C. Alabert, J. C. Bukowski-wills, and S. B. Lee, Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components, Nat. Cell Biol, vol.16, pp.281-293, 2014.

G. H. Baek, H. Cheng, and V. Choe, Cdc48: a Swiss army knife of cell biology, J. Amino Acids, p.183421, 2013.

A. Boskovic, A. Eid, and J. Pontabry, Higher chromatin mobility supports totipotency and precedes pluripotency in vivo, Genes Dev, vol.28, pp.1042-1047, 2014.

F. Boussouar, M. Jamshidikia, and Y. Morozumi, Malignant genome reprogramming by ATAD2, Biochim. Biophys. Acta, vol.1829, pp.1010-1014, 2013.

C. Caron, C. Lestrat, and S. Marsal, Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers, Oncogene, vol.29, pp.5171-5181, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660220

M. Cattaneo, Y. Morozumi, and D. Perazza, Lessons from yeast on emerging roles of the ATAD2 protein family in gene regulation and genome organization, Mol. Cells, vol.37, pp.851-856, 2014.

A. Chaikuad, A. M. Petros, and O. Fedorov, Structure-based approaches towards identification of fragments for the low-druggability ATAD2 bromodomain, Med. Chem. Commun, vol.5, pp.1843-1848, 2014.

Y. Chen, S. W. Kwon, and S. C. Kim, Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra, J. Proteome Res, vol.4, pp.998-1005, 2005.

. Bibliography, P. Bamborough, C. W. Chung, E. H. Demont, R. C. Furze et al., A Chemical Probe for the ATAD2 Bromodomain, Angew Chem Int Ed Engl, vol.55, issue.38, pp.11382-11388, 2016.

P. Bamborough, C. W. Chung, R. C. Furze, P. Grandi, A. M. Michon et al., Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors', J Med Chem, vol.58, issue.15, pp.6151-78, 2015.

F. Boussouar, M. Jamshidikia, Y. Morozumi, S. Rousseaux, and S. Khochbin, Malignant genome reprogramming by ATAD2', Biochim Biophys Acta, issue.10, pp.1010-1014, 2013.

C. Caron, C. Lestrat, S. Marsal, E. Escoffier, S. Curtet et al., Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers, Oncogene, vol.29, issue.37, pp.5171-81, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660220

M. Cattaneo, Y. Morozumi, D. Perazza, F. Boussouar, M. Jamshidikia et al., Lessons from yeast on emerging roles of the ATAD2 protein family in gene regulation and genome organization, Mol Cells, vol.37, issue.12, pp.851-857, 2014.

S. Cheloufi, U. Elling, B. Hopfgartner, Y. L. Jung, J. Murn et al., The histone chaperone CAF-1 safeguards somatic cell identity, Nature, vol.528, issue.7581, pp.218-242, 2015.

S. Cheloufi and K. Hochedlinger, Emerging roles of the histone chaperone CAF-1 in cellular plasticity, Curr Opin Genet Dev, vol.46, pp.83-94, 2017.

E. H. Demont, C. W. Chung, R. C. Furze, P. Grandi, A. M. Michon et al., Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors', J Med Chem, vol.58, issue.14, pp.5649-73, 2015.

P. Di-tommaso, S. Moretti, I. Xenarios, M. Orobitg, A. Montanyola et al., T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension, Nucleic Acids Res, vol.39, pp.13-20, 2011.

J. Gaucher, F. Boussouar, E. Montellier, S. Curtet, T. Buchou et al., Bromodomain-dependent stage-specific male genome programming by Brdt', EMBO J, issue.19, pp.3809-3829, 2012.

A. Goudarzi, D. Zhang, H. Huang, S. Barral, O. K. Kwon et al., Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters, Mol Cell, vol.62, issue.2, pp.169-80, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341099

M. J. Harner, B. A. Chauder, J. Phan, and S. W. Fesik, Fragment-based screening of the bromodomain of ATAD2', J Med Chem, vol.57, issue.22, pp.9687-92, 2014.

T. Ishiuchi, R. Enriquez-gasca, E. Mizutani, A. Boskovic, C. Ziegler-birling et al., Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly, Nat Struct Mol Biol, vol.22, issue.9, pp.662-71, 2015.

C. Kemena and C. Notredame, Upcoming challenges for multiple sequence alignment methods in the high-throughput era, Bioinformatics, vol.25, issue.19, pp.2455-65, 2009.

S. J. Koo, A. E. Fernandez-montalvan, V. Badock, C. J. Ott, S. J. Holton et al., ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication, Oncotarget, vol.7, issue.43, pp.70323-70335, 2016.

J. M. Miller and E. J. Enemark, Fundamental Characteristics of AAA+ Protein Family Structure and Function, Archaea, p.9294307, 2016.

Y. Morozumi, F. Boussouar, M. Tan, A. Chaikuad, M. Jamshidikia et al., Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells, J Mol Cell Biol, vol.8, issue.4, pp.349-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415782

T. A. Sysoeva, Assessing heterogeneity in oligomeric AAA+ machines, Cell Mol Life Sci, vol.74, issue.6, pp.1001-1018, 2017.

A. Urbanucci, S. J. Barfeld, V. Kytola, H. M. Itkonen, I. M. Coleman et al., Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer, Cell Rep, vol.19, issue.10, pp.2045-2059, 2017.

S. R. White and B. Lauring, AAA+ ATPases: achieving diversity of function with conserved machinery, Traffic, vol.8, issue.12, pp.1657-67, 2007.

N. Reynoird, B. E. Schwartz, M. Delvecchio, K. Sadoul, D. Meyers et al., Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains, EMBO J, vol.29, pp.2943-2952, 2010.

S. Rousseaux, A. Debernardi, B. Jacquiau, A. Vitte, A. Vesin et al., Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers, Sci. Transl. Med, vol.186, pp.186-66, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01261754

A. Janic, L. Mendizabal, S. Llamazares, D. Rossell, and C. Gonzalez, Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila, Science, vol.330, pp.1824-1827, 2010.

C. Caron, C. Lestrat, S. Marsal, E. Escoffier, S. Curtet et al., Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers, Oncogene, vol.29, pp.5171-5181, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660220

J. X. Zou, A. S. Revenko, L. B. Li, A. T. Gemo, and H. W. Chen, ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.18067-18072, 2007.

J. X. Zou, L. Guo, A. S. Revenko, C. G. Tepper, A. T. Gemo et al., Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer, Cancer Res, vol.69, pp.3339-3346, 2009.

Z. Duan, J. X. Zou, P. Yang, Y. Wang, A. D. Borowsky et al., Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex, Prostate, vol.73, pp.455-466, 2013.

E. Y. Hsia, M. L. Goodson, J. X. Zou, M. L. Privalsky, and H. W. Chen, Nuclear receptor coregulators as a new paradigm for therapeutic targeting, Adv. Drug Deliv. Rev, vol.62, pp.1227-1237, 2010.

A. S. Revenko, E. V. Kalashnikova, A. T. Gemo, J. X. Zou, and H. W. Chen, Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark, Mol. Cell. Biol, vol.30, pp.5260-5272, 2010.

P. Yang, L. Guo, Z. J. Duan, C. G. Tepper, L. Xue et al., Histone methyltransferase NSD2/MMSET mediates constitutive NF-kappaB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop, Mol. Cell. Biol, vol.32, pp.3121-3131, 2012.

M. Ciro, E. Prosperini, M. Quarto, U. Grazini, J. Walfridsson et al., ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors, Cancer Res, vol.69, pp.8491-8498, 2009.

C. Y. Lin, J. Loven, P. B. Rahl, R. M. Paranal, C. B. Burge et al., Transcriptional amplification in tumor cells with elevated c-Myc, Cell, vol.151, pp.56-67, 2012.

Z. Nie, G. Hu, G. Wei, K. Cui, A. Yamane et al., Levens, c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells, Cell, vol.151, pp.68-79, 2012.

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look et al., Gene-expression profiles to predict distant metastasis of lymph-nodenegative primary breast cancer, Lancet, vol.365, pp.671-679, 2005.

E. V. Kalashnikova, A. S. Revenko, A. T. Gemo, N. P. Andrews, C. G. Tepper et al., ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2, Cancer Res, vol.70, pp.9402-9412, 2010.

R. Fouret, J. Laffaire, P. Hofman, M. Beau-faller, J. Mazieres et al., A comparative and integrative approach identifies ATPase family, AAA domain containing 2 as a likely driver of cell proliferation in lung adenocarcinoma, Clin. Cancer Res, vol.18, pp.5606-5616, 2012.

M. B. Raeder, E. Birkeland, J. Trovik, C. Krakstad, S. Shehata et al., Integrated genomic analysis of the 8q24 amplification in endometrial cancers identifies ATAD2 as essential to MYC-dependent cancers, PLoS One, vol.8, p.54873, 2013.

K. O. Wrzeszczynski, V. Varadan, J. Byrnes, E. Lum, S. Kamalakaran et al., Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer, PLoS One, vol.6, p.28503, 2011.

Q. Huang, B. Lin, H. Liu, X. Ma, F. Mo et al., RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma, PLoS One, vol.6, p.26168, 2011.

J. Liu, W. Lee, Z. Jiang, Z. Chen, S. Jhunjhunwala et al., Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events, Genome Res, vol.22, pp.2315-2327, 2012.

E. Y. Hsia, E. V. Kalashnikova, A. S. Revenko, J. X. Zou, A. D. Borowsky et al., Deregulated E2F and the AAA+ coregulator ANCCA drive proto-oncogene ACTR/AIB1 overexpression in breast cancer, Mol. Cancer Res, vol.8, pp.183-193, 2010.

J. Gaucher, F. Boussouar, E. Montellier, S. Curtet, T. Buchou et al., Bromodomain-dependent stage-specific male genome programming by Brdt, EMBO J, vol.31, pp.3809-3820, 2012.

C. Pivot-pajot, C. Caron, J. Govin, A. Vion, S. Rousseaux et al., Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein, Mol. Cell. Biol, vol.23, pp.5354-5365, 2003.

P. Filippakopoulos and S. Knapp, The bromodomain interaction module, FEBS Lett, vol.586, pp.2692-2704, 2012.

P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J. P. Lambert et al., Histone recognition and large-scale structural analysis of the human bromodomain family, Cell, vol.149, pp.214-231, 2012.

L. M. Lombardi, A. Ellahi, and J. Rine, Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.1302-1311, 2011.

S. Muller, P. Filippakopoulos, and S. Knapp, Bromodomains as therapeutic targets, Expert Rev, Mol. Med, vol.13, p.29, 2011.

P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W. B. Smith et al., Selective inhibition of BET bromodomains, Nature, vol.468, pp.1067-1073, 2010.

L. R. Vidler, N. Brown, S. Knapp, and S. Hoelder, Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites, J. Med. Chem, vol.55, pp.7346-7359, 2012.

A. J. Firestone, J. S. Weinger, M. Maldonado, K. Barlan, L. D. Langston et al., Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein, Nature, vol.484, pp.125-129, 2012.

T. F. Chou and R. J. Deshaies, Development of p97 AAA ATPase inhibitors, Autophagy, vol.7, pp.1091-1092, 2011.

J. Elkaim, M. Castroviejo, D. Bennani, S. Taouji, N. Allain et al., First identification of small-molecule inhibitors of Pontin by combining virtual screening and enzymatic assay, Biochem. J, vol.443, pp.549-559, 2012.

D. W. Bell, N. Sikdar, K. Y. Lee, J. C. Price, R. Chatterjee et al., Predisposition to cancer caused by genetic and functional defects of mammalian Atad5, PLoS Genet, vol.7, p.1002245, 2011.

Y. S. Chen and X. B. Qiu, Transcription-coupled replacement of histones: degradation or recycling?, J. Genet. Genomics, vol.39, pp.575-580, 2012.

N. T. Leachman, F. Brellier, J. Ferralli, R. Chiquet-ehrismann, and R. P. Tucker, ATAD2B is a phylogenetically conserved nuclear protein expressed during neuronal differentiation and tumorigenesis, Dev. Growth Differ, vol.52, pp.747-755, 2010.

F. Boussouar, M. Jamshidikia, Y. Morozumi, S. Rousseaux, and S. Khochbin, Malignant genome reprogramming by ATAD2, Biochim. Biophys. Acta, vol.1829, pp.1010-1014, 2013.

C. Caron, C. Lestrat, S. Marsal, E. Escoffier, S. Curtet et al., Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers, Oncogene, vol.29, pp.5171-5181, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660220

M. Ciro, E. Prosperini, M. Quarto, U. Grazini, J. Walfridsson et al., ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors, Cancer Res, vol.69, pp.8491-8498, 2009.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Emerging Roles of the ATAD2 Protein Family Matteo Cattaneo et al

F. Dufayard, J. F. Guindon, S. Lefort, V. Lescot, and M. , Phylogeny.fr: robust phylogenetic analysis for the nonspecialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

A. Dereeper, S. Audic, J. M. Claverie, and G. Blanc, BLAST-EXPLORER helps you building datasets for phylogenetic analysis, BMC Evol. Biol, vol.10, 2010.

C. Dhalluin, J. E. Carlson, L. Zeng, C. He, A. K. Aggarwal et al., Structure and ligand of a histone acetyltransferase bromodomain, Nature, vol.399, pp.491-496, 1999.

P. Di-tommaso, S. Moretti, I. Xenarios, M. Orobitg, A. Montanyola et al., T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension, Nucleic Acids Res, vol.39, pp.13-17, 2011.

M. E. Ferreira, K. Flaherty, and P. Prochasson, The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIRdependent histone genes, PLoS One, vol.6, 2011.

J. Fillingham, P. Kainth, J. P. Lambert, H. Van-bakel, K. Tsui et al., Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression, Mol. Cell, vol.35, pp.340-351, 2009.

P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J. P. Lambert et al., Histone recognition and large-scale structural analysis of the human bromodomain family, Cell, vol.149, pp.214-231, 2012.

A. Goudarzi, H. Shiota, S. Rousseaux, and S. Khochbin, , 2014.

, Genome-scale acetylation-dependent histone eviction during spermatogenesis, J. Mol. Biol. pii, issue.14, pp.122-125

A. Gradolatto, R. S. Rogers, H. Lavender, S. D. Taverna, C. D. Allis et al., Saccharomyces cerevisiae Yta7 regulates histone gene expression, Genetics, vol.179, pp.291-304, 2008.

A. Gradolatto, S. K. Smart, S. Byrum, L. P. Blair, R. S. Rogers et al., A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity, Mol. Cell. Biol, vol.29, pp.4604-4611, 2009.

A. Gunjan and A. Verreault, A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae, Cell, vol.115, pp.537-549, 2003.

N. Jambunathan, A. W. Martinez, E. C. Robert, N. B. Agochukwu, M. E. Ibos et al., Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary, Genetics, vol.171, pp.913-922, 2005.

C. Kemena and C. Notredame, Upcoming challenges for multiple sequence alignment methods in the high-throughput era, Bioinformatics, vol.25, pp.2455-2465, 2009.

C. F. Kurat, J. P. Lambert, D. Van-dyk, K. Tsui, H. Van-bakel et al., Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein, Genes Dev, vol.25, pp.2489-2501, 2011.

L. M. Lombardi, A. Ellahi, R. , and J. , Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7, Proc. Natl. Acad. Sci. USA, vol.108, pp.1302-1311, 2011.

H. Mcwilliam, W. Li, M. Uludag, S. Squizzato, Y. M. Park et al., Analysis Tool Web Services from the EMBL-EBI, Nucleic Acids Res, vol.41, pp.597-600, 2013.

A. S. Revenko, E. V. Kalashnikova, A. T. Gemo, J. X. Zou, C. et al., Chromatin loading of E2F-MLL complex by cancerassociated coregulator ANCCA via reading a specific histone mark, Mol. Cell. Biol, vol.30, pp.5260-5272, 2010.

A. J. Tackett, D. J. Dilworth, M. J. Davey, M. O'donnell, J. D. Aitchison et al., Proteomic and genomic characterization of chromatin complexes at a boundary, J. Cell Biol, vol.169, pp.35-47, 2005.

R. J. Tseng, K. R. Armstrong, X. Wang, and H. M. Chamberlin, The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans, Mol. Genet. Genomics, vol.278, pp.507-518, 2007.

C. Uniprot, Activities at the universal protein resource (UniProt), Nucleic Acids Res, vol.42, pp.191-198, 2014.

J. X. Zou, A. S. Revenko, L. B. Li, A. T. Gemo, C. et al., ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification, Proc. Natl. Acad. Sci. USA, vol.1, issue.0, pp.18067-18072, 2007.

J. X. Zou, L. Guo, A. S. Revenko, C. G. Tepper, A. T. Gemo et al., Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer, Cancer Res, vol.69, pp.3339-3346, 2009.

R. M. Zunder, R. , and J. , Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression, Mol. Cell. Biol, vol.32, pp.4337-4349, 2012.

R. Bonisch, C. Hake, and S. B. , Histone H2A variants in nucleosomes and chromatin: More or less stable?, Nucleic Acids Res, vol.40, pp.10719-10741, 2012.

F. Boussouar, S. Rousseaux, and S. Khochbin, A new insight into male genome reprogramming by histone variants and histone code, Cell Cycle, vol.7, pp.3499-3502, 2008.

R. E. Branson, S. R. Grimes, G. Yonuschot, and J. L. Irvin, The histones of rat testis, Arch Biochem Biophys, vol.168, pp.403-412, 1975.

W. A. Brock, P. K. Trostle, and M. L. Meistrich, Meiotic synthesis of testis histones in the rat, Proc Natl Acad Sci, vol.77, pp.371-375, 1980.

Y. C. Choi and C. B. Chae, Demethylation of somatic and testisspecific histone H2A and H2B genes in F9 embryonal carcinoma cells, Mol Cell Biol, vol.13, pp.5538-5548, 1993.

K. Contrepois, E. Ezan, C. Mann, and F. Fenaille, Ultra-high performance liquid chromatography-mass spectrometry for the fast profiling of histone post-translational modifications, J Proteome Res, vol.9, pp.5501-5509, 2010.

J. Gaucher, N. Reynoird, E. Montellier, F. Boussouar, S. Rousseaux et al., From meiosis to postmeiotic events: The secrets of histone disappearance, FEBS J, vol.277, pp.599-604, 2010.

J. Gaucher, F. Boussouar, E. Montellier, S. Curtet, T. Buchou et al., Bromodomain-dependent stage-specific male genome programming by Brdt, EMBO J, vol.31, pp.3809-3820, 2012.

J. Govin, C. Caron, C. Lestrat, S. Rousseaux, and S. Khochbin, The role of histones in chromatin remodelling during mammalian spermiogenesis, Eur J Biochem, vol.271, pp.3459-3469, 2004.

J. Govin, E. Escoffier, S. Rousseaux, L. Kuhn, M. Ferro et al., Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis, J Cell Biol, vol.176, pp.283-294, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176730

I. K. Greaves, D. Rangasamy, M. Devoy, M. Graves, J. A. Tremethick et al., The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis, Mol Cell Biol, vol.26, pp.5394-5405, 2006.

S. J. Hainer and J. A. Martens, Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy, Mol Cell Biol, vol.31, pp.3557-3568, 2011.

M. Hazzouri, C. Pivot-pajot, A. K. Faure, Y. Usson, R. Pelletier et al., Regulated hyperacetylation of core histones during mouse spermatogenesis: Involvement of histone deacetylases, Eur J Cell Biol, vol.79, pp.950-960, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00192538

N. E. Huh, I. W. Hwang, K. Lim, K. H. You, and C. B. Chae, Presence of a bi-directional S phase-specific transcription regulatory TH2B drives male genome reorganization GENES & DEVELOPMENT 1691 element in the promoter shared by testis-specific TH2A and TH2B histone genes, Nucleic Acids Res, vol.19, pp.93-98, 1991.

E. M. Hyland, M. S. Cosgrove, H. Molina, D. Wang, A. Pandey et al., Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae, Mol Cell Biol, vol.25, pp.10060-10070, 2005.

W. Iwasaki, H. Tachiwana, K. Kawaguchi, T. Shibata, W. Kagawa et al., Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains, Biochemistry, vol.50, pp.7822-7832, 2011.

A. Li, A. H. Maffey, W. D. Abbott, N. Conde-e-silva, A. Prunell et al., Characterization of nucleosomes consisting of the human testis/spermspecific histone H2B variant (hTSH2B), Biochemistry, vol.44, pp.2529-2535, 2005.

P. Liu, N. A. Jenkins, and N. G. Copeland, A highly efficient recombineering-based method for generating conditional knockout mutations, Genome Res, vol.13, pp.476-484, 2003.

M. Manohar, A. M. Mooney, J. A. North, R. J. Nakkula, J. W. Picking et al., Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding, J Biol Chem, vol.284, pp.23312-23321, 2009.

Y. Marushige and K. Marushige, Proteolysis of somatic type histones in transforming rat spermatid chromatin, Biochim Biophys Acta, vol.761, pp.48-57, 1983.

E. Montellier, S. Rousseaux, Y. Zhao, and S. Khochbin, Histone crotonylation specifically marks the haploid male germ cell gene expression program: Post-meiotic male-specific gene expression, Bioessays, vol.34, pp.187-193, 2012.

J. Moriniere, S. Rousseaux, U. Steuerwald, M. Soler-lopez, S. Curtet et al., Cooperative binding of two acetylation marks on a histone tail by a single bromodomain, Nature, vol.461, pp.664-668, 2009.
URL : https://hal.archives-ouvertes.fr/cea-00909643

C. Pivot-pajot, C. Caron, J. Govin, A. Vion, S. Rousseaux et al., Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein, Mol Cell Biol, vol.23, pp.5354-5365, 2003.

B. J. Rao and M. R. Rao, DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features, JB i o lC h e, vol.262, pp.4472-4476, 1987.

B. J. Rao, S. K. Brahmachari, and M. R. Rao, Structural organization of the meiotic prophase chromatin in the rat testis, J Biol Chem, vol.258, pp.13478-13485, 1983.

A. Shires, M. P. Carpenter, and R. Chalkley, New histones found in mature mammalian testes, Proc Natl Acad Sci, vol.72, pp.2714-2718, 1975.

T. A. Soboleva, M. Nekrasov, A. Pahwa, R. Williams, G. A. Huttley et al., A unique H2A histone variant occupies the transcriptional start site of active genes, Nat Struct Mol Biol, vol.19, pp.25-30, 2012.

P. B. Talbert and S. Henikoff, Histone variants-ancient wrap artists of the epigenome, Nat Rev Mol Cell Biol, vol.11, pp.264-275, 2010.

P. B. Talbert, K. Ahmad, G. Almouzni, J. Ausio, F. Berger et al., A unified phylogeny-based nomenclature for histone variants, Epigenetics Chromatin, vol.5, p.7, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00710902

M. Tan, H. Luo, S. Lee, J. F. Yang, J. S. Montellier et al., Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell, vol.146, pp.1016-1028, 2011.

M. E. Torres-padilla, A. J. Bannister, P. J. Hurd, T. Kouzarides, and M. Zernicka-goetz, Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos, Int J Dev Biol, vol.50, pp.455-461, 2006.

P. Tropberger, S. Pott, C. Keller, K. Kamieniarz-gdula, M. Caron et al., Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation, Nat Genet, vol.152, pp.251-258, 2007.

F. Wu, C. Caron, C. De-robertis, S. Khochbin, and S. Rousseaux, Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization, J Reprod Dev, vol.54, pp.413-417, 2008.

T. Ye, A. R. Krebs, M. A. Choukrallah, C. Keime, F. Plewniak et al., seqMINER: An integrated ChIP-seq data interpretation platform, Nucleic Acids Res, vol.39, p.35, 2011.

M. Zhao, C. R. Shirley, S. Hayashi, L. Marcon, B. Mohapatra et al., Transition nuclear proteins are required for normal chromatin condensation and functional sperm development, Genesis, vol.38, pp.200-213, 2004.

, JQ8L!F=Q!S<=\D<! ;7Q=?DKJ9!J9K8SQJKO!D9L!F=Q!Q8;Q:JK?89K!=F!)/.!E=<O?8QD>8!%%!:9L8Q!>E8

. 8q!lq,

. Q=h!d9l!9d9=&gt;,

. D&lt;8!l8rj,

. 8&gt;!f=q!k78!j9r8&gt;kjsdkj=9!-=f!8ejs898kj,

&. &gt;^,

. K&gt;!=f!7j&gt;k=98!$b!kdj&lt;!d;8ko&lt;dkj=9&gt;!=9!, , vol.9

!. Z#!d9l!, Q. , and #. &gt;kq,

. =q8!7j&gt;k=98!=;kd?8q!dk!@#&quot;!.!q8&gt;=&lt;:kj=9w!d!kqjedqkjk8!eq=k8j9!d&gt;&gt;8?\&lt;o!-d9l!d!&lt;8fkh7d9l8l!&gt;,

!. Lq:s!lj&gt;;=r8qo^[!@/&apos;#c21#?);3#?%&amp; and (. =f!d!ce&gt;!eq=k8j9!;=?e&lt;8c!q8, 2D>8!Q8S:<DK8>! ?8?, JQ8L!F=Q!9=Q?D<!89L=>=?8! F:9

!. %20 and . 2n!@t-;-a54tn[!ee#!x4&quot;ht#!-yd99j&gt;k8q[!.#!a#!d9l!b=, , p.8

!. Yd=[!*#!d9l!&amp;789[!g# and . =f!,

K. .. ,

. Y8lf=ql[!-#!&apos;#!d9l! and . &lt;dqi8[!&amp;#!3#!]5ppmn!^2q=k8j9!dqsj9j98!?8k7o&lt;dkj=9!j9!?d??d&lt;&gt;w!g7=,

!. D9l!f,

. K&gt;!=f!?d??d&lt;jd9! and . Kdlt^,

. J&lt;jkdk8&gt;!kqd9&gt;;qjekj=9hl8e89l89k!9,

. Kjrjko!=f!k78!78qe8&gt;!&gt;j?e&lt;8c!rjq:&gt;!eqj?d&gt;8h78&lt;j;d&gt;8!j97j\jk=q!-y.*!t4h,

W. F=q!?,

. Jdkj=9!=f!, D9!1ST[!D!IJ98>J9H, vol.7

. Q8&lt;dk8l!?=k=q!8&gt;&gt;89kjd&lt;!f=q!\je=&lt;dq!&gt;ej9l&lt;8!f=q?dkj=9!j9!rjr=^[!l2&lt;&lt;n!x@]4n[!ee#!,

!. Y=q&gt;k[!2#!d9l!1&lt;f8qj9i[!)#!(#!]5pp5n!^-d??d&lt;jd9!.y and . Y=,

!. ,

!. and #. &amp;j9s8q-;-#!.#!]5pp&quot;n!^.!\jedqkjk8!o8d&gt;k!&amp;&amp;-;-!d9d&lt;=s!-;=?eqj&gt;8l!=f!2=\@!d9l!/7ea!eq=k8j9&gt;!?=l-;-!\j9lj9s!k=!2m4!q8r8d&lt;&gt;!k78!eq=e8qkj8&gt;!=f!d!kd9l8?!,

. Yq=g9[!0#!&apos;#!]5pp&quot;n!^$j&gt;k=98!rdqjd9k&gt;w!dq8!k78o!f, , p.9

. Kj=9d&lt;&lt;o!78k8q=s898=,

. 4n[!ee#!)8rj8g&gt;pppa#!,

#. =f!f8,

. Kj=9!\o!-;=fd,

. K=q!\j9lj9s^-;-!xsmp#v2&apos;&apos;n!txm,

. 7de8q=98&gt;!d9l!9, <8=>=?8!D>>8?\<O^[! F)

!. K8qjddkj=9 and . =f!-;-!d&gt;!d!98g!;d9;8qvk8&gt;kj&gt;!fd,

. K=q!d9l!d!eq8lj,

. K=q!=f!e==q!-eq=s9=&gt;j&gt;!j9!\q8d&gt;k!d9l!&lt;, ]5P"BN!^Z8>>=9>!FQ=?!O8D>K!=9!8?8QSJ9S!Q=<8>!=F!K78! .'.05!EQ=K8J9!FD?J<O!J9!S898!Q8S:<DKJ=9!D9L!S89=?8!=QSD9JdDKJ=9^

%. , &. Tn[!ee#!x&quot;5hm#!-;-!2#!]5pp@n!^&apos;78, and !. Lq, , p.7898

&. =f!kq88&gt;^,

[. K=q!f=q!-*, #. &lt;dej8q[!, !. Djq9&gt;[!y#!)#!]5ppmn!^&apos;78, and . \j=&lt;=so!=f!, =Q>^[!L/0,2)#C2&N! AM]5"N

. Kj=9d&lt;!&gt;kqjdk8l!?:&gt;;&lt;8!;8&lt;&lt;&gt;!-fq=?!9=9h?o=\&lt;d&gt;k!eq8;:q&gt;=q&gt;!f=&lt;&lt;=gj9s!thddd,

. Okjlj98!kq8dk?89k^[!@/&apos;;)2n!5a4]tapmn[!-ee#!@abha#!, !. =q=9d[!0#!+#!d9l!&apos;d?i-;-!a#, and . Ee#!, H@N, !?=L8<>!=F, vol.7

K. .. 2d&gt;8&gt;!-/&amp;+!d9l!em4!j9!k78!&gt;8,

, $%c!)8R! Q8>E=9>8!8<8?89K!]))1N!LJQ8

K. D&gt;o??8kqj;!;=?e&lt;8c8&gt;^,

. Dkj=9&gt;!f=q!?8;7d9j&gt;?&gt;!=f!9,

!. B4x]4@4pn[!ee#!t5mh@@#!-5, P! !

!. 088sd9[!&apos;#!0#!d9l!0jff&lt;8o[!a#, -. +#!]5p&quot;an!^-, and . D&lt;&lt;^, L;))#97%0#P');,'#M%, !

&. Dkj=9!\8kg889!9-;-&lt;8=kjl8!l=?dj9&gt;^[!@/&apos;#p&apos;); and . #m%(&lt;n!&quot;p]&quot;pn[!-ee#!xtaha@#!-08zdydqq8[!y#!d9l!yq, , pp.9-17

. =9kdj9&gt;!d!;7q=?=l=?dj9!d9l!d9!&amp;/+5v&amp;u%5h&lt;ji8!78&lt;j,

. D&gt;8!l=?dj9^[!f)(, /. #@/&apos;&lt;#a, and . 6#,

P. and %. Ee#!5b,

. =\&gt;[!$#!-#,

!. &gt;kqdk8so!k=!kdqs8k!;h-o,

^. Mpbh, 4#! 0899878O[!Y#!b#!D9L!'O<8Q[!a#!]5P"BN!X;06

!. O=,

!. &lt;2%, #. , and %. J&gt;&gt;, >JR8!?JLL<8!L=?DJ9!=F!$>E"PB!D9L!, vol.8

. Dkj=9!d9l!f,

#. Idqk[!,

!. Mmbn!^.!5a!&amp;!eq=k8d&gt;8!&gt;, MMMN!^&KQ

. 8ko&lt;kqd9&gt;f8qd&gt;8!\q=?=l=?dj9^, , p.2

!. @mm]a4@tn[!ee#!bm&quot;h-a#!-07j&lt;&lt;=9[!/#!d9l!bd and ?. Didid[!)#!&apos;#!]5pppn!^.!7j&gt;k=98!rdqjd9k,

!. and #. =ff88w!d!g8\!&gt;8qr8q!f=q!k78!?, <KJE<8!>8`:89;8! D<JS9?89K!=F!EQ=K8J9!D9L!)/.!>8`:89;8>!:>J9S!>KQ:;K:QD<!J9F=Q?DKJ=9!D9L!7=?=<=SO! 8CK89>J=9^

!. Qo&gt;kd&lt;&lt;jddkj=9, Q. D9l!gh, and . Q=,

. Qo&gt;kd&lt;&gt;!=f!k78!8ckqd;8&lt;&lt;:&lt;dq!l=?dj9!=f!k78!, D9! J97J\JK=QO!Q8;8EK=Q!8CEQ8>>8L!=9!?O8<=JL!;8<<>!%)1-H"^, vol.7

#. 0j9d9k[!,

!. , !. \o!+, and . &apos;!-eq=?=k8&gt;!kqd9&gt;;qjekj=9d&lt;!q8&gt;kdqk!dfk8q!6chj9l, 7Q=?DKJ9!FJ\8Q!F=<LJ9SW! Q8`:JQ8?89K!F=Q!K78!7J>K=98!$B!/HK8Q?J9D<!KDJ<^

. 0=o&lt;8[!&amp;#!-#!d9l!uj;i98q[!&amp;#!]5ppmn!^$&gt;e&quot;pb!d9l! and . &lt;eyw!eq=k8j9!lj&gt;dssq8sdkj9s!?d;7j98&gt;^,

. Jdk8l!eq=k8j9!0.gg!j&gt;!d!9=r8&lt;!7j&gt;k=98!,

. 7de8q=98!j9r=&lt;r8l!j9!k78!q8e&lt;j, , vol.9

. J9l8e89l89k!l8e=&gt;jkj=9!=f!$@#@^[!r202&amp;#?21n!5b-;-n!^.!k78q?d&lt;!&gt;kd\j&lt;jko!d&gt;&gt;do!,

. D9!78&lt;e!k=!8&gt;kj?dk8!k78!,

!. Qo&gt;kd&lt;&lt;jddkj=9 and . \j=&lt;=sj,

. D&lt;!&gt;d?e&lt;8&gt;^[!a,

. D&gt;&gt;8kk8!kqd9&gt;e=qk8q!s898&gt;w!fq=?!k78!\89-;-!k=!k78!-\8l&gt;jl8^, , vol.7

. Kj=9d&lt;!d&gt;o, 8KQJ8>!=F!EQ=K8D>=?8! KQD9><=

. 8&lt;&lt;&gt;!fq=?!eq=k8j9!?=\j&lt;jko!?de&gt;^-;-!ee#!mmh,

&. =f!7,

#. !. I[! and . L=:\&lt;8h78cd?8qj;!-,-5h4!;=?e&lt;8c!j&gt;!&lt;=dl8l!=9k=!=qjsj9!0/.!l:qj9s!&lt;j;89&gt;j9s!=f!, , vol.8

. 8ko&lt;d&gt;8&gt;!d9l!k78jq!j97j\jk=q&gt;!j9!,

. D&lt;!lj&gt;8d&gt;8&gt;!d9l!j??,

#. I[! and . &gt;kq,

. 7d9s8&gt;!j9!s898!q8s, , p.9

!. and =. L=, , p.98

. Kj=9!?=l:&lt;8^[!xsmp#v2&apos;&apos;n!-txa, 4N[!EE#!5AM5H4PB#! +J<JEEDI=E=:<=>[!2#!D9L!b9DEE[!&#!]5P"BN!^'DQS8KJ9S!\Q=?=L=?DJ9>W!8EJS898KJ

!. Q8dl8q&gt;!=f!-&lt;o&gt;j98!d;8ko&lt;dkj=9^[!@/&apos;#c21#?);3#?%&amp; and (. 1n!&quot;@]tn[!ee#!@@4hta#!-+j&lt;jeedi=e=,

. =s9jkj=9!d9l!&lt;dqs8h&gt;;d&lt;8!&gt;kq:;k:qd&lt;!d9d&lt;o&gt;j&gt;!=f!k78!, D9! \Q=?=L=?DJ9!FD?J<O^[!L2<<N!"BM

. Kjr8!j97j\jkj=9!=f!y1&apos;!\q=?=l=?dj9&gt;^, , p.2

. Q889!q8r8d&lt;&gt;!j9k8ql8e89l89k!q=&lt;8&gt;!f=q!7j&gt;k=98!,

. 7de8q=98&gt;!d9l!d!;7q=?dkj9!-\=,

. 78&gt;w!1&lt;8?89k&gt;!=f!k78!-2q=k8d&gt;=, , p.8

. Dkj=9!=f!?, , pp.8-9

K. &gt;kq:;k:qd&lt;!?=kjf&gt;^[!@;,&lt;2% and #. @b,

, 06#[2<<'-2%<;03###

!. 78q[!&apos;#!-#!d9l!$d9&gt;89[!a# and #. =q8!7j&gt;k=98!kdj&lt;!l=?dj9&gt;!?8ljdk8!=&lt;js=9,

K. &apos;!j9!?dij9s!d9l!\q8dij9s!9,

. =9kdj9j9s!5!d&gt;!d!&lt;ji8&lt;o!lqjr8q!=f!,

. 8&lt;&lt;!eq=&lt;jf8qdkj=9!j9!&lt;,

. =9&gt;8qr8l!\q=?=l=?dj9!...h.&apos;2d&gt;8[!?dj9kdj9&gt;!s&lt;=\d&lt;!, , vol.9

. O!d9l!=qsd9j&gt;dkj=9^,

, ??D<JD9! KJ>>:8>!>:SS8>K>!JK>!Q=<8!J9!?DJ9KDJ9J9S!=F!:9LJFF8Q89KJDK8L!>KDK8!=F!

;. Jdh)d?jq8d and #. ,

. Kjrdk8!et@!\o!kdqs8kj9s!-+, , pp.0-26

!. Mtn[!ee#!mtqd4b#!-!,

. D&lt;8!d;8ko&lt;dkj=9h-l8e89l89k!7j&gt;k=98!8rj;kj=9!l,

. 8q8rj&gt;jd8!*kd4!q8s, <DK8>!7J>K=98!S898! 8CEQ8>>J=9^

. 5ppmn!^.!9=9;d9=9j;d&lt;!-\q=?=l=?dj9!j9!k78!,

. I8kj9s!k78=qo!=f!?8?=qo^[!@/&apos;;)2n!55@]t5pan[!-ee#!txph5#!-3qj, J9S8QH-DQ`:DQLK

. Kj=9!=f!k78!?=&lt;8;:&lt;dq!,

. 7de8q=98!$&gt;e&quot;pb!fq=?!o8d&gt;k^,

$. Dq&gt;kq=?,

K. =f!e:qjfj8l!kdqs8k!eq=k8j9^,

$. and #. &amp;kq=,

. 7de8q=98!98kg=qi&gt;!&gt;7dej9s!;7q=?dkj9!f,

&. &gt;=&lt;,

$. U#!]5pptn!^...h!eq=k8j9&gt;w!7dr8!89sj98[!gj&lt;&lt;!g=qi^,

. K=q!%9k8qd,

. Kj=9&gt;!d9l!2=&gt;kh-kqd9&gt;&lt;dkj=9d&lt;!-=ljfj,

. .. Dkj=9&gt;!j9!k78!)8s:&lt;dkj=9!=f!k78!,

$. Dkk89l=qf[!0#!.#!d9l!zj9l,

&. Pb!, 2D>8! L=?DJ9>!D9L!J9K8QL=?DJ9!;=??:9J

. .. Dkj=9!q8r8d&lt;8l!\o!, , p.9

. 7d9s8!=f!7j&gt;k=98!rdqjd9k!$5.g!q8s,

. $8q&gt;7i=[!.#!d9l! and . J8;7d9=r8q[!.#!, MMXN!^'78!:\J`:JKJ9!>O>K8?^[!A00, vol.21

$. 8gj&gt;7[!0#!)#!d9l!y:qs=o98[!z#!.#!]&quot;m4@n!^ and 7. \o!d!, \H>KQ:;K:Q8#!'78!LJS8>KJ=9!=F! ;7Q=?DKJ9!0, vol.9

, MMXN!^bJ98>J9!D9L!LO98J9!>:E8QFD?J<O!EQ=K8J9>!J9! =QSD98<<8

K. , , vol.8

. =9&gt;8qr8l!dqsj9j98!j9!,

. K&gt;!d&gt;!d9!d&lt;&lt;=&gt;k8qj;!8ff8,

. K=q!f=q!k78!-.&apos;2d&gt;8!d,

;. Kjrjko!=f!k78!dled and . 89k!&gt;,

$. , #. =q&gt;k8j9[!)#!]5pp4n!^,78, and ?. J&gt;kqo!=f!d,

?. 8ko&lt;!kqd9&gt;f8q!\o!7j&gt;k=98!-?=ljfoj9s!89do and . &gt;kq,

. Dkj=9&gt;!f=q!8ff8,

. K=q!l8&gt;js9^,

$. =&lt;&lt;jldo[!)#!]5ppan!^1ejs898kj,

. &gt;w!d!7j&gt;k=qj,

. D&lt;!=r8qrj8g^[!s7%3202&apos;% and . &amp;n!,

#. H%,

$. =q9[!2#!a#!d9l!28k8q&gt;=9[! and #. \j=&lt;=so#!, 7Q=?DKJ9!7JS78Q!=QL8Q!F=<LJ9SHH

!. =ljfj;dkj=9&gt;^[!l-2.#c21n!,

. De8!d9l!q8r8d&lt;!;=?e&lt;8c!kqd9&gt;,

Q. D^, , vol.7

&. , ?=L8<J9S^[!L;))#9&'2

!. Bt@],

. K=q!%9k8qd,

. Kj=9&gt;!d9l!2=&gt;kh-kqd9&gt;&lt;dkj=9d&lt;!-=ljfj,

. .. Dkj=9&gt;!j9!k78!)8s:&lt;dkj=9!=f!k78!,

!. ,

!. I&gt;=9[!c#,

&. ,

. Kj=9w!8rjl89, <8=>=?8!LJ>>=<:KJ=9!L:QJ9S!Q8E<J, vol.8

. Dkj=9!d9l!kqd9&gt;,

. Qjekj=9!d9l!d!&lt;=g!&lt;8r8&lt;!=f!-lj&gt;&gt;=&lt;, , vol.7

. !. J9s!dk!k78!&amp;d;;7dq=?o;8&gt;!;8q8rj&gt;jd8!$-)hk)/ and . \=, , p.9

. Dqji[!a#!d9l!bj?[!&amp;#!$#!,

!. =9k8ck!=f!&apos;78jq!&apos;dqs8k&gt;^[!r202&amp;#em/&amp;2&lt;in!x]xn#!-a=&gt;7j,

D. K8qjdw! and . Tp, HK8Q?J9D<!L=?DJ9!?:KDKJ=9>!J9!,<Eg! :9;=:E<8!>:\>KQDK8!\J9LJ9S!FQ=?!D9!89SDS8?89K!>K8E!Q8

. Kj9s!k=!lqjr8!eq=&lt;jf8qdkj=9!d9l!-&gt;:qrjrd&lt;!=f!kqje&lt;8h98sdkjr8!;8&lt;&lt;&gt;!k7q=:s7!;=9kq=&lt;!=f!yh-o\!d9l!1_$5^,

K. .. Fd and . J&lt;o!=f!.&apos;2d&gt;8&gt;#!-&amp;jk8hljq8;k8l!?:kds898&gt;j&gt;!=f!k78!.&apos;2hl8e89l89k!eq=k8d&gt;8!+k&gt;$^,

. K=q!%w!d!?=&lt;8, <DQ!<J9I!\8KG889!98G<O!>O9K78>Jd8L!7J>K=98>

. 7d&lt;&lt;89s8&gt;!f=q!?:&lt;kje&lt;8!&gt;8-;-!-d&lt;js9?89k!?8k7=l&gt;!j9!k78!7js7hk7q=, /'%,&N!5T, <8=>=?8!Q8?=L8<J9S!J9L:;8L!\O!)/.!E=<O?8QD>8!%%W!<=>>!=F!K78! $5.V$5Y!LJ?8Q!L:QJ9S!KQD9>, vol.8, p.89

#. 7q=?dkj9!&gt;kq:;k:q8w!d!q8e8dkj9s!,

#. Z=q-;-!*#!]&quot;mmmn!^&apos;g89kohfjr8!o8dq&gt;!=f!k78!, , vol.7

. &lt;8!=f!k78!8,

#. and 7. &gt;kq,

#. Xxbn!^6\8q!8j989!e8ek=9dqkjs89!\8&gt;kd9lk8j&lt;!l8&gt;!d8&lt;&lt;i8q9&gt;^,

$. U#!d9l!&amp;d&lt;r8&gt;89[!$#!y#!]5p&quot;tn!^-;-!=r8q8ceq8&gt;&gt;j=9!&lt;j9i&gt;!k=!89qj;7 and ?. D^,

. 8&gt;&gt;j9s!=f!&gt;kd\&lt;8!eq=k8j9!&gt;kq,

. Kj=9!=f!-7j&gt;k=98!s898!kqd9&gt;;qjekj=9!k=!&amp;!e7d&gt;8!\o!e7=&gt;e7=qo&lt;dkj=9!=f!d!;7q=?dkj9!\=,

, 3#!D9L!-D98<OK8[!Z#!]5P"TN!^,7Q=?DKJ9!)8?=L8<8Q>W!+Q=?!+:9

. Kj=9!k=!0o&gt;f,

#. and #. Mxpn!^/,

!. K=!0, , vol.7

!. Z88[!b#!b#!d9l!u=qi?d9[!a#, !. Z#!]5pp4n!^$j&gt;k=98!d;8ko&lt;kqd9&gt;f8qd&gt;8!;=?e&lt;8c8&gt;w!=98!&gt;jd8, and . D&lt;&lt;^,

!. ^2hs&lt;o,

. =eq=k8j9!d&gt;!d!lq:s!kdqs8k!j9!k78!kq8dk?89k!=f!?, <KJLQ:S!

!. Ee#!xthmm#!, 3#G/)32'&N!

!. U#!%#!]&quot;mmxn!^ and Q. Zj, K:Q8!=F! K78!78CD?8QJdDKJ=9!L=?DJ9!=F!/H8K7O<?D<8J?JL8H>89>JKJR8!F:>J=9!EQ=K8J9^

. 8ko&lt;dkj=9!k=!0, ZH?8LJDK8L! $@b4M!?8K7O<DKJ=9^[!L2<<N!"TM]@N[!EE#!TTXH4"#!

. Qjekj=9d&lt;!d?e&lt;jfj,

. Dkj=9!j9!k:?=q!,

. 8&lt;&lt;&gt;!gjk7!8&lt;8rdk8l!;h-o,

^. Zj,

. 8q&gt;!q8r8d&lt;!ljr8q&gt;8!-?:kdkj=9d&lt;!d9l!&gt;e&lt;j,

. J9s!8r89k&gt;^,

#. 7de8q=98&gt;!d9l!0/.^[!@;,&lt;2% and . Bp]55n[!ee#!,

. D&lt;!f, , p.9

. Kj=9!d9l!7j&gt;k=98!q8,

!. =s9jkj=9!=f!fd?j&lt;o!%c and . \q=?=l=?dj9h,

!. .. =9&gt;8qr8l, . 2d&gt;8!*kd4^[!r202&apos;%, and . &amp;n!, MM

K. =f!, <8=>=?8!L89>JKO!\O!K78!, vol.9

!. .. =9&gt;8qr8l, . 2d&gt;8!*kd4^[!f)(, /. #@/&apos;&lt;#a, . 6#p, . %#q#p#an!&quot;px]bmn[!ee#!-;-!ee#!@h-;-mm4n!^ et al.,

. =q8!edqkj,

. &lt;8!dk!5#x!.!q8&gt;=&lt;-;-2n!@xm]aabxn[!ee#!-5t&quot;hap#!-z, , p.9

. 8q8rj&gt;jd8!$&gt;e, , vol.7

. D&gt;8!d,

. Kj=9!=f! and . %hmtx[!d!-98g!lq:s!f=q!eq=&gt;kdk8!,

!. Eq=k8j9&gt;^[!l;))#97%0#p&apos;); and &. Zo,

!. and 7. J&lt;o!=f!;7q=?dkj9!q8?=l8&lt;8q&gt;^[!h;&apos;/&apos;#-c2&amp;n!a&quot;x,

!. Qo&gt;kd&lt;&lt;jddkj=9 and . D&gt;&gt;do^, MM4N!^/H1K7O<?D<8J?JL8H>89>JKJR8!F:>J=9! EQ=K8J9!

. =9kdj9&gt;!7js7!d9l!&lt;=g!dffj9jko!.&apos;2h\j9lj9s!&gt;jk8&gt;!k7dk!dq8!f, , p.9

. Je&lt;8&gt;!=f!d!,

. =q8!l=?dj9!-?=ljfj,

#. Dkj=9&gt;!d9l!k78!q8s:&lt;dkj=9!=f!;7q=?dkj9!&gt;kq-;-!@;,&lt;2% and %. Mn, , p.8

. 8w!;=998;kj9s!;8&lt;&lt;:&lt;dq!-f, , p.9

. Kj=9!k=!lj&gt;8d&gt;8!edk7=s898&gt;j&gt;^[!o#l2&lt;&lt;#p and . %n!, , vol.9

!. +#!]&quot;x4&quot;n!^68\8q!lj8!, J>;78!_:>D??89>8Kd:9S!L8Q!1JK8Qd8<<89^, vol.78

. 0320n!]bn[!ee#!bb&quot;hbap#!--j&lt;&lt;8q,

. D&gt;8!k=!)8r8d&lt;!1&gt;&gt;89kjd&lt;!+8dk:q8&gt;!=f!&amp;kq:;k:q8!d9l!+,

. &gt;!=f!...h!2q=k8j9!+d?j&lt;o!-&amp;kq:;k:q8!d9l!+,

!. D\:9ld9k!eq=k8j9!j9!g89=e:&gt;!==;ok8!-9,

, !Y8, p.6

!. Y#!d9l!.&lt;?=, 8LJDK8L!;7Q=?DKJ9!D>>8?\<O!EDK7GDO!KQJSS8Q8L!\O!>89>J9S!, p.9

!. Y#!]5p&quot;tn!^ and =. &gt;e,

. Kj=9d&lt;!&gt;e8;jfj;jko!=f!-&amp;u%5v&amp;/+5!;&lt;d&gt;&gt;!;7q=?dkj9!q8?=l8&lt;j9s!;=?e&lt;8c8&gt;^,

!. and &. !. 2d&gt;8&gt;w!2q=k8j9!2=&lt;o?8q!0j&gt;d&gt;&gt;8?\&lt;o!--d,

. Kj=9d&lt;!k7jd?j98h-q8eq8&gt;&gt;j\&lt;8!8ceq8&gt;&gt;j=9!r8,

!. , #. , #. , and =. \o!d!-&gt;j9s&lt;8!\q=?=l=?dj9^[!@/&apos;;)2n!ba-;-45abn[!ee#!aabhx#!--=q=d,

7. \&lt;o, N[!EE#!54HB@#! ! 5"M! !

!. 5pptn!^&apos;=gdql&gt;!qdkj=9d&lt;jddkj=9, !. =f!;qo&gt;kd&lt;&lt;jddkj=9, and . F=q!-&gt;?d&lt;&lt;h!k=!?8lj,

!. &lt;d\=qdk=qj8&gt;w!k78!2 and . Va,

!. 7j&gt;k=98!?j?j;^[!@/&apos;;)2n!bax]4@54n[!ee#!,

!. &lt;o?e7=,

7. \o!...h!eq=k8d&gt;8&gt;^,

. Dk8l!j9!-;-!7olq=&lt;o&gt;j&gt;, , vol.9

&. !d9l!...h!.&apos;2d&gt;8&gt;^[!o#p&apos;); and . #m%(&lt;n!&quot;ba-;-!.#!a#!]5pp&quot;n!^...h!&gt;:e8qfd?j&lt;o!.&apos;2d&gt;8&gt;w!;=??=9!&gt;kq:;k:q8hhljr8q&gt;8!-f,

!. \d,

. K8qjd&lt;!...h!-eq=k8d&gt;8&gt;!d9l!eq=k8j9hq8?=l8&lt;&lt;j9s!?d;7j98&gt;^-;-!d!fd;k=q!-k7dk!fd, MMXN!^+

. J&lt;jkdk8&gt;!kqd9&gt;,

. Qjek!8&lt;=9sdkj=9!k7q=, <8=>=?8>^[!L2<<N!M5, pp.7-9

. K=q!+ and . &apos;!;=?eqj&gt;8&gt;!, A!D9L! &&)2"!EQ=K8J9>^, D9!&2, vol.7, p.2

!. Bpp]a4b&quot;n[!ee#!5xbhx#!, , p.8

!. D9l!\j=;78 and ?. , , vol.8

J. D9l!&apos;qdr8q&gt;[!.#!.#!]5pppn!^&apos;78 and !. Dkj,

!. , \KOE8>W!D9!8<:>JR8!

. D&gt;k!=f!;7dqd,

. K8q&gt;!d9l!k78jq!;7dqd;k8qj&gt;kj;&gt;^[!m%-;-#!]5pp4n!^$dk&quot;w!k78!8?8qsj9s!;8&lt;&lt;:&lt;dq!q=&lt;8&gt;!=f!d!koe8!y!7j&gt;k=98!-d-;-mxxn!^%?eq=r8l!k==&lt;&gt;!f=q!\j=&lt;=sj,

. D&lt;!&gt;8-;-!;=?edqj&gt;=9^[!-f)(, /. #@/&apos;&lt;#a, . 6#p, and . %#q#p#an!xt]xn, , vol.8, p.89

. D&lt;!?d,

. 7j98&gt;w!fq=?!?j&lt;&lt;&gt;!k=!?=&lt;8,

#. Idqk[! and . =789[!)#!1#!]5ppbn!^2q=k8d&gt;=?8&gt;!d9l!k78jq!ij9w!eq=k8d&gt;8&gt;!j9!k78!?d;7j98!-ds8^,

, =L=?DJ9!F<8CJ\J<JKO!Q8R8D<>!7J>K=98! E8EKJL8H!D9L!>?D<<!?=<8;:<8!<JSD9LH;=?EDKJ\<8!F=Q?>!=F!

!. @n!^2j9&quot;!eq=?=k8&gt;!7j&gt;k=98!$&quot;!l8e7=&gt;e7=qo&lt;dkj=9!d9l!-&gt;kd\j&lt;jd8&gt; and !. Jk&gt;!\j9lj9s!k=!-;-!^$j&gt;k=98!$&quot;!d9l!;7q=?dkj9!7js78qh=ql8q!&gt;kq-;-!@ql!]5ppan!^l8!+, EE#!5"TH@P#! )8J9\8QS[!0#!D9L!&J?>[!)#!a#

!. , 7. &lt;dk=q!./, and ,. !. Rjd!q8dlj9s!d!-&gt;e8;jfj,

!. Dqi^, , vol.9

. 8h!d9l!;=9f=q?dkj=9hljq8,

. K8l!e=&gt;jkj=9j9s!=f!9, <8=>=?8>!\O!;7Q=?DKJ9H Q8?=L8<J9S!;=?E<8C8>^[!F)

. K8qjd&lt;!897d9;8qh\j9lj9s!-eq=k8j9^[!o#m/,

. =9l89&gt;dkj=9w!l=8&gt;!7j&gt;k=98!$&quot;!-l8e7=&gt;e7=qo&lt;dkj=9!e&lt;do!d!q=&lt;8i^,

&. Kj=9!em4!...!.&apos;2d&gt;8!-l:qj9s!jk&gt;!.&apos;2d&gt;8!;o;&lt;8^[!@/&apos;#p&apos;); and . &lt;n!m,

. Kjrdkj=9!=f!s8q?&lt;j98!d9l!e&lt;d,

. 89kd&lt;!s898&gt;!jl89kjfj8&gt;!dssq8&gt;&gt;jr8!?8kd&gt;kd&gt;j&gt;heq=98!-&lt;, , pp.0-26

!. Xan[!ee#!&quot;xaqdaa#!-)=:&gt;&gt;8d:c[!&amp;#!d9l!b7=, ;. , and 7. Yj=&lt;=so^,

. &lt;8!.&apos;2d&gt;8&gt;!q8r8d&lt;!?:&lt;kje&lt;8!q=&lt;8&gt;!f=q!-;-jq8l!k=!-q8;q:jk!&amp;ek&quot;ah2=\@!k=!f=q?!o+ and . &apos;!;=?e&lt;8c8&gt;!d9l!k=!q8=qsd9jd8, , vol.9

. K=q!]/&amp;+n!?8ljdk8l!lj&gt;d&gt;&gt;8?\&lt;o!=f!&amp;,

!. K7q=,

. Kj=9!=f!em4!d9l!28c&quot;va!-&apos;oe8!%%!,

. Dk=q&gt;!=f!2%@!ij9d&gt;8!-d,

. Kjrdkj=9^[!f)(, /. #@/&apos;&lt;#a, %. 6#p, and . Pa,

;. &amp;d&gt;dj[!/#!d9l!08f=&gt;&gt;8d-;-!2#!.#!]5ppmn!^-d9o!edk7&gt;!k=!=98!s=d&lt;i, 78!EQ=K8J9>!K7DK!Q8;=S9Jd8! ?

. 7j98&gt;!=f!eq=k8j9!-l8&gt;kq,

!. Q8,

&. Dkj=9!j9!k78!o8d&gt;k!&amp;d;;7dq=?o;8&gt;!;8q8rj&gt;jd8^[!r202&apos;% and . Bn[!ee#!&quot;tm@hapa#!-&amp;,

. =s9jkj=9!\o!k78!...h!;7de8q=98!, &. &lt;ey^[!@/&apos;#p&apos;);, and . #h(&lt;#m%(&lt;n!,

!. S898!8ceq8&gt;&gt;j=9!\:k!-9=k!s&lt;=\d&lt;!kqd9&gt;,

. Qjekj=9!j9!rjr=^-;-!l2&lt;&lt;n!xa]@n[!ee#!b4thx@#!-&amp;7j\d7dqd, MMMN!^), p.8

.. J&lt;jkdk8&gt;!, #. +h&quot;h;=:e&lt;8l!j978qjkd9-;-!, &. Bhb, and . &gt;kq,

!. .. 8&gt;&gt;j9s!e=q8!=f!k78! and . .h!.&apos;2d&gt;8!j9!k78!q8;=s9jkj=9!d9l!89sds8?89k!=f!&gt;e8;jfj;!eq=k8j9!&gt;-;-!-r202&amp;#?21n!&quot;x]bn[!ee#!@amh4b#!-&amp;j?&gt;[!a#!b#!d9l!udl8-;-!2#!.#!]5p, N!^&9DE&7=KW!,7Q=?DKJ9!Q8?=L8<J9SW!,$0^, p.8

#. &amp;=9s[!,#[!ud9s[!k#!d9l!zj[! and #. 5pp@n!^.&apos;2d&gt;8!d,

. Kjrjko!=f!em4hrd&lt;=&gt;j9h,

. =9kdj9j9s!eq=k8j9!-]c, 2N#!05!?8LJDK8>!K78!?De=Q!89dO?8!D

&. .. Q889!f=q!l=?j9d9k!98sdkjr8!-?:kd9k&gt;!=f!&amp;1,

!. &amp;k8j98q[!+#!.#!d9l!$89ji=ff[!&amp;#!]5p&quot;tn!^0jr8q&gt;jko!j9!k78!=qsd9jddkj=9 and . =f!,

. &amp;k=i8&gt;[!0#!3#!d9l!28qqo,

. *#!-&apos;d,

!. K8qjddkj=9 and . =f!;7q=?dkj9!;=?e&lt;8c8&gt;!-dk!d!\=, , p.5

!. @#&quot;!d9l!$@#@!-;=?e&lt;8c8&gt;!?8ljdk8!9, <8=>=?8!D>>8?\<O!EDK7GDO>!L8E89L89K!=Q!J9L8E89L89K!=F! 0/.!>O9K78>J>^

. 8&lt;&lt;&gt;!fq=?!?=, , pp.8-8

!. \o!7j&gt;k=98!-rdqjd9k&gt;^,

!. S898&gt;!&gt;kq:;k:qd&lt;&lt;o!-q8&lt;dk8l!k=!k78!o8d&gt;k!kqd9&gt;,

. Qjekj=9d&lt;!d,

. Dkj=9!=f!a4!7j&gt;k=98!?dqi&gt;!d9l!7j&gt;k=98!&lt;o&gt;j98!;q=k=9o&lt;dkj=9!d&gt;!-d!98g!koe8!=f!7j&gt;k=98!?=ljfj;dkj=9^[!l2&lt;&lt;n!&quot;ba]an[!ee#!, MMAN!^.!?D??D<JD9!7J>K=98!L8D

. =&lt;j!+k&gt;$!eq=k8j9!j&gt;!d!eq=idqo=kj;!?8?\8q!=f!d!eq=k8j9!fd?j&lt;o!-=f!e:kdkjr8!, 2D>8>!J9R=<R8L!J9!?8?\QD98!F:9

. =q8!7j&gt;k=98!d;8ko&lt;dkj=9!lqd?dkj,

. D&lt;&lt;o!897d9;8&gt;!kqd9&gt;,

. !. Qjekj=9!=f!9-;-&lt;8=&gt;=?d&lt;!dqqdo&gt;!-\o!)/ and . E=&lt;o?8qd&gt;8!%%%^,

. =lj9s!k78!9, <8=>=?8^[!L2<<N!4T

. Dkj=9!=f!d!&lt;dqs8!;qo=h1-!ldkd&gt;8k!l8fj98&gt;!k78!-;=9f=q?dkj=9d&lt;!&lt;d9l&gt;,

. De8!=f!k78!5a&amp;!eq=k8d&gt;=?8^[!f)(, /. #@/&apos;&lt;#a, . 6#p, and . %#q#p#an!, TN[! EE#!TTBBHM#! 6Q\D9

, 8EK=Q!08Q8S:<DKJ=9! 0QJR8>!YQ=?=L=?DJ9H-8LJDK8L!,7Q=?DKJ9!.<K8QDKJ=9>!J9!2Q=>KDK8!,D9;8Q^[!L2<<#C27N! "M

!. #!0#!d9l!-j&lt;&lt;jsd9[!)#!.#!]5pppn!^&apos;78 and . Gdo!k7j9s&gt;!?=r8w!&lt;==ij9s!:9l8q!k78!7==l!=f!-?=&lt;8,

. 8ko&lt;dkj=9w!fq=?!s898!q8s:&lt;dkj=9!k=!-8ejs898kj,

. #!a#!]5pp5n!^)=&lt;8!=f!)e9-;-!-l8sqdldkj=9!\o!k78!5a&amp;!eq=k8d&gt;=?8^[!p,%20, !. 2n!5mx]ttm@n[!ee#!a-;-ht#!-udllj9sk=9[!,#!$#!]&quot;mb5dn!^,d9d&lt;jddkj=9, and . =f!d;`:jq8l!-;7dqd;k8q&gt;^[!&quot;tp[!ee#!ta@!j!tat#!-udllj9sk=9[!,#!$#!, !?8KD<<=EQ=K8D>8!J9!L8:\J`:JKJ9DKJ=9!D9L, vol.8

. Dk8&gt;!e==q!-eq=s9=&gt;j&gt;^,

H. , &. , and !. ?=&lt;8, N!^&KQ:;K:Q8!D9L!?8;7D9J>?! =F!K78!78CD?8QJ;!-8, 8CD?8QJdDKJ=9!=F!EM4Hc,2!J>!EQ=?=K8L!\O!

. D&lt;!d;kjrjkj8&gt;^[!m%,

2. Kjr8&gt;!=9!em4hc and . D&lt;!f,

!. , #. , and #. J&gt;!&gt;kd\&lt;8!d9l!9,

. &lt;8!=f!em4hc,

K. Dqo!\q8d&gt;k!;d9;8q^[!v/,

. Kjrjko!=f!k78!, D9!;7Q=?DKJ9!Q8?=L8<8Q! ,$0B^[!O#H(<#M%(<N!B55, vol.7

. Udk&gt;=9[!a#!0#!d9l! and . Qj;i[!+#!$#!]&quot;mt@dn!^-=&lt;8;:&lt;dq!&gt;kq:;k:q8!=f!9, , p.8

. !d;,

!. Jl&gt;m and . &gt;kq:;k:q8!f=q!-l8=coqj\=&gt;8!9, , p.8

!. Jl^,

. Udk&gt;=9[!a#!0#!d9l!, !. Qj;i[!+#!$#!]&quot;mt@\n!^&apos;78, and . &gt;kq,

. =9kdj9j9s!eq=k8j9^[!@/&apos;#r202&apos;n!@a]bn[!ee#!@44hx&quot;#!,

!. #!]5pp@n!^, !. 7dqd;k8qjddkj=9, and . =f!d!kqde!?:kd9k!-=f!k78!,

. I[!-#!d9l!b, , p.8

. .. Kj=9!=f!k78!, , vol.9

.. =q8!]1 and . D&gt;&gt;=,

!. Jdk8&gt;!gjk7!?dqi8q&gt;!=f!8ejk78&lt;jd&lt;h?8&gt;89;7o?d&lt;!kqd9&gt;jkj=9!d9l!2%@b and . D&lt;k8qdkj=9&gt;^,

D. %20 and . 2n!@b@]a&quot;aan,

. 7de8q=98!+ and . &apos;w!&gt;kq:;k:qd&lt;!j9&gt;js7k&gt;!d9l!-?8;7d9j&gt;?&gt;!f=q!9, <8=>=?8!Q8=QSD9JdDKJ=9^

/. !. 8q8rj&gt;jd8!0 and . E=&lt;o?8qd&gt;8!d&lt;e7d!-;dkd&lt;okj;!&gt;:\:9jk!j9k8qd,

L. K&gt;!gjk7!,

!. U=&lt;f[!&amp;#!&amp;#!]5ppmn!^&apos;78 and . D\=:k!f,

. Kjr8&gt;!d9l!k78!e7o&gt;j=&lt;=sj,

. D&lt;!q=&lt;8!j9!, D9>^[!L2<<#H(<#V%+2#P,%N!AA

. =ej9s!gjk7!?:&lt;kje&lt;8!jl89kjkj8&gt;^[!o#l2&lt;&lt;#p and . %n!,

. Dkj=9!=f!k, =Q!>:EEQ8>>=Q>! D9L!=9

. =s898&gt;!fq=?!s89=?j;!d9l!8ejs898kj;!f8dk,

. =s898!.-;-!k=!j9f&lt;-;-!78edk=;8&lt;&lt;:&lt;dq!;dq;j9=?d!-eq=&lt;jf8qdkj=9!d9l!?8kd&gt;kd&gt;j&gt;^, , vol.8, p.89

!. =f!, 05!Q8S:<DK8>!K78!$7!EDK7GDO!J9!7:?D9!78EDK=

. 5ppbn!^&apos;7q88hlj?89&gt;j=9d&lt;!&gt;kq:;k:qd&lt;!rj8g&gt;!=f!-\qd9, , pp.97-97

P. and &. #m%,

. 89k!dlrd9,

. 8&gt;!j9!em4vc, L. 2v, and . Bx!;8&lt;&lt;:&lt;dq!-f, , p.9

*. D9s[!g#!a#!d9l!&amp;8k=[!1#!]5pp4n!^$.&apos;&gt;!d9l!$0 and . &gt;w!fq=?!&gt;kq,

. Kj=9!d9l!q8s:&lt;dkj=9!k=!-9=r8&lt;!&gt;kqdk8sj8&gt;!f=q!k78qdeo!d9l!eq8r89kj=9^,

. 8ko&lt;d&gt;8&gt;w!fq=?!\d;k8qjd!-d9l!o8d&gt;k!k=!?j,

*. D=[!&apos;#!d9l! and . =789[!)#!1#!]5pp5n!^.!;qoekj,

!. Eq=k8d&gt;8!;=:e&lt;8&gt;!l8,

#. , , p.9

. .. Kj=9&gt;!gjk7!d!;=??=9!q8s:&lt;dk=qw!:\j`:jkj9!kdi8&gt;!;=??d9l!=f!d9!,

#. &amp;#,

&. \o!7j&gt;k=98!-?=ljfj;dkj=9&gt;^,

. &lt;8!=f!k78!eq=k8d&gt;=?8!fq=?!-8k7d9=,

, !1#!]5P"AN!^.9!(R8QRJ8G!=F!,7Q=?DKJ9H )8S:<DKJ9S!2Q=K8J9>!J9!, p.8

. 7^!eq=rjl8&gt;!d!&lt;j9i!\8kg889!.&apos;2d&gt;8!-d,

&. Kjrjko!d9l!&lt;jsd9l!\j9lj9s!j9!...h!eq=k8j9&gt;^[!@/&apos;#p&apos;); and . #h(&lt;#m%(&lt;n!&quot;t,

. Kj=9&gt;!=f!k78!,

. =q8!7j&gt;k=98!kdj&lt;!-l=?dj9&gt;^[!m%-;-&amp;n!ax]bn[!ee#!t@mhba#!-_=,

,. !. ==qlj9dk8l!\o!\q=?=l=?dj9!eq=k8j9!./ and . D9l!-7j&gt;k=98!?8k7o&lt;kqd9&gt;f8qd&gt;8!-zz!f=q!\q8d&gt;k!,

.. Kjrdk=q!./ and . _=,

, KJRDK=Q!F=Q!1)D<E7D[!J>!Q8`:JQ8L!F=Q!, vol.8, p.9

. O!d9l!;7q=?dkj9!?=ljfj;dkj=9^[!f)(, /. #@/&apos;&lt;#a, . 6#p, and . %#q#p#an!&quot;pb]ban[!ee#!, XPA4H 45#! _:9L8Q[!)#!-#!D9L!)J98

K. 7j&gt;k=98&gt;,

. =9kq=&lt;!=f!7j&gt;k=98!s898!8ceq8&gt;&gt;j=9^,