, Using "View2DAttributes()" and "PseudocolorAttributes()", we specify common parameters for the visualization of the physical field, i.e. the velocity in this example. We visualize velocity in the entire domain ? ? or only in the regions of interest and we specify this domain in "win-dowCoords". It is necessary to fix the "min", "max" values and the "colorTableName" for the visualization of velocity in each LATA file. Some annotations, such as "legendFlag", "userIn-foFlag" and so on are not necessary for the visualization. At the end, we export the visualization into a file of format PNG or JPEG

C. Appendix, Résumé en français

, des fonctions de base multiéchelles, on peut construire une méthode d'éléments finis multi-échelles où les problèmes locaux sont définis par les équations d'Oseen avec des conditions aux limites appropriées. Cette méthode a été d'abord proposée dans [117] et on a d'abord implémenté les problèmes locaux proposés dans la méthode. Néanmoins, nos simulations numériques montrent qu'il existe des oscillations dans les solutions des problèmes locaux quand la vitesse d'Oseen est relativement grande. Par conséquent, on définit des problèmes locaux différemment et démontre qu'ils sont bien-posés. En utilisant la nouvelle définition

. Dans, auteur a résolu seulement les problèmes d'Oseen sur le maillage grossier. Dans cette thèse, on propose de résoudre non seulement les problèmes d'Oseen mais aussi les problèmes de Navier-Stokes sur le maillage grossier. La méthode SUPG [33] est développée pour stabiliser les solutions sur le maillage grossier, vol.117

, Pour cet objectif, on propose deux méthodes d'enrichissement : (1) Prendre l'ensemble des fonctions de base définies respectivement par les équations de Stokes et les équations d'Oseen. On espère obtenir une méthode plus précise que la méthode définie par les équations de Stokes ou d'Oseen seules. Pour résoudre le problème d'Oseen sur le maillage grossier, les résultats numériques montrent que la méthode enrichie est plus précise que la méthode définie par les fonctinos de base de Stokes seules mais moins précise que celle définie par les fonctions de base d'Oseen seules. (2) Enrichir l'espace d'approximation de la vitesse en ajoutant des fonctions bulles. On a étendu les fonctions bulles proposées pour les équations de diffusion ou diffusion-advection [54, 102, 113] aux équations de Stokes. Mais nos expériences numériques montrent que l'addition des fonctions bulles n'améliore pas la précision des résultats numériques, Dans un deuxième temps, on propose deux idées pour enrichir les deux méthodes multiéchelles presentées précédemment afin d'améliorer la précision des solutions numériques

, On définit les nouveaux problèmes locaux par les équations de Stokes ou Oseen. Par conséquent, on obtient une méthode innovante d'éléments finis multi-échelles qui est plus générale que toutes les méthodes présentées précédemment. En faisant varier l'ordre des polynômes dans la définition des fonctions de poids, on peut trouver un bon compromis entre la précision de la méthode et le coût des calculs. Nos expériences numériques montrent que cette méthode multi-échelle améliore significativement la précision de la vitesse et de la pression, La deuxième idée est d'enrichir les espaces d'approximation de la vitesse et de la pression à l'aide des fonctions de poids, qui sont définies par les polynômes de degré plus élevé que précedemment

, La visualisation des solutions fines est réalisée à l'aide du logiciel VisIt, vol.142

J. Aarnes and B. O. Heimsund, Multiscale discontinuous Galerkin methods for elliptic problems with multiple scales, Multiscale Methods in Science and Engineering, 2005.

T. Abballe, Simulation multi-échelle et homogénéisation des matériaux cimentaires, 2011.

A. Abdulle, Heterogeneous multiscale method for elliptic problems with multiple scales, Mathematics of Computation, vol.81, pp.687-713, 2012.

A. Abdulle and O. Budá?, A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media, Computer Methods in Applied Mechanics and Engineering, vol.307, pp.1-31, 2016.

A. Abdulle and O. Budá?, An adaptive finite element heterogeneous multiscale method for Stokes flow in porous media, Multiscale Modeling & Simulation, vol.13, pp.256-290, 2015.

A. Abdulle, O. Budá?, and A. Imboden, A three-scale offline-online numerical method for fluid flow in porous media, Journal of Computational Physics, vol.337, pp.175-202, 2017.

A. Abdulle, The heterogeneous multiscale method, Acta Numerica, vol.21, pp.1-87, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01111169

F. Abraham, M. Behr, and M. Heinkenschloss, The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations, Finite Elements in Analysis and Design, vol.41, pp.229-251, 2004.

R. A. Adams and J. Fournier, Sobolev spaces. 2nd, 2003.

G. Allaire, A brief introduction to homogenization and miscellaneous applications, ESAIM: Proceedings, vol.37, pp.1-49, 2012.

G. Allaire, Homogenization and two-scale convergence, In: SIAM Journal on Mathematical Analysis, vol.23, pp.1482-1518, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01111805

G. Allaire, Homogenization in porous media, Lecture 2 of CEA-EDF-INRIA school on homogenization, 2010.

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, In: Arch. Rational Mech. Anal, vol.113, pp.261-298, 1991.

G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis, vol.2, pp.203-222, 1989.

G. Allaire, Homogenization of the unsteady Stokes equations in porous media, Progress in partial differential equations: calculus of variations, applications, vol.267, pp.109-123, 1992.

G. Allaire, Shape optimization by the homogenization method, 2001.

G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Modeling and Simulation, vol.4, pp.790-812, 2004.

G. Allaire and K. E. Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Modeling & Simulation, vol.7, issue.3, pp.1148-1170, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00784061

G. Allaire and Z. Habibi, Homogenization of a conductive, convective and radiative heat transfer problem in a heterogeneous domain, SIAM Journal on Mathematical Analysis, vol.45, pp.1136-1178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932950

P. Angeli, Simulation multi-résolution/multi-échelle de la thermohydraulique des assemblages de réacteur à neutrons rapides, 2011.

P. Angot, C. H. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, pp.497-520, 1999.

T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM Journal on Numerical Analysis, vol.42, pp.576-598, 2004.

T. Arbogast, Numerical subgrid upscaling of two-phase flow in porous media, Numerical treatment of multiphase flows in porous media, vol.552, pp.35-49, 2000.

T. Arbogast and K. Boyd, Subgrid upscaling and mixed multiscale finite elements, SIAM Journal on Numerical Analysis, vol.44, issue.3, pp.1150-1171, 2006.

T. Arbogast, S. Minkoff, and P. Keenan, An operator-based approach to upscaling the pressure equation, Computational Methods in Water Resources XII: Computational Mechanics Publications, pp.405-412, 1998.

T. Arbogast, A multiscale mortar mixed finite element method, Multiscale Modeling & Simulation, vol.6, pp.319-346, 2007.

I. Babu?ka, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.20, pp.179-192, 1973.

N. Bakhvalov and G. Panasenko, Homogenization: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, 1989.

R. Bavière, A first system/CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO-U. Preliminary validation on the Phénix reactor natural circulation test, Nuclear Engineering and Design, vol.277, pp.124-137, 2014.

G. Bonfigli and P. Jenny, An efficient multi-scale Poisson solver for the incompressible Navier-Stokes equations with immersed boundaries, Journal of Computational Physics, vol.228, pp.4568-4587, 2009.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers, ESIAM: Mathematical Modelling and Numerical Analysis -Modélisation Mathématique et Analyse Numérique 8.R2 (1972), pp.129-151

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, pp.199-259, 1982.

Z. Cai, On the finite volume element method, Numerische Mathematik, vol.58, pp.713-735, 1991.

. Cathare and . Url,

. Cfx and . Url,

M. Chandesris, Modélisation des écoulements turbulents dans les milieux poreux et à l'interface avec un milieu libre, 2006.

R. Chen, Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method, Annuals of Nuclear Energy, vol.104, pp.178-190, 2017.

Y. Chen, A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations, Advances in Water Resources, vol.26, pp.1041-1060, 2003.

Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Mathematics of Computation, vol.72, pp.541-576, 2002.

Z. Chen, The multiscale finite element method with nonconforming elements for elliptic homogenization problems, Multiscale Modeling & Simulation, vol.7, pp.517-538, 2008.

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, pp.745-762, 1968.

J. Chu, Flow based oversampling technique for multiscale finite element methods, Advances in Water Resources, vol.31, pp.599-608, 2008.

E. Chung, Y. Efendiev, and C. Lee, Mixed generalized multiscale finite element methods and applications, Multiscale Modeling & Simulation, vol.13, pp.338-366, 2015.

E. Chung, Generalized multiscale finite element methods for problems in perforated heterogeneous domains, Applicable Analysis, vol.95, pp.2254-2279, 2016.

E. T. Chung, W. T. Leung, and M. Vasilyeva, Mixed GMsFEM for second order elliptic problem in perforated domains, Journal of Computational and Applied Mathematics, vol.304, pp.84-99, 2016.

E. T. Chung, M. Vasilyeva, and Y. Wang, A conservative local multiscale model reduction technique for Stokes flows in heterogeneous perforated domains, Journal of Computational and Applied Mathematics, vol.321, pp.389-405, 2017.

E. T. Chung, Multiscale model reduction for transport and flow problems in perforated domains, Journal of Computational and Applied Mathematics, vol.330, pp.519-535, 2018.

E. T. Chung, Non-local multi-continua upscaling for flows in heterogeneous fractured media, Journal of Computational Physics, vol.372, pp.22-34, 2018.

M. Cicuttin, A. Ern, and S. Lemaire, A hybrid high-order method for highly oscillatory elliptic problems, Computational Methods in Applied Mathematics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01467434

D. Cortinovis and P. Jenny, Iterative Galerkin-enriched multiscale finite-volume method, Journal of Computational Physics, vol.277, pp.248-267, 2014.

M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I". In: Revue française d'automatique, informatique, recherche opérationnell, Mathématique, vol.7, issue.3, pp.33-75, 1973.

T. A. Davis, UMFPACK quick start guide, 2018.

P. Degond, Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media, Communications in Computational Physics, vol.17, pp.887-907, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867344

. Distene and . Url,

V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods: algorithms, theory and parallel implementation, 2015.
URL : https://hal.archives-ouvertes.fr/cel-01100932

E. Weinan and B. Engquist, The heterogeneous multiscale methods, Communications in Mathematical Sciences, vol.1, pp.87-132, 2003.

E. Weinan, The heterogeneous multiscale method: A review, Communications in Computational Physics, vol.2, issue.3, pp.367-450, 2007.

Y. Efendiev, J. Galvis, and T. Y. Hou, Generalized Multiscale Finite Element Methods (GMsFEM), Journal of Computation Physics, vol.251, pp.116-135, 2013.

Y. Efendiev, J. Galvis, and X. H. Wu, Multiscale finite element methods for highcontrast problems using local spectral basis functions, Journal of Computational Physics, vol.230, pp.937-955, 2011.

Y. Efendiev and T. Y. Hou, Multiscale finite element methods: Theory and applications. Surveys and tutorials in the applied mathematical sciences, 2009.

Y. Efendiev, T. Y. Hou, and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications, Communications in Mathematical Sciences, vol.2, issue.4, pp.553-589, 2004.

Y. Efendiev, T. Y. Hou, and X. Wu, Convergence of a nonconforming multiscale finite element method, SIAM Journal on Numerical Analysis, vol.37, pp.888-910, 2000.

Y. Efendiev, Generalized multiscale finite element methods. Oversamping strategies, International Journal for Multiscale Computational Engineering, vol.12, pp.465-484, 2014.

P. Emonot, Méthodes de volumes éléments finis : applications aux équations de Navier-Stokes et résultats de convergence, 1992.

H. I. Ene, Modeling the flow through porous media, Emerging Technologies and Techniques in Porous Media, pp.25-41, 2004.

A. Ern and J. Guermond, Theory and practice of finite elements, 2004.

R. Ewing, A smplified method for upscaling composite materials with high contrast of the conductivity, SIAM Journal on Scientific Computing, vol.31, pp.2568-2586, 2009.

R. Finn and D. R. Smith, On the linearized hydrodynamical equations in two dimensions, In: Arch. Rational Mech. Anal, vol.25, pp.1-25, 1967.

R. Finn and D. R. Smith, On the stationary solutions of the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal, vol.25, pp.26-39, 1967.

A. Gerschenfeld, N. Forgione, and J. Thomas, Multi-scale simulations of liquid metal systems, Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors, pp.361-382, 2019.

V. Ginting, Analysis of two-scale finite volume element method for elliptic problem, Journal of Numerical Mathematics, vol.12, pp.119-141, 2004.

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and algorithms, Springer Series in Computational Mathematics, 1986.

V. Girault, V. Vassilev, and I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows, Numerische Mathematik, vol.127, pp.93-165, 2014.

I. G. Graham and R. Scheichl, Robust domain decomposition algorithms for multiscale PDEs, Numer. Meth. Partial Diff. Eqns, vol.23, pp.859-878, 2007.

J. Guermond, Some implementations of projection methods for Navier-Stokes equations, Mathematical Modelling and Numerical Analysis, vol.30, pp.637-667, 1996.

J. Guermond, Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale, Mathematical Modelling and Numerical Analysis, vol.33, pp.169-189, 1999.

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.6011-6045, 2006.

J. Guermond, P. Minev, and J. Shen, Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM Journal on Numerical Analysis, vol.43, pp.239-258, 2005.

J. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, International Journal for Numerical Methods in Fluids, vol.26, pp.1039-1053, 1998.

F. Hecht, New development in FreeFem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

S. Heib, Nouvelles discretisations non structurées pour des écoulements de fluides à incompressibilité renforcée, 2003.

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numerische Mathematik, vol.113, pp.601-629, 2009.

P. Henning and D. Peterseim, Oversampling for the multiscale finite element method, SIAM Multiscale Modeling & Simulation, vol.11, pp.1149-1175, 2013.

J. S. Hesthaven, S. Zhang, and X. Zhu, High-order multiscale finite element methods for elliptic problems, Multiscale Modeling & Simulation, vol.12, pp.650-666, 2014.

U. Hornung, Homogenization and porous media, 1997.

T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of Computational Physics, vol.134, pp.169-189, 1997.

T. Y. Hou, X. H. Wu, and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Mathematics of Computation, vol.68, pp.913-943, 1999.

T. Y. Hou, X. H. Wu, and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, pp.185-205, 2004.

J. S. Howell and N. J. Walkington, Inf-Sup conditions for twofold saddle point problems, Numer. Math, vol.118, pp.1-27, 2011.

T. J. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, pp.387-401, 1995.

T. J. Hughes, The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg, vol.7825, pp.3-24, 1998.

O. Iliev, Z. Lakdawala, and V. Starikovicius, On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations, Computers and Mathematics with Applications, vol.65, pp.435-448, 2013.

O. Iliev, R. Lazarov, and J. Willems, Fast numerical upscaling of heat equation for fibrous materials, Comput. Visual Sci, vol.13, pp.275-285, 2010.

G. Jankowiak and A. Lozinski, Non-conforming multiscale finite element method for Stokes flows in heterogeneous media. Part II: Error estimates for periodic microstrure, 2018.

P. Jenny, S. H. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, vol.187, pp.47-67, 2003.

P. Jenny and I. Lunati, Multi-scale finite volume method for elliptic problems with heterogeneous coefficients and source terms, Proceedings in Applied Mathematical Mechanics, vol.6, issue.1, pp.485-486, 2006.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenizatino of differential operators and integral functions, 1994.

C. Johnson, Numerical solutions of partial differential equations by the finite element method, 1987.

M. Kaviany, Principles of heat transfer in porous media, 1991.

P. Lax and N. Milgram, Parabolic equations. Contributions to the theory of partial differential equations, Annals of Mathematics Studies, issue.33, pp.167-190, 1954.

C. L. Bris, F. Legoll, and A. Lozinski, An MsFEM type approach for perforated domains, Multiscale Modeling & Simulation, vol.12, pp.1046-1077, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00841308

C. L. Bris, F. Legoll, and A. Lozinski, MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems, Chinese Annuals of Mathematics. Series B, vol.34, pp.113-138, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00789102

C. L. Bris, F. Legoll, and F. Madiot, A numerical comparison of some multiscale finite element approaches for advection-dominated problems in heterogeneous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.51, pp.851-888, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01235642

C. L. Bris, F. Legoll, and F. Madiot, Multiscale finite element methods for advectiondominated problems in perforated domains, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01624049

C. S. Lee, Generalization of mixed multiscale finite element methods with applications, 2016.

C. S. Lee and D. Sheen, Nonconforming generalized multiscale finite element methods, Journal of Computational and Applied Mathematics, vol.311, pp.215-229, 2017.

W. Li, Preliminary study of coupling CFD code FLUENT and system code RE-LAP5, Annuals of Nuclear Energy, vol.73, pp.96-107, 2014.

Y. Lin, J. Liu, and M. Yang, Finite volume element methods: an overview on recent developments, International Journal of Numerical Analysis and Modeling, Series B, vol.4, pp.14-34, 2013.

X. Liu, J. Li, and Z. Chen, A weak Galerkin finite element method for the Oseen equations, Adv Comput Math, vol.42, pp.1473-1490, 2016.

S. Lo, Lecture CFD: CFD in nuclear thermal hydraulics

S. P. Maclachlan and J. D. Moulton, Multilevel upscaling through variational coarsening, Water Resources Research, vol.42, pp.1-9, 2005.

F. Madiot, Méthodes éléments finis de type MsFEM pour des problèmes d'advection diffusion, 2016.

D. Martelli, Coupled simulations of the NACIE facility using RELAP5 and ANSYS FLUENT codes, In: Annuals of Nuclear Energy, vol.101, pp.408-418, 2017.

A. Moorthi, A. K. Sharma, and K. Velusamy, A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions, Nuclear Engineering and Design, vol.332, pp.329-344, 2018.

J. D. Moulton, J. E. Dendy, and J. M. Hyman, The black box multigrid numerical homogenization algorithm, Journal of Computational Physics, vol.142, pp.80-108, 1998.

B. P. Muljadi, Multiscale method for Oseen problem in porous media with non-periodic grain patterns, Transport in Porous Media, vol.116, pp.1-18, 2017.

B. P. Muljadi, Non-conforming multiscale finite element method for Stokes flows in heterogeneous media. Part I: methodologies and numerical experiments, Multiscale Model. Simul, vol.13, pp.1146-1172, 2015.

C. Open and . Technology,

F. Ouaki, Étude de schémas multi-échelles pour la simulation de réservoir, 2013.

F. Ouaki, A priori error estimate of a multiscale finite element method for transport modeling, In: SeMA J, vol.67, p.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071637

. Petsc,

C. Philippe, Développements et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques, 1992.

D. Pialla, Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project, Nuclear Engineering and Design, vol.290, pp.78-86, 2015.

O. Pironneau, Finite element method for fluids, 1989.

, Pebble Bed Reactor

. Relap5 and . Url,

D. S. Rowe, Cross-Flow mixing between parallel flow channels during boiling Part-I COBRA-Computer program for coolant boiling in rod arrays, 1967.

. Salome and . Url,

E. Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, vol.127, pp.129-157, 1980.

K. Simon and J. Behrens, Multiscale finite elements through advection-induced coordinates for transient advection-diffusion equations, 2018.

D. R. Smith and R. Finn, Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal, vol.20, pp.341-372, 1965.

L. Tartar, Incompressible fluid flow in a porous medium-convergence of the homogenization process, 1980.

R. Temam, Navier-Stokes equations: theory and numerical analysis. North-Holland publishing, 1979.

R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes, pp.115-152, 1968.

F. Thomas, Une méthode éléments finis à décomposition L2 d'ordre élevé motivée par la simulation d'écoulement diphasique bas Mach, 2006.

A. Toselli and O. Widlund, Domain decomposition methods -Algorithms and theroy, 2005.

I. Toumi, FLICA-4: a 3D two-phase flow computer code with advanced numerical methods for nuclear applications, Nuclear Engineering and Design, vol.200, pp.139-155, 2000.

. Triocfd and . Url,

P. S. Vassilevski, Coarse spaces by algebraic multigrid: multigrid convergence and upscaling error estimates, Advances in Adaptive Date Analysis 3.1 &, pp.229-249, 2011.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2007.

M. Vohralik, On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H1, Numerical Functional Analysis and Optimization 26, pp.925-952, 2005.

X. H. Wu, T. Y. Hou, and Y. Efendiev, Analysis of upscaling absolute permeability, Discrete and Continuous Dynamical Systems -Series B, vol.2, pp.185-204, 2002.

J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods, Computing and Visualization in Science, vol.7, pp.121-127, 2004.

C. Zheng and H. Han, Artificial boundary condition for exterior Oseen equation in 2-D space, Journal of Computational Mathematics, vol.20, pp.591-598, 2002.