A. Bernard, J. M. Gérard, M. Krakowski, O. Parillaud, B. Gérard et al.,

A. Bernard, M. Ravaro, I. Roland, J. M. Gérard, M. Krakowski et al.,

I. Gérard, G. Favero, and . Leo, Mid-infrared optical characterization of InGaAsP

A. Bernard, M. Ravaro, I. Roland, J. M. Gérard, M. Krakowski et al.,

I. Gérard, G. Favero, and . Leo, Widely tunable quantum dot source around 3 µm, 2017.

A. Bernard, S. Mariani, A. Andronico, J. M. Gerard, M. Kamp et al., Quantum-dot-based integrated non-linear sources, IET Optoelectronics, vol.2, issue.2, pp.82-87, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587152

A. Bernard, M. Ravaro, I. Roland, J. M. Gérard, M. Krakowski et al.,

I. Gérard, G. Favero, and . Leo, Parametric quantum-dash source around 3 µm". In Mid-Infrared Coherent Sources and Applications. Oral presentation. Mar, 2018.

A. Bernard, J. M. Gérard, M. Kamp, I. Favero, S. Ducci et al., Diode OPO à boîtes quantiques". Poster, 2015.

A. Bernard, J. M. Gérard, M. Kamp, I. Favero, S. Ducci et al., Ecole d'été sur l'Optique non linéaire, Les Houches, Diode OPO à boîtes quantiques

A. Bernard, J. M. Gérard, M. Kamp, I. Favero, S. Ducci et al., Journée Ruptures Technologiques en Optoélectronique, Diode OPO à boîtes quantiques, 2014.

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, pp.493-494, 1960.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, STIMULATED EMISSION OF RADIATION FROM GaAs p-n JUNCTIONS

, Phys. Lett, vol.1, issue.3, pp.62-64, 1962.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Coherent Light Emission From GaAs Junctions, Phys. Rev. Lett, vol.9, issue.9, pp.366-368, 1962.

H. Rong, An all-silicon Raman laser, Nature, vol.433, issue.7023, p.292, 2005.

Z. Zhou, B. Yin, and J. Michel, On-chip light sources for silicon photonics

, Light Sci. Appl, vol.4, issue.11, pp.358-358, 2015.

Y. B. Bolkhovityanov and O. P. Pchelyakov, GaAs epitaxy on Si substrates: modern status of research and engineering, Phys.-Uspekhi, vol.51, issue.5, pp.437-456, 2008.

S. Nakamura, M. Senoh, and T. Mukai, High-power InGaN/GaN doubleheterostructure violet light emitting diodes, Appl. Phys. Lett, vol.62, issue.19, pp.2390-2392, 1993.

R. Kazarinov, Possibility of amplification of electromagnetic waves in a semiconductor with superlattice, Sov Phys-Semicond, vol.5, issue.4, pp.707-709, 1971.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson et al., Quantum Cascade Laser, Science, vol.264, issue.5158, pp.553-556, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00156810

M. S. Vitiello, G. Scalari, B. Williams, and P. Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express, vol.23, issue.4, p.5167, 2015.

R. Q. Yang, Infrared laser based on intersubband transitions in quantum wells, Superlattices Microstruct, vol.17, issue.1, pp.77-83, 1995.

C. Lin, Type-II interband quantum cascade laser at 3.8 µm

, Electron. Lett, vol.33, issue.7, pp.598-599, 1997.

M. Kim, Interband cascade laser emitting at ?=3.75 µm in continuous wave above room temperature, Appl. Phys. Lett, vol.92, issue.19, p.191110, 2008.

, Available: en.wikipedia.org/wiki/Quantum_cascade_laser, p.12, 2018.

, Next generation mid-infrared Chemical and Biological Sensors

, infrared-chemical-and-biological-sensors-combining-quantum-cascade-lasers-thin-f, p.12, 2018.

. Scholle, 2 µm Laser Sources and Their Possible Applications |

. Intechopen, Frontiers in Guided Wave Optics and Optoelectronics, 2010.

S. P. Siebenaler, A. M. Janka, D. Lyon, J. P. Edlebeck, and A. E. Nowlan, Methane Detectors Challenge: Low-Cost Continuous Emissions Monitoring

S. V003t04a013, , 2016.

C. Wang and P. Sahay, Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits, Sensors, vol.9, issue.10, pp.8230-8262, 2009.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. G. Chu et al.,

. Cho, Short wavelength (??3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs, Appl. Phys. Lett, vol.72, issue.6, pp.680-682, 1998.

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, Very short wavelength (?=3.1-3.3µm) quantum cascade lasers, Appl. Phys. Lett, vol.89, issue.19, p.191115, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00329575

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, InAs?AlSb quantum cascade lasers emitting at 2.75-2.97µm, Appl. Phys. Lett, vol.91, issue.25, p.251102, 2007.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, Quantum cascade lasers emitting near 2.6 µm, Appl. Phys. Lett, vol.96, issue.14, p.141110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01826618

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken et al., Room temperature continuous wave operation of ? ? 3-3.2 µm quantum cascade lasers, Appl. Phys. Lett, vol.101, issue.24, p.241110, 2012.

Q. Gaimard, L. Cerutti, R. Teissier, and A. Vicet, Distributed feedback GaSb based laser diodes with buried grating, Appl. Phys. Lett, vol.104, issue.16, p.161111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01623734

T. Milde, New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications, Novel In-Plane Semiconductor Lasers XVII, vol.10553, p.105530, 2018.

K. M. Manfred, G. A. Ritchie, N. Lang, J. Röpcke, and J. H. Van-helden, Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser, Appl. Phys. Lett, vol.106, issue.22, p.221106, 2015.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin et al., Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser, Appl. Phys. Lett, vol.108, issue.1, p.11106, 2016.

P. Rauter and F. Capasso, Multi-wavelength quantum cascade laser arrays

, Multi-wavelength quantum cascade laser arrays, Laser Photonics Rev, vol.9, issue.5, pp.452-477, 2015.

B. G. Lee, Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, Appl. Phys. Lett, vol.91, issue.23, p.231101, 2007.

N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi, Ultra-broadband quantum cascade laser, tunable over 760 cm -1 with balanced gain, Opt. Express, vol.23, issue.16, p.21159, 2015.

G. N. Rao and A. Karpf, External cavity tunable quantum cascade lasers and their applications to trace gas monitoring, Appl. Opt, vol.50, issue.4, pp.100-115, 2011.

R. Ostendorf, Real-time spectroscopic sensing using a widely tunable external cavity-QCL with MOEMS diffraction grating, Quantum Sensing and Nano Electronics and Photonics XIII, vol.9755, p.975507, 2016.

D. Caffey, Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers, Opt. Express, vol.18, issue.15, pp.15691-15696, 2010.

N. Owschimikow, Resonant Second-Order Nonlinear Optical Processes in Quantum Cascade Lasers, Phys. Rev. Lett, vol.90, issue.4, p.43902, 2003.

C. , Optimized second-harmonic generation in quantum cascade lasers, IEEE J. Quantum Electron, vol.39, issue.11, pp.1345-1355, 2003.

J. Peng, Developments of mid-infrared optical parametric oscillators for spectroscopic sensing: a review, Opt. Eng, vol.53, issue.6, pp.61613-061613, 2014.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn et al.,

M. Harren, Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing, Laser Photonics Rev, vol.7, issue.2, pp.188-206, 2013.

J. A. Giordmaine and R. C. Miller, Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies, Phys. Rev. Lett, vol.14, issue.24, pp.973-976, 1965.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett, vol.62, issue.5, pp.435-436, 1993.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev, vol.127, issue.6, pp.1918-1939, 1962.

W. Sohler, Integrated Optical Devices in Lithium Niobate

, Photonics News, vol.19, issue.1, pp.24-31, 2008.

C. C. Lee and H. Y. Fan, Second-harmonic generation in InSb, InP

A. , Phys. Rev. B, vol.10, issue.2, pp.703-709, 1974.

L. A. Eyres, All-epitaxial fabrication of thick

, GaAs films for nonlinear optical frequency conversion, Appl. Phys. Lett, vol.79, issue.7, pp.904-906, 2001.

K. L. Vodopyanov, Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format, Opt. Express, vol.14, issue.6, pp.2263-2276, 2006.

A. Grisard, F. Gutty, E. Lallier, and B. Gérard, Compact fiber laser-pumped mid-infrared source based on orientation-patterned Gallium Arsenide, Technologies for Optical Countermeasures VII, vol.7836, p.783606, 2010.

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser, Opt. Lett, vol.34, issue.3, pp.262-264, 2009.

M. B. Oron, P. Blau, S. Pearl, and M. Katz, Optical parametric oscillation in orientation patterned GaAs waveguides, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XI, vol.8240, p.82400, 2012.

S. Roux, Low-loss orientation-patterned GaSb waveguides for midinfrared parametric conversion, Opt. Mater. Express, vol.7, issue.8, p.3011, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626879

S. Guha, J. O. Barnes, and P. G. Schunemann, Mid-wave infrared generation

G. Phosphide, Opt. Mater. Express, vol.5, issue.12, p.2911, 2015.

J. Hite, Development of periodically oriented gallium nitride for nonlinear optics, Opt. Mater. Express, vol.2, issue.9, pp.1203-1208, 2012.

J. P. Van-der-ziel and A. C. Gossard, Optical birefringence of ultrathin

, AlxGa1?xAs/GaAs multilayer heterostructures, J. Appl. Phys, vol.49, issue.5, pp.2919-2921, 1978.

A. Fiore, Second-harmonic generation at ?=1.6 µm in AlGaAs/Al2O3

, waveguides using birefringence phase matching, Appl. Phys. Lett, vol.72, issue.23, pp.2942-2944, 1998.

M. Savanier, Near-infrared optical parametric oscillator in a III-V semiconductor waveguide, Appl. Phys. Lett, vol.103, issue.26, p.261105, 2013.

J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared, Opt. Lett, vol.33, issue.24, pp.2904-2906, 2008.

A. S. Helmy, Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications, Opt. Express, vol.14, issue.3, pp.1243-1252, 2006.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy et al., Monolithic Source of Photon Pairs, Phys. Rev. Lett, vol.108, issue.15, p.153605, 2012.

F. Boitier, Electrically Injected Photon-Pair Source at Room Temperature, Phys. Rev. Lett, vol.112, issue.18, 2014.

M. L. Iu, Efficient frequency conversion over S-C-L-U bands within an electrically pumped chip using ? 2, Photonics Conference (IPC) Part II, pp.1-2, 2017.

P. Abolghasem, D. Kang, D. F. Logan, M. Lungwitz, and A. S. Helmy, Widely tunable frequency conversion in monolithic semiconductor waveguides at 2.4 µm, Opt. Lett, vol.39, issue.12, pp.3591-3594, 2014.

N. Zareian and A. S. Helmy, Static and dynamic characteristics of integrated semiconductor optical parametric oscillators, J. Opt. Soc. Am. B, vol.30, issue.8, p.2306, 2013.

A. Andronico, J. M. Gérard, I. Favero, S. Ducci, and G. Leo, Quantum Dot parametric source, Opt. Commun, vol.327, pp.27-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01990191

J. M. Gérard, O. Cabrol, and B. Sermage, InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si, Appl. Phys. Lett, vol.68, issue.22, pp.3123-3125, 1996.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of

, Optical Harmonics, Phys. Rev. Lett, vol.7, issue.4, pp.118-119, 1961.

R. W. Boyd, Nonlinear Optics, 2003.

W. Suhura, . Nonlinear-optic, and . Devices, , 2003.

R. L. Sutherland, Handbook of Nonlinear Optics, 2003.

G. Bava, I. Montrosset, W. Sohler, and H. Suche, Numerical modeling of

, Ti:LiNbO3 integrated optical parametric oscillators, IEEE J. Quantum Electron, vol.23, issue.1, pp.42-51, 1987.

C. Ozanam, Oscillateur paramétrique optique en guides d'ondes

. Algaas/alox, , 2015.

A. Yariv, Quantum electronics, 1989.

J. Bjorkholm, A. Ashkin, and R. Smith, Improvement of optical parametric oscillators by nonresonant pump reflection, IEEE J. Quantum Electron, vol.6, issue.12, pp.797-799, 1970.

T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, Type-II continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics, JOSA B, vol.10, issue.9, pp.1668-1680, 1993.

M. Oshman and S. Harris, Theory of optical parametric oscillation internal to the laser cavity, IEEE J. Quantum Electron, vol.4, issue.8, pp.491-502, 1968.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maître, and C. Fabre, Ultra-low threshold CW triply resonant OPO in the near infrared using periodically poled lithium niobate, J. Opt. Pure Appl. Opt, vol.3, issue.4, p.300, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00002524

L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu et al., Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities, Opt. Lett, vol.31, issue.24, pp.3626-3628, 2006.

E. Rosencher, B. Vinter, and O. , , 2002.

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras et al., Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs, Opt. Lett, vol.35, issue.4, pp.505-507, 2010.

S. Vasilyev, Broadly tunable single-frequency CW mid-infrared source with milliwatt-level output based on difference-frequency generation in orientationpatterned GaAs, Opt. Lett, vol.33, issue.13, pp.1413-1415, 2008.

X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, Efficient continuous wave second harmonic generation pumped at 1.55 µm in quasi-phasematched AlGaAs waveguides, Opt. Express, vol.13, issue.26, pp.10742-10748, 2005.

M. W. Street, Modification of the second-order optical nonlinearities in AlGaAs asymmetric multiple quantum well waveguides by quantum well intermixing, Appl. Phys. Lett, vol.70, issue.21, pp.2804-2806, 1997.

A. S. Helmy, Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing

, Lett, vol.25, issue.18, pp.1370-1372, 2000.

M. John and H. , Quantum Well Intermixing Revolutionizes High Power Laser Diodes, Laser Tech. J, vol.4, issue.5, pp.32-35, 2007.

Y. Dumeige and P. Féron, Whispering-gallery-mode analysis of phasematched doubly resonant second-harmonic generation, Phys. Rev. A, vol.74, issue.6, p.63804, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00277617

N. Morais, Directionally induced quasi-phase matching in homogeneous AlGaAs waveguides, Opt. Lett, vol.42, issue.21, pp.4287-4290, 2017.

I. Biaggio, V. Coda, and G. Montemezzani, Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides, Phys. Rev. A, vol.90, issue.4, p.43816, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01244425

A. S. Helmy, B. Bijlani, and P. Abolghasem, Phase matching in monolithic

, Bragg reflection waveguides, Opt. Lett, vol.32, issue.16, pp.2399-2401, 2007.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, vol.218, 2012.

J. M. Gérard, J. B. Génin, J. Lefebvre, J. M. Moison, N. Lebouché et al.,

. Barthe, Optical investigation of the self-organized growth of InAs/GaAs quantum boxes, J. Cryst. Growth, vol.150, pp.351-356, 1995.

T. W. Schlereth, C. Schneider, W. Kaiser, S. Höfling, and A. Forchel, Low threshold, high gain AlGaInAs quantum dot lasers, Appl. Phys. Lett, vol.90, issue.22, p.221113, 2007.

P. K. Tien, Light Waves in Thin Films and Integrated Optics, Appl. Opt, vol.10, issue.11, pp.2395-2413, 1971.

A. D. Rossi, Measuring propagation loss in a multimode semiconductor waveguide, J. Appl. Phys, vol.97, issue.7, p.73105, 2005.

P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, Quantum dot lasers: From promise to high-performance devices, J. Cryst. Growth, vol.311, issue.7, pp.1625-1631, 2009.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2007.

Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett, vol.40, issue.11, pp.939-941, 1982.

M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and the threshold of threedimensional quantum-box lasers, IEEE J. Quantum Electron, vol.22, issue.9, pp.1915-1921, 1986.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. Mao et al.,

. Bimberg, Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection, Appl. Phys. Lett, vol.76, issue.11, pp.1380-1382, 2000.

M. Sugawara, K. Mukai, Y. Nakata, K. Otsubo, and H. Ishilkawa, Performance and physics of quantum-dot lasers with self-assembled columnarshaped and 1.3-/spl mu/m emitting InGaAs quantum dots, IEEE J. Sel. Top. Quantum Electron, vol.6, issue.3, pp.462-474, 2000.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, GaAs-Based Quantum Dot Lasers, Semiconductors and Semimetals, vol.86, pp.371-417, 2012.

J. Wu, S. Chen, A. Seeds, and H. Liu, Quantum dot optoelectronic devices: lasers, photodetectors and solar cells, J. Phys. Appl. Phys, vol.48, issue.36, p.363001, 2015.

J. P. Reithmaier and A. Forchel, Recent advances in semiconductor quantum-dot lasers, Comptes Rendus Phys, vol.4, issue.6, pp.611-619, 2003.

S. G. Li, A review of external cavity-coupled quantum dot lasers, Opt. Quantum Electron, vol.46, issue.5, pp.623-640, 2014.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni et al.,

. Montrosset, Optical gain properties of InAs?InAlGaAs?InP quantum dash structures with a spectral gain bandwidth of more than 300 nm, Appl. Phys. Lett, vol.89, issue.6, p.61107, 2006.

S. A. Moore, L. O'faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar et al.,

F. Krauss, Reduced surface sidewall recombination and diffusion in quantum-dot lasers, IEEE Photonics Technol. Lett, vol.18, issue.17, pp.1861-1863, 2006.

M. Munsch, Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes, Appl. Phys. Lett, vol.100, issue.3, p.31111, 2012.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers, Appl. Phys. Lett, vol.73, issue.7, pp.969-971, 1998.

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, High-Frequency Modulation Characteristics of 1.3 µm Quantum Dot Lasers, IEEE Photonics Technol. Lett, vol.16, issue.2, pp.377-379, 2004.

Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F. Lester, High-performance InAs quantum-dot lasers near 1.3 µm, Appl. Phys. Lett, vol.79, issue.22, pp.3570-3572, 2001.

A. D. Lee, T. Wang, F. Pozzi, A. J. Seeds, and H. Liu, A room temperature electrically pumped 1.3-µm InAs quantum dot laser monolithically grown on silicon substrates, 8th IEEE International Conference on Group IV Photonics, pp.184-186, 2011.

G. Bastard, Wave mechanics applied to semiconductor heterostructures, 1990.

S. Cortez, O. Krebs, P. Voisin, and J. M. Gérard, Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots, Phys. Rev. B, vol.63, issue.23, 2001.

M. Zieli?ski, Fine structure of light-hole excitons in nanowire quantum dots, Phys. Rev. B, vol.88, issue.11, 2013.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen et al.,

. Sigg, The refractive index of AlxGa1?xAs below the band gap: Accurate determination and empirical modeling, J. Appl. Phys, vol.87, issue.11, pp.7825-7837, 2000.

M. A. Afromowitz, Refractive index of Ga1?xAlxAs, Solid State Commun, vol.15, issue.1, pp.59-63, 1974.

S. Seifert and P. Runge, Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region, Opt. Mater. Express, vol.6, issue.2, pp.629-639, 2016.

G. D. Pettit and W. J. Turner, Refractive Index of InP, J. Appl. Phys, vol.36, issue.6, pp.2081-2081, 1965.

S. H. Wemple and M. Didomenico, Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials, Phys. Rev. B, vol.3, issue.4, pp.1338-1351, 1971.

F. Heinrichsdorff, Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition, Appl. Phys. Lett, vol.71, issue.1, pp.22-24, 1997.

L. Landin, Optical investigation of InAs/InP quantum dots at different temperatures and under electric field, Thin Solid Films, vol.364, issue.1-2, pp.161-164, 2000.

T. Ikegami, Reflectivity of mode at facet and oscillation mode in doubleheterostructure injection lasers, IEEE J. Quantum Electron, vol.8, issue.6, pp.470-476, 1972.

J. E. Ripper, J. C. Dyment, L. A. D'asaro, and T. L. Paoli, Stripe-geometry double-heterostructure junction lasers: mode structure and CW operation above room temperature, Appl. Phys. Lett, vol.18, issue.4, pp.155-157, 1971.

S. Rapp, Long-wavelength vertical-cavity lasers based on InP/GaInAsP Bragg reflectors, 1999.

T. Dupont, Réalisation de sources laser III-V sur silicium, 2011.

S. Adachi, Physical Properties of III-V Semiconductor Compounds, 1992.

S. W. Corzine, R. H. Yan, and L. A. Coldren,

, InGaAs/AlGaAs quantum wells including valence-band mixing effects, Appl. Phys. Lett, vol.57, issue.26, pp.2835-2837, 1990.

J. S. Osinski, Y. Zou, P. Grodzinski, A. Mathur, and P. D. Dapkus, Lowthreshold-current-density 1.5 µm lasers using compressively strained InGaAsP quantum wells, IEEE Photonics Technol. Lett, vol.4, issue.1, pp.10-13, 1992.

F. Klopf, J. P. Reithmaier, and A. Forchel, Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers, Appl. Phys. Lett, vol.77, issue.10, pp.1419-1421, 2000.

F. Lelarge, Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 µm, IEEE J. Sel. Top. Quantum Electron, vol.13, issue.1, pp.111-124, 2007.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, Quantum dot laser diode with low threshold and low internal loss, Electron. Lett, vol.45, issue.1, pp.54-56, 2009.

B. Broberg and S. Lindgren, Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region, J. Appl. Phys, vol.55, issue.9, pp.3376-3381, 1984.

M. Amiotti and G. Landgren, Ellipsometric determination of thickness and refractive index at 1.3, 1.55, and 1.7 µm for In(1?x)GaxAsyP(1?y) films on InP, J. Appl. Phys, vol.73, issue.6, pp.2965-2971, 1993.

F. Fiedler and A. Schlachetzki, Optical parameters of InP-based waveguides, Solid-State Electron, vol.30, issue.1, pp.73-83, 1987.

C. Henry, L. Johnson, R. Logan, and D. Clarke, Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy, IEEE J. Quantum Electron, vol.21, issue.12, pp.1887-1892, 1985.

P. Chandra, L. A. Coldren, and K. E. Strege, Refractive index data from GaxIn1-xAsyP1-y films, Electron. Lett, vol.17, issue.1, pp.6-7, 1981.

G. Sonek, Dielectric properties of GaAs/AlGaAs multiple quantum well waveguides, IEEE J. Quantum Electron, vol.22, issue.7, pp.1015-1018, 1986.

C. Alibert, M. Skouri, A. Joullie, M. Benouna, and S. Sadiq, Refractive indices of AlSb and GaSb-lattice-matched AlxGa1?xAsySb1?y in the transparent wavelength region, J. Appl. Phys, vol.69, issue.5, pp.3208-3211, 1991.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, Accurate refractive index measurements of doped and undoped InP by a grating coupling technique, Appl. Phys. Lett, vol.67, issue.7, pp.881-883, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01904260

G. Leo, X-ray and optical characterization of multilayer AlGaAs waveguides, Appl. Phys. Lett, vol.77, issue.24, pp.3884-3886, 2000.

E. M. Skouri, Measurement of the refractive index of GaInAs/InP quantum wells by a grating coupling technique, Appl. Phys. Lett, vol.67, issue.23, pp.3441-3443, 1995.

E. , Phase diagrams of InGaAsP, InGaAs and InP lattice-matched to (100)InP, J. Cryst. Growth, vol.67, issue.3, pp.441-457, 1984.

G. P. Agrawal and N. K. Dutta, Long wavelength semiconductor lasers, 1986.

S. Adachi, Material parameters of In1?xGaxAsyP1?y and related binaries

, Appl. Phys, vol.53, issue.12, pp.8775-8792, 1982.

P. Barritault, M. Brun, P. Labeye, O. Lartigue, J. Hartmann et al.,

. Nicoletti, M-lines characterization of the refractive index profile of SiGe gradient waveguides at 2.15 µm, Opt. Express, vol.21, issue.9, p.11506, 2013.

C. Tanguy, Refractive index of direct bandgap semiconductors near the absorption threshold: influence of excitonic effects, IEEE J. Quantum Electron, vol.32, issue.10, pp.1746-1751, 1996.

G. A. Porkolab, P. Apiratikul, B. Wang, S. H. Guo, and C. J. Richardson, Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow, Opt. Express, vol.22, issue.7, p.7733, 2014.

O. Auciello and A. Gras-marti, Plasma-Surface Interactions and Processing of Materials, 1990.

J. W. Lee, Plasma etching of III-V semiconductors in BCl3 chemistries: Part I: GaAs and related compounds, Plasma Chem. Plasma Process, vol.17, issue.2, pp.155-167, 1997.

S. Agarwala, High-density inductively coupled plasma etching of

, GaAs/AlGaAs in BCl3/Cl2/Ar: A study using a mixture design experiment, J. Vac

, Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom, vol.16, issue.2, pp.511-514, 1998.

S. Agarwala, Response surface study of inductively coupled plasma etching of GaAs/AlGaAs in BCl3/Cl2, J. Vac. Sci. Technol. Vac. Surf. Films, vol.17, issue.1, pp.52-55, 1999.

T. Maeda, Inductively coupled plasma etching of III-V semiconductors in BCl3-based chemistries: I. GaAs, GaN, GaP, GaSb and AlGaAs, Appl. Surf. Sci, vol.143, issue.1, pp.174-182, 1999.

S. S. Cooperman, Reactive ion etching of GaAs and AlGaAs in a BCl3-Ar discharge, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.7, issue.1, p.41, 1989.

J. Daleiden, Chemical analysis of a Cl2/BCl3/IBr3 chemically assisted ionbeam etching process for GaAs and InP laser-mirror fabrication under cryo-pumped ultrahigh vacuum conditions, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.13, issue.5, p.2022, 1995.

, Handbook of Advanced Plasma Processing Techniques, 2000.

S. J. Pearton, Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.8, issue.4, p.607, 1990.

P. Yinsheng, Optimization of inductively coupled plasma etching for low nanometer scale air-hole arrays in two-dimensional GaAs-based photonic crystals, J. Semicond, vol.31, issue.1, p.12003, 2010.

E. W. Berg and S. W. Pang, Low-Pressure Etching of Nanostructures and Via Holes Using an Inductively Coupled Plasma System, J. Electrochem. Soc, vol.146, issue.2, pp.775-779, 1999.

L. Jalabert, High aspect ratio GaAs nanowires made by ICP-RIE etching using Cl2/N2 chemistry, Microelectron. Eng, vol.85, issue.5-6, pp.1173-1178, 2008.

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation, Nanotechnology, vol.21, issue.13, p.134014, 2010.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, Effect of sidewall passivation in BCl3?N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process

, Meas. Phenom, vol.27, issue.5, pp.21-24, 2009.

R. Braive, Inductively coupled plasma etching of GaAs suspended photonic crystal cavities, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom, vol.27, issue.4, pp.1909-1914, 2009.

S. Varoutsis, Reactive-ion etching of high-Q and submicron-diameter GaAs?AlAs micropillar cavities, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom, vol.23, issue.6, pp.2499-2503, 2005.

W. Hease, Disques optomécaniques en arseniure de gallium dans le régime quantique, 2016.

F. Karouta, A practical approach to reactive ion etching, J. Phys. Appl. Phys, vol.47, issue.23, p.233501, 2014.

S. Golka, M. Austerer, C. Pflügl, W. Schrenk, and G. Strasser, Processing of deeply etched GaAs/AlGaAs quantum cascade lasers with grating structures, MRS Online Proc. Libr. Arch, vol.829, 2004.

J. W. Lee, Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas, J. Vac. Sci. Technol. Vac. Surf. Films, vol.18, issue.4, pp.1220-1224, 2000.

M. Aoki, InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD, IEEE J. Quantum Electron, vol.29, issue.6, pp.2088-2096, 1993.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia et al., Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Opt. Express, vol.14, issue.20, pp.9203-9210, 2006.

X. Sun and A. Yariv, Engineering supermode silicon/III-V hybrid waveguides for laser oscillation, JOSA B, vol.25, issue.6, pp.923-926, 2008.

X. Sun, H. Liu, and A. Yariv, Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system, Opt. Lett, vol.34, issue.3, pp.280-282, 2009.

V. M. Fengnian-xia, S. R. Menon, and . Forrest, Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory, IEEE J

, Sel. Top. Quantum Electron, vol.11, issue.1, pp.17-29, 2005.

Y. Ding, J. Xu, F. Da-ros, B. Huang, H. Ou et al., On-chip twomode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer, Opt. Express, vol.21, issue.8, p.10376, 2013.

X. Liang, J. Mu, X. Li, and Y. Xi, Efficient Active-to-Passive Light Coupling of InGaAsP/InP Laser Using Subwavelength Coupler, IEEE Photonics J, vol.5, issue.6, pp.6602408-6602408, 2013.

L. Luo, WDM-compatible mode-division multiplexing on a silicon chip, Nat. Commun, vol.5, 2014.

H. Wenzel, Fundamental-Lateral Mode Stabilized High-Power Ridge-Waveguide Lasers With a Low Beam Divergence, IEEE Photonics Technol. Lett, vol.20, issue.3, pp.214-216, 2008.

M. Beaudoin, A. J. Devries, S. R. Johnson, H. Laman, and T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures

, Appl. Phys. Lett, vol.70, issue.26, pp.3540-3542, 1997.

M. Krakowski, Very high-power broad area laser diode with internal wavelength stabilization at 975 nm for Yb fibre laser pumping, Novel In-Plane Semiconductor Lasers XIII, vol.9002, p.90021, 2014.

K. Dridi, A. Benhsaien, A. Akrout, J. Zhang, and T. Hall, Narrow-linewidth three-electrode regrowth-free semiconductor DFB lasers with uniform surface grating, Novel In-Plane Semiconductor Lasers XII, vol.8640, p.864009, 2013.