxy cuticle and a 

proteinaceous pellicle (Gaude and Dumas, 1986), exhibits unique properties compared 

with those of other epidermal cells. Mutant plants impaired in the FIDDLEHEAD gene, 

which encodes a protein that catalyzes elongation of fatty acids and affects cuticle 

function and water permeability, show abnormal pollen hydration and germination on leaf 

epidermis (Fig. 2c-d) (Lolle and Cheung, 1993; Lolle et al., 1992, 1997; Yephremov et al., 

1999). Similarly, leaf epidermis of the bodyguard mutant supports pollen grain hydration 

and germination, normally restricted to stigma epidermis. BODYGUARD protein encodes 

an epidermis-specific extracellular hydrolase involved in cutin synthesis, the major 

biopolymers of the cuticle (Kurdyukov et al., 2006) (Fig. 2e). Taken together, these data 

suggest that the cuticle of papilla cells has unique water permeability generally not 

encountered in other epidermal cells. Moreover, Transmission Electron Microscopy (TEM) 

studies showed that the stigmatic cuticle is traversed by micro-channels proposed to 

represent an adaptation to allow water flow and transfer of nutrients towards the pollen 

grain (Elleman and Dickinson, 1994). Interestingly, immature stigmas, before papilla cells 

developed, are unable to support pollen hydration and germination suggesting that 

stigmatic factors required for successful early pollen-stigma interaction are synthetized 

during the course of stigma development (Ma et al., 2012).  
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Fig. 2 / Stigma types and pollen hydration and germination. 

a, Light microscopy top view of a wet Nicotiana tabacum stigma, with several pollen grains (pg); 

from https://www.imaging-git.com/science/electron-and-ion-microscopy. b, Light microscopy top 

view of the dry A. thaliana stigma pollinated with WT pollen grains (pg); personal image. c, SEM 

images of A. thaliana pollen grains on WT rosette leaf cells; some pollen grains adhere but do not 

germinate. Bar, 10 µm. d, SEM images of A. thaliana pollen grains on fiddlehead rosette leaf cells; 

some grains germinate (arrow). Bar, 20 µm; c-d, from Lolle and Cheung, 1993. e, Pollen grain 

germination on the bodyguard leaf epidermis; from (Kurdyukov et al., 2006). 

I.2. Stigma papilla undergoes cytological changes following pollen 
tube penetration and growth 

While the pollen starts to hydrate, some changes occur at the surface and within the 

stigmatic cells (illustrated in Fig. 3). One of the primary modification is the expansion of 

the stigmatic cell wall at the pollen contact point (Elleman and Dickinson, 1990, 1996; 

Elleman et al., 1992; Kandasamy et al., 1994). The papilla cell wall is divided into two sub-

layers distinguishable by TEM: (i) the outer layer in contact with the cuticle is specific to 

the papillae and is expanded upon contact with the pollen grain and (ii) the inner layer 

homologous to a conventional cell wall (Elleman and Dickinson, 1994). The outer cell wall 

layer expansion is proposed to occurs by softening of the cell wall, permitting the pollen 
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tube entry and the pollen tube growth in a space generated between the two sub-layers 

(Elleman et al., 1992; Kandasamy et al., 1994). Concomitantly to the cell wall expansion, 

TEM studies showed that vesicles appear within the cell wall, beneath the pollen contact 

site (Dickinson, 1995; Elleman and Dickinson, 1994, 1996; Kandasamy et al., 1994). More 

recently, in Brassica, Goring and collaborators showed that multivesicular bodies (MVBs), 

an endocytic compartment normally destined to the vacuole for cargo degradation, are re-

routed towards the stigmatic plasma membrane (PM) adjacent to the pollen grain 

(Safavian and Goring, 2013). MVBs are formed by invagination of the limiting membrane 

of late endosomes generating intraluminal vesicles, which are released into the 

extracellular space when MVBs fused with the plasma membrane. These extracellular 

vesicles, also named exosomes, are key players of the intercellular communication in 

animal cells (Maas et al., 2017). Vesicles detected in the stigmatic cell wall by early TEM 

studies may correspond to exosomes released from MVB fusion to the plasma 

membrane. Interestingly, neither MVBs nor exosomes were identified in Arabidopsis 

pollinated stigmas. Instead, secretory vesicles that fuse with the stigmatic plasma 

membrane were detected beneath the pollen grain (Indriolo et al., 2014; Safavian and 

Goring, 2013). Thus, extracellular vesicles in Brassica or secretory vesicles in Arabidopsis 

may participate in the exocytosis of material towards the pollen grain, such as cell wall 

enzymes, aquaporin for water transfer or other nutrients necessary to support the pollen 

activity (Goring, 2018). Interestingly, an Arabidopsis Ca2+ pump, ACA13, present in 

intracellular vesicles before pollination, accumulates at the plasma membrane at the 

contact site with the emerging pollen tube. Ca2+ export is required for pollen acceptance 

and ACA13 represents a putative transported cargo via the secretory pathway towards the 

stigmatic plasma membrane (Iwano et al., 2004, 2014).  

While the involvement of polarized secretion in pollen acceptance has been clearly 

demonstrated, the way vesicles are specifically targeted to the plasma membrane region 

beneath the attachment site of the pollen grain remains unclear. In yeast, two subunits of 

the exocyst complex, Sec3 and Exo70, serve as spatial landmarks demarcating target PM 

domains as exocytic hotspots (Munson and Novick, 2006; Pleskot et al., 2015). The 

exocyst complex, conserved from yeast to mammals and plants, is composed of eight 

subunits and functions in tethering exocytic vesicles to the plasma membrane (Žárský et 

al., 2013; Zhang et al., 2010). Interestingly, this protein complex has been implicated in 

docking secretory vesicles in pollinated Brassica and Arabidopsis stigmatic cells (Safavian 

and Goring, 2013; Safavian et al., 2015; Samuel et al., 2009). Indeed, knockdown in B. 

napus, or knockout in A. thaliana, of exocyst subunit expression compromises pollen 

acceptance, and one component of the complex, the EXO70A1 protein, was found to be 

localised at the stigmatic plasma membrane (Safavian and Goring, 2013; Safavian et al., 
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2015; Samuel et al., 2009). Several reports in yeast and animal cells showed that 

phosphatidylinositol (4,5)-bisphosphate (PIP2) together with small GTPases, contribute to 

the polarized localisation of the exocyst, notably the Sec3 subunit (He et al., 2007; Pleskot 

et al., 2015). Whether such components act as polarity determinants in pollination remains 

to be explored. 

Secretory vesicles are typically transported along actin cables to reach the exocytic 

site (Ketelaar, 2013; Onelli et al., 2015; Thomas, 2012). The actin cytoskeleton of 

stigmatic cells was first showed by immunostaining to be unchanged following pollination 

in B. napus (Dearnaley et al., 1999). However, a more recent study contradicted this result 

(Iwano et al., 2007). By transient expression in B. rapa stigmatic cells of a GFP fused to 

the actin-binding domain of mouse talin, the authors described the formation of actin 

bundles focused at the pollen attachment site when pollen undergoes hydration. 

Moreover, treatment of the stigmatic cells with cytochalasin D, an actin-depolymerizing 

drug, significantly inhibits pollen hydration and germination. These observations are 

consistent with the assumption that polarized actin network might guide the vesicular 

secretion towards the pollen grain attachment site (Iwano et al., 2007). 

Additionally, other cytosolic events triggered by pollination have been described. A 

pharmacological and genetic approach provided evidence that depolymerization of the 

stigmatic microtubule (MT) network is required for pollen acceptance in B. napus as well 

as in A. thaliana (Samuel et al., 2011). The authors hypothesized that MT breakdown 

beneath the pollen grain might facilitate and accelerate the delivery of resources from the 

stigmatic cell towards the pollen. In Brassica papillae, TEM and tomographic analysis 

revealed the presence of a large vacuole occupying the major volume of the cell, 

surrounded by tubular or smaller round vacuoles. Upon pollination, the vacuolar network 

is reorganised leading to the orientation of the large vacuole below the plasma membrane 

adjacent to the pollen grain (Iwano et al., 2007; Safavian and Goring, 2013). As the 

vacuole is the major storage compartment for inorganic ions and water, its extension 

towards the pollen grain may be involved in the delivery of vacuolar cargos necessary for 

pollen hydration and germination.  

 
In conclusion, arrival of the pollen grain on the stigma surface releases cues that are 

sensed by the papilla cells and transduced into a variety of cellular modifications, such as 

active mobilization of the cytoskeleton, increased vesicular trafficking, and reorientation of 

the vacuole. These changes are necessary to hydrate the pollen grain, reactivate its 

metabolic activity and facilitate the entrance of the pollen tube. 
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Fig. 3 / Papilla responses to pollen in Brassica species and A. thaliana.  

The drawings represent cellular responses trigger by a pollen grain or an emerging pollen tube in 

Brassica or Arabidopsis papilla cells. Left (from top to bottom): MVBs (TEM images) accumulate at 

the pollen contact site in B. napus papilla, 5 minutes after pollination (map) (Safavian and Goring, 

2013); Actin (GFP-Talin) bundle formation at the pollen tube contact site in B. rapa, 1.5 hours after 

pollen deposition (Iwano et al., 2007); Ca2+ export (calcium green assay) from the B. rapa papilla at 

the pollen germination contact site, 60 map (Iwano et al., 2014). Calcium Green images are shown 

in pseudo color with purple, low calcium concentration, and red, high calcium concentration (Iwano 

et al., 2014). Right (from top to bottom): Vesicles (TEM images) accumulate at the pollen contact 

site in A. thaliana papilla, 10 map (Safavian and Goring, 2013); Ca2+ export (calcium green assay) 

from the Arabidopsis papilla at the pollen germination contact site, 15 map (Iwano et al., 2014); 

The ACA13 (ACA13:ACA13-Venus), a Ca2+ pump, accumulates at the Arabidopsis papilla–pollen 

tube contact site (Iwano et al., 2014); A. thaliana pollen tube grows within the two layers of the 

stigmatic cell wall (TEM images) (Kandasamy et al., 1994). Legends: s = stigmatic cell, sCW = 

stigmatic cell wall, sPM = stigmatic plasma membrane, LI = outer layer of the stigmatic cell wall, LII 

= inner layer of the stigmatic cell wall, pg = pollen grain, pt = pollen tube, MVBs = multi-vesicular 

bodies, v = vesicles. BF = brightfield images, TEM = transmission electron microscopy 
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I.3. Female cues are necessary for proper pollen tube guidance 
within the pistil 

After germination of the tube, the male partner has to properly find its way within the 

pistil tissues to deliver the sperm cells to the ovules, deeply hidden and protected in the 

ovary. The distance that the tube has to cover may be several tens of centimeters 

depending on the plant species. To reach its target, the pollen tube, which grows by tip-

growth (see I.3.2.1), has to invade a series of tissues chemically and mechanically 

different. It has first to pass through the stigmatic cell wall and then it follows its journey in 

the extracellular matrix of the transmitting tract, a specialized secretory tissue of the style 

and ovary (Lennon et al., 1998). After emerging from this nutritive tissue, the tube has to 

progress along the surface of the funiculus, a structure that connects ovules to the ovary, 

and finally moves toward the ovule and enters the embryo sac through the micropyle 

(Mizuta and Higashiyama, 2018). Consequently, the pollen tube is continuously 

constrained during its path to the ovules, and both chemical as well as mechanical cues 

have to be taken into account to fully understand the pollen tube orientation and guidance 

within the female organ. 

I.3.1.	Chemical	cues	that	direct	pollen	tube	growth	

Efforts have been made to identify molecules responsible for pollen tube guidance 

and several studies, at the end of the past century, showed that the embryo sac is the 

source of diffusive attractive signals (Higashiyama et al., 1998; Hulskamp et al., 1995; 

Ray et al., 1997). Consequently, for a long time, the stigma and style were considered as 

unnecessary for pollen tube guidance (Hulskamp et al., 1995; Sogo and Tobe, 2005). 

Work of Higashiyama group on Torenia fournieri, a unique plant with naked embryo sacs, 

contributed significantly to reveal the importance of the upper part of the pistil in pollen 

tube guidance. These authors developed a semi-in vitro assay wherein pollen tubes 

growing through a cut pistil emerge at the cut end of the style and continue to elongate in 

the medium (Higashiyama et al., 1998). In this assay, germination on the stigma and 

passage through the cut style were necessary to guide the pollen tubes towards isolated 

ovules placed in the medium, while pollen tube germinated directly on the medium never 

reached the naked embryo sacs. Thus, passage through the stigma/style tissues must 

activate the pollen tubes competency to perceive the ovule guidance signals. Pollen tubes 

of lily and A. thaliana are also attracted to ovules when passing first through the 

stigma/style tissues (Janson et al., 1993; Palanivelu and Preuss, 2006). Interestingly, in 

this latter work, some A. thaliana pollen grains germinated on the excised stigma and 
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produced tubes that did not penetrate the style but rather elongated directly on the 

medium towards the ovules. This observation suggested that contact with the stigma was 

sufficient to confer pollen tube guidance competency (Palanivelu and Preuss, 2006). 

Alternatively, guidance signals directly emitted by the upper part of the pistil may also 

exist. In 2005, Kim and collaborators, using an in vitro chemotropism assay coupled with 

biochemical and proteomic approaches, identified a lily (Lilium longiflorum) stigma 

chemotropic compound, the plantacyanin (Kim et al., 2003). The plantacyanin gene, 

strongly expressed in lily stigma, encodes a cell wall protein of unknown function that 

triggers the reorientation of pollen tube growth in vitro, a process known as chemotropism. 

A. thaliana plantacyanin, which is more abundant in the transmitting tract of the style and 

the ovary, has been proposed to similarly orient pollen tube growth in vivo (Dong et al., 

2005). In lily, glycoproteins secreted in the transmitting tract of the style were found to 

mediate adhesion with the stylar matrix to guide the pollen tubes to the ovules (Mollet et 

al., 2000; Park et al., 2000). In addition, a stigma/stylar lipid transfer protein isolated in lily, 

SCA, cannot induce chemotropism by itself but is proposed to enhance the chemotropic 

activity of the plantacyanin by facilitating its access to the pollen tube to control its 

directional growth (Kim et al., 2003). In A. thaliana, the SCA-like small secreted peptide is 

also involved in pollen tube guidance (Chae et al., 2009). In conclusion, the stigma/style 

tissues are not only a route for the pollen tube but also have an active role in guiding the 

tubes to their final destination by either activating pollen tube competency to perceive 

deeper guidance signals or by directly secreting chemotropic or adhesive compounds. 

After emerging from the transmitting tract, the pollen tube switches to ovular 

guidance. The most known ovular attractants are the LURE peptides, secreted by the two 

synergid cells of the embryo sac. LURE genes (LURE1 and LURE2) were first identified in 

T. fournieri and encode cysteine-rich polypeptides (CRPs). Purified LURE peptides were 

shown to attract pollen tubes in vitro (Okuda et al., 2009). AtLURE1 peptides were 

identified in A. thaliana and have the capacity to attract A. thaliana pollen tubes in vitro 

and in vivo (Takeuchi and Higashiyama, 2012). Interestingly, T. fournieri and A. thaliana 

pollen tubes germinated in vitro do not reach the isolated ovules but become competent to 

LURE peptide attraction after passing through a cut pistil in a semi-in vitro assay (Okuda 

et al., 2009; Takeuchi and Higashiyama, 2012). Similarly, a methyl-glucuronosyl 

arabinogalactan (AMOR), synthetized by T. fournieri ovules induces competency of the 

pollen tube to LURE peptides after passing though the stigma/style tissues (Mizukami et 

al., 2016). Thus, these data reinforce the idea that passing through the entire pistil 

including the stigma is essential for pollen tubes to acquire capacity to sense ovular 

guidance cues.  
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At the final guidance step, the pollen tube passes through the micropylar gate to 

enter in one synergid cell where it bursts to release the sperm cells. Pollen tube burst is 

regulated by Receptor-Like Kinases (RLKs), among them the FERONIA (FER) protein has 

a central role. FER protein is localised at the plasma membrane of the synergid cells and 

in loss-of-function mutants, pollen tube fails to arrest its growth and never burst (Huck et 

al., 2003; Rotman et al., 2003). It has been proposed that FERONIA may recognize ligand 

from the pollen tube and triggers molecular cascade leading to proper pollen tube 

reception (Escobar-Restrepo et al., 2007). The molecular aspects of pollen tube burst and 

delivery of the male gametes into the embryo sac have been thoroughly described in a 

recent review by Mizuta and Higashiyama (2018).  

 
The guidance of pollen tubes has been extensively studied during the past decades, 

and has exemplified above, most progress in this field has been done on other species 

than A. thaliana, such as lily for which pollen can easily germinate in vitro, or T. fournieri, 

which became a model plant due to is unique embryo sac protruding from the ovule. In 

addition, because pollen tube guidance is a dynamic process that takes place deep inside 

the female organ, most work was done in vitro or in semi in vitro conditions. The next 

challenges for the future will be to develop in vivo live-cell imaging taking into account the 

deepness of the interaction. Development of such methods seems required to better 

characterize guidance molecules but also to understand how the pollen tube responds to 

guidance signals to control its growth direction from the stigma to the embryo sac. 

I.3.2.	Biophysical	aspects	of	pollen	tube	growth	

As described above, most of the work on pollen tube guidance has been done using 

in-vitro systems, in other words, without the real constraints that the tube has to face while 

growing within the female organ. Indeed, during its travel, it has to pass through several 

barriers that likely exhibit different mechanical properties: (i) The stigmatic cell wall, 

although softened by the pollen tube secretions, constitutes a relatively stiff material, (ii) 

The transmitting tract, where the tube elongates, is a dense, stiff and fibrous extracellular 

matrix (Agudelo et al., 2012; Lennon et al., 1998), (iii) Emerging from the transmitting 

tract, the tube has to reach the funiculus and finally (iv) it has to penetrate one synergid 

cell to deliver the male gametes. This part is dedicated to deciphering the mechanical 

cues that permit a pollen tube to navigate through these changing landscapes. 
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I.3.2.1. Mechanism driving pollen tube elongation 

The pollen tube is the fastest growing plant cell known. For instance, maize pollen 

tube can reach up to 1 cm per hour (Mascarenhas, 1993). The growth speed appears as a 

competitive factor for fertilization (Delph et al., 1998). Pollen tube growth has been 

extensively studied and is well documented (see Cameron and Geitmann, 2018; Heilmann 

and Ischebeck, 2016; Michard et al., 2017; Obermeyer and Feijó, 2017) and occurs by tip-

growth, meaning that the expansion takes place exclusively at the apex of the tube (Fig. 

4a) (Damineli et al., 2017).  

 Pollen tube tip growth is based on massive secretion that targets vesicles to the 

tube apex in a reverse fountain flow (Fig. 4b). Through constant exocytosis of vesicles 

containing cell wall precursors, enzymes and membrane material, new components are 

brought to the tip for cell wall and membrane expansion. Importance of the secretory 

machinery has been demonstrated thanks to drug treatments. Indeed, Picea meyeri pollen 

tubes treated with Brefeldin A, an inhibitor of secretion, where found to display an altered 

cell wall composition and a modified morphology of the tip associated with a wavy growth 

(Fig. 4c,d) (Wang et al., 2005). This polarized secretion was shown to depend on actin 

filaments, which are oriented towards the tube extremity (Fig. 4b) (Daher and Geitmann, 

2011; Kroeger et al., 2009).  

Pectin (see part II.2.2) are important components of the tip cell wall and secretion of 

flexible methyl esterified pectins towards the apex enhances wall softness, allowing its 

deformation by the turgor pressure, motor of the elongation (Rojas et al., 2011). At the 

opposite, deposition of callose as well as de-esterified pectins behind the tip region, at the 

shank, is proposed to rigidify the tube sides (Parre and Geitmann, 2005; Zerzour et al., 

2009). Pectin modifications involved the action of pectin methylesterase enzymes (PME) 

(see part II.2.2) and de-esterified pectins, generated by PME, are cross-linked by calcium 

to rigidify the cell wall (Bosch et al., 2005). Thus, PMEs, affecting the mechanical 

properties of the wall, control the balance of esterified/de-esterified pectins limiting the 

expansion to the tip zone to maintain a cylindrical growth pattern. Additionally, these 

coordinated mechanisms confer resistance to tension stresses, preventing the tube to 

burst when embedded in the female tissue. Mechanical properties of the tip and the shank 

regions were shown to be different, with a softer apex compared to the shank, measured 

during pollen tube growth by micro-indentation (Zerzour et al., 2009). 

A second characteristic of the pollen tube is its elongation via a pulsatile process, 

with periods of rapid growth separated by slower or stopped elongation periods. 

Interestingly, measurement of calcium gradient at the tip of Arabidopsis pollen tubes 

growing in vitro revealed that oscillations of calcium, mediated by Ca2+-influx channels, 
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are correlated with growth fluctuations (reviewed in Feijó et al., 2001; Michard et al., 

2017). However, this model is currently a matter of debate as Damineli et al. (2017), using 

high resolution measurements combined with computational methods found that Ca2+ 

oscillations are not necessarily couple with growth, calcium spikes being detected upon 

pollen tube growth arrest. 

 
Fig. 4 / Mechanisms of pollen tube elongation.  

a, A. thaliana pollen tube grows by expansion of its tip. Bar = 5 µm. Personal SEM image. b, Pollen 

tube elongation is mediated by turgor pressure and involves vesicle trafficking (in blue). Vesicles 

containing cell wall material and enzymes are secreted at the tip through actin filaments (orange). 

Pectins can be modified by pectin methyl-esterases (PMEs) and interaction with calcium confers 

different mechanical properties to the tube cell wall. The tip cell wall is soft and can deform; the 
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shank is rigid and resists to deformation. Adapted from (Cameron and Geitmann, 2018). c-d, Effect 

of Brefeldin A (BFA) inhibition on Picea meyeri pollen tube growth. Bars, 50 µm. From (Wang et al., 

2005). c, P. meyeri pollen tube growth on standard medium during 36 hours leads to elongation of 

the tube at the apex. d, P. meyeri pollen tubes growing on BFA (5 µg/mL) containing medium have 

a larger tube and display aberrant wavy (asterisk) growth. 

I.3.2.2. Pollen tubes are able to apply pushing forces and react to 

mechanical cues 

Although pollen tube is able to secrete enzymes to soften the papilla cell wall, it also 

has to apply sufficient forces to penetrate it and elongate within various substrates. This 

pushing force exerted by the pollen tube is generated by the cytoskeleton and the 

hydrostatic turgor pressure (Sanati Nezhad and Geitmann, 2013). An in vitro assay of 

Papaver rhoeas pollen tubes, growing in different agarose concentration layers, 

demonstrated the importance of the pollen tube actin cytoskeleton in generating 

penetration forces. Indeed, depolymerization of actin filaments by latrunculin B decreased 

number of tubes able to penetrate the 1 to 3% agarose boundary (Gossot and Geitmann, 

2007). The turgor pressure, which is characteristic of walled cells, such as plant cells, is 

created by water movement between the inside and the outside of the cell and relies on 

differences in concentrations of osmotically active molecules. Hydrostatic pressure, to 

generate pushing forces, can only act on a plastic cell wall, which, in the case of the 

pollen tube, corresponds to the apex, thus driving the pollen tip growth. Recently, the 

exerted force was recorded by a combination a cellular force microscope, force sensors 

and lab-on-chip devices (see next part), and was estimated at 3 µN in the apical part of 

the A. thaliana pollen tube (Burri et al., 2018). 

To successfully find the path through complex matrix, ability to generate forces has 

to be coupled with the capacity to direct growth and avoid obstacles. Over the past few 

decades, many studies have highlighted the capacity of the pollen tube to perceive and 

quickly respond to mechanical obstacles. Microfluidic devices that originate from the Micro 

Electro Mechanical Systems field have been used, such as the lab-on-chip (LoC) or 

TipChip devices. These miniaturized platforms allow the monitoring of the ability of a 

single pollen tube to grow in individual microchannel with very different paths, designed to 

mimic the pollen tube in vivo microenvironment (Fig. 5a,b) (Agudelo et al., 2012, 2013; 

Ghanbari et al., 2014; Sanati Nezhad and Geitmann, 2013). These experiments revealed 

that a pollen tube is able to grow straight ahead if it does not encounter any mechanical 

obstacle and deviates immediately after contacting an obstacle, resulting in zigzag or 

curved trajectories through the microchannels (Fig. 5c). Moreover, when a pollen tube 

enters in collision with an obstacle, it adjusts its growth speed to reorient its direction, 
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depending on the collision angle (Agudelo et al., 2012) (Fig. 5d-e). When the pollen tube 

arrives perpendicularly (angle 90°) to the obstacle, its growth rate is dramatically 

decreased, whereas with a less pronounced angle (40°) its growth rate remains almost 

unchanged. This result is consistent with the fact that the tube has to make a higher turn 

when contacting an obstacle at 90°, which probably requires more time to the elongation 

machinery to reorient the tube growth (Agudelo et al., 2012). During its way to the ovules, 

the tube passes through narrow spaces, for example when it emerges from the 

transmitting tract. To mimic the compression stress that tubes can encounter during their 

growth, LoC system with microchannels containing narrow regions (microgaps) were 

designed (Fig. 5f) (Sanati Nezhad et al., 2013; Yanagisawa et al., 2017). Pollen tubes 

were able to adjust their width to enter in the microgap and return to their normal size 

when they get out from the narrow passage. Moreover, at the first contact with the 

microgap, the pollen tube growth rate decreases, then stays stable across the wider 

space. After passing the gap, the growth rate increases at the gap exit. These 

experiments reflect the flexibility of the pollen tube and demonstrate its ability to modulate 

its growth when it encounters an obstacle, slowing down when the constraint is too high.  
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Fig. 5 / Pollen tube ability to face mechanical obstacles.  

a-c. Microfluidic device used to monitor single pollen tube growth through microchannels; from 

(Agudelo et al., 2013). a, General design of the microfluidic network. Pollen tubes are deposited in 

the “inlet” part and move to the distribution chamber by means of a fluid flow. Pollen grains are 

then captured at the microchannel entries. b, Different microchannel geometries. c, Examples of 

camellia (Camellia japonica) pollen tubes path through microchannels with various geometries. 

Bar= 100 µm. d-f, Collision experiments, from (Agudelo et al., 2012). d-e, A. japonica pollen tubes 

collision with obstacles at (d) 40° and (e) 90° angles. Bars = 100 µm. f, Pollen tube passage 

through narrow gap; from (Sanati Nezhad et al., 2013). 

Development of microfluidic platforms has improved our understanding of how a 

pollen tube is mechanically guided within a complex organ such as the pistil. The ability of 

the pollen tube to sense and react to the surrounding environment suggests that 

mechanosensitive receptors are likely to be present at the apex of the growing tube. 

Interestingly, two cell wall sensor receptors, ANX1 and ANX2, have been shown to 
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prevent early tube bursting out of the synergid (Miyazaki et al., 2009), and are localised to 

the apical region of the pollen tube (Boisson-Dernier et al., 2009). These two receptors 

belong to a protein family whose one member, FERONIA, functions not only in pollen tube 

reception (see section I.3.1.) but also controls root growth in response to environmental 

mechanical cues (Shih et al., 2014).  

II. Mechanical properties influence cell behaviour 

II.1. The cell wall properties reside in its structure and composition 

As described above, mechanical properties of the medium in which the pollen tube 

grows play a crucial role in its behaviour. One of the most challenging aspects of the 

pollen tube growth is to bypass the stigmatic cell wall barrier whose main function is to 

protect the female organ against invaders. However, no clear data are available on the 

mechanical properties of the papilla cell wall, apart from TEM images showing papilla cell 

enlargement following tube growth, suggesting that mechanics may have a role in early 

pollen stigma interactions. Plant cell walls are divided into two classes; the primary cell 

wall deposited during cell growth and division and the secondary cell wall deposited when 

cells stopped growing and acquired specialized functions such as those from vessel. As 

papillae do not have specialized functions that required secondary cell wall synthesis, in 

this introduction part, we will focus only on structure and mechanical properties of the 

primary cell wall. Primary cell walls are thin and flexible, displaying many mechanical 

features such as strength, resistance to deformation, extensibility and anisotropy. The cell 

wall can resist to the high turgor pressure of the cell, pushing on the plasma membrane 

(Beauzamy et al., 2015). Wall mechanical properties reside in its structure and 

composition: a network of rigid cellulose microfibrils (CMFs) embedded in a viscous and 

cross-linked matrix of pectin and hemicellulose chains and proteins (Cosgrove, 2000). 

Many studies have decrypted the biochemical composition of cell wall components (see 

(Cosgrove, 2001; Park and Cosgrove, 2015) for further information). As illustrated in Fig. 

6, the cell wall is a complex and dynamic network, where the various components can 

cross-link together and hence lead to a variety of networks with different mechanical 

properties. Here, I will only focus on the main components of the cell wall and their 

modifications that can affect or confer mechanical properties to the wall.  
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Fig. 6/ Schematic and simplified representation of the plant cell wall.  

The main components are cellulose, hemicellulose (xyloglucans), pectins (homogalacturonans and 

rhamnogalacturonans) and proteins. Hemicellulose and pectins are synthetized in the Golgi and 

exocytosed to the cell wall. Synthesis of cellulose at the plasma membrane is achieved by the 

cellulose synthase complexes, linked to the microtubules via cellulose synthase interacting 1 

(CSI1) and companion of cellulose synthase (CC). Inspired by (Lampugnani et al., 2018). 

II.1.1.	The	cellulose	microfibrils,	the	load-bearing	elements	of	the	cell	wall	

The cellulose, the most abundant polymer on Earth, is considered as the load-

bearing element of the wall (Johnson et al., 2018). The crystalline cellulose microfibrils 

(CMFs) (Fig. 7a) are long polysaccharides made up of linked β-1,4-glucan linear chains, 

synthesised at the plasma membrane by cellulose synthase (CESA) proteins, which 

associate to form the cellulose synthase complexes (CSCs) generally organised in rosette 

(Arioli et al., 1998). It was previously established by TEM that a CSC is composed by 6 

hexamer of 6 CESA subunits, producing therefore 36 individual cellulose chains to 

constitute one microfibrils (Herth, 1983). However, the number of CESAs by rosette and 

therefore the number of individual cellulose chains to constitute a CMF is under debate 

since the existing model has been revised to 18 or 24 (Nixon et al., 2016; Thomas et al., 
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2013). In A. thaliana, 10 members compose the CESA gene family (Richmond and 

Somerville, 2000; Taylor, 2008). Genetic and biochemical studies have revealed a role for 

CESA1, CESA3, CESA6, CESA2, CESA5 and CESA9 in the biosynthesis of A. thaliana 

primary cell wall (Bringmann et al., 2012a; Desprez et al., 2007; Persson et al., 2007; 

Schneider et al., 2016; Turner and Kumar, 2018). Using CESA labelled with fluorescent 

proteins, Paredez et al. (2006) demonstrated that CESA complexes move along cortical 

microtubule (CMT) tracks (Fig. 6, Fig. 7b-d) (Paredez et al., 2006). CSCs migrate to the 

plasma membrane at around 200 to 350 nm/min (Desprez et al., 2007; Paredez et al., 

2006). The newly synthetized CMFs are delivered into the extracellular space and then 

aggregate and interconnect with other wall components to form the cell wall structure. 

 

 
Fig. 7 / Interactions between cellulose and microtubules.  

a, AFM image of the inner surface of onion epidermal cell showing the CMF organisation. Bar, 500 

nm. From (Zhang et al., 2014). b-d, Alignment of CMTs and CSC trajectory in Arabidopsis etiolated 

hypocotyl cells. Bars, 10 µm. b, YFP:CESA6 for CESA trajectory labelling, c, CFP:TUA6 for 

labelling microtubules. d, Colocalisation of YFP:CESA6 and CFP:TUA6. From (Paredez et al., 

2006). 

The cellulose crystallinity and polymerisation degree of CMFs play a major role in 

influencing their mechanical properties (Johnson et al., 2018). Individual microfibrils, 

around 3.5 nm wide, can be detected by Atomic Force Microscopy (AFM) or Field 

Emission Scanning Electron Microscopy (FESEM), and are often oriented in a common 

direction, organised in a dense network, as observed in the cell wall of onion epidermal 

cells (Fig. 7a) (Cosgrove, 2014). The stiffness of cell wall is between 10 MPa to 10 GPa. 

When measured individually, the cellulose microfibrils are the stiffest components of the 

wall, with about 100 GPa, whereas hemicellulose (about 40 MPa) or pectin network (with 

10 to 200 MPa) are softer (Mirabet et al., 2011). The CMF anisotropy is also crucial in wall 

reinforcement (Louveaux et al., 2016; Nakayama et al., 2012; Sampathkumar et al., 

2014). Extensibility tests have been performed in vitro on onion epidermal cells, and they 

showed that extension of the cell wall is larger when the pulling force is applied 

transversally to the net CMF orientation, compared with when it is applied longitudinally to 

b c a d 
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it. This provides evidence that the wall mechanical anisotropy is conferred by the 

predominant orientation of CMFs, which is considered to orient cell growth direction 

(Suslov and Verbelen, 2006). The highly organised network of CMFs is also dynamic, 

microfibrils being deposited by layers. The newest ones are formed at the plasma 

membrane and move outward when new layers are synthesised, deplacing the oldest 

ones. Besides, CMF orientation can be subjected to shift between each layer depending 

on the wall tension and stretching (Cosgrove, 2018; Zhang et al., 2017). These variations 

of the CMF orientation lead to variations in the mechanical properties of the cell wall 

(Höfte and Voxeur, 2017; Johnson et al., 2018). 

 Modifications of cellulose can be performed by cellulases or endo-1-4-β-

glucanases, such as KORRIGAN. Located at the membrane, KORRIGAN belongs to the 

glycoside hydrolase family9 (GH9) and has been reported to be associated with the CSCs 

(Vain et al., 2014). The kor mutant displays a dwarf phenotype with defects in the cell 

walls, notably a reduced cellulose content (Szyjanowicz et al., 2004). However, it remains 

unknown whether the GH9 enzymes have a direct role in wall loosening. Additionally, the 

kor mutant displays change in the pectin composition of cell walls of epidermal cells in A. 

thaliana (His and Driouich, 2001), reinforcing the idea that the cell wall is an intricate 

structure, regulated by feedbacks between its components. 

II.1.2.	Hemicelluloses	and	their	roles	in	wall	structure	

Hemicellulose (HC) is a family of diverse polysaccharides composed of β-1,4 linked 

sugar backbones in an equatorial configuration. Sugar chains include xyloglucans (XyGs), 

xylans, mannans and glucomannans (Scheller and Ulvskov, 2010). Synthesised in the 

Golgi apparatus, they are transported to the cell wall by exocytosis (Fig. 6). The major 

hemicelluloses in dicot species are the xyloglucans, composed of α-(1-6)-xylosyl residues. 

It was firstly assumed that the major role of xyloglucans was to coat and tether CMFs 

together to constitute the load bearing network reinforcing the wall (Albersheim et al., 

2010; Scheller and Ulvskov, 2010). This constitutes the “tethered” model of the primary 

cell wall structure (Fig. 8a) (Cosgrove, 2016). The xyloglucan xylosyltransferases (XXT) 

participate in xyloglucan biosynthesis in A. thaliana. The double loss-of-function mutant 

xxt1 xxt2 have been shown to be deprived of xyloglucans and to exhibit a reduced 

hypocotyl cell wall stiffness and an aberrant cellulose organisation (Cavalier et al., 2008; 

Xiao et al., 2016). But strikingly, although lacking this key component of the cell wall, xxt1 

xxt2 plants display a mild growth phenotype (Cavalier et al., 2008; Johnson et al., 2018; 

Park and Cosgrove, 2012a; Xiao et al., 2016). It was suggested that this lack of 

xyloglucans could be compensated by other wall components. However, associated with 
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this apparent contradiction with the tethered model, nuclear magnetic resonance (NMR) 

results demonstrated that interactions between xyloglucans and cellulose are actually 

limited (Dick-Pérez et al., 2011). In cucumber (Cucumis sativus), an endoglucanase that 

hydrolyses both xyloglucans and cellulose and targets cellulose-xyloglucans 

polysaccharides, was found to promote irreversible extension of the cell wall by 

disassembling the microfibrils (Park and Cosgrove, 2012). On the contrary, specific 

cellulose or xyloglucan endoglucanases do not provoke such an irreversible extension of 

the cell wall (Park and Cosgrove, 2012a). Accumulating data on the relationship between 

cellulose, HC and the mechanical properties of the cell wall, have led to reconsider the 

established cell wall model. A new model, named the “biomechanical hotspot” model (Fig. 

8b) was proposed by Cosgrove and collaborators, in which CMFs are directly linked to 

hemicellulose in a limited number of cross-links, hence reducing the enzyme accessibility 

to these hotspots. These hotspots would be the location of the action of endoglucanases 

and expansins, which would act to promote cell wall relaxation by separating CMFs 

(Cosgrove, 2016; Höfte and Voxeur, 2017).  

 

 
Fig. 8/ Two models for the structure of the primary cell wall.  

a, The “tethered network”, where CMFs are separated by xyloglucans. b, The “biomechanical 

hotspots” model where a mix of cellulose – xyloglucans are present in a limited number of 

connections. These hotspots (yellow) permit a limited access to endoglucanases and expansins. 

Inspired by (Cosgrove, 2016). 

Expansins are involved in cell wall loosening. The pH is crucial for many aspects of 

plant development and although clear enzymatic activity of expansins has not been 

demonstrated, many studies have suggested that low pH activates expansins, leading to 

dissociation between CMFs and xyloglucans and inducing wall loosening (Cosgrove, 

2000, 2018; Lampugnani et al., 2018).  
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II.1.3.	Pectins	and	their	roles	in	mechanical	properties	

Pectins are a heterogeneous group of complex polysaccharides, enriched in 

galacturonic acid (Harholt et al., 2010). Synthesised in the Golgi apparatus in methyl-

esterified forms, they are delivered to the wall by exocytosis (Fig. 6). Pectins form a 

network composed of homogalacturonans (HGs), the most abundant pectin, and 

rhamnogalacturonans (RGs) (Fig. 6). Various combinations of these elements covalently 

linked lead to formation of various specific pectin molecules (Atmodjo et al., 2013). 

Pectins have the capacity to link to proteins, forming a hydrogel network that stabilizes the 

cell wall (Tan et al., 2013). This network can be modified by enzymes such as pectate 

lyases, which cut homogalacturonans, or endo-/exo-polygalacturonases that hydrolyses 

pectin. Additionally, homogalacturonans, transported into the wall, undergo 

demethylesterification (removal of their methyl groups and exposing negative charges) by 

the pectin methylesterases (PMEs) (Wolf and Greiner, 2012). The A. thaliana genome 

contains 66 PMEs and 64 pectin methylesterase inhibitors (PMEIs) that negatively 

modulate PME activity (Pelloux et al., 2007). Catalytic activity of PMEs and PMEIs has 

been reported to play an important role in influencing wall mechanical properties and 

organogenesis, by either stiffening or loosening the cell wall depending on conditions. The 

pollen tube growth process represents a well-documented example of PME impact on wall 

mechanics (see section I.3.2.1.). When PME activity occurs in clusters, this will form 

blocks of free carboxyl groups that can interact with Ca2+ and create a stiff gel. If PMEs 

randomly esterify polymers of homogalacturonans, this leads to the release of protons, 

promoting the action of pectinase enzymes such as polygalacturonases or pectate lyases, 

severing the network and loosening the cell wall (Chebli and Geitmann, 2017; Höfte and 

Voxeur, 2017; Micheli, 2001). In addition, in the inflorescence meristem, overexpression of 

PME5, associated with a decrease of pectin methylesterification, leads to primordia 

formation, accompanied by a softer cell wall. At the opposite, PMEI3 overexpression leads 

to an increase of pectin methylesterification and inhibits primordia formation correlated 

with a stiffer wall (Peaucelle et al., 2008, 2011). 

II.1.4.	Cell	wall	proteins	

Cell wall material is also regulated by proteins (see an overview in Albenne et al., 

2014), and proteomic analyses of cell wall (Albenne et al., 2013; Duruflé et al., 2017) 

provided considerable insight into the variety of proteins trapped into the cell wall network. 

They play an important role in modifying cell wall components and participate in conferring 

the specific properties of the wall. Structural proteins such as arabinogalactan proteins 
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(AGPs), proline-rich proteins (PRPs), hydroxyproline-rich glycoproteins (HRGPs) or 

extensins have been identified. Some receptor-like kinases (RLKs) also known as cell-wall 

sensors, affect wall composition and dynamics. Interestingly, the mutation of the RLK 

THESEUS1 has been shown to partially restore growth defects of the cesa6 mutant, such 

as alteration of hypocotyl elongation, even if it does not attenuate the cellulose synthesis 

defects (Hématy et al., 2007). Additionally, the FERONIA RLK was suggested to act as a 

regulator of the wall integrity (Höfte, 2015) and of mechanical signalling (Shih et al., 2014).  

 

Finally, the cell wall is a complex and dynamic structure, where mechanical 

properties reside in the interaction and crosslinks between all its components. As 

mentioned earlier, the cytoskeleton, through the function of CMTs in orienting transport of 

CSCs to the plasma membrane, plays a crucial role in the construction of the cell wall. 

Mechanical anisotropy of the wall has been reported to mainly depend on the orientation 

of CMFs, which defines growth direction (Baskin, 2005; Baskin and Jensen, 2013; 

Bringmann et al., 2012; Sassi et al., 2014). In the next part, I will discuss the essential role 

of CMTs in cellulose orientation.  

II.2. Microtubules and cell mechanics 

II.2.1.	CMTs	and	cellulose	guidance	

Although a high number of studies have reported that the orientation of CMFs aligns 

with that of CMTs in many tissues, other work has contradicted this statement, suggesting 

that CMT and CMF colinearity is not that strict. Indeed, transverse CMF deposition was 

observed in cases where CMT arrays were disorganised, for instance in the 

thermosensitive mutant mor1-1 or in the XyG xylosyltransferases xxt1 xxt2 mutant 

(Himmelspach et al., 2003; Xiao et al., 2016). Nevertheless, strong evidence supports the 

idea that CSCs are predominantly guided by CMTs, as CSCs were found to be physically 

linked to the CMT network via the CELLULOSE SYNTHASE INTERACTIVE 1 (CSI1) (Li 

et al., 2012) and the Companion of Cellulose Synthase (CC) proteins (Endler et al., 2015) 

(Fig. 6). In agreement with this observation, mutation in CSI1 leads to changes in CMT 

and CSC dynamics (Bringmann et al., 2012b; Mei et al., 2012). The close link between 

CMTs and CMFs suggests that CMF orientation can be modified via alterations of the 

CMT network. Indeed, disruption of the CMT pattern by the microtubule-depolymerising 

drug oryzalin disorganises CMF arrays (Baskin et al., 2004). But additionally, there is a 

feedback loop between cellulose synthesis and microtubule organisation, as following 

treatment with isoxaben, a drug that inhibits cellulose synthesis, disorganisation of CMT 
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pattern occurs in tabacco cells as well as conifer pollen tubes (Fisher and Cyr, 1998; 

Lazzaro et al., 2003). In this way, because the mechanical properties of the cell wall are 

strongly linked to the orientation of CMFs, the organisation of the CMTs is commonly used 

as a proxy to predict the cell wall anisotropy and mechanical properties of a cell (Hamant 

et al., 2008; Hervieux et al., 2016; Sassi et al., 2014). This raises the question of what 

controls CMT orientation. 

II.2.2.	Microtubule	structures	and	functions		

At the beginning of the 20th century, microtubules were detected and described as 

tubular or filamentous structures present in eukaryotic cells. With the emergence of 

improved transmission electron microscopy techniques in the 60s, these hollow tubes 

were found to be localised beneath the plasma membrane, parallel to cellulose 

microfibrils, and were called “microtubules” (Ledbetter and Porter, 1963). Despite their 

name, and with around 25 nm-diameter compared with 8 nm for actin filaments, 

microtubules are the largest type of filaments in the cell. They are formed from self-

assembly of the GTP-binding α- and β-tubulin monomers (Goddard et al., 1994), 

organised in helix and forming 13 protofilaments assembled side by side around a hollow 

core to form the tubular microtubules. They are polar, the + end extremity elongates faster 

than the – one, and assembly and disassembly of tubulin heterodimers are mediated by 

GTPase activity (Desai and Mitchison, 1997). Organised in an extremely dynamic array, 

microtubules grow and shrink continuously (Mitchison and Kirschner, 1984). Microtubules 

cross other microtubules at crossover spots, and in function of the contact angle, they can 

depolymerize or polymerize. Events such as nucleation, severing, or bundling are critical 

for CMT dynamics and therefore crucial in assuring their functions.  

To this end, CMTs are associated with various proteins, called Microtubule-

Associated-Proteins (MAPs) that regulate their dynamic and organisation. Many MAPs 

exist in A. thaliana and their roles have been described in various reviews (Elliott and 

Shaw, 2018; Hamada, 2007, 2014). For instance, among other functions, MAP65 family 

proteins are known to promote CMT stability and regulate formation of bundles (Mao et 

al., 2006).  

 Orientation of CMT arrays results from the self-organisation of individual 

microtubules (Wasteneys and Ambrose, 2009) and involves severing activity, necessary 

to form an ordered CMT pattern (Lindeboom et al., 2013; Wightman and Turner, 2007; 

Wightman et al., 2013; Zhang et al., 2013). The KATANIN severing protein cuts 

microtubules at their crossover sites and plays a major role in their self-organisation. This 

heterodimeric protein is composed of a catalytic 60kDa and a regulatory 80kDa subunit 
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(McNally and Vale, 1993). The 60kDa subunit requires ATP hydrolysis to sever 

microtubules (Hartman and Vale, 1999). KATANIN plays a crucial role in plant growth, 

development and morphogenesis. Conserved in all eukaryotes, KATANIN is a well-

studied severing protein, identified by several groups in A. thaliana under different names 

such as BOTERO1 (Bichet et al., 2001), KATANIN1 (Burk et al., 2001), FRAGILE FIBER 

2 (Burk et al., 2001), KSS (McClinton et al., 2001), Atp60 (Stoppin-Mellet et al., 2002), 

LUE1 (Bouquin et al., 2003). Loss of KATANIN function leads to dwarf plants, which 

display aberrant cell growth associated with defects in most of the vegetative organs, such 

as round and thick leaves, and thick and shorter stems (Bichet et al., 2001; Bouquin et al., 

2003; Burk et al., 2001; Panteris and Adamakis, 2012). The katanin phenotypes were 

shown to result from a reduced expansion of cells (Bichet et al., 2001; Burk and Ye, 2002) 

associated with defects in cell division (Panteris et al., 2011). Although katanin tip growing 

cells, such as pollen tubes, are not affected (Bichet et al., 2001), lower fertility and seed 

set were reported in fra2, lue1 and ktn1-2 (Luptovčiak et al., 2017). Anther and embryo 

development are altered, mutants exhibiting shorter anthers, shorter siliques, associated 

with a lower number of seeds than wild-type (WT) plants, highlighting a role for KATANIN 

in embryo and seed formation (Luptovčiak et al., 2017). At the cellular level, katanin 

mutants display a less dynamic and highly isotropic (disorganised) microtubule arrays in 

many tissues, such as root epidermal cells, stem cells, sepal or meristematic cells (Bichet 

et al., 2001; Burk and Ye, 2002; Hervieux et al., 2016; Uyttewaal et al., 2012). This 

isotropy of CMTs is accompanied by an isotropy of CMFs (Burk and Ye, 2002). Among 

the proteins that regulate KATANIN, the Rho-Of-Plant 6 (ROP6) and its interacting protein 

ROP-interactive CRIB motif-containing proteins 1 (RIC1) were identified as playing a key 

role in katanin activity during pavement cell morphogenesis (Lin et al., 2013).  

 
As mentioned above, severing activity at crossover sites is crucial for the 

establishment of an ordered pattern, and this is also regulated by the microtubule-

associated protein SPIRAL2 (SPR2). The spr2 mutation was initially described to confer a 

specific morphology of the mutant plant, with leaf petioles, petals and hypocotyls twisting 

in right-handed helical growth (Furutani et al., 2000; Shoji et al., 2004). SPR2 was found 

to localise at the CMT crossover sites and it was suggested that it prevented severing 

activity, counteracting the function of KATANIN (Wightman et al., 2013). However, 

severing activity at crossover sites where SPR2 was present has been recently detected 

(Fan et al., 2018). However, in the spr2-2 mutant, the lifetime of the crossover is 

decreased, hence reducing CMT severing. SPR2 has also been shown to localise to and 

to stabilize microtubule minus ends. Contrary to katanin mutants, in the spr2 mutant the 

reorientation of CMTs is reduced, leading to an increase in the final anisotropy of CMT 

arrays (Fan et al., 2018; Nakamura et al., 2018).  
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II.2.3.	CMT	role	in	cell	mechanics	

Through its role in guiding CSCs, CMTs indirectly participate in the establishment of 

the cell wall properties. Indeed, in most cases, aligned CMTs induce a similar alignment of 

CMFs, and hence stiffen the cell wall. Additionally, CMTs also play a more direct role in 

conferring cell mechanical properties. To measure the role of CMTs in cell mechanics, 

independently of that of the cell wall, protoplasts were used and compressed between two 

plates at various forces (Durand-Smet et al., 2014). Treatment with oryzalin that 

depolymerizes CMTs, provoked a significant decrease of the protoplast rigidity, arguing 

for a direct role of CMTs in the mechanical properties of the cell. But how environmental 

conditions, and in particular mechanical stresses induced for instance by the growth of 

pollen tubes in stigma papillae or during an infection process, can affect cell mechanics 

and CMT organisation? Within the past decades, many studies have suggested a link 

between mechanical stress and the cytoskeleton, and especially the CMTs. It has been 

shown that cells are able to sense and react to mechanical stress by modifying their CMT 

network (Hamant et al., 2008). Pressing with a needle a cotyledon epidermal cell 

provokes a reorganisation of CMTs at the site of contact with the needle (Hardham et al., 

2008), whereas compressing cells bundles the CMT network (Louveaux et al., 2016). 

Upon mechanical stress, CMTs reorient parallel to the maximal tensile stress direction in 

cells and tissues (Hamant et al., 2008; Landrein and Hamant, 2013; Uyttewaal et al., 

2012). Mutants affected in CMT pattern and dynamics have been reported to display 

altered responses to mechanical stress, such as a slower response to mechanical stress 

in katanin mutants (Hervieux et al., 2016; Uyttewaal et al., 2012) or an enhanced one in 

spr2-2 (Shoji et al., 2004; Buschmann et al., 2004; Hervieux et al., 2016), reinforcing 

evidence linking CMTs with mechanical stress.  

II.2.4.	Role	of	mechanical	stress	role	in	cell	shape	

Plant morphogenesis appears strongly dependent on the close relationship between 

CMTs, CMFs and mechanical properties of the cell. Indeed, cell growth is oriented by the 

anisotropy of the mechanical properties Fig. 9 and is regulated by feedback control where 

mechanical stress affects CMTs that in turn affect CMF orientation and growth direction. A 

highly anisotropic CMT pattern leads to an anisotropic CMF deposition (geometrically but 

also mechanically) and reinforces the cell wall in the direction of CMFs, orienting the 

growth direction perpendicularly to the CMFs. This modifies cell shape and can explain 

the katanin phenotype mentioned above. 
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Fig. 9/ The main direction of cell growth depends on the CMT / CMF anisotropy.  

Orientation of CMTs generally defines CMF orientation, through guiding the cellulose synthases 

along the CMTs. Anisotropic pattern reinforces the wall in the direction of CMFs and promotes 

growth, perpendicularly to the CMFs. On the contrary, in the case of randomly oriented CMFs, cell 

growth becomes isotropic. 

At an organ level, differential growth between cells induces mechanical forces and 

conflicts between adjacent cells that impact their shape (Coen and Rebocho, 2016). One 

of the most evident examples of this is the pattern made by the jigsaw puzzle-like shaped 

cells at the epidermis of many plant leaves. At their initial stage of development, epidermal 

cells are polygonal with straight cell walls and then they acquire their specific shape 

composed of alternation of lobes and necks (Fu et al., 2005). To acquire this final 

geometry, coordination and communication between the neck of one cell and the lobe of 

its neighbouring cell is necessary, presumably by inhibition of outgrowth to form a lobe on 

one cell and deformation of the second cell. This involves feedback and various scale 

interactions of cell wall, cytoskeleton and their mechanical properties. A well organised 

CMT network has been shown to restrict expansion in the neck (Wasteneys and Galway, 

2003), by regulating CMF deposition, while the presence of actin promotes lobe formation 

(Frank and Smith, 2002; Fu et al., 2002). The final shape has also been shown to be 

mediated by localised variations in the stiffness of adjacent cell walls. A correlation has 

been done between shape and mechanical properties, where cell wall of curved regions 
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was stiffer than straight ones. Alteration of cell wall mechanical properties modifies cell 

shape and also changes the lobe number (Majda et al., 2017). In the constitutively active 

rop2 (CA-rop2) transgenic line, where pavement cells have partially lost their indented 

shape (Fu et al., 2002; Li et al., 2001), AFM measurements revealed that CA-rop2 

pavement cells have more homogeneous mechanical properties than WT (Majda et al., 

2017). This is an example of how the mechanical properties of one cell can affect the 

shape of a neighbouring one. 

 
Finally, thanks to the coordination of all the actors described here, the cell regulates 

its mechanical properties, and influences its surrounding environment.  
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2 
Thesis objectives and strategies 
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The experimental work of my PhD thesis was divided into two main objectives, 

which both were focused on the same cellular model, the stigmatic epidermal cell. First, I 

investigated the role of the mechanical properties of stigmatic cells in pollen tube growth 

and guidance, and second, I explored how stigmatic cells respond to different types of 

invasive organisms, i.e., the pollen tube as a positive cell-cell interaction for the plant, 

leading to seed set, and Oomycete hyphae, as an example of negative interaction causing 

infection. 

 

Role of the mechanical properties of stigmatic cells in pollen 

tube trajectory 
 

The oriented growth of the pollen tube has been the object of numerous studies 

based on in vitro and semi-in vivo experiments. They allowed the discovery of chemical 

attractants produced by the pistil that function as guidance cues for the pollen tube 

progression. In addition, they demonstrated that pollen tube is able to perceive and react 

to mechanical constraints by modulating its growth, suggesting that mechano-perception 

plays a crucial role in regulating pollen tube path. Astonishingly, knowledge about the 

mechanical properties of the female tissues and on their possible impact on pollen tube 

growth are poorly documented.  

The first challenge of my PhD work was to investigate the link between the 

mechanical properties of the stigmatic tissue and the pollen tube path in vivo in A. 

thaliana. As mechanical properties of plant cells are correlated with the microtubule 

network, we first asked whether CMT of papilla cells may act on pollen tube growth by 

analysing mutants impaired in microtubule pattern and dynamics. Secondly, as 

microtubules guide cellulose synthase complexes responsible for the production of 

cellulose microfibrils in the cell wall, we investigated the mechanical properties of the 

papilla cell wall in mutants affected in microtubule dynamics or cell wall composition and 

examined pollen tube path in these mutants.  

Results of this work have been submitted to BioRxiv under the identification 
number BIORXIV/2018/384321. 

 

 

Stigmatic epidermal cell response to Oomycete infection and 

pollen tube growth 
 

Taking the stigmatic cell as “responding cell”, the aim of the second objective of my 

thesis was to compare the cellular response of stigmatic cells following infection by two 

Oomycetes (Phytophtora parasitica and Hyaloperonospora arabidopsidis) (“negative 
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interaction”), with that following interaction with pollen tubes (“positive interaction”). This 

later work was done in collaboration with the Interactions Plantes – Oomycètes (IPO) 

team of the Institut Sophia Agrobiotech in Nice Sophia Antipolis, France.  

First, we investigated whether these two oomycetes were capable of infecting the 

female tissue, and we monitored the cellular events triggered by the papillae in response 

to infection and compared these cellular modifications with those observed with their 

natural host root cells. By setting up a live imaging system, we then monitored the 

subcellular reorganisation occurring within the stigmatic cell after both pollen tube and 

hyphal growth. Finally, taking advantage of transcriptomic data generated by our two 

groups, we made a comparative analysis of the molecular response triggered by each 

type of invasive organism and crossed the cellular with molecular findings. A manuscript 

describing this work is under preparation.  
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Role of the mechanical properties 

of stigmatic cells in pollen tube 

trajectory 
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Abstract 

Successful fertilization in angiosperms depends on the proper trajectory of pollen 

tubes through the pistil tissues to reach the ovules. Pollen tubes start their path by 

progressing within the cell wall of the papilla cells, applying pressure to the wall. 

Mechanical forces are known to play a major role in plant cell shape by controlling the 

orientation of cortical microtubules (CMTs), and hence deposition of cellulose microfibrils 

(CMFs). Here, by combining cell imaging and genetic approaches, we show that isotropic 

orientation of CMTs in aged, katanin1-5 (ktn1-5) or oryzalin-treated papilla cells is 

accompanied by a tendency of pollen tubes to coil around the papillae. In addition, using 

atomic force microscopy, we uncover that aged and ktn1-5 papilla cells have a softer cell 

wall. Altogether, our results suggest that KATANIN-dependent control of microtubule 

dynamics, and associated mechanical anisotropy of stigmatic walls, mediate pollen tube 

growth directionality.  

Introduction 

Following deposition of dehydrated pollen grains on the receptive surface of the 

female organ, the stigma, pollen rehydrates, germinates and produces a pollen tube that 

carries the male gametes toward the ovules where the double fertilization takes place. 

This long itinerary through the different tissues of the pistil is finely controlled, avoiding 

misrouting of the pollen tube and hence assuring proper delivery of the sperm cells to the 

female gametes. In Arabidopsis thaliana, pollen tubes grow within the cell wall of papillae 
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of the stigmatic epidermis, and then through the transmitting tissue of the style and ovary 

(Lennon and Lord, 2000). The transmitting tissue has an essential function in pollen tube 

guidance, providing chemical attractants and nutrients (Crawford and Yanofsky, 2008; 

Higashiyama and Hamamura, 2008). In contrast to these accumulating data showing the 

existence of factors mediating pollen tube growth in the pistil, whether guidance cues exist 

at the very early stage of pollen tube emergence and growth in the papilla cell wall 

remains largely unknown. The cell wall constitutes a stiff substrate and hence a 

mechanical barrier to pollen tube progression. There are numerous examples in animal 

cells demonstrating that mechanical properties of the cellular environment, and in 

particular rigidity, mediate cell signalling, proliferation, differentiation and migration 

(Discher et al., 2005; Ermis et al., 2018; Fu et al., 2010). In plant cells, cell wall rigidity 

depends mainly on its major component, cellulose, which is synthesized by plasma 

membrane-localised cellulose synthase complexes (CSCs) moving along cortical 

microtubule (CMT) tracks (Paredez et al., 2006). While penetrating the cell wall, the pollen 

tube exerts a pressure onto the stigmatic cell (Sanati Nezhad and Geitmann, 2013). Such 

physical forces are known to reorganise the cortical microtubules (CMTs), which by 

directing CSCs to the plasma membrane, reinforce wall stiffness by novel cellulose 

microfibril (CMF) synthesis (Paredez et al., 2006; Sampathkumar et al., 2014). Hence, 

there is an intricate interconnection between CMT organisation, CMF deposition and cell 

wall rigidity (Xiao and Anderson, 2016; Xiao et al., 2016). A major regulatory element of 

CMT dynamics is the KATANIN (KTN1) microtubule-severing enzyme, which allows CMT 

reorientation following mechanical stimulation (Louveaux et al., 2016; Sampathkumar et 

al., 2014; Uyttewaal et al., 2012). Here we investigated whether the CMT network of 

papilla cells might contribute to pollen tube growth and guidance in stigmatic cells by 

combining cell imaging and genetic approaches. We found that CMT network of papilla 

cells is modified with ageing, CMT bundles being anisotropic at anthesis and becoming 

isotropic at later stages of stigma development. This change in CMT organisation was 

accompanied by a modification of the direction of pollen tube growth, which passes from 

predominantly straight to coiled. In the ktn1-5 mutant, papilla cells exhibited a strong CMT 

isotropy associated with a marked tendency of wild-type (WT) pollen tubes to turn around 

the papilla. Coiled growth of pollen tubes was also observed on stigma papillae treated 

with the CMT-depolymerizing drug oryzalin, although at a lower extent. Faster growth of 

coiled pollen tubes was observed in aged WT as well as ktn1-5 papillae, which both were 

found to exhibit softer cell walls. Additionally, we tested a series of cell wall mutants, 

including mutants having CMT disorganisation and decreased cell wall rigidity and, 

unexpectedly, none of them used as female induced coiled growth of WT pollen tubes. 

Altogether, our results strongly suggest that CMT organisation and cell wall mechanical 



56 

properties dependent on KTN1 have a major role in guiding early pollen tube growth in 

stigma papillae.  

Results  

CMT dynamic pattern and pollen tube growth during stigma development. To assess 

the functional role of stigmatic CMTs in pollen – papilla cell interaction, we first analysed 

their organisation in papillae at stages 12 to 15 of stigma development as described 

(Smyth et al., 1990) (Fig. 10a,b). We generated a transgenic line expressing the CMT 

marker MAP65.1-citrine under the control of the stigma specific promoter SLR1 (Fobis-

Loisy et al., 2007). Before (stage 12) and at anthesis (stage 13), the CMTs were aligned 

perpendicularly to the longitudinal axis of papilla cells and were highly anisotropic (median 

value of 0.40) (Fig. 10c,d). At stage 14, when anthers extend above the stigma, the CMT 

pattern became less organised, with a higher variability in anisotropy values. Finally, at 

stage 15 when the stigma extends above anthers, CMT anisotropy had a median value of 

0.09 indicative of an isotropic orientation of CMTs (Fig. 10c,d). These findings reveal that 

the papilla CMT cytoskeleton is dynamic during development, with a change of CMT array 

orientation from anisotropy to isotropy. We then wondered whether this change in CMT 

organisation could be correlated with pollen tube growth. To this end, we self-pollinated 

Col-0 papillae from stages 12 to 15 and examined pollen tube growth one hour after 

pollination by scanning electron microscopy (SEM) (Fig. 11a). At stage 12 and 13, we 

found most (~60%) pollen tubes to grow straight in the papillae, whereas about 30% and 

10% of tubes made half-turn or one turn around stigmatic cells, respectively (Fig. 11b). At 

later stages of development, the tendency to coil around the papillae dramatically 

increased, with more than 35% of pollen tubes at stage 14 and more than 55% at stage 

15 making one or more than one turn around papillae. These results suggest that CMT 

organisation in the papilla impacts the direction of growth of pollen tubes and that loss of 

CMT anisotropy is associated with coiled growth. 
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Fig. 10 / CMT organisation during papilla cell development.  

a, Flower development of A. thaliana from developmental stages 12 to 15. Scale bar, 500 µm. b, 

Upper view of the stigma during development by SEM. Scale bar, 50 µm. c, Confocal images of 

papilla cells expressing MAP65-citrine at each stage of development. Scale bar, 5 µm. d, 

Quantitative analysis of CMT array anisotropy of papilla cells from stages 12 to 15. The red dots 

correspond to the mean values of the three replicates. Statistical difference were calculated using a 

Shapiro-Wilk test to evaluate the normality and then a Wilcoxon test, ***P < 0.01. N > 4 stigmas, n 

> 60 papilla cells for each stage. 
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Fig. 11 / Pollen tube growth behaviour on papillae during development.  

a, SEM images of Col-0 papillae pollinated with Col-0 pollen, one hour post pollination, from stages 

12 to 15; pollen and tubes were artificially colorised. Scale bar, 5 µm. b, Quantification of the 

number of turns (T) made by the pollen tube on papillae from stages 12 to 15. Data are expressed 

as mean +/- s.e.m. A Chi-Square test for independence (at 6 degree of freedom) was used to 

compare all stages and demonstrated that the number of turns was significantly different between 

stages (***P < 0.01). 

Impaired CMT dynamics of papillae affects pollen tube growth direction. To confirm 

the relation between stigma CMTs and pollen behaviour, we examined pollen tube growth 

on stigmas of the katanin1-5 mutant, which is known to exhibit reduced CMT array 

anisotropy in root cells (Bichet et al., 2001; Burk and Ye, 2002; Burk et al., 2001). 

Because the CMT organisation in ktn1-5 papillae is unknown, we crossed ktn1-5 with the 

MAP65-1-citrine marker line and found that CMT arrays were more isotropic in ktn1-5 

papillae when compared with those of the WT (Fig. 12a,c). Using SEM, we then analysed 

Col-0 pollen behaviour on ktn1-5 stigmatic cells at stage 13 (Fig. 12b). We observed that 

Col-0 pollen tubes acquired a strong tendency to coil around ktn1-5 papillae, with above 

60% of tubes making one or more than one turn around papillae, sometimes making up to 

6 turns, before reaching the base of the cell (Fig. 12d and Supplementary Fig. 1). In some 

rare cases, pollen tubes even grew upward in the ktn1-5 mutant and appeared blocked at 

the tip of the papilla (Supplementary Fig. 1b). To test the direct impact of stigma CMTs on 

pollen tube growth direction, we examined whether the destabilization of CMTs in Col-0 

papillae could affect pollen tube growth. To this end, we treated stigmas by local 

application of the depolymerizing microtubule drug oryzalin in lanolin pasted around the 

style. After 4 hours of drug treatment, no more CMT labelling was detected in papillae, 
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while CMTs were clearly visible in mock-treated (DMSO) stigmas (Fig. 13a). Stigmas were 

then pollinated with Col-0 pollen and one hour later, pollen tubes were found turning on 

drug-treated but not on control papillae (Fig. 13b,c). However, the number of coils was 

significantly lower than on ktn1-5 papillae. Indeed, 25% of the pollen tubes made at least 

2 coils in ktn1-5 papillae whereas this percentage represented only 4% on the oryzalin 

treated stigmas (Fig. 12d, Fig. 13c). Altogether, these results confirm that stigmatic CMTs 

contribute to the directional growth of pollen tubes in papilla cells. 

 

Fig. 12 / Effect of CMT organisation on pollen tube path.  

a, Confocal images of papilla cells expressing MAP65.1-citrine in Col-0, ktn1-5 at stage 13. Scale 

bars, 5 µm. b, SEM images of Col-0 and ktn1-5 papillae pollinated with Col-0 pollen grains; pollen 

and tubes were artificially colorized. Scale bar, 10 µm. c, CMT anisotropy of Col-0 and ktn1-5 

papilla cells at stage 13. N(Col-0) = 10 stigmas, n(Col-0) = 106 papillae, N(ktn1-5) = 11stigmas, 

n(ktn1-5) = 114 papillae. Statistical differences were calculated using a Shapiro-Wilk test to 

evaluate the normality and then a Wilcoxon test with ***P < 0.01. d, Quantification of the number of 

turns (T) made by Col-0 pollen tubes on ktn1-5 and Col-0 papillae. Data are expressed as mean +/- 

s.e.m. Statistical difference was found between pollen tube path within ktn1-5 and Col-0 papillae 
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and was calculated using an adjusted Chi-Square test for homogeneity (2 degrees of freedom), 

***P < 0.01. N(Col-0) = 27 stigmas, n(Col-0) = 251 papillae, N(ktn1-5) = 23 stigmas, n(ktn1-5) = 

327 papillae. 

 

Fig. 13 / Local oryzalin application on Col-0 stigmas promotes MT destabilization and induces Col-

0 pollen tube coils. 

a, Col-0 papilla cells expressing MAP65.1-citrine after 4 hours of DMSO (top) or oryzalin (bottom) 

local treatment. b, SEM images of DMSO- (top) or oryzalin-treated (bottom) Col-0 stigmas 

pollinated with Col-0 pollen grains; pollen and tubes were artificially colorized. (a, b) Scale bars, 5 

µm. c, Quantification of the number of turns( T) made by Col-0 pollen tubes on drug-treated and 

control papillae. Data are expressed as mean +/- s.e.m. Statistical difference was found between 

pollen tube path within DMSO (control) and oryzalin-treated papillae and was calculated using an 

adjusted Chi-Square test for homogeneity (2 degrees of freedom), ***P < 0.01. N(DMSO) = 12 

stigmas, n(DMSO) = 117 papillae, N(oryzalin) = 16 stigmas, n(oryzalin) = 149 papillae.  
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Mechanical properties of the cell wall are disturbed in ktn1-5 papilla cells. Because 

the main role of CMTs in plant cells is to guide the trajectory of CSCs, thereby impacting 

the mechanical anisotropy of the cell wall, we analysed the cell walls of Col-0 and ktn1-5 

papillae following pollination. First, using Transmission Electron Microscopy (TEM), we 

found Col-0 pollen tubes to penetrate the cuticle and to grow between the two layers of 

the papilla cell wall, as previously described (Kandasamy et al., 1994), in both Col-0 and 

ktn1-5 papilla cells (Fig. 14a). We did not detect any significant difference in the 

ultrastructure of cell walls (Supplementary Fig. 2). Interestingly, as the pollen tube 

progresses through the papilla cell wall, it generates a bump (external deformation) and 

an invagination (internal deformation) in the cell wall. As such deformations could reflect 

differences in wall properties, we quantified the external (extD) and internal (intD) 

deformation following pollination of Col-0 and ktn1-5 stigmas. To visualize more clearly 

this deformation, we pollinated stigmas expressing the plasma membrane protein LTI6B 

fused to GFP (LTI6B-GFP) with pollen whose tube was labelled with the red fluorescent 

protein RFP driven by the ACT11 promoter (Rotman et al., 2003) (Fig. 14b). We found 

that Col-0 pollen tubes grew with almost equal extD and intD values in Col-0 cell wall. 

However, the ratio between extD and intD was about 3 when Col-0 pollen tubes grew in 

ktn1-5 papilla cells (Fig. 14b,c,d). These quantitative data are consistent with the 

observation of major protuberances caused by pollen tubes on ktn1-5 stigmatic cells using 

SEM (Fig. 12b and Supplementary Fig. 1). Assuming that stigmatic cells are pressurized 

by their turgor pressure, this may reflect the presence of softer walls in ktn1-5 papillae. To 

test this hypothesis, we assessed the stiffness of Col-0 and ktn1-5 papilla cell walls using 

Atomic Force Microscopy (AFM) with a 400 nm indentation. We found that cell wall 

stiffness in ktn1-5 papilla cells was about 30% lower than that in stage 13 WT cells (Fig. 

14e,f). To confirm this result, we investigated the stiffness of the papilla cell wall on WT 

stigmas at stage 15, where increased coiled pollen tubes were detected (Fig. 11a,b). We 

found the cell wall to be softer than that of papillae at stage 13 but stiffer than that of the 

ktn1-5 (Fig. 14e,f). We then reasoned that the presence of softer walls should also affect 

the pollen tube growth rate, stiffer walls reducing growth. We thus monitored the growth 

rate of Col-0 pollen tubes in Col-0 and ktn1-5 papillae. We found that pollen tubes grew 

faster (~ x 1.8) within ktn1-5 papillae (Fig. 14g). Similarly, we found that pollen tube 

growth on stage 15 papillae was faster (~ x 1.6) than on stage 13 papillae (Fig. 14h). 

Altogether, these results suggest that KATANIN-dependent mechanical properties of 

papilla cell wall impact pollen tube growth. 
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Fig. 14 / Mechanical properties of papilla cells.  

a, Location of a Col-0 pollen tube in the cell-wall of Col-0 and ktn1-5 papillae by TEM. pt = pollen 

tube, C = stigma cuticle, sCW = stigma cell wall, sp = stigma papilla. Scale bar, 1 µm. b, Confocal 

images of Col-0 and ktn1-5 papillae expressing the plasma membrane marker LTI6B-GFP 

pollinated with an RFP-expressing pollen. Scale bar, 5 µm. c, Diagram showing the procedure 

used for evaluating the external (extD) and internal (intD) deformations made by Col-0 pollen 

tubes. d, External and internal deformations caused by Col-0 pollen tube growth in Col-0 and ktn1-

5 papillae. e, Drawing of the AFM experimental setup. Dissected pistils were inserted in agarose 

medium and fixed with low melting agarose for measurements. f, Young’s modulus values of the 

papilla cell wall for Col-0 at stage 13 (N = 4 stigmas, n = 8 papillae), ktn1-5 (N = 5 stigmas, n = 9 

papillae), xxt1 xxt2 (N = 4 stigmas, n = 11 papillae) and Col-0 at stage15 (N = 4 stigmas, n = 10 

papillae. g, Mean of travel distances made by Col-0 pollen tubes in Col-0 and ktn1-5 papillae. h, 

Mean of travel distances made by Col-0 pollen tubes in papillae of Col-0 at stage 13, Col-0 at stage 

15 , xxt1 xxt2 at stage 13. d-e and g-h, Statistical differences were calculated using a Shapiro-Wilk 

test to evaluate the normality and then a T-test. *** P < 0.01, n.s. = non significant. For h, we found 
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a significant difference (***P < 0.01) between Col-0 at stage 13 and 15, but non significant (n.s.) 

between Col-0 at stage 13 and xxt1 xxt2 at stage 13. 

Defects in papilla cell-wall composition are not sufficient to affect Col-0 pollen 

tube behaviour. The katanin1/fra2 mutant was initially described as a mutant impaired in 

cell wall biosynthesis and CMT array organisation (Burk et al., 2001). This prompted us to 

test whether other mutants affected in cell wall biogenesis might exhibit the coiled pollen 

tube phenotype. Indeed, in the simplest scenario, the presence of softer walls, whatever 

the cause, may be sufficient to induce extra coiling due to faster pollen tube growth. We 

selected mutants impaired in the cellulose synthase complex (kor1.1, prc1 and any1), 

hemicellulose biosynthesis (xxt1 xxt2, xyl1.4) and pectin content (qua2.1) (Supplementary 

Table 1). Strikingly, none of the 6 cell wall mutants displayed the coiled pollen tube 

phenotype (Supplementary Fig. 3). This suggests that the relation between CMT 

organisation, cell wall stiffness and pollen tube trajectory is stricter than anticipated. 

Because CMTs guide cellulose deposition, they also control the directional elongation of 

plant cells (Baskin, 2005). The contribution of stigmatic CMTs to pollen tube growth may 

thus be mediated by papilla cell shape only. For instance, wider cells in ktn1-5 would 

promote pollen tube coiling. To check that possibility, we measured the length and width 

of papilla cells in Col-0 (at stage 13 and 15), ktn1-5, xxt1 xxt2 and any1 (Supplementary 

Fig. 4). We did not find any correlation between papilla length and the coiled phenotype. 

Indeed, coiled phenotype was observed in stage-15 WT papillae that were longer than 

those at stage-13, as well as in ktn1-5 papillae that had a length similar to stage-13 WT 

papillae. The correlation between papilla width and coiled phenotype was also not clear-

cut. As expected, ktn1-5 mutant exhibited wider papillae than Col-0. Stage-15 WT papillae 

were also significantly larger than stage-13 WT papillae, where coils were observed. 

However, xxt1 xxt2 and any1 papillae were also wider than the WT but did not display the 

coiled phenotype. Altogether, this suggests that papilla morphology is not sufficient to 

explain the coiled phenotype. Because CMT disorganisation in papillae affects both wall 

stiffness and mechanical anisotropy, we next investigated the relative contribution of these 

two parameters in pollen tube growth. We focused our analysis on the xxt1 xxt2 double 

mutant. Indeed, this mutant was reported to display CMT orientation defects and a softer 

cell wall in hypocotyl cells, when compared with the WT (Xiao et al., 2016). As the pollen 

tube phenotype on xxt1 xxt2 stigmas was similar to the WT, we wondered whether the cell 

wall stiffness of stigmatic cells was actually affected in these mutant papillae. Using AFM, 

we found the papilla cell wall of the mutant to be about 30% softer than that of Col-0 

papillae, i.e. very similar to that of ktn1-5 (Fig. 14f). However, despite this similarity, the 

pollen tube growth rate in xxt1 xxt2 stigmas was identical to Col-0 stigmas at stage 13 

(Fig. 14h). In addition, contrary to ktn1-5, we did not observe external bumps on xxt1 xxt2 
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papillae when pollen tubes were growing (Supplementary Fig. 3g). These results indicate 

that alteration of the cell wall stiffness alone is not sufficient to induce the pollen tube 

coiled phenotype and promote tube growth speed, and suggest that, instead, the 

mechanical anisotropy of cell walls plays a key role in pollen tube trajectory. 

Discussion 

How the pollen germinates a tube and how pollen tube growth is regulated have 

been the object of many investigations (Mizuta and Higashiyama, 2018; Palanivelu and 

Tsukamoto, 2012). The use of in vitro pollen germination as well as semi-in vivo 

fertilization assays, together with the analysis of mutants defective in pollen or ovule 

functions, have rapidly expanded our knowledge of the mechanisms that sustain pollen 

tube growth, its guidance toward the ovule and the final delivery of male gametes within 

the embryo sac (Cameron and Geitmann, 2018; Dresselhaus and Franklin-Tong, 2013; 

Higashiyama and Yang, 2017). At the cellular level, cytoskeleton has been extensively 

studied during pollen tube elongation (Fu, 2015), highlighting the critical role played by the 

actin microfilaments in pollen-tube tip growth through delivery of materials for the 

biosynthesis of the plasma membrane and cell wall. By contrast, CMTs seem to have a 

lower importance in this process, drugs affecting CMT polymerisation having no significant 

effects on pollen-tube growth rate, yet altering the capacity of pollen tubes to change their 

growth direction (Gossot and Geitmann, 2007). Rearrangements of actin microfilaments 

(Iwano et al., 2007) and destabilization of CMTs (Samuel et al., 2011) have been 

described in stigmas following compatible pollination in Brassica species. However, CMT 

pattern and dynamics during papilla development have never been reported. Our data 

show that during the course of stigma maturation, which is associated with papilla cell 

elongation (Supplementary Fig. 4a,b), CMT bundles progressively move from 

perpendicular (anisotropic) to the elongation axis at stage 12 to disorganised (isotropic) at 

stage 15. This correlates with the known CMT dynamics during elongation in plant cells, 

where CMT arrays are highly anisotropic in young cells and become more isotropic as 

cells differentiate (Baskin, 2005; Landrein and Hamant, 2013). The progressive 

randomisation of CMT orientation in papilla cells is accompanied by an increased coiled 

growth of pollen tubes in papillae. Similarly, when CMTs are destabilized by the 

microtubule depolymerizing drug oryzalin, coiled pollen tubes are more frequently 

observed compared with untreated control stigmas. These results reveal a link between 

the stigmatic CMT cytoskeleton organisation and the trajectory that pollen tube takes 

while growing in the papilla cell wall. The fact that the most striking effect on pollen tube 

growth was found on ktn1-5 mutant suggests that the coiled phenotype depends not only 
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on the CMT organisation but implicates other factors. Among various phenotypic 

alterations described in loss-of-function mutants for KTN1, are the impaired cell 

mechanical properties and cell elongation, defects in CMT organisation, cell wall 

composition and CMF orientation (Burk and Ye, 2002; Burk et al., 2001; Ryden et al., 

2003). Interestingly, we found that the protuberance of pollen tubes at the surface of ktn1-

5 papillae was associated with a faster growth rate and a lower rigidity of the cell wall 

compared with Col-0. This places mechanics of the cell wall as a likely component 

involved in the coiled phenotype. Surprisingly, cell wall mutants, such as xxt1 xxt2 and 

prc1, known to exhibit both abnormal CMT organisation and softer cell walls, and 

somehow that may share mechanical properties with ktn1-5, did not induce the coiled 

phenotype displayed by ktn1-5 papillae. More remarkably, despite the similar stiffness of 

xxt1 xxt2 and ktn1-5 papilla cell walls measured in our AFM experiments, pollen tubes 

behaved differently on these two stigmas. This indicates that components other than cell 

wall stiffness are involved in the pollen tube coiled phenotype and that mechanical 

properties of the cell wall are likely not identical in the two mutants. Indeed, though 

sharing a similar alteration of cell wall stiffness, the global plant morphology of these 

mutants is clearly distinct. The ktn1-5 mutant was described to have a severe reduction in 

cell length and an increase in cell width in all organs (Burk et al., 2001). This cellular 

phenotype was attributed to the distorted deposition of CMFs correlated with the isotropic 

orientation of CMTs, whereas in WT cells CMFs, like CMTs, are oriented perpendicularly 

to the elongation axis (Burk and Ye, 2002). We also found larger papilla cells for ktn1-5 

(Supplementary Fig. 4c,d), supporting the hypothesis that orientation of CMFs is also 

altered in ktn1-5 papillae. Hence, we may assume that mechanical anisotropy, described 

as the cell wall anisotropy made by the orientation of the rigid CMFs (Sassi et al., 2014), is 

impaired in ktn1-5 papillae. By contrast, the xxt1 xxt2 double mutant, although deprived of 

xyloglucans in its cell walls, shows a growth phenotype (Cavalier et al., 2008; Park and 

Cosgrove, 2012) not as severe as ktn1-5. In etiolated hypocotyls, contrary to Col-0, CMFs 

are largely parallel to one another, straighter than in WT and oriented approximately 

transversely to the long axis of the cell (Xiao et al., 2016). Interestingly, we found the 

papilla cell shape of xxt1 xxt2 stigmas to be similar to Col-0, though with slightly wider 

papillae (Supplementary Fig. 3g, Supplementary Fig. 4e,f). However, xxt1 xxt2 papillae 

were less wide than ktn1-5 papillae, which is consistent with an anisotropic growth of the 

papillae in the xxt1 xxt2 mutant compared with ktn1-5. At the cell wall level, apart from a 

similar stiffness, the main differences between ktn1-5 and xxt1 xxt2 appear to be the cell 

wall composition, orientation of CMFs and possible changes in molecular connections 

between cell wall components and plasma membrane and/or cytoskeleton proteins. 

Indeed, a recent proteomic study revealed that loss of KATANIN function is associated 
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with the decrease in abundance of several cytoskeleton proteins, such as profilin 1, actin-

depolymerizing factor 3 and actin 7 (Takáč et al., 2017), whereas targeted quantitative 

RT-PCR unveiled that Microtubule-associated protein (MAP) and wall signal receptor 

genes are downregulated in xxt1 xxt2 (Xiao et al., 2016). In this latter study, KTN1 

expression level was shown to be unchanged compared with Col-0. Altogether, our study 

suggests that KTN1, by maintaining the papilla mechanical anisotropy, has a key function 

in mediating early pollen tube guidance on stigma papillae.  

The coiled phenotype was not only observed in ktn1-5 but also in the WT Col-0 

papillae at stage 15. This is likely to be related to isotropic orientation of CMTs and CMFs 

known to occur during cell elongation (Crowell et al., 2011; Zhang et al., 2014). At the 

organ level, it has been suggested that the mechanical anisotropy of the wall restrains 

organ emergence (Sassi et al., 2014). The authors propose that for the same wall 

stiffness, a cell wall with isotropic properties would lead to larger outgrowth than a wall 

with anisotropic properties. Our data are consistent with this hypothesis, albeit at the 

subcellular scale, since large protuberance of papilla wall following pollen tube growth is 

observed in ktn1-5 papilla cells, exhibiting walls with isotropic properties.  

It remains unclear how mechanical anisotropy guides pollen tube growth. We can 

hypothesise that as pollen tube grows inside the wall, it encounters recently deposited 

CMFs on the inner side of the wall (facing the cytoplasm) and older CMFs on the outer 

side. It is likely that these layers have different mechanical properties related to CMF 

orientation (Baskin, 2005). Pollen tubes may grow helically by default, as is the case for 

climbing plants around a cylindrical substrate but the presence of a mechanically 

reinforced inner wall may slow down and bias the trajectory of the pollen tube. It is worth 

noting that growth rate is slowed down when pollen tubes pass through a microgap of a 

microfluiding device, the tubes adapting their invasive force to the mechanical constraints 

(Sanati Nezhad et al., 2013). Our data show that the pollen tube tip, while progressing in 

the papilla wall, senses the mechanical features of its environment and reacts accordingly. 

Hence, it reveals some unanticipated internal and hidden properties of the cell wall. 

Interestingly, recent work showed that axons were capable of adapting their growth rate 

and direction according to mechanical constraints, growing straighter on rigid substrate 

underlining that mechanical signals are important regulators of pathfinding (Koser et al., 

2016).  

In the last decades, many studies pointed out that chemical but also mechanical 

components must be considered to be implicated in pollen tube growth direction 

(Cameron and Geitmann, 2018). Implication of chemical cues for pollen tube guidance in 

the stigma remains largely unknown, although the blue copper protein plantacyanin, when 

overexpressed in Arabidopsis stigmas, was reported to be a possible guidance factor 
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through an as yet undiscovered mechanism (Dong et al., 2005). However, no defect in 

pollen tube growth directionality was detected in a know-down plantacyanin mutant, 

questioning the actual role of this protein as a chemoattractant in Arabidopsis. In our 

study, we add mechanics as a key player in early pollen tube guidance in the papilla cell. 

Our results suggest that this role is mediated by a specific CMT organisation and 

mechanical anisotropy of the papilla cell, which both are dependent on KTN1. Importantly, 

KTN1 prevents emerging pollen tubes to grow upward on papilla cells and straightens 

pollen tube direction, helping the tube to find its correct path to the stylar transmitting tract. 

This highlights an yet unexpected role for KTN1 in pollen tube guidance, which was until 

now mostly known to be involved in plant development and stress-response regulation. In 

addition, our study also clearly unveils the fact that the mechanical properties of one 

single cell (e.g., the stigmatic papilla) impact the behaviour of its neighbouring cell (e.g., 

the pollen tube). 

Materials and methods 

Plant Materials and Growth Conditions. Arabidopsis thaliana, ecotype Columbia (Col-

0), Arabidopsis transgenic plants generated in this study and Arabidopsis mutants were 

grown in soil under long-day conditions (16 hours of light / 8 hours of dark, 21°C / 19°C) 

with a relative humidity around 60%. ktn1-5 (SAIL_343_D12), xxt1xxt2, prc1.1, qua2.1, 

xyl1.4, kor1.1 and any1 mutant lines were described previously (Cavalier et al., 2008; 

Fagard et al., 2000; Fujita et al., 2013; Lin et al., 2013; Mouille et al., 2007; Nicol et al., 

1998; Sampedro et al., 2010; Shoji et al., 2004). All mutants were in Col-0 background 

except kor1.1 which was in WS. 

 

Plasmid construction. We used the Gateway® technology (Life Technologies, USA) and 

two sets of Gateway®-compatible binary T-DNA destination vectors (Hellens et al., 2000; 

Karimi et al., 2002) for expression of transgenes in A. thaliana. The DNA fragment 

containing the Brassica oleracea SLR1 promoter was inserted into the pDONP4-P1R 

vector. The 165 bp-LTI6B fragment was introduced into the pDONR207 vector. MAP65 

gene spanning the coding region from start to stop codons was introduced into the 

pDONR221 vector. CDS from citrine or GFP were cloned into the pDONP2R-P3 vector. 

Final constructs, pSLR1::MAP65-citrine and pSLR1::LTI6B-GFP were obtained by a 

three-fragment recombination system (Life Technologies) using the pK7m34GW and the 

pB7m34GW destination vectors, respectively. We generated a pAct11::RFP construct by 

amplifying the promoter of the A. thaliana Actin 11 gene and cloning it into the pGreenII 

gateway vector in front of the RFP coding sequence. 
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Generation of transgenic lines and crossing. Transgenic lines were generated by 

Agrobacterium tumefaciens-mediated transformation of A. thaliana Col-0 as described 

(Logemann et al., 2006). Unique insertion lines, homozygous for the transgene were 

selected. We introduced the pSLR1::LTI6B-GFP or pSLR1::MAP65-citrine construct in 

ktn1-5 background by crossing and further selecting the progeny on antibiotic containing 

medium. 

 

Microscopy  

Confocal microscopy. Flowers at stages 12 to 15 (Smyth et al., 1990) collected from 

fluorescent lines were emasculated and stigmas were observed under a Zeiss LSM800 

microscope (AxioObserver Z1) using a 40x Plan-Apochromat objective (numerical 

aperture 1.3, oil immersion). Citrine was excited at 515 nm and fluorescence detected 

between 530 and 560nm. GFP was excited at 488 nm and fluorescent detected between 

500 and 550 nm. RFP was excited at 561 nm and fluorescent detected between 600 and 

650 nm. 

Live imaging. Flowers from stages 12 to 15 were emasculated and pollinated on plants 

with mature pollen from the pACT11::RFP line. Immediately after pollination, stigmas were 

mounted between two coverslips. To maintain a constant humidity without adding liquid 

directly on the stigma surface, we use a wet piece of tissue in contact with the base of the 

stigma. Pollinated stigmas were observed under a Zeiss microscope (AxioObserver Z1) 

equipped with a spinning disk module (CSU-W1-T3, Yokogawa) using a 40x Plan-

Apochromat objective (numerical aperture 1.1, water immersion). Serial confocal images 

were acquired in the entire volume of the stigma every 1 µm and every minute. Images 

were processed with Image J software and pollen tube lengths were measured. 

Atomic Force Microscopy. Pistils at stage 13 were placed straight in a 2% agar MS 

medium and 0.8% low-melting agarose was added up to the base of papilla cells. AFM 

indentation experiments were carried out with a Catalyst Bioscope (Bruker Nano Surface, 

Santa Barbara, CA, USA) that was mounted on an optical microscope (MacroFluo, Leica, 

Germany) equipped with a x10 objective. All quantitative measurements were performed 

using standard pyramidal tips (RFESP-190 (Bruker)). The tip radius given by the 

manufacturer was 8-12 nm. The spring constant of the cantilever was measured using the 

thermal tune method (Hutter and Bechhoefer, 1993; Lévy and Maaloum, 2002) and was 

35 N/m. The deflection sensitivity of the cantilever was calibrated against a sapphire 

wafer. All experiments were made in ambient air at room temperature. Matrix of 10x10 

measurements (step 500 nm) was obtained for each papilla, with a 1µN force. The 

Young’s Modulus was estimated using the Nanoscope Analysis (Bruker) software, using 

the Sneddon model with a < 200nm indentation.  
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Environmental Scanning Electron Microscopy (SEM). Flowers from stages 12 to 15 

were emasculated and pollinated on plants with mature WT pollen. One hour after 

pollination, pistils were cut in the middle of the ovary, deposited on a SEM platform and 

observed under Hirox SEM SH-3000 at -20°C, with an accelerating voltage of 15kV. 

Images were processed with ImageJ software and pollen tube direction was quantified by 

counting the number of turns made by the tube, only on papillae that received one unique 

pollen grain.  

Transmission Electron Microscopy. Stage 13 flowers were emasculated and pollinated 

on plants with mature WT pollen. One hour after pollination, pistils were immersed in 

fixative solution containing 2.5% glutaraldehyde and 2.5% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7.2) and after 4 rounds of 30 min vacuum, they were incubated in 

fixative for 12 hours at room temperature. Pistils were then washed in phosphate buffer 

and further fixed in 1% osmium tetroxide in 0.1 M phosphate buffer (pH 7.2) for 1.5 hours 

at room temperature. After rinsing in phosphate buffer and distilled water, samples were 

dehydrated through an ethanol series, impregnated in increasing concentrations of 

SPURR resin over a period of 3 days before being polymerized at 70°C for 18 h, 

sectioned (65 nm sections) and imaged at 80 kV using an FEI TEM tecnaiSpirit with 4 k x 

4 k eagle CCD. 

Anisotropy estimation. Flowers from MAP65 lines were emasculated and stigmas were 

observed under confocal microscope. Images were processed with ImageJ software and 

quantitative analyses of the average orientation and anisotropy of CMTs were performed 

using FibrilTool, an ImageJ plug-in (Boudaoud et al., 2014). Anisotropy values range from 

0 to 1; 0 indicates pure isotropy, and 1 pure anisotropy. 

Membrane deformation estimation. Flowers from LTI6B lines were emasculated and 

pollinated with mature pollen from the PACT11::RFP line. 20 minutes after pollination, 

stigmas were observed under confocal microscope. Serial confocal images every 1 µm 

encompassing the entire volume of the stigma were recorded and processed with ImageJ 

software. Plasma membrane deformation was estimated by choosing the slide from the 

stack that corresponded to the focus plan of the contact site with the RFP-labelled pollen 

tube. On the Bright field image corresponding to the selected slide, a line was drawn 

connecting the two ridges of the invagination of the papilla. Two perpendicular lines, one 

toward the exterior (ExtD) of the papilla to the maximum point of deformation, and the 

other toward the interior (IntD) on the GFP image were measured, respectively.  

 

Statistical analysis. Graph and statistics were obtained with R software or Excel. 

Statistical tests performed are specified in figure legends. 
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Chemical treatment. To avoid contact of pollen grains with liquid, we performed local 

applications of oryzalin (Chemical service, Supelco) at 833 µg/mL (DMSO) in lanolin 

pasted around the style, just under the stigmatic cells, for 4 hours at 21°C. Oryzalin-

treated pistils were pollinated with mature WT pollen and 1 hour after pollination observed 

under SEM.  
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Supplemental figures 

 

Supplementary Fig. 1 / Col-0 pollen tube behaviour on Col-0 and ktn1-5 papillae at stage 13.  

a-b, Top views of Col-0 (a) and ktn1-5 (b) stigmas pollinated with Col-0 pollen grains. Scale bars, 

20 µm. c-d, Magnification of pollinated papilla cells. c, Col-0 pollen tube grows mainly straight to 

the direction of the ovules on Col-0 papillae whereas d, it coils around and can even grow upward 

on ktn1-5 papilla cells (*). Scale bars, 5 µm. 
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Supplementary Fig. 2 / Ultrastructure of Col-0 and ktn1-5 papilla cells.  

a, TEM images of non-pollinated Col-0 and ktn1-5 papillae. Scale bar, 5 µm. b, Both Col-0 and 

ktn1-5 papillae show a similar two-layered cell wall (*) delimited by a more electron dense thin layer 

(arrows) corresponding to the cuticle. Scale bar, 1 µm. 

 

 

 

 

 



 

Cell wall component AGI/Name Function* Mutant References 

Cellulose AT5G49720 KOR1  
 

Endoglucanase 25 
 

kor1 (His and Driouich, 2001; 
Lei et al., 2014; Nicol et 
al., 1998) 

Cellulose AT5G64740 PRC1 
 

Cellulose synthaseA 
catalytic subunit 6 

 

prc1 (Fagard et al., 2000; 
MacKinnon et al., 2006; 
Panteris et al., 2014; Xiao 
et al., 2016) 

  
Cellulose AT4G32410 ANY1 

 
Cellulose synthaseA 

catalytic subunit 1 
 

any1 (Fujita et al., 2013)  
 

Hemicellulose AT3G62720 XXT1  
 

AT4G02500 XXT2  
 

Xyloglucan 6-
xylosyltransferase 1 

 

Xyloglucan 6-
xylosyltransferase 2 

 

xxt1 xxt2 (Cavalier et al., 2008; Xiao 
et al., 2016) 

Hemicellulose AT1G68560 XYL1 
 

Alpha-xylosidase 1 
 

xyl1.4 (Shigeyama et al., 2016) 

Pectin AT1G78240 QUA2  
 

Probable Pectin 
methyltransferase 

 

qua2.1 (Abasolo et al., 2009; 
Mouille et al., 2007; 
Verger et al., 2018) 

 

*From https://www.uniprot.org 

Supplementary Table 1 / Cell-wall mutants tested 
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Supplementary Fig. 3 / Quantification of the number of coils made by Col-0 pollen tubes on papillae 

from cell-wall mutants at stage 13.  

a, xxt1 xxt2 x Col-0. N(Col-0) = 14 stigmas, n(Col-0) = 116 papillae, N(xxt1 xxt2) = 12 stigmas, 

n(xxt1 xxt2) = 116 papillae. b, prc1 x Col-0. N(Col-0) = 14 stigmas, n(Col-0) = 115 papillae, N(prc1) 

= 12 stigmas, n(prc1) = 100 papillae. c, qua2.1 x Col-0. N(Col-0) = 22 stigmas, n(Col-0) = 160 

papillae, N(qua2.1) = 18 stigmas, n(qua2.1) = 162 papillae. d, any1 x Col-0. N(Col-0) = 14 stigmas, 

n(Col-0) = 91 papillae, N(any1) = 14 stigmas, n(any1) = 95 papillae. e, kor1.1 x Col-0. N(Col-0) = 

14 stigmas, n(Col-0) = 141 papillae, N(kor1.1) = 11 stigmas, n(kor1.1) = 91 papillae. f, xyl1.4 x Col-
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0. N(Col-0) = 18 stigmas, n(Col-0) = 136 papillae, N(xyl1.41) = 16 stigmas, n(xyl1.4) = 108 papillae. 

Data are expressed as mean +/- s.e.m. No statistical difference was found between pollen tube 

path within the cell wall mutants and Col-0 papillae based on an adjusted Chi-Square test for 

homogeneity (2 degrees of freedom). g, SEM images of Col-0 and xxt1 xxt2 stigmas pollinated with 

Col-0 pollen grains. Scale bar, 10 µm. 

 

Supplementary Fig. 4 / Size of the papilla cells of Col-0 and cell wall mutants. 

a, Papilla cell length of Col-0 at stage 13 and stage 15. b, Papilla cell width of Col-0 at stage 13 

and stage 15. c, Papilla cell length of Col-0 and ktn1-5 at stage 13. d, Papilla cell width of Col-0 

and ktn1-5 at stage 13. e, Papilla cell length of Col-0, xxt1 xxt2 and any1 at stage 13. f, Papilla cell 

width of Col-0, xxt1 xxt2 and any1 at stage 13. Statistical differences were calculated using a T-

test. * P < 0.05, *** P < 0.01, n.s. = non significant. N=4 stigmas and n=120 papillae for each 

genotypes. 
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Supporting information 

Additional experiments were carried out to confirm some results or validate tools 

used in this work. The rational and outcomes of these experiments are presented below. 

1. SLR1 promoter expression during stigmatic development 

To follow the dynamics of CMTs during stigma development, we used the promoter 

region of the stigma specific S-Locus Related gene 1 (SLR1) from Brassica oleracea 

(Lalonde et al., 1989). We checked the activity of the pSLR1 promoter with the 

pSLR1:GFP construct and found that it was active from stages 12 to 15, even though we 

noticed a decrease in GFP expression for the late stage 15 (Supplementary Fig. 5). These 

data are in accordance with a previous study in which activity of this promoter was 

analysed in A. lyrata stigmas (Fobis-Loisy et al., 2007) and where GFP fluorescence was 

found to decrease with flower ageing. This rather continuous expression of GFP under the 

control of pSLR1 allowed us to use pSLR1:MAP65-citrine as a marker of CMTs from 

stages 12 to 15. 

 
Supplementary Fig. 5 / Expression of the pSLR1 promoter using pSLR1:GFP during developmental 

stages 12 to 15.  

Confocal settings are identical for all images. GFP accumulates in the cytoplasm of stigmatic cells 

and enters spontaneously in the nucleus (n). Scale bar, 20 µm. 

Stage 12 Stage 13 

Stage 14 Stage 15 

n
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2. Stigmatic CMT dynamics confirmed with p35S:MBD-GFP marker line 

Because MAP65 is known to bundle CMTs, we additionally analysed the CMT 

pattern during stigma development using the Microtubule Binding Domain (MBD) fused to 

GFP under the control of the 35S promoter (p35S:MBD-GFP). Like the MAP65-GFP 

marker, we found that CMT pattern was dynamic, changing from an anisotropic array to 

an isotropic one from stage 12 to 15 (Supplementary Fig. 6). 

 
Supplementary Fig. 6 / Confocal images of papilla cells expressing MBD-GFP during stigma 
development. 

3. Confirming the AFM measurements 

We confirmed the difference of stiffness between Col-0 and ktn1-5 papillae at stage 

13 using another Atomic Force Microscope (JPK Nanowizard III), and using another 

method of curve analysis based on the retract curves. Results confirmed that apparent 

young modulus is significantly lower in ktn1-5 than in Col-0 papillae (Supplementary Fig. 

7). 

 

Supplementary Fig. 7 / Stiffness differences between Col-0 and ktn1-5 papillae at stage 13.  

Young’s modulus values of the papilla cell wall for Col-0 at stage 13 (N= 7 stigmas, n= 33 papillae) 

and ktn1-5 (N= 7 stigmas, n= 9 papillae). Statistical differences were calculating using a T-test, 

***P<0.01. 
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4. Pollen tube guidance and fertility in ktn1-5 

All the KATANIN mutants were described to have defects in seed yield and display 

shorter siliques (Luptovčiak et al., 2017). Given that WT pollen tube guidance is impaired 

on ktn1-5 papillae, we investigated whether the ktn1-5 pollen tube growth was affected on 

Col-0 papillae. Using Scanning Electron Microscopy, we found that ktn1-5 pollen is able to 

hydrate, germinate and emit a tube that grows straight to the base of Col-0 papillae, 

hence behaving as a WT pollen on Col-0 stigma. By contrast, ktn1-5 pollen tubes were 

mis-guided and turned around ktn1-5 papillae, like Col-0 pollen tubes when placed on 

ktn1-5 papillae (Supplementary Fig. 8a). Additionally, we analysed the fertility of the ktn1-

5 mutant and found a significantly lower number of seeds and shorter siliques when ktn1-

5 was self-pollinated (Supplementary Fig. 8b,c). Interestingly, ktn1-5 pollen on Col-0 pistils 

gave a seed yield close to self-pollinated Col-0. Then, we checked whether Col-0 pollen 

tubes were capable of fertilizing ktn1-5 ovules and found that although pollen tubes 

reached the ovules, only a very low seed set was counted (Supplementary Fig. 8d). 

Altogether, these results reveal that fertility of the female gametophyte is altered in ktn1-5 

mutant. 
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Supplementary Fig. 8 / ktn1-5 is impaired in female fertility. 

In all crosses, for example ktn1-5 x Col0, the female partner is written first (ktn1-5 in the example). 

a, Pollen grain behaviour using SEM. Scale bars, 50 µm. b, Seed set. c, Silique length. d, Aniline 

blue staining of Col-0 and ktn1-5 pistils pollinated with Col-0 pollen grains, after 6 hours. pt=pollen 

tubes, ov=ovules. 
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5. Pollen tube growth behaviour on another KATANIN mutant, botero1-7 

We checked whether the coiled phenotype could be observed in another KATANIN 

mutant, the bot1-7 in WS background (Bichet et al., 2001). When we pollinated bot1-7 

papilla cells with WS pollen grains, growing pollen tubes coiled around the bot1-7 papillae 

like they did on ktn1-5 papillae (Supplementary Fig. 9).  

 

 
Supplementary Fig. 9 / WS pollen tube on botero1-7 stigmas. 

a, Overview of WS and bot1-7 stigmas pollinated with WS pollen grains. Scale bar, 50 µm. b, 

Magnification of WS and bot1-7 papillae pollinated with WS pollen Scale bar, 20 µm. 
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6. Effect of a highly anisotropic CMT pattern on pollen tube behaviour 

To check whether the coiled pollen tube phenotype observed on ktn1-5 papillae was 

linked to the particular CMT isotropy of mutant cells, we also tested the pollen tube 

response in a mutant predicted to have an increase of CMT array anisotropy. SPIRAL2 is 

a protein that prevents CMT severing at the microtubule crossing sites and acts in 

opposition to KTN1 activity. The spr2-2 mutant exhibits more organised CMT arrays (Shoji 

et al., 2004). In the spr2 mutant, microtubule reorientations are reduced, leading to an 

increase in the final anisotropy of the MT arrays (Fan et al., 2018; Nakamura et al., 2018) 

and a faster response to mechanical stress (Shoji et al., 2004; Buschmann et al., 2004; 

Hervieux et al., 2016). By expressing the MAP65.1-citrine marker in spr2-2 papilla cells, 

we found an anisotropic pattern of CMTs resembling that of Col-0 papillae 

(Supplementary Fig. 10a,c). After pollination of spr2-2 stigmas at stage 13 with Col-0 

pollen grains, pollen tube growth was not significantly different from that observed with 

Col-0 stigmas, with a majority (above 50%) of pollen tubes growing straight in papilla cells 

(Supplementary Fig. 10b,d). 

 

Supplementary Fig. 10 / Effect of highly organised CMT array on pollen tube path. 
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a, Confocal images of papilla cells expressing MAP65.1-citrine in Col-0 and spr2-2 at stage 13. 

Scale bars, 5 µm. b, SEM images of Col-0 and spr2-2 papillae pollinated with Col-0 pollen grains; 

pollen and tubes were artificially colorized. Scale bar, 10 µm. c, CMT anisotropy of Col-0 and spr2-

2 papilla cells at stage 13. Statistical differences were calculated using a Shapiro-Wilk test to 

evaluate the normality and then a Wilcoxon test, ***P < 0.01, n.s = non significant. N(Col-0) = 10 

stigmas, n(Col-0) = 166 papillae, N(spr2-2) = 10 stigmas, n(spr2-2) = 145 papillae. d, Quantification 

of the number of turns (T) made by Col-0 pollen tubes on spr2-2 and Col-0 papillae. Data are 

expressed as mean +/- s.e.m. No statistical difference was found between pollen tubes path within 

spr2-2 and Col-0 papillae and was calculated using an ajusted Chi-Square test for homogeneity (2 

degrees of freedom). N(Col-0) = 23 stigmas, n(Col-0) = 180 papillae, N(spr2-2) = 25 stigmas, 

n(spr2-2) = 238 papillae. 

7. Cellulose organisation within stigmatic cells: comparison of Col-0, ktn1-5 and xxt1 

xxt2 cell walls 

Because of the importance of CMFs in the mechanical properties of the cell wall, we 

examined the CMF pattern of cell walls in papilla cells of Col-0, ktn1-5 and xxt1 xxt2 at 

stage 13. First, we used red Direct 23 staining, which was previously employed to reveal 

the CMF orientation in hypocotyl cells (Landrein et al., 2013). Because of the hydrophobic 

surface of stigma papillae, to facilitate penetration of the staining through the cuticle we 

treated stigmas with a solution of Adigor (Syngenta) (Hammami et al., 2014), an adjuvant 

previously used in leaves (Knoblauch et al., 2015). The stained cells were then observed 

by Total Internal Reflection Fluorescence (TIRF) or spinning disk microscopy. Our 

preliminary results (Supplementary Fig. 11) suggest differences between all genotypes. In 

Col-0, the CMFs seem to be straight like in xxt1 xxt2, although in this latter CMFs appear 

much thinner. In ktn1-5 papillae, CMFs look more detached and isotropic. These very 

preliminary results are consistent with the hypothesis that mechanical anisotropy of the 

cell wall, which is observed in Col-0 and xxt1 xxt2, is necessary to direct pollen tube 

straight to the base of the papilla.  

However, the difficulty we encountered in staining and observing a large number of 

papillae (e.g., on one stigma, only one or two papilla cells showed the cellulose staining) 

did not permit us to accumulate enough data to draw clear conclusion on CMF orientation.  
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Supplementary Fig. 11 / Preliminary results of the cellulose pattern in stigmatic cells.  

a, Col-0, ktn1-5, and xxt1 xxt2 stigmatic papillae stained with Red Direct 23 and observed with 

TIRF microscopy. b, Col-0, ktn1-5, and xxt1 xxt2 stigmatic papillae as in a, imaged with spinning 

disk microscopy. Scale bar, 10 µm 

8. Plantacyanin expression in Col-0 and ktn1-5 stigmas 

In a previous work, coiled growth of pollen tubes was reported in Arabidopsis stigma 

papillae overexpressing the blue copper protein plantacyanin (AT2G02850), although the 

mode of action of this protein was not described and remains totally unknown (Dong et al., 

2005). We checked whether the coiled phenotype in ktn1-5 papillae could be explained by 

an increased plantacyanin expression in the stigma. By quantitative RT-PCR we found a 

relative plantacyanin expression of 2,21 for Col-0 and 0.80 in ktn1-5, indicating that the 

coiled phenotype in ktn1-5 was independent of plantacyanin up-regulation. 

 

Material & Methods 

 

Plant Materials and Growth Conditions. Arabidopsis thaliana, ecotype Columbia (Col-

0), Arabidopsis transgenic plants generated in this study and Arabidopsis mutants were 

grown in soil under long-day conditions (16 hours of light / 8 hours of dark, 21°C / 19°C) 
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with a relative humidity around 60%. The pSLR1::GFP construct has been previously 

described (Fobis-Loisy et al., 2007) as well as the p35S::GFP-MBD (Hamant et al., 2008). 

The botero1-7 katanin mutant allele was previously described in Bichet et al., 2001, and 

the spiral2-2 mutant in Shoji et al., 2004. 

 

Cellulose staining. A droplet of Adigor was applied at 2.5% (v/v) solution on the stigma, 

during 4 hours. As described in (Landrein et al., 2013) for hypocotyls, emasculated pistils 

were incubated in 12.5% glacial acetic acid for 1 hour and dehydrated in 100% and then 

5°% ethanol for 20 min each. Pistils were then washed in water during 20 min and stored 

in 1M KOH. Pistils were then stained using 0.01% (w/v) Red Direct 23 dye during 4 hours 

before imaging by TIRF microscopy. 

 

Environmental Scanning Electron Microscopy (SEM). Flowers from stages 13 (Smyth 

et al., 1990) were emasculated and pollinated on plants with mature WT pollen. One hour 

after pollination, pistils were cut in the middle of the ovary, deposited on a SEM platform 

and observed under Hirox SEM SH-3000 at -20°C, with an accelerating voltage of 15kV. 

Images were processed with ImageJ software. 

 
AFM Measurements. Pistils at stage 13 were placed straight in a 2% agar MS medium 

and 0.8% low-melting agarose was added up to the base of papilla cells. The experiments 

have been performed in air at room temperature. AFM indentation experiments were 

carried out using a JPK Nanowizard III microscope equipped with a CellHesion module 

driven by a JPK Nanowizard software 6.0. The CellHesion module allows the use of a 

100µm-range Z piezo, located into the microscope stage, and increases the available Z 

range by several times compared to the head Z piezo (around 15 µm-ranged). All 

quantitative measurements were performed using standard pyramidal tips (Bruker 

RFESP-190), with a spring constant of 34,875 N/m. The tip radius given by the 

manufacturer was 8 nm. Matrix of 6 x 6 µm (144 points) was obtained for each papilla. 

The ramp size was 3 µm, approach and retraction speeds were 10 µm/s and the trigger 

force 1µN. The Young’s Modulus was calculated using the JPK Data Processing software 

6.0 by fitting the entire force versus the tip-sample distance curves. Due to the presence 

of a strong adhesion force (sometimes greater than 50% of the trigger force), a contact 

model including the adhesion was chosen, more specifically the DMT model for a cone-

shaped indenter and retraction curves were analysed. The fit parameters were: tip shape, 

cone; half-cone angle: 18°; poisson ratio: 0,3. 

 
RNA extraction and real-time quantitative PCR. 30 non-pollinated stigmas were 

dissected from stage 13-flowers and total RNA was extracted with the Arcturus® 
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PicoPure® RNA isolation kit (Life Technologies). 536 ng of total RNA were reverse-

transcribed with the SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen) and subjected 

to quantitative real-time PCR. Amplification of Plantacyanin (At2g02850) was performed 

with forward primer 5’- CTTTAACGCTGTGGGTTGGC -3’ and reverse primer 5’- 

ACGTTGTGCATCCTCGGATT -3’. Real-time PCR was performed with SYBR green 

fluorescence and the iCycler iQ5 system (Bio-Rad, Hercules, CA). PCR efficiency of 

primers was estimated from calculation using the standard curve amplification and the 

equation E=10-1/slope. Quantitative analysis of real-time PCR results was performed 

using the 2-ΔΔCt method (Schmittgen and Livak, 2008) normalized to the endogenous 

reference Actin8 (forward primer 5’-TCAAGCTGTTCTATCACTTTACGC-3’ and reverse 

primer 5’-GGAAGTGAGAAACCCTCGTAGATA-3’).  
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Exploring the role of stigmatic cells in pollen tube 

guidance by modelling approach 

How the mechanical anisotropy of the stigmatic cell can impact the pollen tube 

trajectory? How can we explain the loop phenotype observed on ktn1-5 papillae?  

 

One fascinating feature of the ktn1-5 phenotype is the helical growth of wild-type 

(WT) pollen tubes on mutated stigmatic cells. To decipher this astonishing phenotype, we 

started a collaboration with Catherine Quilliet and Karin John, physicists from the 

“Laboratoire Interdisciplinaire de Physique” in Grenoble. Our objective is to create an in 

silico model for pollen tube growth on stigmatic cells. In this chapter, I will briefly explain 

the basis of this collaborative work, which is very preliminary. 

 

To be able to model the pollen tube path, the first step is to create a virtual papilla, 

or papilla profile.  

 

(i) Creation of a virtual papilla profile 

 

The WT stigmatic cell has a characteristic elongated shape whereas the ktn1-5 

papilla has a shape that slightly diverges from the one of WT cells by its width 

(Supplementary Fig. 4a-d) and its “bottle” shape (Fig. 15a,b). To create the papilla profile, 

we decided to estimate the papilla cell shape based on to 5 representative points or 

distances of the papilla geometry (yellow points on (Fig. 15b): (i) the top of the papilla 

head, (ii and iii) the largest region of the papilla head and (iv and v) the narrowing region 

of the neck. We provided a series of images of WT and ktn1-5 stigmas to our 

collaborators. They automatically measured lengths L, I, B and D (Fig. 15b) for 5 selected 

stigmatic cells from each genotype and based on these values developed a mathematical 

model for generating the papilla profile. The analytical model of the stigmatic geometry 

was obtained considering the papilla as an axisymmetric object. Briefly, the function f(x), 

corresponding to a model of papilla profile, is the sum of three types of contributions: the 

top of the head (corresponding to the yellow-green curve in Fig. 15c), the upper part of the 

neck (blue curve) and finally, the lower part of the neck (corresponding to the green curve 

on the Fig. 15c), considered to be conical.  
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Fig. 15 / Papilla profile creation.  

a, Scanning Electron Microscope (SEM) images of WT and ktn1-5 stigmas pollinated with WT 

pollen grains. Bars, 50 µm. b, Characteristic points of WT and ktn1-5 papilla and lengths 

associated. Bars, 10 µm. c, Example of WT papilla profile. Yellow-green: model curve for top, blue: 

model curve for the head, dark-green: model curve for the base of the papilla. Red: sum of all the 

curves. 
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Having a first stigmatic cell profile, the next step was to define parameters allowing 

the modelling of pollen tube trajectories. 

 

(ii) Defining pollen tube trajectory: parameters used 

 

Based on biological observations I made during my PhD, we defined three 

important parameters that seem to be important for modelling the pollen tube path: 

(i) The self-avoidance: observing pollinated ktn1-5 papillae, I found that several 

pollen grains can germinate and emit a pollen tube on the same papilla, sometimes 

reaching up to 7 tubes by papilla. During its growth, a pollen tube rarely passes over 

another one, so that pollen tubes tend to self-avoid, as illustrated in Fig. 16a.  

(ii) The position of the pollen grain attachment: on the WT or ktn1-5 papillae, I did 

not observe any preferential site for pollen grain attachment, except that pollen grains do 

no attach to the lower third part of the papilla, probably due to the restricted space existing 

between the papilla bases. Thus, on the upper two thirds of the stigmatic cells, pollen tube 

seems to land randomly. In the model, the site where the pollen grain attaches is referred 

as the “starting position” corresponding to the ratio between the position of the pollen 

grain from the top of the papilla head (distance z, Fig. 16b) and the papilla size from the 

top (distance L, Fig. 15b, Fig. 16b). 

(iii) The pollen tube entry angle: similarly, on WT or ktn1-5 papilla, we did not 

observe any preferential angle for the direction taken by the growing pollen tube just after 

its germination, meaning that the tube can grow towards different directions, on the left, 

right, up or down. In the model, the angle made by the grain and the tube is referred as 

the “starting angle φ” (Fig. 16b) 

 

Taking into account these parameters, our collaborators performed the first assay 

for pollen tube growth on the papilla profile. An example of this pilot model is shown on 

Fig. 16c. 

 



95 

 
Fig. 16 / Example of pollen tube path.  

a, Scanning Electron Microscope image (SEM) illustrating the self-avoiding behaviour of pollen 

tubes on ktn1-5 papillae. b, representation of the pollen tube growth parameters: L, z and φ (see 

text) and c, Example of pollen tube path, starting position z/L= 20, starting angle φ = 45°. 

 

    (ii) Testing the pilot analytic model: does it explain the coiled phenotype 

observed on ktn1-5 papillae 

 

Our pilot model predicts that the number of coils is correlated with the starting 

position of the pollen grain and the starting angle of the tube. A phase diagram, presented 

in Fig. 17, illustrates this correlation for ktn1-5 papillae. The horizontal axis corresponds to 

the starting position (z/L), the vertical axis to the starting angle (φ) and the color code to 

the number of predicted coils. When a pollen grain is deposited at the extremity of the 

papilla (z/L = 0), whatever the starting angle, the number of coils is predicted to be low. At 

the opposite, when a grain is deposited at the upper part of the stigmatic cell (z/L ranging 

from 10 to 50), the number of coils is maximal (>3) for starting angles ranging from 45° to 

135°. 
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Fig. 17 / Phase diagram of the pollen tube behaviour depending on the initial angle and the starting 

position.  

The color code indicates the number of predicted coils. 

 

To validate this pilot model, only based on ktn1-5 papilla shape (bottle shape) and 

our three selected pollen tube growth parameters, we measured on SEM images the 

starting position, starting angle and number of coils for about 20 pollen tubes on ktn1-5 

papillae. Our preliminary data reveal that there is no strict correlation between these three 

factors. This suggests that additional features are needed to reproduce the coiled 

phenotype exhibited by pollen tubes on ktn1-5 stigmas.  

 

In conclusion, we cannot fully correlate our biological data with the theoretical 

model. This fits well with our previous analysis showing that the stigmatic shape is not 

sufficient to explain the coiled phenotype observed on ktn1-5 stigmas. Indeed, the 

stigmatic papillae of the any1 mutant, which is impaired in cellulose synthase, have a 

shape similar to that of ktn1-5 papillae but do not display the coiled phenotype. Other 

factors should be incorporated in the model, and we are currently thinking of how 

integrating anisotropy of the CMTs and mechanical properties of the stigmatic cell surface 

in it. 
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4 
Epidermis responses to pathogen 

invading cells: the case of 

oomycete infection 
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Fig. 18 / Oomycete and pollen interactions with plant epidermis surface.  

(a-f) Oomycete infection of epidermal cells. (a,b) Schematic representation of interaction during 

oomycete infection. (a,c,e) Oomycete spores (black arrow) attach to the epidermis surface of the 

root (P. parasitica) (c) or the cotyledon (H. arabidopsidis) (e) and produce an appressorium (red *). 

(c) 2,5 hours after infection (hai), P. parasitica penetrates the root epidermal cells. (e) 8 hai, H. 

Arabidopsidis penetrates the cotyledon epidermal cells. (b, d ,f) Hypha (red arrow) grows through 

the epidermis and within the underlying tissues. (d) 6 to 10 hai for P. parasitica. (f) 24 hai for H. 

arabidopsidis. H. arabidopsis hyphae form feeding structures, haustoria (hau). P. parasitica 

zoospores express a GFP marker and H. arabidopsis spores express a GUS marker. (g-j) 

Pollination interaction with stigmatic cells. (g-h) Schematic representation of pollen – papilla 

interactions. (g,i) 10 min after pollination (map), pollen grain (pg) hydrates, germinates, and a short 

pollen tube starts to penetrate the stigmatic cells (s). (h,j) 60 map, pollen tube (pt, red arrow) grows 

though the epidermis and reach the underlying tissues. Pollen grain and pollen tube express a 

cytoplasmic GFP marker. Images from L. Riglet and A. Attard. Bars, (c,d,i,j) 10 µm, (e) 5 µm. 
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During the first part of this work, we extensively studied the role of the stigma 

epidermis as a boundary, facilitating the entrance of desirable pollen grains. Plant 

epidermis has also been shown to have crucial role in other cell-to-cell interaction 

processes such as pathogen attack. While the biological purpose of pollen-stigma and 

plant - pathogen interactions diverges, both processes exhibit several cellular and 

molecular similarities that led some authors to speculate that they may share common 

ancestry (Dickinson, 1995; Elleman and Dickinson, 1999; Nasrallah, 2005, Mondragón-

Palomino et al., 2017; Zang et al., 2017). Vocabularies used in pollen–stigma interaction 

even borrow the one of the pathogen field, such as the foot also called appresoria-like 

structure (Elleman and Dickinson, 1990) or the pollen tube often assimilates as an invader 

(Sanati Nezhad and Geitmann, 2013). Comparing these two cell-to-cell interaction 

systems is of particular interest to decipher the cellular and molecular mechanisms 

underlying these phenomena that play key roles in plant biology.  

When comparing pollen grain germination and pollen tube growth with the 

behaviour of filamentous pathogen (fungus and oomycetes) during infection, we found 

physiological similarities that led us to focus on this category of pathogens (Fig. 18). 

Besides, as the cell wall is an important layer at the interface between the invading cell 

and the plant tissue, we decided to restrict our analysis to oomycete pathogens which 

harbour a cell wall mainly composed of cellulose as plant cells (Latijnhouwers et al., 2003; 

Meng et al., 2014).  

I. Oomycete lifestyles and invasive strategies 

Oomycete pathogens cause most of the plant diseases in the world, damaging 

agricultural crops. The most notorious example was the Irish famine triggered by 

Phytophtora infestans between 1845 to 1851 that massively devastated the potatoes 

production, the main source of food, leading to about 1 million people died and a mass 

emigration of Irish to the USA (Alexopoulos et al., 1996; Ristaino, 2002).  

Although oomycetes have been firstly classified as “lower fungi”, they differ from 

fungi in several characteristics. Molecular phylogenetic analysis has demonstrated that 

oomycetes and true fungi (as Ascomycetes and Basidiomicetes) have evolved 

independently, the oomycetes belonging to the Stramenipila phylum, including brown 

algae (Govers, 2001; Meng et al., 2014). Among their differences, they have different 

lifecycles; oomycetes are diploid during their vegetative stage contrary to fungi that are 

mostly haploid. Their cell wall composition also differs since the one of oomycetes mainly 

contains cellulose whereas the fungi wall is mostly constituted of chitin (Latijnhouwers et 

al., 2003; Meng et al., 2014). There are around 800 known oomycete species (Judelson, 
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2017) and they can display biotrophic, hemibiotrophic or necrotrophic lifestyles (Fawke et 

al., 2015). The biotrophic oomycetes are dependent of their host, maintaining them alive 

for survive throughout their lifecycle as do Hyaloperonospora arabidopsidis on leaves. 

Conversely, necrotrophic oomycetes kill their host and continue to feed from dead tissues. 

Between both, hemibiotrophic oomycetes, such as Phytophtora parasitica, have a 

biotrophic lifestyle at the early stage of their development and then switch to the 

necrotrophic lifestyle. Oomycete spores are single-nucleated cells without wall, 

specialized to disperse the pathogen, either by wind (as H. arabidopsidis) or water (as P. 

parasitica) (Savory et al., 2014). Spores can reach the plant surface directly when they 

are released on it (immotile spores or conidiospores) or swim towards the host (motile 

spores or zoospores). On the plant surface, the spore emits a germ tube that grows 

towards a suitable penetration site, before forming an appressorium necessary for 

epidermis breach. Following penetration, a tip-growing structure, called hyphae, is 

generated and grows through the epidermal cells and then intercellularly within the plant 

internal tissues. For biotrophic oomycetes or during the biotrophic phase of the 

hemibiotroph oomycetes, nutrients are acquired through the formation of haustoria. The 

development of such feeding structure involves the invagination of the plant plasma 

membrane that encircles the haustoria and forms a critical interface between the host and 

the pathogen (Bozkurt et al., 2015).  

II. Cellular responses of infected epidermal cells 

As other plant pathogens, when an oomycete successfully breaches the first 

physical barrier constituted by the plant cuticle and cell wall, it has to face the plant 

immune system response. The first level of plant resistance is triggered by recognition of 

pathogen derivate molecules (PAMP) or plant degradation products caused by the 

pathogen attack (DAMP). PAMPs and DAMPs induced a complex set of defence 

responses, known as PAMP-triggered immunity (PTI), such as production of reactive 

oxygen, synthesis of defence related proteins and antimicrobial compounds or cell wall 

reinforcement (reviewed in Bigeard et al., 2015). Furthermore, perception of PAMPs 

triggers host subcellular changes, which have been well documented in oomycete 

infections (Hardham 2007; Lu et al., 2012). One of the earliest responses of epidermal 

cells infected by oomycetes is the cytoplasmic aggregation beneath the penetration site. 

Observations of GFP-tagged Arabidopsis plants revealed a dense network of lamellar ER 

and concentration of Golgi stacks around the hypha penetration site (Takemoto and col., 

2003). This re-organisation of the endomembrane system is proposed to be associated 

with materiel deposition to reinforce the physical (accumulation of callose) and chemical 
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(secretion of antimicrobial compounds) barriers to pathogen entrance. Cytoplasmic 

aggregation and polarized transport are dependent on the actin cytoskeleton as shown 

using drug treatments that delay or suppress several defence responses (Tomiyama et 

al., 1982; Takemoto et al., 1999). In addition to the pharmacological studies, a live 

imaging approach has shown a focalization of actin filaments around the penetration site 

in A. thaliana cotyledons cells infected with two Phytophtora species. By contrast, the 

behaviour of the cortical microtubules network is more variable. In some Arabidopsis 

epidermal cells, the network seems to be depolymerized, in other cells, CMTs are aligned 

surrounding the penetration site and in a third category, no apparent change occurs 

(Takemoto et al., 2003). Such variability in CMT behaviour led the authors to suggest a 

less important role for CMTs in plant defence than for actin microfilaments (Takemoto et 

al., 2004; Hardham, 2013). 

III. Similarities between reproductive and defence 

responses 

 The first challenge for pollen or oomycete is to break the resistance of the outer 

epidermal cell walls. To this end, pollen grains or oomycete spores first attach to the 

epidermis surface and then produce structures, a “foot” for pollen or an appressorium for 

oomycetes that secrete cell wall degradation enzymes to soften the epidermal wall. Then, 

a penetrative tube, the pollen tube or the hypha, is emitted and elongates by tip-growth 

through the epidermal cell to reach the underlying tissues of their host. To penetrate and 

advance through the plant tissues, invading cells have to exert forces (Sanati Nezhad and 

Geitmann, 2013). For pollen tube and hypha, experimental data have suggested that 

penetrative forces are driven by the cytoskeleton and the internal turgor pressure. For 

example, in lily pollen tubes, actin depolymerization decreases the tube ability to invade 

stiff matrices in vitro (Gossot and Geitmann, 2007) and treatment of P. infestans hypha 

with latrunculin B, an actin-destabilization drug, leads to aberrant growth (Ketelaar et al., 

2012). Additionally, early responses of epidermal cells to attempt penetration by an 

oomycete hypha or a pollen tube trigger reorganisation of subcellular components 

depending on a polarized actin network that might guide the vesicular secretion towards 

the invading growing cell.  

Taken together, these resemblances between both invasive processes motivate us 

to develop a unique comparative system to investigate how epidermal cells sense and 

react to an invading cell. This comparative analysis constitutes the second part of my PhD 

work.  
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Summary  

• The epidermis is the first barrier that protects organism from surrounding stresses. 

Similarly as the pollen tubes that germinate and grow within epidermal cells of the 

stigma, hyphae of filamentous pathogens penetrate the inner tissues of the host. Early 

response of the epidermal cells layer is therefore decisive for the result of these cell-

cell interaction processes. 

• Here, we aimed at comparing and characterizing how an epidermal cell can respond 

following intrusion by two types of invading cells, the pollen tube during pollination and 

the hyphae of two oomycetes: the hemibiotrophic pathogen Phytophtora parasitica, 

which infects roots, and the biotrophic pathogen Hyaloperonospora arabidopsidis 

infecting cotyledons. 

• We found that contrary to H. arabidopsidis, P. parasitica is able to attach and 

penetrate the stigmatic cell as pollen tube does. The hypha and the pollen tube both 
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impose a mechanical pressure during penetration of the stigmatic cell wall that we 

found stronger for the pollen tube towards the interior of the cell. Additionally, P. 

parasitica induces the formation of a derived-stigmatic plasma membrane structure 

that encircled the hyphae, as observed in root.  

• Using live imaging, we monitored the cellular events triggered in stigmatic cells 

following early penetration of P. parasitica hypha or pollen tube. We found that both 

invaders mobilized actin and late endosome compartments but, contrary to pollen 

tube, P. parasitica hypha also induces TGN focalization. 

• Altogether, these results suggest that stigmatic epidermal cells are able to promptly 

react to the invader’s identity, to adjust the most relevant responses. 

 

Key words: Actin, Arabidopsis thaliana, Hyaloperonospora arabidopsidis, hyphae, 

Phytophtora parasitica, pollen tube, vesicular trafficking 

Introduction 

Epidermal cells are a layer of cells in direct contact with their environment. During 

a stress such as an intrusion by invading cells, they have to promptly react and mediate 

the most relevant responses. Invasive cell types exist in all eukaryotic kingdoms and 

include pollen tubes, fungal or oomycete hyphae. In plants, the first interaction that occurs 

between invasive pollen tubes and the epidermal cells of the stigma (also called papillae) 

is crucial for successful reproduction. Similarly, hyphae of filamentous pathogens 

penetrate the epidermal surface to reach the inner tissues of the host to complete their 

lifecycles. Early response of the first cell layers including epidermal cells is decisive for the 

result of these cell-cell interaction systems. 

Many convergence points have already been reported between pathogen defence 

and pollen recognition, particularly during early cellular events triggered by these two cell-

to-cell communication systems. Briefly, (i) there is a recognition of the external invader by 

the host, (ii) the pollen tube and the fungal/oomycete hypha secrete cell wall degradation 

enzymes to penetrate the host surface, (iii) both pollen tube and hypha grow first on the 

epidermal surface and then through the intercellular spaces of the host tissue, (iv) 

subcellular reorganisation of organelles and cytoskeleton occurs in the epidermal cell at 

the site of pollen or pathogen contact site (Hardham, 2007; Iwano et al., 2007, 2014; 

Samuel et al., 2009, 2011) and (v) both invader organisms take up resources from 

epidermal cells for their growth. Resemblances between pollen tube and hyphal growth 

have already led some authors to speculate that both processes share common ancestry 

(Dickinson, 1995; Dresselhaus and Márton, 2009; Nasrallah, 2005; Sanabria et al., 2008; 
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Zhang et al., 2017). Recently, transcriptomic analysis of A. thaliana pistils pollinated or 

infected with the fungus F. graminearum have shown that many differentially expressed 

genes are similarly regulated in response to both interaction processes (Mondragón-

Palomino et al., 2017). 

While similarities between these communication systems exist, a thorough 

comparative analysis of the early cellular events triggered in epidermal cells challenged by 

these two types of invasive organism has never been carried out. Here, we identified an 

epidermal cell type, the stigmatic cell that not only supports the growth of pollen tube but 

also promotes oomycete colonization. Using confocal, and electron microscopies, 

associated with comparative transcriptomic profiling, we showed that the hemibiotrophic 

oomycete Phytophtora parasitica (P. parasitica) attached to the stigma and infected the 

pistil whereas the biotrophic oomycete Hyaloperonospora arabidopsidis (H. arabidopsidis) 

did not. We also highlighted common as well as specific cellular processes triggered in the 

stigmatic cell invaded by a pollen tube or the P. parasitica hypha, revealing that the 

epidermis is able to adjust its response to the invader’s identity. 

Results 

Infection of stigmatic cells by P. parasitica and H. arabidopsidis  

To compare the cellular responses of stigmatic cells to invasive growth of a pollen 

tube or a oomycete hypha, we first tested the pathogenicity of two oomycete species 

exhibiting distinct lifestyles: the obligate biotrophic pathogen of Arabidopsis thaliana, 

Hyaloperonospora arabidopsidis, which develops on cotyledon and leaf cells and the 

hemibiotrophic pathogen Phytophtora parasitica, a typical root pathogen with a broad host 

range. H. arabidopsidis produces non-motile conidiospores that land on the leaves 

surface. To infect pistil tissues, we manually deposited H. arabidopsidis spores at the 

stigma surface. Spores started to germinate 4 hours after contact with the stigma but 

neither appressorium-like structures nor hypha penetration was observed, as expected if 

the oomycete penetrated the host cell. We also tested infection in liquid conditions, by 

dipping an entire flower in a conidiospores suspension. Similarly, spores germination at 

the stigma surface was observed but spores never differentiated any appressorium. 

Instead, H. arabidopsidis hyphae grew turning around papillae cells and never succeeded 

to penetrate them (Fig. 19a,b). P. parasitica zoospores are motile and were able to swim 

towards their host tissue. To infect pistil tissues, we dipped an entire flower or a naked 

pistil into a solution of P. parasitica GUS-expressing zoospores. Interestingly, in both 

cases, zoospores preferentially accumulated at the stigma surface (Fig. 19c,d). Petals and 

sepals did not seem to prevent zoospores to reach the stigma since we found similar 



107 

accumulation in an entire flower or a naked pistil. This reveals that P. parasitica has an 

affinity for the epidermal cells of the stigma. Likewise, when an entire root is dipped into a 

solution of P. parasitica, zoospores preferentially attached to a specific zone of the root 

that corresponds to the elongation zone (Fig. 19e) as previously described (Attard et al., 

2007). Zoospores were able to attach to papillae and to infect them. Two hours after 

dipping, we observed the formation of an appressorium-like structure at the outer cell 

surface (asterisk, Fig. 19f) and the presence of a hypha within the cell (Fig. 19f) as 

described in infected root epidermis (Attard et al., 2007; Meng et al., 2014). 

To go further in the characterization of pistil infection by P. parasitica, we infected 

Arabidopis transgenic plants expressing a GFP-tagged plasma membrane marker in 

stigmatic cells (LTI6B-GFP) and monitored the stigmatic plasma membrane during hyphal 

growth. Four hours after dipping, we observed an invagination on the plasma membrane 

(PM) that encircled P. parasitica hypha (Fig. 19g,h). In several examples of fungus or 

oomycete infections, the plant plasma membrane continuously encloses the advancing 

hypha and separates it from the invaded plant cell (Genre et al., 2005, 2009; Hardham, 

2007; Yi and Valent, 2013). However, this plasma membrane invagination has never been 

described in epidermal cells infected with P. parasitica. We thus checked if such structure 

is formed when oomycete penetrates the root. Interestingly, using a transgenic 

Arabidopsis plant expressing an RFP-tagged plasma membrane located receptor kinase 

(PM-RK), we found that in the natural host cell, the hypha is surrounded by a plasma 

membrane derived structure (Fig. 19i,j) similarly as in the stigma epidermis. 

In root, following penetration of the epidermis, the P. parasitica hyphae grow 

intercellularly to reach the root cortex and the vasculature (Attard et al., 2007; Fawke et 

al., 2015). In pistil tissue, 24 hours after the first contact, GFP-labelled hyphae were able 

to penetrate the entire pistil, to grow from the top to the inner tissues and succeeded to 

reach the ovary (Fig. 19k) similarly as pollen tubes did (Fig. 19l). 

Altogether, these results demonstrated that, contrary to H. arabidopsidis, and even 

though the stigmatic epidermis is not its natural host tissue, P. parasitica is able 

breakdown the stigmatic barrier to develop a hypha within epidermal cells and invades the 

entire pistil. Furthermore, papillae react to the pathogen entrance, since the interaction 

provokes the invagination of the plasma membrane, encircling the hypha. 
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Fig. 19 / P. parasitica infects pistil tissues. 

(a-b) H. arabidopsidis does not penetrate the papillae, and the hypha grows from cells to cells. Two 

images from the same stack. Bars, 10 µm. (c) Entire flowers or (d) naked pistils were dipped during 

1 hour in a suspension of GUS-expressing zoospores of P. parasitica. P. parasitica preferentially 

attaches to the stigmatic epidermis. Bars, 200 µm. (e) Incubated roots in a suspension of GUS-
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expressing P. parasitica zoospores, 2,5 hours after inoculation (hai). Zoospores attach to the 

elongation zone of the root. (f) P. parasitica is able to form an appressorium (2 hai) (*) on the 

papilla surface and to penetrate the external layer to a hypha within the cell. (g-h) Z-projection of 

serial confocal images showing stigmatic cells infected with P. parasitica (4 hai). The stigmatic 

plasma membrane, labelled with (g) LTI6B-GFP, or (h) in bright field, surrounds the penetrating 

hypha. Bars= 10 µm. (i-j) Z-projection of serial confocal images showing that after 6 hai with 

P.parasitica, root cell plasma membrane, labelled with (i) PM-RK, or (j) in bright field, surrounds the 

penetrating hypha. (k) Entire flowers were dipped in a suspension of P. parasitica GFP-expressing 

zoospores for 1 hour and maintained on the plant. Growing hyphae were detected in pistil tissues 

by confocal microscopy (24 hai). (l) Pollinated pistil (6 hours after pollen contact), the pollen tubes 

developed in pistil tissues. Legends: hy, hypha; pg, pollen grain; pt, pollen tube; sp, spore. 

P. parasitica hypha and pollen tube grow within the external layer of the stigmatic 

cells  

To obtain spatial information about the growth location of the P. parasitica hypha within 

the papillae, we performed Transmission Electron Microscopy (TEM) on infected stigmas. 

Images showed that hyphae are able to penetrate the cuticle, the electron-dense layer 

that covers the external surface of the aerial parts of land plants (Schreiber, 2010) (Fig. 

20a). We found that the hypha can grow beneath the cuticle in close contact with the 

stigmatic CW (Fig. 20b) or directly in contact with the papilla plasma membrane, after cell 

wall degradation (Fig. 20c). We also noticed that the hyphal growth was responsible for an 

enlargement (asterisk, Fig. 20b,c) but it remains unclear whether it corresponds to a cell 

wall enlargement or to an accumulation of material around the hyphae. In some cases, 

probably corresponding to later infection stages, as stigmatic cell penetration is not 

synchronic, we observed P. parasitica hypha totally embedded in stigmatic cytoplasm, 

surrounded by the stigmatic plasma membrane (Fig. 20d). This could correspond to the 

invagination of the papilla plasma membrane observed by confocal microscopy (Fig. 

19g,h). Because the location of P. parasitica hypha in root epidermal cells has not been 

previously reported, we investigated it by TEM. The Fig. 20e and d showed that hypha 

grows in contact to the root plasma membrane and digests the cell wall and the suberin, a 

multi-layered lamella deposited on the inner surface of root epidermal cell walls 

(Schreiber, 2010). Furthermore, beneath the invading hypha, some material accumulated 

outside the plasma membrane (asterisk, Fig. 20f). Such material deposition is known as 

wall apposition and occurred in response to oomycete infection and is suggested to play a 

role in penetration resistance (Hardham, 2007). Taken together, our results showed that 

P. parasitica hypha is able to invade the papilla in a similar way that it does in the root. 

The hypha triggers the digestion of the host cell wall and the lipophilic layer, the cuticle in 

stigmatic cell and the suberin in root cell, and grows in close contact with the plasma 

membrane without damaging it.  
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Finally, we further aimed at comparing the hyphal growth, to the natural invading 

cell of the stigma, the pollen tube. We found that the pollen tube digests the cuticle layer 

to grow beneath this layer. However, contrary to the hyphal growth, we did not observed a 

complete digestion of the stigmatic cell wall (Fig. 20g,h). Rather, the pollen tube induced 

separation of the inner and outer cell wall layers and grows in the space generated 

between these two layers. This invasive growth has been previously described and is 

characteristic of Brassicacea species (Elleman et al., 1992; Kandasamy et al., 1994).  

In conclusion, whereas oomycete hypha and pollen tube were able to attach to the 

stigma surface and to penetrate the cuticle, their further growth depends on how they 

manipulate the stigmatic cell wall. While pollen tube is engulfed within the cell wall, the 

hypha is growing in a more free space under the cuticle or between the cell wall and the 

plasma membrane. This raises the question whether the constraint exerted by both 

invaders on the stigmatic single cell is similar, especially as it has been reported that to 

invade a plant tissue, an advancing cell has to exert a pressure on its host (Sanati Nezhad 

and Geitmann, 2013).  
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Fig. 20 / Penetration of the stigmatic cell external layer by the pollen tube or the P. parasitica 

hypha. 
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(a-d) Stigmatic cell infected with P. parasitica (2 hai). (b) Closer view of the hyphal growth under 

the cuticle. (c) Closer view showing degradation of the stigma cell wall. (b-c) The enlarged space 

(*) is from an unknown origin. (d) In some cases, P. parasitica hypha is surrounded by the stigmatic 

plasma membrane. (e-f) Root cells infected by P. parasitica (2 hai). (f) Closer view of the root cell 

wall degradation. (g-h) Stigmatic cell one hour after pollination (hap). (h) Closer view, pollen tube 

grows between the two cell wall layers: the outer layer L1 and the inner layer L2. Legends: pt, 

pollen tube; hy, hypha; OCW, oomycete cell wall; RPM, root plasma membrane; SPM, stigmatic 

plasma membrane; SC, stigmatic cuticle; SCW, stigmatic cell wall; L1, outer stigmatic cell wall 

layer; L2, inner stigmatic cell wall layer; PCW, pollen cell wall; S, stigmatic cell. Degr, degraded; R, 

root; Sub, suberin. 

Deformation of stigmatic cell is higher after pollen tube penetration than hypha 

penetration 

To evaluate mechanical constraints applied by both invaders on stigmatic cells, we 

measured the papilla deformations generated by their growth as previously described 

(Riglet et al., 2018). Briefly, two parameters were measured: (i) the deformation toward 

the interior of the cell, estimated by the plasma membrane invagination labelled with the 

LTI6B-GFP marker and (ii) the deformation towards the exterior of the cell using bright 

field images (Fig. 21a,b). We found that, although both pollen tube and hypha sizes were 

similar (Fig. 21c), the hypha created an external bump and slightly deformed the papilla 

plasma membrane, whereas external and internal deformations induced by the pollen 

tube are nearly equivalent (Fig. 21a-d). Thus, whereas pollen tube and hypha both 

penetrated and grew within the external layer of the papilla, they did not impact the 

stigmatic cell in the same manner and may be perceived differently by the invaded 

substrate.  
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Fig. 21 / Both invaders do not deform the papilla in the same manner.  

(a,b) Pollen tube or hypha diameters (white line *) were measured on Bright field (BF) images. To 

quantify the deformation, a line was drawn between the two external points of the deformation (red 

line), then, blue line corresponding to the external deformation (De) was measured. On GFP 

images (plasma membrane position visible thanks to LTI6B labelling), a yellow line corresponding 

to the internal deformation (Di) was drawn. Bars, 10 µm. (c) Measurement of pollen tube and hypha 

diameters. The error bars correspond to the s.e.m., n.s. = non significantly different, using a T-test. 

(d) Measurement of the external and internal deformations. n= 12 pollen tubes and n= 11 hyphae. 

Cellular responses triggered in the stigmatic cell depends on the invader origin  

It has been reported that invaded substrates are able to perceive mechanical forces 

generated during invasion by a tip-growing cell (Sanati Nezhad and Geitmann, 2013). 

Therefore, we investigated cellular events triggered within the papilla following pollen tube 

or hypha intrusion. Previous works have revealed a pivotal role for vesicular trafficking 

and cytoskeleton dynamics during filamentous pathogen infection (Hardham, 2007) and 

have also been proposed to act in pollen recognition (Iwano et al., 2007, 2014; Safavian 

and Goring, 2013; Safavian et al., 2015; Samuel et al., 2009, 2011). To have an overview 

of the trafficking routes and cytoskeleton dynamics in the papilla, we decided to focus on 
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(i) TGN movement (VHA-a1-GFP marker line), a compartment at the crossroad of 

secretion and endocytosis; (ii) late endosome (FYVE-GFP marker line), a compartment on 

the way to the lytic vacuole and (iii) actin rearrangements (LifeAct-Venus marker line) 

known to be involved in vesicular transport. Stigmas from these three marker lines were 

pollinated or infected with P. parasitica and cell dynamic was monitored by confocal 

microscopy in living papillae at early interaction time point (10 min after pollination (map) 

or 2 hai respectively (Fig. 22a). To quantify fluorescence changes, we designed an 

ImageJ plugin (available on demand) allowing to discriminate the papilla fluorescence at 

the contact site zone with both invaders (red arrow and yellow circles, Fig. 22a) from the 

outside contour, called surrounding zone (green circles, Fig. 22a). We obtained 

fluorescence mean values for both zones and subtracted them to obtain a mean 

fluorescence difference. Un-pollinated and un-infected papillae were used as controls 

(Fig. 22a). In stigmatic cells expressing the TGN marker, no fluorescence increase or 

decrease were detected at the contact point with the growing pollen tube; meaning that 

the fluorescence difference between contact and surrounding zones was equivalent in 

pollinated cells compare to non pollinated papilla (Fig. 22b). At the opposite, in papillae 

infected with P. parasitica, a huge positive fluorescence difference were detected 

compare to non-infected cells, corresponding to an increase of GFP fluorescence in the 

contact zone (Fig. 22b). Thus, VHA-a1 labelled-TGN-compartments are concentrated 

around the penetrating hypha compare to the rest of the cell. In stigmatic cells expressing 

the late endosome marker or the actin marker, we detected significant fluorescence 

difference in response to both invaders meaning that, in both interaction types, late 

endosomes migrate towards the contact point with the invader and actin filaments 

concentrate around the growing invading cell (Fig. 22b). 

Taken together, our results suggest that the stigmatic epidermis does not respond in 

the same manner, depending whether is invaded by a pathogen or a pollen tube; some 

cellular pathways (LE trafficking, actin reorganisation) are trigger in both interaction types 

whereas others (TGN movement) are specifically activate. 

 

The stigmatic cell is not the oomycete natural host cell. We wondered whether LE, 

TGN trafficking or actin reorganisation also occur in root cells after P. parasitica infection, 

which has not yet been investigated. To address this question, we infected TGN-, late 

endosome- and actin – labelled roots with P. parasitica and monitored cell dynamics by 

confocal microscopy. As previously, we quantified the fluorescence thank to our imageJ 

plugin (Fig. 23a). Interestingly, similarly as in papillae, TGN and late endosome 

compartments accumulated around the penetrating hypha as a clear positive fluorescence 

difference were measured (Fig. 23a,b). Unfortunately, the quantification of the actin 
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fluorescence was not possible using our ImageJ plugin because actin filaments highly 

concentrated in the cortical region of the entire root cell, which masked fluorescence 

difference between surrounding and contact zones (Fig. 23, actin infection1, *). However, 

by eyes, we detected accumulation of actin fluorescence close to the hypha tip for 11 

cases out of 13 (Fig. 23a). In some infected cells, we clearly observed a focalization of 

actin cables towards the contact point with the penetrating hypha (Fig. 23a, actin infection 

2).  

In conclusion, TGN and late endosome movements as well as actin focalization 

observed in stigmatic cells in response to hypha penetration mimic the cellular responses 

trigger in natural host cell and are not linked to the oomycete / stigma artificial system we 

developed.  

 

 

Fig. 22 / Cellular events triggered in stigmatic cells depend on the invader that attempts to 

penetrate.  

(a) Stigmatic cells from 3 fluorescent marker lines (VHA-a1/TGN, 2xFyve/Late Endosome, 

LifeActin/Actin) were pollinated or infected with P. parasitica, for 10 minutes or 2 hours, 

respectively. The Z-project allows us to visualize the fluorescence in papillae (green or yellow 

channels) and the invader (red channel for the pollen or brightfield for P. parasitica). Fluorescence 

was quantified using a homemade ImageJ plugin. Briefly, it automatically depicts 2 zones: the 

contact zone (yellow circles) that encompasses the invader contact point (red arrow) and the 

surrounding zone (green circles). Fluorescence in each zone was quantified. Bar = 10 µm. (b) 

Mean of fluorescence differences (contact – surrounding) was represented on the graph. For each 

marker line and each interaction, 15 stigmatic cells were analysed. As control, fluorescence from 
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non-pollinated or non-infected papillae was quantified. In this case, to calculate the mean 

difference, we defined an arbitrary contact zone. For each type of controls,15 stigmatic cells were 

analysed. T-test, *pVal<0,05, ***pVal<0,01. Pp, P. parasitica; TGN, trans Golgi network; LE, late 

endosome. 

 

Fig. 23 / Cellular events triggered in root cells infected with by P. parasitica.  

(a) Root cells from 3 fluorescent marker lines (VHA-a1/TGN, 2xFyve/Late Endosome, 

LifeActin/Actin) were infected with P. parasitica for 2,5 hours. Fluorescence was quantified using 

our ImageJ plugin, for vesicular marker lines (TGN and LE) as described in Fig. 22. For actin 

marker line, 2 out of 13 infected root cells are depicted. The asterisk (*) corresponds to a high 

surrounding fluorescence. The arrow points out the increase of fluorescence (TGN, LE, actin 

interaction 1) or the focalization of cables (actin interaction 2) at the hypha penetration site. (b) 

Mean of differences (contact – surrounding) was represented on the graph. For each marker line, 

15 root cells were analysed. Fluorescence from non-infected root cells was quantified. In this case, 

to calculate the mean difference, we defined an arbitrary contact zone, 15 stigmatic cells for each 

type of control were analysed. T-test, ***pVal<0,01. 
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Common gene networks  

We took advantage of transcriptomic analysis recently published by our groups to 

compare at the molecular level, pollen - stigma, P. parasitica - root and H. arabidopisidis - 

cotyledon interactions (Hok et al., 2011; Kodera et al., 2018; Le Berre et al., 2017). As we 

were interested in deciphering the early responses to invading cells, we restricted our 

comparison analysis to two interaction stages: (i) when invaders penetrate the epidermal 

surface, referred as early penetration stage (10 minutes post pollination, 2,5 hours after P. 

parasitica root infection or 8 hours after H. arabidopsidis cotyledon infection) and (ii) at 

later stage of interaction, when the growing pollen tube/hypha pass through the epidermis 

and reach the underlying tissue (60 map, 6-10 hours after P. parasitica root infection and 

24 hours after H. arabidopsidis cotyledon infection). In the case of H. arabidopsidis, RNA 

extracted at 8 and 24 hai were mixed in equal quantity to produce an unique interaction 

sample (Hok et al., 2011); we thus, used this unique data set encompassing both 

interaction stages for our comparative analysis. We focused on up-regulated genes (Fold 

Change >=2) since more of those genes, compare to down-regulated genes, emerged 

from all transcriptomic analysis, and performed Venn diagram analysis (Fig. 24a,b). At 

early penetration stage, the percentage of shared up-regulated genes between pollination 

and P. parasitica infection is 3,5% whereas only 0,3% up-regulated genes were common 

between pollination and H. arabidopsidis infection (Fig. 24a). Similarly, at later stage of 

interaction, the common gene percentage reached 12% between the response to pollen 

and to P. parasitica, whereas only 1,1% were shared between pollination and H. 

arabidopsidis infection (Fig. 24b). These results suggest that the molecular stigmatic 

response to pollen is closer to the one triggered by P. parasitica in root cells, whereas 

transduction pathways triggered by the pollen or the H. arabidopsidis hypha should be 

quite divergent.  

Interestingly, when we mapped the 43 and 255 common up-regulated genes 

between pollination and P. parasitica infection to KEGG pathways (Kanehisa et al., 2017), 

we found three plant-pathogen interaction pathways known as pattern-triggered immunity 

(PTI) induced by fungal PAMP or bacterial flg22 and EF-Tu. These PTI pathways has 

already been highlighted in others studies (Kodera et al., 2018; Zhang et al., 2017) but 

here we found that additionally to common induced pathways, the molecular players 

involved are identical, with 7 common up-regulated genes. These results suggest that not 

only at the cellular level, but also at the molecular level, plant responses to P. parasitica 

and to pollen are sharing common mechanisms.  
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Fig. 24 / Common pathways induced in response to pollination and oomycete infection.  

(a, b) Number of common genes induced (fold change >= 2) in response to pollen, P. parasitica 

(Pp) or H. arabidopsidis (Hpa) depicted by Venn diagrams (a) after early penetration or (b) after 

later interaction, during growth passing through the epidermis and reaching the underlying tissues. 

Only one gene list encompassing both stages in response to H. arabidopsidis is available. Number 

in parenthesis corresponds to the total number of genes included in each list. The intersection of 

Venn Diagrams indicates the number of common genes. (c) KEGG pathway mapping applied for 

genes commonly up regulated in response to pollen and to P. parasitica. Orange colored genes 

were induced during the penetration stage. Green colored genes were induced duringlater 

interaction stages. 
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Discussion 

In this report, we aimed at deciphering the response of a single epidermal cell, the 

papilla, to the intrusion of three different types of invading growing cells: the pollen tube 

and hyphae of the two oomycetes, P. parasitica and H. arabidopsidis. These cell-cell 

interaction systems, i.e. stigma - pollen and stigma - oomycete, represent an attractive 

model since they allow to compare the behaviour of one single responding cell facing two 

types of intrusive organisms: a “positive” invader, the pollen tube that deliver the male 

gametes towards the ovules for fertilization and progeny production, and a “negative” 

invader, the oomycete hypha during plant - pathogen interaction.  

Following inoculation, we found that P. parasitica zoospores accumulated 

massively at the top of the pistil (stigma) and to the root elongation zone, suggesting that 

both zones has common features that specifically allow zoospores attachment. The 

attraction by root exudates of zoospores from several Phytophtora species is not fully 

elucidated but a wide variety of components such as nutrients, amino acids, sugars, have 

already been identified as attractant cues (Deverall, 1977; Hosseini et al., 2014; Tyler, 

2002; Yoneyama and Natsume, 2010). A. thaliana belongs to a plant family characterized 

by a dry stigma that do not secretes surface exudates, contrary to plant with wet stigmas 

that secretes sugar and others chemical components (Edlund et al., 2004; Elleman et al., 

1992). Therefore, the specific accumulation of the P. parasitica zoospores at the stigma 

surface should not be linked to secretions. On the other hand, electrostatic forces have 

been suggested to function in both interactions systems. Swimming zoospores 

accumulation correlates with the natural electrostatic field generated by the root and may 

explain the asymmetric recruitment of spores. Additionally, a locally imposed electrical 

field leads to zoospores accumulation, and even overtake the chemical cues, suggesting 

electrical field as a major zoospores attracting factor (van West et al., 2002). Mathematic 

models predicted that the electric field is much greater at the extremity of the pistil 

compared to the rest of a flower and may participate to the electrodeposition of the pollen 

grains onto the stigma surface (Dai and Law, 1995; Vaknin et al., 2001). Although it 

remains still unknown how theses electrical signals are perceived and transduced into 

physiological responses, we may suggest that electrostatic forces could play a role in P. 

parasitica zoospores accumulation at the stigmatic surface.  

Interestingly, although H. arabidopsidis oomycete invades aerial tissues as leaves 

or cotyledons, it was unable to penetrate the stigmatic epidermal cells contrary to P. 

parasitica, a root pathogen that attaches, penetrates the stigma and produces a hypha, 

which grows within the entire pistil. These differences in pathogenicity could be linked to 

their distinct infection strategies and lifestyle. Many biotrophic oomycetes, as H. 
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arabidopsidis, are strictly dependent on host tissues (obligate biotrophy) and have 

generally restricted host range; contrary to hemibiotrophic pathogens, such as P. 

parasitica, have the capacity to infect hundreds of different plant species (Fawke et al., 

2015; Meng et al., 2014). Interestingly, P. parasitica zoospores produce an appressorium 

at the stigma surface while H. arabidopsidis conidiospores germinate, produce a 

germinative tube but never develop an appressorium. The appressorium that functions in 

penetration of the cell wall could be induced by topological features of the host surface 

(Latijnhouwers et al., 2003). Thus, stigma surface topography seems to be more favorable 

to P. parasitica infection that recognizes this epidermal cell as a potential host cell. In 

addition, our comparative transcriptomic analysis reveals that intrusion of a pollen tube or 

a hypha from P. parasitica triggers similar molecular mechanism in stigmatic cells or root 

cells respectively. It is tempting to speculate that this resemblance between both 

interaction types may also explain why P. parasitica zoospores penetrate stigmatic cell 

whereas H. parasitica conidiospores do not. Thus, mechanism by which invader recognize 

the cell surface as well as how the epidermal cell perceive the invader seems to be more 

similar between pollen and P. parasitica than between pollen and H. parasitica 

Plants have the capacity to respond quickly to filamentous pathogens attempting to 

penetrate the epidermis (Hardham, 2007). In stigmatic cells, physiological and cellular 

changes in response to P. parasitica penetration and hyphal growth were observed, 

resembling to those triggered in root cells. Indeed, similarly as in roots, the hypha digests 

the stigma lipophilic layer and the cell wall to grow in close contact with the plasma 

membrane. During growth within the stigmatic tissue, the hypha is surrounded by a 

membrane layer labelled with the LTI6B protein that is normally localised at the stigmatic 

plasma membrane in non-infected cells. This layer isolates the hypha from the papilla 

cytoplasm. Such structure has already been described in rice leaf infected with the 

Magnaporthe oryzae fungus; beneath the appressorium, tubular primary hyphae 

invaginate the rice plasma membrane (Yi and Valent, 2013). Similarly, the arbuscular 

mycchorizal fungi triggers the invagination of the epidermal root cells plasma membrane 

which colocalise with the prepenetration apparatus, a cytoskeleton/ER-containing 

structure through which the fungal hypha cross the epidermis (Genre et al., 2005, 2009). 

Oomycetes develop specialized hyphae, named haustoria enveloped by a plant-derived 

membrane, the extrahaustorial membrane (EHM), which separates the pathogen from the 

host cell (Hardham, 2007). However, in natural pathosystem, the composition of this 

invaginated membrane is largely modified during the infection process. Several plant 

plasma membrane proteins are excluded for the EHM membrane, and conversely, some 

proteins detected within this modified membrane are absent from the rest of the plant 

plasma membrane (Bozkurt et al., 2015; Mackie et al., 1991). The composition of the 
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stigmatic derivated-membrane surrounding the growing hypha of P. parasitica remains to 

be determined.  

Expansion of the host plasma membrane and modification of its protein 

composition during infection is coupled with an active vesicular trafficking (Bozkurt et al., 

2015; Dörmann et al., 2014; Lu et al., 2012). Additionally, polarized secretion also has 

been shown to have an active role in plant defence and is generally associated with cell 

wall reinforcement and secretion of antimicrobial compounds (An et al., 2006; Takemoto 

et al., 2006). The actin network plays a central role in vesicular delivery at the plasma 

membrane. Takemoto and collaborators (2006) showed that in Arabidopsis epidermal 

cells, actin filaments reorganised in large bundles focusing around the oomycete 

penetration site. As previously described for other oomycete species, we showed that in 

root epidermal cells infected with P. parasitica, intracellular compartments (TGN and LE) 

accumulated around the penetrating hypha and actin cables focused at the penetration 

site. Vesicles originated from the TGN have been implicated in resistance mechanism 

against non adapted-powdery mildew fungi, Blumeria graminis and Erysiphe pisi and are 

involved in material deposition towards the cell wall apposition formed at the entry of the 

pathogen (reviewed in Dörmann et al., 2014). The LE, also known as Multivesicular 

Bodies (MVB), is an endocytic compartment transporting cargos to be degraded towards 

the vacuole. In N. benthamiana cells infected with the oomycete Phytophthora infestans, 

late endosome vesicles accumulate at the haustoria interface suggesting a rerouting of 

the LE pathway towards the EHM to provide the material for membrane expansion 

(Bozkurt et al., 2015). In barley epidermal cells infected with the biotrophic fungus 

Blumeria graminis, electron microscopy studies showed that MVB were present in the 

vicinity of the cell wall apposition (An et al., 2006). The authors proposed that MVB may 

release their internal vesicles into the extracellular space beneath fungal penetration 

attempt to participate to the cell wall apposition construction and secretion of antimicrobial 

compounds. In stigmatic cells infected with P. parasitica, we detected TGN and LE 

compartments accumulation in the vicinity of the hypha tip and mobilization of actin toward 

the penetration site. These cellular features are the signature of infected host cells 

suggesting that the pathogen triggers reprogramming of stigmatic cell machinery to 

respond to the intrusion. Whether this intense traffic associated with actin rearrangement 

are required to build the new plasma membrane around the hypha or to battle against the 

invading pathogen need to be elucidated.  

 

When compared with the natural invading organism of the stigmatic cell, the pollen 

tube, similarities as well as divergences between both invading processes were 

highlighted. P. parasitica formed an appressorium-like structure at the stigmatic surface. 
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Appressoria are required to adhere to the plant surface and to secrete enzyme to digest 

the plant cell wall facilitating the hypha penetration (Ryder and Talbot, 2015). Similarly, a 

“foot” structure, composed of protein and lipids from the pollen surface extruded onto the 

papilla, is needed to loosen the stigmatic cell wall and prepare the pollen tube entry 

(Chapman and Goring, 2010). We can speculate that the appressorium-like structure, 

formed at the papilla surface, could be perceived by the stigmatic cell, as would be the 

“foot”; signalling that an organism attempts to penetrate the surface. Once passing 

thought the cuticle, the hypha and pollen tube act on the papilla cell wall to generate 

space for growing. Whereas the pollen tube softened the stigmatic cell wall to make its 

way in between the two layers, the hypha completely digests the cell wall to growth in 

close contact with the plasma membrane. In both cases, advancing pollen tube and hypha 

may exert a pressing force that should overcome the resistance provided by the invaded 

stigmatic cells. We estimated this mechanical pressure by measuring the papilla 

deformation and surprisingly, we found that the pollen tube, while growing engulfed within 

the cell wall, is applying more pressure towards the interior of the cell compared to the 

hypha. As diameters of the pollen tube and the hypha are similar, you may assume that 

this would be linked to differences in pushing forces exerted by these two growing 

organisms and/or variable resistance forces generated by the papilla (Sanati Nezhad and 

Geitmann, 2013). 

One of the earliest host responses when attacked by an oomycete is the 

focalization of actin filaments at the site of attempted penetration (Hardham et al., 2008; 

Takemoto et al., 2003). Similarly, actin bundles focused at the site of pollen grain 

attachment and this actin reorganisation is essential for pollen germination (Iwano et al., 

2007). Interestingly, Hardham and al. (2008) have shown that touching the surface of the 

A. thaliana cotyledon epidermis with a microneedle produced a rapid actin focalization at 

the contact point leading the authors to propose that actin reorganisation is triggered by 

detection of the mechanical pressure exerted by the invader. In stigmatic cells challenged 

by a hypha or a pollen tube, we detected a similar reorganisation of actin around the 

penetration site. This result suggests that, despite that both organism do not apply the 

same pressure, a threshold value for the physical forces required to stimulate actin 

reorganisation may have been reached in both cases. Such a mechanical threshold has 

been proposed to elicit subcellular reorganisation in epidermal cells infected with H. 

arabidopsidis (Branco et al., 2017; Hermanns et al., 2008). Alternatively, several 

experimental arguments demonstrated that physical signal alone could not account for the 

fully basal cellular response. A mutant strain of the rice filamentous fungus Magnaporthe 

grisea that fail to penetrate the plant cell wall and form a nonfunctional appressorium, is 

still able to trigger actin reorganisation and defence mechanism. A protein/lipid mixture 
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extracted from the pollen surface was sufficient to trigger accumulation of vesicles in 

Brassica stigmatic wall (Elleman and Dickinson, 1996) and elicits Ca2+ transport in 

Arabidopsis papillae (Iwano et al., 2014); two cellular events required for pollen 

germination and tube growth. These data support the idea that, in addition to mechanical 

perception, chemical molecules released by the pathogen or present at the surface of the 

pollen grain are necessary to trigger host cell cellular changes. Interestingly, our results 

showed that the VHA-a1 labeled-TGN mobilization in stigmatic cell occurs only in 

response to hyphal growth. Similarly, we never observed pollen tube enclosure by the 

stigmatic plasma membrane as observed for the hypha growing within an infected 

stigmatic or root epidermal cells. Taken together, these data suggests that the stigmatic 

cell is capable to recognize the invasive cell, triggering adapted response to an invader 

never meet throughout its life. Whether recognition depends on molecular or/and 

mechanical clues remains to be elucidated. 

Materials and Methods  

Plant, oomycete materials and culture conditions 

Arabidopsis thaliana Col-0 and all transgenic plants were grown in growth chambers 

under a long-day conditions (16h light/8h dark at 21°C/19°C with a relative humidity 

around 60%). The pVHAa1-VHAa1:GFP line (Col-0) have been described previously 

(Dettmer et al., 2006). The pLAT52-EGFP line (Col-0) was obtained from A. Cheung and 

previously described (Rotman et al., 2003). Phytophtora parasitica Dastur isolated INRA-

310 was maintained in the Phytophthora collection at INRA, Sophia Antipolis, France. The 

growth conditions and zoospores production were previously described (Galiana et al., 

2005). The P. parasitica transformant expressing pCL380::GFP-GUS was previously 

described (Attard et al., 2014). The green florescence protein (GFP) or β-glucuronidase 

(GUS) expression signal increased 3 hours after inoculation, at the onset of penetration, 

and peaked six hours after inoculation. The H. arabidopsidis isolate Noco was transferred 

weekly onto the susceptible accession Col-0 as already described (Dangl et al., 1992).  

 

Plasmid construction and generation of transgenic lines 

Gateway® technology (Life Technologies, USA) and two set of Gateway®-compatible 

binary T-DNA destination vectors were used (Hellens et al., 2000; Karimi et al., 2002) for 

expression of transgenes in A. thaliana. The DNA fragment containing the Brassica 

oleracea SLR1 promoter was inserted into a the pDONP4-P1R plasmid (Durand et al., 

2014; Fobis-Loisy et al., 2007). The 165 bp-LTI6B fragment (Yamada et al., 2005) was 

introduced in the pDON207 plasmid. The FYVE domain (Simon et al., 2014) was 
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introduced into the plasmid pDONP2R-P3 in duplicate to generate a 2xFYVE construct. 

CDS from GFP protein was introduced either in the pDON207 or in the pDONP2R-P3. 

The Gateway® entry clone containing the LifeActin peptide fused to Venus was provided 

by Takashi Ueda (Era et al., 2009). The SLR1 promoter, the LifeActin:Venus and a 

3’mock sequence were inserted in the pB7m34GW . The SLR1 promoter, the Lti6b 

fragment and the GFP CDS (+stop) were inserted in the pB7m34GW. The SLR1 

promoter, the GFP CDS (-stop) and the 2xFYVE domain were inserted in the 

pB7m34GW. We generated a pACT11-RFP construct by amplifying the promoter of the A. 

thaliana Actin 11 gene (Huang et al., 1997) and inserting it into the pGreenII gateway 

vector containing the RFP coding sequence. Arabidopsis Col-0 transgenic plants were 

generated using Agrobacterium tumefaciens-mediated transformation according to 

(Logemann et al., 2006). 

 

Transcriptomic data production and analysis 

Pollination RNAseq data were produced as described (Kodera et al., 2018). Briefly, A. 

thaliana Col-0 stigmas (stage 13-14 according to Smyth et al., 1990) were pollinated with 

mature A. thaliana C24 pollen grains. Stigmas were harvested 10 minutes after 

pollination, when the pollen tube starts to penetrate the stigmatic cell or 60 minutes after 

pollination, when the pollen tube is reaching the underlying tissue). RNA were extracted 

and sequenced. mRNA from stigmas side (Col-0 background) were retrieved thanks to a 

SNP-based method. P. parasitica transcriptomic data were produced as previously 

described (Le Berre et al., 2017). Briefly, roots from A. thaliana Col-0 were inoculated with 

P. parasitica. Total RNA were recovered (i) 2.5 hours after inoculation when the pathogen 

is penetrating the root epidermis, and, (ii) 6 and 10 hours after inoculation during the early 

biotrophic colonization. Corresponding RNA were used for hybridizations (affymetrix 

microarrays). H. arabidopsidis transcriptomes were produced as previously described 

(Hok et al., 2011). Briefly, cotyledons from the ecotype Col0 were inoculated with H. 

arabidopsidis. Total RNA at 8 (penetration) and 24 h after inoculation (invasive growth) 

were extracted and mixed to produce the samples used for hybridizations (affymetrix 

microarrays). Pathway analysis was performed using and KEGG PATHWAY Database 

using KEGG Mapper system (http://www.kegg.jp/kegg/tool/map_pathway2.html) 

(Kanehisa et al., 2017). 

 

Oomycetes pathogen assays and histochemical analysis. 

Pathogen assays with the P. parasitica and H. arabidopsidis isolates were performed as 

previously described (respectively Le Berre et al., 2017 and Hok et al., 2014). The GUS 
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reporter activity staining in plant tissues was performed as previously described (Hok et 

al., 2011).  

 

Pollination assay and aniline blue staining 

Mature stigmas (stage 13 to 14 according to Smyth et al., 1990) were emasculated and 

pollinated with mature pollen. 24 hours after pollination, stigma were fixed in acetic acid 

10%, ethanol 50% and stained with aniline blue for epifluorescence microscopy 

observation as previously described (Kitashiba et al., 2011). 

 

Transmission Electron microscopy 

Mature stigmas were pollinated with A. thaliana pollen grains or infected with P. parasitica. 

Roots were infected with P. parasitica. One hour after pollination or 1.5 hours post 

inoculation, samples were fixed in a solution containing 2.5% glutaraldehyde and 2.5% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.2) and after 4 rounds of 30 min 

vacuum, they were incubated in fixative for 12 hours at room temperature. Pistils and 

roots were then washed in phosphate buffer and further fixed in 1% osmium tetroxide in 

0.1 M phosphate buffer (pH 7.2) for 1.5 hours at room temperature. After rinsing in 

phosphate buffer and distilled water, samples were dehydrated through an ethanol series, 

impregnated in increasing concentrations of SPURR resin over a period of 3 days before 

being polymerized at 70°C for 18 h, sectioned (65 nm sections) and imaged at 80 kV 

using an FEI TEM tecnaiSpirit with 4 k x 4 k eagle CCD. 

 

Confocal microscopy 

Pollinated stigmas were observed with a Zeiss microscope (Zeiss 800 or AxioObserver Z1 

equipped with a spinning disk module) with a 40x objective. Oomycetes infected tissues 

(stigma, root and leaves) were observed with a Zeiss 880 confocal microscope with a 63x 

objective. GFP was exited at 488 nm and fluorescent detected between 500 and 550nm. 

RFP was exited at 561 nm and fluorescent detected between 550 and 600 nm. Pollinated 

stigmas were imaged every 0.4 µm encompassing the entire volume of the stigma, using 

the serial confocal method. Infected tissues were imaged each 0.4 µm encompassing the 

entire volume of the stigma and half of the root thickness, using the z-stack confocal 

protocol. Images were processed with ImageJ software. 

 

Fluorescence quantification 

From the serial confocal images obtained with VHA, 2xFYVE or LifAct fluorescence, we 

generated a Z project for visualizing the fluorescent stigmatic cell and the invader (pollen 

or P. parasitica). We manually choose one slide from the stack that corresponds to the 
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focus plan of the contact site with the pollen tube or hypha. On this selected slide, we 

manually draw the stigmatic cell periphery, define the contact site and fix the size of the 

circles in which the fluorescence will be quantified by the image J script (2.6 mm). Then, 

the plugin automatically depicts 2 zones; the contact zone that encompasses the invader 

contact point and the surrounding zone. Fluorescence in each zone is quantified. Mean of 

difference (contact – surrounding) is calculated by the script. Fluorescence from non-

pollinated or non-infected stigmatic cells were quantified. In this case, we manually draw 

the periphery of the cell; fix the size of the circles (2.6 mm). To calculate the mean 

difference, we define an arbitrary contact zone between circle 6 and 10 for controls linked 

to pollen and between circle 6 and 11 for controls linked to P. parasitica.  

The imageJ plugin is available on demand.  
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Cell-cell interactions between epidermal cells and invading organisms remain a 

central question in biology. Via two antagonistic systems, one that leads to fertilization and 

another one that leads to infection, we have shown that the stigmatic epidermal cell 

constitutes an invaluable model to investigate how the plant cell responds to biotic stress 

at the cellular as well as molecular level. However, during our experimental work, we had 

to face unanticipated problems linked to particular properties of the papilla cell surface 

and to specific requirements to monitor pollen tube growth in vivo.   

 

The stigmatic epidermal cell, a very specific tissue and a technical challenge 

 

Monitoring the dynamics of intracellular compartments and cytoskeleton markers in 

the stigma papilla following pollen deposition or oomycete infection revealed to be 

particularly challenging in several respects. First, most of the drugs classically used in cell 

biology were unable to penetrate the papilla cell wall and either could not be used in this 

study. Implementation of alternative protocols, such as the use of lanolin, had to be done 

to allow oryzalin delivery into the cytosol. The impermeability of the stigma cell surface to 

reagents likely results from the presence of wax covering the thick cuticle. Contrasting 

with this feature, upon pollination, the papilla rapidly delivers water for pollen grain 

hydration. These contrasting characteristics support the idea that pollen-stigma interaction 

induces essential changes in the permeability of the papilla surface, whose nature 

remains to be uncovered. Second, microscope observation of the pollen - stigma 

interaction necessitates working in the absence of an aqueous medium to prevent any 

artificial rehydration of pollen grains. When mounting was performed in the air, some 

marker lines appeared less fluorescent than in water and this limited our observations. 

Third, because most endomembrane compartment or cytoskeleton marker lines available 

have the fusion protein driven by the CaMV35S promoter, which is poorly active in papilla 

cells, it was necessary to generate new marker lines using the SLR1 promoter specifically 

active in stigmatic cells. Besides, several lines we produced, either with the SLR1 or the 

endogenous promoter of the protein of interest did not lead to sufficient fluorescence for 

proper compartment labelling. Fourth, the measurement of the cell wall stiffness by AFM 

revealed to be very tricky due to the papilla shape of stigmatic cells, which strongly 

complicated the placement of the indenter on the cell surface. A special mounting medium 

had to be set up for this purpose. Finally, because one aim of the study was to follow 

pollen tube growth through live cell imaging, I participated in setting up the most 

appropriate protocol for this time-lapse analysis.  
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Further investigations about the role of the mechanical properties of 

stigmatic cells in pollen tube trajectory 

 

Our results suggest that mechanical properties of the stigmatic cells play a key role 

in early pollen tube guidance. This represents the first characterization of a mechanical 

cue involved in pollen tube guidance in natural growth conditions. Although we have 

demonstrated a function of KATANIN in these properties, how cell wall components 

and/or their organisation are involved in this process remains to be elucidated. 

Interestingly, we found that though cell walls of xxt1 xxt2 papillae had similar reduced 

stiffness to those of ktn1-5, they did not trigger the pollen tube coiled phenotype observed 

in ktn1-5. This divergence in response is probably due to differences in the CMF 

organisation between the two mutants. Indeed, CMFs in xxt1 xxt2 walls were found to be 

straighter, bundled and more longitudinal to the cell axis in hypocotyl cells than in Col-0 

controls (Xiao et al., 2016), whereas CMFs often form bands and run in different directions 

in the KATANIN fra2 mutant walls compared with WT cells (Burk and Ye, 2002). Despite 

our many efforts to determine CMF orientation in papilla cells to elucidate whether these 

differences in cellulose patterning are conserved in stigmatic cells, our preliminary results 

did not allow us to draw clear conclusion, mainly because of technical difficulties. Further 

attempts should be carried out, for instance by testing new cuticle degrading reagents that 

could permit a more efficient entry of the cellulose stain within papilla cells. Alternatively, 

Field-Emission Scanning Electron Microscopy (FESEM), which has a high-resolution 

imaging for determining cell wall cellulose microfibril orientation (Zheng et al., 2017) 

should be attempted. Furthermore, analysis of the cell wall components of both mutants, 

for example using Fourier-transform infrared spectroscopy (FTIR) technique, could also 

provide additional cues to explain why ktn1-5 mutant stigmas cause the coiled phenotype. 

It is worth noting that a previous study of the Arabidopsis mor1-1 temperature-sensitive 

microtubule mutant, which exhibits microtubule shortening and disorganisation 

(Whittington et al., 2001), reported faster pollen germination and pollen tube growth when 

stigmas of mor1-1 were pollinated with WT pollen grains compared with WT stigmas 

(Samuel et al., 2011). This raises the question as to whether pollen tubes could present 

the coiled phenotype in mor1-1 stigmas like in ktn1-5. Intriguingly, disruption of CMTs in 

mor1-1 root epidermal cells was not accompanied by alteration of CMF orientation, which 

remained transverse (Sugimoto et al., 2003). Thus, if mor1-1 stigmas behave like ktn1-5, 

we cannot exclude that a mechanism independent of CMF orientation might be involved in 

the coiled phenotype of pollen tubes observed in ktn1-5. This mechanism might involve 

MAPs or other proteins bound to CMTs that would not be properly delivered to the plasma 

membrane or interact with their target components due to the disorganised CMT network 
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related to the loss of KTN1 function. Importantly, KATANIN1 activity is regulated by ROP 

GTPase signalling and an effector of the ROP6 GTPase, RIC1, has been shown to 

physically interact with KTN1 (Lin et al., 2013). Whether this signalling pathway is 

important for pollen – stigma interactions remains to be elucidated and could be one of the 

future directions for this project. 

 Based on our data reported in the BIORXIV manuscript, we suggest that the 

anisotropy / mechanical properties of the stigmatic tissue participate in the early guidance 

of pollen tubes. Given our collaboration with two biophysics teams in Grenoble and at 

ENS Lyon, it could be interesting in designing an in vitro assay of pollen tube growth with 

the aim of reproducing the coiled phenotype on artificial substrates. For example, we 

could test synthetic substrates with adjustable stiffness and shapes, mimicking the stigma, 

and examine the direction taken by a pollen tube growing in a culture medium of variable 

density. Additionally, the data obtained in this in vitro system may give additional 

information for the modelling approach.   

 

Speculating on the functional role of CMT dynamics and mechanical 

modifications within papillae during its development 

 

Studying mechanical properties have led us to highlight that the coiled phenotype 

was not only observed in ktn1-5 stigmatic cells but also in stage-15 papillae. At this late 

stage of stigma development, we found that cell wall stiffness and CMT array of Col-0 

papilla cells were close to those of ktn1-5 papillae, which probably explain the increased 

coiled phenotype observed for pollen tubes. This is likely to be related to isotropic 

orientation of CMTs and CMFs known to occur at the end of the cell elongation process . 

Whether the coiled phenotype on late Col-0 stigmas is also associated with a decrease in 

KTN1 abundance, which can be hypothesised based on our ktn1-5 analysis, remains to 

be elucidated. Our finding raises new questions about the biological interest of these 

stigmatic changes during development. Indeed, for aged stigmas, modifications of CMT 

arrays and mechanical properties of the cell wall, accompanied by an acceleration of the 

pollen tube growth, could be seen as beneficial for the plant by favouring ultimate 

fertilization and seed set on old flowers, and hence supporting dissemination of the 

species. Actually, the pistil length increases with aging and similarly the journey the pollen 

tube has to travel to reach the ovules. Whether the tubes are able to reach the ovules 

quicker on old pistils remains yet to be determined. Preliminary experiments (data not 

shown) I carried out show that the seed set is similar when pistils are pollinated at stages 

12 to 15, which may reflect a faster pollen tube growth on old pistils. This is in accordance 

with recent evidence reported by Gao and collaborators (2018), showing that stigma 
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senescence, associated with a loss of seed production is only initiated 72h after anthesis, 

corresponding to the stage 16-17 (Gao et al., 2018).  

 

Stigma epidermal cell responses to Oomycete infection and pollen tube 

growth 

 

The second part of my experimental work dealt with the study of the epidermal cell 

responses to two types of invading growing cells, the pollen tube, and the oomycete 

hyphae. To this end, we set up a live cell imaging system that allowed us to monitor the 

dynamics of intracellular components such as actin filaments, trans-golgi network and late 

endosomes. Taking the stigmatic cell as responding cell, we highlighted that the papilla is 

able to mediate its response depending on the invader identity. Among others, our results 

showed that an actin focalization is triggered during both types of interaction. Further 

analysis would then be needed to examine the feedback from actin to the growth of these 

invading cells, i.e., for instance, in which manner papilla actin destabilization may modify 

these interactions. To this end, during my PhD, and related to the pollen-stigma 

interaction, I tested a series of actin loss-of-function mutants (data not shown), such as 

mutants impaired in ACTIN 1, ACTIN 7, and ACTIN 11, or in the actin depolymerizing 

factors ADF3 and ADF4, all these genes being expressed in WT stigmas. The mutant 

pistils were pollinated with WT pollen. However, no defect in pollen germination or tube 

growth was observed. This result might be explained by a possible redundancy between 

members of the actin family. To circumvent this problem, drugs altering the actin 

cytoskeleton could be used, such as latrunculin B, employing the protocol I set up for 

treating the stigma with oryzalin. Interestingly, the actin depolymerizing drug cytochalasin 

D was previously used in pollination assay in Brassica rapa and led to a reduced rate of 

pollen germination, underlining a role for actin in pollination (Iwano et al., 2007). Similarly, 

the role of vesicular trafficking could also be studied by functional analysis. I thus 

pollinated several loss-of-function mutants impaired in trafficking functions (for instance 

ECHIDNA and the SNAREs VTI12 and VTI11) and observed the WT pollen tube path by 

SEM, but here again no pollen tube phenotype was detected. The use of drugs affecting 

trafficking pathways could also be considered in further experiments. In the stigma-

oomycete interaction, if actin focalisation participates in the reinforcement of the cell wall 

papilla at the infection site and/or in targeting secretory vesicles to bring defence 

components, affecting these pathways could enhance the susceptibility of the stigmatic 

cell to the pathogen. Altogether, these experiments could help us to decipher the 

functional role of stigmatic actin and vesicular trafficking during interaction with invading 

cells.  
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Mechanoperception of the stigmatic cell to physical forces produced by the 

growing pollen tube or Oomycete hypha  

 

Because mechanical stress exerted on a plant cell provokes the reorganisation of 

CMTs (Hamant et al., 2008; Hardham et al., 2008), CMTs can be used as a proxy to 

monitor cell response to pressure, for instance that produced by the growing pollen tube 

or oomycete hypha. To this end, we generated several CMT marker lines that 

unfortunately gave too low fluorescence labelling to monitor CMT movement during 

invading growth. As previously mentioned, this is partly due to the fact that stigmas have 

to be mounted in the air, and therefore a high fluorescence of fusion markers is needed 

for proper imaging. In the future, new marker lines will have to be produced, for instance 

by tagging the protein of interest with two or three fluorescent proteins. These new 

constructs should allow us to determine whether and how CMT arrays reorganise during 

pollen tube and hyphal growth in papilla cells.  

In line with this cell imaging analysis, exploring how the stigmatic cell perceives the 

physical stress mediated by the pollen tube and oomycete hypha upstream of the CMT 

response is a major concern. Indeed, even though mechanotransduction pathways have 

not been clearly identified in plants, cell wall sensors have been reported (Ringli, 2010; 

Wolf et al., 2012). Interestingly, a genetic screen for mutants that do not respond to 

external mechanostimuli identified the receptor-like kinase FERONIA. In this latter work, 

FERONIA was shown to regulate the Ca2+-dependent transduction of mechanical stimuli 

in roots (Shih et al., 2014). Interestingly, Ca2+ is known to play a role in both pollen-stigma 

and plant-pathogen interactions (Chen et al., 2015). How these genes may affect the 

invading growth within stigmatic cells appears one of the very exciting directions to follow 

for the future of this project. In that scenario, we could analyse mutants or transgenic lines 

impaired in FERONIA, or FERONIA-like family members, and monitor how this affects the 

invading growth behaviour and papilla response. 
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Abstract 

Fertilization in flowering plants depends on the early contact and acceptance of 

pollen grains by the receptive papilla cells of the stigma. To identify the associated 

molecular pathways, we developed a transcriptomic analysis based on single nucleotide 

polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as 

female and the other as male. We succeeded in distinguishing 80 % of transcripts 

according to their parental origins and drew up a catalog of genes whose expression is 

modified after pollen-stigma interaction. Global analysis of our data reveals pattern-

triggered immunity (PTI). From this analysis, we predicted the activation of the Mitogen-

activated Protein Kinase 3 on the female side after compatible pollination, which we 

confirmed through expression and mutant analysis. Altogether this works provides the 

molecular signatures of compatible and incompatible pollination, highlights the active 

status of incompatible stigmas, and unravels a new MPK3-dependent cell wall feature 

associated with stigma-pollen interaction. 

 

This article has been deposited on Biorxiv (doi: https://doi.org/10.1101/374843), and 

submitted to Nature Plants in July 2018. 

 

Author Contribution 

CK, JJ, MDR developed the data analysis pipeline and performed the bioinformatics 

analyses. AL, JL supported the bioinformatics analyses. AL helped with interpretation of 



165 

the transcriptomic data. CK is responsible for all experiments and analysis performed in 

the study except described below. FR produced and characterized Col-0/SRK14 and 

C24/SCR14 lines. CK and LR performed the image acquisition by scanning electron 

microscope. CK, LR, FR, IFL harvested plant materials and extracted RNA. CK, TG, IFL 

designed the study and CK, JJ, TG, IFL wrote the manuscript. All the authors contributed 

to the discussion.  

 

  



166 

 

 

This poster, presented at the 19th annual meeting of the Club Exocytose-

Endocytose, Carry-Le-Rouet, France, May 26-28th 2016, received the best poster award. 

 

 

1.	A	working	model:	How	pollen	can	

be	sense	at	the	s9gma	surface?	

?
Pollen			

	grain	

Role	of	the	female	partner	

in	pollen	–	s4gma	interac4ons	
L.	Riglet,	T.	Gaude,		I.	Loisy		
UMR	5667,	Reproduc9on	et	Développement	des	Plantes	-	ENS	Lyon,	France.	Email:	lucie.riglet@ens-lyon.fr		

POLLEN	

STIGMA	

In	 plants,	 the	 female	 reproduc9ve	 organ	 is	 covered	

with	 flask-shaped	 epidermal	 cells,	 the	 s9gma9c	

papilla,	 capable	of	 trapping	 the	male	partner	 (pollen	

grain).	 The	 pollen	 hydrates	 on	 the	 s9gma	 and	

germinates	a	pollen	tube	that	grows	to	transport	the	

male	gametes	towards	the	ovules.	

-  What	controls	this	early	interac9on	between	both	

partners	?		

-  What	is	the	female	role?	

Pollen	grain	S4gma	

Style	

Ovary	

Pollen	tube	

Ovule	

Ques4on	:	What	controls	the	first	steps	of	plant	reproduc9on	?	

2.	TGN	vesicles	move	to	and	accumulate	around	the	pollen	tube	during	its	growth	

Arabidopsis	thaliana		

												flower	

Aim	:	Towards	an	integra9ve	model	of	pollen	–	s9gma	interac9on	using	live	imaging	and	

gene9c	approaches	

ü Behavior	of	 trafficking	mutants		

in	response	to	pollina9on	

ü Live	imaging	:	dynamics	of	late,	early	and	

recycling	endosomes	and	Golgi	apparatus		

Adapted	from	Zarsky	et	al.,	2009,	New	Phytol.		

G
F
P
-2
xF
y
v
e
		

D
R
P
1
A
-G
F
P
	

R
a
b
A
1
-G
F
P
	

S
Y
P
2
3
-G
F
P
	

V
H
A
a
1
-G
F
P
	

RE	

Golgi	

TGN	

Endocytosis	

LE	

3.	Proper	organiza9on	of	s9gma9c	cytoskeleton	is	necessary	for	pollen	tube	guidance	towards	the	ovules	

4.	Role	of	ROP	(Rho	of	plant)	in	pollina9on	

Ctrl		1					2						3						4						5					6				7						8						9				10			11	

ü Behavior	of	pollen	grains	on	s9gmas	altered	in	

ROP	func9ons	?	

ROP	2/3/6	highly	expressed	in	

non	pollinated	s9gma	

ü RT-PCR	on	s9gma	RNA	

Conclusion:	 Studying	 the	 cytoskeleton,	 vesicular	

trafficking	 and	ROPs	will	 allow	us	 to	 construct	 an	

in tegra9ve	 mode l	 fo r	 po l l en	 -	 s9gma	

communica9on	

S
9
g
m
a
	V
H
A
-a
1
-G
F
P
	(
T
G
N
)	

T
im

e
	a
Q
e
r	p

o
llin

a
4
o
n
	

Pollen	RFP	

t6	min	 t8	

t28	t10	

S
9
g
m
a
	Life

A
ct-V

e
n
u
s	

Ac9n	polymeriza9on	along	

the	pollen	tube	path	

WT	x	WT	 MTs	mutant	(s9gma)	x	WT	pollen	

WT	pollen	tubes	twist	around	the	s9gma	papilla	before	finding	their	way	to	the	ovary	on	

microtubule	mutants	

0	

20	

40	

60	

80	

100	

120	

direct	 1	loop	 >=	2	loop	 Mixed	

N
u
m
b
e
r	
o
f	
p
o
ll
e
n
	t
u
b
e
s	

Behavior	of	pollen	tubes	

Pollen	tube	growth	on	WT	or	MTs	

mutant	s4gma	

WT	x	WT	

MTs	mutant	xWT	

t16	 t19	

T8	min	 t10	 t13	

ü Dynamics	of	trans-Golgi	Network	

P
o
lle
n	R

F
P
	

S9gma9c	papilla	

Pollen	

grain	

S9gma9c	papilla	

ROP	


