K. Hildner, Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity, Science, vol.322, pp.1097-100, 2008.

M. Broz, Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity, Cancer Cell, vol.26, pp.638-652, 2014.

M. B. Fuertes, S. R. Woo, B. Burnett, Y. X. Fu, and T. F. Gajewski, Type I interferon response and innate immune sensing of cancer, Trends Immunol, vol.34, pp.67-73, 2013.

J. P. Böttcher, E. Bonavita, . Chakravarty, and B. Cell, NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control, Cell, 2018.

S. Spranger, R. Bao, and T. F. Gajewski, Melanoma-intrinsic ?-catenin signalling prevents anti-tumour immunity, Nature, vol.523, pp.231-236, 2015.

S. Spranger, D. Dai, B. Horton, and T. F. Gajewski, Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy, Cancer Cell, vol.31, 2017.

H. Salmon, Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition, Immunity, vol.44, pp.924-962, 2016.

A. Sánchez-paulete, Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells, Cancer Discov, vol.6, pp.71-79, 2016.

D. Laoui, The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity, Nat Commun, vol.7, p.13720, 2016.

Y. Lavin, Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses, Cell, vol.169, pp.750-765, 2017.

K. C. Barry, A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments, Nat. Med, 2018.

P. Michea, Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific, Nat. Immunol, vol.19, pp.885-897, 2018.

F. Deauvieau, Human natural killer cells promote cross-presentation of tumor cellderived antigens by dendritic cells, Int. J. Cancer, vol.136, pp.1085-94, 2015.

H. Lauterbach, Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC, J. Exp. Med, vol.207, pp.2703-2720, 2010.

S. Balan, Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells, J. Immunol, vol.193, pp.1622-1657, 2014.

L. Rönnblom and E. &-opinion-in-rheumatology, The interferon signature in autoimmune diseases, Current opinion in rheumatology, 2013.

P. Hermant and M. &-of-innate-immunity, Interferon-? in the context of viral infections: production, response and therapeutic implications, Journal of innate immunity, 2014.

A. Lasfar, Characterization of the mouse IFN-lambda ligand-receptor system: IFNlambdas exhibit antitumor activity against B16 melanoma, Cancer research, vol.66, pp.4468-77, 2006.

A. Sato, M. Ohtsuki, M. Hata, E. Kobayashi, and T. Murakami, Antitumor activity of IFNlambda in murine tumor models, Journal of immunology, vol.176, pp.7686-94, 1950.

M. Numasaki, IL-28 elicits antitumor responses against murine fibrosarcoma, J Immunol Baltim Md, vol.178, pp.5086-98, 1950.

W. Abushahba, Antitumor activity of type I and type III interferons in BNL hepatoma model, Cancer immunology, immunotherapy : CII, vol.59, pp.1059-71, 2010.

L. Dumoutier, Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling, The Journal of biological chemistry, vol.279, pp.32269-74, 2004.

A. Meager, K. Visvalingam, P. Dilger, D. Bryan, and M. Wadhwa, Biological activity of interleukins-28 and -29: comparison with type I interferons, Cytokine, vol.31, pp.109-127, 2005.

W. Li, A. Lewis-antes, J. Huang, M. Balan, and S. V. Kotenko, Regulation of apoptosis by type III interferons, Cell Prolif, vol.41, pp.960-979, 2008.

Q. Li, Interferon-lambda induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents, Eur. J. Cancer, vol.46, pp.180-90, 2010.

M. Guilliams, Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat. Rev. Immunol, vol.14, pp.571-579, 2014.

E. Becht, Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression, Genome Biol, vol.17, p.218, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398093

L. Spinelli, S. Carpentier, F. Montañana-sanchis, M. Dalod, and T. P. Vu-manh, BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses, BMC Genomics, vol.16, p.814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236135

,. P. Vu-manh, Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics, Front Immunol, vol.6, p.299, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179563

V. Sisirak, Impaired IFN-? Production by Plasmacytoid Dendritic Cells Favors Regulatory T-cell Expansion That May Contribute to Breast Cancer Progression, Cancer Res, vol.72, pp.5188-5197, 2012.

S. Jongbloed, Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens, The Journal of experimental medicine, vol.207, pp.1247-60, 2010.

D. Sancho, Identification of a dendritic cell receptor that couples sensing of necrosis to immunity, Nature, vol.458, pp.899-903, 2009.

K. Crozat, The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells, J. Exp. Med, vol.207, pp.1283-92, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

B. Dorner, Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells, Immunity, vol.31, pp.823-856, 2009.

A. Bachem, Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells, The Journal of experimental medicine, vol.207, pp.1273-81, 2010.

L. Ardouin, Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery, Immunity, vol.45, pp.305-323, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01374574

S. E. Stanton, A. Oncology, and D. , Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review, JAMA oncology, 2016.

B. Lewko, A. Zó?towska, J. Stepi?ski, A. Roszkiewicz, and G. Moszkowska, Dendritic and cancer cells in the breast tumors--an immunohistochemical study: short communication, Med. Sci. Monit, vol.6, pp.892-897, 2000.

L. Lespagnard, Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome, Int. J. Cancer, vol.84, pp.309-323, 1999.

J. Faget, ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells, Cancer research, vol.72, pp.6130-6171, 2012.

D. Howie, Foxp3 drives oxidative phosphorylation and protection from lipotoxicity, JCI Insight, vol.2, p.89160, 2017.

S. Terry, New insights into the role of EMT in tumor immune escape, Mol Oncol, vol.11, pp.824-846, 2017.

Z. Zhou, Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogenactivated protein kinases, J. Virol, vol.81, pp.7749-58, 2007.

D. P. Simmons, Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing, J. Immunol, vol.188, pp.3116-3142, 2012.

F. Spadaro, IFN-? enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing, Blood, vol.119, pp.1407-1424, 2012.

B. Lauterbach and . Gilles, Mouse CD8?+ DCs and human BDCA3+ DCs are major producers of IFN-? in response to poly IC, 2010.

R. Tokunaga, CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation -A target for novel cancer therapy, Cancer Treat. Rev, vol.63, pp.40-47, 2018.

J. P. Böttcher, Functional classification of memory CD8(+) T cells by CX3CR1 expression, Nat Commun, vol.6, p.8306, 2015.

I. E. Galani, Interferon-? Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness, Immunity, vol.46, p.6, 2017.

E. J. Papadopoulos, Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation, Eur. J. Immunol, vol.29, pp.2551-2560, 1999.

Z. Yin, Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells, J. Immunol, vol.189, pp.2735-2780, 2012.

I. Perrot, TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA, J. Immunol, vol.185, pp.2080-2088, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553598

G. Gautier, A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells, J. Exp. Med, vol.201, pp.1435-1481, 2005.

S. Labidi-galy, Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer, Cancer Res, vol.71, pp.5423-5434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849783

D. Amir, ?. Tadmor-&-nature, and S. , viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, 2013.

A. M. Szász, A. Lánczky, Á. Nagy, . Förster, and H. Oncotarget, Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients, Oncotarget, 2016.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.15545-50, 2005.

&. Spearman,