D. S. Abi-abdallah, C. E. Egan, B. A. Butcher, and E. Y. Denkers, Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation, Int Immunol, vol.23, issue.5, pp.317-326, 2011.

M. Adelmann, J. Wood, I. Benzel, P. Fiori, H. Lassmann et al., The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat, J Neuroimmunol, vol.63, issue.1, pp.17-27, 1995.

R. Aharoni, The mechanism of action of glatiramer acetate in multiple sclerosis and beyond, Autoimmun Rev, vol.12, issue.5, pp.543-553, 2013.

R. Aharoni, R. Eilam, A. Stock, A. Vainshtein, E. Shezen et al., Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing-remitting or chronic EAE, J Neuroimmunol, vol.225, issue.1-2, pp.100-111, 2010.

B. Ajami, J. L. Bennett, C. Krieger, K. M. Mcnagny, and F. M. Rossi, Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool, Nat Neurosci, vol.14, issue.9, pp.1142-1149, 2011.

J. Aliberti, C. Serhan, and A. Sher, Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection, J Exp Med, vol.196, issue.9, pp.1253-1262, 2002.

S. Alotaibi, J. Kennedy, R. Tellier, D. Stephens, and B. Banwell, Epstein-Barr virus in pediatric multiple sclerosis, JAMA, vol.291, issue.15, pp.1875-1879, 2004.

R. Altara, Z. Mallat, G. W. Booz, and F. A. Zouein, The CXCL10/CXCR3 Axis and Cardiac Inflammation: Implications for Immunotherapy to Treat Infectious and Noninfectious Diseases of the Heart, J Immunol Res, p.4396368, 2016.

C. Amalinei, I. D. Caruntu, S. E. Giusca, and R. A. Balan, Matrix metalloproteinases involvement in pathologic conditions, Rom J Morphol Embryol, vol.51, issue.2, pp.215-228, 2010.

K. Anton, D. Banerjee, and J. Glod, Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion, PLoS One, vol.7, issue.4, p.35036, 2012.

A. Ariel, G. Fredman, Y. P. Sun, A. Kantarci, T. E. Van-dyke et al., Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression, Nat Immunol, vol.7, issue.11, pp.1209-1216, 2006.

M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang et al., Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1, J Exp Med, vol.201, issue.5, pp.713-722, 2005.

B. Aube, S. A. Levesque, A. Pare, E. Chamma, H. Kebir et al., Neutrophils mediate bloodspinal cord barrier disruption in demyelinating neuroinflammatory diseases, J Immunol, vol.193, issue.5, pp.2438-2454, 2014.

L. L. Aung, A. Brooks, S. A. Greenberg, M. L. Rosenberg, S. Dhib-jalbut et al., Multiple sclerosis-linked and interferon-beta-regulated gene expression in plasmacytoid dendritic cells, J Neuroimmunol, vol.250, issue.1-2, pp.99-105, 2012.

S. L. Bailey-bucktrout, S. C. Caulkins, G. Goings, J. A. Fischer, A. Dzionek et al., Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis, J Immunol, vol.180, issue.10, pp.6457-6461, 2008.

S. L. Bailey, B. Schreiner, E. J. Mcmahon, and S. D. Miller, CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE, Nat Immunol, vol.8, issue.2, pp.172-180, 2007.

P. Bao, A. Kodra, M. Tomic-canic, M. S. Golinko, H. P. Ehrlich et al., The role of vascular endothelial growth factor in wound healing, J Surg Res, vol.153, issue.2, pp.347-358, 2009.

J. L. Baron, J. A. Madri, N. H. Ruddle, G. Hashim, and C. A. Janeway, Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma, J Exp Med, vol.177, issue.1, pp.57-68, 1993.

B. Becher, S. Spath, and J. Goverman, Cytokine networks in neuroinflammation, Nat Rev Immunol, vol.17, issue.1, pp.49-59, 2017.

C. L. Bellac, A. Dufour, M. J. Krisinger, A. Loonchanta, A. E. Starr et al., Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis, Cell Rep, vol.9, issue.2, pp.618-632, 2014.

R. Beppu, K. Nakamura, H. Miyajima-uchida, M. Kuroki, P. D. Khare et al., Soluble thrombospondin-1 suppresses T cell proliferation and enhances IL-10 secretion by antigen presenting cells stimulated with phytohemagglutinin, Immunol Invest, vol.30, issue.2, pp.143-156, 2001.

K. Berer, M. Mues, M. Koutrolos, Z. A. Rasbi, M. Boziki et al., Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination, Nature, vol.479, issue.7374, pp.538-541, 2011.

T. Berger, S. Weerth, K. Kojima, C. Linington, H. Wekerle et al., Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system, Lab Invest, vol.76, issue.3, pp.355-364, 1997.

M. Bhasin, M. Wu, and S. E. Tsirka, Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis, BMC Immunol, vol.8, p.10, 2007.

M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger, J Leukoc Biol, vol.81, issue.1, pp.1-5, 2007.

A. Billich, F. Bornancin, P. Devay, D. Mechtcheriakova, N. Urtz et al., Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases, J Biol Chem, vol.278, issue.48, pp.47408-47415, 2003.

D. P. Bogdanos, D. S. Smyk, E. I. Rigopoulou, M. G. Mytilinaiou, M. A. Heneghan et al., Twin studies in autoimmune disease: genetics, gender and environment, J Autoimmun, vol.38, issue.2-3, pp.156-169, 2012.

J. F. Bogie, P. Stinissen, and J. J. Hendriks, Macrophage subsets and microglia in multiple sclerosis, Acta Neuropathol, vol.128, issue.2, pp.191-213, 2014.

F. Bonnefoy, S. Perruche, M. Couturier, A. Sedrati, Y. Sun et al., Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation, J Immunol, vol.186, issue.10, pp.5696-5705, 2011.

O. Boyman, S. Braesch-andersen, S. Paulie, C. Smedman, S. Mia et al., ApoE production in human monocytes and its regulation by inflammatory cytokines, Eur J Immunol, vol.40, issue.4, p.79908, 2010.

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil extracellular traps kill bacteria, Science, vol.303, issue.5663, pp.1532-1535, 2004.

H. Bronnum-hansen, N. Koch-henriksen, and E. Stenager, Trends in survival and cause of death in Danish patients with multiple sclerosis, Brain, vol.127, pp.844-850, 2004.

M. D. Buck, R. T. Sowell, S. M. Kaech, and E. L. Pearce, Metabolic Instruction of Immunity, Cell, vol.169, issue.4, pp.570-586, 2017.

J. Bystrom, I. Evans, J. Newson, M. Stables, I. Toor et al., Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP, Blood, vol.112, issue.10, pp.4117-4127, 2008.

P. B. Carrieri, V. Provitera, T. Rosa, G. Tartaglia, F. Gorga et al., Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity, Immunopharmacol Immunotoxicol, vol.20, issue.3, pp.373-382, 1998.

A. Ceroi, F. A. Delettre, C. Marotel, T. Gauthier, A. Asgarova et al., The anti-inflammatory effects of platelet-derived microparticles in human plasmacytoid dendritic cells involve liver X receptor activation, Haematologica, vol.101, issue.3, pp.72-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01441581

J. P. Chalise, M. T. Pallotta, S. C. Narendra, B. Carlsson, A. Iacono et al., IDO1 and TGF-beta Mediate Protective Effects of IFN-alpha in Antigen-Induced Arthritis, J Immunol, vol.197, issue.8, pp.3142-3151, 2016.

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, S. F. Walk, J. M. Kinchen et al., Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis, Nature, vol.467, issue.7317, pp.863-867, 2010.

J. Chen, N. Chia, K. R. Kalari, J. Z. Yao, M. Novotna et al., Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls, 2016.

W. Chen, M. E. Frank, W. Jin, and S. M. Wahl, TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu, Immunity, vol.14, issue.6, pp.715-725, 2001.

W. Chen, W. Jin, N. Hardegen, K. J. Lei, L. Li et al., Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGFbeta induction of transcription factor Foxp3, J Exp Med, vol.198, issue.12, pp.1875-1886, 2003.

N. Chiang, E. A. Bermudez, P. M. Ridker, S. Hurwitz, and C. N. Serhan, Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial, Proc Natl Acad Sci U S A, vol.101, issue.42, pp.15178-15183, 2004.

S. Chiba, T. Hisamatsu, H. Suzuki, K. Mori, M. T. Kitazume et al., Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages, Immunol Lett, vol.183, pp.17-23, 2017.

J. H. Cho and M. Feldman, Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies, Nat Med, vol.21, issue.7, pp.730-738, 2015.

J. Chun and H. P. Hartung, Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis, Clin Neuropharmacol, vol.33, issue.2, pp.91-101, 2010.

B. Cisse, M. L. Caton, M. Lehner, T. Maeda, S. Scheu et al., Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development, Cell, vol.135, issue.1, pp.37-48, 2008.

L. Codarri, G. Gyulveszi, V. Tosevski, L. Hesske, A. Fontana et al., RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation, Nat Immunol, vol.12, issue.6, pp.560-567, 2011.

A. Compston and A. Coles, Multiple sclerosis, Lancet, vol.372, issue.9648, pp.1502-1517, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00996686

A. L. Cox, S. A. Thompson, J. L. Jones, V. H. Robertson, G. Hale et al., Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis, Eur J Immunol, vol.35, issue.11, pp.3332-3342, 2005.

S. P. Cramer, H. Simonsen, J. L. Frederiksen, E. Rostrup, and H. B. Larsson, Abnormal bloodbrain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI, Neuroimage Clin, vol.4, pp.182-189, 2014.

A. Cross, R. C. Bucknall, M. A. Cassatella, S. W. Edwards, and R. J. Moots, Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis, Arthritis Rheum, vol.48, issue.10, pp.2796-2806, 2003.

A. L. Croxford, S. Spath, and B. Becher, GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage, Trends Immunol, vol.36, issue.10, pp.651-662, 2015.

D. J. Cua, J. Sherlock, Y. Chen, C. A. Murphy, B. Joyce et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, vol.421, issue.6924, pp.744-748, 2003.

M. F. Cusick, J. E. Libbey, and R. S. Fujinami, Molecular mimicry as a mechanism of autoimmune disease, Clin Rev Allergy Immunol, vol.42, issue.1, pp.102-111, 2012.

C. J. Czupalla, S. Liebner, and K. Devraj, In vitro models of the blood-brain barrier, Methods Mol Biol, vol.1135, pp.415-437, 2014.

J. Dalli and C. Serhan, Macrophage Proresolving Mediators-the When and Where, Microbiol Spectr, vol.4, issue.3, 2016.

N. Dargahi, M. Katsara, T. Tselios, M. E. Androutsou, M. De-courten et al., Multiple Sclerosis: Immunopathology and Treatment Update, Brain Sci, vol.7, issue.7, 2017.

S. De-oliveira, E. E. Rosowski, and A. Huttenlocher, Neutrophil migration in infection and wound repair: going forward in reverse, Nat Rev Immunol, vol.16, issue.6, pp.378-391, 2016.

C. A. Dendrou, L. Fugger, and M. A. Friese, Immunopathology of multiple sclerosis, Nat Rev Immunol, vol.15, issue.9, pp.545-558, 2015.

S. S. Diebold, Determination of T-cell fate by dendritic cells, Immunol Cell Biol, vol.86, issue.5, pp.389-397, 2008.

U. Dirksen, R. Nishinakamura, P. Groneck, U. Hattenhorst, L. Nogee et al., Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression, J Clin Invest, vol.100, issue.9, pp.2211-2217, 1997.

Y. Dombrowski, T. O'hagan, M. Dittmer, R. Penalva, S. R. Mayoral et al., Regulatory T cells promote myelin regeneration in the central nervous system, Nat Neurosci, vol.20, issue.5, pp.674-680, 2017.

S. E. Dorman and S. M. Holland, Interferon-gamma and interleukin-12 pathway defects and human disease, Cytokine Growth Factor Rev, vol.11, issue.4, pp.321-333, 2000.

G. Dranoff and R. C. Mulligan, Activities of granulocyte-macrophage colony-stimulating factor revealed by gene transfer and gene knockout studies, Stem Cells, vol.12, pp.173-182, 1994.

D. Druzd, O. Matveeva, L. Ince, U. Harrison, W. He et al., Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses, Immunity, vol.46, issue.1, pp.120-132, 2017.

M. Dupage and J. A. Bluestone, Harnessing the plasticity of CD4(+) T cells to treat immunemediated disease, Nat Rev Immunol, vol.16, issue.3, pp.149-163, 2016.

F. V. Duraes, C. Lippens, K. Steinbach, J. Dubrot, D. Brighouse et al., pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation, J Autoimmun, vol.67, pp.8-18, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01792631

M. El-behi, B. Ciric, H. Dai, Y. Yan, M. Cullimore et al., The encephalitogenicity of T(H)17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF, Nat Immunol, vol.12, issue.6, pp.568-575, 2011.

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al.,

. Ravichandran, Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.461, issue.7261, pp.282-286, 2009.

S. Epelman, K. J. Lavine, A. E. Beaudin, D. K. Sojka, J. A. Carrero et al., Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation, Immunity, vol.40, issue.1, pp.91-104, 2014.

R. A. Ezekowitz, K. Sastry, P. Bailly, and A. Warner, Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells, J Exp Med, vol.172, issue.6, pp.1785-1794, 1990.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J Clin Invest, vol.101, issue.4, pp.890-898, 1998.

K. W. Finnson, S. Mclean, G. M. Di-guglielmo, and A. Philip, Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring, Adv Wound Care, vol.2, issue.5, pp.195-214, 2013.

J. M. Fletcher, R. Lonergan, L. Costelloe, K. Kinsella, B. Moran et al., CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis, J Immunol, vol.183, issue.11, pp.7602-7610, 2009.

A. C. Foks, D. Engelbertsen, F. Kuperwaser, N. Alberts-grill, A. Gonen et al., Blockade of Tim-1 and Tim, 2016.

, Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice, Arterioscler Thromb Vasc Biol, vol.36, issue.3, pp.456-465

M. L. Ford and B. D. Evavold, Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis, Eur J Immunol, vol.35, issue.1, pp.76-85, 2005.

G. Fredman, S. F. Oh, S. Ayilavarapu, H. Hasturk, C. N. Serhan et al., Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1, PLoS One, vol.6, issue.9, p.24422, 2011.

D. O. Freytes, J. W. Kang, I. Marcos-campos, and G. Vunjak-novakovic, Macrophages modulate the viability and growth of human mesenchymal stem cells, J Cell Biochem, vol.114, issue.1, pp.220-229, 2013.

M. A. Friese and L. Fugger, Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy, Brain, vol.128, pp.1747-1763, 2005.

T. Fujii, A. Sakata, S. Nishimura, K. Eto, and S. Nagata, TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets, Proc Natl Acad Sci U S A, vol.112, issue.41, pp.12800-12805, 2015.

J. N. Fullerton and D. W. Gilroy, Resolution of inflammation: a new therapeutic frontier, Nat Rev Drug Discov, vol.15, issue.8, pp.551-567, 2016.

G. C. Furtado, M. C. Marcondes, J. A. Latkowski, J. Tsai, A. Wensky et al., Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis, J Immunol, vol.181, issue.7, pp.4648-4655, 2008.

Y. Gao, J. M. Herndon, H. Zhang, T. S. Griffith, and T. A. Ferguson, Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis, J Exp Med, vol.188, issue.5, pp.887-896, 1998.

S. J. Gardai, K. A. Mcphillips, S. C. Frasch, W. J. Janssen, A. Starefeldt et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte, Cell, vol.123, issue.2, pp.321-334, 2005.

D. R. Getts, A. J. Martin, D. P. Mccarthy, R. L. Terry, Z. N. Hunter et al., Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis, Nat Biotechnol, vol.30, issue.12, pp.1217-1224, 2012.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, issue.6005, pp.841-845, 2010.

J. Goebel, E. Stevens, K. Forrest, and T. L. Roszman, Daclizumab (Zenapax) inhibits early interleukin-2 receptor signal transduction events, Transpl Immunol, vol.8, issue.3, pp.153-159, 2000.

D. S. Goodin, The causal cascade to multiple sclerosis: a model for MS pathogenesis, PLoS One, vol.4, issue.2, p.4565, 2009.

S. Gordon, Macrophage-restricted molecules: role in differentiation and activation, Immunol Lett, vol.65, issue.1-2, pp.5-8, 1999.

E. J. Gosselin, K. Wardwell, W. F. Rigby, and P. M. Guyre, Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFNgamma, and IL-3, J Immunol, vol.151, issue.3, pp.1482-1490, 1993.

J. Goverman, Autoimmune T cell responses in the central nervous system, Nat Rev Immunol, vol.9, issue.6, pp.393-407, 2009.

J. Goverman, A. Perchellet, and E. S. Huseby, The role of CD8(+) T cells in multiple sclerosis and its animal models, Curr Drug Targets Inflamm Allergy, vol.4, issue.2, pp.239-245, 2005.

M. Gray, K. Miles, D. Salter, D. Gray, and J. Savill, Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells, Proc Natl Acad Sci U S A, vol.104, issue.35, pp.14080-14085, 2007.

A. P. Gregory, C. A. Dendrou, K. E. Attfield, A. Haghikia, D. K. Xifara et al., TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis, Nature, vol.488, issue.7412, pp.508-511, 2012.

C. D. Gregory, A. Devitt, and O. Moffatt, Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages, Biochem Soc Trans, vol.26, issue.4, pp.644-649, 1998.

M. Greter, F. L. Heppner, M. P. Lemos, B. M. Odermatt, N. Goebels et al., Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis, Nat Med, vol.11, issue.3, pp.328-334, 2005.

H. M. Grifka-walk, D. A. Giles, and B. M. Segal, IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23, Eur J Immunol, vol.45, issue.10, pp.2780-2786, 2015.

J. R. Groom and A. D. Luster, CXCR3 ligands: redundant, collaborative and antagonistic functions, Immunol Cell Biol, vol.89, issue.2, pp.207-215, 2011.

D. R. Gude, S. E. Alvarez, S. W. Paugh, P. Mitra, J. Yu et al., Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal, FASEB J, vol.22, issue.8, pp.2629-2638, 2008.

M. Guilliams, . I.-de, S. Kleer, S. Henri, L. Post et al., Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, J Exp Med, vol.210, issue.10, pp.1977-1992, 2013.

B. Guo, E. Y. Chang, and G. Cheng, The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice, J Clin Invest, vol.118, issue.5, pp.1680-1690, 2008.

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J Clin Invest, vol.117, issue.5, pp.1119-1127, 2007.

S. Haak, A. L. Croxford, K. Kreymborg, F. L. Heppner, S. Pouly et al., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice, J Clin Invest, vol.119, issue.1, pp.61-69, 2009.

G. Hajishengallis, Periodontitis: from microbial immune subversion to systemic inflammation, Nat Rev Immunol, vol.15, issue.1, pp.30-44, 2015.

C. Z. Han, I. J. Juncadella, J. M. Kinchen, M. W. Buckley, A. L. Klibanov et al., Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation, Nature, vol.539, issue.7630, pp.570-574, 2016.

A. E. Handel, A. J. Williamson, G. Disanto, R. Dobson, G. Giovannoni et al., Smoking and multiple sclerosis: an updated meta-analysis, PLoS One, vol.6, issue.1, p.16149, 2011.

E. Havrdova, D. Horakova, and I. Kovarova, Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use, Ther Adv Neurol Disord, vol.8, issue.1, pp.31-45, 2015.

S. E. Headland and L. V. Norling, The resolution of inflammation: Principles and challenges, Semin Immunol, vol.27, issue.3, pp.149-160, 2015.

A. K. Hedstrom, T. Akerstedt, J. Hillert, T. Olsson, and L. Alfredsson, Shift work at young age is associated with increased risk for multiple sclerosis, Ann Neurol, vol.70, issue.5, pp.733-741, 2011.

A. K. Hedstrom, E. Sundqvist, M. Baarnhielm, N. Nordin, J. Hillert et al., Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis, Brain, vol.134, pp.653-664, 2011.

B. Hemmer, M. Kerschensteiner, and T. Korn, Role of the innate and adaptive immune responses in the course of multiple sclerosis, Lancet Neurol, vol.14, issue.4, pp.406-419, 2015.

J. J. Hendriks, C. E. Teunissen, H. E. De-vries, and C. D. Dijkstra, Macrophages and neurodegeneration, Brain Res Brain Res Rev, vol.48, issue.2, pp.185-195, 2005.

A. Hochreiter-hufford and K. S. Ravichandran, Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion, Cold Spring Harb Perspect Biol, vol.5, issue.1, p.8748, 2013.

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sacderived macrophages, J Exp Med, vol.209, issue.6, pp.1167-1181, 2012.

H. H. Hofstetter, S. M. Ibrahim, D. Koczan, N. Kruse, A. Weishaupt et al., Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis, Cell Immunol, vol.237, issue.2, pp.123-130, 2005.

S. J. Holwerda and W. De-laat, CTCF: the protein, the binding partners, the binding sites and their chromatin loops, Philos Trans R Soc Lond B Biol Sci, vol.368, p.20120369, 1620.

J. Hong, N. Li, X. Zhang, B. Zheng, and J. Z. Zhang, Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3, Proc Natl Acad Sci U S A, vol.102, issue.18, pp.6449-6454, 2005.

S. Hong, H. Tian, Y. Lu, J. M. Laborde, F. A. Muhale et al., Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes, Am J Physiol Cell Physiol, vol.307, issue.11, pp.1058-1067, 2014.

X. Hu and L. B. Ivashkiv, Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases, Immunity, vol.31, issue.4, pp.539-550, 2009.

F. P. Huang, N. Platt, M. Wykes, J. R. Major, T. J. Powell et al., A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes, J Exp Med, vol.191, issue.3, pp.435-444, 2000.

Y. M. Huang, B. G. Xiao, V. Ozenci, M. Kouwenhoven, N. Teleshova et al., Multiple sclerosis is associated with high levels of circulating dendritic cells secreting proinflammatory cytokines, J Neuroimmunol, vol.99, issue.1, pp.82-90, 1999.

I. Huitinga, N. Van-rooijen, C. J. De-groot, B. M. Uitdehaag, and C. D. Dijkstra, Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages, J Exp Med, vol.172, issue.4, pp.1025-1033, 1990.

M. Irla, N. Kupfer, T. Suter, R. Lissilaa, M. Benkhoucha et al., MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity, J Exp Med, vol.207, issue.9, pp.1891-1905, 2010.

M. Isaksson, B. Ardesjo, L. Ronnblom, O. Kampe, H. Lassmann et al., Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE, Eur J Immunol, vol.39, issue.10, pp.2925-2935, 2009.

A. Ito, A. Mukaiyama, Y. Itoh, H. Nagase, I. B. Thogersen et al., Degradation of interleukin 1beta by matrix metalloproteinases, J Biol Chem, vol.271, issue.25, pp.14657-14660, 1996.

S. A. Jagessar, K. Dijkman, J. Dunham, B. A. Hart, and Y. S. Kap, Experimental Autoimmune Encephalomyelitis in Marmosets, Methods Mol Biol, vol.1304, pp.171-186, 2016.

P. Jain, C. Coisne, G. Enzmann, R. Rottapel, and B. Engelhardt, Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis, J Immunol, vol.184, issue.12, pp.7196-7206, 2010.

J. H. Jang, H. W. Shin, J. M. Lee, H. W. Lee, E. C. Kim et al., An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp, Mediators Inflamm, p.794143, 2015.

J. Jantsch, D. Chakravortty, N. Turza, A. T. Prechtel, B. Buchholz et al., Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function, J Immunol, vol.180, issue.7, pp.4697-4705, 2008.

H. R. Jiang, M. Milovanovic, D. Allan, W. Niedbala, A. G. Besnard et al., IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages, Eur J Immunol, vol.42, issue.7, pp.1804-1814, 2012.

Z. Jiang, J. X. Jiang, and G. X. Zhang, Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis, Immunol Lett, vol.160, issue.1, pp.17-22, 2014.

E. A. Kabat, A. Wolf, and A. E. Bezer, The Rapid Production of Acute Disseminated Encephalomyelitis in Rhesus Monkeys by Injection of Heterologous and Homologous Brain Tissue with Adjuvants, J Exp Med, vol.85, issue.1, pp.117-130, 1947.

K. Kakalacheva and J. D. Lunemann, Environmental triggers of multiple sclerosis, FEBS Lett, vol.585, issue.23, pp.3724-3729, 2011.

K. Kambara, W. Ohashi, K. Tomita, M. Takashina, S. Fujisaka et al., In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice, Am J Pathol, vol.185, issue.1, pp.162-171, 2015.

M. J. Kaplan and M. Radic, Neutrophil extracellular traps: double-edged swords of innate immunity, J Immunol, vol.189, issue.6, pp.2689-2695, 2012.

A. Karni, M. Abraham, A. Monsonego, G. Cai, G. J. Freeman et al., Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response, J Immunol, vol.177, issue.6, pp.4196-4202, 2006.

S. Kasagi, P. Zhang, L. Che, B. Abbatiello, T. Maruyama et al., In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response, Sci Transl Med, vol.6, issue.241, pp.241-278, 2014.

A. J. Kassianos, M. Y. Hardy, X. Ju, D. Vijayan, Y. Ding et al., Human CD1c (BDCA-1)+ myeloid dendritic cells secrete IL-10 and display an immuno-regulatory phenotype and function in response to Escherichia coli, Eur J Immunol, vol.42, issue.6, pp.1512-1522, 2012.

K. Kawane, M. Ohtani, K. Miwa, T. Kizawa, Y. Kanbara et al., Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages, Nature, vol.443, issue.7114, pp.998-1002, 2006.

H. Kazama, J. E. Ricci, J. M. Herndon, G. Hoppe, D. R. Green et al., Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of highmobility group box-1 protein, Immunity, vol.29, issue.1, pp.21-32, 2008.

H. Kebir, K. Kreymborg, I. Ifergan, A. Dodelet-devillers, R. Cayrol et al., Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation, Nat Med, vol.13, issue.10, pp.1173-1175, 2007.

M. Keller, A. Ruegg, S. Werner, and H. D. Beer, Active caspase-1 is a regulator of unconventional protein secretion, Cell, vol.132, issue.5, pp.818-831, 2008.

B. Kelly and L. A. O'neill, Metabolic reprogramming in macrophages and dendritic cells in innate immunity, Cell Res, vol.25, issue.7, pp.771-784, 2015.

J. M. Kinchen and K. S. Ravichandran, Phagosome maturation: going through the acid test, Nat Rev Mol Cell Biol, vol.9, issue.10, pp.781-795, 2008.

I. L. King, T. L. Dickendesher, and B. M. Segal, Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease, Blood, vol.113, issue.14, pp.3190-3197, 2009.

M. Kipp, B. Van-der-star, D. Y. Vogel, F. Puentes, P. Van-der-valk et al., Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond, Mult Scler Relat Disord, vol.1, issue.1, pp.15-28, 2012.

R. S. Kiss, M. R. Elliott, Z. Ma, Y. L. Marcel, and K. S. Ravichandran, Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes, Curr Biol, vol.16, issue.22, pp.2252-2258, 2006.

L. Klareskog, A. I. Catrina, and S. Paget, Lancet, vol.373, issue.9664, pp.659-672, 2009.

N. Kobayashi, P. Karisola, V. Pena-cruz, D. M. Dorfman, M. Jinushi et al., TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells, Immunity, vol.27, issue.6, pp.927-940, 2007.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat Rev Immunol, vol.13, issue.3, pp.159-175, 2013.

M. Kouwenhoven, N. Teleshova, V. Ozenci, R. Press, and H. Link, Monocytes in multiple sclerosis: phenotype and cytokine profile, J Neuroimmunol, vol.112, issue.1-2, pp.197-205, 2001.

A. Krispin, Y. Bledi, M. Atallah, U. Trahtemberg, I. Verbovetski et al., Apoptotic cell thrombospondin-1 and heparin-binding domain lead to dendritic-cell phagocytic and tolerizing states, Blood, vol.108, issue.10, pp.3580-3589, 2006.

A. D. Krystal, E. Richelson, and T. Roth, Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications, Sleep Med Rev, vol.17, issue.4, pp.263-272, 2013.

H. Kumar, T. Kawai, and S. Akira, Pathogen recognition in the innate immune response, Biochem J, vol.420, issue.1, pp.1-16, 2009.

H. Kumar, T. Kawai, and S. Akira, Pathogen recognition by the innate immune system, Int Rev Immunol, vol.30, issue.1, pp.16-34, 2011.

J. F. Kurtzke, G. W. Beebe, J. E. Norman, and J. , Epidemiology of multiple sclerosis in U.S. veterans: 1. Race, sex, and geographic distribution, Neurology, vol.29, issue.9, pp.1228-1235, 1979.

R. Lande, V. Gafa, B. Serafini, E. Giacomini, A. Visconti et al., Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta, J Neuropathol Exp Neurol, vol.67, issue.5, pp.388-401, 2008.

C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J Exp Med, vol.201, issue.2, pp.233-240, 2005.

K. Lauber, E. Bohn, S. M. Krober, Y. J. Xiao, S. G. Blumenthal et al., Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, Cell, vol.113, issue.6, pp.717-730, 2003.

Y. Lavin, A. Mortha, A. Rahman, and M. Merad, Regulation of macrophage development and function in peripheral tissues, Nat Rev Immunol, vol.15, issue.12, pp.731-744, 2015.

T. Lawrence, D. A. Willoughby, and D. W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation, Nat Rev Immunol, vol.2, issue.10, pp.787-795, 2002.

K. Lehmann-horn, H. C. Kronsbein, and M. S. Weber, Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges, Ther Adv Neurol Disord, vol.6, issue.3, pp.161-173, 2013.

A. M. Lennon-dumenil, A. H. Bakker, R. Maehr, E. Fiebiger, H. S. Overkleeft et al., Analysis of protease activity in live antigenpresenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation, J Exp Med, vol.196, issue.4, pp.529-540, 2002.

G. Leoni, M. B. Voisin, K. Carlson, S. Getting, S. Nourshargh et al., The melanocortin MC(1) receptor agonist BMS-470539 inhibits leucocyte trafficking in the inflamed vasculature, Br J Pharmacol, vol.160, issue.1, pp.171-180, 2010.

A. Lindskog-jonsson, A. Granqvist, J. Elvin, M. E. Johansson, B. Haraldsson et al., Effects of melanocortin 1 receptor agonists in experimental nephropathies, PLoS One, vol.9, issue.1, p.87816, 2014.

C. Liu, Y. Li, J. Yu, L. Feng, S. Hou et al., Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil, PLoS One, vol.8, issue.2, p.54841, 2013.

P. S. Liu, H. Wang, X. Li, T. Chao, T. Teav et al., J. Ivanisevic and P

C. Ho, alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming, Nat Immunol, 2017.

Y. J. Liu, IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors, Annu Rev Immunol, vol.23, pp.275-306, 2005.

A. L. Longhini, F. Von-glehn, C. O. Brandao, R. F. De-paula, F. Pradella et al., Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse, J Neuroinflammation, vol.8, issue.1, p.2, 2011.

S. M. Lucas, N. J. Rothwell, and R. M. Gibson, The role of inflammation in CNS injury and disease, Br J Pharmacol, vol.147, pp.232-240, 2006.

T. Lucas, A. Waisman, R. Ranjan, J. Roes, T. Krieg et al., Differential roles of macrophages in diverse phases of skin repair, J Immunol, vol.184, issue.7, pp.3964-3977, 2010.

J. F. Maddox, M. Hachicha, T. Takano, N. A. Petasis, V. V. Fokin et al., Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a Gprotein-linked lipoxin A4 receptor, J Biol Chem, vol.272, issue.11, pp.6972-6978, 1997.

R. Maldonado-lopez, T. De, P. Smedt, J. Michel, B. Godfroid et al., CD8alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo, J Exp Med, vol.189, issue.3, pp.587-592, 1999.

S. Mariathasan, D. S. Weiss, K. Newton, J. Mcbride, K. O'rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, vol.440, issue.7081, pp.228-232, 2006.

M. M. Markiewski and J. D. Lambris, The role of complement in inflammatory diseases from behind the scenes into the spotlight, Am J Pathol, vol.171, issue.3, pp.715-727, 2007.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep, vol.6, p.13, 2014.

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression, J Immunol, vol.177, issue.10, pp.7303-7311, 2006.

D. Mathis and C. Benoist, Microbiota and autoimmune disease: the hosted self, Cell Host Microbe, vol.10, issue.4, pp.297-301, 2011.

E. J. Mcmahon, S. L. Bailey, C. V. Castenada, H. Waldner, and S. D. Miller, Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis, Nat Med, vol.11, issue.3, pp.335-339, 2005.

R. Medzhitov, Origin and physiological roles of inflammation, Nature, vol.454, issue.7203, pp.428-435, 2008.

E. Meinl, M. Krumbholz, and R. Hohlfeld, B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation, Ann Neurol, vol.59, issue.6, pp.880-892, 2006.

E. Mendez, J. L. Fernandez-luna, A. Grubb, and F. Leyva-cobian, Human protein HC and its IgA complex are inhibitors of neutrophil chemotaxis, Proc Natl Acad Sci U S A, vol.83, issue.5, pp.1472-1475, 1986.

D. Mevorach, T. Zuckerman, I. Reiner, A. Shimoni, S. Samuel et al., Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versushost disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial, Biol Blood Marrow Transplant, vol.20, issue.1, pp.58-65, 2014.

L. Michel, C. Larochelle, and A. Prat, Update on treatments in multiple sclerosis, Presse Med, vol.44, pp.137-151, 2015.

J. Mikita, N. Dubourdieu-cassagno, M. S. Deloire, A. Vekris, M. Biran et al., Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration, Mult Scler, vol.17, issue.1, pp.2-15, 2011.

A. Mildner, M. Mack, H. Schmidt, W. Bruck, M. Djukic et al., CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system, Brain, vol.132, pp.2487-2500, 2009.

E. A. Miles and P. C. Calder, Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis, Br J Nutr, vol.107, pp.171-184, 2012.

S. L. Minden and R. B. Schiffer, Affective disorders in multiple sclerosis. Review and recommendations for clinical research, Arch Neurol, vol.47, issue.1, pp.98-104, 1990.

Y. Miyake, K. Asano, H. Kaise, M. Uemura, M. Nakayama et al., Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cellassociated antigens, J Clin Invest, vol.117, issue.8, pp.2268-2278, 2007.

J. Miyata, K. Fukunaga, R. Iwamoto, Y. Isobe, K. Niimi et al., Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma, J Allergy Clin Immunol, vol.131, issue.2, pp.353-360, 2013.

L. F. Mohammad-zadeh, L. Moses, and S. M. Gwaltney-brant, Serotonin: a review, J Vet Pharmacol Ther, vol.31, issue.3, pp.187-199, 2008.

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J Immunol, vol.136, issue.7, pp.2348-2357, 1986.

J. E. Murphy-ullrich and M. Poczatek, Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology, Cytokine Growth Factor Rev, vol.11, issue.1-2, pp.59-69, 2000.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.

N. , A. G. , S. J. Bensinger, C. Hong, S. Beceiro et al., Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR, Immunity, vol.31, issue.2, pp.245-258, 2009.

S. Nadkarni, J. Dalli, J. Hollywood, J. C. Mason, B. Dasgupta et al., Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression, Circ Res, vol.114, issue.2, pp.242-248, 2014.

S. Nagata, R. Hanayama, and K. Kawane, Autoimmunity and the clearance of dead cells, Cell, vol.140, issue.5, pp.619-630, 2010.

S. H. Naik, P. Sathe, H. Y. Park, D. Metcalf, A. I. Proietto et al., Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo, Nat Immunol, vol.8, issue.11, pp.1217-1226, 2007.

H. Nakajima, K. Uchida, A. R. Guerrero, S. Watanabe, D. Sugita et al., Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury, J Neurotrauma, vol.29, issue.8, pp.1614-1625, 2012.

T. Nakano, Y. Ishimoto, J. Kishino, M. Umeda, K. Inoue et al., Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6, J Biol Chem, vol.272, issue.47, pp.29411-29414, 1997.

M. S. Natrajan, A. G. De-la-fuente, A. H. Crawford, E. Linehan, V. Nunez et al., Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination, Brain, vol.138, pp.3581-3597, 2015.

G. J. Nau, J. F. Richmond, A. Schlesinger, E. G. Jennings, E. S. Lander et al., Human macrophage activation programs induced by bacterial pathogens, Proc Natl Acad Sci U S A, vol.99, issue.3, pp.1503-1508, 2002.

V. Neudecker, M. Haneklaus, O. Jensen, L. Khailova, J. C. Masterson et al., Myeloidderived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome, J Exp Med, vol.214, issue.6, pp.1737-1752, 2017.

L. V. Norling, S. E. Headland, J. Dalli, H. H. Arnardottir, O. Haworth et al., Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis, JCI Insight, vol.1, issue.5, p.85922, 2016.

M. O'keeffe, R. J. Grumont, H. Hochrein, M. Fuchsberger, R. Gugasyan et al., Distinct roles for the NF-kappaB1 and c-Rel transcription factors in the differentiation and survival of plasmacytoid and conventional dendritic cells activated by TLR-9 signals, Blood, vol.106, issue.10, pp.3457-3464, 2005.

J. Ochoa-reparaz, D. W. Mielcarz, L. E. Ditrio, A. R. Burroughs, D. M. Foureau et al., Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis, J Immunol, vol.183, issue.10, pp.6041-6050, 2009.

C. A. Ogden, A. Decathelineau, P. R. Hoffmann, D. Bratton, B. Ghebrehiwet et al., C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells, J Exp Med, vol.194, issue.6, pp.781-795, 2001.

A. Ortega-gomez, M. Perretti, and O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Mol Med, vol.5, issue.5, pp.661-674, 2013.

G. G. Ortiz, F. P. Pacheco-moises, M. A. Macias-islas, L. J. Flores-alvarado, M. A. Mireles-ramirez et al., Role of the blood-brain barrier in multiple sclerosis, Arch Med Res, vol.45, issue.8, pp.687-697, 2014.

S. S. Ousman and P. Kubes, Immune surveillance in the central nervous system, Nat Neurosci, vol.15, issue.8, pp.1096-1101, 2012.

M. T. Pallotta, C. Orabona, C. Volpi, C. Vacca, M. L. Belladonna et al., Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells, Nat Immunol, vol.12, issue.9, pp.870-878, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664558

H. S. Panitch, R. L. Hirsch, A. S. Haley, and K. P. Johnson, Exacerbations of multiple sclerosis in patients treated with gamma interferon, Lancet, vol.1, issue.8538, pp.893-895, 1987.

K. H. Park-min, T. T. Antoniv, and L. B. Ivashkiv, Regulation of macrophage phenotype by long-term exposure to IL-10, Immunobiology, vol.210, issue.2-4, pp.77-86, 2005.

D. Park, A. C. Tosello-trampont, M. R. Elliott, M. Lu, L. B. Haney et al., BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module, Nature, vol.450, issue.7168, pp.430-434, 2007.

M. Pashenkov and H. Link, Dendritic cells and immune responses in the central nervous system, Trends Immunol, vol.23, issue.2, pp.69-70, 2002.

M. Perretti, X. Leroy, E. J. Bland, and T. Montero-melendez, Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation, Trends Pharmacol Sci, vol.36, issue.11, pp.737-755, 2015.

S. Perruche, P. Zhang, Y. Liu, P. Saas, J. A. Bluestone et al., CD3-specific antibodyinduced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells, Nat Med, vol.14, issue.5, pp.528-535, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00483517

C. Peter, M. Waibel, C. G. Radu, L. V. Yang, O. N. Witte et al., Migration to apoptotic "find-me" signals is mediated via the phagocyte receptor G2A, J Biol Chem, vol.283, issue.9, pp.5296-5305, 2008.

A. Planaguma, M. A. Pfeffer, G. Rubin, R. Croze, M. Uddin et al., Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4, Mucosal Immunol, vol.3, issue.3, pp.270-279, 2010.

E. D. Ponomarev, L. P. Shriver, K. Maresz, and B. N. Dittel, Microglial cell activation and proliferation precedes the onset of CNS autoimmunity, J Neurosci Res, vol.81, issue.3, pp.374-389, 2005.

C. Porta, M. Rimoldi, G. Raes, L. Brys, P. Ghezzi et al., Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB, Proc Natl Acad Sci U S A, vol.106, issue.35, pp.14978-14983, 2009.

E. Pucci, G. Giuliani, A. Solari, S. Simi, S. Minozzi et al., Natalizumab for relapsing remitting multiple sclerosis, Cochrane Database Syst Rev, issue.10, p.7621, 2011.

D. Pupjalis, J. Goetsch, D. J. Kottas, V. Gerke, and U. Rescher, Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling, EMBO Mol Med, vol.3, issue.2, pp.102-114, 2011.

C. H. Qiu, Y. Miyake, H. Kaise, H. Kitamura, O. Ohara et al., Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cellassociated antigens, J Immunol, vol.182, issue.7, pp.4127-4136, 2009.

R. M. Ransohoff, P. Kivisakk, and G. Kidd, Three or more routes for leukocyte migration into the central nervous system, Nat Rev Immunol, vol.3, issue.7, pp.569-581, 2003.

S. P. Rao, J. Sancho, J. Campos-rivera, P. M. Boutin, P. B. Severy et al., Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis, PLoS One, vol.7, issue.6, p.39416, 2012.

K. S. Rawji and V. W. Yong, The benefits and detriments of macrophages/microglia in models of multiple sclerosis, Clin Dev Immunol, p.948976, 2013.

P. W. Reddien, S. Cameron, and H. R. Horvitz, Phagocytosis promotes programmed cell death in C. elegans, Nature, vol.412, issue.6843, pp.198-202, 2001.

A. Rongvaux, R. Jackson, C. C. Harman, T. Li, A. P. West et al., Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA, Cell, vol.159, issue.7, pp.1563-1577, 2014.

M. Ryan, L. Mccarthy, R. Rappuoli, B. P. Mahon, and K. H. Mills, Pertussis toxin potentiates Th1 and Th2 responses to co-injected antigen: adjuvant action is associated with enhanced regulatory cytokine production and expression of the co-stimulatory molecules B7-1, B7-2 and CD28, Int Immunol, vol.10, issue.5, pp.651-662, 1998.

P. Saas, E. Daguindau, and S. Perruche, Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments, Stem Cells, vol.34, issue.6, pp.1464-1473, 2016.

P. Saas, S. Kaminski, and S. Perruche, Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases, Immunotherapy, vol.5, issue.10, pp.1055-1073, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01144117

G. P. Sandilands, Z. Ahmed, N. Perry, M. Davison, A. Lupton et al., Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation, Immunology, vol.114, issue.3, pp.354-368, 2005.

B. E. Sansbury and M. Spite, Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology, Circ Res, vol.119, issue.1, pp.113-130, 2016.

J. Savill, I. Dransfield, N. Hogg, and C. Haslett, Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature, vol.343, issue.6254, pp.170-173, 1990.

S. Sawcer, G. Hellenthal, M. Pirinen, C. C. Spencer, N. A. Patsopoulos et al.,

F. Mccauley, I. L. Mentch, T. Mero, X. Mihalova, J. Montalban et al.,

G. Hauser, P. Mcvean, A. Donnelly, and . Compston, Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis, Nature, vol.476, issue.7359, pp.214-219, 2011.

C. Schlager, H. Korner, M. Krueger, S. Vidoli, M. Haberl et al., Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid, Nature, vol.530, issue.7590, pp.349-353, 2016.

A. Seewann, H. Vrenken, P. Van-der-valk, E. L. Blezer, D. L. Knol et al., Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis, Arch Neurol, vol.66, issue.5, pp.601-609, 2009.

B. M. Segal and E. M. Shevach, IL-12 unmasks latent autoimmune disease in resistant mice, J Exp Med, vol.184, issue.2, pp.771-775, 1996.

K. Segawa, J. Suzuki, and S. Nagata, Constitutive exposure of phosphatidylserine on viable cells, Proc Natl Acad Sci U S A, vol.108, issue.48, pp.19246-19251, 2011.

F. Sellebjerg, D. Cadavid, D. Steiner, L. M. Villar, R. Reynolds et al., Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis, Ther Adv Neurol Disord, vol.9, issue.1, pp.31-43, 2016.

B. Serafini, B. Rosicarelli, R. Magliozzi, E. Stigliano, E. Capello et al., Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells, J Neuropathol Exp Neurol, vol.65, issue.2, pp.124-141, 2006.

C. N. Serhan, Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology, Mol Aspects Med, 2017.

C. N. Serhan, N. Chiang, and T. E. Van-dyke, Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators, Nat Rev Immunol, vol.8, issue.5, pp.349-361, 2008.

C. N. Serhan, S. Hong, K. Gronert, S. P. Colgan, P. R. Devchand et al., Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals, J Exp Med, vol.196, issue.8, pp.1025-1037, 2002.

C. N. Serhan and N. A. Petasis, Resolvins and protectins in inflammation resolution, Chem Rev, vol.111, issue.10, pp.5922-5943, 2011.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, issue.3, pp.787-795, 2012.

R. A. Sobel, Genetic and epigenetic influence on EAE phenotypes induced with different encephalitogenic peptides, J Neuroimmunol, vol.108, issue.1-2, pp.45-52, 2000.

O. Soehnlein, M. Drechsler, Y. Doring, D. Lievens, H. Hartwig et al., Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes, EMBO Mol Med, vol.5, issue.3, pp.471-481, 2013.

O. Soehnlein and L. Lindbom, Phagocyte partnership during the onset and resolution of inflammation, Nat Rev Immunol, vol.10, issue.6, pp.427-439, 2010.

S. Speck, J. Lim, S. Shelake, M. Matka, J. Stoddard et al., TGFbeta signaling initiated in dendritic cells instructs suppressive effects on Th17 differentiation at the site of neuroinflammation, PLoS One, vol.9, issue.7, p.102390, 2014.

M. Spite and C. N. Serhan, Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins, Circ Res, vol.107, issue.10, pp.1170-1184, 2010.

W. Spivia, P. S. Magno, P. Le, and D. A. Fraser, Complement protein C1q promotes macrophage anti-inflammatory M2-like polarization during the clearance of atherogenic lipoproteins, Inflamm Res, vol.63, issue.10, pp.885-893, 2014.

R. Sporici and T. B. Issekutz, CXCR3 blockade inhibits T-cell migration into the CNS during EAE and prevents development of adoptively transferred, but not actively induced, disease, Eur J Immunol, vol.40, issue.10, pp.2751-2761, 2010.

M. J. Stables, S. Shah, E. B. Camon, R. C. Lovering, J. Newson et al., Transcriptomic analyses of murine resolution-phase macrophages, Blood, vol.118, issue.26, pp.192-208, 2011.

M. A. Stark, Y. Huo, T. L. Burcin, M. A. Morris, T. S. Olson et al., Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17, Immunity, vol.22, issue.3, pp.285-294, 2005.

M. Stasiolek, A. Bayas, N. Kruse, A. Wieczarkowiecz, K. V. Toyka et al., Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis, Brain, vol.129, pp.1293-1305, 2006.

O. Steiner, C. Coisne, R. Cecchelli, R. Boscacci, U. Deutsch et al., Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium, J Immunol, vol.185, issue.8, pp.4846-4855, 2010.

L. Steinman, A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage, Nat Med, vol.13, issue.2, pp.139-145, 2007.

M. K. Storch, A. Stefferl, U. Brehm, R. Weissert, E. Wallstrom et al., Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology, Brain Pathol, vol.8, issue.4, pp.681-694, 1998.

I. M. Stromnes and J. M. Goverman, Active induction of experimental allergic encephalomyelitis, Nat Protoc, vol.1, issue.4, pp.1810-1819, 2006.

W. H. Stuart, Clinical management of multiple sclerosis: the treatment paradigm and issues of patient management, J Manag Care Pharm, vol.10, issue.3, pp.19-25, 2004.

O. Stuve, N. P. Dooley, J. H. Uhm, J. P. Antel, G. S. Francis et al., Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9, Ann Neurol, vol.40, issue.6, pp.853-863, 1996.

P. K. Stys, G. W. Zamponi, J. Van-minnen, and J. J. Geurts, Will the real multiple sclerosis please stand up?, Nat Rev Neurosci, vol.13, issue.7, pp.507-514, 2012.

J. Suzuki, M. Umeda, P. J. Sims, and S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F, Nature, vol.468, issue.7325, pp.834-838, 2010.

R. Takauji, S. Iho, H. Takatsuka, S. Yamamoto, T. Takahashi et al., CpG-DNA-induced IFN-alpha production involves p38 MAPKdependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors, J Leukoc Biol, vol.72, issue.5, pp.1011-1019, 2002.

O. Takeuchi and S. Akira, Pattern recognition receptors and inflammation, Cell, vol.140, issue.6, pp.805-820, 2010.

C. Tenger and X. Zhou, Apolipoprotein E modulates immune activation by acting on the antigen-presenting cell, Immunology, vol.109, issue.3, pp.392-397, 2003.

K. Tobal, A. Pagliuca, B. Bhatt, N. Bailey, D. M. Layton et al., Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia, Leukemia, vol.4, issue.7, pp.486-489, 1990.

O. Torkildsen, K. M. Myhr, and L. Bo, Disease-modifying treatments for multiple sclerosis -a review of approved medications, Eur J Neurol, vol.23, pp.18-27, 2016.

M. Traka, J. R. Podojil, D. P. Mccarthy, S. D. Miller, and B. Popko, Oligodendrocyte death results in immune-mediated CNS demyelination, Nat Neurosci, vol.19, issue.1, pp.65-74, 2016.

C. Trebst, T. L. Sorensen, P. Kivisakk, M. K. Cathcart, J. Hesselgesser et al., CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis, Am J Pathol, vol.159, issue.5, pp.1701-1710, 2001.

L. A. Truman, C. A. Ford, M. Pasikowska, J. D. Pound, S. J. Wilkinson et al., CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis, Blood, vol.112, issue.13, pp.5026-5036, 2008.

J. S. Tzartos, M. A. Friese, M. J. Craner, J. Palace, J. Newcombe et al., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis, Am J Pathol, vol.172, issue.1, pp.1850-1857, 2001.

C. L. Vanderlugt and S. D. Miller, Epitope spreading in immune-mediated diseases: implications for immunotherapy, Nat Rev Immunol, vol.2, issue.2, pp.85-95, 2002.

K. Venken, N. Hellings, T. Broekmans, K. Hensen, J. L. Rummens et al., Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression, J Immunol, vol.180, issue.9, pp.6411-6420, 2008.

E. Vergadi, E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis, Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization, J Immunol, vol.198, issue.3, pp.1006-1014, 2017.

P. L. Vieira, H. C. Heystek, J. Wormmeester, E. A. Wierenga, and M. L. Kapsenberg, Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells, J Immunol, vol.170, issue.9, pp.4483-4488, 2003.

A. Vojdani, A Potential Link between Environmental Triggers and Autoimmunity, Autoimmune Dis, p.437231, 2014.

R. E. Voll, E. A. Roth, I. Girkontaite, H. Fehr, M. Herrmann et al., Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production, Arthritis Rheum, vol.40, issue.12, pp.2162-2171, 1997.

C. Volpi, F. Fallarino, M. T. Pallotta, R. Bianchi, C. Vacca et al., High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway, Nat Commun, vol.4, p.1852, 2013.

N. V. Vorobjeva and B. V. Pinegin, Neutrophil extracellular traps: mechanisms of formation and role in health and disease, Biochemistry (Mosc), vol.79, issue.12, pp.1286-1296, 2014.

M. Wadwa, R. Klopfleisch, A. Adamczyk, A. Frede, E. Pastille et al., IL-10 downregulates CXCR3 expression on Th1 cells and interferes with their migration to intestinal inflammatory sites, Mucosal Immunol, vol.9, issue.5, pp.1263-1277, 2016.

D. Wallach, T. B. Kang, and A. Kovalenko, Concepts of tissue injury and cell death in inflammation: a historical perspective, Nat Rev Immunol, vol.14, issue.1, pp.51-59, 2014.

D. Wang, S. P. Li, J. S. Fu, S. Zhang, L. Bai et al., Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice, J Neurophysiol, vol.116, issue.5, pp.2173-2179, 2016.

M. S. Weber, T. Prod'homme, S. Youssef, S. E. Dunn, C. D. Rundle et al., Type II monocytes modulate T cell-mediated central nervous system autoimmune disease, Nat Med, vol.13, issue.8, pp.935-943, 2007.

T. Weichhart, M. Haidinger, K. Katholnig, C. Kopecky, M. Poglitsch et al., Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells, Blood, vol.117, issue.16, pp.4273-4283, 2011.

K. Westlund, Distribution and mortality time trend of multiple sclerosis and some other diseases in Norway, Acta Neurol Scand, vol.46, issue.4, pp.455-483, 1970.

W. Wiktor-jedrzejczak, A. Bartocci, A. W. Ferrante, A. Ahmed-ansari, K. W. Sell et al., Total absence of colony-stimulating factor 1 in the macrophagedeficient osteopetrotic (op/op) mouse, Proc Natl Acad Sci U S A, vol.87, issue.12, pp.4828-4832, 1990.

H. L. Wright, R. J. Moots, R. C. Bucknall, and S. W. Edwards, Neutrophil function in inflammation and inflammatory diseases, Rheumatology (Oxford), vol.49, issue.9, pp.1618-1631, 2010.

T. A. Wynn and K. M. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis, Immunity, vol.44, issue.3, pp.450-462, 2016.

Z. X. Xie, H. L. Zhang, X. J. Wu, J. Zhu, D. H. Ma et al., Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis, Mediators Inflamm, p.513295, 2015.

H. Yamaguchi, T. Maruyama, Y. Urade, and S. Nagata, Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells, Elife, vol.3, p.2172, 2014.

Q. Yang, C. Zheng, J. Cao, G. Cao, P. Shou et al., Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages, Cell Death Differ, vol.23, issue.11, pp.1850-1861, 2016.

T. A. Yednock, C. Cannon, L. C. Fritz, F. Sanchez-madrid, L. Steinman et al., Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin, Nature, vol.356, issue.6364, pp.63-66, 1992.

H. Ying, Y. Kang, H. Zhang, D. Zhao, J. Xia et al., MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway, J Immunol, vol.194, issue.3, pp.1239-1251, 2015.

W. Ying, A. Tseng, R. C. Chang, A. Morin, T. Brehm et al., MicroRNA-223 is a crucial mediator of PPARgamma-regulated alternative macrophage activation, J Clin Invest, vol.125, issue.11, pp.4149-4159, 2015.

N. Yogev, F. Frommer, D. Lukas, K. Kautz-neu, K. Karram et al., Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells, Immunity, vol.37, issue.2, pp.264-275, 2012.

H. Yokote, S. Miyake, J. L. Croxford, S. Oki, H. Mizusawa et al., NKT celldependent amelioration of a mouse model of multiple sclerosis by altering gut flora, Am J Pathol, vol.173, issue.6, pp.1714-1723, 2008.

T. Yong, G. A. Meininger, and D. S. Linthicum, Enhancement of histamine-induced vascular leakage by pertussis toxin in SJL/J mice but not BALB/c mice, J Neuroimmunol, vol.45, issue.1-2, pp.47-52, 1993.

Y. C. Zang, S. Li, V. M. Rivera, J. Hong, R. R. Robinson et al., Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis, J Immunol, vol.172, issue.8, pp.5120-5127, 2004.

D. Zhang, C. Chia, X. Jiao, W. Jin, S. Kasagi et al., D-mannose induces regulatory T cells and suppresses immunopathology, Nat Med, 2017.

F. Zhang, H. Wang, X. Wang, G. Jiang, H. Liu et al., TGFbeta induces M2-like macrophage polarization via SNAIL-mediated suppression of a proinflammatory phenotype, Oncotarget, vol.7, issue.32, pp.52294-52306, 2016.

H. Zhang, J. R. Podojil, X. Luo, and S. D. Miller, Intrinsic and induced regulation of the ageassociated onset of spontaneous experimental autoimmune encephalomyelitis, J Immunol, vol.181, issue.7, pp.4638-4647, 2008.

X. Zhang, Y. Tao, M. Chopra, M. Ahn, K. L. Marcus et al., Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis, J Immunol, vol.191, issue.12, pp.5867-5874, 2013.

H. Zhou, J. Xiao, N. Wu, C. Liu, J. Xu et al., MicroRNA-223 Regulates the Differentiation and Function of Intestinal Dendritic Cells and Macrophages by Targeting C/EBPbeta, Cell Rep, vol.13, issue.6, pp.1149-1160, 2015.

L. Zhu, T. Yang, L. Li, L. Sun, Y. Hou et al., TSC1 controls macrophage polarization to prevent inflammatory disease, Nat Commun, vol.5, p.4696, 2014.

A. Zlotnik and O. Yoshie, The chemokine superfamily revisited, Immunity, vol.36, issue.5, pp.705-716, 2012.

H. Weidberg, E. Shvets, T. Shpilka, F. Shimron, and V. Shinder, LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis, EMBO J, vol.29, pp.1792-1802, 2010.

I. Novak, V. Kirkin, D. G. Mcewan, J. Zhang, and P. Wild, Nix is a selective autophagy receptor for mitochondrial clearance, EMBO Rep, vol.11, pp.45-51, 2010.

E. Deosaran, K. B. Larsen, R. Hua, G. Sargent, and Y. Wang, NBR1 acts as an autophagy receptor for peroxisomes, J Cell Sci, vol.126, pp.939-952, 2013.

D. Gibbings, S. Mostowy, F. Jay, Y. Schwab, and P. Cossart, Selective autophagy degrades DICER and AGO2 and regulates miRNA activity, Nat Cell Biol, vol.14, pp.1314-1321, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769543

V. Kirkin, T. Lamark, T. Johansen, and I. Dikic, NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets, Autophagy, vol.5, pp.732-733, 2009.

N. N. Noda, Y. Ohsumi, and F. Inagaki, Atg8-family interacting motif crucial for selective autophagy, FEBS Lett, vol.584, pp.1379-1385, 2010.

C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, Network organization of the human autophagy system, Nature, vol.466, pp.68-76, 2010.

Y. Takahashi, M. M. Young, J. M. Serfass, T. Hori, and H. G. Wang, Sh3glb1/Bif-1 and mitophagy: acquisition of apoptosis resistance during Myc-driven lymphomagenesis, Autophagy, vol.9, pp.1107-1109, 2013.

C. Liang, P. Feng, B. Ku, I. Dotan, and D. Canaani, Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG, Nat Cell Biol, vol.8, pp.688-699, 2006.

X. H. Liang, S. Jackson, M. Seaman, K. Brown, and B. Kempkes, Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, vol.402, pp.672-676, 1999.

D. J. Klionsky, F. C. Abdalla, H. Abeliovich, R. T. Abraham, and A. Acevedo-arozena, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.8, pp.445-544, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01921322

B. Nyfeler, P. Bergman, C. J. Wilson, and M. Lo, Quantitative visualization of autophagy induction by mTOR inhibitors, Methods Mol Biol, vol.821, pp.239-250, 2012.

K. B. Larsen, T. Lamark, A. Overvatn, I. Harneshaug, and T. Johansen, A reporter cell system to monitor autophagy based on p62/SQSTM1, Autophagy, vol.6, pp.784-793, 2010.

I. A. Ciechomska and A. M. Tolkovsky, Non-autophagic GFP-LC3 puncta induced by saponin and other detergents, Autophagy, vol.3, pp.586-590, 2007.

M. Boyer-guittaut, L. Poillet, Q. Liang, E. Bole-richard, and X. Ouyang, The role of GABARAPL1/ GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells, Autophagy, vol.10, pp.986-1003, 2014.

W. X. Ding, H. M. Ni, M. Li, Y. Liao, and X. Chen, Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming, J Biol Chem, vol.285, pp.27879-27890, 2010.

A. Allalou and C. Wahlby, BlobFinder, a tool for fluorescence microscopy image cytometry, Comput Methods Programs Biomed, vol.94, pp.58-65, 2009.

S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, and J. A. Bruun, ) p62/SQSTM1 binds directly to Atg8/ LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J Biol Chem, vol.282, pp.24131-24145, 2007.

E. Shvets, A. Abada, H. Weidberg, and Z. Elazar, Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes, Autophagy, vol.7, pp.683-688, 2011.

S. Pankiv, T. Lamark, J. A. Bruun, A. Overvatn, and G. Bjorkoy, Nucleocytoplasmic shuttling of p62/ SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies, J Biol Chem, vol.285, pp.5941-5953, 2010.

E. M. Buckingham, J. E. Carpenter, W. Jackson, and C. Grose, Nuclear LC3-positive puncta in stressed cells do not represent autophagosomes, Biotechniques, vol.57, pp.241-244, 2014.

A. P. Joselin, S. J. Hewitt, S. M. Callaghan, R. H. Kim, and Y. H. Chung, ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons, Hum Mol Genet, vol.21, pp.4888-4903, 2012.

C. T. Chu, H. Bayir, and V. E. Kagan, LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease, Autophagy, vol.10, pp.376-378, 2014.

S. Park, S. G. Choi, S. M. Yoo, J. H. Son, and Y. K. Jung, Choline dehydrogenase interacts with SQSTM1/ p62 to recruit LC3 and stimulate mitophagy, Cancer Discov, vol.10, p.17, 2014.

V. M. Korkhov, GFP-LC3 labels organised smooth endoplasmic reticulum membranes independently of autophagy, J Cell Biochem, vol.107, pp.86-95, 2009.

O. Soderberg, M. Gullberg, M. Jarvius, K. Ridderstrale, and K. J. Leuchowius, Direct observation of individual endogenous protein complexes in situ by proximity ligation, Detection of Specific ATG Protein Interactions using P-LISA, vol.3, pp.995-1000, 2006.

P. One and . Doi, , vol.16, p.16, 2015.

C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, Network organization of the human autophagy system, Nature, vol.466, issue.7302, pp.68-76, 2010.

L. Galluzzi, F. Pietrocola, J. M. Bravo-san-pedro, R. K. Amaravadi, E. H. Baehrecke et al., Autophagy in malignant transformation and cancer progression, EMBO J, vol.34, issue.7, pp.856-80, 2015.

S. Shimizu, T. Kanaseki, N. Mizushima, T. Mizuta, S. Arakawa-kobayashi et al., Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes, Nat Cell Biol, vol.6, issue.12, pp.1221-1229, 2004.

L. Yu, C. Gu, D. Zhong, L. Shi, Y. Kong et al., Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance, Cancer Lett, vol.355, issue.1, pp.34-45, 2014.

C. Nemos, V. Mansuy, S. Vernier-magnin, A. Fraichard, M. Jouvenot et al., Expression of gec1/GABARAPL1 versus GABARAP mRNAs in human: predominance of gec1/GABARAPL1 in the central nervous system, Brain Res Mol Brain Res, vol.119, issue.2, pp.216-225, 2003.

A. Berthier, S. Seguin, A. J. Sasco, J. Y. Bobin, D. Laroche et al., High expression of gabarapl1 is associated with a better outcome for patients with lymph node-positive breast cancer, Br J Cancer, vol.102, issue.6, pp.1024-1055, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468457

S. Byler, S. Goldgar, S. Heerboth, M. Leary, G. Housman et al., Genetic and epigenetic aspects of breast cancer progression and therapy, Anticancer Res, vol.34, issue.3, pp.1071-1078, 2014.

T. Vaissiere, C. Sawan, and Z. Herceg, Epigenetic interplay between histone modifications and DNA methylation in gene silencing, Mutat Res, vol.659, issue.1-2, pp.40-48, 2008.

P. Sharma, S. R. Stecklein, B. F. Kimler, G. Sethi, B. K. Petroff et al., The prognostic value of promoter methylation in early stage triple negative breast cancer, J Cancer Ther Res, vol.3, issue.2, pp.1-11, 2014.

S. Guil and M. Esteller, DNA methylomes, histone codes and miRNAs: tying it all together, Int J Biochem Cell Biol, vol.41, issue.1, pp.87-95, 2009.

J. Fullgrabe, M. A. Lynch-day, N. Heldring, W. Li, R. B. Struijk et al., The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy, Nature, vol.500, issue.7463, pp.468-71, 2013.

M. Oh, I. K. Choi, and H. J. Kwon, Inhibition of histone deacetylase1 induces autophagy, Biochem Biophys Res Commun, vol.369, issue.4, pp.1179-83, 2008.

J. Y. Lee, H. Koga, Y. Kawaguchi, W. Tang, E. Wong et al., HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy, EMBO J, vol.29, issue.5, pp.969-80, 2010.

J. Yan, M. L. Seibenhener, L. Calderilla-barbosa, M. T. Diaz-meco, J. Moscat et al., SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity, PLoS One, vol.8, issue.9, p.76016, 2013.

H. Bai, J. Inoue, T. Kawano, and J. Inazawa, A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers, Oncogene, vol.31, issue.40, pp.4397-408, 2012.

T. Dunwell, L. Hesson, T. A. Rauch, L. Wang, R. E. Clark et al., A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers, Mol Cancer, vol.9, p.44, 2010.

Z. Li, B. Chen, Y. Wu, J. F. Xia, Y. Liu et al., Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors, BMC Cancer, vol.10, p.98, 2010.

S. Shukla, I. R. Patric, V. Patil, S. D. Shwetha, A. S. Hegde et al., Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth, J Biol Chem, vol.289, issue.32, pp.22306-22324, 2014.

E. Swiderek, W. Kalas, E. Wysokinska, A. Pawlak, J. Rak et al., The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells, Biochem Biophys Res Commun, vol.441, issue.4, pp.707-719, 2013.

N. Pernodet, F. Hermetet, P. Adami, A. Vejux, F. Descotes et al., High expression of QSOX1 reduces tumorogenesis, and is associated with a better outcome for breast cancer patients, Breast Cancer Res, vol.14, issue.5, p.136, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00768699

S. Rozen and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol Biol, vol.132, pp.365-86, 2000.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-54, 1976.

E. Hervouet, J. Demont, P. Pecina, A. Vojtiskova, J. Houstek et al., A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis, Carcinogenesis, vol.26, issue.3, pp.531-540, 2005.

A. Claude-taupin, M. Boyer-guittaut, R. Delage-mourroux, and E. Hervouet, Use of epigenetic modulators as a powerful adjuvant for breast cancer therapies, Methods Mol Biol, vol.1238, pp.487-509, 2015.

G. C. Hon, R. D. Hawkins, O. L. Caballero, C. Lo, R. Lister et al., Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer, Genome Res, vol.22, issue.2, pp.246-58, 2012.

V. P. Tryndyak, O. Kovalchuk, and I. P. Pogribny, Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20 h2 histone methyltransferase and methyl-binding proteins, Cancer Biol Ther, vol.5, issue.1, pp.65-70, 2006.

L. C. Li and R. Dahiya, MethPrimer: designing primers for methylation PCRs, Bioinformatics, vol.18, issue.11, pp.1427-1458, 2002.

S. Seguin-py, G. Lucchi, S. Croizier, F. Z. Chakrama, G. Despouy et al., Identification of HSP90 as a new GABARAPL1 (GEC1)-interacting protein, Biochimie, vol.94, issue.3, pp.748-58, 2012.

C. F. Zou, L. Jia, H. Jin, M. Yao, N. Zhao et al., Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel, BMC Cancer, vol.11, p.22, 2011.

L. Mahmoud, F. Al-enezi, A. , M. Warsy, A. Khabar et al., Sustained stabilization of Interleukin-8 mRNA in human macrophages, RNA Biol, vol.11, issue.2, pp.124-157, 2014.

L. V. Sharova, A. A. Sharov, T. Nedorezov, Y. Piao, N. Shaik et al., Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells, DNA Res, vol.16, issue.1, pp.45-58, 2009.

X. Gao, A. Zacharek, A. Salkowski, D. J. Grignon, W. Sakr et al., Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer, Cancer Res, vol.55, issue.5, pp.1002-1007, 1995.

M. R. Kang, M. S. Kim, J. E. Oh, Y. R. Kim, S. Y. Song et al., Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability, J Pathol, vol.217, issue.5, pp.702-708, 2009.

M. S. Kim, E. G. Jeong, C. H. Ahn, S. S. Kim, S. H. Lee et al., Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability, Hum Pathol, vol.39, issue.7, pp.1059-63, 2008.

S. E. Russell, G. I. Hickey, W. S. Lowry, P. White, and R. J. Atkinson, Allele loss from chromosome 17 in ovarian cancer, Oncogene, vol.5, issue.10, pp.1581-1584, 1990.

H. Saito, J. Inazawa, S. Saito, F. Kasumi, S. Koi et al., Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors, Cancer Res, vol.53, issue.14, pp.3382-3387, 1993.

E. Hervouet, P. Hulin, F. M. Vallette, and P. F. Cartron, Proximity ligation in situ assay for monitoring the global DNA methylation in cells, BMC Biotechnol, vol.11, p.31, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00587414

E. Hervouet, L. Lalier, E. Debien, M. Cheray, A. Geairon et al., Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells, PLoS One, vol.5, issue.6, p.11333, 2010.

E. Hervouet, F. M. Vallette, and P. F. Cartron, Impact of the DNA methyltransferases expression on the methylation status of apoptosis-associated genes in glioblastoma multiforme, Cell Death Dis, vol.1, p.8, 2010.

G. He, Y. Wang, X. Pang, and B. Zhang, Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation, Tumour Biol, vol.35, issue.2, pp.1003-1014, 2014.

L. Grand, J. N. Chakrama, F. Z. Seguin-py, S. Fraichard, A. Delage-mourroux et al., GABARAPL1 (GEC1): original or copycat?, Autophagy, vol.7, issue.10, pp.1098-107, 2011.

J. L. Cook, R. N. Re, D. L. Deharo, J. M. Abadie, M. Peters et al., The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor, Circ Res, vol.102, issue.12, pp.1539-1586, 2008.

V. Mansuy, W. Boireau, A. Fraichard, J. L. Schlick, M. Jouvenot et al., GEC1, a protein related to GABARAP, interacts with tubulin and GABA (A) receptor, Biochem Biophys Res Commun, vol.325, issue.2, pp.639-687, 2004.

C. Liu, Y. Xia, W. Jiang, Y. Liu, and L. Yu, Low expression of GABARAPL1 is associated with a poor outcome for patients with hepatocellular carcinoma, Oncol Rep, vol.31, issue.5, pp.2043-2051, 2014.

E. Hervouet, P. F. Cartron, M. Jouvenot, and R. Delage-mourroux, Epigenetic regulation of estrogen signaling in breast cancer, Epigenetics, vol.8, issue.3, pp.237-282, 2013.

M. W. Ali, E. Cacan, Y. Liu, J. Y. Pierce, W. T. Creasman et al., Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10 (RGS10) gene in ovarian cancer cells, PLoS One, vol.8, issue.3, p.60185, 2013.

P. F. Cartron, C. Blanquart, E. Hervouet, M. Gregoire, and F. M. Vallette, HDAC1-mSin3a-NCOR1, Dnmt3b-HDAC1-Egr1 and Dnmt1-PCNA-UHRF1-G9a regulate the NY-ESO1 gene expression, Mol Oncol, vol.7, issue.3, pp.452-63, 2012.

S. Carloni, S. Girelli, C. Scopa, G. Buonocore, M. Longini et al., Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia

, Autophagy, vol.6, issue.3, pp.366-77, 2010.

Y. Wang, Z. Hu, Z. Liu, R. Chen, H. Peng et al., MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1, Autophagy, vol.9, issue.12, pp.2069-86, 2013.

N. Fortunati, S. Bertino, L. Costantino, D. Bortoli, M. Compagnone et al., Valproic acid restores ER alpha and antiestrogen sensitivity to ER alpha-negative breast cancer cells, Mol Cell Endocrinol, vol.314, issue.1, pp.17-22, 2010.

G. J. Sabnis, O. Goloubeva, S. Chumsri, N. Nguyen, S. Sukumar et al., Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole, Cancer Res, vol.71, issue.5, pp.1893-903, 2011.

T. Cluzeau, G. Robert, A. Puissant, K. Jean-michel, J. P. Cassuto et al., Azacitidine-resistant SKM1 myeloid cells are defective for AZA-induced mitochondrial apoptosis and autophagy, Cell Cycle, vol.10, issue.14, pp.2339-2382, 2011.

C. Klebig, S. Seitz, W. Arnold, N. Deutschmann, M. Pacyna-gengelbach et al., Characterization of {gamma}-aminobutyric acid type A receptor-associated protein, a novel tumor suppressor, showing reduced expression in breast cancer, Cancer Res, vol.65, issue.2, pp.394-400, 2005.

X. H. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, vol.402, issue.6762, pp.672-678, 1999.

D. Mahalingam, M. Mita, J. Sarantopoulos, L. Wood, R. K. Amaravadi et al., Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors, Autophagy, vol.10, issue.8, pp.1403-1417, 2014.

M. Cheray, R. Pacaud, A. Nadaradjane, F. M. Vallette, and P. F. Cartron, Specific inhibition of one DNMT1-including complex influences tumor initiation and progression, Clin Epigenetics, vol.5, issue.1, p.9, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00851207

N. Sato, N. Maehara, G. H. Su, and M. Goggins, Effects of 5-aza-2?-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness, J Natl Cancer Inst, vol.95, issue.4, pp.327-357, 2003.

B. Ateeq, A. Unterberger, M. Szyf, and S. A. Rabbani, Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo, Neoplasia, vol.10, issue.3, pp.266-78, 2008.

P. Pakneshan, R. H. Xing, and S. A. Rabbani, Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo, FASEB J, vol.17, issue.9, pp.1081-1089, 2003.

V. Coulon, K. Chebli, P. Cavelier, and J. M. Blanchard, A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo, PLoS One, vol.5, issue.6, p.11235, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193432

A. P. Arrigo, W. J. Firdaus, G. Mellier, M. Moulin, C. Paul et al., Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression, Methods, vol.35, issue.2, pp.126-164, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00193428

E. Hervouet, E. Debien, L. Campion, J. Charbord, J. Menanteau et al., Folate supplementation limits the aggressiveness of glioma via the remethylation of DNA repeats element and genes governing apoptosis and proliferation, Clin Cancer Res, vol.15, issue.10, pp.3519-3548, 2009.

, 1:3000), monoclonal anti-LAMP1 (Abcam, Ab25630, 1:1000), monoclonal anti-MTOR (Cell signaling, #2983, 1:1000), polyclonal anti-phospho-MTOR (Cell signaling, #2974, 1:1000), polyclonal anti-P70S6K (Cell signaling, #9202, 1:1000), polyclonal anti-phospho-P70S6K (Cell signaling, #9205, 1:1000), monoclonal anti-phospho-ULK1 (Ser555) (Cell signaling, #5869, 1:1000), monoclonal anti-phospho-ULK1 (Ser757) (Cell signaling, #14202, 1:1000), monoclonal anti-ULK1 (Cell signaling, #8054, 1:1000), polyclonal anti-GFP (Chemicon Millipore, AB3080, 1:1000), polyclonal anti-ACTIN, vol.8918, p.28359

, Flag:GABARAPL1:6His (GABARAPL1) cells were obtained previously in our laboratory following REFERENCES molecular machinery and signaling regulation, Cell culture and treatment MCF-7 control cells (C) and MCF-7, vol.22, pp.228-230, 2010.

D. C. Rubinsztein, T. Shpilka, and Z. Elazar, Mechanisms of autophagosome biogenesis, Nat Cell Biol, vol.22, issue.11, p.2013168, 2007.

D. M. Gwinn, D. B. Shackelford, and D. F. Egan, Mihaylova AMPK phosphorylation of raptor mediates a metabolic Oncotarget 56017 www.impactjournals.com/oncotarget checkpoint, Mol Cell, vol.30, p.169, 2008.

E. A. Dunlop and A. R. Tee, mTOR and autophagy: a dynamic relationship governed by nutrients and energy, Semin Cell Dev Biol, vol.36, issue.14, pp.242-242, 2014.

, regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, pp.132-173, 2011.

D. F. Egan, D. B. Shackelford, and M. M. Mihaylova, 1126/science.1196371 science.1196371. initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR, Mol Cell Endocrinol, vol.331, pp.69-72, 1993.

Y. Sagiv, A. Legesse-miller, A. Porat, and Z. Elazar, GATE-16, a membrane transport modulator, interacts with NSF and the

A. Fraichard, A novel early estrogen-regulated gene gec1 encodes a protein related to GABARAP, Biochem Biophys Res Commun, vol.284, pp.94908-94911, 2001.

M. , D. , and R. , GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor

, GEC1 interacts with the kappa opioid receptor and enhances 93, vol.325, pp.639-687, 2004.

S. Seguin-py, G. Lucchi, S. Croizier, and F. Z. Chakrama, Despouy interacting protein, Biochimie, vol.94, issue.11, pp.422-428, 2012.

I. Tanida, T. Ueno, and E. Kominami, LC3 conjugation system, vol.36, pp.2503-2521, 2004.

, GABARAP-L1 processing and triggers mitochondrial

I. Tanida, M. Komatsu, T. Ueno, and E. Kominami, GATE-16 and Apg3, Biochem Biophys Res Commun, vol.300, pp.637-681, 2003.

I. Tanida, T. Ueno, and E. Kominami, Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to 47704-10

Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-okamoto, Y. Ohsumi et al., LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on formjcs

T. and K. E. , HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3-and GABAA receptor-associated protein

M. Boyer-guittaut, GABARAPL1 (GEC1) associates with autophagic vesicles, Autophagy, vol.6, pp.495-505, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00483722

H. Weidberg, E. Shvets, T. Shpilka, F. Shimron, V. Shinder et al., LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome emboj, vol.74, p.201074, 2010.

M. Boyer-guittaut, L. Poillet, Q. Liang, E. Bole-richard, X. Ouyang et al., MDA-MB-436 breast cancer cells, Autophagy, vol.10, pp.986-1003, 2014.

E. A. Alemu, T. Lamark, and K. M. Torgersen, Birgisdottir AB, assembly of the ULK complex: sequence requirements, vol.287, pp.39275-90, 2012.

C. Kraft, M. Kijanska, K. E. Siergiejuk, E. Lee, S. S. Semplicio et al., Binding of Oncotarget 56018 www, vol.225

H. Weidberg, E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity of autophagosomes, Annu Rev Biochem, vol.80, pp.125-56, 2011.

S. Pankiv, T. H. Clausen, T. Lamark, and A. Brech, Bruun p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by, Mol Cell, vol.33, pp.64-65, 2009.

A. Rozenknop, V. V. Rogov, N. Y. Rogova, F. Lohr, P. Guntert et al., , vol.410, pp.524-533, 2011.

A. Rozenknop, V. Rogov, F. Lohr, D. Popovic, and A. Occhipinti, autophagy receptor for mitochondrial clearance, embor2009256. and its role in recruitment of nuclear polyubiquitinated, vol.11, pp.5941-53, 2010.

A. M. Choi, S. W. Ryter, and B. Levine,

E. White and R. S. Dipaola, The double-edged sword of autophagy modulation in cancer, Clin Cancer Res, vol.15, pp.5308-5324, 2009.

M. C. Maiuri and G. Kroemer, Anti-and pro-tumor functions of autophagy, Biochim Biophys Acta, vol.1793, p.24, 2009.

L. Poillet-perez, G. Despouy, R. Delage-mourroux, and M. Boyer-guittaut, Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy, Redox Biol, vol.4, pp.184-92, 2014.

R. Mathew, S. Kongara, B. Beaudoin, and C. M. Karp, Bray suppresses tumor progression by limiting chromosomal instability, Genes Dev, vol.21, pp.1367-81, 2007.

V. Karantza-wadsworth, S. Patel, O. Kravchuk, and G. Chen, stress and genome damage in mammary tumorigenesis, Genes Dev, vol.21, pp.1621-1656, 2007.

C. Klebig, S. Seitz, W. Arnold, N. Deutschmann, M. Pacyna-gengelbach et al., Characterization of {gamma}-aminobutyric acid type A receptor-associated protein, a novel tumor suppressor, showing reduced expression in breast cancer, Cancer Res, vol.65, pp.4397-408, 2005.

B. Hibshoosh, H. Levine, and B. , autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite path.2509. energetic tumour metabolism, Curr Opin Genet Dev, vol.402, issue.10, pp.173-178, 1999.

A. L. Harris, Hypoxia-a key regulatory factor in tumour growth, Nat Rev Cancer, vol.2, pp.38-47, 2002.

R. Mourroux, High expression of gabarapl1 is associated with a better outcome for patients with lymph 31

C. Nemos, V. Mansuy, S. Vernier-magnin, and A. Fraichard, GABARAPL1 versus GABARAP mRNAs in human: predominance of gec1/GABARAPL1 in the central nervous system, Brain Res Mol Brain Res, vol.119, pp.2043-2051, 2003.

Y. Zhang, F. Wang, L. Han, Y. Wu, S. Li et al., Wang GABARAPL1 negatively regulates Wnt/beta-catenin signaling by mediating Dvl2 degradation through the autophagy pathway, Cell Physiol Biochem, vol.27, pp.503-515, 2011.

T. Gauthier, A. Claude-taupin, R. Delage-mourroux, M. Boyer-guittaut, and E. Hervouet, Proximity Ligation In Protein Interactions following Autophagy Induction, PLoS One, vol.10, p.128701, 2015.

S. Kimura, T. Noda, and T. Yoshimori, Dissection of the autophagosome maturation process by a novel reporter, vol.3, pp.452-60

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion, Cell Res, vol.19, pp.508-531, 2000.

G. Ghislat, M. Patron, R. Rizzuto, and E. Knecht, Withdrawal of essential amino acids increases autophagy by a pathway involving Ca2+/calmodulin-dependent kinase kinase

G. Lazarou and M. , Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin jcb.201607039. dopaminergic neurotoxin-induced impairment of autophagic isolation and characterization of the tubulovesicular LC3-2010, vol.285, pp.1371-83

Y. T. Tung, W. M. Hsu, H. Lee, W. P. Huang, and Y. F. Liao, The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin, Cell Mol Neurobiol, vol.30, pp.795-806, 2010.

. Ar, ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding, Autophagy, vol.7, pp.737-784, 2011.

, Centrosome Is Regulated by WAC and GM130, Mol Cell, vol.60, pp.899-913, 2015.

K. Inoki, T. Zhu, and K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell, vol.115, pp.577-90, 2003.

P. Musiwaro, M. Smith, M. Manifava, S. A. Walker, and N. T. Ktistakis, Characteristics and requirements of basal autophagy in HEK 293 cells, Autophagy, vol.9, pp.1407-1424, 2013.

D. G. Mcewan and I. Dikic, PLEKHM1: Adapting to life at the lysosome, Autophagy, p.0, 2015.

D. G. Mcewan, D. Popovic, A. Gubas, S. Terawaki, H. Suzuki et al., PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins, Mol Cell, vol.57, issue.14, pp.871-876, 2015.

B. and Y. H. , GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion, Proc Natl Acad Sci U S A, vol.112, pp.7015-7035, 2015.

R. Mackeh, D. Perdiz, S. Lorin, P. Codogno, and C. Pous,

, Cell Sci, vol.126, pp.1071-80, 2013.

E. Fass, E. Shvets, I. Degani, K. Hirschberg, and Z. Elazar, Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with M607031200

M. Laplante and D. M. Sabatini, mTOR signaling in growth control and disease, Cell, vol.149, issue.12, pp.351-351, 2012.

M. Cornu, V. Albert, and M. N. Hall, mTOR in aging, metabolism, and cancer, Curr Opin Genet Dev, vol.23, pp.53-62, 2013.

Y. Mamane, E. Petroulakis, and O. Lebacquer, Sonenberg N. mTOR, translation initiation and cancer, Oncogene, vol.25, pp.6416-6438, 2006.

V. M. Aita, X. H. Liang, V. V. Murty, D. L. Pincus, W. Yu et al., Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21, Genomics, vol.59, issue.99, pp.95851-95853, 1999.

G. Levine and B. , Promotion of tumorigenesis by heterozygous

M. Elgendy, M. Ciro, A. , A. K. Belmonte, G. et al., Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner, Nat Commun, vol.5, p.5637, 2014.

M. Cicchini, R. Chakrabarti, S. Kongara, S. Price, R. Nahar et al., Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity, Autophagy, vol.10, pp.2036-52, 2014.

C. Haan and I. Behrmann, A cost effective non-commercial ECL-solution for Western blot detections yielding strong, Exp Cell Res, vol.318, pp.3971-82, 2007.

, Laure Philippe, 1-4 Baptiste Lamarthée, 1-4 Fanny Angelot-Delettre, 1-4 Francis Bonnefoy, 1-4 Sylvain Perruche, pp.1-4

, Sabeha Biichle, 1-3 Claude Preudhomme, 6 Elisabeth Macintyre, 7 Laurent Lagrost, 4,5 Francine Garnache-Ottou, 1-4 and Philippe Saas, pp.1-4

, Besanç on/Dijon, France; 5 Faculté de Médecine, Lipoprotéines et Santé: Prévention et Traitement des Maladies Inflammatoires et du Cancer (LipSTIC), vol.3

, ? LXR activation inhibits BPDCN cell survival through the increase of cholesterol efflux, the inhibition of NF-kB, and IL-3 signaling. ? Treatment with LXR agonists can be proposed as a new therapeutic approach for BPDCN

, We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-kB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment, Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs, vol.128, pp.2694-2707, 2016.

, Institut de Recherches sur le Cancer de Lille, c 12 BPDCN samples, c 65 AML samples (including different French-American-British subtypes: 25 M0, 11 M1, 10 M2, 1 M3, 11 M4, 6 M5, and 1 M6) (Unité, vol.837, 1151.

L. Lxra, . Srebf1, L. Fasn, and . Vldlr, shtml) based on the expression of cholesterol homeostasis and LXR-related genes, Data were analyzed using dChip software

, Quantitative RT-PCR analysis Transcription of LXR target genes (ABCA1, ABCG1) and genes coding proteins involved in the intrinsic apoptosis (BCL2, BAK1, BAX) was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR)

, ) of T0901317 (total experimental dose, 30 or 60 mg/kg, respectively) or with dimethyl sulfoxide (DMSO)/phosphate-buffered saline (PBS) control solution. Mouse monitoring and quantification of BPDCN cell infiltrate were described in supplemental Methods. Experimentation (#11007R) was approved by our local ethics committee (#58, approved by the French Ministry of Higher Education and Research) and conducted in accordance with the European Union Directive 2010/63. Statistical analysis Statistical analyses were performed by GraphPad Prism version 6 (GraphPad Software, ) were used. imager and BIO-1D advanced software (Vilber-Lourmat

W. L. Goff, ;. Inserm-umr-s1166, &. University, M. Pierre, and . Curie, ) for helpful discussions on cholesterol metabolism, the Cytology laboratory of the Etablissement Français du Sang Bourgogne Franche-Comté (BFC), for blood cell and platelet counts, Sarah Odrion, and Alexis Varin for editorial assistance, the Agence Nationale de la Recherche, 2015.

, via the Bonus Qualité Recherche BFC)

, Authorship Contribution: A.C. performed most of the experiments, collected, assembled, and analyzed data, performed statistical analysis, and wrote the manuscript

D. M. , performed cholesterol efflux experiments and helped to write the manuscript

A. R. and C. R. , performed transcriptomic experiments and analysis; C.C. performed cell death analysis by flow cytometry, some immunoblotting, and qRT-PCR experiments

T. G. , performed some confocal microscopy experiments

L. , performed cell cycle experiments

B. L. , F. A. .-d, and F. , performed and supported in vivo experiments

S. P. , commented on the manuscript and helped to write it

S. B. , C. P. , and E. M. ,

L. L. , commented on the manuscript and provided major funding support

F. G. and -. , provided study material, collected data, and helped to write the manuscript; and P.S. supervised research, analyzed data, and wrote the manuscript. Conflict-of-interest disclosure: The authors declare no competing financial interests. The current affiliation for B.L. is Université Pierre et Marie Curie, Correspondence: Philippe Saas, EFS BFC

L. Chaperot, N. Bendriss, and O. Manches, Identification of a leukemic counterpart of the plasmacytoid dendritic cells, Blood, vol.97, issue.10, pp.3210-3217, 2001.

N. Pemmaraju, Blastic plasmacytoid dendritic cell neoplasm, Clin Adv Hematol Oncol, vol.14, issue.4, pp.220-222, 2016.

S. Dalle, M. Beylot-barry, and M. Bagot, Blastic plasmacytoid dendritic cell neoplasm: is transplantation the treatment of choice?, Br J Dermatol, vol.162, issue.1, pp.74-79, 2010.

L. Martín-martín, J. Almeida, and H. Pomares, Blastic plasmacytoid dendritic cell neoplasm frequently shows occult central nervous system involvement at diagnosis and benefits from intrathecal therapy, Oncotarget, vol.7, issue.9, pp.10174-10181, 2016.

A. Pileri, C. Delfino, V. Grandi, C. Agostinelli, S. A. Pileri et al., Blastic plasmacytoid dendritic cell neoplasm (BPDCN): the cutaneous sanctuary, G Ital Dermatol Venereol, vol.147, issue.6, pp.603-608, 2012.

S. Vitols, S. Norgren, G. Juliusson, L. Tatidis, and H. Luthman, Multilevel regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in normal and leukemic cells, Blood, vol.84, issue.8, pp.2689-2698, 1994.

L. Tatidis, A. Gruber, and S. Vitols, Decreased feedback regulation of low density lipoprotein receptor activity by sterols in leukemic cells from patients with acute myelogenous leukemia, J Lipid Res, vol.38, issue.12, pp.2436-2445, 1997.

J. F. Oram and A. M. Vaughan, ATP-binding cassette cholesterol transporters and cardiovascular disease, Circ Res, vol.99, issue.10, pp.1031-1043, 2006.

E. Ikonen, Cellular cholesterol trafficking and compartmentalization, Nat Rev Mol Cell Biol, vol.9, issue.2, pp.125-138, 2008.

A. J. Pommier, G. Alves, and E. Viennois, Liver X receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells, Oncogene, vol.29, issue.18, pp.2712-2723, 2010.

P. Singh, R. Saxena, G. Srinivas, G. Pande, and A. Chattopadhyay, Cholesterol biosynthesis and homeostasis in regulation of the cell cycle, PLoS One, vol.8, issue.3, p.58833, 2013.

Y. Sun, P. Sukumaran, A. Varma, S. Derry, A. E. Sahmoun et al., Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells, Biochim Biophys Acta, vol.1843, issue.9, pp.1839-1850, 2014.

L. Yvan-charvet, T. Pagler, and E. L. Gautier, ATPbinding cassette transporters and HDL suppress hematopoietic stem cell proliferation, Science, vol.328, issue.5986, pp.1689-1693, 2010.

A. J. Murphy, M. Akhtari, and S. Tolani, ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice, J Clin Invest, vol.121, issue.10, pp.4138-4149, 2011.

F. Garnache-ottou, L. Chaperot, and S. Biichle, Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells, Blood, vol.105, issue.3, pp.1256-1264, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00282519

A. E. Frankel, J. H. Woo, and C. Ahn, Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients, Blood, vol.124, issue.3, pp.385-392, 2014.

N. Pemmaraju, A. A. Lane, and K. L. Sweet, Results from phase 2 registration trial of SL-401 in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN): lead-in completed

S. S. Im and T. F. Osborne, Liver x receptors in atherosclerosis and inflammation, Circ Res, vol.108, issue.8, pp.996-1001, 2011.

C. Hong and P. Tontonoz, Liver X receptors in lipid metabolism: opportunities for drug discovery, Nat Rev Drug Discov, vol.13, issue.6, pp.433-444, 2014.

C. Y. Lin and J. A. Gustafsson, Targeting liver X receptors in cancer therapeutics, Nat Rev Cancer, vol.15, issue.4, pp.216-224, 2015.

G. Wójcicka, A. Jamroz-wi?niewska, K. Horoszewicz, and J. Be?towski, Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism, Postepy Hig Med Dosw (Online), vol.61, pp.736-759, 2007.

D. E. Dove, M. F. Linton, and S. Fazio, ApoE-mediated cholesterol efflux from macrophages: separation of autocrine and paracrine effects, Am J Physiol Cell Physiol, vol.288, issue.3, pp.586-592, 2005.

C. Hong, S. Duit, and P. Jalonen, The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2, J Biol Chem, vol.285, issue.26, pp.19720-19726, 2010.

L. Zhang, K. Reue, L. G. Fong, S. G. Young, and P. Tontonoz, Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis, Arterioscler Thromb Vasc Biol, vol.32, issue.11, pp.2541-2546, 2012.

A. Ceroi, F. A. Delettre, and C. Marotel, The anti-inflammatory effects of platelet-derived microparticles in human plasmacytoid dendritic cells involve liver X receptor activation, Haematologica, vol.101, issue.3, pp.72-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01441581

F. Garnache-ottou, J. Feuillard, and C. Ferrand,

G. Goelams and . Study, Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia

, Br J Haematol, vol.145, issue.5, pp.624-636, 2009.

F. Angelot-delettre, S. Biichle, and C. Ferrand, Intracytoplasmic detection of TCL1-but not ILT7-by flow cytometry is useful for blastic plasmacytoid dendritic cell leukemia diagnosis, Cytometry A, vol.81, issue.8, pp.718-724, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00718156

W. Riaz, L. Zhang, P. Horna, and L. Sokol, Blastic plasmacytoid dendritic cell neoplasm: update on molecular biology, diagnosis, and therapy, Cancer Contr, vol.21, issue.4, pp.279-289, 2014.

T. Maeda, K. Murata, and T. Fukushima, A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma, Int J Hematol, vol.81, issue.2, pp.148-154, 2005.

L. Chaperot, A. Blum, and O. Manches, Virus or TLR agonists induce TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells, J Immunol, vol.176, issue.1, pp.248-255, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00286442

M. Ishibashi, R. Filomenko, and C. Rébé, Knockdown of the oxysterol receptor LXRa impairs cholesterol efflux in human primary macrophages: lack of compensation by LXRb activation, Biochem Pharmacol, vol.86, issue.1, pp.122-129, 2013.

M. R. Sapienza, F. Fuligni, and C. Agostinelli, AIRC 5xMille consortium 'Genetics-driven targeted management of lymphoid malignancies and the Italian Registry on Blastic Plasmacytoid Dendritic Cell Neoplasm. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition, Leukemia, vol.28, issue.8, pp.1606-1616, 2014.

E. P. Reddy, A. Korapati, P. Chaturvedi, and S. Rane, IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled, Oncogene, vol.19, issue.21, pp.2532-2547, 2000.

U. Testa, E. Pelosi, and A. Frankel, CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies, Biomark Res, vol.2, issue.1, p.4, 2014.

J. Zhuang, S. F. Hawkins, and M. A. Glenn, Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition, Haematologica, 2010.

L. Schafranek, E. Nievergall, and J. A. Powell, Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia, Leukemia, vol.29, issue.1, pp.76-85, 2015.

R. Zidovetzki and I. Levitan, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies, Biochim Biophys Acta, vol.1768, issue.6, pp.1311-1324, 2007.

L. L. Vedin, S. A. Lewandowski, P. Parini, J. A. Gustafsson, and K. R. Steffensen, The oxysterol receptor LXR inhibits proliferation of human breast cancer cells, Carcinogenesis, vol.30, issue.4, pp.575-579, 2009.

L. L. Vedin, J. A. Gustafsson, and K. R. Steffensen, The oxysterol receptors LXRa and LXRb suppress proliferation in the colon, Mol Carcinog, 2013.

R. Geyeregger, M. Shehata, and M. Zeyda, Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes, J Leukoc Biol, vol.86, issue.5, pp.1039-1048, 2009.

P. V. Sanchez, S. T. Glantz, S. Scotland, M. T. Kasner, and M. Carroll, Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors, Leukemia, vol.28, issue.4, pp.749-760, 2014.

J. R. Agarwal, Q. Wang, and T. Tanno, Activation of liver X receptors inhibits hedgehog signaling, clonogenic growth, and self-renewal in multiple myeloma, Mol Cancer Ther, vol.13, issue.7, pp.1873-1881, 2014.

A. El-roz, J. M. Bard, J. M. Huvelin, and H. Nazih, LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: relation to proliferation and apoptosis, Anticancer Res, 2012.

V. Derangère, A. Chevriaux, and F. Courtaut, Liver X receptor b activation induces pyroptosis of human and murine colon cancer cells, Cell Death Differ, vol.21, issue.12, pp.1914-1924, 2014.

J. J. Rough, M. A. Monroy, S. Yerrum, and J. M. Daly, Antiproliferative effect of LXR agonist T0901317 in ovarian carcinoma cells, J Ovarian Res, vol.3, p.13, 2010.

F. Angelot-delettre, A. Roggy, and A. E. Frankel, In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasm to SL-401, an interleukin-3 receptor targeted biologic agent, Haematologica, vol.100, issue.2, pp.223-230, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01139861

A. Dagvadorj, R. A. Kirken, B. Leiby, J. Karras, and M. T. Nevalainen, Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo, Clin Cancer Res, vol.14, issue.5, pp.1317-1324, 2008.

M. Hinz, D. Krappmann, A. Eichten, A. Heder, C. Scheidereit et al., NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition, Mol Cell Biol, vol.19, issue.4, pp.2690-2698, 1999.

T. G. Kirchgessner, R. Martin, and P. Sleph, Pharmacological characterization of a novel liver X receptor agonist with partial LXRa activity and a favorable window in nonhuman primates, J Pharmacol Exp Ther, vol.352, issue.2, pp.305-314, 2015.

B. Hu, R. J. Unwalla, and I. Goljer, Identification of phenylsulfone-substituted quinoxaline (WYE-672) as a tissue selective liver X-receptor (LXR) agonist, J Med Chem, vol.53, issue.8, pp.3296-3304, 2010.

R. K. Lim, S. Yu, and B. Cheng, Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate, Bioconjug Chem, vol.26, issue.11, pp.2216-2222, 2015.

, BLOOD, vol.128, 2016.

, online October, vol.4, pp.2694-2707, 2016.

P. Garnache-ottou, C. Biichle, E. Preudhomme, L. Macintyre, and . Lagrost,

L. Philippe, F. Baptiste-lamarthée, F. Angelot-delettre, S. Bonnefoy, A. Perruche et al.,

, Hematology, 2021.

, Blood