L. Acerenza and M. Graña, On the origins of a crowded cytoplasm, J. Mol. Evol, vol.63, pp.583-590, 2006.

A. Beopoulos, T. Chardot, and J. Nicaud, Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation, Biochimie, vol.91, pp.692-696, 2009.

X. Chen, K. Schreiber, J. Appel, A. Makowka, B. Fähnrich et al., The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.5441-5446, 2016.

H. W. Cook, Chapter 5 -Fatty acid desaturation and chain elongation in eukaryotes, pp.129-152, 1996.

L. Dean and J. Mcentyre, Introduction to Diabetes, 2004.

N. Entner and M. Doudoroff, Glucose and gluconic acid oxidation of Pseudomonas Saccharophil, J. Biol. Chem, vol.196, pp.853-862, 1952.

J. Fernandez-de-cossio-diaz and A. Vazquez, A physical model of cell metabolism, 2018.

. Sci and . Rep, , vol.8, p.8349

M. Kamihira, M. Taniguchi, and T. Kobayashi, Sterilization of Microorganisms with Supercritical Carbon Dioxide, Agric. Biol. Chem, vol.51, pp.407-412, 1987.

J. Kaur and J. Debnath, Autophagy at the crossroads of catabolism and anabolism, Nat. Rev. Mol. Cell Biol, vol.16, pp.461-472, 2015.

J. Monod, Le hasard et la nécessité. Essai sur la philosophie naturelle de la biologie moderne, Points), 2014.

C. Moussard, Biochimie structurale et métabolique, 2006.

U. D. Nelson and U. M. Cox, Lehninger Principles of Biochemistry, 2017.

E. Noor, E. Eden, R. Milo, A. , and U. , Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy, Mol. Cell, vol.39, pp.809-820, 2010.

J. Barker, M. A. Khan, and T. Solomos, Mechanism of the Pasteur Effect, Nature, vol.201, pp.1126-1127, 1964.

J. Barker, M. A. Khan, and T. Solomos, Studies in the Respiratory and Carbohydrate Metabolism of Plant Tissues XXI. The Mechanism of the Pasteur Effect in Peas, The New Phytologist, vol.66, pp.577-596, 1967.

R. Bohnensack, U. Küster, and G. Letko, Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment, 1982.

, Biochim. Biophys. Acta, vol.680, pp.271-280

J. Borecký and A. E. Vercesi, Plant Uncoupling Mitochondrial Protein and Alternative Oxidase: Energy Metabolism and Stress, Bioscience Reports, vol.25, pp.271-286, 2005.

P. D. Boyer, The binding change mechanism for ATP synthase--some probabilities and possibilities, Biochim. Biophys. Acta, vol.1140, pp.215-250, 1993.

. Brown, Oxygen requirements, Appl Environ Microbiol, vol.56, pp.3785-3792, 1875.

G. Cecchini, Function and Structure of Complex II of the Respiratory Chain, Annu. Rev. Biochem, vol.72, pp.77-109, 2003.

D. Chen, J. M. Roda, C. B. Marsh, T. D. Eubank, and A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model, Bull. Math. Biol, vol.74, pp.2752-2777, 2012.

S. Cheng, J. Quintin, R. A. Cramer, K. M. Shepardson, S. Saeed et al., mTOR-and HIF-1?-mediated aerobic glycolysis as metabolic basis for trained immunity, Science, vol.345, p.1250684, 2014.

H. G. Crabtree, Observations on the carbohydrate metabolism of tumours, Biochem J, vol.23, pp.536-545, 1929.

R. H. De-deken, The Crabtree effect: a regulatory system in yeast, J. Gen. Microbiol, vol.44, pp.149-156, 1966.

D. V. Dervartanian, C. ;. Veeger, T. V. Finogenova, I. T. Ermakova, and N. V. Shishkanova, Studies on succinate dehydrogenase: I. Spectral properties of the purified enzyme and formation of enzyme-competitive inhibitor complexes. Références Akimenko, 1964.

, Mikrobiologiia, vol.48, pp.632-638

S. Anastassiadis and H. Rehm, Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177, Electron. J. Biotechnol, vol.8, pp.146-161, 2005.

S. Anastassiadis, A. Aivasidis, and C. Wandrey, Citric acid production by Candida strains under intracellular nitrogen limitation, Appl. Microbiol. Biotechnol, vol.60, pp.81-87, 2002.

S. Anastassiadis, I. G. Morgunov, S. V. Kamzolova, and T. V. Finogenova, Citric Acid Production Patent Review, Recent Pat. Biotechnol, vol.2, pp.107-123, 2008.

A. R. Angumeenal and D. Venkappayya, An overview of citric acid production, LWT -Food Sci. Technol, vol.50, pp.367-370, 2013.

S. Antonucci, M. Bravi, R. Bubbico, A. Di-michele, and N. Verdone, Selectivity in citric acid production by Yarrowia lipolytica, Enzyme Microb. Technol, vol.28, pp.189-195, 2001.

G. Barth and C. Gaillardin, Yarrowia lipolytica, Nonconventional Yeasts in Biotechnology, pp.313-388, 1996.

G. Barth and C. Gaillardin, Physiology and genetics of the dimorphic fungus Yarrowia lipolytica, FEMS Microbiol. Rev, vol.19, pp.219-237, 1997.

A. Beopoulos, T. Desfougeres, J. Sabirova, S. Zinjarde, C. Neuvéglise et al.,

, The Hydrocarbon-Degrading Oleaginous Yeast Yarrowia lipolytica, Handbook of Hydrocarbon and Lipid Microbiology, K.N. Timmis, pp.2111-2121

M. Berovic and M. Legisa, Citric acid production, Biotechnol. Annu. Rev, vol.13, pp.303-343, 2007.

F. Bourdichon, S. Casaregola, C. Farrokh, J. C. Frisvad, M. L. Gerds et al.,

J. Harnett, G. Huys, S. Laulund, and A. Ouwehand, Food fermentations: Microorganisms with technological beneficial use, Int. J. Food Microbiol, vol.154, pp.87-97, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004544

U. Brandt, A. Abdrakhmanova, V. Zickermann, A. Galkin, S. Dröse et al.,

S. Kerscher, Structure-function relationships in mitochondrial complex I of the strictly aerobic yeast Yarrowia lipolytica, Biochem. Soc. Trans, vol.33, pp.840-844, 2005.

J. N. Currie, The Citric Acid Fermentation of Aspergillus niger, J. Biol. Chem, vol.31, pp.15-37, 1917.

B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregola et al., Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

, EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP, 2015.

, Scientific Opinion on the safety and efficacy of citric acid when used as a technological additive (acidity regulator) for all animal species, EFSA J, vol.13

P. Fickers, F. Fudalej, M. T. Dall, S. Casaregola, C. Gaillardin et al., Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica, Fungal Genet. Biol, vol.42, pp.264-274, 2005.

A. Goelzer, J. Muntel, V. Chubukov, M. Jules, E. Prestel et al., Quantitative prediction of genome-wide resource allocation in bacteria, Metab. Eng, vol.32, pp.232-243, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01536511

F. A. Gonçalves, G. Colen, and J. A. Takahashi, Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry, 2014.

H. S. Grewal and K. L. Kalra, Fungal production of citric acid, Biotechnol. Adv, vol.13, pp.209-234, 1995.

S. Guerrero-castillo, M. Vázquez-acevedo, D. González-halphen, and S. Uribe-carvajal,

, In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway, Biochim. Biophys. Acta, vol.1787, pp.75-85

S. Guerrero-castillo, D. Araiza-olivera, A. Cabrera-orefice, J. Espinasa-jaramillo, M. Gutiérrez-aguilar et al., Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species, J. Bioenerg. Biomembr, vol.43, pp.323-331, 2011.

S. Guerrero-castillo, A. Cabrera-orefice, M. Vázquez-acevedo, and D. González-halphen,

S. Uribe-carvajal, During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway, Biochim. Biophys. Acta, vol.1817, pp.353-362, 2012.

H. Bucay and A. , The biological significance of cancer: Mitochondria as a cause of cancer and the inhibition of glycolysis with citrate as a cancer treatment, Med. Hypotheses, vol.69, pp.826-828, 2007.

M. H. Hoefnagel, A. H. Millar, J. T. Wiskich, and D. A. Day, Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria, Arch. Biochem. Biophys, vol.318, pp.394-400, 1995.

P. Icard, L. Poulain, and H. Lincet, Understanding the central role of citrate in the metabolism of cancer cells, Biochim. Biophys. Acta BBA -Rev. Cancer, vol.1825, pp.111-116, 2012.

T. Joseph-horne, J. Babij, P. M. Wood, D. Hollomon, and R. B. Sessions, New sequence data enable modelling of the fungal alternative oxidase and explain an absence of regulation by pyruvate, FEBS Lett, vol.481, pp.141-146, 2000.

T. Joseph-horne, D. W. Hollomon, and P. M. Wood, Fungal respiration: a fusion of standard and alternative components, Biochim. Biophys. Acta BBA -Bioenerg, vol.1504, pp.179-195, 2001.

S. V. Kamzolova and I. G. Morgunov, Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica, Bioresour. Technol, vol.243, pp.433-440, 2017.

S. V. Kamzolova, I. G. Morgunov, A. Aurich, O. A. Perevoznikova, and N. V. Shishkanova,

U. Stottmeister and T. V. Finogenova, Lipase Secretion and Citric Acid Production in Yarrowia lipolytica Yeast Grown on Animal and Vegetable Fat, Food Technol. Biotechnol, vol.43, pp.113-122, 2005.

S. J. Kerscher, Diversity and origin of alternative NADH: ubiquinone oxidoreductases, 2000.

, Biochim. Biophys. Acta BBA -Bioenerg, vol.1459, pp.274-283

S. Kerscher, S. Dröse, K. Zwicker, V. Zickermann, and U. Brandt, Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I, Biochim. Biophys. Acta BBA -Bioenerg, vol.1555, pp.83-91, 2002.

S. Kerscher, L. Grgic, A. Garofano, and U. Brandt, Application of the yeast Yarrowia lipolytica as a model to analyse human pathogenic mutations in mitochondrial complex I 99 (NADH: ubiquinone oxidoreductase), Biochim. Biophys. Acta BBA -Bioenerg, vol.1659, pp.197-205, 2004.

T. K. Klasson, E. C. Clausen, and J. L. Gaddy, Continuous fermentation for the production of citric acid from glucose, Appl. Biochem. Biotechnol, vol.20, pp.491-509, 1989.

C. P. Kubicek, O. Zehentgruber, H. El-kalak, and M. Röhr, Regulation of citric acid production by oxygen: Effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger, Eur. J. Appl. Microbiol. Biotechnol, vol.9, pp.101-115, 1980.

R. Ledesma-amaro and J. Nicaud, Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids, Prog. Lipid Res, vol.61, pp.40-50, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533872

M. Legisa and M. Mattey, Changes in primary metabolism leading to citric acid overflow in Aspergillus niger, Biotechnol. Lett, vol.29, pp.181-190, 2007.

X. Liu, J. Lv, T. Zhang, and Y. Deng, Direct Conversion of Pretreated Straw Cellulose into Citric Acid by Co-cultures of Yarrowia lipolytica SWJ-1b and Immobilized Trichoderma reesei Mycelium, Appl. Biochem. Biotechnol, vol.173, pp.501-509, 2014.

L. A. Luévano-martínez, E. Moyano, M. G. De-lacoba, E. Rial, and S. Uribe-carvajal, , 2010.

, Identification of the mitochondrial carrier that provides Yarrowia lipolytica with a fatty acidinduced and nucleotide-sensitive uncoupling protein-like activity, Biochim. Biophys. Acta, vol.1797, pp.81-88

A. Martínez-cárdenas, C. Chávez-cabrera, J. M. Vasquez-bahena, and L. B. Flores-cotera, A common mechanism explains the induction of aerobic fermentation and adaptive antioxidant response in Phaffia rhodozyma, Microb. Cell Factories, vol.17, p.53, 2018.

M. Mattey, The production of organic acids, Crit. Rev. Biotechnol, vol.12, pp.87-132, 1992.

B. Max, J. M. Salgado, N. Rodríguez, S. Cortés, A. Converti et al., , 2010.

, Biotechnological production of citric acid, Braz. J. Microbiol, vol.41, pp.862-875

I. A. Mckay, I. S. Maddox, and J. D. Brooks, High specific rates of glucose utilisation under conditions of restricted growth are required for citric acid accumulation by Yarrowia lipolytica IMK 2, Appl. Microbiol. Biotechnol, vol.41, pp.73-78, 1994.

A. H. Millar, J. T. Wiskich, J. Whelan, and D. A. Day, Organic acid activation of the alternative oxidase of plant mitochondria, FEBS Lett, vol.329, pp.259-262, 1993.

L. Moeller, B. Strehlitz, A. Aurich, A. Zehnsdorf, and T. Bley, Optimization of Citric Acid Production from Glucose by Yarrowia lipolytica, Eng. Life Sci, vol.7, pp.504-511, 2007.

L. Moeller, B. Strehlitz, A. Aurich, A. Zehnsdorf, and T. Bley, Optimization of Citric Acid Production from Glucose by Yarrowia lipolytica, Eng. Life Sci, vol.7, pp.504-511, 2007.

J. Nicaud, Yarrowia lipolytica. Yeast, vol.29, pp.409-418, 2012.

A. Ochoa-estopier and S. E. Guillouet, D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica, J. Biotechnol, vol.170, pp.35-41, 2014.

M. Papagianni, Fungal morphology and metabolite production in submerged mycelial processes, Biotechnol. Adv, vol.22, pp.189-259, 2004.

M. Papagianni, Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling, Biotechnol. Adv, vol.25, pp.244-263, 2007.

M. Papagianni, M. Mattey, and B. Kristiansen, The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture, Enzyme Microb. Technol, vol.25, pp.710-717, 1999.

S. Papanikolaou, A. , and G. , Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids, Eur. J. Lipid Sci. Technol, vol.112, pp.639-654, 2010.

S. Papanikolaou, L. Muniglia, I. Chevalot, G. Aggelis, M. et al., Yarrowia lipolytica as a potential producer of citric acid from raw glycerol, J. Appl. Microbiol, vol.92, pp.737-744, 2002.

S. Papanikolaou, M. Galiotou-panayotou, I. Chevalot, M. Komaitis, I. Marc et al., Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia lipolytica, Curr. Microbiol, vol.52, pp.134-142, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00077555

S. Papanikolaou, M. Galiotou-panayotou, I. Chevalot, M. Komaitis, I. Marc et al., Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia lipolytica, Curr. Microbiol, vol.52, pp.134-142, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00077555

S. Papanikolaou, A. Chatzifragkou, S. Fakas, M. Galiotou-panayotou, M. Komaitis et al., Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose, Eur. J. Lipid Sci. Technol, vol.111, pp.1221-1232, 2009.

S. Papanikolaou, A. Beopoulos, A. Koletti, F. Thevenieau, A. A. Koutinas et al., Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica, J. Biotechnol, vol.168, pp.303-314, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204280

K. D. Rane and K. A. Sims, Citric acid production by Yarrowia lipolytica: Effect of nitrogen and biomass concentration on yield and productivity, Biotechnol. Lett, vol.18, pp.1139-1144, 1996.

C. Ratledge and J. P. Wynn, The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms, Adv. Appl. Microbiol, vol.51, pp.1-51, 2002.

J. B. Rattray, A. Schibeci, and D. K. Kidby, Lipids of yeasts, Bacteriol. Rev, vol.39, pp.197-231, 1975.

M. Roehr, C. P. Kubicek, and J. Komínek, Citric Acid, Biotechnology Set, pp.307-345, 2008.

W. Rymowicz, A. Rywi?ska, B. ?arowska, J. , and P. , Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica, Chem. Pap, vol.60, pp.391-394, 2006.

W. Sabra, R. R. Bommareddy, G. Maheshwari, S. Papanikolaou, and A. Zeng, , 2017.

, Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses, Microb. Cell Factories, vol.16, p.78

D. Saisho, E. Nambara, S. Naito, N. Tsutsumi, A. Hirai et al., , 1997.

, Characterization of the gene family for alternative oxidase from Arabidopsis thaliana, Plant Mol. Biol, vol.35, pp.585-596

M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol, vol.26, pp.100-108, 2008.

E. Shanbrom, Use of citric acid as antimicrobial agent or enhancer or as anticancer agent, 2002.

P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Zakry, J. Lan et al., , 2015.

, Overview of citric acid production from Aspergillus niger. Front, Life Sci, vol.8, pp.271-283

P. Shu, J. , and M. J. , The Interdependence of Medium Constituents in Citric Acid Production by Submerged Fermentation 1, J. Bacteriol, vol.56, pp.577-585, 1948.

J. Sil, S. Das, R. G. Oliveira, P. F. Amaral, and M. A. Coelho, Screening Six Potential Yarrowia lipolytica Strains for Best Lipid, Citric Acid, Biosurfactant and Lipase Production, vol.5, 2013.

F. Smeets, Microbial production of citric acid, Antonie Van Leeuwenhoek, vol.49, pp.86-87, 1983.

C. R. Soccol, L. P. Vandenberghe, C. Rodrigues, and A. Pandey, New Perspectives for Citric Acid Production and Application, Food Technol. Biotechnol, vol.44, pp.141-149, 2006.

F. Thevenieau, J. Nicaud, and C. Gaillardin, Applications of the Non-Conventional Yeast Yarrowia lipolytica, Yeast Biotechnology: Diversity and Applications, pp.589-613, 2009.

L. P. Vandenberghe, C. R. Soccol, A. Pandey, and J. Lebeault, Microbial production of citric acid, Braz. Arch. Biol. Technol, vol.42, pp.263-276, 1999.

J. Da-veiga-moreira, S. Peres, J. Steyaert, E. Bigan, L. Paulevé et al.,

L. Schwartz, Cell cycle progression is regulated by intertwined redox oscillators. Theor, Biol. Med. Model, vol.12, p.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158514

J. P. Van-der-walt and J. A. Arx, The yeast genus Yarrowia gen, Antonie Van Leeuwenhoek, vol.46, pp.517-521, 1980.

L. Wang, J. Zhang, Z. Cao, Y. Wang, Q. Gao et al., Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger, Microb. Cell Factories, vol.14, p.7, 2015.

S. K. Yalcin, M. T. Bozdemir, and Z. Y. Ozbas, Citric acid production by yeasts: Fermentation conditions, process optimization and strain improvement, vol.9, 2010.

D. Yarrow, Four new combinations in yeasts, Antonie Van Leeuwenhoek, vol.38, pp.357-360, 1972.

B. Zahorski, , 1913.

M. T. Alam, M. E. Merlo, D. A. Hodgson, E. M. Wellington, E. Takano et al., Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor, BMC Genomics, vol.11, p.202, 2010.

J. Almquist, M. Cvijovic, V. Hatzimanikatis, J. Nielsen, J. et al., Kinetic models in industrial biotechnology -Improving cell factory performance, Metabolic Engineering, vol.24, pp.38-60, 2014.

S. Anastassiadis, I. G. Morgunov, S. V. Kamzolova, and T. V. Finogenova, Citric Acid Production Patent Review, Recent Patents on Biotechnology, vol.2, pp.107-123, 2008.

M. R. Andersen, M. L. Nielsen, and J. Nielsen, Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger, Mol. Syst. Biol, vol.4, p.178, 2008.

H. W. Aung, S. A. Henry, and L. P. Walker, Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism, Ind Biotechnol, vol.9, pp.215-228, 2013.

J. Bailey, J. E. Bailey, D. F. Ollis, R. J. Simpson, and D. F. Ollis, Biochemical Engineering Fundamentals, 1986.

C. G. Bowsher and P. S. Swain, Environmental sensing, information transfer, and cellular decision-making, Current Opinion in Biotechnology, vol.28, pp.149-155, 2014.

P. J. Choi, L. Cai, K. Frieda, and X. S. Xie, A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell, Science, vol.322, pp.442-446, 2008.

B. Christensen and J. Nielsen, Metabolic network analysis. A powerful tool in metabolic engineering, Adv. Biochem. Eng. Biotechnol, vol.66, pp.209-231, 2000.

M. Cloutier, M. Perrier, and M. Jolicoeur, Dynamic flux cartography of hairy roots primary metabolism, Phytochemistry, vol.68, pp.2393-2404, 2007.

A. Cornish-bowden, The origins of enzyme kinetics, FEBS Letters, vol.587, pp.2725-2730, 2013.

A. Cornish-bowden, J. Mazat, N. , and S. , Victor Henri: 111 years of his equation, Biochimie, vol.107, pp.161-166, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01520571

M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear et al., The Genetic Landscape of a Cell, Science, vol.327, pp.425-431, 2010.

A. Eldar and M. B. Elowitz, Functional roles for noise in genetic circuits, Nature, vol.467, pp.167-173, 2010.

C. Francke, R. J. Siezen, and B. Teusink, Reconstructing the metabolic network of a bacterium from its genome, Trends in Microbiology, vol.13, pp.550-558, 2005.

J. L. Galazzo and J. E. Bailey, Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae, Enzyme and Microbial Technology, vol.12, pp.162-172, 1990.

A. Ghorbaniaghdam, J. Chen, O. Henry, and M. Jolicoeur, Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform, 2014.

, PLoS ONE, vol.9, p.90832

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, pp.403-434, 1976.

D. T. Gillespie, Stochastic Simulation of Chemical Kinetics, Annual Review of Physical Chemistry, vol.58, pp.35-55, 2007.

T. J. Hanly and M. A. Henson, Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures, 2013.

, Biotechnol Biofuels, vol.6, p.44

A. Hill, PROCEEDINGS OF THE PHYSIOLOGICAL SOCIETY, vol.40, 1910.

P. Jouhten, M. Wiebe, and M. Penttilä, states to anaerobiosis, FEBS J, vol.279, pp.3338-3354, 2012.

M. Kav??ek, G. Bhutada, T. Madl, and K. Natter, Optimization of lipid production with a genome-scale model of Yarrowia lipolytica, BMC Systems Biology, vol.9, 2015.

E. J. Kerkhoven, K. R. Pomraning, S. E. Baker, and J. Nielsen, Regulation of aminoacid metabolism controls flux to lipid accumulation in Yarrowia lipolytica, Npj Systems Biology and Applications, vol.2, p.16005, 2016.

D. Kim, P. K. Wong, J. Park, A. Levchenko, and Y. Sun, Microengineered Platforms for Cell Mechanobiology, Annual Review of Biomedical Engineering, vol.11, pp.203-233, 2009.

O. D. Kim, M. Rocha, M. , and P. , A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering, 2018.

. Microbiol,

Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz et al., BiGG Models: A platform for integrating, standardizing and sharing genome-scale models, Nucleic Acids Res, vol.44, pp.515-522, 2016.

S. Klamt and E. D. Gilles, Minimal cut sets in biochemical reaction networks, Bioinformatics, vol.20, pp.226-234, 2004.

S. Klamt, J. Saez-rodriguez, and E. D. Gilles, Structural and functional analysis of cellular networks with CellNetAnalyzer, BMC Systems Biology, vol.1, issue.2, 2007.

E. Klipp, Modelling dynamic processes in yeast, Yeast, vol.24, pp.943-959, 2007.

N. E. Lewis, H. Nagarajan, and B. O. Palsson, Constraining the metabolic genotypephenotype relationship using a phylogeny of in silico methods, Nat. Rev. Microbiol, vol.10, pp.291-305, 2012.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler et al., BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models, BMC Syst Biol, vol.4, p.92, 2010.

N. Loira, T. Dulermo, J. Nicaud, and D. J. Sherman, A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica, BMC Systems Biology, vol.6, p.35, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00784406

D. Machado, R. S. Costa, E. C. Ferreira, I. Rocha, and B. Tidor, Exploring the gap between dynamic and constraint-based models of metabolism, Metab Eng, vol.14, pp.112-119, 2012.

J. Maertens and P. A. Vanrolleghem, Modeling with a view to target identification in metabolic engineering: A critical evaluation of the available tools, Biotechnology Progress, vol.26, pp.313-331, 2010.

R. Mahadevan, J. S. Edwards, and F. J. Doyle, Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli, Biophysical Journal, vol.83, pp.1331-1340, 2002.

R. Mahadevan, A. P. Burgard, I. Famili, S. Van-dien, and C. H. Schilling, , 2005.

, Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals, Biotechnol. Bioprocess Eng, vol.10, p.408

A. Mazurie, D. Bonchev, B. Schwikowski, and G. A. Buck, , 2010.

P. Mishra, N. Lee, M. Lakshmanan, M. Kim, B. Kim et al., Genomescale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica, BMC Systems Biology, vol.12, p.12, 2018.

J. Monod, J. Wyman, and J. Changeux, On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, pp.88-118, 1965.

M. Morterol, P. Dague, S. Pérès, and L. Simon, Minimality of Metabolic Flux Modes under Boolean Regulation Constraints, 12th International Workshop on Constraint-Based Methods for Bioinformatics WCB'16, 2016.

E. Noor, A. Flamholz, W. Liebermeister, A. Bar-even, M. et al., A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects, FEBS Letters, vol.587, pp.2772-2777, 2013.

A. Ochoa-estopier and S. E. Guillouet, D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica, Journal of Biotechnology, vol.170, pp.35-41, 2014.

J. D. Orth, I. Thiele, and B. Ø. Palsson, What is flux balance analysis?, Nat Biotechnol, vol.28, pp.245-248, 2010.

P. Pan and Q. Hua, Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica, PLoS One, vol.7, 2012.

S. Papanikolaou, A. , and G. , Selective uptake of fatty acids by the yeast Yarrowia lipolytica, European Journal of Lipid Science and Technology, vol.105, pp.651-655, 2003.

S. Papanikolaou, M. Galiotou-panayotou, I. Chevalot, M. Komaitis, I. Marc et al., Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia lipolytica, Curr Microbiol, vol.52, pp.134-142, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00077555

S. Peres, M. Morterol, and L. Simon, SAT-Based Metabolics Pathways Analysis without Compilation, Computational Methods in Systems Biology, pp.20-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108840

M. Peters, J. J. Eicher, D. D. Van-niekerk, D. Waltemath, and J. L. Snoep, The JWS online simulation database, Bioinformatics, vol.33, pp.1589-1590, 2017.

T. Pfeiffer, I. Sánchez-valdenebro, J. C. Nuño, F. Montero, and S. Schuster, , 1999.

, METATOOL: for studying metabolic networks, Bioinformatics, vol.15, pp.251-257

M. G. Poolman, ScrumPy: metabolic modelling with Python, Syst Biol (Stevenage), vol.153, pp.375-378, 2006.

A. Provost, Metabolic design of dynamic bioreaction models, 2006.

A. Provost and G. Bastin, Dynamic metabolic modelling under the balanced growth condition, Journal of Process Control, vol.14, pp.717-728, 2004.

A. Raj and A. Van-oudenaarden, Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences, Cell, vol.135, pp.216-226, 2008.

J. Robitaille, J. Chen, and M. Jolicoeur, A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media, PLoS ONE, vol.10, 2015.

C. E. Robles-rodriguez, C. Bideaux, S. E. Guillouet, N. Gorret, J. Cescut et al., Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica, Computers & Chemical Engineering, vol.100, pp.139-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602706

I. Rojas, M. Golebiewski, R. Kania, O. Krebs, S. Mir et al., , 2007.

. Sabio-rk, a database for biochemical reactions and their kinetics, vol.1

I. Schomburg, L. Jeske, M. Ulbrich, S. Placzek, A. Chang et al., The BRENDA enzyme information system-From a database to an expert system, Journal of Biotechnology, vol.261, pp.194-206, 2017.

R. Schuetz, L. Kuepfer, and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli, Molecular Systems Biology, vol.3, p.119, 2007.

S. Schuster and C. Hilgetag, On elementary flux modes in biochemical reaction systems at steady state, J. Biol. Syst, vol.02, pp.165-182, 1994.

S. Schuster, C. Hilgetag, J. H. Woods, and D. A. Fell, Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism, J Math Biol, vol.45, pp.153-181, 2002.

D. Segrè, D. Vitkup, and G. M. Church, Analysis of optimality in natural and perturbed metabolic networks, PNAS, vol.99, pp.15112-15117, 2002.

K. Smallbone and E. Simeonidis, Flux balance analysis: A geometric perspective, Journal of Theoretical Biology, vol.258, pp.311-315, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00554570

K. Smallbone, N. Malys, H. L. Messiha, J. A. Wishart, and E. Simeonidis, Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae, Meth. Enzymol, vol.500, pp.355-370, 2011.

K. C. Soh, L. Miskovic, and V. Hatzimanikatis, From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks, FEMS Yeast Res, vol.12, pp.129-143, 2012.

H. Song, J. A. Morgan, and D. Ramkrishna, Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose, 2009.

, Biotechnol. Bioeng, vol.103, pp.984-1002

N. J. Stanford, T. Lubitz, K. Smallbone, E. Klipp, P. Mendes et al., , 2013.

M. Terzer and J. Stelling, Large-scale computation of elementary flux modes with bit pattern trees, Bioinformatics, vol.24, pp.2229-2235, 2008.

M. Ullah and O. Wolkenhauer, Stochastic approaches in systems biology, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.2, pp.385-397, 2010.

A. Varma and B. O. Palsson, Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use, Nature Biotechnology, vol.12, pp.994-998, 1994.

A. Varma and B. O. Palsson, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110, Appl Environ Microbiol, vol.60, pp.3724-3731, 1994.

M. Voliotis, P. Thomas, R. Grima, and C. G. Bowsher, Stochastic Simulation of Biomolecular Networks in Dynamic Environments, PLOS Computational Biology, vol.12, 2016.

S. Wei, X. Jian, J. Chen, C. Zhang, and Q. Hua, Reconstruction of genome-scale metabolic model of <Emphasis Type="Italic">Yarrowia lipolytica</Emphasis> and its application in overproduction of triacylglycerol, Bioresour. Bioprocess, vol.4, p.51, 2017.

W. Wiechert and S. Noack, Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile, Curr. Opin. Biotechnol, vol.22, pp.604-610, 2011.

W. C. Wong, H. Song, J. H. Lee, and D. Ramkrishna, Hybrid cybernetic modelbased simulation of continuous production of lignocellulosic ethanol: Rejecting abruptly changing feed conditions, Control Engineering Practice, vol.18, pp.177-189, 2010.

G. Barth, C. Gaillardin, . Yarrowia, and . Lipolytica, Nonconventional Yeasts in Biotechnology, vol.29, pp.409-418, 1996.

T. Dulermo and J. Nicaud, Involvement of the G3P shuttle and ?-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica, Metab. Eng, vol.13, pp.482-491, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004587

S. Papanikolaou and G. Aggelis, Selective uptake of fatty acids by the yeast Yarrowia lipolytica, European Journal of Lipid Science and Technology, vol.105, pp.651-655, 2003.

J. Blazeck, Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production, Nature Communications, vol.5, p.3131, 2014.

A. Ricci, Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until, EFSA Journal, vol.16, 2018.

M. Groenewald, Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential, Crit. Rev. Microbiol, vol.40, pp.187-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204298

S. Anastassiadis, I. G. Morgunov, S. V. Kamzolova, and T. V. Finogenova, Citric Acid Production Patent Review, Recent Patents on Biotechnology, vol.2, pp.107-123, 2008.

S. Papanikolaou, L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc, Yarrowia lipolytica as a potential producer of citric acid from raw glycerol, J. Appl. Microbiol, vol.92, pp.737-744, 2002.

O. Sawant, S. Mahale, V. Ramchandran, G. Nagaraj, A. Bankar et al., MATERIALS: A MINI-REVIEW. Journal of Microbiology, vol.8, pp.821-828, 2018.

B. Max, Biotechnological production of citric acid, Braz J Microbiol, vol.41, pp.862-875, 2010.

M. Kav??ek, G. Bhutada, T. Madl, and K. Natter, Optimization of lipid production with a genome-scale model of Yarrowia lipolytica, BMC Systems Biology, vol.9, p.72, 2015.

B. Dujon, Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

N. Loira, T. Dulermo, J. Nicaud, and D. J. Sherman, A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica, BMC Systems Biology, vol.6, p.35, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00784406

P. Pan and Q. Hua, Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica, PLOS ONE, vol.7, p.51535, 2012.

E. J. Kerkhoven, K. R. Pomraning, S. E. Baker, and J. Nielsen, Regulation of aminoacid metabolism controls flux to lipid accumulation in Yarrowia lipolytica, Systems Biology and Applications, vol.2, p.16005, 2016.

S. Wei, X. Jian, J. Chen, C. Zhang, and Q. Hua, Reconstruction of genome-scale metabolic model of <Emphasis Type="Italic">Yarrowia lipolytica</Emphasis> and its application in overproduction of triacylglycerol, Bioresour. Bioprocess, vol.4, p.51, 2017.

P. Mishra, Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica, BMC Systems Biology, vol.12, p.12, 2018.

S. K. Yalcin, M. T. Bozdemir, and Z. Y. Ozbas, Citric acid production by yeasts: Fermentation conditions, process optimization and strain improvement, 2010.

A. Ochoa-estopier and S. E. Guillouet, D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica, Journal of Biotechnology, vol.170, pp.35-41, 2014.

C. T. Evans and C. Ratledge, physiological significance of citric acid in the control of metabolism in lipid-accumulating yeasts, Biotechnology and genetic engineering reviews, 1985.

C. Ratledge and J. P. Wynn, The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms, Adv. Appl. Microbiol, vol.51, pp.1-51, 2002.

C. T. Evans and C. Ratledge, Possible regulatory roles of ATP:citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14, Can. J. Microbiol, vol.31, pp.1000-1005, 1985.

A. Beopoulos, J. Nicaud, and C. Gaillardin, An overview of lipid metabolism in yeasts and its impact on biotechnological processes, Appl. Microbiol. Biotechnol, vol.90, pp.1193-1206, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01003275

H. Zhang, C. Wu, Q. Wu, J. Dai, and Y. Song, Metabolic Flux Analysis of Lipid Biosynthesis in the Yeast Yarrowia lipolytica Using 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry, PLoS One, vol.11, 2016.

W. Sabra, R. R. Bommareddy, G. Maheshwari, S. Papanikolaou, and A. Zeng,

, Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses, Microbial Cell Factories, vol.16, p.78, 2017.

P. Ferreira, M. Lopes, M. Mota, and I. Belo, Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by <Emphasis Type="Italic">Yarrowia lipolytica</Emphasis> W29 and CBS 2073, Chem. Pap, vol.70, pp.869-876, 2016.

S. V. Kamzolova, N. V. Shishkanova, I. G. Morgunov, and T. V. Finogenova, Oxygen requirements for growth and citric acid production of Yarrowia lipolytica, FEMS Yeast Res, vol.3, pp.217-222, 2003.

V. K. Akimenko, T. V. Finogenova, I. T. Ermakova, and N. V. Shishkanova,

, Mikrobiologiia, vol.48, pp.632-638, 1979.

V. K. Akimenko, A. Y. Arinbasarova, N. M. Smirnova, and A. G. Medentsev, The Alternative Oxidase of Yarrowia lipolytica Mitochondria Is Unable To Compete with the Cytochrome Pathway for Electrons, Microbiology, vol.72, pp.403-407, 2003.

D. A. Berthold, M. E. Andersson, and P. Nordlund, New insight into the structure and function of the alternative oxidase, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1460, pp.241-254, 2000.

S. J. Kerscher, Diversity and origin of alternative NADH:ubiquinone oxidoreductases, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1459, pp.274-283, 2000.

T. Joseph-horne, J. Babij, P. M. Wood, D. Hollomon, and R. Sessions, New sequence data enable modelling of the fungal alternative oxidase and explain an absence of regulation by pyruvate, FEBS Letters, vol.481, pp.141-146, 2000.

S. Guerrero-castillo, A. Cabrera-orefice, M. Vázquez-acevedo, and . González-halphen,

D. Uribe-carvajal and S. , During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway, Biochim. Biophys. Acta, vol.1817, pp.353-362, 2012.

S. Papanikolaou, Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose, European Journal of Lipid Science and Technology, vol.111, pp.1221-1232, 2009.

J. D. Orth, I. Thiele, and B. Ø. Palsson, What is flux balance analysis?, Nat Biotechnol, vol.28, pp.245-248, 2010.

K. Raman and N. Chandra, Flux balance analysis of biological systems: applications and challenges, Brief Bioinform, vol.10, pp.435-449, 2009.

H. W. Aung, S. A. Henry, and L. P. Walker, Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism, Ind Biotechnol, pp.215-228, 2013.

C. Magnan, Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89

, Shows Transposable Element Diversity. PLOS ONE, vol.11, p.162363, 2016.

T. Joseph-horne, D. W. Hollomon, and P. M. Wood, Fungal respiration: a fusion of standard and alternative components, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1504, pp.179-195, 2001.

S. Kerscher, S. Dröse, K. Zwicker, V. Zickermann, and U. Brandt, Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I, Biochim. Biophys. Acta, vol.1555, pp.83-91, 2002.

A. Vishwakarma, S. D. Tetali, J. Selinski, R. Scheibe, and K. Padmasree, Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis 154 to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana, Ann. Bot, vol.116, pp.555-569, 2015.

S. Guerrero-castillo, Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species, J. Bioenerg. Biomembr, vol.43, pp.323-331, 2011.

S. Guerrero-castillo, M. Vázquez-acevedo, D. González-halphen, and S. Uribe-carvajal, Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway, Biochim. Biophys. Acta, vol.1787, pp.75-85, 2009.

W. Garcia-neto, A. Cabrera-orefice, S. Uribe-carvajal, and A. J. Kowaltowski,

A. Luévano-martínez and L. , High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii, PLoS One, vol.12, 2017.

L. Wang, Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger, Microb. Cell Fact, vol.14, p.7, 2015.

S. Papanikolaou, Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica, Journal of Biotechnology, vol.168, pp.303-314, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204280

G. C. Vanlerberghe, Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants, International Journal of Molecular Sciences, vol.14, pp.6805-6847, 2013.

M. Gatter, A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ?-hydroxy fatty acids in Yarrowia lipolytica, FEMS Yeast Research, vol.14, pp.858-872, 2014.

L. Hou, Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production, Appl. Microbiol. Biotechnol, 2018.

F. Alvarez-vasquez, C. González-alcón, and N. V. Torres, Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate, Biotechnol. Bioeng, vol.70, pp.82-108, 2000.

M. Cloutier, M. Perrier, and M. Jolicoeur, Dynamic flux cartography of hairy roots primary metabolism, Phytochemistry, vol.68, pp.2393-2404, 2007.

M. Cloutier, J. Chen, C. De-dobbeleer, M. Perrier, and M. Jolicoeur, A systems approach to plant bioprocess optimization, Plant Biotechnol. J, vol.7, pp.939-951, 2009.

A. Ghorbaniaghdam, J. Chen, O. Henry, and M. Jolicoeur, Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform, PLoS ONE, vol.9, p.90832, 2014.

J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype, Cell, vol.150, pp.389-401, 2012.

E. J. Kerkhoven, K. R. Pomraning, S. E. Baker, and J. Nielsen, Regulation of aminoacid metabolism controls flux to lipid accumulation in Yarrowia lipolytica, Npj Systems Biology and Applications, vol.2, p.16005, 2016.

M. Papagianni, Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling, Biotechnology Advances, vol.25, pp.244-263, 2007.

S. Papanikolaou, A. , and G. , Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats, Curr. Microbiol, vol.46, pp.398-402, 2003.

J. Robitaille, J. Chen, and M. Jolicoeur, A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media, PLoS ONE, vol.10, 2015.

C. E. Robles-rodriguez, C. Bideaux, S. E. Guillouet, N. Gorret, J. Cescut et al., Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica, Computers & Chemical Engineering, vol.100, pp.139-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602706

C. E. Robles-rodríguez, R. Muñoz-tamayo, C. Bideaux, N. Gorret, S. E. Guillouet et al., Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions, Biotechnology and Bioengineering, vol.115, pp.1137-1151, 2018.

N. J. Stanford, T. Lubitz, K. Smallbone, E. Klipp, P. Mendes et al., Systematic construction of kinetic models from genome-scale metabolic networks, PLoS ONE, vol.8, p.79195, 2013.

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends Endocrinol Metab, vol.23, pp.420-428, 2012.

N. V. Torres, Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: II. Sensitivity analysis, Biotechnology and Bioengineering, vol.44, pp.112-118, 1994.

N. V. Torres, E. O. Voit, and C. González-alcón, Optimization of nonlinear biotechnological processes with linear programming: Application to citric acid production by Aspergillus niger, Biotechnol. Bioeng, vol.49, pp.247-258, 1996.

J. Da-veiga-moreira, M. Hamraz, M. Abolhassani, E. Bigan, S. Pérès et al., The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01417967

, lignées cancéreuses est aussi un marqueur d'un rendement énergétique (production d'ATP) plus faible alors même que le flux glycolytique est plus prononcé

. Da-veiga-moreira, Metabolic therapies inhibit tumor growth in vivo and in silico, 2019.

, Dans le chapitre précédent nous avons présenté des résultats en concordance avec les hypothèses de Warburg sur le caractère fermentaire du métabolisme des cellules cancéreuses comparées aux cellules saines qui, elles, privilégient l'oxydation phosphorylative (OxPhos) pour la production d'énergie. Des pistes d'interventions thérapeutiques ont été proposées afin d

. Dans, Il s'agit de l'acide ?-lipoïque et de l'hydroxycitrate, tous deux utilisés comme compléments alimentaires et activateur de la pyruvate déshydrogénase (PDH) et de l'ATPcitrate lyase (ACL), respectivement, la metformine est un glucophase utilisée dans le diabète de type II et activateur du complexe I et enfin le diclofénac qui est un anti-inflammatoire et, nous présentons des résultats de recherche sur des souris auxquelles des tumeurs ont été greffées et soumises à des traitements métaboliques pendant 59 jours

, Un groupe « contrôle » de souris a été traité au cisplatine, un agent chimio-thérapeutique classique

, Les résultats montrent que la combinaison de ces quatre molécules a un effet inhibiteur sur la croissance de la tumeur implantée aux souris. En effet, lorsque les molécules sont utilisées séparément, elles ne montrent pas d'effets majeurs comparés à la chimiothérapie. Cependant lorsque la metformine est appliquée à haute dose en complément de l'acide ?-lipoïque et de l'hydroxycitrate

, jours de suivi (cf. Fig. 2b de l'article). L'inhibition est encore plus marquée lorsque le diclofénac à haute dose est ajouté à la thérapie (cf. Fig

, Ce modèle comprend des voies métaboliques réduites et simplifiées du métabolisme des cellules cancéreuses et parvient à simuler la croissance de la tumeur mais aussi l'effet inhibiteur de la thérapie métabolique obtenu expérimentalement (cf. Fig. 4 de l'article). Les simulations montrent une inversion de l'effet Warburg sous l'action des molécules. Cela est mise en évidence par un flux net de re, Un modèle cinétique du MCC a été développé pour simuler la croissance de la tumeur et prédire l'effet des molécules précédentes sur les flux énergétiques intracellulaires

, de la respiration mitochondriale (cf. Fig. 5 de l'article), un phenotype caractéristique des

, Les données présentées ici (Fig. 19abc) sont des résultats préliminaires issus d'une seule série d'expériences. Des essais supplémentaires seront réalisés afin de valider ces premiers résultats

, Différentes concentrations en sels citrate (NaCit et CaCit) ont été utilisées dans cette étude expérimentale par variation autour de la concentration physiologique en citrate de 100 µM

, Parmi les deux sels de citrate ajoutés aux cultures, seule la forme de citrate complexée au calcium semble avoir un effet positif sur la synthèse du collagène. L'ajout du CaCit à 200 µM semble stimuler la synthèse du collagène de manière significative (Fig. 1C). La forme NaCit du citrate ne montre aucun effet majeur du citrate par rapport aux contrôles

, Ces résultats semblent confirmer l'hypothèse communément acceptée indiquant que le calcium est capté par les ostéoblastes en symport avec le citrate. Bien que l'effet du calcium seul (CaCl2), par rapport au citrate, ne montre pas d'effet significatif, le citrate pourrait avoir un effet indirect sur la stimulation de la différenciation des ostéoblastes et donc de sur synthèse du collagène

, Figure 19 : L'effet des sels de citrate sur la synthèse du collagène par les ostéoblastes, p.206

, µM) sur la différenciation des cellules primaires osseuses de souris. Le citrate semble potentialiser les effets du calcium sur la differentiation des ostéoblastes. Ces expériences doivent être répétées, notamment à des concentrations en citrate plus importantes. En termes d'application directe de ces résultats, il est aussi envisageable d'étudier in vivo les effets d'une matrice alimentaire enrichie en citrate sur la santé de l'os chez des modèles de souris ovariectomisées, Conclusion Les résultats présentés ici sont issus d'expériences préliminaires et montrent un effet stimulant du citrate de calcium (CaCit) à haute dose, p.207

R. Aquino-martínez, R. Artigas, N. Gámez, B. Rosa, J. L. Ventura et al., , 2017.

, Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling, PLoS ONE, vol.12, 178158.

D. Barati, J. D. Walters, S. R. Shariati, S. Moeinzadeh, J. et al., Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers, Langmuir, vol.31, pp.5130-5140, 2015.

R. Caudarella, F. Vescini, A. Buffa, and S. Stefoni, Citrate and mineral metabolism: kidney stones and bone disease, Front. Biosci, vol.8, pp.1084-1106, 2003.

L. C. Costello and R. B. Franklin, Plasma Citrate Homeostasis: How It Is Regulated, 2016.

, And Its Physiological and Clinical Implications. An Important, But Neglected, Relationship in Medicine, HSOA J Hum Endocrinol, vol.1

L. C. Costello, R. B. Franklin, M. A. Reynolds, and M. Chellaiah, The Important Role of Osteoblasts and Citrate Production in Bone Formation, 2012.

D. J. Hadjidakis and I. I. Androulakis, Bone remodeling, Ann. N. Y. Acad. Sci, vol.1092, pp.385-396, 2006.

Y. Hu, A. Rawal, and K. Schmidt-rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.22425-22429, 2010.

Y. Hu, X. P. Liu, X. Ma, A. Rawal, T. Prozorov et al., Biomimetic Self-Assembling Copolymer?Hydroxyapatite Nanocomposites with the Nanocrystal Size Controlled by Citrate, 2011.

G. Lombardi, C. Di-somma, M. Rubino, A. Faggiano, L. Vuolo et al., The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics, J. Endocrinol. Invest, vol.34, pp.18-22, 2011.

A. Scutt, L. Reading, N. Scutt, and K. Still, Mineralizing Fibroblast-Colony-Forming Assays, pp.29-39, 2003.

D. E. Sellmeyer, M. Schloetter, and A. Sebastian, Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet, J. Clin. Endocrinol. Metab, vol.87, 2002.

Y. Tanaka, S. Nakayamada, and Y. Okada, Osteoblasts and osteoclasts in bone remodeling and inflammation, Curr Drug Targets Inflamm Allergy, vol.4, pp.325-328, 2005.

M. Zaidi, H. C. Blair, B. S. Moonga, E. Abe, and C. L. Huang, les cellules eucaryotes, nous avons porté une attention particulière sur le métabolisme de citrate chez la levure Yarrowia lipolytica mais aussi chez des cellules animales, J. Bone Miner. Res, vol.18, pp.599-609, 2003.

, in vivo et in silico, nous a permis d'identifier une protéine mitochondriale dont l'activité influence la production de citrate chez la souche Yarrowia lipolytica W29. Nous avons découvert que l'inhibition de la protéine oxydase alternative ou alternative oxidase (AOX), en anglais, par la propyl gallate (synonymes en anglais : gallic acid

, Ces résultats ont été obtenus sur des cultures de Y. lipolytica W29 en conditions non-optimales, en fioles agitées

. Akimenko, AOX est impliquée dans la respiration alternative chez Yarrowia lipolytica mais aussi chez des plantes et certains champignons, 2003.

. Medentsev, La propyl gallate est un antioxydant (E310) utilisé depuis de nombreuses années dans les industries agro-alimentaires et pharma-cosmétiques. C'est une molécule reconnue GRAS (Generally Recognized as Safe) par la FDA (Food and Drug Administration) américaine et utilisée comme conservateur dans les produits alimentaires à base d'huile, International Journal of Toxicology, 2002.

, et en particulier chez des microorganismes dotés de mitochondries et d'un métabolisme oxydatif, les principales sources d'espèces ROS. Le métabolisme mitochondrial de l'oxygène semble être impliqué dans la transition respirofermentaire de par la contrainte métabolique que l'O2 impose aux flux d'électrons qui parcourent la chaîne respiratoire. Ainsi une inhibition de la consommation de l'oxygène par la nPG peut expliquer une saturation électro-chimique des électrons au niveau de la chaîne de transfert des électrons et une diminution des flux, Ces résultats suggèrent l'importance l'importance du contrôle de l'état rédox du milieu intracellulaire chez toutes les cellules

, La production d'acides organiques issus du Krebs dont majoritairement le citrate pourrait s'expliquer par cette limitation du flux oxytatif et constituerait alors une « issue de secours

. Ochoa-estopier, Ces observations ont justifié la nécessité d'utiliser des approches informatiques pour l'étude du métabolisme de Y. lipolytica afin d'identifier les potentiels points de bascule métabolique et leviers dans l'optique d'une optimisation de la production de citrate. La méthode dynamic FBA (Flux Balance Analysis) nous a permis de modéliser le métabolisme de Y. lipolytica à l'échelle du genome. L'analyse des flux à mis en evidence des mechanismes intracellulaires pouvant expliquer l'accumulation de citrate dans une culture de Y. lipolytica ainsi qu'une surproduction par l'application de la nPG. Les simulations de l'inhibition de l'AOX par la nPG semble augmenter le flux d'oxydation des lipides et une accumulation des expèces ROS. Nos résultats expérimentaux préliminaires tendent à valider ces simulations puisqu'il a été observé que l'ajout de la nPG dans une culture de Y. lipolytica favorise non seulement une surproduction de citrate mais aussi une accumulation de corps cétoniques issues de la dégradation de triglycérides, De plus ces résultats confirment certaines observations reportées dans la littérature scientifique décrivant l'accumulation de citrate dans le milieu de culture comme la conséquence d'un overflow métabolique et/ou transition métabolique décorélée de l'expression des gènes. Ainsi, les données transcriptomiques n'ont montré que très peu de différences au niveau de l'expression des enzymes impliquées dans les voies métaboliques favorisant l'accumulation de citrate, 2014.

, En perspectives, on pourrait bien imaginer l'intégration d'un système de respiration alternative chez certaines cellules animales. Cela contribuerait à apporter un degré de liberté supplémentaire aux cellules dans le recyclage des espèces NAD + /NADH et une diminution du phénotype fermentaire

V. K. Références-akimenko, A. Y. Arinbasarova, N. M. Smirnova, and A. G. Medentsev, The Alternative Oxidase of Yarrowia lipolytica Mitochondria Is Unable To Compete with the Cytochrome Pathway for Electrons, Microbiology, vol.72, pp.403-407, 2003.

S. Guerrero-castillo, A. Cabrera-orefice, M. Vázquez-acevedo, D. González-halphen, and S. Uribe-carvajal, During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway, Biochim. Biophys. Acta, vol.1817, pp.353-362, 2012.

, Final Report on the Amended Safety Assessment of Propyl Gallate1, 2007.

A. G. Medentsev, A. Y. Arinbasarova, N. P. Golovchenko, and V. K. Akimenko, Involvement of the alternative oxidase in respiration of Yarrowia lipolytica mitochondria is controlled by the activity of the cytochrome pathway, FEMS Yeast Res, vol.2, pp.519-524, 2002.

A. Ochoa-estopier and S. E. Guillouet, D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica, Journal of biotechnology, vol.170, pp.35-41, 2014.