P. Lindholm, Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo, Nature, vol.448, issue.7149, pp.73-77, 2007.

S. S. Gill, Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: A two-year outcome study, Ann. Neurol, vol.9, issue.5, pp.298-302, 2003.

A. E. Lang, Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease, Ann. Neurol, vol.59, issue.3, pp.459-466, 2006.

T. Serafini, Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system, Cell, vol.87, issue.6, pp.1001-1014, 1996.

K. A. Baker, S. W. Moore, A. A. Jarjour, and T. E. Kennedy, When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis, Curr. Opin. Neurobiol, vol.16, issue.5, pp.529-534, 2006.

K. J. Mitchell, Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons, Neuron, vol.17, issue.2, pp.203-215, 1996.

A. K. Stavoe and D. A. Colón-ramos, Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton, J. Cell Biol, vol.197, issue.1, pp.75-88, 2012.

K. E. Horn, DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain, Cell Rep, vol.3, issue.1, pp.173-185, 2013.

S. V. Hegarty, A. M. Sullivan, and G. W. O'keeffe, Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development, Dev. Biol, vol.379, issue.2, pp.123-138, 2013.

F. Livesey and S. Hunt, Netrin and Netrin Receptor Expression in the Embryonic Mammalian Nervous System Suggests Roles in Retinal, Striatal, Nigral, and Cerebellar Development, Mol. Cell. Neurosci, vol.8, issue.6, pp.417-429, 1997.

P. B. Osborne, G. M. Halliday, H. M. Cooper, and J. R. Keast, Localization of immunoreactivity for Deleted in Colorectal Cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents, Neuroscience, vol.131, issue.3, pp.671-681, 2005.

S. Reyes, Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease, Neurobiol. Aging, vol.34, issue.3, pp.873-886, 2013.

T. G. Lesnick, Beyond Parkinson Disease: Amyotrophic Lateral Sclerosis and the Axon Guidance Pathway, PLoS ONE, vol.3, issue.1, p.1449, 2008.

L. Lin, T. G. Lesnick, D. M. Maraganore, and O. Isacson, Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics, Trends Neurosci, vol.32, issue.3, pp.142-149, 2009.

D. Goldschneider and P. Mehlen, Dependence receptors: a new paradigm in cell signaling and cancer therapy, Oncogene, vol.29, issue.13, pp.1865-1882, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474454

M. Castets, DCC constrains tumour progression via its dependence receptor activity, Nature, vol.482, issue.7386, pp.534-537, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00721045

A. Penttinen, I. Suleymanova, K. Albert, J. Anttila, M. H. Voutilainen et al., Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat: Low-Dose 6-OHDA PD Model in Rat, J. Neurosci. Res, vol.94, issue.4, pp.318-328, 2016.

S. Reyes, Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease, Neurobiology of Aging, vol.34, pp.873-886, 2013.

P. B. Osborne, G. M. Halliday, H. M. Cooper, and J. R. Keast, Localization of immunoreactivity for Deleted in Colorectal Cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents, Neuroscience, vol.131, pp.671-681, 2005.

L. Lin, T. G. Lesnick, D. M. Maraganore, and O. Isacson, Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics, Trends in Neurosciences, vol.32, pp.142-149, 2009.

T. G. Lesnick, Beyond Parkinson Disease: Amyotrophic Lateral Sclerosis and the Axon Guidance Pathway, PLoS ONE, vol.3, p.1449, 2008.

T. Serafini, The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6, Cell, vol.78, pp.409-424, 1994.

T. E. Kennedy, T. Serafini, J. De-la-torre, and M. Tessier-lavigne, Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord, Cell, vol.78, pp.425-435, 1994.

K. L. Sun, J. P. Correia, and T. E. Kennedy, Netrins: versatile extracellular cues with diverse functions, Development, vol.138, pp.2153-2169, 2011.

L. Lin, Y. Rao, and O. Isacson, Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons, Molecular and Cellular Neuroscience, vol.28, pp.547-555, 2005.

C. Forcet, Netrin-1-mediated axon outgrowth requires deleted in colorectal cancerdependent MAPK activation, Nature, vol.417, pp.443-447, 2002.

M. Bayat, Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat, Brain Research, vol.1452, pp.185-194, 2012.

K. E. Horn, DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain, Cell Reports, vol.3, pp.173-185, 2013.

C. Podjaski, Netrin 1 regulates blood-brain barrier function and neuroinflammation, Brain, vol.138, pp.1598-1612, 2015.

X. He, Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice, Journal of Neuroinflammation, vol.15, 2018.

F. Llambi, Netrin-1 acts as a survival factor via its receptors UNC-5H and DCC, The EMBO Journal, vol.20, pp.2715-2722, 2001.

P. Mehlen, The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis, Nature, vol.395, pp.801-804, 1998.

A. Negulescu and P. Mehlen, Dependence receptors -the dark side awakens, The FEBS Journal, 2018.

C. Furne, N. Rama, V. Corset, A. Chédotal, and P. Mehlen, Netrin-1 is a survival factor during commissural neuron navigation, Proceedings of the National Academy of Sciences, vol.105, pp.14465-14470, 2008.

X. Tang, Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC-5B, Nature Cell Biology, vol.10, pp.698-706, 2008.

F. Livesey and S. Hunt, Netrin and Netrin Receptor Expression in the Embryonic Mammalian Nervous System Suggests Roles in Retinal, Striatal, Nigral, and Cerebellar Development, Molecular and Cellular Neuroscience, vol.8, pp.417-429, 1997.

J. M. Fearnley, A. J. Lees, . Parkinson's-disease:-substantia, . Nigra, and . Selectivity, Brain, vol.114, pp.2283-2301, 1991.

R. A. Shatzmiller, Graded expression of netrin-1 by specific neuronal subtypes in the adult mammalian striatum, Neuroscience, vol.157, pp.621-636, 2008.

J. P. Anderson, Phosphorylation of Ser-129 Is the Dominant Pathological Modification of ?-Synuclein in Familial and Sporadic Lewy Body Disease, Journal of Biological Chemistry, vol.281, pp.29739-29752, 2006.

C. Forcet, The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation, Proceedings of the National Academy of Sciences, vol.98, pp.3416-3421, 2001.

M. Castets, DCC constrains tumour progression via its dependence receptor activity, Nature, vol.482, pp.534-537, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00721045

A. Penttinen, Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat: Low-Dose 6-OHDA PD Model in Rat, Journal of Neuroscience Research, vol.94, pp.318-328, 2016.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nature Reviews Neuroscience, vol.18, pp.101-113, 2017.

T. Lahlali, Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response, Cellular and Molecular Gastroenterology and Hepatology, vol.2, pp.281-301, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01402896

C. Guo, W. Yang, and C. G. Lobe, A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action, Genesis, vol.32, pp.8-18, 2002.

T. Serafini, Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system, Cell, vol.87, pp.1001-1014, 1996.

C. M. Aherne, C. B. Collins, J. C. Masterson, M. Tizzano, T. A. Boyle et al., Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis, Gut, vol.61, pp.695-705, 2012.

G. Ahmed, Y. Shinmyo, K. Ohta, S. M. Islam, M. Hossain et al., Draxin inhibits axonal outgrowth through the netrin receptor DCC, J. Neurosci, vol.31, pp.14018-14023, 2011.

R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends Neurosci, vol.12, pp.366-375, 1989.

T. Arendt, V. Bigl, A. Arendt, and A. Tennstedt, Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's Disease, Acta Neuropathol, vol.61, pp.101-108, 1983.

C. Arkinson, W. , and H. , Parkin function in Parkinson's disease, Science, vol.360, pp.267-268, 2018.

M. Baba, S. Nakajo, P. H. Tu, T. Tomita, K. Nakaya et al., Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies, Am. J. Pathol, vol.152, pp.879-884, 1998.

G. Bai and S. L. Pfaff, Protease Regulation: The Yin and Yang of Neural Development and Disease, Neuron, vol.72, pp.9-21, 2011.

L. Bányai and L. Patthy, The NTR module: Domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases, Protein Science, vol.8, pp.1636-1642, 1999.

Q. Barraud, V. Lambrecq, C. Forni, S. Mcguire, M. Hill et al., Sleep disorders in Parkinson's disease: the contribution of the MPTP non-human primate model, Exp. Neurol, vol.219, pp.574-582, 2009.

J. L. Bartoe, W. L. Mckenna, T. K. Quan, B. K. Stafford, J. A. Moore et al., Protein interacting with C-kinase 1/protein kinase Calphamediated endocytosis converts netrin-1-mediated repulsion to attraction, J. Neurosci, vol.26, pp.3192-3205, 2006.

M. Bayat, T. Baluchnejadmojarad, M. Roghani, F. Goshadrou, A. Ronaghi et al., Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat, Brain Research, vol.1452, pp.185-194, 2012.

H. Belaid, J. Adrien, E. Laffrat, D. Tandé, C. Karachi et al., Sleep disorders in Parkinsonian macaques: effects of L-dopa treatment and pedunculopontine nucleus lesion, J. Neurosci, vol.34, pp.9124-9133, 2014.

S. Bellani, V. L. Sousa, G. Ronzitti, F. Valtorta, J. Meldolesi et al., The regulation of synaptic function by alpha-synuclein, Commun Integr Biol, vol.3, pp.106-109, 2010.

A. L. Benabid, Deep brain stimulation for Parkinson's disease, Curr. Opin. Neurobiol, vol.13, pp.696-706, 2003.

B. D. Bennett and C. J. Wilson, Synaptic regulation of action potential timing in neostriatal cholinergic interneurons, J. Neurosci, vol.18, pp.8539-8549, 1998.

J. M. Bin, D. Han, K. Lai-wing-sun, L. Croteau, E. Dumontier et al., Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death, Cell Reports, vol.12, pp.1099-1106, 2015.

W. Birkmayer and O. Hornykiewicz, , 1961.

, Wien. Klin. Wochenschr, vol.73, pp.787-788

A. Björklund, C. Rosenblad, C. Winkler, and D. Kirik, Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease, Neurobiol. Dis, vol.4, pp.186-200, 1997.

F. Blandini, G. Nappi, C. Tassorelli, and E. Martignoni, Functional changes of the basal ganglia circuitry in Parkinson's disease, Prog. Neurobiol, vol.62, pp.63-88, 2000.

F. Blandini, M. Armentero, and E. Martignoni, The 6-hydroxydopamine model: news from the past, Parkinsonism Relat. Disord, vol.14, issue.2, pp.124-129, 2008.

E. Bloch-gallego, F. Ezan, M. Tessier-lavigne, and C. Sotelo, Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons, J. Neurosci, vol.19, pp.4407-4420, 1999.

D. Blum, S. Torch, N. Lambeng, M. Nissou, A. L. Benabid et al., Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease, Prog. Neurobiol, vol.65, pp.135-172, 2001.

N. I. Bohnen, A. , and R. L. , The cholinergic system and Parkinson disease, Behav. Brain Res, vol.221, pp.564-573, 2011.

J. P. Bolam and E. K. Pissadaki, Living on the edge with too many mouths to feed: Why dopamine neurons die, Movement Disorders, vol.27, pp.1478-1483, 2012.

J. B. Bongo and D. Q. Peng, The neuroimmune guidance cue netrin-1: A new therapeutic target in cardiovascular disease, Journal of Cardiology, vol.63, pp.95-98, 2014.

M. Bornebroek, L. M. De-lau, M. D. Haag, P. J. Koudstaal, A. Hofman et al., Nonsteroidal Anti-Inflammatory Drugs and the Risk of Parkinson Disease, Neuroepidemiology, vol.28, pp.193-196, 2007.

H. Braak, K. Del-tredici, U. Rüb, R. A. De-vos, E. N. Jansen-steur et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol. Aging, vol.24, pp.197-211, 2003.

D. E. Bredesen, Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence, Molecular Neurodegeneration, vol.4, p.27, 2009.

A. Briançon-marjollet, A. Ghogha, H. Nawabi, I. Triki, C. Auziol et al., Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance, Mol. Cell. Biol, vol.28, pp.2314-2323, 2008.

S. Brignani and R. J. Pasterkamp, Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System, Front Neuroanat, vol.11, p.55, 2017.

R. E. Burke and K. Malley, Axon degeneration in Parkinson's disease, Experimental Neurology, vol.246, pp.72-83, 2013.

J. Burre, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton et al., Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro, vol.329, pp.1663-1667, 2010.

D. J. Busch, P. A. Oliphint, R. B. Walsh, S. M. Banks, W. S. Woods et al., Acute increase of ?-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation, Molecular Biology of the Cell, vol.25, pp.3926-3941, 2014.

D. S. Campbell and C. E. Holt, Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation, Neuron, vol.32, pp.1013-1026, 2001.

P. Carmeliet and M. Tessier-lavigne, Common mechanisms of nerve and blood vessel wiring, Nature, vol.436, pp.193-200, 2005.

M. Castets, M. Coissieux, C. Delloye-bourgeois, L. Bernard, J. Delcros et al., Inhibition of Endothelial Cell Apoptosis by Netrin-1 during Angiogenesis, Developmental Cell, vol.16, pp.614-620, 2009.

M. Castets, L. Broutier, Y. Molin, M. Brevet, G. Chazot et al., DCC constrains tumour progression via its dependence receptor activity, Nature, vol.482, pp.534-537, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00721045

M. Cayre, S. Courtes, F. Martineau, M. Giordano, K. Arnaud et al., Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination, Development, vol.140, pp.3107-3117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862157

S. Cerri and F. Blandini, Role of Autophagy in Parkinson's Disease, Curr. Med. Chem. References, 2018.

V. Chan-palay, A. , and E. , Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson's disease with and without dementia and depression, J. Comp. Neurol, vol.287, pp.373-392, 1989.

M. Chartier-harlin, J. Kachergus, C. Roumier, V. Mouroux, X. Douay et al., ?-synuclein locus duplication as a cause of familial Parkinson's disease, The Lancet, vol.364, pp.1167-1169, 2004.

D. Charvin, R. Medori, R. A. Hauser, and O. Rascol, Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs, Nat Rev Drug Discov, 2018.

K. R. Chaudhuri, M. T. Hu, and D. J. Brooks, Atypical parkinsonism in Afro-Caribbean and Indian origin immigrants to the UK, Mov. Disord, vol.15, pp.18-23, 2000.

J. Chen, X. He, C. Ma, X. Wu, X. Wan et al., Netrin-1 promotes glioma growth by activating NF-?B via UNC5A, 2017.

H. Cheng, C. M. Ulane, and R. E. Burke, Clinical progression in Parkinson disease and the neurobiology of axons, Annals of Neurology, vol.67, pp.715-725, 2010.

S. A. Colamarino and M. Tessier-lavigne, The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons, Cell, vol.81, pp.621-629, 1995.

D. A. Colon-ramos, M. A. Margeta, and K. Shen, Glia Promote Local Synaptogenesis Through UNC-6 (Netrin) Signaling in C. elegans, Science, vol.318, pp.103-106, 2007.

M. R. Cookson, DJ-1, PINK1, and their effects on mitochondrial pathways, Mov. Disord, 2010.

A. A. Cooper, Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson's Models, vol.313, pp.324-328, 2006.

V. Corset, K. Tuyen-nguyen-ba-charvet, C. Forcet, E. Moyse, A. Chédotal et al., Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Letters to, Nature, vol.407, pp.747-749, 2000.

C. A. Da-costa, DJ-1: a newcomer in Parkinson's disease pathology, Curr. Mol. Med, vol.7, pp.650-657, 2007.

T. Cotrufo, F. Perez-branguli, A. Muhaisen, O. Ros, R. Andres et al., A Signaling Mechanism Coupling Netrin, 2011.

, Colorectal Cancer Chemoattraction to SNARE-Mediated Exocytosis in Axonal Growth Cones, vol.31, pp.14463-14480

M. J. Crowe, J. C. Bresnahan, S. L. Shuman, J. N. Masters, and M. S. Beattie, Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys, Nat. Med, vol.3, pp.73-76, 1997.

M. D'amelio, V. Cavallucci, and F. Cecconi, Neuronal caspase-3 signaling: not only cell death, Cell Death & Differentiation, vol.17, pp.1104-1114, 2010.

I. Date, Y. Yoshimoto, T. Imaoka, Y. Miyoshi, Y. Gohda et al., Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging, Brain Res, vol.621, pp.150-154, 1993.

W. Dauer and S. Przedborski, Parkinson's Disease, Neuron, vol.39, pp.889-909, 2003.

A. M. Davies, The neurotrophic hypothesis: where does it stand?, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.351, pp.389-394, 1996.

G. C. Davis, A. C. Williams, S. P. Markey, M. H. Ebert, E. D. Caine et al., Chronic Parkinsonism secondary to intravenous injection of meperidine analogues, Psychiatry Res, vol.1, pp.249-254, 1979.

M. Decressac, A. Ulusoy, B. Mattsson, B. Georgievska, M. Romero-ramos et al., GDNF fails to exert neuroprotection in a rat ?-synuclein model of Parkinson's disease, Brain, vol.134, pp.2302-2311, 2011.

J. Degeer, J. Boudeau, S. Schmidt, F. Bedford, N. Lamarche-vane et al., , 2013.

, Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin

, Mol. Cell. Biol, vol.33, pp.739-751

M. S. Deiner, T. E. Kennedy, A. Fazeli, T. Serafini, M. Tessier-lavigne et al., Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia, Neuron, vol.19, pp.575-589, 1997.

J. A. Del-río, C. González-billault, J. M. Ureña, E. M. Jiménez, M. J. Barallobre et al., MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance, Curr. Biol, vol.14, pp.840-850, 2004.

C. Delloye-bourgeois, E. Brambilla, M. Coissieux, C. Guenebeaud, R. Pedeux et al., Interference With Netrin-1 and Tumor Cell Death in Non-Small Cell Lung Cancer, JNCI Journal of the National Cancer Institute, vol.101, pp.237-247, 2009.

C. Delloye-bourgeois, J. Fitamant, A. Paradisi, D. Cappellen, S. Douc-rasy et al., Netrin-1 acts as a survival factor for aggressive neuroblastoma, The Journal of Experimental Medicine, vol.206, pp.833-847, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00475533

Y. Ding, Ventral migration of early-born neurons requires Dcc and is essential for the projections of primary afferents in the spinal cord, Development, vol.132, pp.2047-2056, 2005.

R. L. Doty, Olfaction in Parkinson's disease and related disorders, Neurobiol. Dis, vol.46, pp.527-552, 2012.

X. Dun and D. B. Parkinson, Role of Netrin-1 Signaling in Nerve Regeneration, Int J Mol Sci, vol.18, 2017.

L. Dunn, G. F. Allen, A. Mamais, H. Ling, A. Li et al., Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease, Neurobiology of Aging, vol.35, pp.1111-1115, 2014.

S. B. Dunnett and M. Lelos, Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson's disease. Prog, Brain Res, vol.184, pp.35-51, 2010.

L. L. Edwards, R. F. Pfeiffer, E. M. Quigley, R. Hofman, and M. Balluff, Gastrointestinal symptoms in Parkinson's disease, Movement Disorders, vol.6, pp.151-156, 1991.

S. E. Eisbach and T. F. Outeiro, Alpha-synuclein and intracellular trafficking: impact on the spreading of Parkinson's disease pathology, J. Mol. Med, vol.91, pp.693-703, 2013.

A. Fazeli, S. L. Dickinson, M. L. Hermiston, R. V. Tighe, R. G. Steen et al., Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene, Nature, vol.386, pp.796-804, 1997.

J. M. Fearnley, A. J. Lees, . Parkinson's-disease:-substantia, . Nigra, and . Selectivity, Brain, vol.114, pp.2283-2301, 1991.

E. R. Fearon and B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell, vol.61, pp.759-767, 1990.

H. H. Fernandez, D. R. Greeley, R. M. Zweig, J. Wojcieszek, A. Mori et al., Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial, Parkinsonism Relat. Disord, vol.16, pp.16-20, 2010.

L. I. Finci, N. Krüger, X. Sun, J. Zhang, M. Chegkazi et al., The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue, Neuron, vol.83, pp.839-849, 2014.

J. Fitamant, C. Guenebeaud, M. Coissieux, C. Guix, I. Treilleux et al., Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer, Proceedings of the National Academy of Sciences, vol.105, pp.4850-4855, 2008.

C. Forcet, X. Ye, L. Granger, V. Corset, H. Shin et al., The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation, Proceedings of the National Academy of Sciences, vol.98, pp.3416-3421, 2001.

C. Forcet, E. Stein, L. Pays, V. Corset, F. Llambi et al., , 2002.

, Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation, Nature, vol.417, pp.443-447

L. S. Forno, Neuropathology of Parkinson's disease, J. Neuropathol. Exp. Neurol, vol.55, pp.259-272, 1996.

C. Furne, N. Rama, V. Corset, A. Chédotal, and P. Mehlen, Netrin-1 is a survival factor during commissural neuron navigation, Proceedings of the National Academy of Sciences, vol.105, pp.14465-14470, 2008.

L. Galluzzi, M. C. Maiuri, I. Vitale, H. Zischka, M. Castedo et al., Cell death modalities: classification and pathophysiological implications, Cell Death Differ, vol.14, pp.1237-1243, 2007.

L. Galluzzi, I. Vitale, S. A. Aaronson, J. M. Abrams, D. Adam et al., Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.25, pp.486-541, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727577

X. Gao, H. Chen, M. A. Schwarzschild, A. , and A. , Use of ibuprofen and risk of Parkinson disease, Neurology, vol.76, pp.863-869, 2011.

D. C. German and K. F. Manaye, Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat, J. Comp. Neurol, vol.331, pp.297-309, 1993.

J. M. Van-gils, M. C. Derby, L. R. Fernandes, B. Ramkhelawon, T. D. Ray et al., The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques, Nature Immunology, vol.13, pp.136-143, 2012.

K. E. Glajch, S. M. Fleming, D. J. Surmeier, and P. Osten, Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease, Behavioural Brain Research, vol.230, pp.309-316, 2012.

S. D. Glasgow, S. Labrecque, I. V. Beamish, S. Aufmkolk, J. Gibon et al., , 2018.

, Secretion Drives Synaptic Insertion of GluA1-Containing AMPA Receptors in the Hippocampus, Cell Reports, vol.25, pp.168-182

Y. Glinka, K. F. Tipton, and M. B. Youdim, Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine, J. Neurochem, vol.66, 1996.

Y. Glinka, M. Gassen, and M. B. Youdim, Mechanism of 6-hydroxydopamine neurotoxicity, J. Neural Transm. Suppl, vol.50, pp.55-66, 1997.

J. S. Goldman, M. A. Ashour, M. H. Magdesian, N. X. Tritsch, S. N. Harris et al., Netrin-1 Promotes Excitatory Synaptogenesis between Cortical Neurons by Initiating Synapse Assembly, Journal of Neuroscience, vol.33, pp.17278-17289, 2013.

D. Goldschneider and P. Mehlen, Dependence receptors: a new paradigm in cell signaling and cancer therapy, Oncogene, vol.29, pp.1865-1882, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474454

Y. Goto, S. Otani, and A. A. Grace, The Yin and Yang of dopamine release: a new perspective, Neuropharmacology, vol.53, pp.583-587, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00185076

D. G. Graham, S. M. Tiffany, W. R. Bell, and W. F. Gutknecht, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol, vol.14, pp.644-653, 1978.

J. N. Guzman, J. Sánchez-padilla, C. S. Chan, and D. J. Surmeier, Robust pacemaking in substantia nigra dopaminergic neurons, J. Neurosci, vol.29, pp.11011-11019, 2009.

J. N. Guzman, E. Ilijic, B. Yang, J. Sanchez-padilla, D. Wokosin et al., Systemic isradipine treatment diminishes calciumdependent mitochondrial oxidant stress, J. Clin. Invest, vol.128, pp.2266-2280, 2018.

P. C. Haddick, I. Tom, E. Luis, G. Quiñones, B. J. Wranik et al., Defining the ligand specificity of the deleted in colorectal cancer (DCC) receptor, PLoS ONE, vol.9, p.84823, 2014.

K. Hanrott, L. Gudmunsen, M. J. O'neill, and S. Wonnacott, 6-Hydroxydopamineinduced Apoptosis Is Mediated via Extracellular Auto-oxidation and Caspase 3-dependent Activation of Protein Kinase C?, Journal of Biological Chemistry, vol.281, pp.5373-5382, 2006.

X. He, Y. Li, H. Lu, Z. Zhang, Y. Wang et al., Netrin-1 Overexpression Promotes White Matter Repairing and Remodeling after Focal Cerebral Ischemia in Mice, Journal of Cerebral Blood Flow & Metabolism, vol.33, pp.1921-1927, 2013.

X. He, Y. Liu, X. Lin, F. Yuan, D. Long et al.,

, Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice, Journal of Neuroinflammation, vol.15

E. M. Hedgecock, J. G. Culotti, and D. H. Hall, The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans, Neuron, vol.4, pp.61-85, 1990.

F. Hefti, E. Melamed, and R. J. Wurtman, Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization, Brain Res, vol.195, pp.123-137, 1980.

S. V. Hegarty, A. M. Sullivan, and G. W. Keeffe, Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development, Developmental Biology, vol.379, pp.123-138, 2013.

Z. Hérincs, V. Corset, N. Cahuzac, C. Furne, V. Castellani et al.,

, DCC association with lipid rafts is required for netrin-1-mediated axon guidance, J. Cell. Sci, vol.118, pp.1687-1692

E. Hirsch, A. M. Graybiel, and Y. A. Agid, Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease, Nature, vol.334, pp.345-348, 1988.

C. Hölscher, Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models, Neuropharmacology, vol.136, pp.251-259, 2018.

K. Hong, L. Hinck, M. Nishiyama, M. M. Poo, M. Tessier-lavigne et al., A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion, Cell, vol.97, pp.927-941, 1999.

K. Hong, M. Nishiyama, J. Henley, M. Tessier-lavigne, and M. Poo, Calcium signalling in the guidance of nerve growth by netrin-1, Nature, vol.403, pp.93-98, 2000.

V. H. Höpker, D. Shewan, M. Tessier-lavigne, M. Poo, and C. Holt, Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1, Nature, vol.401, pp.69-73, 1999.

K. E. Horn, S. D. Glasgow, D. Gobert, S. Bull, T. Luk et al., DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain, Cell Reports, vol.3, pp.173-185, 2013.

O. Hornykiewicz, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev, vol.18, pp.925-964, 1966.

J. L. Hudson, C. G. Van-horne, I. Strömberg, S. Brock, J. Clayton et al., Correlation of apomorphine-and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats, Brain Res, vol.626, pp.167-174, 1993.

M. Hutchinson, S. Gurney, and R. Newson, GDNF in Parkinson disease: An object lesson in the tyranny of type II, Journal of Neuroscience Methods, vol.163, pp.190-192, 2007.

B. T. Hyman and J. Yuan, Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology, Nat. Rev. Neurosci, vol.13, pp.395-406, 2012.

N. Ishii, W. G. Wadsworth, B. D. Stern, J. G. Culotti, and E. M. Hedgecock, UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans, Neuron, vol.9, pp.873-881, 1992.

K. Ito and H. Enomoto, Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis, J. Biochem, vol.160, pp.77-85, 2016.

A. Iwai, E. Masliah, M. Yoshimoto, N. Ge, L. Flanagan et al., The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system, Neuron, vol.14, pp.467-475, 1995.

A. A. Jarjour, C. Manitt, S. W. Moore, K. M. Thompson, S. Yuh et al., , 2003.

, Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord, J. Neurosci, vol.23, pp.3735-3744

A. A. Jarjour, S. Bull, M. Almasieh, S. Rajasekharan, K. A. Baker et al., Maintenance of axo-oligodendroglial paranodal junctions requires DCC and netrin-1, J. Neurosci, vol.28, pp.11003-11014, 2008.

P. Jenner, Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson's disease, Expert Opin Investig Drugs, vol.14, pp.729-738, 2005.

H. J. Junge, A. R. Yung, L. V. Goodrich, C. , and Z. , Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord, Neural Dev, vol.11, p.19, 2016.

R. Kang, Y. Xie, H. J. Zeh, D. J. Klionsky, and D. Tang, Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity, Autophagy, vol.1, issue.2, 2018.

S. S. Kang, Z. Zhang, X. Liu, F. P. Manfredsson, L. He et al., ?-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation, Proceedings of the National Academy of Sciences, vol.114, pp.1183-1188, 2017.

R. Katzenschlager, C. Sampaio, J. Costa, and A. Lees, Anticholinergics for symptomatic management of Parkinson's disease, Cochrane Database Syst Rev CD003735, 2003.

K. Keino-masu, M. Masu, L. Hinck, E. D. Leonardo, S. S. Chan et al., Deleted in Colorectal Cancer (DCC) encodes a netrin receptor, Cell, vol.87, pp.175-185, 1996.

K. Keleman and B. J. Dickson, Short-and long-range repulsion by the Drosophila Unc5 netrin receptor, Neuron, vol.32, pp.605-617, 2001.

T. E. Kennedy, T. Serafini, J. De-la-torre, and M. Tessier-lavigne, Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord, Cell, vol.78, pp.425-435, 1994.

S. Khor and A. Hsu, The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson's disease, Curr Clin Pharmacol, vol.2, pp.234-243, 2007.

M. T. Killeen, The dual role of the ligand UNC-6/Netrin in both axon guidance and synaptogenesis in C. elegans, Cell Adh Migr, vol.3, pp.268-271, 2009.

D. S. Kim, H. Choi, Y. Wang, Y. Luo, B. J. Hoffer et al., A New Treatment Strategy for Parkinson's Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1, 2017.

, Receptor Pathway. Cell Transplant, vol.26, pp.1560-1571

T. Kim, H. K. Lee, I. A. Seo, H. R. Bae, D. J. Suh et al., Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron, J. Neurochem, vol.95, pp.1-8, 2005.

D. Kirik, C. Rosenblad, and A. Björklund, Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat, Experimental Neurology, vol.152, pp.259-277, 1998.

D. Kirik, C. Rosenblad, and A. Björklund, Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor, European Journal of Neuroscience, vol.12, pp.3871-3882, 2000.

A. W. Koch, T. Mathivet, B. Larrivée, R. K. Tong, J. Kowalski et al., Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B, Dev. Cell, vol.20, pp.33-46, 2011.

T. Lahlali, M. Plissonnier, C. Romero-lópez, M. Michelet, B. Ducarouge et al., Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response, Cellular and Molecular Gastroenterology and Hepatology, vol.2, pp.281-301, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01402896

J. L. Lanciego, N. Luquin, and J. A. Obeso, Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2, p.9621, 2012.

J. W. Langston and P. Ballard, Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease, Can J Neurol Sci, vol.11, pp.160-165, 1984.

J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science, vol.219, pp.979-980, 1983.

B. Larrivée, C. Freitas, M. Trombe, X. Lv, B. Delafarge et al., Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis, Genes Dev, vol.21, pp.2433-2447, 2007.

Y. Lee, V. L. Dawson, and T. M. Dawson, Animal Models of Parkinson's Disease: Vertebrate Genetics, Cold Spring Harbor Perspectives in Medicine, vol.2, pp.9324-009324, 2012.

J. Leegwater-kim and C. Waters, Role of tolcapone in the treatment of Parkinson's disease, Expert Rev Neurother, vol.7, pp.1649-1657, 2007.

A. J. Lees, J. Hardy, and T. Revesz, Parkinson's disease, Lancet, vol.373, pp.2055-2066, 2009.

M. L. Lemons, M. L. Abanto, N. Dambrouskas, C. C. Clements, Z. Deloughery et al., Integrins and cAMP mediate netrin-induced growth cone collapse, Brain Res, vol.1537, pp.46-58, 2013.

E. D. Leonardo, L. Hinck, M. Masu, K. Keino-masu, S. L. Ackerman et al., Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors, Nature, vol.386, pp.833-838, 1997.

T. G. Lesnick, E. J. Sorenson, J. E. Ahlskog, J. R. Henley, L. Shehadeh et al., Beyond Parkinson Disease: Amyotrophic Lateral Sclerosis and the Axon Guidance Pathway, PLoS ONE, vol.3, 1449.

O. A. Levy, C. Malagelada, and L. A. Greene, Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps, Apoptosis, vol.14, pp.478-500, 2009.

J. Li, T. Duarte, A. Kocabas, M. Works, S. K. Mcconnell et al., Evidence for topographic guidance of dopaminergic axons by differential Netrin-1 expression in the striatum, Molecular and Cellular Neuroscience, vol.61, pp.85-96, 2014.

J. Li, L. Tan, Y. , and J. , The role of the LRRK2 gene in Parkinsonism, Molecular Neurodegeneration, vol.9, p.1, 2014.

W. Li, J. Lee, H. G. Vikis, S. Lee, G. Liu et al., Activation of FAK and Src are receptor-proximal events required for netrin signaling, Nat. Neurosci, vol.7, pp.1213-1221, 2004.

L. Lin, T. G. Lesnick, D. M. Maraganore, and O. Isacson, Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics, Trends in Neurosciences, vol.32, pp.142-149, 2009.

P. Lindholm, M. H. Voutilainen, J. Laurén, J. Peränen, V. Leppänen et al., Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo, Nature, vol.448, pp.73-77, 2007.

G. Liu, H. Beggs, C. Jürgensen, H. Park, H. Tang et al., Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction, Nature Neuroscience, vol.7, pp.1222-1232, 2004.

Y. Liu, E. Stein, T. Oliver, Y. Li, W. J. Brunken et al., Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis, Curr. Biol, vol.14, pp.897-905, 2004.

F. Livesey and S. Hunt, Netrin and Netrin Receptor Expression in the Embryonic Mammalian Nervous System Suggests Roles in Retinal, Striatal, Nigral, and Cerebellar Development, Molecular and Cellular Neuroscience, vol.8, pp.417-429, 1997.

F. Llambi, Netrin-1 acts as a survival factor via its receptors UNC5H and DCC, The EMBO Journal, vol.20, pp.2715-2722, 2001.

G. Logroscino, The role of early life environmental risk factors in Parkinson disease: what is the evidence?, Environ. Health Perspect, vol.113, pp.1234-1238, 2005.

F. C. Lourenço, V. Galvan, J. Fombonne, V. Corset, F. Llambi et al., Netrin-1 interacts with amyloid precursor protein and regulates amyloid-? production, Cell Death and Differentiation, vol.16, pp.655-663, 2009.

K. Löw, M. Culbertson, F. Bradke, M. Tessier-lavigne, and M. H. Tuszynski, Netrin-1 is a novel myelin-associated inhibitor to axon growth, J. Neurosci, vol.28, pp.1099-1108, 2008.

K. Low, M. Culbertson, F. Bradke, M. Tessier-lavigne, and M. H. Tuszynski, , 2008.

, Is a Novel Myelin-Associated Inhibitor to Axon Growth, Journal of Neuroscience, vol.28, pp.1099-1108

H. Lu, Y. Wang, F. Yuan, J. Liu, L. Zeng et al., Overexpression of netrin-1 improves neurological outcomes in mice following transient middle cerebral artery occlusion, Front Med, vol.5, pp.86-93, 2011.

H. Lu, X. Song, F. Wang, G. Wang, Y. Wu et al., Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia, Frontiers in Cellular Neuroscience, vol.10, 2016.

X. Lu, F. Le-noble, L. Yuan, Q. Jiang, B. De-lafarge et al., The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system, Nature, vol.432, pp.179-186, 2004.

N. P. Ly, K. Komatsuzaki, I. P. Fraser, A. A. Tseng, P. Prodhan et al., Netrin-1 inhibits leukocyte migration in vitro and in vivo, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.14729-14734, 2005.

J. P. Macmanus, A. M. Buchan, I. E. Hill, I. Rasquinha, P. et al., Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain, Neurosci. Lett, vol.164, pp.89-92, 1993.

R. D. Madison, A. Zomorodi, R. , and G. A. , Netrin-1 and peripheral nerve regeneration in the adult rat, Exp. Neurol, vol.161, pp.563-570, 2000.

G. Majno, J. , and I. , Apoptosis, oncosis, and necrosis. An overview of cell death, Am. J. Pathol, vol.146, pp.3-15, 1995.

C. Manitt, M. A. Colicos, K. M. Thompson, E. Rousselle, A. C. Peterson et al., Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord, The Journal of Neuroscience, vol.21, pp.3911-3922, 2001.

X. Mao, H. Xing, A. Mao, H. Jiang, L. Cheng et al., Netrin-1 attenuates cardiac ischemia reperfusion injury and generates alternatively activated macrophages, Inflammation, vol.37, pp.573-580, 2014.

H. Q. Marlow, M. Srivastava, D. Q. Matus, D. Rokhsar, and M. Q. Martindale, Anatomy and development of the nervous system of Nematostella vectensis , an anthozoan cnidarian, Developmental Neurobiology, vol.69, pp.235-254, 2009.

W. Matsuda, T. Furuta, K. C. Nakamura, H. Hioki, F. Fujiyama et al., Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum, J. Neurosci, vol.29, pp.444-453, 2009.

H. Matsumoto and M. Nagashima, Netrin-1 elevates the level and induces cluster formation of its receptor DCC at the surface of cortical axon shafts in an exocytosis-dependent manner, Neurosci. Res, vol.67, pp.99-107, 2010.

Y. Matsumoto, F. Irie, M. Inatani, M. Tessier-lavigne, Y. et al., Netrin, 2007.

/. Dcc, Signaling in Commissural Axon Guidance Requires Cell-Autonomous Expression of Heparan Sulfate, Journal of Neuroscience, vol.27, pp.4342-4350

E. Matsunaga, S. Tauszig-delamasure, P. P. Monnier, B. K. Mueller, S. M. Strittmatter et al., RGM and its receptor neogenin regulate neuronal survival, Nature Cell Biology, vol.6, pp.749-755, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00080594

M. M. Matzuk and C. B. Saper, Preservation of hypothalamic dopaminergic neurons in Parkinson's disease, Ann. Neurol, vol.18, pp.552-555, 1985.

W. L. Mckenna, C. Wong-staal, G. C. Kim, H. Macias, L. Hinck et al., , 2008.

, Netrin-1-independent adenosine A2b receptor activation regulates the response of axons to netrin-1 by controlling cell surface levels of UNC5A receptors, J. Neurochem, vol.104, pp.1081-1090

P. Mehlen and E. R. Fearon, Role of the dependence receptor DCC in colorectal cancer pathogenesis, J. Clin. Oncol, vol.22, pp.3420-3428, 2004.

P. Mehlen, S. Rabizadeh, S. J. Snipas, N. Assa-munt, G. S. Salvesen et al., , 1998.

, The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis, Nature, vol.395, pp.801-804

G. Mercado, V. Castillo, P. Soto, and A. Sidhu, ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway, Brain Res, vol.1648, pp.626-632, 2016.

M. Meriane, J. Tcherkezian, C. A. Webber, E. I. Danek, I. Triki et al., Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance, The Journal of Cell Biology, vol.167, pp.687-698, 2004.

J. A. Meyerhardt, K. Caca, B. C. Eckstrand, G. Hu, C. Lengauer et al., Netrin-1: interaction with deleted in colorectal cancer (DCC) and alterations in brain tumors and neuroblastomas, Cell Growth Differ, vol.10, pp.35-42, 1999.

G. Ming, H. Song, B. Berninger, N. Inagaki, M. Tessier-lavigne et al., , 1999.

, Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance, Neuron, vol.23, pp.139-148

G. Ming, S. T. Wong, J. Henley, X. Yuan, H. Song et al., , 2002.

, Adaptation in the chemotactic guidance of nerve growth cones, Nature, vol.417, pp.411-418

V. Mirakaj and P. Rosenberger, Immunomodulatory Functions of Neuronal Guidance Proteins, Trends in Immunology, vol.38, pp.444-456, 2017.

V. Mirakaj, D. Gatidou, C. Potzsch, K. Konig, and P. Rosenberger, Netrin-1 Signaling Dampens Inflammatory Peritonitis, The Journal of Immunology, vol.186, pp.549-555, 2011.

Y. Mitsumoto, A. Watanabe, A. Mori, and N. Koga, Spontaneous Regeneration of Nigrostriatal Dopaminergic Neurons in MPTP-Treated C57BL/6 Mice, Biochemical and Biophysical Research Communications, vol.248, pp.660-663, 1998.

S. W. Moore and T. E. Kennedy, Protein kinase A regulates the sensitivity of spinal commissural axon turning to netrin-1 but does not switch between chemoattraction and chemorepulsion, J. Neurosci, vol.26, pp.2419-2423, 2006.

S. W. Moore, J. P. Correia, K. Lai-wing-sun, M. Pool, A. E. Fournier et al., , 2008.

, Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1, Development, vol.135, pp.2855-2864

J. Moss and J. P. Bolam, A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals, J. Neurosci, vol.28, pp.11221-11230, 2008.

J. Moss, P. Bolam, and J. , The Relationship between Dopaminergic Axons and Glutamatergic Synapses in the Striatum: Structural Considerations, pp.49-60, 2009.

A. Mukherjee and D. W. Williams, More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease, Cell Death and Differentiation, vol.24, pp.1411-1421, 2017.

P. Muñoz, S. Huenchuguala, I. Paris, and J. Segura-aguilar, Dopamine Oxidation and Autophagy, Parkinson's Disease, vol.2012, pp.1-13, 2012.

J. P. De-munter, E. Melamed, and E. C. Wolters, Stem cell grafting in parkinsonism -Why, how and when, Parkinsonism & Related Disorders, vol.20, pp.150-153, 2014.

C. Mutz, V. Mirakaj, D. A. Vagts, P. Westermann, K. Waibler et al., The neuronal guidance protein netrin-1 reduces alveolar inflammation in a porcine model of acute lung injury, Crit Care, vol.14, p.189, 2010.

S. Navankasattusas, K. J. Whitehead, A. Suli, L. K. Sorensen, A. H. Lim et al., The netrin receptor UNC5B promotes angiogenesis in specific vascular beds, Development, vol.135, pp.659-667, 2008.

A. Negulescu and P. Mehlen, Dependence receptors -the dark side awakens, The FEBS Journal, 2018.

A. Neuhaus-follini and G. J. Bashaw, The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance, Neuron, vol.87, pp.751-763, 2015.

S. N. Nikolopoulos and F. G. Giancotti, Netrin-Integrin Signaling in Epithelial Morphogenesis, Axon Guidance and Vascular Patterning, Cell Cycle, vol.4, pp.429-433, 2005.

E. E. Ochu, N. J. Rothwell, and C. M. Waters, Caspases mediate 6-hydroxydopamineinduced apoptosis but not necrosis in PC12 cells, J. Neurochem, vol.70, pp.2637-2640, 1998.

P. B. Osborne, G. M. Halliday, H. M. Cooper, and J. R. Keast, Localization of immunoreactivity for Deleted in Colorectal Cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents, Neuroscience, vol.131, pp.671-681, 2005.

S. Ovallath and B. Sulthana, Levodopa: History and Therapeutic Applications, Ann Indian Acad Neurol, vol.20, pp.185-189, 2017.

A. Paradisi, C. Maisse, M. Coissieux, N. Gadot, F. Lépinasse et al., Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression, Proceedings of the National Academy of Sciences, vol.106, pp.17146-17151, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01604345

K. W. Park, D. Crouse, M. Lee, S. K. Karnik, L. K. Sorensen et al., The axonal attractant Netrin-1 is an angiogenic factor, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.16210-16215, 2004.

G. Paul and A. M. Sullivan, Trophic factors for Parkinson's disease: Where are we and where do we go from here?, European Journal of Neuroscience, 2018.

A. Penttinen, I. Suleymanova, K. Albert, J. Anttila, M. H. Voutilainen et al., Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat: Low-Dose 6-OHDA PD Model in Rat, Journal of Neuroscience Research, vol.94, pp.318-328, 2016.

R. J. Petrie, B. Zhao, F. Bedford, and N. Lamarche-vane, Compartmentalized DCC signalling is distinct from DCC localized to lipid rafts, Biol. Cell, vol.101, pp.77-90, 2009.

R. F. Pfeiffer, Gastrointestinal dysfunction in Parkinson's disease, Parkinsonism Relat. Disord, vol.17, pp.10-15, 2011.

F. Philippart, G. Destreel, P. Merino-sepulveda, P. Henny, D. Engel et al., , 2016.

, Differential Somatic Ca2+ Channel Profile in Midbrain Dopaminergic Neurons, Journal of Neuroscience, vol.36, pp.7234-7245

G. Pinato, D. Cojoc, L. T. Lien, A. Ansuini, J. Ban et al., Less than, 2012.

, Netrin-1 molecules initiate attraction but 200 Sema3A molecules are necessary for repulsion, Sci Rep, vol.2, p.675

E. K. Pissadaki and J. P. Bolam, The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease, Frontiers in Computational Neuroscience, vol.7, 2013.

C. Podjaski, J. I. Alvarez, L. Bourbonniere, S. Larouche, S. Terouz et al., Netrin 1 regulates blood-brain barrier function and neuroinflammation, Brain, vol.138, pp.1598-1612, 2015.

R. B. Postuma, J. Gagnon, J. Bertrand, D. Génier-marchand, and J. Y. Montplaisir, , 2015.

, Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials, Neurology, vol.84, pp.1104-1113

S. Przedborski, V. Jackson-lewis, R. Djaldetti, G. Liberatore, M. Vila et al., The parkinsonian toxin MPTP: action and mechanism, Restor. Neurol. Neurosci, vol.16, pp.135-142, 2000.

S. Qin, L. Yu, Y. Gao, R. Zhou, and C. Zhang, Characterization of the receptors for axon guidance factor netrin-4 and identification of the binding domains, Mol. Cell. Neurosci, vol.34, pp.243-250, 2007.

C. Qu, T. Dwyer, Q. Shao, T. Yang, H. Huang et al., Direct binding of TUBB3 with DCC couples netrin-1 signaling to intracellular microtubule dynamics in axon outgrowth and guidance, J. Cell. Sci, vol.126, pp.3070-3081, 2013.

S. Rabizadeh, J. Oh, L. Zhong, J. Yang, C. Bitler et al., Induction of apoptosis by the low-affinity NGF receptor, Science, vol.261, pp.345-348, 1993.

S. Rajasekharan and T. E. Kennedy, The netrin protein family, Genome Biol, vol.10, p.239, 2009.

S. Rajasekharan, K. A. Baker, K. E. Horn, A. A. Jarjour, J. P. Antel et al., , 2009.

, Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA, Development, vol.136, pp.415-426

N. Rama, D. Goldschneider, V. Corset, J. Lambert, L. Pays et al., Amyloid Precursor Protein Regulates Netrin-1-mediated Commissural Axon Outgrowth, Journal of Biological Chemistry, vol.287, pp.30014-30023, 2012.

B. Ramkhelawon, Y. Yang, J. M. Van-gils, B. Hewing, K. J. Rayner et al., Hypoxia induces netrin-1 and Unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.1180-1188, 2013.

P. Ranganathan, R. Mohamed, C. Jayakumar, R. , and G. , Guidance cue netrin-1 and the regulation of inflammation in acute and chronic kidney disease, Mediators Inflamm, p.525891, 2014.

P. V. Ranganathan, C. Jayakumar, R. , and G. , Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization, Am. J. Physiol. Renal Physiol, vol.304, pp.948-957, 2013.

K. Reetz, C. Gaser, C. Klein, J. Hagenah, C. Büchel et al., Structural findings in the basal ganglia in genetically determined and idiopathic Parkinson's disease, Mov. Disord, vol.24, pp.99-103, 2009.

L. F. Reichardt, Neurotrophin-regulated signalling pathways, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.361, pp.1545-1564, 2006.

X. Ren, Y. Hong, Z. Feng, H. Yang, L. Mei et al., Tyrosine Phosphorylation of Netrin Receptors in Netrin-1 Signaling, Neurosignals, vol.16, pp.235-245, 2008.

S. Reyes, Y. Fu, K. L. Double, V. Cottam, L. H. Thompson et al., Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease, Neurobiology of Aging, vol.34, pp.873-886, 2013.

M. Richards and K. R. Chaudhuri, Parkinson's disease in populations of African origin: a review, Neuroepidemiology, vol.15, pp.214-221, 1996.

V. Ries, R. M. Silva, T. F. Oo, H. Cheng, M. Rzhetskaya et al., JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration, Journal of Neurochemistry, vol.107, pp.1578-1588, 2008.

C. D. Rietdijk, P. Perez-pardo, J. Garssen, R. J. Van-wezel, and A. D. Kraneveld, , 2017.

, Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol 8, p.37

K. L. Ring, M. C. An, N. Zhang, R. N. O'brien, E. M. Ramos et al., Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells, Stem Cell Reports, vol.5, pp.1023-1038, 2015.

A. Rink, K. M. Fung, J. Q. Trojanowski, V. M. Lee, E. Neugebauer et al., , 1995.

, Evidence of apoptotic cell death after experimental traumatic brain injury in the rat, Am. J. Pathol, vol.147, pp.1575-1583

P. Rojas, J. Rojas-castañeda, R. M. Vigueras, S. S. Habeebu, C. Rojas et al., MPTP decreases MT-I mRNA in mouse striatum, Neurochem. Res, vol.25, pp.503-509, 2000.

B. D. Van-rooijen, K. A. Van-leijenhorst-groener, M. M. Claessens, and V. Subramaniam, Tryptophan Fluorescence Reveals Structural Features of ?-Synuclein Oligomers, Journal of Molecular Biology, vol.394, pp.826-833, 2009.

J. A. Santiago and J. A. Potashkin, System-based approaches to decode the molecular links in Parkinson's disease and diabetes, Neurobiology of Disease, vol.72, pp.84-91, 2014.

H. Sauer and W. H. Oertel, Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat, Neuroscience, vol.59, pp.401-415, 1994.

A. H. Schapira, Present and future drug treatment for Parkinson's disease, Neurosurgery & Psychiatry, vol.76, pp.1472-1478, 2005.

A. H. Schapira, Monoamine oxidase B inhibitors for the treatment of Parkinson's disease: a review of symptomatic and potential disease-modifying effects, CNS Drugs, vol.25, pp.1061-1071, 2011.

N. Schmidt and B. Ferger, Neurochemical findings in the MPTP model of Parkinson's disease, J Neural Transm, vol.108, pp.1263-1282, 2001.

J. S. Schneider and C. J. Kovelowski, Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res, vol.519, pp.122-128, 1990.

J. S. Schneider and A. Pope-coleman, Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey, Neurodegeneration, vol.4, pp.245-255, 1995.

R. S. Schwab, Amantadine in the Treatment of Parkinson's Disease, JAMA: The Journal of the American Medical Association, vol.208, p.1168, 1969.

T. Serafini, T. E. Kennedy, M. J. Gaiko, C. Mirzayan, T. M. Jessell et al., The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6, Cell, vol.78, pp.409-424, 1994.

T. Serafini, S. A. Colamarino, E. D. Leonardo, H. Wang, R. Beddington et al., Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system, Cell, vol.87, pp.1001-1014, 1996.

S. Shalini, L. Dorstyn, S. Dawar, and S. Kumar, Old, new and emerging functions of caspases, Cell Death Differ, vol.22, pp.526-539, 2015.

R. A. Shatzmiller, J. S. Goldman, L. Simard-Émond, V. Rymar, C. Manitt et al., Graded expression of netrin-1 by specific neuronal subtypes in the adult mammalian striatum, Neuroscience, vol.157, pp.621-636, 2008.

M. Shekarabi and T. E. Kennedy, The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1, Mol. Cell. Neurosci, vol.19, pp.1-17, 2002.

M. Shekarabi, S. W. Moore, N. X. Tritsch, S. J. Morris, J. Bouchard et al.,

, Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion, J. Neurosci, vol.25, pp.3132-3141

S. Shendelman, A. Jonason, C. Martinat, T. Leete, A. et al., DJ-1 is a redoxdependent molecular chaperone that inhibits alpha-synuclein aggregate formation, PLoS Biol, vol.2, p.362, 2004.

G. Smale, N. R. Nichols, D. R. Brady, C. E. Finch, and W. E. Horton, Evidence for Apoptotic Cell Death in Alzheimer's Disease, Experimental Neurology, vol.133, pp.225-230, 1995.

H. J. Song and M. M. Poo, Signal transduction underlying growth cone guidance by diffusible factors, Curr. Opin. Neurobiol, vol.9, pp.355-363, 1999.

M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies, Proceedings of the National Academy of Sciences, vol.95, pp.6469-6473, 1998.

P. Spilman, J. Vincelette, A. Mcgeehan, O. Gorostiza, K. Poksay et al., The APP ligand Netrin-1 improves memory and biomarkers after ICV administration in PD APP mice, Alzheimer's & Dementia, vol.8, pp.744-745, 2012.

K. Srinivasan, P. Strickland, A. Valdes, G. C. Shin, and L. Hinck, Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis, Dev. Cell, vol.4, pp.371-382, 2003.

A. Stanco, C. Szekeres, N. Patel, S. Rao, K. Campbell et al., Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.7595-7600, 2009.

A. K. Stavoe and D. A. Colón-ramos, Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton, The Journal of Cell Biology, vol.197, pp.75-88, 2012.

E. Stein and M. Tessier-lavigne, Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex, Science, vol.291, pp.1928-1938, 2001.

E. Stein, Y. Zou, M. Poo, and M. Tessier-lavigne, Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation, Science, vol.291, pp.1976-1982, 2001.

J. Stiles and T. L. Jernigan, The Basics of Brain Development, Neuropsychology Review, vol.20, pp.327-348, 2010.

A. J. Stoessl, Etiology of Parkinson's disease, Can J Neurol Sci, vol.26, issue.2, pp.5-12, 1999.

L. Strizzi, M. Mancino, C. Bianco, A. Raafat, M. Gonzales et al., Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland, J. Cell. Physiol, vol.216, pp.824-834, 2008.

A. Sullivan and G. O?keeffe, Neurotrophic factor therapy for Parkinson?s disease: past, present and future, Neural Regeneration Research, vol.11, p.205, 2016.

K. L. Sun, J. P. Correia, and T. E. Kennedy, Netrins: versatile extracellular cues with diverse functions, Development, vol.138, pp.2153-2169, 2011.

D. J. Surmeier, J. Ding, M. Day, Z. Wang, and W. Shen, D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons, Trends Neurosci, vol.30, pp.228-235, 2007.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nature Reviews Neuroscience, vol.18, pp.101-113, 2017.

R. K. Tadagavadi, W. Wang, R. , and G. , Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemiareperfusion injury, J. Immunol, vol.185, pp.3750-3758, 2010.

X. Tang, S. Jang, M. Okada, C. Chan, Y. Feng et al., Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B, Nature Cell Biology, vol.10, pp.698-706, 2008.

C. M. Tanner, F. Kamel, G. W. Ross, J. A. Hoppin, S. M. Goldman et al., Rotenone, paraquat, and Parkinson's disease, Environ. Health Perspect, vol.119, pp.866-872, 2011.

J. Tcherkezian, P. A. Brittis, F. Thomas, P. P. Roux, and J. G. Flanagan, Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation, vol.141, pp.632-644, 2010.

T. C. Thannickal, Y. Lai, and J. M. Siegel, Hypocretin (orexin) cell loss in Parkinson's disease, Brain, vol.130, pp.1586-1595, 2007.

L. B. Thomas, D. J. Gates, E. K. Richfield, T. F. O'brien, J. B. Schweitzer et al.,

, DNA End Labeling (TUNEL) in Huntington's Disease and Other Neuropathological Conditions, Experimental Neurology, vol.133, pp.265-272

K. F. Tipton and T. P. Singer, Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds, J. Neurochem, vol.61, pp.1191-1206, 1993.

N. Torres, J. Molet, C. Moro, J. Mitrofanis, and A. Benabid, Neuroprotective Surgical Strategies in Parkinson's Disease: Role of Preclinical Data, International Journal of Molecular Sciences, vol.18, p.2190, 2017.

A. Tsuchiya, T. Hayashi, K. Deguchi, Y. Sehara, T. Yamashita et al., Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia, Brain Res, vol.1159, pp.1-7, 2007.

U. Ungerstedt, 6-Hydroxy-dopamine induced degeneration of central monoamine neurons, Eur. J. Pharmacol, vol.5, pp.107-110, 1968.

U. Ungerstedt and G. W. Arbuthnott, Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system, Brain Res, vol.24, pp.485-493, 1970.

Y. Usami, T. Hatano, S. Imai, S. Kubo, S. Sato et al., DJ-1 associates with synaptic membranes, Neurobiol. Dis, vol.43, pp.651-662, 2011.

M. Varastet, D. Riche, M. Maziere, and P. Hantraye, Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson's disease, Neuroscience, vol.63, pp.47-56, 1994.

D. Varma and D. Sen, Role of the unfolded protein response in the pathogenesis of Parkinson's disease, Acta Neurobiol Exp (Wars), vol.75, pp.1-26, 2015.

K. Venderova and D. S. Park, Programmed Cell Death in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, vol.2, pp.9365-009365, 2012.

J. Vielmetter, Neogenin, an avian cell surface protein expressed during terminal neuronal differentiation, is closely related to the human tumor suppressor molecule deleted in colorectal cancer, The Journal of Cell Biology, vol.127, 1994.

A. Volenec, T. S. Zetterström, and T. P. Flanigan, 6-OHDA denervation substantially decreases DCC mRNA levels in rat substantia nigra compacta, Neuroreport, vol.9, pp.3553-3556, 1998.

M. H. Voutilainen, S. Back, E. Porsti, L. Toppinen, L. Lindgren et al., Mesencephalic Astrocyte-Derived Neurotrophic Factor Is Neurorestorative in Rat Model of Parkinson's Disease, Journal of Neuroscience, vol.29, pp.9651-9659, 2009.

M. H. Voutilainen, S. Bäck, J. Peränen, P. Lindholm, A. Raasmaja et al., Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease, Experimental Neurology, vol.228, pp.99-108, 2011.

G. X. Wang and M. Poo, Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones, Nature, vol.434, pp.898-904, 2005.

H. Wang, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, and M. Tessier-lavigne, Netrin-3, a Mouse Homolog of Human NTN2L, Is Highly Expressed in Sensory Ganglia and Shows Differential Binding to Netrin Receptors, The Journal of Neuroscience, vol.19, pp.4938-4947, 1999.

J. Wang, W. Zhai, Z. Yu, L. Sun, H. Li et al., , 2018.

, Neuroprotection Exerted by Netrin-1 and Kinesin Motor KIF1A in Secondary Brain Injury following Experimental Intracerebral Hemorrhage in Rats, Frontiers in Cellular Neuroscience, vol.11

Q. Wang, Y. Xu, S. Liu, and Z. Ma, Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice, Oncotarget, vol.8, pp.47284-47295, 2017.

W. Wang, W. B. Reeves, R. , and G. , Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney, Am. J. Physiol. Renal Physiol, vol.294, pp.739-747, 2008.

X. Wang, J. Xu, J. Gong, H. Shen, W. et al., Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury, Neural Regen Res, vol.8, pp.64-69, 2013.

P. J. Webber and A. B. West, LRRK2 in Parkinson's disease: function in cells and neurodegeneration, FEBS J, vol.276, pp.6436-6444, 2009.

R. Wehrle, E. Camand, A. Chedotal, C. Sotelo, and I. Dusart, Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions, Eur. J. Neurosci, vol.22, pp.2134-2144, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00080972

K. Welshhans and G. J. Bassell, Netrin-1-induced local ?-actin synthesis and growth cone guidance requires zipcode binding protein 1, J. Neurosci, vol.31, pp.9800-9813, 2011.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen et al., Netrins promote developmental and therapeutic angiogenesis, Science, vol.313, pp.640-644, 2006.

C. J. Wilson, H. T. Chang, and S. T. Kitai, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum, J. Neurosci, vol.10, pp.508-519, 1990.

A. Woodgate, G. Macgibbon, M. Walton, and M. Dragunow, The toxicity of 6-hydroxydopamine on PC12 and P19 cells, Brain Res. Mol. Brain Res, vol.69, pp.84-92, 1999.

T. Wu, W. Li, L. , and H. , Netrin-1 attenuates ischemic stroke-induced apoptosis, Neuroscience, vol.156, pp.475-482, 2008.

Y. Xie, Y. Hong, X. Ma, X. Ren, S. Ackerman et al., DCCdependent phospholipase C signaling in netrin-1-induced neurite elongation, J. Biol. Chem, vol.281, pp.2605-2611, 2006.

Z. Xie, L. Huang, B. Enkhjargal, C. Reis, W. Wan et al., , 2018.

, Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPAR?/NF?B signaling pathway after subarachnoid hemorrhage in rats, Brain, Behavior, and Immunity, vol.69, pp.190-202

B. Xu, J. S. Goldman, V. V. Rymar, C. Forget, P. S. Lo et al., Critical Roles for the Netrin Receptor Deleted in Colorectal Cancer in Dopaminergic Neuronal Precursor Migration, Axon Guidance, and Axon Arborization, Neuroscience, vol.169, pp.932-949, 2010.

K. Xu, Z. Wu, N. Renier, A. Antipenko, D. Tzvetkova-robev et al., Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism, Science, vol.344, pp.1275-1279, 2014.

S. Yamagishi, F. Hampel, K. Hata, D. Del-toro, M. Schwark et al., FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons, EMBO J, vol.30, pp.2920-2933, 2011.

S. Yamagishi, K. Yamada, M. Sawada, S. Nakano, N. Mori et al., , 2015.

, Netrin-5 is highly expressed in neurogenic regions of the adult brain, Frontiers in Cellular Neuroscience, vol.9

X. Yang, H. Y. Chang, and D. Baltimore, Essential role of CED-4 oligomerization in CED-3 activation and apoptosis, Science, vol.281, pp.1355-1357, 1998.

Y. Yang, T. Hsieh, C. Li, C. Liu, W. Lin et al., Increased risk of Parkinson disease with diabetes mellitus in a population-based study, Medicine, p.5921, 2017.

M. Yebra, A. M. Montgomery, G. R. Diaferia, T. Kaido, S. Silletti et al., Recognition of the neural chemoattractant Netrin-1 by integrins alpha6beta4 and alpha3beta1 regulates epithelial cell adhesion and migration, Dev. Cell, vol.5, pp.695-707, 2003.

K. T. Yee, H. H. Simon, M. Tessier-lavigne, and D. M. Leary, Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1, Neuron, vol.24, pp.607-622, 1999.

I. Ylivinkka, J. Keski-oja, and M. Hyytiäinen, Netrin-1: A regulator of cancer cell motility?, European Journal of Cell Biology, vol.95, pp.513-520, 2016.

A. R. Yung, A. M. Nishitani, and L. V. Goodrich, Phenotypic analysis of mice completely lacking netrin 1, Development, vol.142, pp.3686-3691, 2015.

P. Zelina, H. Blockus, Y. Zagar, A. Péres, F. Friocourt et al., Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution, Neuron, vol.84, pp.1258-1272, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102724

C. Zhang, Y. Jin, K. S. Ziemba, A. M. Fletcher, B. Ghosh et al., Long distance directional growth of dopaminergic axons along pathways of netrin-1 and GDNF, Experimental Neurology, vol.250, pp.156-164, 2013.

M. Zheng, R. Chen, H. Chen, Y. Zhang, J. Chen et al., Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion, Frontiers in Cellular Neuroscience, vol.12, 2018.

K. Zylbersztejn and T. Galli, Vesicular traffic in cell navigation: Vesicular trafficking in cell navigation, FEBS Journal, vol.278, pp.4497-4505, 2011.