S. Agnihotri, J. P. Mota, M. Rostam-abadi, and M. J. Rood, Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles, Carbon N. Y, vol.44, pp.2376-2383, 2006.

F. Ahmed and D. F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community : A case study, J. Hazard. Mater, pp.33-39, 2013.

R. J. Aitken, M. Q. Chaudhry, A. B. Boxall, and M. Hull, Manufacture and use of nanomaterials: Current status in the UK and global trends, Occup. Med. (Chic. Ill), vol.56, pp.300-306, 2006.

O. Akhavan and E. Ghaderi, Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria, ACS Nano, vol.4, pp.5731-5736, 2010.

O. Akhavan, E. Ghaderi, and A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation, J. Phys. Chem. B, vol.115, pp.6279-6288, 2011.

B. L. Allen, P. D. Kichambare, P. Gou, I. I. Vlasova, A. Kapralov et al., Biodegradation of single-walled carbon nanotubes through enzymatic catalysis, Nano Lett, vol.8, pp.3899-3903, 2008.

J. Aloi, Review of Recent Freshwater Periphyton Field Methods, Can. J. Fish. Aquat. Sci, vol.47, pp.656-670, 1990.

, R-Nano.fr [WWW Document, ANSES, 2016.

V. Aruoja, H. Dubourguier, K. Kasemets, and A. Kahru, Toxicity of nanoparticles of CuO , ZnO and TiO 2 to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ, vol.407, pp.1461-1468, 2009.

C. E. Banks, R. R. Moore, T. J. Davies, and R. G. Compton, Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Electronic supplementary information (ESI) available: the use of CNTmodified electrodes in electro, Chem. Commun, vol.1804, 2004.

J. Barbillat, D. Bougeard, G. Buntinx, M. Delhaye, P. Dhamelincourt et al., Spectrométrie raman, in: Techniques de l'ingénieur. Analyse et Caractérisation, pp.1-31, 1999.

H. Bares, Fonctionnalisation chimique du graphène , : vers des matériaux bidimentionnels photo actifs pour la reconnaissance et l ' électronique moléculaire, 2016.

C. Barranguet, B. Veuger, S. A. Beusekom, . Van, P. Marvan et al., Divergent composition of algal-bacterial biofilms developing under various external factors, Eur. J. Phycol, vol.40, pp.1-8, 2005.

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications. Science (80-. ), vol.297, pp.787-792, 2002.

S. Berber, Y. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett, vol.84, pp.4613-4616, 2000.

C. Berger and A. T. Ibrahimi, Le graphène épitaxié : un cas d'école de graphène isolé, Société Chim. Fr, vol.116, pp.356-357, 2011.

C. Bernard, Propriétés mécaniques des nanotubes de carbone en tant que nanosondes et leur fonctionnalisation par bio-nanoparticules, 2007.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang et al., Graphene-based liquid crystal device, Nano Lett, vol.8, pp.1704-1708, 2008.

J. Y. Bottero, M. Auffan, D. Borschnek, P. Chaurand, J. Labille et al., Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches, Comptes Rendus -Geosci, vol.347, pp.35-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01426095

A. Bour, Effets ecotoxicologiques de nanoparticules de dioxyde de cerium en milieu aquatique: d'une evaluation en conditions monospecifiques a l'etude de chaines trophiques experimentales en microcosmes, 2015.

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review, J. Hazard. Mater, vol.283, pp.764-777, 2015.

F. Bourdiol, F. Mouchet, A. Perrault, I. Fourquaux, L. Datas et al., Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae, Carbon N. Y, vol.54, pp.175-191, 2013.

S. K. Brar, M. Verma, R. D. Tyagi, and R. Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge -Evidence and impacts, Waste Manag, vol.30, pp.504-520, 2010.

, Terminology for nanomaterials. Publicly Available Specif, vol.16, 2007.

D. A. Brownson, D. K. Kampouris, and C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources, vol.196, pp.4873-4885, 2011.

G. Bystrzejewska-piotrowska, J. Golimowski, and P. L. Urban, Nanoparticles: Their potential toxicity, waste and environmental management, Waste Manag, vol.29, pp.2587-2595, 2009.

R. Carson, Silent spring, Crest Book, 1962.

V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, and A. Yu, High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication, Sci. Rep, vol.3, pp.1-7, 2013.

J. Chen, Y. Li, L. Huang, C. Li, and G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon N. Y, vol.81, pp.826-834, 2015.

Z. Chen, H. Meng, G. Xing, C. Chen, and Y. Zhao, Toxicological and biological effects of nanomaterials, J. Nanotechnol, vol.4, pp.179-196, 2007.

I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski et al., Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process), J. Phys. Chem. B, vol.105, pp.8297-8301, 2001.

I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, Purification and Characterization of Single-Wall Carbon Nanotubes, J. Phys. Chem. B, vol.105, pp.1157-1161, 2001.

P. Christian, F. Von-der-kammer, M. Baalousha, and T. Hofmann, Nanoparticles: Structure, properties, preparation and behaviour in environmental media, Ecotoxicology, vol.17, pp.326-343, 2008.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong et al., Biomedical applications of graphene and graphene oxide, Acc. Chem. Res, vol.46, pp.2211-2224, 2013.

M. Corrias, B. Caussat, A. Ayral, J. Durand, Y. Kihn et al., Carbon nanotubes produced by fluidized bed catalytic CVD: First approach of the process, Chem. Eng. Sci, vol.58, pp.4475-4482, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01740606

J. Costerton, Z. Lewandowski, D. Caldwell, D. Korber, and H. Lappin-scott, Microbial biofilms, Annu Rev Microbiol, vol.49, pp.711-745, 1995.

M. Crane, R. D. Handy, J. Garrod, and R. Owen, Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles, Ecotoxicology, vol.17, pp.421-437, 2008.

C. E. Cushing and E. G. Wolf, Primary production in rattlesnake springs, a cold desert springstream, Hydrobiologia, vol.114, pp.229-236, 1984.

H. Dai, L. I. Javey, E. Pop, D. Mann, W. Kim et al., Electrical Transport Properties and Field Effect Transistors of Carbon Nanotubes, NANO Br. Reports Rev, vol.1, pp.1-4, 2006.

H. Dai, E. W. Wong, and C. M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science (80-. ), vol.272, pp.523-526, 1996.

A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Lett, vol.8, pp.2012-2016, 2008.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov, vol.2, pp.114-122, 2003.

D. G. Davies, D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski et al., The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm, Science, vol.280, pp.295-299, 2014.

D. Silva, K. K. Huang, H. H. Joshi, R. K. Yoshimura, and M. , Chemical reduction of graphene oxide using green reductants, Carbon N. Y, vol.119, pp.190-199, 2017.

S. Dekkers, P. Krystek, R. J. Peters, D. P. Lankveld, B. G. Bokkers et al., Presence and risks of nanosilica in food products, Nanotoxicology, vol.5, pp.393-405, 2011.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla et al., Simple and complete purification of single-walled carbon nanotube materials, Adv. Mater, vol.11, pp.1354-1358, 1999.

W. K. Dodds, The role of periphyton in phosphorus retention in shallow freshwater aquatic systems, J. Phycol, vol.39, pp.840-849, 2003.

Y. El-temsah, E. Pinelli, L. Verneuil, J. Silvestre, F. Mouchet et al., Carbon nanotubes shape the bacterial communities associated with the freshwater diatom Nitzschia linearis, 1st International Conference on Microbial Ecotoxicology, 2017.

L. Feng and Z. Liu, Graphene in biomedicine: opportunities and challenges, Nanomedicine (Lond), vol.6, pp.317-324, 2011.

R. Ferreira, Electrons et phonons dans les nanostructures de semiconducteurs, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00112622

E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, E. Flahaut et al., Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun, vol.12, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

H. Flemming and J. Wingender, The biofilm matrix, Nature, vol.8, pp.623-633, 2010.

H. C. Flemming, T. R. Neu, and D. J. Wozniak, The EPS matrix: The "House of Biofilm Cells, J. Bacteriol, vol.189, pp.7945-7947, 2007.

A. Freixa, V. Acuña, J. Sanchís, M. Farré, D. Barceló et al., Ecotoxicological effects of carbon based nanomaterials in aquatic organisms, Sci. Total Environ, vol.619, issue.620, pp.328-337, 2018.

X. Gao, O. A. Olape, and L. G. Leff, Comparison of benthic bacterail community composition in nine streams, Aquat. Microb. Ecol, vol.40, pp.51-60, 2005.

F. Gebara, Activated sludge biofilm wastewater treatment system, Water Res, vol.33, pp.210-213, 1999.

A. K. Geim, Graphene : Status and Prospects. Science (80-. ), vol.324, pp.1530-1534, 2009.

P. H. Gleick and M. Palaniappan, Peak water limits to freshwater withdrawal and use, Proc. Natl. Acad. Sci, vol.107, pp.11155-11162, 2010.

F. Gottschalk, R. W. Scholz, and B. Nowack, Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles, Environ. Model. Softw, vol.25, pp.320-332, 2010.

F. Gottschalk, T. Sonderer, R. W. Scholz, and B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol, vol.43, pp.9216-9222, 2009.

D. Goyal, X. J. Zhang, and J. N. Rooney-varga, Impacts of single-walled carbon nanotubes on microbial community structure in activated sludge, Lett. Appl. Microbiol, vol.51, pp.428-435, 2010.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett, vol.243, p.825, 1995.

R. D. Handy and B. J. Shaw, Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology, Heal. Risk Soc, vol.9, pp.125-144, 2007.

J. Hone, Phonons and thermal properties of carbon nanotubes, Top. Appl. Phys, vol.80, pp.273-286, 2001.

S. Hong and S. Myung, Nanotube electronics : A flexible approach to mobility, Nature, vol.2, pp.207-208, 2007.

V. W. Hoyt and E. Mason, Nanotechnology. Emerging health issues. J. Chem. Heal. Saf, vol.15, pp.10-15, 2008.

W. Hu, C. Peng, W. Luo, M. Lv, X. Li et al., Graphene-based antibacterial paper, ACS Nano, vol.4, pp.4317-4323, 2010.

M. S. Hull, A. J. Kennedy, J. A. Steevens, A. J. Bednar, C. A. Weiss et al., Release of metal impurities from carbon nanomaterials influences aquatic toxicity, Environ. Sci. Technol, vol.43, pp.4169-4174, 2009.

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc, vol.80, p.1339, 1958.

K. Hund-rinke and M. Simon, Ecotoxic Effect of Photocatalytic Active Nanoparticles ( TiO 2 ) on Algae and Daphnids, Env. Sci Pollut Res, 2006.

H. Hyung and J. D. Fortner, Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase, pp.179-184, 2007.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, 1991.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, pp.603-605, 1993.

, Nanomatériaux, nanopartiucles, Médecine et Maladies Infectieuses, INRS, 2018.

, INRS, 2015. Les Nanomatériaux Manufacturés À L'Horizon, 2030.

S. R. Jenkins, F. Arenas, J. Arrontes, J. Bussell, J. Castro et al., European-scale analysis of seasonal variability in limpet grazing activity and microalgal abundance, Mar. Ecol. Prog. Ser, vol.211, pp.193-203, 2001.

Y. Jin, M. Jia, M. Zhang, and Q. Wen, Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties, Appl. Surf. Sci, vol.264, pp.787-793, 2013.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy-de-la-chapelle et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, vol.388, pp.756-758, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02063715

S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter, ! Langmuir, vol.24, pp.6409-6413, 2008.

S. Kang, M. Pinault, L. .. Pfefferle, and M. Elimelech, Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity, Langmuir, vol.23, pp.8670-8673, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179017

S. S. Karajanagi, H. C. Yang, P. Asuri, E. Sellitto, J. S. Dordick et al., Protein-assisted solubilization of single-walled carbon nanotubes, Langmuir, vol.22, pp.1392-1395, 2006.

A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat et al., Supercurrents Through Single-Walled Carbon Nanotubes. Science (80-. ), vol.284, pp.1508-1511, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02112084

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res, vol.15, p.1692, 2013.

U. Khan, A. O'neill, M. Lotya, S. De, and J. N. Coleman, High-concentration solvent exfoliation Nanotubes at Room Temperature. Science (80-. ), vol.286, pp.1127-1129, 2010.

S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang et al., Sharper and faster "Nano darts" kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, vol.3, pp.3891-3902, 2009.

S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, ACS Nano, vol.5, pp.6971-6980, 2011.

X. Liu, G. Sheng, H. Luo, F. Zhang, S. Yuan et al., Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation, Environ. Sci. Technol, vol.44, pp.4355-4360, 2010.

Y. Liu, J. Li, X. Qiu, and C. Burda, Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS), J. Photochem. Photobiol. A Chem, vol.190, pp.94-100, 2007.

Z. Long, J. Ji, K. Yang, D. Lin, and F. Wu, Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae, Environ. Sci. Technol, vol.46, pp.8458-8466, 2012.

J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys. Rev. Lett, vol.79, pp.1297-1300, 1997.

L. P. Lukhele, B. B. Mamba, N. Musee, and V. Wepener, Acute Toxicity of Double-Walled Carbon Nanotubes to Three Aquatic Organisms, J. Nanomater, vol.2015, pp.1-19, 2015.

L. A. Luongo and X. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater, vol.178, pp.356-362, 2010.

E. Lyautey, C. R. Jackson, J. Cayrou, J. L. Rols, and F. Garabétian, Bacterial community succession in natural river biofilm assemblages, Microb. Ecol, vol.50, pp.589-601, 2005.

A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang et al., Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition, Nanotechnology, vol.19, 2008.

M. Markets, Carbon Nanotubes (CNT) Market by Type (Single, Multi Walled), Method (Chemical Vapor Deposition, Catalytic Chemical Vapor Deposition, High Pressure Carbon Monoxide), Application (Electronics, Chemical, Batteries, Energy, Medical) -Global Forecast, 2017.

W. K. Maser, E. Muñoz, A. M. Benito, M. T. Martínez, G. F. De-la-fuente et al., Production of high-density single-walled nanotube material by a simple laser-ablation method, Chem. Phys. Lett, vol.292, pp.776-779, 1998.

D. N. Matorin, A. V. Karateyeva, V. A. Osipov, E. P. Lukashev, N. K. Seifullina et al., Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii, Nanotechnologies Russ, vol.5, pp.320-327, 2010.

,

A. Miao, K. A. Schwehr, C. Xu, S. Zhang, Z. Luo et al., The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances, 2009.

, Environ. Pollut, vol.157, pp.3034-3041

N. Mohanty and V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents, Nano Lett, vol.8, pp.4469-4476, 2008.

M. Monthioux, An Introduction to Carbon Nanotubes, in: Carbon Meta-Nanotubes, pp.7-39, 2012.

F. Moriarty, Ecotoxicology. Hum. Exp. Toxicol, vol.7, pp.437-441, 1988.

S. Morin, T. T. Duong, O. Herlory, A. Feurtet-mazel, and M. Coste, Cadmium toxicity and bioaccumulation in freshwater biofilms, Arch. Environ. Contam. Toxicol, vol.54, pp.173-186, 2008.

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano. Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches et al., Chemical basis of interactions between engineered nanoparticles and biological systems, Chem. Rev, vol.114, pp.7740-7781, 2014.

L. E. Murr, K. F. Soto, E. V. Esquivel, J. J. Bang, P. A. Guerrero et al., Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study, Jom, vol.56, pp.28-31, 2004.

. Nanowerk, Carbon nanotubes 101 -Purification methods, 2017.

E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser et al., Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, vol.17, pp.372-386, 2008.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel. Science (80-. ), vol.311, pp.622-627, 2006.

T. Nguyen, B. Pellegrin, C. Bernard, X. Gu, J. M. Gorham et al., Fate of nanoparticles during life cycle of polymer nanocomposites, Journal of Physics: Conference Series, 2011.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett, vol.313, pp.1029-1034, 1999.

P. F. Nogueira, D. Nakabayashi, and V. Zucolotto, The effects of graphene oxide on green algae Raphidocelis subcapitata, Aquat. Toxicol, vol.166, pp.29-35, 2015.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science (80-. ), vol.306, pp.666-669, 2004.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene 438, pp.197-200, 2005.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci, vol.102, pp.10451-10453, 2005.

,

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer et al., Room-Temperature Quantum Hall Effect in Graphene, vol.315, pp.1379-1379, 2007.

B. Nowack and T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut, vol.150, pp.5-22, 2007.

G. O'toole, H. B. Kaplan, and R. Kolter, Biofilm Formations as Microbial Development, Annu Rev Microbiol, vol.54, pp.49-79, 2000.

E. Oberdörster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect, vol.112, pp.1058-1062, 2004.

G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect, vol.113, pp.823-839, 2005.

. Ocde, Guidance manual for the testing of manufactured nanomaterials : OCDE's spnosorship programme; firts revision, OCDE Environ. Heal. Saf. Publ. Ser. Saf. Manuf. Nanomater, vol.25, pp.1-92, 2010.

Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption, Nano Lett, vol.9, pp.3318-3322, 2009.

P. Oleszczuk, B. Pan, and B. Xing, Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes, Environ. Sci. Technol, vol.43, pp.9167-9173, 2009.

H. .. Paerl and J. Pinckney, A Mini-review of Microbial Consortia : Their roles in aquatic production and biogeochemical cycling, Microb. Ecol, vol.31, pp.225-247, 1996.

S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol, vol.4, pp.217-224, 2009.

D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, vol.49, pp.3187-3204, 2008.

S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon N. Y, vol.50, pp.3210-3228, 2012.

A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon N. Y, vol.39, pp.507-514, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01003709

J. R. Peralta-videa, L. Zhao, M. L. Lopez-moreno, G. De-la-rosa, J. Hong et al., Nanomaterials and the environment: A review for the biennium 2008-2010, J. Hazard. Mater, vol.186, pp.1-15, 2011.

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

E. J. Petersen, L. Zhang, N. T. Mattison, D. M. Carroll, A. J. Whelton et al., Potential Release Pathways , Environmental Fate , And Ecological Risks of Carbon Nanotubes, Environ. Sci. Technol, vol.45, pp.9837-9856, 2011.

V. N. Popov, Carbon nanotubes: Properties and application, Mater. Sci. Eng, vol.43, pp.61-102, 2004.

C. Pretti, M. Oliva, R. Pietro, . Di, G. Monni et al., Ecotoxicity of pristine graphene to marine organisms, Ecotoxicol. Environ. Saf, vol.101, pp.138-145, 2014.

M. Pumera, Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets, Langmuir, vol.23, pp.6453-6458, 2007.

S. V. Pyl'nik, J. H. Dueck, and L. L. Min'kov, Equilibrium thickness of a biofilm, Theor. Found. Chem. Eng, vol.41, pp.430-435, 2007.

A. Quigg, W. Chin, C. Chen, S. Zhang, Y. Jiang et al., Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter, Sustain. Chem. Eng, vol.1, pp.686-702, 2013.

I. Randrianjatovo-gbalou, P. Rouquette, D. Lefebvre, E. Girbal-neuhauser, and C. Maracto-romain, In situ analysis of Bacillus licheniformis biofilms: Amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix, J. Appl. Microbiol, vol.122, pp.1262-1274, 2017.

M. Research, The Global Nanomaterials Market to 2025, 2016.

R. Ribeiro-palau, F. Lafont, J. Brun-picard, D. Kazazis, A. Michon et al., Quantum Hall resistance standard in graphene devices under relaxed experimental conditions, Nat. Nanotechnol, vol.10, pp.965-971, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01615243

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman et al., Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A Mater. Sci. Process, vol.67, pp.29-37, 1998.

D. F. Rodrigues and M. Elimelech, Toxic Effects of Single-Walled Carbon Nanotubes in the, Development of E. coli Biofilm. Environ. Sci. Technol, vol.44, pp.4583-4589, 2010.

A. M. Romaní, K. Fund, J. Artigas, T. Schwartz, S. Sabater et al., Relevance of polymeric matrix enzymes during biofilm formation, Microb. Ecol, vol.56, pp.427-436, 2008.

A. M. Romaní, E. Vázquez, and A. Butturini, Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: Biogeochemical link across the stream-riparian interface, Microb. Ecol, vol.52, pp.501-512, 2006.

O. N. Ruiz, K. A. Fernando, B. Wang, N. A. Brown, P. G. Luo et al., Graphene oxide: a nonspecific enhancer of cellular growth, ACS Nano, vol.5, pp.8100-8107, 2011.

V. C. Sanchez, A. Jachak, R. H. Hurt, and A. B. Kane, Biological Interactions of Graphene-Family Nanomaterials : An Interdisciplinary Review 15-34, 2012.

M. Sano, J. Okamura, and S. Shinkai, Nanotubes in Electrolyte Solution : The, Langmuir, vol.17, pp.7172-7173, 2001.

K. Savolainen, H. Alenius, H. Norppa, L. Pylkkänen, T. Tuomi et al., Risk assessment of engineered nanomaterials and nanotechnologies-A review, Toxicology, vol.269, pp.92-104, 2010.

M. Scarselli, P. Castrucci, and M. De-crescenzi, Electronic and optoelectronic nano-devices based on carbon nanotubes, J. Phys. Condens. Matter, vol.24, 2012.

A. Schierz, B. Espinasse, M. R. Wiesner, J. H. Bisesi, T. Sabo-attwood et al., Fate of single walled carbon nanotubes in wetland ecosystems, Environ. Sci. Nano, vol.1, pp.574-583, 2014.

F. Schwab, T. D. Bucheli, L. P. Lukhele, A. Magrez, B. Nowack et al., Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration ?, pp.6136-6144, 2011.

C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process, Appl. Phys. A Mater. Sci. Process, vol.72, pp.573-580, 2001.

C. H. See and A. T. Harris, A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition, Ind. Eng. Chem. Res, vol.46, pp.997-1012, 2007.

H. Shen, L. Zhang, M. Liu, and Z. Zhang, Biomedical applications of graphene, Theranostics, vol.2, pp.283-294, 2012.

A. Simon-deckers, S. Loo, M. Mayne-l'hermite, N. Herlin-boime, N. Menguy et al., Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Env. Sci. Technol, vol.43, pp.8423-8429, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00430587

D. R. Simpson, Biofilm processes in biologically active carbon water purification, Water Res, vol.42, pp.2839-2848, 2008.

E. K. Sohn, Y. S. Chung, S. A. Johari, T. G. Kim, J. K. Kim et al., Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms, Biomed Res. Int, 2015.

P. Srivastava, R. Malviya, K. Dhamija, S. Gupta, and P. Kumar-sharma, Nanotechnology : Application and Market. Drug Invent. Today, vol.2, pp.254-257, 2010.

N. Staggers, T. Mccasky, N. Brazelton, and R. Kennedy, Nanotechnology: The coming revolution and its implications for consumers, clinicians, and informatics, Nurs. Outlook, vol.56, pp.268-274, 2008.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon N. Y, vol.45, pp.1558-1565, 2007.

R. J. Stevenson, Scale-Dependent Determinants and Consequences of Benthic Algal Heterogeneity, J. North Am. Benthol. Soc, vol.16, pp.248-262, 1997.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

L. Tang, A. Schramm, T. R. Neu, N. P. Revsbech, and R. L. Meyer, Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study, FEMS Microbiol. Ecol, vol.86, pp.394-403, 2013.

S. Teissier and M. Torre, Simultaneous assessment of nitrification and denitrification on Periphyton of Freshwater Ecosystems, 2002.

C. B. Whitchurch, T. Tolker-nielsen, P. C. Ragas, and J. S. Mattick, Extracellular DNA required for bacterial biofilm formation. Science (80-. ). 295, 1487, 2002.

M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater, vol.10, pp.725-763, 1998.

G. M. Wolfaardt, J. R. Lawrence, J. V. Headley, R. D. Robarts, and D. E. Caldwell, Microbial exopolymers provide a mechanism for bioaccumulation of contaminants, Microb. Ecol, vol.27, pp.279-291, 1994.

G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, and D. E. Caldwell, Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation, Appl. Environ. Microbiol, vol.61, pp.152-158, 1995.

H. Wu and L. T. Drzal, Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties, Carbon N. Y, vol.50, pp.1135-1145, 2012.

Y. Wu, J. S. Hudson, Q. Lu, J. M. Moore, A. S. Mount et al., Coating single-walled carbon nanotubes with phospholipids, J. Phys. Chem. B, vol.110, pp.2475-2478, 2006.

Z. Wu, W. Ren, L. Wen, L. Gao, J. Zhao et al., Graphene Anchored with Co 3 O 4 Batteries with Enhanced Reversible, vol.4, pp.3187-3194, 2010.

Z. S. Wu, W. C. Ren, L. B. Gao, J. P. Zhao, Z. P. Chen et al., Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation, ACS Nano, vol.3, pp.411-417, 2009.

Z. Yang, . Hong, H. Wu, and . Qing, Electrochemical intercalation of lithium into carbon nanotubes, Solid State Ionics, vol.143, pp.852-861, 2001.

Y. Yin, X. J. Zhang, J. Graham, and L. Luongo, Examination of purified single-walled carbon nanotubes on activated sludge process using batch reactors, J. Environ. Sci. Heal. Part A, pp.661-665, 2009.

Y. You, K. K. Das, H. Guo, C. W. Chang, M. Navas-moreno et al., Microbial Transformation of Multiwalled Carbon Nanotubes by Mycobacterium vanbaalenii PYR-1, Environ. Sci. Technol, vol.51, pp.2068-2076, 2017.

G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang et al., Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbonnanotube-based field-emission cathode, Appl. Phys. Lett, vol.81, pp.355-357, 2002.

L. Zhang, E. J. Petersen, M. Y. Habteselassie, L. Mao, and Q. Huang, Degradation of multiwall carbon nanotubes by bacteria, Environ. Pollut, vol.181, pp.335-339, 2013.

Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, and F. Wei, Carbon nanotube mass production: Principles and processes, ChemSusChem, vol.4, pp.864-889, 2011.

Y. Zhang, Y. Y. Tan, .. W. Stormer, H. L. Kim, and P. , Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.438, pp.201-205, 2005.

J. Zhao, X. Cao, Z. Wang, Y. Dai, and B. Xing, Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae, Water Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651514

Y. Zhao, B. L. Allen, and A. Star, Enzymatic degradation of multiwalled carbon nanotubes, J. Phys. Chem. A, vol.115, pp.9536-9544, 2011.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean et al., DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater, vol.2, pp.338-342, 2003.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk et al., Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater, vol.22, pp.3906-3924, 2010.

A. Zurutuza and C. Marinelli, Challenges and opportunities in graphene commercialization, Nat. Nanotechnol, vol.9, pp.730-734, 2014.

P. G. Falkowski, R. T. Barber, and V. Smetacek, Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, vol.281, pp.200-207, 1998.

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

, World Register of Marine Species (WoRMS), 2016.

M. D. Guiry and G. M. , AlgaeBase. World-wide electronic publication, 2018.

J. R. Johansen, Diatoms of aerial habitats, The Diatoms: Applications for the Environmental and Earth Sciences, 2010.

A. Kamp, D. De-beer, J. L. Nitsch, G. Lavik, and P. Stief, Diatoms respire nitrate to survive dark and anoxic conditions, Proc. Natl. Acad. Sci, vol.108, pp.5649-5654, 2011.

M. E. Katz, J. D. Wright, K. G. Miller, B. S. Cramer, K. Fennel et al., Biological overprint of the geological carbon cycle, Mar. Geol, vol.217, pp.323-338, 2005.

M. G. Kelly and B. A. Whitton, The Trophic Diatom Index : a new index for monitoring eutrophication in rivers, J. Appl. Phycol, vol.7, pp.433-444, 1995.

I. S. Khan, Assessment of Water Pollution using Diatom Community Structure and Species Distribution -A Case Study in a Tropical River Basin, Int. Rev. der gesamten Hydrobiol. und Hydrogr, vol.75, pp.317-338, 1990.

P. Kociolek, Nitzschia palea, 2011.

D. North-am, , vol.18

W. H. Kooistra and L. K. Medlin, Evolution of the Diatoms (Bacilloariophyta), Mol. Phylogenet. Evol, vol.6, pp.391-407, 1996.

S. D. Lai, P. C. Chen, and H. K. Hsu, Benthic algae as monitors of heavy metals in various polluted rivers by Energy Dispersive X-ray Spectrometer, J. Environ. Sci. Heal. -Part A Toxic/Hazardous Subst. Environ. Eng, vol.38, pp.855-866, 2003.

D. G. Mann, Patterns of sexual reproduction in diatoms, Twelfth Int. Diatom Symp. 269/270, pp.11-20, 1993.

D. G. Mann, V. A. Chepurnov, and M. Idei, Mating system, sexual reproduction, and auxosporulation in the anomalous raphid diatom Eunotia (Bacillariophyta), J. Phycol, vol.39, pp.1067-1084, 2003.

R. Mathieu, J. Bellier, and B. Granier, Handbook of Micropaleontology, 2011.

S. Molander and H. Blanck, Detection of pollution-induced community tolerance in marine periphyton communities established under diuron exposure, Aquat. Toxicol, vol.22, pp.129-144, 1992.

D. J. Patterson, The Diversity of Eukaryotes, Am. Nat, vol.65, pp.96-124, 1999.

S. Sabater, . S-w, and . Spain, Diatom communities as indicators of environmental stress in the Guadiamar River, J. Appl. Phycol, vol.12, pp.113-124, 2000.

S. Saint-martin, Les diatomées, joyaux du monde microscopique, URL References

P. Ahmad, M. Sarwat, and S. Sharma, Reactive oxygen species, antioxidants and signaling in plants, J. Plant Biol, vol.51, pp.167-173, 2008.

F. Ahmed and D. F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community : A case study, J. Hazard. Mater, pp.33-39, 2013.

A. , A. Rahnenführer, and J. , Gene set enrichment analysis with topGO, 2018.

A. E. Allen, J. Laroche, U. Maheswari, M. Lommer, N. Schauer et al., Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation, Proc. Natl. Acad. Sci. 105, pp.10438-10443, 2008.

L. R. Andrade, R. N. Leal, M. Noseda, M. E. Duarte, M. S. Pereira et al., Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity, Mar. Pollut. Bull, vol.60, pp.1482-1488, 2010.

H. Arai, H. Koizumi, J. Aoki, and K. Inoue, Platelet-Activating Acetylhydrolase (PAF-AH), J. Biochem, vol.131, pp.635-640, 2002.

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., , vol.306, pp.79-87, 2004.

B. J. Bellinger, A. S. Abdullahi, M. R. Gretz, and G. J. Underwood, Biofilm polymers: Relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms, Aquat. Microb. Ecol, vol.38, pp.169-180, 2005.

D. Binns, E. C. Dimmer, R. P. Huntley, D. G. Barrell, D. Binns et al., QuickGO: a web-based tool for Gene Ontology searching, Bioinformatics, vol.25, pp.3045-3046, 2009.

D. R. Boverhof, C. M. Bramante, J. H. Butala, S. F. Clancy, W. M. Lafranconi et al., Comparative assessment of nanomaterial definitions and safety evaluation considerations, Regul. Toxicol. Pharmacol, vol.73, pp.137-150, 2015.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

D. A. Brownson, D. K. Kampouris, and C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources, vol.196, pp.4873-4885, 2011.

G. Brumfiel, Consumer products leap aboard the nano bandwagon, Nature, vol.440, 2006.

C. Cabau, F. Escudié, A. Djari, Y. Guiguen, J. Bobe et al., Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01506620

R. N. Carvalho, S. K. Bopp, and T. Lettieri, Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene, PLoS One, vol.6, 2011.

H. Chen, Generate High-Resolution Venn and Euler Plots, 2014.

W. Chi, B. He, N. Manavski, J. Mao, D. Ji et al., RHON1 Mediates a Rho-Like Activity for Transcription Termination in Plastids of Arabidopsis thaliana, Plant Cell, 2014.

R. Coleman, T. M. Lewin, C. G. Van-horn, and M. R. Gonzalez-baró, Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways?, J. Nutr, vol.132, pp.2123-2126, 2002.

J. Cronan, J. E. Laporte, and D. , Tricarboxylic Acid Cycle and Glyoxylate Bypass, EcoSal Plus, vol.1, 2006.

A. Das, D. O. Court, and S. Adhya, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc. Natl. Acad. Sci, vol.73, pp.1959-1963, 1976.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov, vol.2, pp.114-122, 2003.

S. Deng, P. Jia, J. Zhang, M. Junaid, A. Niu et al., Transcriptomic response and perturbation of toxicity pathways in zebrafish larvae after exposure to graphene quantum dots (GQDs), J. Hazard. Mater, vol.357, pp.146-158, 2018.

P. G. Falkowski, M. E. Katz, A. H. Knoll, A. Quigg, . Raven et al., The Evolution of Modern Eukaryotic. Science (80-. ), vol.305, pp.354-360, 2004.

L. Feng and Z. Liu, Graphene in biomedicine: opportunities and challenges, Nanomedicine (Lond), vol.6, pp.317-324, 2011.

P. J. Ferris, J. P. Woessner, S. Waffenschmidt, S. Kilz, J. Drees et al., Glycosylated Polyrpoline II Rods with Kinks as a Structural Motif in Plant Hydroxyproline-Rice Glycoproteins, Biochemistry, vol.40, pp.2978-2987, 2001.

H. Flemming and J. Wingender, The biofilm matrix, Nature, vol.8, pp.623-633, 2010.

A. Freixa, V. Acuña, J. Sanchís, M. Farré, D. Barceló et al., Ecotoxicological effects of carbon based nanomaterials in aquatic organisms, Sci. Total Environ, vol.619, issue.620, pp.328-337, 2018.

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, P. Lonchambon et al., Few Layer Graphene sticking by bio fi lm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity, Carbon N. Y, vol.113, pp.139-150, 2017.

S. Götz, J. M. García-gómez, J. Terol, T. D. Williams, S. H. Nagaraj et al., High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Res, vol.36, pp.3420-3435, 2008.

B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, D. Philip et al., De novo transcript sequence reconstruction from RNA-seq: reference generation and analysis with Trinity, Nat Protoc, vol.8, pp.1-43, 2013.

P. Heydarizadeh, J. Marchand, B. Chenais, M. R. Sabzalian, M. Zahedi et al., Functional investigations in diatoms need more than a transcriptomic approach, Diatom Res, vol.29, pp.75-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01901159

M. Hijazi, D. Roujol, H. Nguyen-kim, . Del-rocio-cisneros, L. Castillo et al., Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls?, Ann. Bot, vol.114, pp.1087-1097, 2014.

S. E. Hook, H. L. Osborn, F. Gissi, P. Moncuquet, N. A. Twine et al., RNA-Seq analysis of the toxicant-induced transcriptome of the marine diatom, Ceratoneis closterium, Mar. Genomics, vol.16, pp.45-53, 2014.

X. Hu, Y. Gao, and Z. Fang, Integrating metabolic analysis with biological endpoints provides insight into nanotoxicological mechanisms of graphene oxide: From effect onset to cessation, Carbon N. Y, vol.109, pp.65-73, 2016.

X. Hu, K. Lu, L. Mu, J. Kang, and Q. Zhou, Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders, Carbon N. Y, vol.80, pp.665-676, 2014.

X. Hu and Q. Zhou, Health and ecosystem risks of graphene, Chem. Rev, vol.113, pp.3815-3835, 2013.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He et al., Graphenebased materials: Synthesis, characterization, properties, and applications, Small, vol.7, pp.1876-1902, 2011.

D. L. Kaplan and M. O'donnell, Rho factor: Transcription termination in four steps, Curr. Biol, vol.13, pp.714-716, 2003.

H. L. Kornberg and N. B. Madsen, The metabolism of C 2 compounds in micro-organisms. 3. Synthesis of malate from acetate via the glyoxylate cycle, Biochem. J, vol.68, pp.549-557, 1958.

N. Kröger, C. Bergsdorf, and M. Sumper, Frustulins : domain conservation in a protein family associated with diatom cel walls, Eur. J. Biochem, vol.239, pp.259-264, 1996.

N. Kröger, G. Lehmann, R. Rachel, and M. Sumper, Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall, Eur. J. Biochem, vol.250, pp.99-105, 1997.

P. G. Kroth, A. Chiovitti, A. Gruber, V. Martin-jezequel, T. Mock et al., A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis, PLoS One, vol.3, 2008.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-. ), vol.321, pp.385-388, 2008.

B. Li and C. N. Dewey, RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, vol.12, pp.1-16, 2011.

M. Lommer, M. Specht, A. S. Roy, L. Kraemer, R. Andreson et al., Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation, 2012.

, Genome Biol, vol.13

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.1-21, 2014.

L. A. Luongo and X. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater, vol.178, pp.356-362, 2010.

S. W. Matson, D. W. Bean, and J. W. George, DNA Helicases: Enzymes with Essential Roles in All Aspects of DNA Metabolism, BioEssays, vol.16, pp.13-22, 1993.

T. Mock, R. P. Otillar, J. Strauss, M. Mcmullan, P. Paajanen et al., Evolutionary genomics of the cold-Adapted diatom Fragilariopsis cylindrus, Nature, vol.541, pp.536-540, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587937

S. Moisset, S. K. Tiam, A. Feurtet-mazel, S. Morin, F. Delmas et al., Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures, Environ. Sci. Pollut. Res, vol.22, pp.4046-4055, 2015.

A. Montsant, A. E. Allen, S. Coesel, A. Martino, . De et al., IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOM THALASSIOSIRA PSEUDONANA 1, vol.604, pp.585-604, 2007.

S. H. Mortensen, K. Y. Børsheim, J. Rainuzzo, and G. Knutsen, Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schütt. Effects of silicate deprivation, temperature and light intensity, J. Exp. Mar. Bio. Ecol, vol.122, pp.90183-90192, 1988.

M. Mortimer, N. Devarajan, D. Li, and P. A. Holden, Multiwall Carbon Nanotubes Induce More Pronounced Transcriptomic Responses in Pseudomonas aeruginosa PG201 than Graphene, Exfoliated Boron Nitride, or Carbon Black, ACS Nano, vol.12, pp.2728-2740, 2018.

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano. Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

Z. T. Muhseen, Q. Xiong, Z. Chen, and F. Ge, Proteomics studies on stress responses in diatoms, Proteomics, vol.15, pp.3943-3953, 2015.

J. E. Mullet, Chloroplast Development and Gene Expression, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.39, pp.475-502, 1988.

F. Mus, J. Toussaint, K. E. Cooksey, M. W. Fields, R. Gerlach et al., Physiological and molecular analysis of carbon source supplementation and pH stressinduced lipid accumulation in the marine diatom Phaeodactylum tricornutum, Appl. Microbiol. Biotechnol, vol.97, pp.3625-3642, 2013.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines visuals Transparency of Graphene, Science, vol.320, p.1308, 2008.

D. Nanjappa, R. Sanges, M. I. Ferrante, and A. Zingone, Diatom flagellar genes and their expression during sexual reproduction in Leptocylindrus danicus, BMC Genomics, vol.18, 2017.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel. Science (80-. ), vol.311, pp.622-627, 2006.

E. Neuwirth, The RColorBrewer Package, 2005.

M. Nymark, K. C. Valle, T. Brembu, K. Hancke, P. Winge et al., An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum, PLoS One, vol.4, 2009.

M. S. Parker, T. Mock, and E. V. Armbrust, Genomic Insights into Marine Microalgae, Annu. Rev. Genet, vol.42, pp.619-645, 2008.

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

M. J. Pitkethly, Nanometerials -The driving force, NanoToday, vol.7, pp.627-630, 2004.

G. Pohnert, Wound-activated chemical defense in unicellular planktonic algae, Angew. Chemie -Int. Ed, vol.39, pp.4352-4354, 2000.

I. Poirier, M. Pallud, L. Kuhn, P. Hammann, A. Demortière et al., Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach, Ecotoxicol. Environ. Saf, vol.152, pp.78-90, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02314090

H. C. Poynton and C. D. Vulpe, Ecotoxicogenomics: emerging technologies for emerging contaminants 1, J. Am. Water Resour. Assoc, vol.45, pp.83-96, 2009.

A. Quigg, W. Chin, C. Chen, S. Zhang, Y. Jiang et al., Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter, Sustain. Chem. Eng, vol.1, pp.686-702, 2013.

. R-core-team, R: a language and environment for statistical computing. R Found, Stat. Comput, 2013.

P. G. Roessler, Environmental Control of Glycerolipid Metabolism in Microalgae: Commercial Implications and Future Research Directions, J. Phycol, vol.26, pp.393-399, 1990.

A. Schön, G. Krupp, S. Gough, S. Berry-lowe, C. G. Kannangara et al., The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA, Nature, vol.322, pp.281-284, 1986.

H. Schulz, Beta oxidation of fatty acids, Biochim. Biophys. Acta, vol.1081, pp.109-120, 1991.

M. D. Shelton, P. Boon-chock, and J. J. Mieyal, Glutaredoxin: Role in Reversible Protein S-Glutathionylation and Regulation of Redox Signal Transduction and Protein Translocation, Antioxyd. Redox Signal, vol.7, pp.348-367, 2005.

M. L. Shinohara, J. J. Loros, and J. C. Dunlap, Glyceraldehyde-3-phosphate Dehydrogenase Is Regulated on a Daily Basis by the Circadian Clock, J. Biol. Chem, vol.273, pp.446-452, 1998.

M. Siaut, M. Heijde, M. Mangogna, A. Montsant, S. Coesel et al., Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum, Gene, vol.406, pp.23-35, 2007.

A. Stenbaek and P. E. Jensen, Redox regulation of chlorophyll biosynthesis, Phytochemistry, vol.71, pp.853-859, 2010.

H. Suzuki, Y. Kawarabayasi, J. Kondo, T. Abe, K. Nishikawa et al., Structure and regulation of rat long-chain acyl-CoA synthetase, J. Biol. Chem, vol.265, pp.8681-8685, 1990.

P. Thebault, G. Boutin, W. Bhat, A. Rufiange, J. Martens et al., Transcription Regulation by the Noncoding RNA SRG1 Requires Spt2-Dependent Chromatin Deposition in the Wake of RNA Polymerase II, Mol. Cell. Biol, vol.31, pp.1288-1300, 2011.

N. Tuteja, P. Ahmad, B. B. Panda, and R. Tuteja, Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases, Mutat. Res. -Rev. Mutat. Res, vol.681, pp.134-149, 2009.

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

A. Vardi, Cell signaling in marine diatoms, Commun. Integr. Biol, vol.1, pp.134-136, 2008.

L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J. Boutonnet et al., Multi-walled carbon nanotubes , natural organic matter , and the benthic diatom Nitzschia palea : '" A sticky story, Nanotoxicology, vol.9, pp.119-229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475246

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Maracato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea : An adhesive response for an adaptive issue, Carbon N. Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

D. L. Villeneuve and N. Garcia-reyero, Vision & strategy: Predictive ecotoxicology in the 21st century, Environ. Toxicol. Chem, vol.30, pp.1-8, 2011.

Q. Wang, S. Zhao, Y. Zhao, and D. Wang, Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions, vol.4, pp.60891-60901, 2014.

X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett, vol.8, pp.323-327, 2008.

G. R. Warnes, B. Bolker, L. Bonebakker, R. Gentleman, W. Huber et al., Various R programming tools for plotting data, vol.55, pp.209-218, 2009.

A. A. Weiss and E. L. Hewlett, Virulence factors of bordetella pertussis, Ann. Rev. Microbiol, vol.40, pp.661-686, 1986.

A. Willis, M. Eason-hubbard, O. Hodson, U. Maheswari, C. Bowler et al., Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): Genomic identification by amino-acid profiling and in vivo analysis, J. Phycol, vol.50, pp.837-849, 2014.

Z. Yan, D. L. Nika, and A. A. Balandin, Thermal properties of graphene and few-layer graphene: applications in electronics, IET Circuits, Devices Syst, vol.9, pp.4-12, 2015.

Q. Yu, C. Huang, and Z. Yang, Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants, Front. Plant Sci, vol.5, pp.1-10, 2014.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean et al., DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater, vol.2, pp.338-342, 2003.

Q. Zhou and X. Hu, Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets, Environ. Sci. Technol, vol.51, pp.2022-2030, 2017.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk et al., Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater, vol.22, pp.3906-3924, 2010.

P. M. Ajayan and O. Z. Zhou, Applications of Carbon Nanotubes, Top. Appl. Phys, vol.80, pp.391-425, 2001.

A. , A. Rahnenführer, and J. , Gene set enrichment analysis with topGO, 2018.

A. E. Allen, C. L. Dupont, M. Oborník, A. Horák, A. Nunes-nesi et al., Evolution and metabolic significance of the urea cycle in photosynthetic diatoms, Nature, vol.473, pp.203-207, 2011.

A. Anderson and R. A. Cooper, Gluconeogenesis in Escherichia coli. The role of Triose Phosphate Isomerase, FEBS Lett, vol.4, pp.19-20, 1969.

L. R. Andrade, R. N. Leal, M. Noseda, M. E. Duarte, M. S. Pereira et al., Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity, Mar. Pollut. Bull, vol.60, pp.1482-1488, 2010.

M. Antosch, S. A. Mortensen, and K. D. Grasser, Plant Proteins Containing High Mobility Group Box DNA-Binding Domains Modulate Different Nuclear Processes, Plant Physiol, vol.159, pp.875-883, 2012.

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., , vol.306, pp.79-86, 2004.

M. Bayer-giraldi, G. Sazaki, N. Azuma, M. Takata, S. Kipfstuhl et al., Ice-binding proteins from a sea-ice diatom: Their effect on ice growth and ice physical properties, 14th International Conference on the Physics and Chemistry of Ice (PCI), 2018.

C. Bernard, Propriétés mécaniques des nanotubes de carbone en tant que nanosondes et leur fonctionnalisation par bio-nanoparticules, 2007.

A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Biotechnol, vol.9, pp.674-679, 2005.

D. Binns, E. C. Dimmer, R. P. Huntley, D. G. Barrell, D. Binns et al., QuickGO: a web-based tool for Gene Ontology searching, Bioinformatics, vol.25, pp.3045-3046, 2009.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

S. K. Brar, M. Verma, R. D. Tyagi, and R. Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge -Evidence and impacts, Waste Manag, vol.30, pp.504-520, 2010.

D. E. Briggs, Molecular taphonomy of animal and plant cuticles : selective preservation and diagenesis Molecular taphonomy of animal and plant cuticles : selective preservation and diagenesis, Philos. Trans. R. Soc. London, vol.354, pp.7-17, 1999.

W. Chi, B. He, N. Manavski, J. Mao, D. Ji et al., RHON1 Mediates a Rho-Like Activity for Transcription Termination in Plastids of Arabidopsis thaliana, Plant Cell, 2014.

C. Chung and S. L. Hwang, The Identification of Three Novel Genes Involved in the Rapid-Growth Regulation in a Marine Diatom , Skeletonema costatum, Mar. Biotechnol, vol.11, pp.356-367, 2009.

C. E. Cowles, N. N. Nichols, and C. S. Harwood, BenR , a XylS Homologue , Regulates Three Different Pathways of Aromatic Acid Degradation in Pseudomonas putida BenR , a XylS Homologue , Regulates Three Different Pathways of Aromatic Acid Degradation in Pseudomonas putida, J. Bacteriol, vol.182, pp.6339-6346, 2000.

A. Das, D. O. Court, and S. Adhya, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc. Natl. Acad. Sci, vol.73, pp.1959-1963, 1976.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov, vol.2, pp.114-122, 2003.

D. Volder, M. F. Tawfick, S. H. Baughman, R. H. Hart, and A. J. , Carbon Nanotubes : Present and Future Commercial Applications. Science (80-. ), vol.339, pp.535-539, 2013.

C. A. Durkin, T. Mock, and E. V. Armbrust, Chitin in diatoms and its association with the cell wall, Eukaryot. Cell, vol.8, pp.1038-1050, 2009.

P. G. Falkowski, R. T. Barber, and V. Smetacek, Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, vol.281, pp.200-207, 1998.

P. J. Ferris, J. P. Woessner, S. Waffenschmidt, S. Kilz, J. Drees et al., Glycosylated Polyrpoline II Rods with Kinks as a Structural Motif in Plant Hydroxyproline-Rice Glycoproteins, Biochemistry, vol.40, pp.2978-2987, 2001.

V. A. Fischetti, V. Pancholi, and O. Schneewind, Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci, Mol. Microbiol, vol.4, pp.1603-1605, 1990.

E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, E. Flahaut et al., Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun, vol.12, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

H. Flemming and J. Wingender, The biofilm matrix, Nature, vol.8, pp.623-633, 2010.

A. Freixa, V. Acuña, J. Sanchís, M. Farré, D. Barceló et al., Ecotoxicological effects of carbon based nanomaterials in aquatic organisms, Sci. Total Environ, vol.619, issue.620, pp.328-337, 2018.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut, vol.181, pp.287-300, 2013.

B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, D. Philip et al., De novo transcript sequence reconstruction from RNA-seq: reference generation and analysis with Trinity, Nat Protoc, vol.8, pp.1-43, 2013.

P. Heydarizadeh, J. Marchand, B. Chenais, M. R. Sabzalian, M. Zahedi et al., Functional investigations in diatoms need more than a transcriptomic approach, Diatom Res, vol.29, pp.75-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01901159

C. F. Higgins, ABC transporters: physiology, structure and mechanism--an overview, Res. Microbiol, vol.152, pp.1193-1200, 2001.

C. F. Higgins and K. J. Linton, The ATP switch model for ABC transporters, Nat. Struct. Mol. Biol, vol.11, pp.918-926, 2004.

J. Hone, Phonons and thermal properties of carbon nanotubes, Top. Appl. Phys, vol.80, pp.273-286, 2001.

S. Hong and S. Myung, Nanotube electronics : A flexible approach to mobility, Nature, vol.2, pp.207-208, 2007.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, 1991.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, pp.603-605, 1993.

H. F. Jenkinson, Anchorage and release of Gram-positive bacterial cell-surface polypeptides, Trends Microbiol, vol.3, pp.88969-88975, 1995.

T. Joseph and M. Morrison, Nanotechnology in Agriculture and Food, Nanoforum Report, 2006.

H. Jung, The sodium / substrate symporter family : structural and functional features, FEBS Lett, vol.529, pp.73-77, 2002.

H. Kanayama, T. Tamura, S. Ugai, S. Kagawa, N. Tanahashi et al., Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitinligated proteins by closely linked mechanisms, Eur. J. Biochem, vol.206, pp.567-578, 1992.

M. V. Khodakovskaya, K. Silva, . De, D. A. Nedosekin, E. Dervishi et al., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions, Proc. Natl. Acad. Sci, vol.108, pp.1028-1033, 2011.

S. Kikutani, R. Tanaka, Y. Yamazaki, S. Hara, T. Hisabori et al., Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum, J. Biol. Chem, vol.287, pp.20689-20700, 2012.

J. M. Kim, T. K. To, T. Nishioka, and M. Seki, Chromatin regulation functions in plant abiotic stress responses, Plant, Cell Environ, vol.33, pp.604-611, 2010.

L. Kleinknecht, F. Wang, R. Stube, K. Philippar, J. Nickelsen et al., RAP, the Sole Octotricopeptide Repeat Protein in Arabidopsis, Is Required for Chloroplast 16S rRNA Maturation, Plant Cell, vol.26, pp.777-787, 2014.

S. Kneeshaw, R. Keyani, V. Delorme-hinoux, L. Imrie, G. J. Loake et al., Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes, Proc. Natl. Acad. Sci, vol.114, pp.8414-8419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02116136

P. G. Kroth, A. Chiovitti, A. Gruber, V. Martin-jezequel, T. Mock et al., A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis, PLoS One, vol.3, 2008.

T. Kuroda and T. Tsuchiya, Multidrug efflux transporters in the MATE family, Biochim. Biophys. Acta -Proteins Proteomics, vol.1794, pp.763-768, 2009.

C. L. Lawson, D. Swigon, K. S. Murakami, S. A. Darst, H. M. Berman et al., Catabolite activator protein: DNA binding and transcription activation, Curr. Opin. Struct. Biol, vol.14, pp.10-20, 2004.

J. W. Lee, H. M. Kang, E. J. Won, D. S. Hwang, D. H. Kim et al., Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus), Aquat. Toxicol, vol.172, pp.67-79, 2016.

H. R. Lerner and M. Avron, Dihydroxyacetone Kinase Activity in Dunaliella parva, Plant Physiol, vol.59, pp.15-17, 1977.

B. Li and C. N. Dewey, RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, vol.12, pp.1-16, 2011.

K. Liere and T. Börner, Transcriptional regulation and transcriptional regulation in plastids, Cell and Molecular Biology of Plastids, pp.121-174, 2007.

Y. P. Lin, R. Raman, Y. Sharma, and Y. F. Chang, Calcium binds to leptospiral immunoglobulinlike protein, LigB, and modulates fibronectin binding, J. Biol. Chem, vol.283, pp.25140-25149, 2008.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.1-21, 2014.

J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys. Rev. Lett, vol.79, pp.1297-1300, 1997.

H. Maeda and N. Dudareva, The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants, Annu. Rev. Plant Biol, vol.63, pp.73-105, 2012.

Y. Mazaki, S. Hashimoto, K. Okawa, A. Tsubouchi, K. Nakamura et al., An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization, Mol. Biol. Cell, vol.12, pp.645-662, 2001.

Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches et al., Chemical basis of interactions between engineered nanoparticles and biological systems, Chem. Rev, vol.114, pp.7740-7781, 2014.

E. Neuwirth, The RColorBrewer Package, 2005.

Y. Nishikawa, Y. Yasumi, S. Noguchi, H. Sakamoto, and J. Nikawa, Functional Analyses of Pseudomonas putida Benzoate Transporters Expressed in the Yeast Saccharomyces cerevisiae, Biosci. Biotechnol. Biochem, vol.72, pp.2034-2038, 2008.

B. Nowack and T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut, vol.150, pp.5-22, 2007.

M. Oborník and B. R. Green, Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes, Mol. Biol. Evol, vol.22, pp.2343-2353, 2005.

M. Otto, Physical stress and bacterial colonization, FEMS Microbiol. Rev, vol.38, pp.1-21, 2014.

H. .. Paerl and J. Pinckney, A Mini-review of Microbial Consortia : Their roles in aquatic production and biogeochemical cycling, Microb. Ecol, vol.31, pp.225-247, 1996.

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

L. Pirkkala, P. Nykänen, and L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond, FASEB J, vol.15, pp.1118-1131, 2001.

. R-core-team, R: a language and environment for statistical computing. R Found, Stat. Comput, 2013.

E. Rayko, F. Maumus, U. Maheswari, K. Jabbari, and C. Bowler, Transcription factor families inferred from genome sequences of photosynthetic stramenopiles Transcription factor families inferred from genome sequences of photosynthetic stramenopiles, New Phytol, vol.188, pp.52-66, 2010.

C. X. Shen, Q. F. Zhang, J. Li, F. C. Bi, and N. Yao, Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes, Am. J. Bot, vol.97, pp.1602-1609, 2010.

A. A. Shvedova, A. Pietriusti, F. Bengt, and V. E. Kagan, Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress, Toxicol. Appl. Pharmacol, vol.261, pp.121-133, 2012.

M. Sidler, P. Hassa, S. Hasan, C. Ringli, and R. Dudler, Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light, Plant Cell, vol.10, pp.1623-1659, 1998.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

R. Tewari, E. Bailes, K. A. Bunting, and J. C. Coates, Armadillo-repeat protein functions: Questions for little creatures, Trends Cell Biol, vol.20, pp.470-481, 2010.

P. Thebault, G. Boutin, W. Bhat, A. Rufiange, J. Martens et al., Transcription Regulation by the Noncoding RNA SRG1 Requires Spt2-Dependent Chromatin Deposition in the Wake of RNA Polymerase II, Mol. Cell. Biol, vol.31, pp.1288-1300, 2011.

F. L. Theodoulou, Plant ABC transporters, Biochim. Biophys. Acta -Biomembr, vol.1465, pp.79-103, 2000.

R. Tommasini, E. Vogt, M. Fromenteau, S. Hörtensteiner, P. Matile et al., An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity, Plant J, vol.13, pp.773-780, 1998.

M. A. Trenfield, J. W. Van-dam, A. J. Harford, D. Parry, C. Streten et al., Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana, Environ. Toxicol. Chem, vol.34, pp.1833-1840, 2015.

M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J. Boutonnet et al., Multi-walled carbon nanotubes , natural organic matter , and the benthic diatom Nitzschia palea : '" A sticky story, Nanotoxicology, vol.9, pp.119-229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475246

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Maracato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea : An adhesive response for an adaptive issue, Carbon N. Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

F. Verret, G. Wheeler, R. Taylor, G. Farnham, and C. Brownlee, Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium based signalling, New Phytol, vol.187, pp.23-43, 2010.

A. C. Vlot, D. A. Dempsey, and D. F. Klessig, Salicylic Acid, a Multifaceted Hormone to Combat Disease, Annu. Rev. Phytopathol, vol.47, pp.177-206, 2009.

G. R. Warnes, B. Bolker, L. Bonebakker, R. Gentleman, W. Huber et al., Various R programming tools for plotting data, 2009.

T. Watanabe, K. Asai, and A. Houki, Numerical estimation to organic pollution of flowing water by using the Epilithc Diatom Assemblge -Diatom Assemblage Index (DAIpo, Sci. Total Environ, vol.55, pp.209-218, 1986.

T. Weber, A. Gruber, and P. G. Kroth, The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin, Mol. Plant, vol.2, pp.468-477, 2009.

A. A. Weiss and E. L. Hewlett, Virulence factors of bordetella pertussis, Ann. Rev. Microbiol, vol.40, pp.661-686, 1986.

M. Willemoës and E. Monas, Relationship between growth irradiance and the xanthophyll cycle pool in the diatom Nitzschia palea, Physiol. Plant, vol.83, pp.449-456, 1991.

A. , A. Rahnenführer, and J. , Gene set enrichment analysis with topGO, 2018.

A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol, vol.9, pp.674-679, 2005.

C. Cabau, F. Escudié, A. Djari, Y. Guiguen, J. Bobe et al., Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01506620

P. Chomczynski and N. Sacchi, The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on, Nat. Protoc, vol.1, pp.581-585, 2006.

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, P. Lonchambon et al., Few Layer Graphene sticking by bio fi lm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity, Carbon N. Y, vol.113, pp.139-150, 2017.

S. Götz, J. M. García-gómez, J. Terol, T. D. Williams, S. H. Nagaraj et al., High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Res, vol.36, pp.3420-3435, 2008.

B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, D. Philip et al., De novo transcript sequence reconstruction from RNA-seq: reference generation and analysis with Trinity, Nat Protoc, vol.8, pp.1-43, 2013.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.1-21, 2014.

L. Meng and L. Feldman, A rapid TRIzol-based two-step method for DNA-free RNA extraction from Arabidopsis siliques and dry seeds, Biotechnol. J, vol.5, pp.183-186, 2010.

S. Moisset, S. K. Tiam, A. Feurtet-mazel, S. Morin, F. Delmas et al., Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures, Environ. Sci. Pollut. Res, vol.22, pp.4046-4055, 2015.

Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches et al., Chemical basis of interactions between engineered nanoparticles and biological systems, Chem. Rev, vol.114, pp.7740-7781, 2014.

F. L. Pinto, A. Thapper, W. Sontheim, and P. Lindblad, Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria, BMC Mol. Biol, vol.10, 2009.

. R-core-team, R: a language and environment for statistical computing. R Found, Stat. Comput, 2013.

L. M. Sargent, A. F. Hubbs, M. L. Kashon, C. Z. Dinu, J. L. Salisbury et al., Single-walled carbon nanotube-induced mitotic disruption, Mutat. Res. -Rev. Mutat. Res, vol.745, pp.28-37, 2012.

L. Verneuil, Toxicité environnementale et écotoxicité de nanotubes de carbone chez des diatomées benthiques: de la cellule au biofilm, 2015.

, L'ensemble de ces résultats sont détaillés dans la partie suivante rédigée sous la forme d'un article scientifique en préparation : Role of exoproteome in diatoms' biofilm response to carbon nanoparticles

M. Garacci, M. Barret, C. Marcato-romain, E. Flahaut, G. Chimowa et al., Carbon Nanotubes--the Route Toward Applications, vol.297, pp.787-792, 2002.

J. A. Berges and P. G. Falkowski, Physiological stress and cell death in marine phytoplankton: Induction of proteases in reponse to nitrogen or light limitation, Limnol. Oceanogr, vol.43, pp.129-135, 1998.

A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol, vol.9, pp.674-679, 2005.

C. Bökel, A. Prokop, and N. H. Brown, Papillote and Piopio: Drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization, J. Cell Sci, vol.118, pp.633-642, 2005.

D. R. Boverhof, C. M. Bramante, J. H. Butala, S. F. Clancy, W. M. Lafranconi et al., Comparative assessment of nanomaterial definitions and safety evaluation considerations, Regul. Toxicol. Pharmacol, vol.73, pp.137-150, 2015.

D. A. Brownson, D. K. Kampouris, and C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources, vol.196, pp.4873-4885, 2011.

E. Brunner, P. Richthammer, H. Ehrlich, S. Paasch, P. Simon et al., Chitin-based organic networks: An integral part of cell wall biosilica in the diatom thalassiosira pseudonana, Angew. Chemie -Int. Ed, vol.48, pp.9724-9727, 2009.

H. Chen, Generate High-Resolution Venn and Euler Plots, 2014.

A. Chiovitti, T. M. Dugdale, and R. Wetherbee, Diatom adhesives: molecular and mechanical properties, Biological Adhesives, pp.79-103, 2006.

H. Choi, D. Fermin, and A. I. Nesvizhskii, Significance Analysis of Spectral Count Data in Labelfree Shotgun Proteomics, Mol. Cell. Proteomics, vol.7, pp.2373-2385, 2008.

A. Conrad, M. Kontro, M. M. Keinaenen, A. Cadoret, P. Faure et al., Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs, Lipids, vol.38, pp.1093-1105, 2003.

K. E. Cooksey and B. Wigglesworth-cooksey, Adhesion of bacteria and diatoms to surfaces in the sea: A review, Aquat. Microb. Ecol, vol.9, pp.87-96, 1995.

D. G. Cvitkovitch, Y. H. Li, and R. P. Ellen, Quorum sensing and biofilm formation in streptococcal infections, J. Clin. Invest, vol.112, pp.1626-1632, 2003.

W. De-coen and C. R. Janssen, The use of biomarkers in Daphnia magna toxicity testing. IV.Cellular Energy Allocation: a new methodology to assess the energy budget of toxicantstressed Daphnia populations, J. Aquat. Ecosyst. Stress Recover, vol.6, pp.43-55, 1997.

D. Martino, A. Amato, A. Bowler, and C. , Mitosis in diatoms: Rediscovering an old model for cell division, BioEssays, vol.31, pp.874-884, 2009.

R. F. Duncan and J. W. Hershey, Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation, J. Cell Biol, vol.109, pp.1467-1481, 1989.

C. A. Durkin, T. Mock, and E. V. Armbrust, Chitin in diatoms and its association with the cell wall, Eukaryot. Cell, vol.8, pp.1038-1050, 2009.

S. T. Dyhrman, B. D. Jenkins, T. A. Rynearson, M. A. Saito, M. L. Mercier et al., The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response, PLoS One, vol.7, 2012.

L. Evans, Biofilms: recent advances in their study and control, 2003.

P. G. Falkowski, M. E. Katz, A. H. Knoll, A. Quigg, . Raven et al., The Evolution of Modern Eukaryotic. Science (80-. ), vol.305, pp.354-360, 2004.

L. Feng and Z. Liu, Graphene in biomedicine: opportunities and challenges, Nanomedicine (Lond), vol.6, pp.317-324, 2011.

E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, E. Flahaut et al., Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun, vol.12, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

H. Flemming and J. Wingender, The biofilm matrix, Nature, vol.8, pp.623-633, 2010.

H. C. Flemming, Biofilms and environmental protection, Water Sci. Technol, vol.27, pp.1-10, 1993.

A. Freixa, V. Acuña, J. Sanchís, M. Farré, D. Barceló et al., Ecotoxicological effects of carbon based nanomaterials in aquatic organisms, Sci. Total Environ, vol.619, issue.620, pp.328-337, 2018.

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, P. Lonchambon et al., Few Layer Graphene sticking by bio fi lm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity, Carbon N. Y, vol.113, pp.139-150, 2017.

G. G. Geesey, B. Wigglesworth-cooksey, and K. E. Cooksey, Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review, Biofouling, vol.15, pp.195-205, 2000.

P. Heydarizadeh, J. Marchand, B. Chenais, M. R. Sabzalian, M. Zahedi et al., Functional investigations in diatoms need more than a transcriptomic approach, Diatom Res, vol.29, pp.75-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01901159

K. D. Hoagland, J. R. Rosowski, M. R. Gretz, and S. C. Roemer, Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology, J. Phycol, vol.29, pp.537-566, 1993.

J. Hone, Phonons and thermal properties of carbon nanotubes, Top. Appl. Phys, vol.80, pp.273-286, 2001.

H. Hussain, P. Branny, and E. Allan, A Eukaryotic-Type Serine / Threonine Protein Kinase Is Required for Biofilm Formation , Genetic Competence , and Acid Resistance in Streptococcus mutans, J. Bacteriol, vol.188, pp.1628-1632, 2006.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, 1991.

S. Kang, M. Pinault, L. .. Pfefferle, and M. Elimelech, Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity, Langmuir, vol.23, pp.8670-8673, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179017

A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat et al., Supercurrents Through Single-Walled Carbon Nanotubes. Science (80-. ), vol.284, pp.1508-1511, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02112084

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res, vol.15, p.1692, 2013.

S. Kjelleberg and S. Molin, Is there a role for quorum sensing signals in bacterial biofilms?, Curr. Opin. Microbiol, vol.5, pp.325-334, 2002.

J. R. Lawrence, M. J. Waiser, G. D. Swerhone, J. Roy, V. Tumber et al., Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities, Environ. Sci. Pollut. Res, vol.23, pp.10090-10102, 2016.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-. ), vol.321, pp.385-388, 2008.

C. Leroy, C. Delbarre, F. Ghillebaert, C. Compere, and D. Combes, Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers, J. Appl. Microbiol, vol.105, pp.791-799, 2008.

A. E. Lesley and M. Zavortink, The Mechanism of Diatom Locomotion. II: Identification of Actin, Proc. R. Soc, vol.218, pp.345-348, 1983.

Y. P. Lin, R. Raman, Y. Sharma, and Y. F. Chang, Calcium binds to leptospiral immunoglobulinlike protein, LigB, and modulates fibronectin binding, J. Biol. Chem, vol.283, pp.25140-25149, 2008.

J. L. Lind, K. Heimann, E. A. Miller, C. Van-vliet, N. J. Hoogenraad et al., Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans, Planta, vol.203, pp.213-221, 1997.

S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang et al., Sharper and faster "Nano darts" kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, vol.3, pp.3891-3902, 2009.

X. Liu, G. Sheng, H. Luo, F. Zhang, S. Yuan et al., Contribution of Extracellular Polymeric Substances ( EPS ) to the Sludge Aggregation, Environ. Sci. Technol, vol.44, pp.4355-4360, 2010.

L. A. Luongo and X. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater, vol.178, pp.356-362, 2010.

N. K. Mahanta and A. R. Abramson, Thermal conductivity of graphene and graphene oxide nanoplatelets, 13th IEEE Intersoc. Conf. onThermal Thermomechanical Phenom. Electron. Syst. 1-6, 2012.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines visuals Transparency of Graphene, Science, vol.320, p.1308, 2008.

E. Neuwirth, The RColorBrewer Package, 2005.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669, 2004.

B. L. Nunn, J. F. Faux, A. A. Hippmann, M. T. Maldonado, H. R. Harvey et al., Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation, PLoS One, vol.8, 2013.

M. R. Parsek and E. P. Greenberg, Sociomicrobiology: The connections between quorum sensing and biofilms, Trends Microbiol, vol.13, pp.27-33, 2005.

D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, vol.49, pp.3187-3204, 2008.

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanoparticle Res, vol.14, pp.1-11, 2012.

M. J. Pitkethly, Nanometerials -The driving force, NanoToday, vol.7, pp.627-630, 2004.

V. N. Popov, Carbon nanotubes: Properties and application, Mater. Sci. Eng, vol.43, pp.61-102, 2004.

J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer (Guildf), vol.52, pp.5-25, 2011.

A. J. Putnam, K. Schultz, and D. J. Mooney, Control of microtubule assembly by extracellular matrix and externally applied strain, Am. J. Physiol. Cell Physiol, vol.280, pp.556-564, 2001.

. R-core-team, R: a language and environment for statistical computing. R Found, Stat. Comput, 2013.

I. Randrianjatovo-gbalou, P. Rouquette, D. Lefebvre, E. Girbal-neuhauser, and C. Maracto-romain, In situ analysis of Bacillus licheniformis biofilms: Amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix, J. Appl. Microbiol, vol.122, pp.1262-1274, 2017.

M. Ras, D. Lefebvre, N. Derlon, E. Paul, and E. Girbal-neuhauser, Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions, Water Res, vol.45, pp.1529-1538, 2011.

D. F. Rodrigues and M. Elimelech, Toxic Effects of Single-Walled Carbon Nanotubes in the, Development of E. coli Biofilm. Environ. Sci. Technol, vol.44, pp.4583-4589, 2010.

A. Romani, Freshwater biofilms, 2009.

O. N. Ruiz, K. A. Fernando, B. Wang, N. A. Brown, P. G. Luo et al., Graphene oxide: a nonspecific enhancer of cellular growth, ACS Nano, vol.5, pp.8100-8107, 2011.

D. J. Smith and G. J. Underwood, The production of extracellular carbohydrates by estaurine benthic diatoms: The effects of growth phase and lighr and dark treatment, J. Phycol, vol.36, pp.321-333, 2000.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

L. Tang, A. Schramm, T. R. Neu, N. P. Revsbech, and R. L. Meyer, Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study, FEMS Microbiol. Ecol, vol.86, pp.394-403, 2013.

L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J. Boutonnet et al., Multi-walled carbon nanotubes , natural organic matter , and the benthic diatom Nitzschia palea : '" A sticky story, Nanotoxicology, vol.9, pp.119-229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475246

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Maracato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea : An adhesive response for an adaptive issue, Carbon N. Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

G. R. Warnes, B. Bolker, L. Bonebakker, R. Gentleman, W. Huber et al., Various R programming tools for plotting data, 2009.

R. Wetherbee, J. L. Lind, J. Burke, and R. S. Quatrano, The first kiss: Establishment and control of initial adhesion by raphid diatoms, J. Phycol, vol.34, pp.9-15, 1998.

S. Wuertz, P. Pfleiderer, K. Kriebitzsch, R. Späth, T. Griebe et al., Extracellular redox activity in activated sludge, Water Sci. Technol, vol.37, pp.134-140, 1998.

Z. Yan, D. L. Nika, and A. A. Balandin, Thermal properties of graphene and few-layer graphene: applications in electronics, IET Circuits, Devices Syst, vol.9, pp.4-12, 2015.

Z. K. Yang, Y. H. Ma, J. W. Zheng, W. D. Yang, J. S. Liu et al., Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum, J. Appl. Phycol, vol.26, pp.73-82, 2014.

Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, and F. Wei, Carbon nanotube mass production: Principles and processes, ChemSusChem, vol.4, pp.864-889, 2011.

X. Zhang and P. L. Bishop, Biodegradability of biofilm extracellular polymeric substances, Chemosphere, vol.50, pp.319-322, 2003.

J. K. Zhu, B. Damsz, A. K. Kononowicz, R. A. Bressan, and P. M. Hasegawa, A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha, Plant Cell, vol.6, pp.393-404, 1994.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk et al., Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater, vol.22, pp.3906-3924, 2010.

, Références bibliographiques

S. S. Adav, D. Lee, and J. Tay, Extracellular polymeric substances and structural stability of aerobic granule, Water Res, vol.42, pp.1644-1650, 2008.

J. Azeredo, M. Henriques, S. Sillankorva, and R. Oliveira, Extraction of exopolymers from bio lms: the protective effect of glutaraldehyde, Water Sci. Technol, vol.47, pp.175-179, 2003.

P. D'abzac, F. Bordas, E. Van-hullebusch, P. N. Lens, and G. Guibaud, Extraction of extracellular polymeric substances ( EPS ) from anaerobic granular sludges : comparison of chemical and physical extraction protocols, Appl. Microbiol. Biotechnol, vol.85, pp.1589-1599, 2010.

C. Delattre, G. Pierre, C. Laroche, and P. Michaud, Production , extraction and characterization of microalgal and cyanobacterial exopolysaccharides, Biotechnol. Adv, vol.34, pp.1159-1179, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01658391

H. C. Flemming, T. R. Neu, and D. J. Wozniak, The EPS matrix: The "House of Biofilm Cells, J. Bacteriol, vol.189, pp.7945-7947, 2007.

H. Liu and H. H. Fang, Extraction of extracellular polymeric substances (EPS) of sludges, J. Biotechnol, vol.95, pp.25-26, 2002.

A. Monico, E. Martinez-senra, F. J. Canada, S. Zorrilla, and D. Perez-sala, Drawbacks of Dialysis Procedures for Removal of EDTA, PLoS One, vol.1, issue.9, 2017.

M. Ras, E. Neuhauser, E. Paul, and D. Lefebvre, A high yield multi-method extraction protocol for protein quantification in activated sludge, Bioresour. Technol, vol.99, pp.7464-7471, 2008.

M. L. Sesay, G. Ozcengiz, and F. D. Sanin, Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation, Water Res, vol.40, pp.1359-1366, 2006.

G. Sheng, H. Yu, and X. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review, Biotechnol. Adv, vol.28, pp.882-894, 2010.

N. Staats, B. De-winder, L. Stal, and L. Mur, Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum, Eur. J. Phycol, vol.34, pp.161-169, 1999.

E. Takahashi, J. Ledauphin, D. Goux, and F. Orvain, Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: Comparison of the efficiency of six EPS extraction methods, Mar. Freshw. Res, vol.60, pp.1201-1210, 2009.

L. Tang, A. Schramm, T. R. Neu, N. P. Revsbech, and R. L. Meyer, Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study, FEMS Microbiol. Ecol, vol.86, pp.394-403, 2013.

L. Verneuil, Toxicité environnementale et écotoxicité des nanotubes de carbone sur des diatomées benthiques : de la cellule au biofilm, 2015.

J. Wingender, T. R. Neu, and H. Flemming, What are Bacterial Extracellular Polymeric Substances?, Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, pp.1-19, 1999.

P. Ahmad, M. Sarwat, and S. Sharma, Reactive oxygen species, antioxidants and signaling in plants, J. Plant Biol, vol.51, pp.167-173, 2008.

O. Akhavan and E. Ghaderi, Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria, ACS Nano, vol.4, pp.5731-5736, 2010.

B. L. Allen, P. D. Kichambare, P. Gou, I. I. Vlasova, A. Kapralov et al., Biodegradation of single-walled carbon nanotubes through enzymatic catalysis, Nano Lett, vol.8, pp.3899-3903, 2008.

L. R. Andrade, R. N. Leal, M. Noseda, M. E. Duarte, M. S. Pereira et al., Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity, Mar. Pollut. Bull, vol.60, pp.1482-1488, 2010.

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., , vol.306, pp.79-86, 2004.

E. V. Armbrust and S. W. Chisholm, Role of light and the cell cycle on the induction of spermatogenesis in a centric diatom, J. Phycol, vol.26, pp.470-478, 1990.

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review, J. Hazard. Mater, vol.283, pp.764-777, 2015.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

W. Chen, L. Duan, D. Zhu, W. E. Chen, and L. I. Duan, Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes, Environ. Sci. Technol, vol.41, pp.8295-8300, 2007.

D. G. Davies, D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski et al., The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm, Science, vol.280, pp.295-299, 2014.

R. Deng, D. Lin, L. Zhu, S. Majumdar, J. C. White et al., Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk, Nanotoxicology, vol.11, pp.591-612, 2017.

C. A. Durkin, T. Mock, and E. V. Armbrust, Chitin in diatoms and its association with the cell wall, Eukaryot. Cell, vol.8, pp.1038-1050, 2009.

Y. El-temsah, E. Pinelli, L. Verneuil, J. Silvestre, F. Mouchet et al., Carbon nanotubes shape the bacterial communities associated with the freshwater diatom Nitzschia linearis, 1st International Conference on Microbial Ecotoxicology, 2017.

H. Flemming and J. Wingender, The biofilm matrix, Nature, vol.8, pp.623-633, 2010.

A. Freixa, V. Acuña, J. Sanchís, M. Farré, D. Barceló et al., Ecotoxicological effects of carbon based nanomaterials in aquatic organisms, Sci. Total Environ, vol.619, issue.620, pp.328-337, 2018.

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, P. Lonchambon et al., Few Layer Graphene sticking by bio fi lm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity, Carbon N. Y, vol.113, pp.139-150, 2017.

A. Godhe, A. Kremp, and M. Montresor, Genetic and microscopic evidence for sexual reproduction in the centric diatom Skeletonema marinoi, Protist, vol.165, pp.401-416, 2014.

. Haut-conseil-de-la-santé-publique, Bilan des connaissances relatives aux effets des nanoparticules de dioxyde de titane (tio2) sur la sante Humaine, 2018.

P. Heydarizadeh, J. Marchand, B. Chenais, M. R. Sabzalian, M. Zahedi et al., Functional investigations in diatoms need more than a transcriptomic approach, Diatom Res, vol.29, pp.75-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01901159

F. Hui, G. P. Husson, B. Hochet, G. Rebouté, and J. Lédion, Caractérisation de biofilms par spectrométrie d'absorption infrarouge, pp.46-55, 2010.

H. Hyung and J. D. Fortner, Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase, pp.179-184, 2007.

N. W. Kam, T. C. Jessop, P. A. Wender, and H. Dai, Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells, J. Am. Chem. Soc, vol.126, pp.6850-6851, 2004.

S. D. Kinrade, A. E. Gillson, and C. T. Knight, Silicon-29 NMR evidence of a transient hexavalent silicon complex in the diatom Navicula pelliculosa, J. Chem. Soc. Dalt. Trans, vol.50, pp.307-309, 2002.

L. Lagier, Ecotoxicité comparative de l'oxyde de graphène et d'autres nanoparticules de carbone chez des organismes aquatiques modèles : d'une évaluation en conditions monospécifiques vers l'étude d'une chaîne trophique expérimentale, 2017.

A. E. Little, C. J. Robinson, S. B. Peterson, K. F. Raffa, and J. Handelsman, Rules of Engagement: Interspecies Interactions that Regulate Microbial Communities, Annu. Rev. Microbiol, vol.62, pp.375-401, 2008.

S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang et al., Sharper and faster "Nano darts" kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, vol.3, pp.3891-3902, 2009.

D. N. Matorin, A. V. Karateyeva, V. A. Osipov, E. P. Lukashev, N. K. Seifullina et al., Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii, Nanotechnologies Russ, vol.5, pp.320-327, 2010.

,

D. H. Mclachlan, C. Brownlee, A. R. Taylor, R. J. Geider, and G. J. Underwood, Light-induced motile responses of the estuarine benthic diatoms Navicula perminuta and Cylindrotheca closterium (bacillariophyceae), J. Phycol, vol.45, pp.592-599, 2009.

R. M. Moore, M. Webb, and R. Tokarczyk, Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures, J. Geophys. Res, vol.101, pp.20899-20908, 1996.

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano. Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

B. Moussian, H. Schwarz, S. Bartoszewski, and C. Nüsslein-volhard, Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster, J. Morphol, vol.264, pp.117-130, 2005.

G. A. O'toole and R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis, Mol. Microbiol, vol.28, pp.449-461, 1998.

J. Palomäki, E. Välimäki, J. Sund, M. Vippola, P. A. Clausen et al., Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism, ACS Nano, vol.5, pp.6861-6870, 2011.

H. C. Poynton and C. D. Vulpe, Ecotoxicogenomics: emerging technologies for emerging contaminants 1, J. Am. Water Resour. Assoc, vol.45, pp.83-96, 2009.

C. Pretti, M. Oliva, R. Pietro, . Di, G. Monni et al., Ecotoxicity of pristine graphene to marine organisms, Ecotoxicol. Environ. Saf, vol.101, pp.138-145, 2014.

D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-sawalmih et al., Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus, Mater. Sci. Eng. A, vol.421, pp.143-153, 2006.

S. Rhiem, M. J. Riding, W. Baumgartner, F. L. Martin, K. T. Semple et al., Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells, Environ. Pollut, vol.196, pp.431-439, 2015.

F. Schwab, T. D. Bucheli, L. P. Lukhele, A. Magrez, B. Nowack et al., Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration ?, pp.6136-6144, 2011.

T. Y. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

L. Verneuil, Toxicité environnementale et écotoxicité des nanotubes de carbone sur des diatomées benthiques : de la cellule au biofilm, 2015.

L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J. Boutonnet et al., Multi-walled carbon nanotubes , natural organic matter , and the benthic diatom Nitzschia palea : '" A sticky story, Nanotoxicology, vol.9, pp.119-229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475246

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Maracato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea : An adhesive response for an adaptive issue, Carbon N. Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

L. Wei, M. Thakkar, Y. Chen, S. Addo, S. Mitra et al., Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga , Dunaliella tertiolecta, Aquat. Toxicol, vol.100, pp.194-201, 2010.

S. Wuertz, P. Pfleiderer, K. Kriebitzsch, R. Späth, T. Griebe et al., Extracellular redox activity in activated sludge, Water Sci. Technol, vol.37, pp.134-140, 1998.

L. Zhang, C. Lei, J. Chen, K. Yang, L. Zhu et al., Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae, Carbon N. Y, vol.83, pp.198-207, 2015.

X. Zhang and P. L. Bishop, Biodegradability of biofilm extracellular polymeric substances, Chemosphere, vol.50, pp.319-322, 2003.

J. Zhao, Z. Wang, J. C. White, and B. Xing, Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol, vol.48, pp.9995-10009, 2014.

S. S. Adav, D. Lee, and J. Tay, Extracellular polymeric substances and structural stability of aerobic granule, Water Res, vol.42, pp.1644-1650, 2008.

J. Azeredo, M. Henriques, S. Sillankorva, and R. Oliveira, Extraction of exopolymers from bio lms: the protective effect of glutaraldehyde, Water Sci. Technol, vol.47, pp.175-179, 2003.

S. Comte, G. Guibaud, and M. Baudu, Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods, Enzyme Microb. Technol, vol.38, pp.237-245, 2006.

P. D'abzac, F. Bordas, E. Van-hullebusch, P. N. Lens, and G. Guibaud, Extraction of extracellular polymeric substances ( EPS ) from anaerobic granular sludges : comparison of chemical and physical extraction protocols, Appl. Microbiol. Biotechnol, vol.85, pp.1589-1599, 2010.

D. Brouwer, J. F. Ruddy, G. K. Jones, T. E. Stal, and L. J. , Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries, Biogeochemistry, vol.61, pp.57-71, 2002.

D. Brouwer, J. F. Stal, and L. J. , Daily Fluctuations of Exopolymers in Cultures of the Benthic Diatoms Cylindrotheca Closterium and Nitzschia Sp. (Bacillariophyceae), J. Phycol, vol.38, pp.464-472, 2002.

M. Dignac, V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro et al., Chemical description of extracellular polymers : implication on activated sludge floc structure, Water Sci. Technol, vol.38, pp.676-679, 1998.

B. Frolund, R. Palmgren, K. Keiding, and P. H. Nielsen, Extraction of extracellular polymers from activated sludge using a cation exchange resin, Water Res, vol.30, pp.1749-1758, 1996.

X. Y. Li and S. F. Yang, Influence of loosely bound extracellular polymeric substances ( EPS ) on the flocculation , sedimentation and dewaterability of activated sludge, Water Res, vol.41, pp.1022-1030, 2007.

Z. Liang, W. Li, S. Yang, and P. Du, Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge, Chemosphere, vol.81, pp.626-632, 2010.

H. Liu and H. H. Fang, Extraction of extracellular polymeric substances (EPS) of sludges, J. Biotechnol, vol.95, pp.25-26, 2002.

X. Liu, G. Sheng, H. Luo, F. Zhang, S. Yuan et al., Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation, Environ. Sci. Technol, vol.44, pp.4355-4360, 2010.

B. S. Mcswain, R. L. Irvine, M. Hausner, and P. A. Wilderer, Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge, Appl. Environ. Microbiol, vol.71, pp.1051-1057, 2005.

B. J. Ni, F. Fang, W. M. Xie, M. Sun, G. P. Sheng et al., Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling, Water Res, vol.43, pp.1350-1358, 2009.

X. Pan, J. Liu, D. Zhang, X. I. Chen, L. Li et al., A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using threedimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy, Water SA, vol.36, pp.111-116, 2010.

C. Park, J. T. Novak, R. F. Helm, Y. Ahn, and A. Esen, Evaluation of the extracellular proteins in full-scale activated sludges, Water Res, vol.42, pp.3879-3889, 2008.

C. Pellicer-nacher, C. Domingo-felez, G. A. Mutlu, and B. F. Smets, Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass, Water Res, vol.47, pp.5564-5574, 2013.

M. Ras, E. Girbal-neuhauser, E. Paul, M. Spérandio, and D. Lefebvre, Protein extraction from activated sludge: An analytical approach, Water Res, vol.42, pp.1867-1878, 2008.

M. Ras, E. Neuhauser, E. Paul, and D. Lefebvre, A high yield multi-method extraction protocol for protein quantification in activated sludge, Bioresour. Technol, vol.99, pp.7464-7471, 2008.

M. Ras, D. Lefebvre, N. Derlon, E. Paul, and E. Girbal-neuhauser, Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions, Water Res, vol.45, pp.1529-1538, 2011.

M. L. Sesay, G. Ozcengiz, and F. D. Sanin, Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation, Water Res, vol.40, pp.1359-1366, 2006.

G. Sheng and H. Yu, Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila, Appl. Microb. Cell Physiol, vol.72, pp.126-131, 2006.

N. Staats, B. De-winder, L. Stal, and L. Mur, Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum, Eur. J. Phycol, vol.34, pp.161-169, 1999.

E. Takahashi, J. Ledauphin, D. Goux, and F. Orvain, Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: Comparison of the efficiency of six EPS extraction methods, Mar. Freshw. Res, vol.60, pp.1201-1210, 2009.

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Maracato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea : An adhesive response for an adaptive issue, Carbon N. Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

Z. Wang, L. Liu, J. Yao, and W. Cai, Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors, Chemosphere, vol.63, pp.1728-1735, 2006.

B. M. Wilén, B. Jin, and P. Lant, The influence of key chemical constituents in activated sludge on surface and flocculating properties, Water Res, vol.37, issue.02, pp.629-631, 2003.

S. Wuertz, R. Spaeth, A. Hinderberger, T. Griebe, H. Flemming et al., A New Method for Extraction of Extracellular Polymeric Substances from Biofilms and Activated Sludge Suitable for Direct, Water Sci. Technol, vol.43, pp.25-31, 2001.

G. Yu, P. He, L. Shao, and Y. Zhu, Extracellular proteins , polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment, Water Res, vol.42, pp.1925-1934, 2008.

,

L. Zhang, X. Feng, N. Zhu, and J. Chen, Role of extracellular protein in the formation and stability of aerobic granules, Enzyme Microb. Technol, vol.41, pp.551-557, 2007.

, Liste et statut des publications présentées dans ce manuscrit Publication acceptée et publiée

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, P. Lonchambon et al., Few Layer Graphene sticking by biofilm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity, Carbon, vol.113, pp.139-150, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01557929

M. Garacci, M. Barret, C. Folgoas, E. Flahaut, G. Chimowa et al.,

L. Silvestre, M. Gauthier, E. Zouine, and . Pinelli, Transcriptomic response of the benthic freshwater diatom Nitzschia palea exposed to Few Layer Graphene, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02160439

M. Garacci, E. Pinelli, C. Folgoas, E. Flahaut, P. Lonchambon et al.,

M. Silvestre, L. Zouine, M. Gauthier, and . Barret, Transcriptomic response of the freshwater diatom biofilm exposed to potential environmental and accidental concentrations of Carbon Nanotubes, 2018.

M. Garacci, M. Barret, C. Marcato-romain, E. Flahaut, G. Chimowa et al.,

L. Silvestre, E. Gauthier, and . Pinelli, Role of exoproteome in diatoms' biofilm response to carbon nanoparticles, 2018.

, Liste des communications orales et posters en tant que premier auteur

M. Garacci, M. Barret, F. Mouche, C. Sarrieu, E. Flahaut et al.,

. Pinelli, Assessment of Graphene toxicity on a benthic freshwater diatom Nitzschia palea. Interaction of carbon nanoparticles with algal biofilm" Communication orale pour la 32 ème conference de la Society for Environmental Geochemistry and

M. Garacci, J. Silvestre, F. Mouchet, P. Lonchambon, E. Flahaut et al., Evaluation of the cellular and molecular response of a monospecific diatom biofilm exposed to carbon nanoparticles" Communication orale pour la conférence Functional Ecology and, vol.12

M. Garacci, M. Barret, F. Mouchet, C. Sarrieu, E. Flahaut et al.,

. Pinelli, Ecotoxicological effect of graphene on the benthic freshwater diatom Nitzschia palea

M. Garacci, J. Silvestre, F. Mouchet, P. Lonchambon, E. Flahaut et al., Analysis of the extracellular matrix of a monospecific benthic biofilm exposed to different forms of carbon nanoparticles

, Liste des communications orales et posters en tant que co-auteur

L. Gauthier, F. Mouchet, S. Cadarsi, L. Lagier, M. Garacci et al.,

C. Flahaut, P. Sarrieu, G. Lonchambon, E. Chimowa, and . Pinelli, « Ecotoxicity assessment of carbonbased nanoparticles using single-species test-systems vs microcosm exposures, Communication orale durant le 8ème CNMBT17 (Symposium on Carbon Nanomaterials Biology, vol.30