, Mise en évidence des instabilités Portevin-Le Châtelier (PLC)

L. Influence-de, . De-l'effet, and . Plc, Des phénomènes d'instabilités plastiques ont été constatés sur l'ensemble des éprouvettes testées avec cette paramétrie, et cela de façon reproductible, Les courbes de traction réalisées sur les éprouvettes de la paramétrie A ont mis en relief un comportement plastique particulier, pp.5-16

, Nos résultats mettent en évidence la coexistence de deux types d'instabilités : un premier « continu », se traduisant par l'apparition de « dents de scies » sur la première partie du domaine plastique, et dont l'effet décroit lorsque la vitesse de déformation augmente ; et un second, qui se caractérise par des sauts réguliers le long de la courbe ?=f(?) une fois passée la zone précédente. Ces sauts apparaissent à iso-contrainte, Plusieurs hypothèses peuvent expliquer la présence de ces instabilités : nature des éléments d'alliages, microstructure multi-échelle

, Nous pouvons observer qu'il existe également pour cet alliage un réseau similaire à la phase riche en

, Nous pouvons noter que les cellules d'aluminium semblent plus fines qu'avec l'alliage précédent

E. La-cartographie, 20) réalisée sur la même zone que celle de la figure 5-19 n'a pas permis d'analyser les phases en présence à cette échelle, vu la finesse de la sous organisation. En revanche, cette cartographie nous permet de confirmer la nature des précipités grossiers observés : (i) les précipités sont riches en titane et exempt d'aluminium

, (ii) bien que nous soyons dans la limite de détection du moyen utilisé, on décèle également une concentration légèrement plus élevée en bore

F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, J. Mater. Technol, vol.111, pp.210-213, 2001.

]. K. Abd-elghany, D. L. Abd-elghany, and . Bourell, Property evaluation of 304L stainless steel fabricated by selective laser melting, Rapid Prototyping J, vol.18, pp.420-428, 2012.

K. Abderrazak, W. B. Salem, H. Mhiri, G. Lepalec, and M. Autric, Modelling of CO2 laser welding of magnesium alloys, Optics & Laser Technology, vol.40, pp.581-588, 2008.

N. T. Aboulkhair, A. Stephens, I. Maskery, I. Tuck, N. M. Ashcroft et al., Mechanical properties of selective laser melted AlSi10Mg: nano, micro, and macro properties, In proceeding of the solid freeform fabrication symposium, pp.1026-1035, 2015.

N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N. M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Materials Science & Engineering A, vol.667, pp.139-146, 2016.

N. E. Afnor, Alpay et al, Anodized aluminium-silicon alloy counter electrode substrates for next generation solar cell applications, Appl. Surf. Sc, vol.356, pp.317-324, 2011.

, Allison et al, Method of making a three dimensional object by stereolithography, p.5182055, 1993.

K. N. Amato, S. M. Amato, L. E. Gaytan, E. Murr, P. W. Martinez et al., Microstructures and mechanical behaviour of Inconel 718 fabricated by selective laser melting, Acta Materialia, vol.60, pp.2229-2239, 2012.

A. B. Anwar and Q. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength, Journal of Materials Processing Technology, vol.240, pp.388-396, 2017.

Y. Arata and I. Miyamoto, Some fundamental properties of high power laser beam as a heat source (report 2) -CO2 laser absorption characteristics of metal, Transactions of the Japan Welding Society, vol.3, pp.152-162, 1972.

, ASM specialty handbook, Aluminium and aluminium alloys, sixth printing, vol.720, 2007.

A. Aversa, M. Lorusso, G. Cattano, D. Manfredi, F. Calignano et al., A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting, Journal of Alloys and Compounds, vol.695, pp.1470-1478, 2017.

P. Bale, Feeding properties of the highly grain refined A20X alloy, 2011.

A. Barbas, A. S. Bonnet, P. Lipinski, R. Pesci, and G. Dubois, Development and mechanical characterization of porous titanium bone substitutes, J. Mech.Behav. Biomed. Mater, vol.9, pp.34-44, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00959501

K. Bartkowiak, S. Ullrich, T. Frick, and M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique, Physics Procedia, vol.12, pp.393-401, 2011.

J. Baruchel, J. Y. Buffiere, and P. Cloetens, Advances in synchrotron radiation microtomography, pp.41-46, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436214

D. M. Bauer, K. Dietrich, M. Walter, P. Forêt, and G. Witt, Effect of process gas and powder quality on aluminium alloys processed by laser based powder bed melting process, Solid Freeform Fabrication 2016: Proceeding on the 27th annual international solid freeform fabrication symposium -An Additive Manufacturing Conference, pp.419-425, 2016.

K. Boubdallah, Caractérisation de l'effet Portevin-Le Chatelier dans les alliages aluminium magnésium -Apport des techniques d'analyse d'images, 2006.

D. Bourell, A. B. Spierings, N. Herres, and G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyping J, vol.17, pp.195-202, 2011.

D. Buchbinder, W. Meiners, K. Wissenbach, K. Müller-lohmeier, and E. Brandl, Rapid Manufacturing of Aluminum Parts for Serial Production via Selective Laser Melting (SLM), Aluminum Alloys, vol.2, pp.2394-2400, 2008.

D. Buchbinder, W. Meiners, K. Wissenbach, K. Müller-lohmeier, E. Brandl et al., Rapid manufacturing of aluminum parts for serial production via Selective Laser Melting (SLM), 4. International Conference on Rapid Manufacturing, 8th & 9th, pp.1-12, 2009.

D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, High power selective laser melting (HP SLM) of aluminium parts, Physics Procedia, vol.12, pp.271-278, 2011.

D. Buchbinder, W. Meiners, N. Pirch, and K. Wissenbach, Investigation in the reducing distortion by preheating during manufacture of aluminium components using selective laser melting, Journal of laser applications, vol.26, 2014.

D. Buchbinder, K. Meiners, R. Wissenbach, and . Poprawe, Selective laser melting of aluminium die-cast alloy -Correlations between process parameters, solidification conditions, and resulting mechanical properties, Journal of Laser Applications, vol.27, p.29205, 2015.

D. Buchbinder and K. Wissenbach, Additive manufacturing of high-strength aluminium components, 2015.

V. Cain, L. Thijs, J. Van-humbeeck, B. Van-hooreweder, and R. Knutsen, Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting, Additive Manufacturing, vol.5, pp.68-76, 2015.

R. Casati, J. N. Lemke, A. Z. Alarcon, and M. Vedani, Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting, Metellurgical and Materials Transactions A, vol.48, pp.575-579, 2016.

C. Casavola, S. L. Carnpanelli, and C. Pappalettere, Preliminary investigation on distribution of residual stress generated by the selective laser melting process, J. Strain Anal. Eng.Des, vol.44, pp.93-104, 2009.

E. Chlebus, B. Kuznicka, T. Kurzynowski, and B. Dybala, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater.Charact, vol.62, pp.488-495, 2011.

R. Chou, J. Milligan, M. Paliwal, and . Brochu, Additive manufacturing of alloy via pulsed selective laser melting, JOM, vol.67, pp.590-596, 2015.

D. Dai, D. Gu, R. Poprawe, and M. Xia, Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminium-based material, Science Bulletin, vol.62, pp.779-787, 2017.

S. Das, M. Wohlert, J. Beaman, and D. Bourell, Proceedings to the Solid Freeform Fabrication Symposium, 1997.

S. Das, J. J. Beama, M. Wohlert, and D. L. Bourell, Direct laser freeform fabrication of high performance metal components, Rapid Prototyping J, vol.4, pp.112-117, 1998.

S. Das, M. Wohlert, J. J. Beaman, and D. L. Bourell, Producing metal parts with selective laser sintering/hot isostatic pressing, J. Miner. Met.Mater. Soc, vol.50, pp.17-20, 1998.

S. Dadbakhsh and L. Hao, Effect of layer thickness in selective laser melting on microstructure of Al/5wt%Fe2O3 powder consolidated parts, The Scientific World Journal, 2014.

J. Delgado, J. Ciurana, and C. A. Rodriguez, Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials, Int. J. Adv. Manuf. Technol, vol.60, pp.601-610, 2012.

I. Dutta and S. M. Allen, A calorimetric study of precipitation in commercial aluminium alloy 6061, J.Mater.Sci. Lett, vol.10, pp.323-326, 1991.

P. Ebadi, La fabrication additive. Décryptage d'une technologie de fabrication à fort potentiel, Cetim, 2017.

D. Fabrègue, Microstructure et fissuration à chaud lors du soudage laser d'alliages d'aluminium 6000, thèse INP Grenoble, 2004.

W. E. Frazier, ;. Galy, E. Le-guen, E. Lacoste, and C. Arvieu, Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences, Additive Manufacturing, vol.22, pp.165-175, 2014.

R. Gehm, High-strength aluminum powder developed for additive manufacturing in aerospace, 2015.

A. D. Jadin-;-d, Y. C. Gu, W. Hagedorn, G. B. Meiners, R. J. Meng et al., La formation et l'optimisation de l'image en microscopie électronique à balayage, Microscopie électronique à balayage et Microanalyses, GNMEBA, éditée par F. Brisset, vol.892, 2008.

. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Mater, vol.60, pp.3849-3860, 2012.

K. Guan, Z. M. Wang, M. Gao, X. Y. Li, and X. Y. Zeng, Gustafsson, Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors, Review of Scientific Instruments, vol.50, p.3856, 1994.

J. E. Hatch-;-p and . Hooper, Melt pool temperature and cooling rates in laser powder bed fusion, Additive Manufacturing, vol.22, pp.548-559, 1984.

, Hull et al, Apparatus for production of three dimensional objects by stereolithography, 1986.

M. S. Hunter and P. Fowle, Natural and thermally formed oxide films on aluminium, J. Electrochem. Soc, vol.103, issue.9, pp.482-485, 1956.

Y. D. Jia, P. Ma, K. G. Prashanth, G. Wang, J. Yi et al., Microstructure and thermal expansion behaviour of Al-50Si synthesized by selective laser melting, Journal of Alloys and Compounds, vol.699, pp.548-553, 2017.

M. Karg, B. Ahuja, S. Kuryntsev, A. Gorunov, and M. Schmidt, Processability of high strength Aluminium-Copper alloys AW-2022 and 2024 by Laser Beam Melting in Powder Bed, sff symposium, pp.420-436, 2014.

M. Karg, B. Ahuja, A. Schaub, J. Schmidt, M. Sachs et al., Effect of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2618 additively manufactured by laser beam melting in powder bed, Lasers in Manufacturing Conference, 2015.

M. Karg, B. Ahuja, S. Wiesenmayer, S. Kuryntsev, and M. Schmidt, Effect of the process conditions on the mechanical behaviour of aluminium wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed, pp.8-23, 2017.

K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, J. P. Verheecke et al., Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, International Solid Freeform fabrication Symposium, vol.22, pp.484-495, 2011.

K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. Van-humbeeck, Lasers in Manufacturing 2011: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol.12, pp.255-263, 2011.

K. Kempen, L. Thijs, J. Van-humbeeck, and J. P. Kruth, Mechanical properties of AlSi10Mg produced by Selective Laser Melting, Physics Procedia, vol.39, pp.439-446, 2012.

D. K. Kim, W. Woo, J. H. Hwang, K. An, and S. H. Choi, Stress partitioning behaviour of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction, Journal of Alloys and Compounds, vol.686, pp.281-286, 2016.

T. Kimura and T. Nakamoto, Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting, Mater. and Design, vol.89, pp.1294-1301, 2016.

[. Kruth, ;. Kruth, M. Badrossamay, E. Yasa, J. Deckers et al., Part and material properties in selective laser melting of metal, 16th International Symposium on Electro machining (ISEM XV), 2010.

R. Kromer, C. Galy, C. Gorny, M. Schneider, E. Le-guen et al., Absorptivity measurement of solid and powder bed under IR laser beam, soumis à Powder Technology, Fabrication additive -Principes généraux, pp.7017-7019

Y. Li and D. Gu, Parametric analysis of thermal behaviour during selective laser melting additive manufacturing of aluminium alloy powder, Materials & design, vol.63, pp.856-867, 2014.

X. P. Li, K. M. O'donnell, and T. B. Sercombe, Selective laser melting of Al-12Si alloy: enhanced densification via powder drying, Additive Manufacturing, vol.10, pp.10-14, 2016.

X. Li, X. Wang, M. Saunders, A. Suvorova, L. C. Zhang et al., A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility, Acta Materialia, vol.95, pp.74-82, 2015.

W. Li, S. Li, A. Zhang, Y. Zhou, Q. Wei et al., Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism, Materials Science & Engineering A, vol.663, pp.116-125, 2016.

Z. H. Liu, D. Q. Zhang, C. K. Chua, and K. F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact, vol.84, pp.72-80, 2013.

E. Louvis, P. Fox, and C. J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology, vol.211, pp.275-284, 2011.

P. Ma, K. G. Prashanth, S. Scudino, Y. Jia, H. Wang et al., Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting, vol.4, pp.28-36, 2014.

P. Ma, Y. Jia, K. G. Prashanth, S. Scudino, Z. Yu et al., Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting, Journal of Alloys and Compounds, vol.657, pp.430-435, 2016.

D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio et al., From powders to dense metal parts, characterization of a commercial AlSiMg alloy processed through Direct Metal Laser Sintering, Materials, vol.6, pp.856-869, 2013.

D. Manfredi, F. Calignano, E. P. Ambrosio, M. Krishnan, R. Canali et al., Direct metal laser sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications, La metallurgia Italiana, vol.105, pp.15-24, 2013.

F. Michel, L. Courard, ;. Milovanovic, M. Stojkovic, and M. Trajanovic, Apport de la granulométrie laser dans la caractérisation physique des fillers calcaires, 7ème édition des Journées scientifiques du Regroupement francophone pour la recherche et la formation sur le béton (RF)²B, J. Sci. Ind. Res, vol.68, pp.1038-1042, 2006.

M. L. Montero-sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van-hooreweder et al.,

J. Kruth and . Van-humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, Journal of Materials Processing Technology, vol.238, pp.437-445, 2016.

V. T. Morgan, The effect of porosity on some of the physical properties of powdermetallurgy components, Powder metallurgy, pp.72-86, 2014.

K. N. Nguyen, Étude et caractérisation des propriétés d'absorption électromagnétique du silicium micro/nano-structuré, thèse de l'université Paris-Est soutenue le 1 er octobre, 2012.

A. F. Obaton, A. Bernard, G. Taillandier, and J. M. Moschetta, Fabrication additive: état de l'art et besoins métrologiques engendrés, Revue française de métrologie, vol.37, pp.21-36, 2015.

E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, Densification mechanism and microstructural evolution in selective laser sintering of Al-12Si powder, Journal of Materials Processing Technology, vol.211, pp.113-121, 2011.

E. O. Olakanmi, K. W. Dalgarno, and R. F. Cochrane, Laser sintering of blended Al-Si powders, Rapid Prototyping Journal, vol.18, pp.109-119, 2012.

E. O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties, Journal of Materials Processing Technology, vol.213, pp.1387-1405, 2013.

E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progress in Materials Science, 2015.

H. Oudin, Flexible manufacturing of metallic products by selective laser melting of powder, Int. J. Mach. Tools Manuf, vol.46, pp.1188-1193, 2006.

, Rapport République Française Ministère de l'Economie et des Finances -République Française, Futur de la fabrication additive: Focus sur les alliages d'aluminium, 2017.

K. G. Prashanth, S. Scudio, H. J. Klauss, K. B. Surreddi, L. Löber et al., Microstructure and mechanical properties of Al-Si12 produced by selective laser melting: Effect of heat treatment, Materials Science & Engineering A, vol.590, pp.153-160, 2014.

K. G. Prashanth, H. Shahabi, H. Attar, V. C. Srivastava, N. Ellendt et al.,

J. Uhlenwinkel, S. Eckert, and . Scudino, Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting, Additive Manufacturing, vol.6, pp.1-5, 2015.

K. G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Materialia, vol.126, pp.25-35, 2017.

K. G. Prashanth and J. Eckert, Formation of metastable cellular microstructures in selective laser malted alloys, J.Alloys.Compd, vol.707, pp.27-34, 2017.

L. Quintino, R. Miranda, U. Dilthey, D. Iordachescu, M. Banasik et al., Laser Welding of Structural Aluminium, Adv. Struct. Mater, vol.8, pp.33-57, 2012.

H. K. Rafi, T. L. Starr, and B. E. Stucker, A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting, Int. J. Adv. Manuf. Technol, vol.69, pp.1299-1309, 2013.

P. Rambabu, N. E. Prasad, V. V. Kutumbarao, and R. J. Wanhill, Aluminium alloys for aerospace applications, Aerospace Materials and Material Technologies, pp.29-52, 2016.

M. Rappaz, J. Drezet, and M. Gremaud, A new Hot-Tearing Criterion, Metallurgical and materials transactions A, vol.30, pp.449-455, 1999.

N. Read, W. Wang, K. Essa, and M. M. Attalah, Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development, Materials and Design, vol.65, pp.417-424, 2015.

L. Rickenbacher, T. Etter, S. Hövel, and K. Wegener, High temperature material properties of IN738LC processed by selective laser melting (SLM) technology, Rapid Prototyping J, vol.19, pp.282-290, 2013.

G. Rolink, S. Vogt, L. Sencekova, A. Weisheit, R. Poprawe et al., Laser metal deposition and selective laser melting of Fe-28 at.% Al, J. Mater. Res, vol.29, pp.2036-2043, 2014.

M. Rombouts, J. P. Kruth, L. Froyen, and P. Mercelis, Fundamentals of Selective Laser Melting of alloyed steel powders, vol.55, pp.187-192, 2006.

J. M. Sánchez-amaya, T. Delgado, L. González-rovira, and F. J. Botana, Laser welding of aluminum alloys 5083 and 6082 under conduction regime, Appl. Surf. Sci, vol.255, issue.23, pp.9512-9521, 2009.

E. C. Santos, K. Osakada, M. Shlomi, Y. Kitamura, and F. Abe, Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting, Proc. Inst. Mech. Eng. Part C, vol.218, pp.711-719, 2004.

C. Sanz and V. G. Navas, Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments, J. Mater. Process. Technol, vol.213, pp.2126-2136, 2013.

K. Schmidtke, F. Palm, A. Hawkins, and C. Emmelmann, Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for laser Additive Manufacturing, Phys. Procedia, vol.12, pp.369-374, 2011.

M. Simonelli, Y. Y. Tse, and C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V, Materials Science & Engineering A, vol.616, pp.1-11, 2014.

B. Song, S. J. Dong, P. Coddet, H. L. Liao, and C. Coddet, Fabrication and microstructure characterization of selective laser-melted Fe-Al intermetallic parts, Surf. Coat.Technol, vol.206, pp.4704-4709, 2012.

B. Song, S. Dong, S. Deng, H. Liao, and C. Coddet, Microstructure and tensile properties of iron parts fabricated by selective laser melting, Opt. Laser Technol, vol.56, pp.451-460, 2014.

T. G. Spears, S. A. Gold-;-a, M. Spierings, R. Schneider, . ;. Eggenberger et al., In-procress sensing in selective laser melting (SLM) additive manufacturing, Integrating materials and Manufacturing Innovation, Rapid Prototyping J, vol.5, issue.2, pp.88-94, 2011.

A. B. Spierings, K. Dawson, K. Kern, F. Palm, and K. Wegener, SLM-processed Sc-and Zrmodified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment, Materials Science & Enginnering A, vol.701, pp.264-273, 2017.

A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublin et al., Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting, Mater. and Design, vol.115, pp.52-63, 2017.

B. Sustarsic, S. Dolinsek, M. Jenko, and V. Leskovsek, Microstructure and Mechanical Characteristics of DMLS Tool-Inserts, Mater. Manuf.Process, vol.24, pp.837-841, 2009.

S. Sun, L. Zheng, Y. Liu, J. Liu, and H. Zhang, Characterisation of Al-Fe-V-Si heat-resistant aluminum alloy components fabricated by selective laser melting, Journal of materials research, vol.30, pp.1661-1669, 2015.

S. Sun, L. Zheng, Y. Liu, J. Liu, and H. Zhang, Selective laser melting of Al-Fe-V-Si heat-resistant aluminium alloy powder: modelling and experiments, Int. J. Adv. Manuf. Technol, vol.80, pp.1787-1797, 1977.

M. A. Taha, A. F. Yousef, K. A. Gany, and H. A. Sabour, On selective laser melting of ultra high carbon steel: Effect of scan speed and post heat treatment, Materialwiss. Werkstofftech, vol.43, pp.913-923, 2012.

N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments, Materials Science & Engineering A, vol.704, pp.218-228, 2017.

C. Thiery, Tomographie à rayons X, Tchniques de l'Ingénieur, pp.950-953, 2013.

L. Thijs, K. Kempen, J. P. Kruth, and J. Van-humbreek, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, vol.61, pp.1809-1819, 2013.

I. Tolosa, F. Garciandia, F. Zubiri, F. Zapirain, and A. Esnaola, Study of mechanical properties of AISI 316 stainless steel processed by « selective laser melting », following differnet manufacturing strtegies, Int. J. Adv. Manuf. Technol, vol.51, pp.639-647, 2010.

F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa et al., On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, Microstructure, and Mechanical Properties, vol.10, 2017.

R. P. Turner, C. Panwisawas, Y. Lu, I. Dhiman, H. C. Basoalto et al., Neutron tomography methods applied to a nickel-based superalloy additive manufacture build, Materials Letters, vol.230, pp.109-112, 2018.

B. Vandenbroucke and J. P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping J, vol.13, pp.196-203, 2007.

J. Verö, The Hot-Shortness of Aluminum Alloys, The Metal Industry, vol.48, pp.431-494, 1936.

T. Vilaro, C. Colin, J. D. Bartout, L. Nazé, and M. Sennour, Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy, Mater. Sci.Eng., A, vol.534, pp.446-451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00675998

P. Vora, K. Mumtaz, I. Todd, and N. Hopkinson, AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting, Additive Manufacturing, vol.7, pp.12-19, 2015.

Y. Wang, J. Bergstrom, and C. Burman, Thermal fatigue behavior of an iron-based laser sintered material, Mater. Sci. Eng., A, pp.64-71, 2009.

Z. Wang, K. Guan, M. Gao, X. Li, X. Chen et al., The microstructure and mechanical properties of deposited-IN718 by selective laser melting, J. Alloys Compd, vol.513, pp.518-523, 2012.

F. Wang, Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology, Int. J. Adv. Manuf. Technol, vol.58, pp.545-551, 2011.

F. Wang, S. Williams, P. Colegrove, and A. A. Antonysamy, Microstructure and mechanical properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metallurgical and materials transactions, vol.44, pp.968-977, 2013.

P. Wang, H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino, Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties, Journal of Alloys and Compounds, vol.707, pp.287-290, 2017.

C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach et al., Formation and reduction of hydrogen porosity during laser melting of AlSi10Mg, Journal of Materials Processing Technology, vol.221, pp.112-120, 2015.

C. S. Wright, M. Youseffi, S. P. Akhtar, T. H. Childs, C. Hauser et al., Advanced Materials Forum III, vol.2, pp.516-523, 2006.

L. Xi, P. Wang, K. G. Prashanth, H. Li, H. V. Prykhodko et al., Effect of TiB2 particles on microstructure and crystallographic texture of Al-12Si fabricated by selective laser melting, Journal of Alloys and Compounds786, pp.551-556, 2019.

I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol, vol.210, pp.1624-1631, 2010.

C. Y. Yap, C. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang et al., Sing, Review of selective laser melting: materials and applications, Applied Physics Reviews, vol.2, p.41101, 2015.

E. Yasa, J. Deckers, and J. Kruth, The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts, Rapid Prototyping J, vol.17, pp.312-327, 2011.

L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, Manufacture by selective laser melting and mechanical behaviour of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scr. Mater, vol.65, pp.21-24, 2011.

T. Zhang, Imagerie multi-résolution par tomographie aux rayons X: application à la tomographie locale en science des matériaux, thèse de l'université de Grenoble

B. C. Zhang, H. L. Liao, and C. Coddet, Selective laser melting commercially pure Ti under vacuum, Vacuum, vol.95, pp.25-29, 2013.

H. Zhang, H. Zhu, X. Nie, T. Qi, Z. Hu et al., Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting, Proc. Of SPIE, 2016.

H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, Selective laser melting of high strength Al-Cu-Mg alloy: Processing, microstructure and mechanical properties, Materials Science & Engineering A, vol.656, pp.47-54, 2016.

H. Zhang, H. Zhu, J. Nie, . Yin, X. Hu et al., Effect of Zirconium addition on crack, microstructure and mechanical behaviour of selective laser melted Al-Cu-Mg alloy, Scripta Materialia, vol.134, pp.6-10, 2017.

L. Zheng, Y. Liu, S. Sun, and H. Zhang, Selective laser melting of Al-8,5Fe-1,3V-1,7Si alloy: investigation on the resultant microstructure and hardness, vol.19, pp.564-569, 2009.

, Correspondances bibliographiques [GALY, vol.2, 2015.

, Annexe 3 : Certificat d'analyse du lot de poudre AlSi7Mg0