, Aqueous solution-A Convenient Synthesis of an Active Nickel Hydrogenation Catalyst of Low Isomerizing Tendency, J. Am. Chem. Soc, vol.85, pp.1003-1005, 1963.

P. C. Maybury, R. W. Mitchell, and M. F. Hawthorne, Hydrogen Adducts of Cobalt and Nickel Boride, J. Chem. Soc. Chem. Commun, p.534, 1974.

H. Li, P. Wen, Q. Li, C. Dun, J. Xing et al., Earth-Abundant Iron Diboride (FeB2) Nanoparticles as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting, Adv. Energy Mater, vol.1700513, pp.1-12, 2017.

S. Rades, A. Kornowski, H. Weller, and B. Albert, Wet-Chemical Synthesis of Nanoscale Iron Boride, XAFS Analysis and Crystallisation to ?-FeB, Chemphyschem, vol.12, pp.1756-1760, 2011.

J. Legrand, A. Taleb, S. Gota, M. J. Guittet, and C. Petit, Synthesis and XPS Characterization of Nickel Boride Nanoparticles, Langmuir, vol.18, pp.4131-4137, 2002.

M. Mo, M. Zheng, J. Tang, Q. Lu, and Y. Xun, Highly Active Co-B, Co-Mo(W)-B Amorphous Nanotube Catalysts for the Selective Hydrogenation of Cinnamaldehyde

, J. Mater. Sci, vol.49, pp.877-885, 2014.

H. Wang, Z. Yu, H. Chen, J. Yang, and J. Deng, High Activity Ultrafine NiCoB Amorphous Alloy Powder for the Hydrogenation of Benzene, Appl. Catal. A Gen, vol.129, pp.143-149, 1995.

C. Ni, W. Wang, Z. Qiao, K. Zhang, and P. Liu, Highly Selective Catalytic Hydrodeoxygenation of C Aromatic -OH in Bio-Oil to Cycloalkanes on a, RSC Adv, vol.4, pp.37288-37295, 2014.

G. Parks, M. Pease, . Burns, K. Layman, M. Bussell et al., Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials, J. Catal, vol.246, pp.277-292, 2007.

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled Metal Borides and Phosphides : Recent Developments and Perspectives Nanoscaled Metal Borides and Phosphides : Recent Developments and Perspectives, Chem. Rev, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289771

Z. L. Schaefer, X. Ke, P. Schiffer, and R. E. Schaak, Direct Solution Synthesis, Reaction Pathway Studies, and Structural Characterization of Crystalline Ni3B Nanoparticles, J. Phys. Chem. C, vol.112, 2008.

D. Portehault, S. Devi, P. Beaunier, C. Gervais, C. Giordano et al., A General Solution Route toward Metal Boride Nanocrystals, Angew. Chemie, vol.123, pp.3320-3323, 2011.

G. Gouget, P. Beaunier, D. Portehault, and C. Sanchez, New Route toward Nanosized Crystalline Metal Borides with Tuneable Stoichiometry and Variable Morphologies
URL : https://hal.archives-ouvertes.fr/hal-01440776

, Faraday Discuss, vol.191, pp.511-525, 2016.

G. Gouget, Approche Moléculaire Vers Des Nanomatériaux Inorganiques Composés de Bore : Nouvelles Nanostructures Fonctionnelles, 2016.

R. Grosjean, Nanomatériaux À Base de Bore Sous Conditions Extrêmes, 2016.

B. Terlan, A. Levin, F. Börrnert, F. Simon, M. Oschatz et al., Effect of Surface Properties on the Microstructure, Thermal and Colloidal Stability of VB2 Nanoparticles, Chem. Mater, vol.27, pp.5106-5115, 2015.

B. Terlan, A. A. Levin, F. Börrnert, J. Zeisner, V. Kataev et al., A Size-Dependent Analysis of the Structural , Surface , Colloidal , and Thermal Properties of Ti1-x B 2 ( X = 0 .03-0 .08 ) Nanoparticles, Eur. J. Inorg. Chem, pp.3460-3468, 2016.

J. Park, B. Koo, Y. Hwang, C. Bae, K. An et al., Novel Synthesis of Magnetic Fe 2 P Nanorods from Thermal Decomposition of Continuously Delivered Precursors Using a Syringe Pump**, pp.2282-2285, 2004.

C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang et al., Solution-Phase Synthesis of Single-Crystalline Iron Phosphide Nanorods / Nanowires, pp.208-211, 2004.

A. E. Henkes and R. E. Schaak, Template-Assisted Synthesis of Shape-Controlled Rh2P Nanocrystals, Inorg. Chem, vol.47, pp.671-677, 2008.

C. G. Read, J. F. Callejas, C. F. Holder, and R. E. Schaak, General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution, ACS Appl. Mater. Interfaces, vol.8, pp.12798-12803, 2016.

J. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Synthesis , Characterization , and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction, 2016.

E. J. Popczun, J. R. Mckone, C. G. Read, A. J. Biacchi, A. M. Wiltrout et al., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.9267-9270, 2013.

J. M. Mcenaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi et al., Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution, 2014.

J. F. Callejas, C. G. Read, E. J. Popczun, J. M. Mcenaney, and R. E. Schaak,

, Nanostructured Co 2 P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP, Chem. Mater, vol.27, pp.3769-3774, 2015.

H. R. Seo, K. S. Cho, and Y. K. Lee, Formation Mechanisms of Ni2P Nanocrystals Using XANES and EXAFS Spectroscopy, Mater. Sci. Eng. B Solid-State Mater. Adv

. Technol, , vol.176, pp.132-140, 2011.

J. Wang, A. C. Johnston-peck, and J. B. Tracy, Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures, Chem. Mater, vol.21, pp.4462-4467, 2009.

L. M. Moreau, D. Ha, H. Zhang, R. Hovden, D. A. Muller et al., Defining Crystalline/Amorphous Phases of Nanoparticles through X -Ray Absorption Spectroscopy and X-ray Di Fraction: The Case of Nickel Phosphide, Chem. Mater, 2013.

L. Guo, Y. Zhao, Z. Yao, A. Alexander, J. S. Hargreaves et al., Mechanical Mixtures of Metal Oxides and Phosphorus Pentoxide as Novel Precursors for the Synthesis of Transition-Metal Phosphides, Dalt. Trans, vol.45, pp.1225-1232, 2016.

J. Park, B. Koo, K. Y. Yoon, Y. Hwang, M. Kang et al., Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump, J. Am

, Chem. Soc, vol.127, pp.8433-8440, 2005.

K. A. Gregg, S. C. Perera, G. Lawes, S. Shinozaki, and S. L. Brock, Controlled Synthesis of MnP Nanorods: Effect of Shape Anisotropy on Magnetization

. Mater, , vol.18, pp.879-886, 2006.

A. E. Henkes and R. E. Schaak, Trioctylphosphine: A General Phosphorus Source for the Low-Temperature Conversion of Metals into Metal Phosphides, Chem. Mater, vol.19, pp.4234-4242, 2007.

E. Muthuswamy, G. H. Savithra, and S. L. Brock, Synthetic Levers Enabling Independent Control of Phase, Size, and Morphology in Nickel Phosphide Nanoparticles, ACS Nano, vol.5, pp.2402-2411, 2011.

R. Chiang and R. Chiang, Formation of of Hollow Ni2P Nanoparticles Based on the Nanoscale Kirkendall Effect, Inorg.Chem, vol.46, pp.1-8, 2007.

J. Wei, Y. Ni, N. Xiang, Y. Zhang, and X. Ma, Urchin-like NixPy Hollow Superstructures: Mild Solvothermal Synthesis and Enhanced Catalytic Performance for the Reduction of 4-Nitrophenol, CrystEngComm, p.2113, 2014.

J. Li, Y. H. Ni, K. M. Liao, and J. M. Hong, Hydrothermal Synthesis of Ni12P5 Hollow Microspheres, Characterization and Photocatalytic Degradation Property, J. Colloid Interface Sci, vol.332, pp.231-236, 2009.

K. Mi, Y. Ni, and J. Hong, Solvent-Controlled Syntheses of Ni12P5 and Ni2P Nanocrystals and Photocatalytic Property Comparison, J. Phys. Chem. Solids, vol.72, pp.1452-1456, 2011.

F. Yuan, Y. Ni, L. Zhang, X. Ma, and J. Hong, Rod-Like Co2P Nanostructures: Improved Synthesis, Catalytic Property and Application in the Removal of Heavy Metal, J. Clust. Sci, vol.24, pp.1067-1080, 2013.

H. L. Su, Y. Xie, B. Li, X. M. Liu, and Y. T. Qian, Simple, Convenient, Mild Solvothermal Route to Nanocrystalline Cu3P and Ni2P, Solid State Ionics, vol.122, pp.157-160, 1999.

X. Wang, F. Wan, Y. Gao, J. Liu, and K. Jiang, Synthesis of High-Quality Ni2P Hollow Sphere via a Template-Free Surfactant-Assisted Solvothermal Route, J. Cryst. Growth, vol.310, pp.2569-2574, 2008.

Y. Xie, H. L. Su, X. F. Qian, X. M. Liu, and Y. T. Qian, A Mild One-Step Solvothermal Route to Metal Phosphides (Metal = Co, Ni, Cu), J. Solid State Chem, vol.149, pp.88-91, 2000.

F. Luo, H. Su, W. Song, Z. Wang, Z. Yan et al., Magnetic and Magnetotransport Properties of Fe2P Nanocrystallites via a Solvothermal Route, J. Nanoparticle Res, vol.14, issue.111, p.16, 2004.

K. I. Portnoi, V. M. Romashov, V. M. Chubarov, M. Levinskaya, and S. E. , Phase Diagram of the System Nickel-Boride, Poroshkovaya Metall, vol.2, pp.15-21, 1967.

R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie, Supported Metal Nanoparticles on Porous Materials. Methods and Applications. Chem. Soc. Rev, vol.38, pp.481-494, 2009.

H. Jiang, K. S. Moon, H. Dong, F. Hua, and C. P. Wong, Size-Dependent Melting Properties of Tin Nanoparticles, Chem. Phys. Lett, vol.429, pp.492-496, 2006.

Y. Chen, D. Peng, D. Lin, and X. Luo, Preparation and Magnetic Properties of Nickel Nanoparticles via the Thermal Decomposition of Nickel Organometallic Precursor in Alkylamines, Nanotechnology, vol.18, p.505703, 2007.

M. Beck, M. Ellner, and E. J. Mittemeijer, The Structure of the Palladium-Rich Boride Pd 5 B ( Pd 16 B 3 ), Z. Krist, vol.216, pp.591-594, 2001.

M. Beck, M. Ellner, and E. J. Mittemeijer, Powder Diffraction Data for Borides Pd3B and Pd5B2 and the Formation of an Amorphous Boride Pd2B, Powder Diffr, vol.16, pp.98-101, 2001.

P. K. Liao, K. E. Spear, M. E. The-b-pd, and ;. , J. Phase Equilibria, vol.17, pp.340-346, 1996.

M. Beck, M. Ellner, and E. J. Mittemeijer, The Structure of the Palladium-Rich Boride Pd 5 B ( Pd 16 B 3 ), vol.216, pp.591-594, 2001.

H. Li, J. Liu, and H. Li, Liquid-Phase Selective Hydrogenation of Phenol to Cyclohexanone over the Ce-Doped Pd-B Amorphous Alloy Catalyst, Mater. Lett, vol.62, pp.297-300, 2008.

T. Chen, D. Li, H. Jiang, and C. Xiong, High-Performance Pd Nanoalloy on Functionalized Activated Carbon for the Hydrogenation of Nitroaromatic Compounds

, Chem. Eng. J, vol.259, pp.161-169, 2015.

Z. Ma, L. Zhang, R. Chen, W. Xing, and N. Xu, Preparation of Pd-B/TiO2 Amorphous Alloy Catalysts and Their Performance on Liquid-Phase Hydrogenation of P-Nitrophenol, Chem. Eng. J, vol.138, pp.517-522, 2008.

K. Jiang, K. Xu, S. Zou, W. Cai, and . Bin, B-Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid-Formate Solutions, J. Am. Chem

. Soc, , vol.136, pp.4861-4864, 2014.

R. J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen, J. J. Krajewski et al., Superconductivity at 23 K in Yttrium Palladium Boride Carbide, Nature, vol.367, pp.146-148, 1994.

R. W. Man, A. R. Brown, and M. O. Wolf, Mechanism of Formation of Palladium Nanoparticles: Lewis Base Assisted, Low-Temperature Preparation of Monodisperse Nanoparticles, Angew. Chem. Int. Ed. Engl, vol.51, pp.11350-11353, 2012.

J. G. Aston and P. J. Mitacek, Structure of Hydrides of Palladium, Nature, p.70, 1962.

J. H. Shen and Y. W. Chen, Catalytic Properties of Bimetallic NiCoB Nanoalloy Catalysts for Hydrogenation of P-Chloronitrobenzene, J. Mol. Catal. A Chem, vol.273, pp.265-276, 2007.

S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora et al., Co-Ni-B Nanocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Range, Appl. Catal. B Environ, vol.192, pp.126-133, 2016.

H. Wang, Z. Yu, H. Chen, J. Yang, and J. Deng, High Activity Ultrafine NiCoB Amorphous Alloy Powder for the Hydrogenation of Benzene, Appl. Catal. A Gen, vol.129, pp.143-149, 1995.

R. Chen, L. Liu, J. Zhou, L. Hou, and F. Gao, High-Performance Nickel-Cobalt-Boron Material for an Asymmetric Supercapacitor with an Ultrahigh Energy Density, J. Power Sources, vol.341, pp.75-82, 2017.

S. Carenco, C. H. Wu, A. Shavorskiy, S. Alayoglu, G. A. Somorjai et al., Synthesis and Structural Evolution of Nickel-Cobalt Nanoparticles Under H2 and CO2, Small, pp.3045-3053, 2015.

K. Hofmann, N. Kalyon, C. Kapfenberger, L. Lamontagne, S. Zarrini et al., Metastable Ni7B3: A New Paramagnetic Boride from Solution Chemistry, Its Crystal Structure and Magnetic Properties, Inorg. Chem, vol.54, pp.10873-10877, 2015.

N. Li and G. W. Huber, Aqueous-Phase Hydrodeoxygenation of Sorbitol with Pt/SiO2-Al2O3: Identification of Reaction Intermediates, J. Catal, vol.270, pp.48-59, 2010.

S. Sitthisa, D. E. Resasco, . Cu, and N. Pd, SiO2 Hydrodeoxygenation of Furfural over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni, Catal. Letters, vol.141, pp.784-791, 2011.

R. Prins and M. E. Bussell, Metal Phosphides: Preparation, Characterization and Catalytic Reactivity, Catalysis Letters, vol.142, pp.1413-1436, 2012.

N. Koike, S. Hosokai, A. Takagaki, S. Nishimura, R. Kikuchi et al., Upgrading of Pyrolysis Bio-Oil Using Nickel Phosphide Catalysts, J. Catal, vol.333, pp.115-126, 2016.

W. Wang, Y. Yang, J. Bao, and H. Luo, Characterization and Catalytic Properties of Ni -Mo -B Amorphous Catalysts for Phenol Hydrodeoxygenation, Catal. Commun, vol.11, pp.100-105, 2009.

M. J. Zhang, W. Z. Li, S. Zu, W. Huo, X. F. Zhu et al., Catalytic Hydrogenation for Bio-Oil Upgrading by a Supported NiMoB Amorphous Alloy, Chem. Eng. Technol, vol.36, pp.2108-2116, 2013.

H. Liu, L. Qin, X. Wang, C. Du, D. Sun et al., Hydrolytic Hydro-Conversion of Cellulose to Ethylene Glycol over Bimetallic CNTs-Supported NiWB Amorphous Alloy Catalyst, Catal. Commun, vol.77, pp.47-51, 2016.

W. Wang, S. Yang, Z. Qiao, P. Liu, K. Wu et al., Preparation of Ni-W-P-B Amorphous Catalyst for the Hydrodeoxygenation of P-Cresol, Catal. Commun, vol.60, pp.50-54, 2015.

W. Y. Wang, Y. Q. Yang, H. A. Luo, and W. Y. Liu, Effect of Additive (Co, La) for Ni-Mo-B Amorphous Catalyst and Its Hydrodeoxygenation Properties, Catal. Commun, vol.11, pp.803-807, 2010.

G. Bai, L. Niu, Z. Zhao, N. Li, F. Li et al., Ni-La-B Amorphous Alloys Supported on SiO2 and ?-Al2O3 for Selective Hydrogenation of Benzophenone, J. Mol. Catal. A Chem, pp.411-416, 2012.

W. Wang, Y. Yang, H. Luo, H. Peng, and F. Wang, Effect of La on Ni-W-B Amorphous Catalysts in Hydrodeoxygenation of Phenol, Ind. Eng. Chem. Res, vol.50, pp.10936-10942, 2011.

H. Liu, W. Wang, X. Zhang, Y. Yang, K. Zhang et al., Hydrodeoxygenation of Cyclopentanone over Ni-W-B Amorphous Catalyst: Effect of Cr and Ce, React. Kinet. Mech. Catal, vol.109, pp.537-549, 2013.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, and V. Khotkevich,

S. Morozov,

A. K. Geim, Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.10451-10453, 2005.

M. C. Biesinger, B. P. Payne, L. W. Lau, A. Gerson, and R. S. Smart, X-Ray Photoelectron Spectroscopic Chemical State Quantification of Mixed Nickel Metal, Oxide and Hydroxide Systems, Surf. Interface Anal, vol.41, pp.324-332, 2009.

J. Legrand, A. Taleb, S. Gota, M. J. Guittet, and C. Petit, Synthesis and XPS Characterization of Nickel Boride Nanoparticles, Langmuir, vol.18, pp.4131-4137, 2002.

M. Lewandowski, Hydrotreating Activity of Bulk NiB Alloy in Model Reaction of Hydrodenitrogenation of Carbazole, Appl. Catal. B Environ, pp.322-332, 2015.

M. Lewandowski, Environmental Hydrotreating Activity of Bulk NiB Alloy in Model Reaction of Hydrodesulfurization 4 , 6-Dimethyldibenzothiophene, Appl. Catal. B, Environ, pp.10-21, 2014.

H. Li, H. Li, W. L. Dai, W. Wang, Z. Fang et al., XPS Studies on Surface Electronic Characteristics of Ni-B and Ni-P Amorphous Alloy and Its Correlation to Their Catalytic Properties, Appl. Surf. Sci, vol.152, pp.25-34, 1999.

Z. Wu, W. Li, S. Mu, M. Z. Keyitao, Z. Wu et al., Study on the Deactivation of Supported amorphous\nNi-B Catalyst in Hydrogenation, J. Mol. Catal. A Chem, vol.273, pp.277-283, 2007.

G. Gouget, Approche Moléculaire Vers Des Nanomatériaux Inorganiques Composés de Bore : Nouvelles Nanostructures Fonctionnelles, 2016.

B. H. Frazer, B. Gilbert, B. R. Sonderegger, and G. D. , The Probing Depth of Total Electron Yield in the Sub-keV Range: TEY-XAS and X-PEEM, Surf. Sci, vol.537, pp.161-167, 2003.

D. Li, G. M. Bancroft, and M. E. B-k-edge, XANES of Crystalline and Amorphous Inorganic Materials. J. Electron Spectros. Relat. Phenom, vol.79, pp.71-73, 1996.

A. Tuxen, S. Carenco, M. Chintapalli, C. H. Chuang, C. Escudero et al., Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles, J. Am. Chem. Soc, vol.135, pp.2273-2278, 2013.

D. Li, G. M. Bancroft, and M. E. Fleet, K-Edge XANES of Crystalline and Amorphous Inorganic Materials, J. Electron Spectros. Relat. Phenomena, vol.79, pp.71-73, 1996.

V. O. Gonçalves, S. Brunet, and F. Richard, Hydrodeoxygenation of Cresols Over Mo/Al2O3 and CoMo/Al2O3 Sulfided Catalysts, Catal. Letters, vol.146, pp.1562-1573, 2016.

M. Mo, M. Zheng, J. Tang, Q. Lu, and Y. Xun, Highly Active Co-B, Co-Mo(W)-B Amorphous Nanotube Catalysts for the Selective Hydrogenation of Cinnamaldehyde, J. Mater. Sci, vol.49, pp.877-885, 2014.

D. Portehault, S. Devi, P. Beaunier, C. Gervais, C. Giordano et al., A General Solution Route toward Metal Boride Nanocrystals, Angew. Chemie, vol.123, pp.3320-3323, 2011.

D. Portehault, G. Gouget, C. Gervais-stary, and C. Sanchez, , 2016.

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives, Chem. Rev, vol.113, p.7981, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289771

X. Ma, D. Sun, F. Zhao, and C. Du, Liquid Phase Hydrogenation of Biomass-Derived Ethyl Lactate to Propane-1,2-Diol over a Highly Active CoB Amorphous Catalyst, Catal. Commun, vol.60, pp.124-128, 2015.

G. Gouget, D. P. Debecker, A. Kim, G. Olivieri, J. Gallet et al., Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis, Inorg. Chem, vol.56, pp.9225-9234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01739853

P. D. Tran, T. Tran, M. Orio, S. Torelli, Q. D. Truong et al., Coordination Polymer Structure and Revisited Hydrogen Evolution Catalytic Mechanism for Amorphous Molybdenum Sulfid, Nat. Mater, vol.15, p.640, 2016.

D. Voiry, R. Fullon, J. Yang, C. Carvalho, R. De;-kappera et al., The Role of Electronic Coupling between Substrate and 2D MoS2 Nanosheets in Electrocatalytic Production of Hydrogen, Nat. Mater, vol.15, pp.1003-1010, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01713257

Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al., Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disul Fi de Nanosheets, J. Am. Chem. Soc, vol.138, pp.7965-7972, 2016.

E. J. Popczun, J. R. Mckone, C. G. Read, A. J. Biacchi, A. M. Wiltrout et al., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.9267-9270, 2013.

Z. Yao, G. Wang, Y. Shi, Y. Zhao, J. Jiang et al., One-Step Synthesis of Nickel and Cobalt Phosphide Nanomaterials via Decomposition of Hexamethylenetetramine-Containing Precursors, Dalt. Trans, vol.44, pp.14122-14129, 2015.

P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel et al., Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting, ACS Catal, pp.103-109, 2016.

W. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic et al., Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel -Molybdenum Nitride Nanosheets, Angew. Chem. Int. Ed, vol.51, pp.6131-6135, 2012.

H. Yu, L. Shang, T. Bian, R. Shi, G. I. Waterhouse et al., Nitrogen-Doped Porous Carbon Nanosheets Templated from G-C3N4 as Metal-Free Electrocatalysts for Effi Cient Oxygen Reduction Reaction, Adv. Mater, vol.28, pp.5080-5086, 2016.

F. Ma, H. Wu, and . Bin,

B. Y. Xia, C. Xu, X. Wen, and D. Lou, Hierarchical B -Mo 2 C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production Angewandte, Angew.Chem. Int.Ed, vol.54, pp.15395-15399, 2015.

J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen et al., Solar Water Splitting by Photovoltaic-Electrolysis with a Solar-to-Hydrogen Efficiency over 30%, Nat. Commun, vol.7, pp.1-6, 2016.

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and ( Oxy ) Hydroxides : Activity Trends and Design Principles, Chem. Mater, vol.27, pp.7549-7558, 2015.

C. Adán, F. J. Pérez-alonso, S. Rojas, M. A. Peña, and J. L. Fierro, Enhancement of Electrocatalytic Activity towards Hydrogen Evolution Reaction by Boron-Modified Nickel Nanoparticles, Int. J. Hydrogen Energy, vol.37, pp.14984-14991, 2012.

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han et al., Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays, ACS Appl. Mater. Interfaces, vol.8, pp.30143-30151, 2016.

M. Zeng, H. Wang, C. Zhao, J. Wei, K. Qi et al., Nanostructured Amorphous Nickel Boride for High-Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH Range, ChemCatChem, vol.8, pp.708-712, 2016.

P. Zhang, M. Wang, Y. Yang, T. Yao, H. Han et al., Electroless Plated Ni-Bx Films as Highly Active Electrocatalysts for Hydrogen Production from Water over a Wide pH Range, Nano Energy, vol.19, pp.98-107, 2016.

J. Jiang, M. Wang, W. Yan, X. Liu, J. Liu et al., Highly Active and Durable Electrocatalytic Water Oxidation by a NiB 0.45 /NiO X Core-Shell Heterostructured Nanoparticulate Film, Nano Energy, vol.38, pp.175-184, 2017.

W. J. Jiang, S. Niu, T. Tang, Q. H. Zhang, X. Z. Liu et al., Crystallinity-Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3B for Efficient Water Oxidation. Angew. Chemie -Int, vol.56, pp.6572-6577, 2017.

S. Gupta, N. Patel, A. Miotello, and D. C. Kothari, Cobalt-Boride: An Efficient and Robust Electrocatalyst for Hydrogen Evolution Reaction, J. Power Sources, vol.279, pp.620-625, 2015.

J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia et al., Amorphous Cobalt Boride (Co2B) as a Highly Effi Cient Nonprecious Catalyst for Electrochemical Water Splitting : Oxygen and Hydrogen Evolution, Adv. Energy Mater, vol.6, pp.1-10, 2016.

P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu et al., Strong-Coupled Cobalt Borate Nanosheets / Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions, Angew.Chem.Int. Ed, vol.55, pp.2488-2492, 2016.

V. Ebmann, S. Barwe, J. Masa, and W. Schuhmann, Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis, Anal. Chem, vol.88, pp.8835-8840, 2016.

S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora et al., Co-Ni-B Nanocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Range, Appl. Catal. B Environ, vol.192, pp.126-133, 2016.

S. Gupta, N. Patel, R. Fernandes, S. Hanchate, A. Miotello et al., Co-Mo-B Nanoparticles as a Non-Precious and Efficient Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution, Electrochim. Acta, vol.232, pp.64-71, 2017.

H. Li, P. Wen, Q. Li, C. Dun, J. Xing et al., Earth-Abundant Iron Diboride (FeB2) Nanoparticles as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting, Adv. Energy Mater, vol.1700513, pp.1-12, 2017.

H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. Fokwa, Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chemie -Int, vol.56, pp.5575-5578, 2017.

S. J. Sitler, K. S. Raja, and I. Charit, ZrB2-HfB2 Solid Solutions as Electrode Materials for Hydrogen Reaction in Acidic and Basic Solutions, Mater. Lett, vol.188, pp.239-243, 2017.

L. Trotochaud, J. K. Ranney, K. N. Williams, and S. W. Boettcher, Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution, J. Am. Chem. Soc, vol.134, pp.17253-17261, 2012.

D. K. Bediako, B. Lassalle-kaiser, Y. Surendranath, J. Yano, V. K. Yachandra et al., Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst, J. Am. Chem. Soc, vol.134, pp.6801-6809, 2012.

E. J. Popczun, J. R. Mckone, C. G. Read, A. J. Biacchi, A. M. Wiltrout et al., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.9267-9270, 2013.

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives, Chem. Rev, vol.113, p.7981, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289771

M. E. Schlesinger, The Thermodynamic Properties of Phosphorus and Solid Binary Phosphides, 2002.

R. Winchester, L. Whitby, M. Shaffer, and M. S. , Synthesis of Pure Phosphorus Nanostructures, Angew. Chem. Int. Ed. Engl, vol.48, pp.3616-3621, 2009.

G. Küper, J. Hormes, and K. Sommer, Situ X-Ray Absorption Spectroscopy at the K-Edge of Red Phosphorus in Polyamide 6,6 during a Thermo-Oxidative Degradation

, Macromol. Chem. Phys, vol.195, pp.1741-1753, 1994.

G. Nicotra, A. Politano, A. M. Mio, I. Deretzis, J. Hu et al., Absorption Edges of Black Phosphorus: A Comparative Analysis. Phys. Status Solidi Basic Res, vol.253, pp.2509-2514, 2016.

R. Franke and . X-ray, Absorption and Photoelectron Spectroscopy Investigation of Binary Nickelphosphides, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.53, pp.933-941, 1997.

E. D. Ingall, J. A. Brandes, J. M. Diaz, M. D. De-jonge, D. Paterson et al., Phosphorus K-Edge XANES Spectroscopy of Mineral Standards, J. Synchrotron Radiat, vol.18, pp.189-197, 2011.

G. A. Nazi, R. A. Conell, and C. Julien, Preparation and Physical Properties of Lithium Phosphide-Lithium Chloride, a Solid Electrolyte for Solid State Lithium Batteries. Solid States Ionics, vol.86, pp.99-105, 1996.

S. Gamage, Z. Li, V. S. Yakovlev, C. Lewis, H. Wang et al., Nanoscopy of Black Phosphorus Degradation, Adv. Mater. Interfaces, vol.3, pp.1-6, 2016.

A. Favron, E. Gaufrès, F. Fossard, A. Phaneuf-l'heureux, N. Y. Tang et al., Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus, Nat. Mater, vol.14, pp.826-832, 2015.

T. Nilges, M. Kersting, and T. Pfeifer, A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals, J. Solid State Chem, vol.181, pp.1707-1711, 2008.

X. Liu, J. D. Wood, K. S. Chen, E. Cho, and M. C. Hersam, Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus, J. Phys. Chem

. Lett, , vol.6, pp.773-778, 2015.

M. Lee, A. K. Roy, S. Jo, Y. Choi, A. Chae et al., In, I. Exfoliation of Black Phosphorus in Ionic Liquids, Nanotechnology, vol.28, p.125603, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01208705

R. Chiang and R. Chiang, Formation of of Hollow Ni2P Nanoparticles Based on the Nanoscale Kirkendall Effect, Inorg.Chem, vol.46, pp.1-8, 2007.

A. E. Henkes and R. E. Schaak, Trioctylphosphine: A General Phosphorus Source for the Low-Temperature Conversion of Metals into Metal Phosphides, Chem. Mater, vol.19, pp.4234-4242, 2007.

J. Park, B. Koo, K. Y. Yoon, Y. Hwang, M. Kang et al., Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump, J. Am

, Chem. Soc, vol.127, pp.8433-8440, 2005.

G. Parks, M. Pease, . Burns, K. Layman, M. Bussell et al., Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials, J. Catal, vol.246, pp.277-292, 2007.

Y. Shi, Y. Xu, S. Zhuo, J. Zhang, and B. Zhang, Ni2P nanosheets/Ni Foam Composite Electrode for Long-Lived and pH-Tolerable Electrochemical Hydrogen Generation

, ACS Appl. Mater. Interfaces, vol.7, pp.2376-2384, 2015.

J. Li, Y. H. Ni, K. M. Liao, and J. M. Hong, Hydrothermal Synthesis of Ni12P5 Hollow Microspheres, Characterization and Photocatalytic Degradation Property, J. Colloid Interface Sci, vol.332, pp.231-236, 2009.

K. Mi, Y. Ni, and J. Hong, Solvent-Controlled Syntheses of Ni12P5 and Ni2P Nanocrystals and Photocatalytic Property Comparison, J. Phys. Chem. Solids, vol.72, pp.1452-1456, 2011.

J. Wei, Y. Ni, N. Xiang, Y. Zhang, and X. Ma, Urchin-like NixPy Hollow Superstructures: Mild Solvothermal Synthesis and Enhanced Catalytic Performance for the Reduction of 4-Nitrophenol, CrystEngComm, p.2113, 2014.

S. Carenco, I. Resa, X. Le-goff, P. Le-floch, and N. Mézailles, White Phosphorus as Single Source of "P" in the Synthesis of Nickel Phosphide, Chem. Commun, pp.2568-2570, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00302659

S. Carenco, X. F. Le-goff, J. Shi, L. Roiban, O. Ersen et al., Magnetic Core-Shell Nanoparticles from Nanoscale-Induced Phase Segregation, Chem. Mater, vol.23, pp.2270-2277, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00694192

S. Carenco, Y. Hu, I. Florea, O. Ersen, and C. Boissie, Metal-Dependent Interplay between Crystallization and Phosphorus Diffusion during the Synthesis of Metal Phosphide Nanoparticles, Chem. Mater, vol.24, pp.4134-4145, 2012.

Y. Deng, Y. Zhou, Y. Yao, and J. Wang, Facile Synthesis of Nanosized Nickel Phosphides with Controllable Phase and Morphology, New J. Chem, p.4083, 2013.

Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao, Nickel Phosphide-Embedded Graphene as Counter Electrode for Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys, vol.14, p.1339, 2012.

J. Liu, X. Chen, M. Shao, C. An, W. Yu et al., Surfactant-Aided Solvothermal Synthesis of Dinickel Phosphide Nanocrystallites Using Red Phosphorus as Starting Materials, J. Cryst. Growth, vol.252, pp.297-301, 2003.

S. Zhang, S. Zhang, L. Song, X. Wu, and S. Fang, Three-Dimensional Interconnected Nickel Phosphide Networks with Hollow Microstructures and Desulfurization Performance, Mater. Res. Bull, vol.53, pp.158-162, 2014.

B. M. Barry, E. G. Gillan, and R. E. Mater, Low-Temperature Solvothermal Synthesis of Phosphorus-Rich Transition-Metal Phosphides, Chem. Mater, vol.20, pp.2618-2620, 2008.

B. M. Barry and E. G. Gillan, A General and Flexible Synthesis of Transition-Metal Polyphosphides via PCl 3 Elimination, Chem. Mater, vol.21, pp.4454-4461, 2009.

B. You, N. Jiang, M. Sheng, M. W. Bhushan, and Y. Sun, Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting, ACS Catal, vol.6, pp.714-721, 2016.

Y. Pan, Y. Liu, and C. Liu, Nanostructured Nickel Phosphide Supported on Carbon Nanospheres: Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Evolution, J. Power Sources, vol.285, pp.169-177, 2015.

S. T. Oyama, Novel Catalysts for Advanced Hydroprocessing: Transition Metal Phosphides, J. Catal, vol.216, pp.343-352, 2003.

L. M. Moreau, D. Ha, H. Zhang, R. Hovden, D. A. Muller et al., Defining Crystalline/Amorphous Phases of Nanoparticles through X -Ray Absorption Spectroscopy and X-ray Di Fraction: The Case of Nickel Phosphide, Chem. Mater, 2013.

Y. Shu and S. T. Oyama, Synthesis, Characterization, and Hydrotreating Activity of Carbon-Supported Transition Metal Phosphides, vol.43, pp.1517-1532, 2005.

E. J. Popczun, J. R. Mckone, C. G. Read, A. J. Biacchi, A. M. Wiltrout et al.,

S. Nanostructured, Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.2624-2629, 2013.

B. You, N. Jiang, M. Sheng, M. W. Bhushan, and Y. Sun, Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting, ACS Catal, vol.6, pp.714-721, 2016.

X. Wang, Y. V. Kolen'ko, X. Q. Bao, K. Kovnir, and L. Liu, One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew. Chemie -Int, vol.54, pp.8188-8192, 2015.

M. H. Hansen, L. Stern, L. Feng, J. Rossmeisl, and X. Hu, Widely Available Active Sites on Ni2P for Electrochemical Hydrogen Evolution--Insights from First Principles Calculations, Phys. Chem. Chem. Phys, vol.17, pp.10823-10829, 2015.

P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel et al., Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting, ACS Catal, vol.7, pp.103-109, 2017.

J. Moon, J. Jang, E. Kim, Y. Chung, S. J. Yoo et al., The Nature of Active Sites of Ni2P Electrocatalyst for Hydrogen Evolution Reaction, J. Catal, vol.326, pp.92-99, 2015.

P. E. Blanchard, A. P. Grosvenor, R. G. Cavell, and A. Mar, Effects of Metal Substitution in Transition-Metal Phosphides (Ni1?xM?x)2P(M?=Cr, Fe, Co) Studied by X-Ray Photoelectron and Absorption Spectroscopy, J. Mater. Chem, p.6015, 2009.

H. R. Seo, K. S. Cho, and Y. K. Lee, Formation Mechanisms of Ni2P Nanocrystals Using XANES and EXAFS Spectroscopy, Mater. Sci. Eng. B Solid-State Mater. Adv

. Technol, , vol.176, pp.132-140, 2011.

X. Li, Z. Sun, A. Wang, Y. Wang, X. Duan et al., XAS Study of Ni2P/MCM-41 Passivated by O2/He and H2S/H2, Catal. Commun, vol.43, pp.21-24, 2014.

Z. Sun, X. Li, A. Wang, Y. Wang, and Y. Chen, The Effect of CeO2 on the Hydrodenitrogenation Performance of Bulk Ni2P, Top. Catal, vol.55, pp.1010-1021, 2012.

Z. Sun, X. Li, A. Wang, Y. Wang, Y. Chen et al., XAS Study of Ni 2 P / MCM-41 Prepared by Hydrogen Plasma Reduction, Catal. Today, vol.211, pp.126-130, 2013.

W. Wang, J. Shen, and Y. Chen, Hydrogenation of P -Chloronitrobenzene on Ni-P-B Nanoalloy Catalysts, pp.8860-8865, 2006.

S. Lee and Y. Chen, Effects of Preparation Parameters on the Characteristics of NiP X B Y Nanomaterials, J. Nanoparticle Res, vol.3, pp.133-139, 2001.

G. Gouget, P. Beaunier, D. Portehault, and C. Sanchez, New Route toward Nanosized Crystalline Metal Borides with Tuneable Stoichiometry and Variable Morphologies
URL : https://hal.archives-ouvertes.fr/hal-01440776

, Faraday Discuss, vol.191, pp.511-525, 2016.

S. Carenco, I. Resa, X. Le-goff, P. Le-floch, and N. Mézailles, White Phosphorus as Single Source of "P" in the Synthesis of Nickel Phosphide, Chem. Commun, pp.2568-2570, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00302659

S. Carenco, Y. Hu, I. Florea, O. Ersen, C. Boissière et al., Structural Transitions at the Nanoscale: The Example of Palladium Phosphides Synthesized from White Phosphorus, Dalt. Trans, vol.42, pp.12667-12674, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289751

S. Carenco, X. F. Le-goff, J. Shi, L. Roiban, O. Ersen et al., Magnetic Core-Shell Nanoparticles from Nanoscale-Induced Phase Segregation, Chem. Mater, vol.23, pp.2270-2277, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00694192

C. ,

. Résumé,

, Dans le cadre de ce travail, les domaines de la catalyse et de l'électrocatalyse sont explorés. Les borures de différents métaux de transition, en particulier le nickel, le palladium et un composite nickel-cobalt, ont tout d'abord été étudiés. Pour cela une synthèse a été mise au point, reposant sur la réactivité de nanoparticules métalliques avec un précurseur de bore en milieu sels fondus inorganiques. Elle a notamment permis d'obtenir des nanoparticules de borures de nickel avec un bon contrôle de composition, structure, morphologie et taille. Les propriétés de ces nanomatériaux ont par la suite été étudiées en catalyse dans la réaction d'hydrodésoxygénation, et en électrocatalyse dans les réactions de génération d, Ce travail de thèse a pour objet le développement d'une nouvelle voie de synthèse de nanomatériaux métalliques à base d'éléments légers : bore et phosphore. L'intérêt porté à ces composés s'explique par les propriétés variées qu'ils présentent, tels que la supraconductivité, la thermoélectricité ou le stockage d'énergie

, Mots clés : nanomatériaux, sels fondus, borures métalliques, phosphures métalliques, électrocatalyse, catalyse