E. Abbate, G. Iollo, and . Puppo, An all-speed relaxation scheme for gases and compressible materials, Journal of Computational Physics, vol.351, issue.5, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586863

E. Abbate, G. Iollo, and . Puppo, A relaxation scheme for the simulation of low Mach number flows, International Conference on Finite Volumes for Complex Applications, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666248

E. Abbate, G. Iollo, and . Puppo, An asymptotic-preserving all-speed scheme for fluid dynamics and non linear elasticity, vol.67, p.86, 2018.

E. Abbate, G. Iollo, and . Puppo, An implicit scheme for moving walls and multi-material interfaces in weakly compressible materials, Communications in Computational Physics, Accepted for publication, p.101, 2018.

, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, Journal of Computational Physics, vol.125, issue.1, p.98, 1996.

R. Abgrall and . Karni, Computations of compressible multifluids, Journal of computational physics, vol.169, issue.2, p.99, 2001.

. G-allaire, S. Clerc, and . Kokh, A five-equation model for the simulation of interfaces between compressible fluids, Journal of Computational Physics, vol.181, issue.2, p.98, 2002.

. T-altazin, . Ersoy, . Golay, L. Sous, and . Yushchenko, Numerical investigation of bb-amr scheme using entropy production as refinement criterion, International Journal of Computational Fluid Dynamics, vol.30, issue.3, p.85, 2016.

A. Ambroso, . Chalons, T. Coquel, and . Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.6, p.36, 2009.

C. Arvanitis and . Delis, Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids, SIAM Journal on Scientific Computing, vol.28, issue.5, p.85, 2006.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al., PETSc users manual, vol.76, p.171, 2017.

W. Barsukow, P. Vf-edelmann, C. Klingenberg, F. Miczek, and . Röpke, A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics, Journal of Scientific Computing, vol.72, issue.2, p.30, 2017.

P. Barton and D. Drikakis, An Eulerian method for multi-component problems in nonlinear elasticity with sliding interfaces, Journal of Computational Physics, vol.229, issue.15, p.99, 2010.

P. Barton, B. Obadia, and D. Drikakis, A conservative level-set based method for compressible solid/fluid problems on fixed grids, Journal of Computational Physics, vol.230, issue.21, p.99, 2011.

M. Ben, -. , and J. Falcovitz, Generalized Riemann problems in computational fluid dynamics, vol.11, p.52, 2003.

G. Benison and E. Rubin, A time-dependent analysis for quasi-one-dimensional, viscous, heat conducting, compressible Laval nozzle flows, Journal of Engineering Mathematics, vol.5, issue.1, p.45, 1971.

M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of computational Physics, vol.82, issue.1, p.84, 1989.

M. Berger and R. Leveque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, p.85, 1998.

S. Boscarino, G. Lefloch, and . Russo, High-order asymptotic-preserving methods for fully nonlinear relaxation problems, SIAM Journal on Scientific Computing, vol.36, issue.2, p.36, 2014.

S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM Journal on Scientific Computing, vol.31, issue.3, p.38, 1926.

S. Boscarino and G. Russo, Flux-explicit IMEX Runge-Kutta schemes for hyperbolic to parabolic relaxation problems, SIAM Journal on Numerical Analysis, vol.51, issue.1, p.38, 2013.

S. Boscarino, L. Russo, and . Scandurra, All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics, Journal of Scientific Computing, p.32, 2017.

W. Boscheri, R. Dumbser, and . Loubère, Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity, Computers & Fluids, vol.134, p.99, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01972909

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws: And well-balanced schemes for sources, p.36, 2004.

F. Bouchut, K. Klingenberg, and . Waagan, A multiwave approximate riemann solver for ideal mhd based on relaxation. i: theoretical framework, Numerische Mathematik, vol.108, issue.1, p.36, 2007.

J. R-e-caflisch and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM Journal on Numerical Analysis, vol.34, issue.1, p.36, 1997.

F. Cavalli, G. Naldi, M. Puppo, and . Semplice, High-order relaxation schemes for nonlinear degenerate diffusion problems, SIAM Journal on Numerical Analysis, vol.45, issue.5, p.38, 2007.

A. Chalabi and Y. Qiu, Relaxation schemes for hyperbolic conservation laws with stiff source terms: Application to reacting Euler equations, Journal of scientific computing, vol.15, issue.4, p.36, 2000.

C. Chalons, F. Coquel, and C. Marmignon, Well-balanced time implicit formulation of relaxation schemes for the Euler equations, SIAM Journal on Scientific Computing, vol.30, issue.1, p.36, 2008.

C. Chalons, Relaxation approximation of the Euler equations, Journal of Mathematical Analysis and Applications, vol.348, issue.2, p.36, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01838843

C. Chalons, S. Girardin, and . Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM Journal on Scientific Computing, vol.35, issue.6, p.31, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00718022

C. Chalons, S. Girardin, and . Kokh, An all-regime Lagrange-projection like scheme for the gas dynamics equations on unstructured meshes, Communications in Computational Physics, vol.20, issue.1, p.31, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01007622

C. Chalons, S. Girardin, and . Kokh, An all-regime Lagrange-projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes, Journal of Computational Physics, vol.335, p.32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495699

S. Chapman and T. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, p.36, 1970.

G. Chen, C. D-levermore, and T. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Communications on Pure and Applied Mathematics, vol.47, issue.6, p.35, 1994.

A. Chertock and . Kurganov, A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries, Communications in Mathematical Sciences, vol.6, issue.3, p.111, 2008.

. A-j-chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.2, issue.1, p.30, 1967.

P. Ciarlet, . Élasticité, and . Masson, , p.12, 1985.

F. Coquel and . Perthame, Relaxation of energy and approximate riemann solvers for general pressure laws in fluid dynamics, SIAM Journal on Numerical Analysis, vol.35, issue.6, p.36, 1998.

F. Cordier, P. Degond, and A. Kumbaro, An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, Journal of Computational Physics, vol.231, issue.17, p.31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00614662

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.3, p.11, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297711

. Cravero, M. Puppo, G. Semplice, and . Visconti, Cool weno schemes, Computers & Fluids, vol.169, p.140, 2018.

. C-m-dafermos, The entropy rate admissibility criterion for solution of hyperbolic conservation laws, p.85, 1972.

A. Brauer, A. Iollo, and T. Milcent, A Cartesian scheme for compressible multimaterial models in 3d, Journal of Computational Physics, vol.313, issue.5, p.131, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405322

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation, p.31, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409851

S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, Journal of Computational Physics, vol.229, issue.4, p.40, 2010.

. S-dellacherie, . Jung, P. Omnes, and . Raviart, Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system, Mathematical Models and Methods in Applied Sciences, vol.26, issue.13, p.40, 2016.

G. Dimarco, M. Loubère, and . Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit, SIAM Journal on Scientific Computing, vol.39, issue.5, p.32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01297238

M. Dumbser, . Peshkov, O. Romenski, and . Zanotti, High order ader schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids, Journal of Computational Physics, vol.314, p.5, 2016.

M. Falcone and . Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM Journal on Numerical Analysis, vol.35, issue.3, p.127, 1998.

J. Haack, J. , and J. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations, Communications in Computational Physics, vol.12, issue.04, p.32, 2012.

C. Hirsch, Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics, p.41, 2007.

G. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering science, Meccanica, vol.37, issue.4, p.158, 2002.

. Xy-hu, G. Adams, and . Iaccarino, On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, Journal of Computational Physics, vol.228, issue.17, p.100, 2009.

A. Jameson and . Caughey, How many steps are required to solve the Euler equations of steady, compressible flow-In search of a fast solution algorithm, 15th AIAA Computational Fluid Dynamics Conference, p.46, 2001.

S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, vol.48, issue.3, p.170, 1995.

S. Karni, Multicomponent flow calculations by a consistent primitive algorithm, Journal of Computational Physics, vol.112, issue.1, p.98, 1994.

S. Karni and . Kurganov, Local error analysis for approximate solutions of hyperbolic conservation laws, Advances in Computational mathematics, vol.22, p.85, 2005.

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Communications on Pure and Applied Mathematics, vol.34, issue.4, p.30, 1981.

S. Klainerman and A. Majda, Compressible and incompressible fluids, Communications on Pure and Applied Mathematics, vol.35, issue.5, p.30, 1982.

R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics i: One-dimensional flow, Journal of Computational Physics, vol.121, issue.2, p.30, 1995.

G. Kluth and . Després, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, Journal of Computational Physics, vol.229, issue.24, p.99, 2010.

A. Kurganov and . Tadmor, Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers, Numerical Methods for Partial Differential Equations, vol.18, issue.5, p.89, 2002.

N. Kwatra, J. Su, J. Grétarsson, and R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow, Journal of Computational Physics, vol.228, issue.11, p.31, 2009.

R. Leveque, Numerical methods for conservation laws, vol.132, p.43, 1992.

R. J. Leveque and M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes, Journal of Computational Physics, vol.172, issue.2, p.36, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01342280

D. Levy, G. Puppo, and . Russo, Central weno schemes for hyperbolic systems of conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.3, p.140, 1999.

D. Levy, G. Puppo, and . Russo, Compact central weno schemes for multidimensional conservation laws, SIAM Journal on Scientific Computing, vol.22, issue.2, p.140, 2000.

X. Li and C. Gu, An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour, Journal of Computational Physics, vol.227, issue.10, p.30, 2008.

R. Liska and . Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM Journal on Scientific Computing, vol.25, issue.3, p.171, 2003.

T. Liu, Hyperbolic conservation laws with relaxation, Communications in Mathematical Physics, vol.108, issue.1, p.170, 1987.

. Tg-liu, K. S. Bc-khoo, and . Yeo, Ghost fluid method for strong shock impacting on material interface, Journal of Computational Physics, vol.190, issue.2, p.99, 2003.

H. Luo, . Mittal, S. Zheng, R. Bielamowicz, J. Walsh et al., An immersedboundary method for flow-structure interaction in biological systems with application to phonation, Journal of computational physics, vol.227, issue.22, p.100, 2008.

A. Marquina and P. Mulet, A flux-split algorithm applied to conservative models for multicomponent compressible flows, Journal of Computational Physics, vol.185, issue.1, p.132, 2003.

A. Mcdonald, Accuracy of multiply-upstream, semi-Lagrangian advective schemes, Monthly Weather Review, vol.112, issue.6, p.127, 1984.

G. Métivier and . Schochet, The incompressible limit of the non-isentropic Euler equations. Archive for rational mechanics and analysis, vol.158, p.19, 2001.

G. H. Miller and . Colella, A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing, Journal of Computational Physics, vol.183, issue.1, p.5, 2002.

C. Min and . Gibou, A second order accurate level set method on non-graded adaptive cartesian grids, Journal of Computational Physics, vol.225, issue.1, p.174, 2007.

G. Morton, A computer oriented geodetic data base and a new technique in file sequencing. International Business Machines Company New York, p.75, 1966.

G. Naldi and . Pareschi, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation, SIAM Journal on Numerical Analysis, vol.37, issue.4, p.36, 2000.

S. Noelle, G. Bispen, M. Arun, C. Lukacova-medvidova, and . Munz, An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics, SIAM J. Sci. Comput, p.32, 2014.

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, p.125, 1988.

L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, Journal of Scientific computing, vol.25, issue.1-2, p.39, 2005.

I. Peshkov and . Romenski, A hyperbolic model for viscous newtonian flows, Continuum Mechanics and Thermodynamics, vol.28, issue.1-2, p.5, 2016.

. C-s-peskin, Numerical analysis of blood flow in the heart, Journal of computational physics, vol.25, issue.3, p.100, 1977.

. C-s-peskin, The immersed boundary method, Acta numerica, vol.11, p.173, 2002.

D. B-j-plohr and . Sharp, A conservative Eulerian formulation of the equations for elastic flow, Advances in Applied Mathematics, vol.9, issue.4, p.5, 1988.

D. B-j-plohr and . Sharp, A conservative formulation for plasticity, Advances in Applied Mathematics, vol.13, issue.4, p.5, 1992.

G. Puppo, Numerical entropy production for central schemes, SIAM Journal on Scientific Computing, vol.25, issue.4, p.85, 2004.

G. Puppo and M. Semplice, Numerical entropy and adaptivity for finite volume schemes, Communications in Computational Physics, vol.10, issue.5, p.90, 2011.

J. and S. Karni, On the dynamics of a shock-bubble interaction, Journal of Fluid Mechanics, vol.318, p.175, 1996.

A. Raeli, Solution Of The Variable Coefficient Poisson Equation On Cartesian Hierarchical Meshes In Parallel: Applications To Phase Changing Materials, p.84, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01666340

A. Raeli, A. Bergmann, and . Iollo, A finite-difference method for the variable coefficient poisson equation on hierarchical cartesian meshes, Journal of Computational Physics, vol.355, p.84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01662050

G. Russo and P. Smereka, A remark on computing distance functions, Journal of Computational Physics, vol.163, issue.1, p.126, 2000.

. S-sambasivan, H. S. Kapahi, and . Udaykumar, Simulation of high speed impact, penetration and fragmentation problems on locally refined cartesian grids, Journal of Computational Physics, vol.235, p.100, 2013.

R. Saurel, A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, vol.150, issue.2, p.98, 1999.

S. Schochet, Fast singular limits of hyperbolic pdes, Journal of differential equations, vol.114, issue.2, p.24, 1994.

S. Schochet, The mathematical theory of low Mach number flows, Mathematical Modelling and Numerical Analysis, vol.39, issue.3, p.19, 2005.

C. Schulz-rinne, H. Collins, and . Glaz, Numerical solution of the riemann problem for two-dimensional gas dynamics, SIAM Journal on Scientific Computing, vol.14, issue.6, p.89, 1993.

G. Scovazzi, T. Christon, J. Hughes, and . Shadid, Stabilized shock hydrodynamics: I. A Lagrangian method, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4, p.99, 2007.

M. Semplice, G. Coco, and . Russo, Adaptive mesh refinement for hyperbolic systems based on third-order compact weno reconstruction, Journal of Scientific Computing, vol.66, issue.2, p.140, 2016.

J. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, vol.93, issue.4, p.126, 1996.

I. Suliciu, On the thermodynamics of rate-type fluids and phase transitions. i. Rate-type fluids, International journal of engineering science, vol.36, issue.9, p.36, 1998.

M. Sussman, P. Fatemi, S. Smereka, and . Osher, An improved level set method for incompressible two-phase flows, Computers & Fluids, vol.27, issue.5-6, p.126, 1998.

M. Sussman, S. Smereka, and . Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational physics, vol.114, issue.1, p.126, 1994.

. Rc-swanson, C. Turkel, and . Rossow, Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations, Journal of Computational Physics, vol.224, issue.1, p.46, 2007.

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, vol.12, pp.451-512, 2003.

E. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, vol.28, p.54, 2013.

E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of Computational Physics, vol.72, issue.2, p.30, 1987.

E. Turkel and . Vatsa, Local preconditioners for steady state and dual time-stepping, Mathematical Modeling and Numerical Analysis, ESAIM: M2AN, vol.39, p.30, 2005.

. B-van-leer, P. Lee, and . Roe, Characteristic time-stepping or local preconditioning of the Euler equations, 10th Computational Fluid Dynamics Conference, vol.1, p.30, 1991.

C. Viozat, Implicit upwind schemes for low Mach number compressible flows, p.30, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00073607

G. Whitham, Linear and nonlinear waves, vol.42, p.64, 2011.

D. Xiu and . Karniadakis, A semi-Lagrangian high-order method for Navier-Stokes equations, Journal of computational physics, vol.172, issue.2, p.174, 2001.

X. Zeng and C. Farhat, A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid-structure interaction problems, Journal of Computational Physics, vol.231, issue.7, pp.2892-2923, 2012.

. .. Forward, 10 I.2 Pattern of the five waves

, Wave patterns for two limits

). .. , , p.49

, Numerical error for the nozzle flow (test 3)

, Material wave test 1: perfect gas

, Material wave test 2: perfect gas

, 10 Material wave test 3: stiffened gas

, 13 Material wave test 4: copper (longer simulation)

, 14 Material wave test 5: elastic solid

. Iv, 2D domain: parallel communications

. .. , 6 Gresho vortex with M max = 10 ?1 (longer simulations), IV.5 Gresho vortex with M, p.80

, IV.7 Gresho vortex with M max = 10 ?2 and M

, 10 2D wave propagation in a stiffened gas, 2D wave propagation in perfect gases

, Riemann problem (test 5): uniform grid

, Riemann problem (test 6): uniform grid

. Iv, Riemann problem (test 5): numerical entropy, vol.16

. Iv, Riemann problem (test 5): numerical entropy, vol.17

, IV.18 Adaptive grids for test 5

, IV.19 Density on adaptive grids for test 5

, IV.20 Pressure on adaptive grids for test 5, vol.5

, IV.22 Density on adaptive grids for test 6

. .. , 6 Gas pistion: test 4 (velocity), Sketch of the interface position on the grid

, Gas/gas interface: test 7

, V.10 Gas/gas interface: test 8

, V.11 Water/water interface: test 9

, 12 Gas/gas and water/water interfaces: comparison of schemes, p.118

, V.13 Water/gas interface: test 10

, Water/gas interface: test 11

, Copper/copper interface: test 12

V. , Copper/copper interface: test 12

, Copper/copper interface: test 13

, Copper/copper interface: test 13

V. , Copper/gas interface: test 14

, Materials representation with the level set

, Cells changing material: update

, Shock-bubble interaction (test 1): domain

, Shock-bubble interaction (test 1): 6 snapshots

, VI.5 Shock-bubble interaction

, Advection of a copper ball (test 2)

. .. Four-snapshots, 137 List of Tables I.1 Typical parameters for different materials

, 5 Material wave propagation tests: initial state

, 3 2D material wave propagation tests: initial state

V. , Gas piston tests: initial state

, Gas piston tests: mass conservation

, Copper beam tests: initial state

, Copper beam tests: mass conservation

, Fluid/fluid interfaces: parameters

, Fluid/fluid interfaces: initial state

. .. , Solid/solid and solid/fluid interfaces: parameters, p.120

, Solid/solid and solid/fluid interfaces: initial state

, Shock-bubble interaction: parameters

, 2D solid/fluid interfaces: parameters

, Abbiamo inoltre proposto un metodo numerico per trattare le interfacce fisiche in implicito, con l'obiettivo di risolvere flussi multi-materiale a basse velocità. L'implementazione del codice bidimensionale è stata sviluppata in parallelo, per essere risolta su strutture HPC. Le prospettive di questo lavoro riguardano lo sviluppo di schemi di ordine più alto sia per la discretizzazione dei flussi, che per quella della funzione level, ottenuti con metodi standard espliciti-upwind nei casi in cui il numero di Mach del flusso diventa piccolo

L. Inoltre, finora esplorata solo nei casi con un solo materiale, permetterà di limitare i costi computazionali anche per problemi multi-materiali

, On a proposé un schéma all-speed implicite basé sûr une technique de relaxation. Ce schéma améliore considérablement les résultats obténus avec des méthodes classiques explicite-upwind dans les cas où le nombre de Mach dévient pétit. De plus, on a proposé une méthode numérique pour décrire les interfaces physiques en implicite, Dans cette thèse on a proposé des méthodes numériques pour simuler de matériaux différents soir en régimes totalement compressibles que dans la limite bas Mach. Le modèle eulérian introduit décrit les fluides et les solides élastiques avec les mêmes équations. Dans cet ésprit, le concept de régime bas Mach a été étendu aussi aux déformations élastiques

, Les perspectives des ces travaux concernent le dévéloppement de schémas d'ordre élevé soit pour discretiser les écoulements que pour intégrer la level set qui réprésent l'interface. De plus, la solution sûr mailles adaptives a été éxploré que pour des problèmes avec un seul matériau. Cellela nous permettera de limiter les coûts computationels aussi en l, L'implémentation du code bidimensionel a été dévéloppé en parallel pour être résolu sûr des structures HPC