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Abstract

Many problems in machine learning pertain to tackling the minimization of a possibly
non-convex and non-smooth function defined on a Euclidean space. Examples include
topic models, neural networks or sparse logistic regression. Optimization methods, used
to solve those problems, have been widely studied in the literature for convex objective
functions and are extensively used in practice. However, recent breakthroughs in statis-
tical modeling, such as deep learning, coupled with an explosion of data samples, require
improvements of non-convex optimization procedures for large datasets. This thesis is an
attempt to address those two challenges by developing algorithms with cheaper updates,
ideally independent of the number of samples, and improving the theoretical understand-

ing of non-convex optimization that remains rather limited.

In this manuscript, we are interested in the minimization of such objective functions for la-
tent data models, i.e., when the data is partially observed which includes the conventional
sense of missing data but is much broader than that. In the first part, we consider the
minimization of a (possibly) non-convex and non-smooth objective function using incre-
mental and online updates. To that end, we propose and analyze several algorithms, that
exploit the latent structure to efficiently optimize the objective function, and illustrate our
findings with numerous applications. In the second part, we focus on the maximization
of non-convex likelihood using the EM algorithm and its stochastic variants. We analyze
several faster and cheaper algorithms and propose two new variants aiming at speeding

the convergence of the estimated parameters.

In the first main contribution, we provide a unified framework of analysis for optimizing
non-convex finite-sum problems which encompasses logistic regression and variational in-
ference. This framework is an extension of an incremental surrogate optimization method
based on the Majorization-Minimization principle and aims at minimizing an easier upper
bound of the objective function at each iteration of the algorithm in an incremental fash-
ion. Our proposed framework is proved to converge almost surely to a stationary point

and in O(n/e) iterations to an e-stationary point.

In the second main contribution, we analyze a stochastic approximation scheme where

the stochastic drift term is non necessarily a gradient and with a potentially biased mean



field under two cases: the vector of random variables is either i.i.d. or a state-dependent
Markov chain. For both cases, we provide tight non-asymptotic upper bounds, of order
O(co + log(n)/+/n), where ¢, is the potential bias of the drift term, and illustrate our
findings by analyzing popular statistical learning algorithms such as the online expectation

maximization (EM) algorithm and the average cost policy-gradient method.

The third main contribution deals with the maximum likelihood (ML) estimation problem.
We propose and analyze fast incremental variants of the EM algorithm, as one of the most
popular algorithm for inference in latent data models. We show that the incremental
version of the EM is a special instance of an incremental surrogate optimization framework,
and takes O(n/e) iterations to find an e-stationary point to the ML estimation problem.
We propose a faster incremental variant that takes O(n%®/e) iterations to find to an
e-stationary point and show that a recently proposed variance reduced stochastic EM

method has the same iteration complexity.

The fourth main contribution of the manuscript develops a fast variant of the Stochastic
Approximation of the EM algorithm to tackle the ML estimation problem in nonlinear
mixed effect models. In this context, the latent structure corresponds to the random effects
that are random variables associated with each sample (individual) from a population. Our
proposed algorithm improves the sampling procedure, used to simulate the aforementioned
individual random effects, and its performances are studied experimentally through several

pharmacology applications.

The fifth main contribution deals with an incremental variant of the Stochastic Approxi-
mation of the EM algorithm whose convergence guarantees are studied both theoretically

and experimentally.

The sixth main contribution presents an R package, extending a current version of the
saemiz R package, useful for training noncontinuous data models, such as categorical or
time-to-event, using the SAEM algorithm. We illustrate the convenience of our extended
package on two simple numerical examples and provide (and explain) the lines of code to

perform maximum likelihood estimation.

Keywords: stochastic approximation, non-convex optimization, finite-sum, large-scale,
latent data, EM, MCMC, incremental, online.



Résumé

De nombreux problémes en Apprentissage Statistique consistent a minimiser une fonction
non convexe et non lisse définie sur un espace euclidien. Par exemple, les problemes de
maximisation de la vraisemblance et la minimisation du risque empirique en font partie.
Les algorithmes d’optimisation utilisés pour résoudre ce genre de problémes ont été large-
ment étudiés pour des fonctions convexes et grandement utilisés en pratique. Cependant,
I’accrudescence du nombre d’observations dans I’évaluation de ce risque empirique ajoutée
a l'utilisation de fonctions de perte de plus en plus sophistiquées représentent des obsta-
cles. Ces obstacles requierent d’améliorer les algorithmes existants avec des mis a jour
moins coliteuses, idéalement indépendantes du nombre d’observations, et d’en garantir le
comportement théorique sous des hypotheéses moins restrictives, telles que la non convexité

de la fonction a optimiser.

Dans ce manuscrit de these, nous nous intéressons a la minimisation de fonctions objec-
tives pour des modeles a données latentes, i.e., lorsque les données sont partiellement
observées ce qui inclut le sens conventionnel des données manquantes mais est un terme
plus général que cela. Dans une premieére partie, nous considérons la minimisation d’une
fonction (possiblement) non convexe et non lisse en utilisant des mises a jour incrémen-
tales et en ligne. Nous proposons et analysons plusieurs algorithmes a travers quelques
applications. Dans une seconde partie, nous nous concentrons sur le probléme de maximi-
sation de vraisemblance non convexe en ayant recourt a ’algorithme EM et ses variantes
stochastiques. Nous en analysons plusieurs versions rapides et moins cotiteuses et nous
proposons deux nouveaux algorithmes du type EM dans le but d’accélérer la convergence

des parametres estimés.

La premiere contribution de cette thése est un cadre unifié d’analyse pour 'optimisation
d’une grande somme finie de fonction non convexes qui inclut la régression logistique et
I'inférence variationnelle. Ce cadre est une extension d’une méthode d’optimisation par
fonction surrogate incrémentale basée sur le principe de Majorisation-Minimisation et vise
a minimiser, a chaque itération, une fonction majorante plus simple & optimiser de maniere
incrémentale. Nous prouvons que notre méthode converge presque stirement vers un point

stationnaire et avec une complexité de O(n/e) itérations vers un point e-stationnaire.
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Dans la deuxieme contribution, nous analysons un schéma d’approximation stochastique
dont le terme de dérive n’est pas nécessairement un gradient et dont le champ moyen
peut présenter un biais. Deux cas sont distingués: le vecteur de variables aléatoires qui
définit le terme de dérive est i.i.d. ou une chaine de Markov. Dans les deux cas, nous
déterminons des limites supérieures étroites, d’ordre O(co + log(n)/+/n), avec ¢, le biais
potentiel du terme de dérive, et illustrons nos conclusions a travers l’analyse de I’algorithme
EM en ligne et ’algorithme de descente de gradient sur les politiques en apprentissage par

renforcement.

La troisiéme contribution aborde le probleme de maximisation de vraisemblance. Nous y
proposons et analysons des variantes incrémentales et rapides de 'EM, considéré comme
I'un des algorithmes les plus populaires pour de I'inférence au sein de modeles a données la-
tentes. Nous montrons que I’EM incrémentale est une instance d’une cadre d’optimisation
par fonction surrogate incrémentale and requiert O(n/e) itérations pour trouver un point
e-stationnaire au probleme de maximum de vraisemblance. Nous proposons également une
version rapide de ce dernier algorithme qui requiert O(n?//e) itérations pour trouver un

point e-stationnaire.

La quatriéeme contribution de cette theése développe une version rapide de l’algorithme
SAEM (Stochastic Approximation of the EM) afin d’estimer les parameétres de population
dans des modeles non linéaires a effets mixtes. Ici, la structure latente correspond aux
effets aléatoires qui sont des variables aléatoires associées a chaque échantillon (individu)
d’une méme population. Notre algorithme améliore la procédure d’échantillonage des effets
aléatoires et ses performances sont étudiées de manieére expérimentales a travers plusieurs

applications en pharmacologie.

La cinquiéme contribution développe une version incrémentale de I'algorithme SAEM dont

les propriétés de convergence asymptotique sont étudiées sur le plan théorique et pratique.

La sixieme contribution présente 'utilisation d’un package R, construit autour d’un pack-
age existant nommé saemiz, utile a 'entrainement de modeles non continus, tels que les
modeles catégoriques ou de survie, utilisant I'algorithme SAEM. Nous illustrons son util-
isation sur deux examples numériques simples et fournissons (et expliquons) les lignes de

code a executer.

Mots clés: approximation stochastique, optimisation non convexe, somme-finie, grande-

echelle, données latentes, EM, MCMC, incremental, en ligne.
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Nomenclature

R Set of real numbers Ensemble des réels

X Non-empty set Ensemble non vide

X o-algebra on X Tribu (ou o-algebre)
(X, X) Measurable space Espace mesurable

Y Observations Observations

z Latent variables Variable latentes

P Individual parameters Parametres individuels
n Random effects Effets aléatoires

n Number of observations Nombre d’observations
(7] Parameters Parametres

C] Parameters Set Ensemble de Parameétres

Set {1,...,n}
Euclidean norm

Inner product in the Euclidean space

Ensemble {1,...,n}
Norme Euclidienne

Produit scalaire dans ’expace Euclidien

9(y,0) Incomplete likelihood Vraisemblance incomplete
f(z,y,0) Complete likelihood Vraisemblance compleéte
p(z|y,0) Posterior distribution Distribution a Posteriori
w(-) o-finite measure Measure o-finie

E[] Expectation Espérance

S(+) Sufficient statistics Statistiques suffisantes
L(+) Objective function Fonction Objective

R(") Regularizer Fonction de régularisation
VL(O) Gradient of £ at 0 Gradient de £ en 6
L£'(6,d) Directional derivation of £ along d Dérivée directionnelle de £ selon d
J5(0) Jacobian of £ at 6 Jacobienne de £ en 6

Hessian of £ at 0

Hessienne de £ en 6






Contributions and thesis outline

This thesis is divided into two parts. chapters 3 and 4 discuss optimization of non-convex
objective function, while Chapters 5 to 7 concern maximum likelihood estimation methods
and their applications to pharmacology. Chapter 8 details a tutorial of the algorithm
presented in Chapter 6, developed using R programming language. Each chapter can be

read independently of the others.

Chapter 1: In the opening chapter, we introduce the primary optimization problem of our
interest and give a short introduction to non-convex optimization, statistical learning and
stochastic approximation which are the main topics of this manuscript. We overview state-
of-the-art results found in the literature and emphasize on the statistical analysis gap that
this manuscript is attempting to bridge. We also introduce our main field of applications

that is pharmacology and its framework of analysis,i.e., Mixed Effects Models.

Chapter 3: This chapter considers a minimization by incremental stochastic surrogate
method to optimize a finite-sum objective function. It extends the work of Mairal [2015a]
by deriving Monte-Carlo approximations of the surrogate functions minimized at each
iteration. Both finite-time and asymptotic analyses are provided and illustrated through

several numerical applications.

Chapter 4: This chapter develops the first analysis results regarding a stochastic ap-
proximation scheme, with potentially biased mean-field, used to find the roots, or the
extrema, of a non-convex function. The novelty of the analysis, in the biased case, rests
upon a new technique based on the Poisson equation. Tight upper bounds are provided
in this chapter and thorough analyses of the online Expectation-Maximization (EM) and

the policy gradient algorithms, as special instances of this scheme, are displayed.

Chapter 5: This chapter provides non-asymptotic convergence rates for several incre-
mental variants of the EM algorithm. We offer two complementary views for the global
convergence of incremental EM methods — one focuses on the parameter space, and the
other on the sufficient statistics space. On one hand, the EM method can be studied as a
majorization-minimization (MM) method in the parameter space. On the other hand, the
EM method can be studied as a scaled-gradient method in the sufficient statistics space.

Several numerical applications illustrate our findings.
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Chapter 6: This chapter introduces inference in nonlinear mixed effects models using the
Stochastic Approximation of the EM algorithm and propose a fast variant of the latter
using a faster Markov Chain Monte Carlo (MCMC) sampler. The main contributions
in this chapter are the construction of independent proposals, for both continuous and
noncontinuous data models, used in an MCMC procedure. Numerical applications on
a pharmacokinetics model and a time-to-event example confirm the advantage of our
method.

Chapter 7: This chapter introduces an incremental variant of the Stochastic Approxi-
mation of the EM (SAEM) and studies its asymptotic guarantees. Findings are illustrated

through several pharmacokinetics-pharmacodynamics examples.

Chapter 8: In this chapter, a tutorial for using the SAEM algorithm (presented in
Chapters 6 and 7) is developed in the R programming language. We extend an existing R
package for noncontinuous data models, such as categorical or time-to-event data models,

and provide the correct syntax to execute the method.

Chapter 9: This chapter concludes the thesis by summarizing our contributions and

describing possible extensions.
Papers related to this manuscript are listed bellow:

e Chapter 3 is based on A Doubly Stochastic Surrogate Optimization Scheme for Non-
convex Finite-sum Problems, B. Karimi, H.T. Wai and E. Moulines, 2019 [Karimi

et al., 2019b].

e Chapter 4 is based on Non-asymptotic Analysis of Biased Stochastic Approximation
Scheme , B. Karimi, B. Miasojedow, E. Moulines and H.T. Wai, Conference on
Learning Theory, COLT 2019 [Karimi et al., 2019a].

o Chapter 5 is based on On the Global Convergence of (Fast) Incremental variants
of the EM , B. Karimi, H.T. Wai, M. Lavielle and E. Moulines, Advances in Neural
Information Processing Systems, NeurIPS 2019 [Karimi et al., 2019c¢].

e Chapter 6 is based on f~SAEM: A fast Stochastic Approximation of the EM al-
gorithm , B. Karimi, M. Lavielle and E. Moulines, Computational Statistics and
Data Analysis, CSDA 2018 [Karimi et al., 2020] and Efficient Metropolis-Hastings
sampling for nonlinear mized effects models , B. Karimi and M. Lavielle, Springer
Series Statistics and Data Science: new challenges, new generations, BAYSM 2018
[Karimi and Lavielle, 2018].



Chapter 1

Introduction

Abstract:  This introductory chapter describes the objectives of this
thesis and introduces the key areas that will be studied in the following
chapters. We give here a thorough overview of the literature related to
those fields and emphasize on the gap that this manuscript is attempting
to bridge. Several important assumptions and definitions, made through-
out this document, are presented and motivated in this chapter in order
to become familiar with non-convex optimization, stochastic approxima-
tion and latent data models. The closing section develops a specific
instance of latent data models called mixed effects models and its ap-
plication to pharmacology, as the main field of application of our team,
Xpop, at Inria. This brief overview is intended to convey the flavor of
the work contained herein as we will provide additional backgrounds and

motivations later in each chapter.

Contents
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1.1 Statistical Learning

The field of mathematical modeling has been central to human endeavor in order to have
a better understanding of the world, with applications ranging from physics to social sci-
ences. In particular, for handling large datasets and model complex phenomena, statistical
learning is considered as one of its most important subfield of our modern time. It can
be viewed as a principled approach for extracting useful information from data that can
be exploited to carry out tasks such as prediction. Generally, it consists of a modeling
phase, where a model function is designed in a given model search space — in this thesis,
we restrict ourselves to parametric models where the search space is the set of parameters
— and a training or optimization phase where, given input-output observation pairs, the
model is fitted to describe the data as well as possible. We now give a rigorous formulation

of the ideas introduced above.

Mathematical formulation Consider the input-output pair of random variables (X, Y")
taking values in arbitrary input set X C RP and arbitrary output set Y C R?%. For instance,
X is a matrix of covariates describing a hospital patient (age, weight, etc.) and Y describes
his or her hepatitis C viral load. We denote by P, the distribution from which this input-
output pair is drawn. As mentioned above, the modeling phase consists of finding a
measurable function My : X — Y that is in our case a parametric function of parameter
0 € R?. This function is commonly called the predictor and its performance is measured
using a loss function £ : Y X Y — R where £(y,y) is the loss incurred when the true
output is y whereas v’ is predicted. Then, the training phase boils down to computing the

following quantity:

argmin £(0) = argmin {£(0) + R(0)} with L(0) = Ep[l(y, Me(x))] , (1.1.1)
OcRd OcRd

where ¢ is a possibly non-convex loss function depending on some observed data, £ is the

so-called population risk and R(-) is a penalization term that imposes structure to the

solution and is possibly non-smooth.

Throughout this thesis, we are interested in models where the input-output relationship is
not completely characterized by the observed (z,y) € X XY pairs in the training set alone,
but also depends on a set of unobserved latent variables z € Z C R™. Those models are
called Latent Data Models and are formally introduced in Section 1.3. They include the
incomplete data framework, 7.e., some observations are missing, but are far broader than
that: for example, the latent structure could stem from the unknown labels in mixture
models or hidden states in Hidden Markov Models. In all those cases, a simulation step
is required to complete the observed data with realizations of the latent variables. The

latter simulation step plays a key role in this manuscript and is thoroughly addressed in
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each chapter. Formally, this specificity in our setting implies extending the loss function

{ to accept a third argument as follows:

0y, My (z)) = /Ze(z,y, M (2))d> . (1.1.2)

Note that, for the sake of notation simplicity, we use the same name for both loss functions
defined on different spaces. Finally, we consider examples where the function £ is smooth

in the following sense:

Definition 1.1 A function f : R — R is L-smooth if and only if it is differentiable and
its gradient is L-Lipschitz-continuous, i.e., for all (,79) € R% x R%:

IVF(0) = V@) < L6 . (1.1.3)

Traditionally, most of the focus in statistical learning has been on developing convex loss
functions ¢ and algorithms such as SVM or exponential-family graphical models. How-
ever, many important problems, such as computer vision and natural language processing,
cannot be formulated as convex optimization or will be more computationally expensive
than their non-convex counterparts. Indeed, although convexity can be seen as a virtue,
it can also be regarded as a limitation in the complexity of the model trained to solve
a given problem. For instance, the latent variable models, mentioned above as a large
family of probabilistic graphical models, require non-convex optimization and are useful
to tackle tasks such as identification in Gaussian mixture models (useful in many domain

of applications), that could not be dealt with a convex model.

The increase in dimension/sample size and the complexity of the tasks force the statistical
community to develop simpler algorithms, with a complexity at most O(n) where n is
either the dimension or the number of observations, yet fit more sophisticated and highly
non-convex models. This matter is extensively addressed in [Bottou and Bousquet, 2008]

and is at the origin of the expansion of the non-convex optimization field.

1.2 Non-convex Optimization

Non-convex optimization problems arise frequently in machine learning, including feature
selection, structured matrix learning, mixture modeling, and neural network training. In
all those cases, the function £ defined in the optimization objective (2.1.1) is non-convex.

Convexity of a function f is defined as follows:

Definition 1.2 A function f : R — R is said to be convex if for all (6,9) € RY x R% and
all X € (0,1):
FX=XN04+X) < (1 =XN)f(0)+ \f(V). (1.2.1)
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Moreover, it is said to be p-strongly convez if for all (6,9) € R x R? and pu > 0:

F(0) > F(9) + VF@)7 (6 =) + 510 — | (1.22)

In this manuscript, we are interested in the constrained formulation of this optimization
problem. Thus, the parameters vector 8 belongs to a convex set © C R? in the following

sense:

Definition 1.3 A set © is said to be convex if for all (6,9) € ©2 and all X € (0,1):

1-XN+MeO. (1.2.3)

Differentiability of the objective function on a constrained set is handled by introducing
the following concept of directional differentiability (which includes the differentiability

notion):

Definition 1.4 For any function f : © — R, f'(0,d) is the directional derivative of f at

0 along the direction d, i.e.,

(1.2.4)

Analyzing the convergence of an optimization algorithm which is said to be convex (resp.
non-convez) if the objective (2.1.1) is convex (resp. non-convex), usually implies a sub-
optimality condition as the convergence criterion of interest. For instance, for convex
functions, we use |£(0) — £(6*)| (or ||@ — 6*||*) as such condition. We denote by 6* the
optimal solution that can efficiently be found in the convex case. Consequently, when find-
ing such optimal solution is hard, as in the non-convex case, such convergence criterion
can not hold. We then use the quantity ||[V£(8)|%, as advocated in [Nesterov, 2004] and
[Ghadimi and Lan, 2013], to evaluate the stationarity of the algorithm iterates. Thus, the

following definition is important throughout our analysis:

Definition 1.5 A point 6* is said to be e-stationary if | VL(0*)||* < e. A stochastic itera-
2
tive algorithm is said to achieve e-stationarity in T > 0 iterations if E| HVC(B(R))H | <e,

where the expectation is over the stochasticity of the algorithm.

We give two formulations, found in the literature, of such results in the convex and non-
convex case to give a sense of the kind of bounds one can obtain to characterize stationarity
of the algorithm iterates. Consider the simple following unconstrained and un-regularized

optimization problem that consists of finding the parameter 8* € R¢ such that:

0" := argmin £(0) , (1.2.5)
OcRd
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where £ : R — R is L-smooth. In the convex case, as mentioned above, a common
suboptimality condition is £(8%**+1) — £(6*). For the Gradient Descent algorithm, an

upper bound on this quantity is expressed as follows:

Proposition 1 (Convergence of gradient descent [Nesterov, 200/] for convex func-
tions). Consider the simple gradient descent scheme, with constant stepsize, that

starts from an initial ) and compute the sequence of iterates {H(k)}k>0 as follows:
o+ — k) _ v L(e?) (1.2.6)

where L is a convex and L-smooth function on RY. Let the stepsize v = 1/L, then the

sequence of iterates {0}~ satisfies:

cfon - g0

(k+1)y _ £(6*) < 1.2.
L(O7T) — L(67) < ] (1.2.7)
Moreover, if L is p- strongly conver we have
LOFD) — £(60%) < (1 — p/L)*L(0) — £(67)] (1.2.8)

In the non-convex case, Ghadimi and Lan [2013] derived the first finite-time analysis of the
well known SGD algorithm. A typical analysis trick for non-convex problems is to adopt
a stopping rule. Consider the random variable I', playing the role of a termination point,
distributed according to a given probability mass Pp(-), then the finite-time analysis is

done at iteration I'. See an example of such result:

Proposition 2 (Convergence of stochastic gradient descent [Ghadimi and Lan, 2013]
for non-convex functions). Consider the initial value 8%), a termination pointT drawn
from a probability mass function Pr(-) supported on {1,--- K} with K an iteration
limit and the following updates for k € [1,T]:

6%+ — o) _ 1 Hooy (Xiy1) (1.2.9)

where {Xp41}p<r are i.i.d., zero-mean random vectors and Hgu)(Xp41) is a noisy
unbiased estimate of the gradient VL(0%®)) and L is L-smooth and a (possibly) non-

convex function on R%. Assume that
_ (k) W |* < 52
E[Hgo) (Xk41)] = VLOD)  and  E[|Hooo (Xis1) — VLOF)| T <0?  (1.2.10)

and that the stepsize v, < 1/2L, then, for any N > 1, the sequence of iterates
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{0 oo satisfies:

H < DEro’Tin (1.2.11)

1
EE[HVﬁ B Zk 127k —L’Yk;)

with Dy = \/Q(E(H(O)) — L(0*)/L. The expectation is taken over the stochasticity of
the algorithm.

In particular, we extend in Chapter 4 the result above for a drift term that is not necessarily

a gradient and possibly a biased estimator of the mean field.

1.2.1 Empirical Risk Minimization

In general, as the data generating distribution P is often unknown, n pair ((y;, x;),i €
[1,n]) of independent observations, also called training examples, are considered in the
optimization procedure (2.1.1). Based on the empirical risk minimization (ERM) principle
[Vapnik, 2013], the optimization problems involve a data fitting loss function £, also known
as the empirical risk, averaged over those sample points. Namely, the objective function,

without penalization, reads:

L£(0)=n"" znzﬁ(yz', Mg (i)

=1

N (1.2.12)
=n""'Y Li(0)
i=1
where n is the number of observations, and £; is the loss associated to the i-th observation.
The regularized ERM variant consists of adding a possibly non-smooth penalty R(8) as
introduced in (2.1.1). For instance for some observation y € Y and some prediction 3’ € Y
usual losses are the quadratic loss £(y,y') = ||y — v/||* /2 for regression task and loss of the
form £(y,y) = L¢yyr<oy for a binary classification task where we recall that the prediction

y' depends on observed covariates x, a model My(-) and possibly some latent variables z.

In the convex case, many well-known deterministic methods such as Gradient Descent
(GD), accelerated gradient methods and Newton’s methods are used to perform the op-
timization task, see [Bertsekas, 1999, Boyd and Vandenberghe, 2004, Nesterov, 2004] and
the references therein. However, each of these methods are computationally involved as
they require a full pass over the dataset at each iteration. To deal with a large number
n of training points, stochastic and incremental first-order and second-order optimization
methods have been popular and widely studied when the objective is convex, see [Defazio
et al., 2014, Mairal, 2015b, Roux et al., 2012, Vanli et al., 2018], as cheaper per-iteration
cost algorithms, at the price of a higher memory cost. For non-convex objective func-

tions, deterministic [Agarwal et al., 2017, Carmon et al., 2017] and stochastic [Allen-Zhu
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and Hazan, 2016, J. Reddi et al., 2016] methods have also been developed to reach an
e-stationary point. It is important to note that in the non-convex case, an e-stationary
point could be a saddle point. Many important works are being done in the direction of
escaping those saddle points to ensure reaching a local minima of (2.1.1), as in [Reddi
et al., 2018, Royer and Wright, 2018, Xu et al., 2018], but they are outside the scope of
this thesis.

A popular class of algorithms for solving the minimization of a non-convex composite func-
tion are majorization-minimization [Lange, 2016] techniques which iteratively approximate
the composite nonconvex function by a majorizing function that is easy to minimize. For
instance, most techniques, such as GD, use a quadratic convex majorizer that can be

optimized efficiently. An illustration of that concept is provided Figure 2.1.

%ﬁ@
/’ (k)

Figure 1.1 — Majorization-Minimization principle.

Note that, at iteration k, the objective £(@) is upper bounded by a tight surrogate
£(8,00") at the current estimate 8). An incremental variant exploiting the finite sum
structure of the problem has been developed by [Mairal, 2015b] and is extended Chap-
ter 3. In particular, our extension builds upon a doubly stochastic scheme: the first
level of stochasticity stems from the choice of the individual objective component L; for
i € [1,n], thus exploiting the finite-sum structure of the problem, while the second level
of stochasticity profits from the latent structure of the problem to build suitable surro-
gate functions. A well-known example of this incremental framework is the incremental
Expectation-Maximization (EM) algorithm developed in the pioneering paper by Neal
and Hinton [1998]. The authors take advantage of the latent structure of the problem,
introduced in the opening section, to build easy-to-optimize majorizing surrogates (see
Chapter 5 for a thorough presentation of this approach). In this thesis, we will focus on

algorithms that use incremental first-order oracles.

Definition 1.6 (Incremental first-order oracle) For a given function f : © — R with
a finite-sum structure, an increment first-order oracle takes an index i € [1,n] and a

parameter estimate @ € © and returns the values of f;(0) and/or its gradient V f;(0).
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In the current state of the literature, these algorithms are favored as they require only a

small amount of first-order information at each iteration.

Prior Work In the (possibly strongly) convex case, Stochastic Gradient Descent (SGD)
has been at the center of huge progress in the past decade. Many incremental variants
[Bertsekas, 2011] have been developed since its introduction in the seminal work [Robbins
and Monro, 1951]. Among them, a class of variance reduced algorithms are proven to
achieve faster rates for convex objective. For instance [Defazio et al., 2014, Roux et al.,
2012] have developed fast incremental algorithms that achieve linear convergence rates for
strongly convex functions. The Stochastic Variance Reduced Gradient (SVRG) [Johnson
and Zhang, 2013] is another variance reduced method which displays a lower storage
requirement compared to the latter methods. Moreover, a study of lower bounds for
composite function optimization problem has been done in [Agarwal and Bottou, 2014],

yet the literature remains rather poor for the non-convex setting.

In the non-convex case, several important works [Bottou, 1991, Kushner and Clark, 2012]
develop asymptotic convergence of incremental variants of SGD to a stationary point.
The first non asymptotic convergence rate of SGD in [Ghadimi and Lan, 2013] ensures
an e-stationary point in O(1/?) iterations, see Table 2.1. Incremental variants are also
analyzed in [Ghadimi et al., 2016] and in particular the SVRG is known to achieve an
e-stationary point in O(n?*?/e) in [Reddi et al., 2016a]. Those results are relevant in
the sense that they separate themselves from a local convexity assumption and tackle
the global convergence behavior of optimization methods in the non-convex setting. This

manuscript follows the same spirit.

Algorithm Gradient Non-gradient MC  Step.
SGD O(1/¢?) [Ghadimi and Lan, 2013] TBD X Vi
GD O(n/e) [Nesterov, 2004] TBD x v

SVRG/SAGA  O(n*?3/e) [Reddi et al., 2016b] O(n?3/e) Chap. 5 X
MISO O(n/e) Chap. 3 O(n/e) Chap. 3 X —
MISSO O(n/e) Chap. 3 O(n/e) Chap. 3 v —

Biased SA  O(co bg n)) Chap. 4 O(co log ”)) Chap. 4 Vv Ve

Table 1.1 — ERM methods: Table comparing the complexity, measured in terms of iter-
ations, of different algorithms for non-convex optimization. MC stands for Monte Carlo
integration of the drift term and Step. for stepsize.

Our Contributions Besides improving the analysis of such optimization procedures in
the non-convex setting, most of the existing findings hold for gradient-type algorithms.
This thesis, through Chapter 4 and Chapter 5, attempts to generalize those faster rates
for non-gradient, called scaled-gradient, type of algorithms, such as the EM method. For

instance, we develop upon the MM principle several algorithms Chapters 3 and 5 for
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general surrogate optimization procedure and EM type algorithms and provide their non-

asymptotic analysis. A summary of our findings is given Table 2.1.

1.2.2 Stochastic Approximation

The Stochastic Approximation (SA) procedure, introduced by Robbins and Monro [1951],
aims at finding a zero of a continuous function, that is only accessible through noisy

evaluations. It formulates as follows:
O = 0" — vy Howy (Xpt1) (1.2.13)

where %) € © ¢ R denotes the k-th iterate, {Vk } k>0 is a positive deterministic sequence
of stepsizes and Hgx)(Xky1) is the k-th stochastic update (a.k.a. drift term) depending
on a random element X} taking its values in a set X. The drift term Hyx)(Xp41) can

be decomposed as a sum of a mean field h and an error term eg
Hegw) (Xp41) = h(g(k)) + €epy1 - (1.2.14)

In this thesis, we will focus on algorithms that use stochastic first-order oracles.

Definition 1.7 (Stochastic first-order oracle) At iteration k the stochastic first order or-

acle outputs a stochastic drift term Hguy(Xp41) where {Xp41}tr>0 are random elements.

Usually, the error term eg 1 is assumed to be an i.i.d. sequence of zero-mean finite variance

noise. Formally, the following assumption is typically made:

H1.1 The sequence of noise vectors is a Martingale difference sequence with, for any
k€N, Eleg1|Fi] =0, E[|lex]?| Fi] <02 + o?||h(08)|? with 02,0? € [0, 00) where
Fi. denotes the filtration generated by the random variables (00 { X, }m<k)-

Note that in this case, Hg) (Xg41) is an unbiased estimator of the mean-field h(*)) and
that the variance of HHH(M (Xgr1) — h(H(k))H is bounded.

In its original formulation (2.1.1), the population risk minimization can be performed using
a SA procedure as noticed in [Bottou and Le Cun, 2005]. Particularly, stochastic gradient
methods are now ubiquitous in machine learning, both from the practical side, as a simple
algorithm that can learn from a single or a few passes over the data [Bottou and Le Cun,
2005], and from the theoretical side, as it leads to optimal rates for estimation problems
in a variety of situations [Nemirovsky A.S. and IUdin, 1983, Polyak and Juditsky, 1992].
SA finds the minimum of the objective function by searching for roots of its gradients
(h = VL) as long as it is assumed differentiable. From a machine learning point of view,

this procedure access the data in a streaming fashion,i.e., it can only perform a single
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pass over the dataset, and minimizes the population risk which we recall is an unknown

function.

Convergence of Robbins-Monro type procedures Lyapunov’s second method
[Kalman and Bertram, 1960] is a common method for proving the global asymptotic
stability of the solutions of the Robbins-Monro procedure by showing that all the tra-
jectories of the limiting ordinary differential equation (ODE) 6 = h(0) of this procedure
go to zero. The idea is to introduce a nonnegative function which can be interpreted as
an energy that decreases with each iteration of the method. In general, those Lyapunov
functions are user-designed as there is no generic way to find them. In particular, we show
Chapter 5 that some variants of the EM algorithm do not decrease, at each iteration, the
objective function (the incomplete log-likelihood), as advocated in [Wu et al., 1983], but
instead exhibit a monotonicity property of a well-designed Lyapunov function. The rela-
tion between the objective of the Robbins-Monro procedure,i.e., solving h(6) = 0, and the
stationarity of the Lyapunov function is discussed Lemma 10 (Section 5.3 of Chapter 5)
and Proposition 5 (Section 4.3 of Chapter 4).

Prior Work Most results available as of today [see for example [Benveniste et al., 1990],
[Kushner and Yin, 2003, Chapterb, Theorem 2.1] or [Borkar, 2009]] have an asymptotic
flavor. The focus of these works is to establish that the stationary point of the sequence
{6%) k € N} belongs to a stable attractor of its limiting ODE 6 = h(#).

Important advances in methodology consider the case where {ex}r>1 is state-dependent
Markov noise. In this setting, the random element Xy is drawn from a state-dependent

Markov process. For any bounded measurable function ¢ and k € N, we have

E [9(Xins1) | 7] = Poro(Xe) = [ (@) Py (X da)

where Py is a Markov kernel on X x X. In general, it is assumed that 8 € ©, Py has a
unique stationary distribution g, i.e., mgPg = mg. Such methodologies are particularly
relevant in reinforcement learning such as Q-learning [Jaakkola et al., 1994], policy gradient
[Baxter and Bartlett, 2001] and temporal difference learning [Bhandari et al., 2018, Dalal
et al., 2018a,b, Lakshminarayanan and Szepesvari, 2018]. Yet, their analysis is, as of today,

missing in the literature.

Of course, SA schemes go far beyond gradient methods. In fact, in many important
applications, the drift term of the SA is not a noisy version of the gradient, i.e., the mean

field h is not the gradient of the objective function.

These last two remarks substantiate the question asked in the previous section regarding

non-gradient algorithms and their global and non-asymptotic analysis in the non-convex
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setting and motivate a good core of this thesis.

Our Contributions We study Chapter 4 a general SA scheme with a potentially biased
and not necessarily gradient drift term under mild conditions. An interesting extension
that we focus on is the consideration of a state-dependent Markov noise that we analyze
using the Poisson equation. A rigorous verification of the assumptions allow us to apply

our results to several examples of interest.

1.3 Maximum Likelihood Estimation in Latent Data Models

1.3.1 Latent Data Models

In this section, we formally introduce an instance of general models class called Latent
Data Models that are used during the modeling phase of the learning procedure. Let
Z be a subset of R™, 1 be a o-finite measure on the Borel o-algebra Z = B(Z) and
{f(2,0),0 € O} be a family of positive p-integrable Borel functions on Z. Set z € Z.
Define, for all 8 € O:

9y 0) == /z 5y 0)p(dz)

[Eu®) it g(y;0) #0 (1.3.1)
p(zly; @) = 9w:0) ! 9(y;0) #
0 otherwise

Note that p(z|y; @) defines a probability density function with respect to p and P =
{p(z|y;0);0 € O©;(y,z) € Y x Z} a family of probability densities. We denote by {Pg; 60 €
©} the associated family of probability measures. Naturally, the loss function £(6) is
defined for all 8 € © as follows:

L£(0) :=1logg(y;0) . (1.3.2)

Example 1.1 We now give some examples of latent structure:

o In presence of missing data, y stands for the observed data and the latent variables

z are the missing data.

o For mized effects models, the latent variables z are the random effects and identifying
the structure of the latent data mainly corresponds to the inter-individual variability
among the individuals of the dataset. This setting is presented in Section 1.4 and
studied Chapter 6.
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o For mixture models, the latent variables correspond to the unknown mixture labels

taking values in a discret finite set. This setting is studied Chapters 4, 5 and 7.

Remark 1.1 In this thesis, we are interested in an empirical approach to the Mazimum
Likelihood Estimation problem. We consider n independent and not necessarily identically
distributed vector of observations (y; € Y;,i € [1,n]) where Y; is a subset of Rl and latent
data (z; € Z;,i € [1,n]). For all 8 € ©, we set

f(Z,y; 0) = H fl(zwyho) )
=1
9(y;0) = [ 9i(v:; ) , (1.3.3)
=1
p(zly; 0) = [ pi(zilyi; 6) .
=1

Thus, the objective function (2.3.2) formulates:

n

L£(0) = Zn:loggi(yi; 6) => Li(6). (1.3.4)

i=1

Note that in order to avoid singularities and degeneracies of the MLE as highlighted
in [Fraley and Raftery, 2007], one can regularize the objective function through a prior

distribution over the model parameters, see Chapter 4 for an illustrative example.

1.3.2 The EM Algorithm

A popular class of inference algorithms to minimize (2.3.2) is the Expectation-
Maximization (EM) algorithm developed in the pioneering work by Dempster et al. [1977].
The EM is an iterative procedure that minimizes the function 8 — £(0) when its direct
minimisation is difficult. Denote by 8%~ the current fit of the parameter at iteration k,
then the k-th step of the EM algorithm might be decomposed into two steps. The E-step

consists of computing the surrogate function defined for all 8 € © as :
Q(8.6%°) = [ p(ely: 0 log f (2 35 O)n(dz) (1.3.5)
z

In the M-step, the value of @ minimizing (6, O(k_l)) is calculated and is set as the new
parameter estimate 8%). These two steps are repeated until convergence. The essence
of the EM algorithm is that decreasing Q(B,O(k_l)) forces a decrease of the function
0 — L(0), see [McLachlan and Krishnan, 2007] and the references therein.

Remark 1.2 Using the concavity of the logarithmic function and the Jensen inequality,

we can show that Q(0,0%1) is a majorizing surrogate function for the objective L£(0)
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at @5~V This scheme nicely falls into the MM principle introduced in Section 1.2.1
and is exploited in [Gunawardana and Byrne, 2005]. Chapter 5 expands this remark and
develops a global analysis of an incremental variant of the EM, introduced by Neal and
Hinton [1998].

Remark 1.3 A common assumption regarding the direct applicability of the EM for latent
data models (see, in particular, the discussion of Dempster et al. [1977]) is to consider

that the complete model belongs to the curved exponential family, i.e., for all @ € O:

log f(z,y,8) = —1(0) + (S(z,9),6(0)). (1.3.6)

where ¥ : @ — R and ¢ : 0 — R are twice continuously differentiable functions of @ and
S :Z— S is a statistic taking its values in a convexr subset S of R. Then, both steps of
the EM formulate in terms of sufficient statistics. Note that this assumption is rather not

restrictive as many models of interest in machine learning satisfy it.

Prior Work The EM method has been the subject of considerable interest since its for-
malization in [Dempster et al., 1977]. Most prior works studying the convergence of EM
methods consider the asymptotic and/or local behaviors to avoid making any non-convexity
assumption. The global convergence to a stationary point (either a local minimum or a
saddle point) of the EM method has been established by Wu et al. [1983] as an extension
of prior work developed in [Dempster et al., 1977]. The global convergence is a direct
consequence of the EM method to be monotone, i.e., the objective function never de-
creases. Locally and under regularity conditions, a linear convergence rate to a stationary
point has been studied in [McLachlan and Krishnan, 2007, chapters 3 and 4]. Following
Remark 1.1, a natural enhancement of those methods corresponds to constructing cheaper
updates at each iteration. For instance, the convergence of the Incremental EM (iEM)
method was first tackled by Gunawardana and Byrne [2005] exploiting the interpretation
of the method as an alternating minimization procedure under the information geometric
framework developed in [Csiszar and Tusnady, 1984]. More recently, the local but non-
asymptotic convergence of EM methods has been studied in several works. These results
typically require the initializations to be within a neighborhood of an isolated stationary
point and the (negated) log-likelihood function to be strongly convex locally. Such condi-
tions are either difficult to verify in general or have been derived only for specific models;
see for example [Balakrishnan et al., 2017, Wang et al., 2015a, Xu et al., 2016a] and the
references therein. The local convergence of a variance reduced EM method (called sEM-
VR), that is not exactly an incremental method but rather builds upon a control variate
principle, has been studied in [Chen et al., 2018, Theorem 1] under a pathwise global

stability condition.
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Our Contributions It is thus of utmost importance to improve and analyze EM vari-
ants in order to address the two challenges mentioned at the very beginning of this Intro-
duction, 7.e., the increasing amount of data points and the non-convexity of the objective.
Chapter 5 of this manuscript proposes and analyzes several variance reduced and incre-
mental versions of the EM algorithm, such as th iEM and the sEM-VR mentioned above,
in order to scale to large number of points and speed up the convergence. Particularly,
this chapter considers the iEM as in [Gunawardana and Byrne, 2005] and extends their
result under mild assumptions, such as the non-convexity of the objective and the uniform

sampling of the indices, performed independently throughout the passes over the data.

1.3.3 The SAEM Algorithm

In many situations, the expectation step of the EM algorithm (2.3.5) can be numerically
involved or even intractable. To address that issue, Wei and Tanner [1990a] propose to
replace the expectation by a Monte Carlo integration, leading to the so-called Monte
Carlo EM (MCEM). Another option, developed in [Delyon et al., 1999a], is the Stochastic
Approximation of the EM (SAEM) that develops as follows:

Mg,

m—] from

1. Simulation step: Draw the Monte Carlo batch of latent variables {zﬁf)}
its posterior distribution p(z|y; 8*~1).

2. Stochastic approximation step: update the approximation, denoted Q(8), of

the conditional expectation (2.3.5):

M)
Qk(6) = Qi-1(8) + (M@} > log f(=),4:6) —Q;H(e)) . (18
m=1

where {7 }r>0 is a sequence of decreasing stepsizes with v; = 1.

3. Maximization step:
0") = arg max Q1 (8) . (1.3.8)
6co
During the stochastic approximation phase, the conditional distribution of the parameters
is obtained as it is the distribution in which the latent variables z are imputed to obtain
a complete dataset from which the conditional log-likelihood is derived, see [Kuhn and
Lavielle, 2004].

In the simulation step, since the relation between the observed data and the latent data
can be non linear, sampling from the posterior distribution is hard and often requires
using an inference algorithm. Kuhn and Lavielle [2004] proved almost-sure convergence of

the sequence of parameters obtained by this algorithm coupled with an MCMC procedure

o is a Monte Carlo batch. In simple scenar-

during the simulation step. Indeed, {zgf )}
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ios, the samples {zm)} * are conditionally independent and identically distributed with
distribution p(z\y, )). Nevertheless, in most cases, sampling exactly from this distri-
bution is not an option and the Monte Carlo batch is sampled by Monte Carlo Markov
Chains (MCMC) algorithm.

0.05 — kq(2)
0.04 — n(2)

0.03
0.02

0.01

0.00

S0 25 0 25 s 75 100 125 150

Figure 1.2 — Metropolis-Hastings (MH) algorithm: representation of a proposal ¢(z) and
the target m(z) distributions in one dimension.

MCMC algorithms are a class of methods allowing to sample from complex distribution
over (possibly) large dimensional space. An important class of samplers, called Metropolis-
Hastings (MH) algorithm, iteratively draw samples from a proposal distribution ¢ with
the distribution of the newly drawn sample only depending on the current one. With
some probability, the sample is either accepted as the new state of the chain or rejected.
It is well-known, see [Mengersen and Tweedie, 1996, Roberts and Rosenthal, 2011] that
the Independent Sampler, a sub-class of MH samplers where the proposal is independent
of the current state of the chain, is geometrically ergodic if and only if, for a given e,
1nf q(2)/m(z) > € > 0 where m(z) is the target distribution. More generally, it is shown
1n [Roberts and Rosenthal, 2011] that the mixing rate in total variation depends on the
expectation of the acceptance ratio under the proposal distribution which is also directly
related to the ratio of proposal to the target. This observation naturally suggests to find
a proposal which approximates the target. Figure 2.2 illustrates that remark where the
proposal is a simple Gaussian distribution. From this figure, one can acknowledge that
the efficacy of the sampler will be impacted by the level of similarity (eg. they belong to

the same family of distributions) between the two distributions of interest.

In the stochastic approximation step, the sequence of decreasing positive integers {7V x>0
controls the convergence of the algorithm. In practice, v is set equal to 1 during the first
K iterations to let the algorithm explore the parameter space without memory and to
converge quickly to a neighborhood of the ML estimate. The stochastic approximation is
performed during the final K iterations where v, = 1/k® with in general a = 0.7, ensuring

the almost sure convergence of the estimate.

Prior Work The SAEM algorithm has been shown theoretically to converge to a max-

imum of the likelihood of the observations under very general conditions [Delyon et al.,
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1999a]. As already mentioned, this result has been extended by Kuhn and Lavielle [2004],
to include an MCMC sampling scheme in the simulation phase. Recent work by Allasson-
niere and Chevallier [2019], exhibits a new class of algorithms where the simulation step
is performed using an annealed version of the posterior distribution and is motivated by

saddle points escaping problems.

Our Contributions We consider the SAEM algorithm through Chapters 6 and 7. In
particular Chapter 6 contains an improvement of the aforementioned sampling procedure.
We exploit the remark about the Independent Sampler by introducing an efficient MH
proposal based on the Laplace approximation of the incomplete log likelihood. A lineari-
sation of the structural model is shown to be equivalent for the class of continuous data
models. Chapter 7 exploits the finite sum structure of the objective function (following
Remark 1.1) and proposes an incremental variant of the SAEM which asymptotic behavior

is shown theoretically and experimentally.

1.4 Mixed Effects Modeling and Population Approach

1.4.1 Why Are Mixed Effects Models Relevant?

Mixed Effects Models (MEM), see [Lavielle, 2014] and the references therein, have received
increasing use due to their flexibility for analyzing multi-outcome longitudinal data fol-
lowing possibly nonlinear profiles. They are reference methods to describe inter-individual

variabilities among a given population.

A general formulation of the MEM for the continuous observation y;; can be written as

follows:
Yij = f(@ij, i) + 8(2ij, i, &) €5 with g5 ~ N(0,07) , (1.4.1)

where the quantity y;; denotes the j-th observation for the i-th individual. x;; is a vector
of regressors (it could be the time or some variables such as the time or the dose of a
drug injected), f is the (possibly nonlinear) structural model, 1); denotes the individual
parameters. The quantity ¢;; is a random variable assumed to be normally distributed
and o denotes the variance parameter entering the function g, which expresses the stan-
dard deviation of the measurement error and is generally either constant (homoscedastic

variance) or a function of f.

We consider here a two-stage model, as in [Davidian, 2017], which both provides a typical
population curve, also known as the structural model (see the function f in (2.4.1)), and
models the individual parameters, denoted v; and regarded as random variables that

fluctuate around a population parameter v¢p,.,. This latter probabilistic model of the
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individual parameters exhibits the inter-individual variability structure that governs the

statistical phenomena. Formally, it reads:

i = h(¢pop,77i)
n; ~ N(0,9)

(1.4.2)

We note that the individual parameters 1); are related through a function h to pep,
the p-dimensional vector containing the fixed effects, and n;, the g-dimensional vector
containing the random effects ;. For instance, for Normal individual parameters we have
Vi = Ypop + 1; and for Lognormal we have 1); = 9pop€”. The random effects 7; and
the residual errors €;; are assumed to be independent for different subjects and to be

independent of each other for the same subject.

The objective here is to estimate the vector of parameters 6 = (Ypop, 2, 0%) by maximum
likelihood. In mixed effects models, the likelihood associated with (2.4.1) and (2.4.2) is
intractable as individual likelihoods need to integrate out the unknown parameters 1; over

their distribution.

For MEMs, the expectation computed in (2.3.5) is intractable due to the possible nonlin-
earity of the structural model. We thus use the SAEM algorithm introduced above where
the latent variables, that are simulated at each iteration, correspond to the individual

parameters ;.

1.4.2 Application to Population Pharmacokinetics

In domains such as economy, sociology, genomics or pharmacokinetics-pharmacodynamics
(PK-PD), observations from several individuals of a population are measured. Consider

the observations Figure 2.3.

%‘ patient 1 patient 2 patient 3 patient 4
s

; 6 6 6 \—_’// 6

:j 4 4 4 4

%1 2 2 2 2

S

0 200 400 0 200 400 0 200 400 0 200 400
time (days) time (days) time (days) time (days)

Figure 1.3 — Viral load of four patients with hepatitis C (taken from [Lavielle, 2014]).

These measurements are viral loads for four different patients with hepatitis C (HCV)

after treatment that started at time ¢ = 0. We note that in many cases, such as the one
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exposed here, data are longitudinal, i.e., they are repeated measurements (not necessarily
function of time) of an output quantity. Also, every patient does not react to the treatment
the same way. For instance, patient 1 sees its viral load decrease after the treatment
while patient 3 has almost no response. Following those two remarks, the best way to
cope with statistical modeling of the HCV dynamics is to build a model that describes
how the viral load evolves with time and a statistical model that explains the difference
among patients. Mixed Effects Modeling is a natural framework for such analysis and is

thoroughly developed in [Snoeck et al., 2010] for HCV dynamics modeling.

The so-called population approach becomes very relevant in this cas as it combines (pos-

sibly) poor individual information to build a comprehensive population model.

MEMs and the SAEM algorithm are extensively used to handle such experiments through
their implementation in software tools such as Monolix, NONMEM, the SAEMIX R pack-
age [Comets et al., 2017] and the nlmefitsa Matlab function. Part of our work in this thesis
relies on the SAEMIX Package (R [R Development Core Team, 2008]), see Chapters 6-8.

Our Contributions Several PK models are studied through Chapters 6-8 using the
Mixed Effects Modeling and the population approach. We apply and show the efficacy of
our newly developed methods to accelerate the MLE phase. An extension of the SAEMIX

R package for noncontinuous data models is also presented Chapter 8.



Chapter 2

Introduction en Francais

Abstract: Ce chapitre introductif décrit les objectifs de la thése et
introduit les principaux domaines étudiés dans les chapitres qui suiv-
ent. Nous donnons, ici, une vision approfondie de la literature en lien
avec ces domaines et insistons sur le gap que ce manuscrit essaye de
combler. D’importantes hypothéses et définitions, faites tout au long de
la thése, sont présentées dans ce chapitre afin de se familiariser avec
loptimisation non-convexe, l’approximation stochastique et les modéles
a données latentes. La derniére section développe un example spécifique
des modéles a données latentes appelé modéles a effets miztes ainsi que
son application a la pharmacologie, comme domaine d’intérét de notre
équipe XPOP, INRIA.
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2.1 Apprentissage Statistique

Le domaine de la modélisation mathématique a été au coeur de l'effort humain des-
tiné & mieux comprendre le monde, avec des applications allant de la physique aux sci-
ences sociales. En particulier, pour traiter un grand nombre de données et modéliser
des phénomenes complexes, I'apprentissage statistique est considéré comme 1'un des sous-
domaines les plus importants de notre époque. Il peut étre considéré comme une approche
fondée sur des principes d’extraction d’informations utiles & partir de données qui peuvent
étre exploitées pour exécuter des taches telles que la prédiction. Il s’agit généralement
d’une phase de modélisation, ou un modele est concue dans un espace de recherche de
modeles donné — dans cette these, nous nous limitons aux modeéles paramétriques ou
I’espace de recherche est un ensemble de parametres — et d’une phase d’entrainement
ou d’optimisation ou, pour des paires d’observations entrées-sorties, le modele est adapté
pour décrire au mieux les données. Nous donnons maintenant une formulation rigoureuse

des idées présentées ci-dessus.

Formulation mathématique Considérons la paire de variables aléatoires entrées-
sorties (X,Y) prenant des valeurs dans un ensemble d’entrées arbitraires X C RP et
un ensemble de sorties arbitraires Y C RY. Par exemple, X est une matrice de covari-
ables décrivant un patient hospitalisé (dge, poids, etc.) et Y décrit sa charge virale pour
I’hépatite C. Nous désignons par P, la distribution selon laquelle cette paire entrée-sortie
est tirée. Comme mentionné plus haut, la phase de modélisation consiste & trouver une
fonction mesurable My : X — Y qui est dans notre cas une fonction paramétrique de
parametre 6 € R%. Cette fonction est communément appelée le prédicteur et sa perfor-
mance est mesurée par une fonction de codt £ : Y — R ou £(y,y’) est la perte subie quand
la vraie sortie est y alors que vy’ est prédit. Ensuite, la phase d’entrainement se résume a

calculer la quantité suivante :

argmin £(0) = argmin{L£(0) + R(0)} avec L(0) = E, p[l(y, Mg(x))] , (2.1.1)
OcRd 6cRd

ou £ est une fonction de perte éventuellement non convexe et fonction de données observées,

L est ce qu’on appelle le risque de population et R(-) est un terme de pénalisation qui

impose une structure a la solution et est éventuellement non lisse.

Tout au long de cette these, nous nous intéressons aux modeles ou la relation entrée-
sortie n’est pas complétement caractérisée par les paires (x,y) € X X Y observées, mais
dépend aussi d’un ensemble de variables latentes non observées z € Z C R™. Ces modeles
sont appelés modeles a données latentes et sont formellement introduits Section 1.3. Ils
incluent le cadre des données incomplétes, i.e., certaines observations manquent, mais est

beaucoup plus large que cela (par exemple, la structure latente peut correspondre aux
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labels inconnues dans les modéles de mélange ou aux états cachés dans les modeles de
Markov cachés). Dans tous ces cas, une étape de simulation est nécessaire pour compléter
les données observées par des réalisations des variables latentes. Cette derniere étape de
simulation joue un role clé dans ce manuscrit et est traitée en détail dans chaque chapitre.
Formellement, cette spécificité dans notre contexte implique d’étendre la fonction de perte

£ pour accepter un troisieme argument comme suit :
. Mo(@) = [ £z, Ma(a))dz (2.1.2)

Notez que, pour des raisons de notation, nous utilisons le méme nom pour les deux fonc-
tions de perte définies sur des espaces différents. Enfin, nous considérons des exemples ou

la fonction L est lisse dans le sens suivant :

Definition 2.1 Une fonction f : R® — R est L-smooth si et seulement si elle est dif-

férentiable et son gradient est L-Lipschitz-continu, i.e., pour tout (6,9) € RY x R? :

IVF(O) = V@) < L6 . (2.1.3)

Traditionnellement, 'apprentissage statistique s’est surtout concentré sur le développe-
ment de fonctions de perte convexe ¢ et d’algorithmes tels que SVM ou des modeles
graphiques a famille exponentielle. Cependant, de nombreux problémes importants, tels
que la vision par ordinateur et le traitement du langage naturel, ne peuvent étre formulés
comme une optimisation convexe ou, en tout cas, seront plus cotiteux en termes de calcul
que leurs équivalents non convexes. En effet, si la convexité peut étre considérée comme
une vertu, elle peut aussi étre considérée comme une limitation dans la complexité du mod-
ele choisi pour résoudre un probleme donné. Par exemple, les modeles a variables latentes,
mentionnés plus haut comme une grande famille de modeéles graphiques probabilistes, im-
pliquent une optimisation non convexe et sont utiles pour s’attaquer a des taches telles que
la reconnaissance vocale (réalisée par exemple avec des modeles de mélanges gaussiens),

qui ne peuvent étre traitées avec un modele convexe.

L’augmentation de la dimension/taille de I’échantillon et la complexité des taches obligent
la communauté des statisticiens a développer des algorithmes plus simples, avec une com-
plexité maximale de O(n) ou n est soit la dimension soit le nombre d’observations, tout
en s’adaptant a des modeles plus complexes et fortement non convexes. Cette question
est traitée en détail dans [Bottou and Bousquet, 2008] et est a 'origine de I'expansion du

domaine de I'optimisation non convexe.
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2.2 Optimisation Non-convexe

Les probléemes d’optimisation non convexe sont fréquents dans l'apprentissage machine,
comme dans la sélection des caractéristiques, 'apprentissage matriciel structuré, 1 es mod-
eles de mélanges et I'entrainement des réseaux de neurones. Dans tous ces cas, la fonction
L définie dans l'objectif d’optimisation (2.1.1) est non convexe. La convexité d’une fonc-

tion f est définie comme suit
Definition 2.2 Une fonction f : R? — R est dite convexe si pour tout (6,9) € R? x R?
et tout A € (0,1) -

F(A=XN)0+ X)) < (1=XN)f(O)+\f(V) . (2.2.1)

Dans ce manuscrit, nous nous intéressons a la formulation sous contrainte de ce probléme
d’optimisation. Ainsi, le vecteur de parameétres 6 appartient a un ensemble convexe © C

R< dans le sens suivant :

Definition 2.3 Un ensemble © est dit conveze si pour tout (6,9) € ©2 et tout A € (0,1)

1-N0+MWeO. (2.2.2)

La différentiabilité de la fonction de l’objectif sur un ensemble contraint est traitée en
introduisant le concept suivant de différentiabilité directionnelle (qui inclut la notion de
différentiabilité) :

Definition 2.4 Pour toute fonction f: © — R, f'(0,d) est le dérivé directionnel de f d

0 suivant la direction d, i.e.,

, o f(6+td) — f(8)
7(0,d) == lim . .

t—0t

(2.2.3)

Analyser de la convergence de l'algorithme d’optimisation, dite "convexe'. (resp. non-
conveze) si Uobjectif (2.1.1) est conveze (resp. non-conveze), implique généralement une
condition de sous-optimalité comme critere de convergence. Par exemple, pour les fonc-
tions convexes, nous utilisons |£(8) — £(6*)| (ou ||@ — 6*|*) comme condition. Nous
désignons par 8* la solution optimale que ’on peut trouver efficacement dans le cas con-
vexe. Par conséquent, lorsqu’il est difficile de trouver une telle solution optimale, comme
dans le cas non convexe, ce critére de convergence ne peut pas tenir. Nous utilisons alors
la quantité ||V.L(8)||*, comme préconisé dans [Ghadimi and Lan, 2013] et [Nesterov, 2004],
pour évaluer la stationnarité des resultants de I'algorithme. La définition suivante est donc

importante tout au long de notre analyse :

Definition 2.5 Un point 6* est dit étre e-stationnaire si |VL(0*)|* < e. Un algo-
rithme itératif stochastique est dit d’atteindre e-stationnarité en R > 0 itérations st

2
E[ HVE(G(R))H | < e, ou lespérance est prise est sur la stochasticité de lalgorithme.
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Nous donnons deux formulations, trouvées dans la littérature, de tels résultats dans le cas
convexe et non convexe pour donner une idée du type de bornes que 'on peut obtenir
pour caractériser la stationnarité des itérations de l'algorithme. Considérons le probléme

d’optimisation simple suivant, non contraint et non régularisé :

argmin £(0) , (2.2.4)
OcR?

ou £ : R% — R is L-smooth. Dans le cas convexe, un résultat établi est:

Proposition 3 (Convergence de la descente de gradient [Nesterov, 200/ pour les fonc-
tions convezes). Considérons le schéma simple de descente de gradient, avec pas constant,
qui commence & partir d’un 0 initial et et dont la séquence des itérations {H(k)}k>0

s’exprime comme suit :

ot — gk) _ v (™) (2.2.5)

ou L est une fonction conveze et L-smooth sur R%. Soit le pas v = 1/L, alors la séquence
d’itérations {0%) Y}~ satisfait :

et 0]

(k+1)y _ *\ <
£(OF) — £(£(6%) < ) (2.2.6)
De plus, si L est - fortement convere nous avons
LLOFD) — £(67) < (1— p/L)F[L(0©) — £(67)) (2.2.7)

Dans le cas non convexe, un résultat établi est:.

Proposition 4 (Convergence de la descente de gradient stochastique [Ghadimi and Lan,
2013] pour les fonctions non convezes). Considérons la valeur initiale 0O, un point de ter-
minaison I' tiré selon une fonction de masse de probabilité Pr(-) supportée sur {1,--- K}

avec K par itération limite et les mises d jour suivantes pour k € [1,I'] :
0%+ — 9" _ 4y Hooo (Xiy1) (2.2.8)

0t { Xp+1ther sont i.3.d., de moyenne nulle et Hyx) (Xp11) est une estimation non biaisée
du gradient VL(OW) et L est L-smooth et une fonction (éventuellement) non conveze sur

R?. Supposons que

2
E[Hgu (Xks1)] = VLOW) and B[ Hyu (Xps1) - VLOD) [T <0?  (229)
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et que le pas v, < 1/2L, alors la séquence des itérations {0%)} .~ satisfait :

(2.2.10)

- () L k=1 Tk
LE[HVE(O )H I ket K2y — L})

avec Dy = \/2(5(/5(0(0)) — L(0*)/L. L’espérance est prise sur la stochasticité de

l'algorithme.

En particulier, nous étendons dans le Chapitre 4 le résultat ci-dessus pour un algorithme

non-gradient et lorsque le terme de dérive est un estimateur biaisé du champ moyen.

2.2.1 Minimisation du Risque Empirique

En général, comme la distribution P générant les données est souvent inconnue, n paires
((yi,x;),i € [1,n]) d’observations, aussi appelées examples d’entrainement, sont consid-
érées dans la procédure d’optimisation (2.1.1). Basé sur le principe de minimisation du
risque empirique (MRE) [Vapnik, 2013], les problémes d’optimisation impliquent une fonc-
tion de perte L, également connue sous le nom de risque empirique, moyennée sur les points

d’observations. Alors, la fonction objective, sans pénalisation, se lit :

n

L(0) =n""> Uy, Ma(x:))

i=1
(2.2.11)

=n! ;ci(e)) :

ou n est le nombre d’observations, et £; est la perte associée a la i-eme observation. La
variante de la MRE régularisée consiste a ajouter un régularisateur éventuellement non
lisse R(0) tel qu’introduit dans (2.1.1). Par exemple pour une observation y € Y et une
prédiction 4/ € Y les pertes habituelles sont, la perte quadratique £(y,y") = |ly — v/||* /2
pour une tache de régression et la perte logistique £(y,y’) = log(1 + exp(— (y|y’))) pour
la tAche de classification ot nous rappelons que la prédiction 3’ dépend des covariables

observées z, un modele My(-) et éventuellement de variables latentes z.

Dans le cas convexe, de nombreuses méthodes déterministes bien connues telles que la
descente de gradient, les méthodes de gradient accéléré et les méthodes de Newton sont
utilisées pour effectuer la tache d’optimisation, voir [Bertsekas, 1999, Boyd and Vanden-
berghe, 2004, Nesterov, 2004] et les références qui y figurent. Cependant, chacune de ces
méthodes est cofliteuse en termes de calcul puisqu’elle nécessite un passage complet sur
I’ensemble de données a chaque itération. Pour traiter un grand nombre de points n,

les méthodes d’optimisation stochastique et incrémentale de premier et de second ordre
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sont populaires et largement étudiées lorsque 1'objectif est convexe, voir [Defazio et al.,
2014, Mairal, 2015b, Roux et al., 2012, Vanli et al., 2018]. Par exemple les algorithmes
incrémentaux, affichant un coflit par itération moins élevé, au prix d’un plus grand cofit
mémoire. Pour les fonctions objectives non convexes, des méthodes déterministes [Agarwal
et al., 2017, Carmon et al., 2017] et stochastiques [Allen-Zhu and Hazan, 2016, J. Reddi
et al., 2016] ont également été développées pour atteindre un point e-stationnaire. Il est
important de noter que dans le cas non convexe, un point e-stationnaire peut étre un
point selle. De nombreux travaux importants ont été réalisé dans I'optique d’échapper a
ces points selle pour atteindre un minimum local de (2.1.1), comme dans [Reddi et al.,
2018, Royer and Wright, 2018, Xu et al., 2018], mais sont hors du cadre de cette thése.

Une classe d’algorithmes populaire pour résoudre la minimisation d’une fonction com-
posite non convexe est celle des techniques de majorisation-minimisation [Lange, 2016]
qui approchent de fagon itérative de la fonction composite non convexe par une fonction
de majorisation facile a minimiser. Par exemple, la plupart des techniques, comme la
descente en gradient, utilisent un majorant convexe quadratique qui peut étre optimisé

efficacement. Une illustration de ce concept est fournie Figure 2.1.

Vﬁ“’)
/' (k)

Figure 2.1 — Principe de Majorisation-Minimisation.

Notons qu’a litération k, I'objectif £(6) est borné par une fonction de substitut £(8, 8%*))
au point d’estimation actuel #%). Une variante incrémentale exploitant la structure en
somme finie du probléme a été développée par [Mairal, 2015b] et est étendue Chapitre 3.
En particulier, notre extension s’appuie sur un schéma doublement stochastique : le pre-
mier niveau de stochasticité découle du choix de l'indice ¢, exploitant ainsi la structure
en somme finie du probléme, tandis que le second niveau de stochasticité découle de la
structure latente du probleme utile & la construction de fonctions de substitut appropriées.
Un exemple bien connu de ce cadre incrémental est 'algorithme EM (Expectation Maxi-
mization) incrémental développé dans 'ouvrage pionnier par Neal and Hinton [1998]. Les
auteurs profitent de la structure latente du probleme, présentée en Section précédente,
pour construire des fonctions majorants facile d optimiser (voir Chapitre 5 pour une com-

préhension compléte de cette approche). Dans cette thése, nous nous concentrerons sur
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les algorithmes qui utilisent des oracles incrémentaux de premier ordre.

Definition 2.6 (Oracle incrémental de premier ordre) Pour une fonction donnée f : ©
R avec une structure en somme finie, un oracle incrémental de premier ordre prend un

index i € [1,n] et un paramétre @ € © et renvoie les valeurs de f;(0) et/ou son gradient

V£i(0).

Dans I’état actuel de la littérature, ces algorithmes sont privilégiés car ils ne nécessitent

qu’une petite quantité d’informations de premier ordre & chaque itération.

Travaux antérieurs Dans le cas (possiblement fortement) convexe, la descente du gra-
dient stochastique (SGD) a été au centre d’énormes progres au cours de cette derniere
décennie. De nombreuses variantes incrémentales [Bertsekas, 2011] ont été développées
depuis son introduction dans le travail fondateur [Robbins and Monro, 1951]. Parmi eux,
il est prouvé qu’une classe d’algorithmes a variance réduite permet d’atteindre des vitesses
plus rapides pour des objectifs convexes. Par exemple [Defazio et al., 2014, Roux et al.,
2012] développe des algorithmes incrémentaux rapides qui permettent d’obtenir des taux
de convergence linéaire pour des fonctions fortement convexes. La méthode SVRG [John-
son and Zhang, 2013] est une autre méthode a variance réduite qui affiche un besoin de
stockage inférieur a ces dernieres. De plus, une étude des limites inférieures pour un prob-
leme d’optimisation de fonction composite a été faite dans [Agarwal and Bottou, 2014],

mais la littérature reste plutot pauvre pour un fonction non convexe.

Dans le cas non convexe, plusieurs travaux importants [Bottou, 1991, Kushner and Clark,
2012] développent une convergence asymptotique des variantes incrémentales de SGD vers
un point fixe. Le premier taux de convergence non asymptotique de SGD dans [Ghadimi
and Lan, 2013] assure un point stationnaire ¢ en O(1/£?) itérations, voir Tableau ??. Les
variantes incrémentales sont également analysées dans [Ghadimi et al., 2016] et en parti-
culier le SVRG est connu pour atteindre un point e-stationnaire en @ (n?/?/¢) itérations,
voir [Reddi et al., 2016a]. Ces résultats sont pertinents en ce sens qu'ils se distinguent
d’une hypothese de convexité locale et abordent le comportement de convergence glob-
ale des méthodes d’optimisation dans un cadre non convexe. Ce manuscrit suit le méme

esprit.

En plus d’améliorer I'analyse de ces procédures d’optimisation dans un cadre non convexe,
la plupart des résultats existants s’appliquent aux algorithmes de type gradient. Cette
these, a travers les Chapitre 4 et Chapitre 5, tente de généraliser ces taux de convergence
pour les algorithmes de type non gradient, tels que la méthode Expectation-Maximization
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Algorithm Gradient Non-gradient MC  Step.
SGD O(1/€?) [Ghadimi and Lan, 2013] ? X Vi
GD O(n/e) [Nesterov, 2004] ? X v

SVRG/SACGA  O(n?/3/e) [Reddi et al., 2016b] O(n*?3/e) Chap. 5 X Y
MISO O(n/e) Chap. 3 O(n/e) Chap. 3 X —
MISSO O(n/e) Chap 3 O(n/e) Chap 3 v —

Biased SA  O(co + ‘2% )Chap 4 O(co + &) )Chap N

Table 2.1 — Méthodes de MRE: Tableau de comparaison de complexité, mesuré en termes
d’iterations, de différents algorithmes d’optimisation non convexe. MC siginifie Intégration
de Monte Carlo du terme de dérive.

2.2.2 Approximation Stochastique

La procédure d’approximation stochastique (SA), introduite par Robbins and Monro
[1951], vise a trouver un zéro d’une fonction continue, qui n’est accessible que par ses

évaluations aléatoires. Sa formulation est la suivante :
O = 0" — vy Hooy (Xpi1) (2.2.12)

ot 0%) ¢ © ¢ R¢ dénote la k-eme itération, {7k }k>oest une séquence de pas positifs et
Hp)(Xg+1) est la k-eme mis & jour stochastique qui dpend de 1'élément alatoire Xjy; &
valeur dans X. Le terme de dérive Hy) (Xg41)peut étre décomposé en somme d’un champ

moyen h et un terme d’erreur egy
Heyy (Xig1) = h(OF)) + epp1 . (2.2.13)

Dans cette thése, nous nous concentrerons sur les algorithmes qui utilisent des oracles

stochastiques de premier ordre.

Definition 2.7 (Oracle stochastique de premier ordre) A litération k l’oracle stochastique
de premier ordre produit un terme de dérive stochastique Hgu)(Xp41) €tait {Xpi1})~q sont

des éléments aléatoires.

Habituellement, le terme d’erreur ey41 est supposé étre une séquence i.i.d. de bruit de
variance finie et de moyenne nulle. Formellement, I’hypothése suivante est généralement

formulée :

H2.1 Lo séquence de bruits est un incrément Martingale avec, pour tout k € N,
Eer1| Fi) = 0, E [|lexs1]? | Fi] < 02 + a?||h(0W)|1? et 03,02 € [0,00) ou Fy. désigne

la filtration générée par les variables aléatoires (0©°), { X} <)

Notez que dans ce cas, Hyk)(Xg+1) est un estimateur non biaisé du champ moyen h(6*)

et que la variance de HHg(k) (Xkt1) — h(O(k))H est borné.
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Dans sa formulation originale (2.1.1), la minimisation du risque de population peut étre
réalisée a 'aide d’une procédure SA comme indiqué dans [Bottou and Le Cun, 2005]. En
particulier, les méthodes de gradient stochastique sont maintenant omniprésentes dans
I’apprentissage machine, tant du point de vue pratique, en tant qu’algorithme simple qui
peut apprendre d’un seul ou de quelques passages sur les données [Bottou and Le Cun,
2005], que du point de vue théorique, car il conduit a des taux optimaux pour des prob-
lemes d’estimation dans diverses situations [Nemirovsky A.S. and IUdin, 1983, Polyak
and Juditsky, 1992]. SA trouve le minimum de la fonction objective en recherchant les
racines de son gradient (h = VL) tant qu’il est supposé différentiable. Du point de vue
de ’apprentissage machine, cette procédure accede aux données en continu, c’est-a-dire
qu’elle ne peut effectuer qu’un seul passage sur ’ensemble de données, et minimise le risque

de population qui, on le rappelle, est une fonction inconnue.

Convergence des procédures de type Robbins-Monro La deuxiéme méthode de
Lyapunov [Kalman and Bertram, 1960] est une méthode courante pour prouver la sta-
bilité asymptotique globale des solutions de la procédure Robbins-Monro en montrant
que toutes les trajectoires de 'équation différentielle ordinaire limite (EDO) @ = h(0)
de cette procédure passent par zéro. L’idée est d’introduire une fonction non négative,
généralement désignée par V, qui peut étre interprétée comme une énergie qui diminue
a chaque itération de la méthode. En général, ces fonctions de Lyapunov sont congues
par lutilisateur car il n’existe aucun moyen générique de les trouver. En particulier, nous
montrons Chapitre 5, que certaines variantes de ’algorithme Expectation-Maximization
(EM) ne diminuent pas, & chaque itération, la fonction objective (la log-vraisemblance
incompleéte), comme préconisé dans [Wu et al., 1983], mais montrent plutdt une propriété
monotonique d’une fonction de Lyapunov bien congue. La relation entre l'objectif de
la procédure Robbins-Monro,i.e., résoudre h(0) = 0, et la stationnarité de la fonction
Lyapunov est discutée Lemma 10 (Section refsec:main du Chapitre 5) et Proposition 5.
(Section 4.3 du Chapitre 4).

Travaux antérieurs La plupart des résultats disponibles & ce jour|[voir par exemple
[Benveniste et al., 1990], [Kushner and Yin, 2003, Chapitre 5, Théoréme 2.1] ou [Borkar,
2009]] ont une saveur asymptotique. L’objectif de ces travaux est d’établir que le point
stationnaire de la séquence {G(k), k € NN} appartient a un attracteur stable de son ODE
limite @ = h(0).

Les progres méthodologiques importants considerent le cas ol {ey}r>1 est le bruit de
Markov dépendant de I’état. Dans cette option, I’élément aléatoire Xy, est tiré d’'un

processus de Markov dépendant de 1’état. Pour toute fonction mesurable limitée ¢ et
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k € N, nous avons

E [¢(Xkn+1) | F] = Py p(Xk) = /80($)Pe<k> (X, dx) ,

oli Py est un noyau de Markov sur X x X'. En général, on suppose que pour 8 € ©, Py a une
distribution stationnaire unique mg, i.e., TPy = mg. Ces méthodologies sont particuliere-
ment pertinentes pour l'apprentissage par renforcement tel que le Q-learning [Jaakkola
et al., 1994], le gradient sur les politiques [Baxter and Bartlett, 2001] et ’apprentissage
par différence temporelle [Bhandari et al., 2018, Dalal et al., 2018a,b, Lakshminarayanan

and Szepesvari, 2018]. Pourtant, leur analyse est, & ce jour, absente de la littérature.

Bien entendu, les algorithmes de type SA vont bien au-dela des méthodes de gradient. En
fait, dans de nombreuses applications importantes, le terme de dérive de la SA n’est pas
une version bruyante du gradient, c¢’est-a-dire que le champ moyen h n’est pas le gradient

de la fonction objective.

Ces deux derniéres remarques corroborent la question posée dans la section précédente
concernant les algorithmes non gradient et leur analyse globale/non-asymptotique dans le

cadre non convexe et motivent une importante partie de cette these.

2.3 Maximum de Vraisemblance Dans Des Modeéeles a Don-

nées Latentes

2.3.1 Modéles a Données Latentes

Dans cette section, nous présentons formellement une instance des modeéles généraux
soumise a un probleme de minimisation du risque appelé modéle a données latentes. Soit
Z un sous-ensemble de R™, p une mesure finie o sur le Borel o-algebra Z2 = B(Z) et
{f(#,0),0 € O} soit une famille de fonctions Borel positives p-integrable sur Z. Set z € Z.
Soit, pour tout 6 € O :

9(y:6) = /Zf(zyy;G)u(dZ) ,

ey o (2.3.1)
p(zly;0) 2 90 if g(y; 0) # 0
0 sinon

Notez que p(z|y; @) définit une fonction de densité de probabilité par rapport a u et
P ={p(z|y;0);0 € ©; (y,z) € Y x Z} a family of probability density. Nous désignons par

{Pg; 0 € O} la famille de mesures de probabilité associée. Naturellement, la fonction de
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perte £(0) est définie pour tous les @ € © comme suit :

L£(6) :==1ogg(y;0) . (2.3.2)

Remark 2.1 Un exemple est le probléme de données incomplétes. Dans ce cadre,

e f(z,y;0) est la probabilité des données complétes qui est la probabilité des données

observées y augmentée des données manquantes z.

e g(y;0) est la probabilité de données incomplétes qui est la probabilité des données

observées y.

e p(zly; 0) est la distribution conditionnelle des données manquantes z sachant les

données obseruvées y.

Remark 2.2 Pour les modéles a effets mixtes, les variables latentes z sont les effets aléa-
toires et identification de la structure latentes correspond principalement a la variabilité
inter-individuelle entre les individus du jeu de données. Ce cadre d’étude est présenté
Section 1.4 et étudié Chapitre 6.

Remark 2.3 Pour les modéles de mélange, les variables latentes correspondent aux labels
inconnus du mélange en prenant des valeurs dans un ensemble fini discret. Ce cadre
d’analyse est étudié Chapitre 4, Chapitre 5 et Chapitre 7.

Remark 2.4 Dans cette thése, nous nous intéressons d une approche empirique du prob-
leme de Uestimation du maximum de vraisemblance. Soit n un entier. Nous considérons
n vecteurs d’observations indépendant et non nécessairement distribué de facon identique
(y; €Y,i € [1,n]) oY est un sous-ensemble de R' et données latentes (z,Z,i € [1,n]).
Pour tout 8 € O,

f(z,y;0) = ﬁf(zz‘,yz‘;e) ;
=1
9(y;:0) =[] 9(wi;0) , (2.3.3)
=1
p(zly; 0) = [ [ p(zily:: 6) -
=1

Ainsi, la fonction objective (2.3.2) s’écrit :

n

L£(0) := anlogg(y,;; 0) = ZEZ-(G) : (2.3.4)
i=1

i=1

Notez que pour éviter les singularités et les dégénérescences du Maximum de Vraisemblance

(MV) telles que mises en évidence dans [Fraley and Raftery, 2007], on peut régulariser
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la fonction objective par une distribution a priori sur les parameétres du modele, voir

Chapitre 4 pour un exemple illustratif.

2.3.2 L’algorithme EM

Une classe populaire d’algorithmes d’inférence ayant pour but minimiser (2.3.2) est la
classe d’algorithmes du type Expectation-Maximization (EM) développé dans le travail
pionnier de Dempster et al. [1977]. LEM est une procédure itérative qui minimise la

(k=1) 1e

fonction @ — L£(6) lorsque sa minimisation directe est difficile. Indiquez par 6
parametre connu a l'itération k, alors la k-ieme étape de l'algorithme EM pourrait étre
décomposée en deux étapes. L’étape E consiste & calculer la fonction de substitution

définie pour tous les 8 € © comme :
Q0,64 1) £ [ p(ely; 0)log f(2,y:0)u(d2) (2.3.5)
4

Dans Pétape M, la valeur de @ minimisant Q(6, 8% ~1)) est calculée et définie comme la
nouvelle estimation de paramétre (). Ces deux étapes sont répétées jusqu’a la con-
vergence. L’essence de l'algorithme EM est que la diminution de Q(8, 0(’“*1)) force une
diminution de la fonction 8 — L£(8), voir [McLachlan and Krishnan, 2007] et les références

qui y figurent.

Remark 2.5 En utilisant la concavité de la fonction logarithmique et [’inégalité de
Jensen, nous pouvons montrer que Q(6, G(k_l)) est une fonction de substitution majorante
de lobjectif L(0) au point 0=V Ce schéma s’inscrit bien dans le principe MM introduit
dans la Section 1.2.1 et est exploité dans [Gunawardana and Byrne, 2005]. Le Chapitre 5
développe cette remarque et présente une analyse globale d’une variante incrémentale de
I’EM, introduite par Neal and Hinton [1998].

Remark 2.6 Une hypothése courante concernant applicabilité directe de I’EM aux mod-
éles a données latentes (voir, en particulier, la discussion dans Uarticle [Dempster et al.,
1977]) est de considérer que le modéle complet appartient a la famille exponentielle courbe,

a savotr, pour tout @ € © :

log f(z,y,0) = —1(0) + (5(2,y), ¢(6)). (2.3.6)

ot : 0 — R et ¢:0— R sont des fonctions deux fois continument différentiables en 6 et
S :Z— S est une statistique prenant ses valeurs dans un sous-ensemble conveze S de R.
Ensuite, les deux étapes de I’EM formulent en termes de statistiques suffisantes. En par-
ticulier, I’étape M jouit d’une fonction d’expression fermée de ces statistiques. Notez que
cette hypothese n’est pas restrictive car de nombreux modéles d’intérét pour lapprentissage

machine la satisfont.



50 CHAPTER 2. INTRODUCTION EN FRANQAIS

Travaux antérieurs La méthode EM a fait I’'objet d’un intérét considérable depuis son
introduction dans [Dempster et al., 1977]. La plupart des travaux traitant de la conver-
gence des méthodes de type EM considérent les comportements asymptotique et/ou local
pour éviter toute hypothése de non-convexité. La convergence globale vers un point sta-
tionnaire (soit un minimum local, soit un point de selle) de la méthode EM a été établie
par Wu et al. [1983] comme une extension des travaux antérieurs développés dans Demp-
ster et al. [1977]. La convergence globale est une conséquence directe de la monotonie
de la méthode EM, c’est-a-dire que la fonction objective ne décroit jamais. Localement
et sous certaines conditions de régularité, un taux de convergence linéaire vers un point
stationnaire a été étudié dans [McLachlan and Krishnan, 2007, Chapitres 3 et 4]. En ce
qui concerne les variantes incrémentales, la convergence de la méthode iEM a d’abord été
abordée par Gunawardana and Byrne [2005] en exploitant 'interprétation de la méthode
comme une procédure de minimisation alternée dans le cadre de I'Information Géométrique
développé dans [Csiszar and Tusnady, 1984]. Plus récemment, ’accent mis sur la conver-
gence locale mais non asymptotique des méthodes EM a été étudié dans plusieurs travaux.
Ces résultats exigent généralement d’initialiser I'algorithme au voisinage d’un point sta-
tionnaire isolé et que la fonction de log-vraisemblance (négative) soit fortement convexe
localement. Ces conditions sont difficiles a vérifier en général ou n’ont été dérivées que
pour des modeles spécifiques ; voir par exemple [Balakrishnan et al., 2017, Wang et al.,
2015a, Xu et al., 2016a] et les références qui y figurent. La convergence locale d’une
méthode EM & variance réduite, appelée sSEM-VR a été étudiée dans [Chen et al., 2018,

Theorem 1] mais sous une condition de stabilité globale.

Il est donc important d’améliorer et d’analyser les variantes de 'EM afin de relever les
deux défis mentionnés au tout début de cette introduction, a savoir le nombre croissant

de données et la non-convexité de la fonction objective (voir Chapitre 5 du manuscrit).

2.3.3 L’algorithme SAEM

Dans de nombreuses situations, 1’étape de calcul de ’espérance dans l’algorithme EM
(2.3.5) peut étre numériquement compliquée ou méme intractable. Pour résoudre ce prob-
leme, Wei and Tanner [1990a] propose de remplacer le terme d’expérance par une inté-
gration de Monte Carlo, conduisant a ce que 'on appelle I'algorithme Monte Carlo EM
(MCEM). Une autre option, développée dans [Delyon et al., 1999a], est ’approximation
stochastique de 'EM (SAEM) qui s’écrit comme suit :

My

1. Etape de Simulation: Simulez les variables latentes {zﬁ,]f)}mzl a partir de sa

distribution a posteriori p(z|y; 0%*~1).



2.3. MAXIMUM DE VRAISEMBLANCE DANS DES MODELES A DONNEES
LATENTES 51

2. Etape d’Approximation Stochastique: mettre a jour ’approximation, notée
Qr(0), de l'espérance conditionnelle (2.3.5) :

Mg
Qk(6) = Qr-1(68) + i | Mgy > log Fly,2%):6) = Qu_1(0) | (2.3.7)
m=1

ot {7V }k>0 est une séquence de pas décroissants avec y; = 1.

3. Etape de Maximisation:

0") = argmax Qx(0) . (2.3.8)
6co

Pendant la phase d’approximation stochastique, la distribution conditionnelle des
parametres est obtenue puisqu’il s’agit de la distribution dans laquelle les variables la-
tentes z sont imputées pour obtenir un ensemble de données complet & partir duquel est

dérivé le log-vraisemblance conditionnelle (voir [Kuhn and Lavielle, 2004]).

Dans 1’étape de simulation, comme la relation entre les données observées et les don-
nées latentes peut étre non linéaire, ’échantillonnage de la distribution postérieure est
difficile et nécessite souvent 1'utilisation d’un algorithme d’inférence. Kuhn and Lavielle
[2004] a démontré une convergence quasi certaine de la séquence de parameétres obtenue
par cet algorithme couplée a une procédure MCMC pendant ’étape de simulation. En

M,
effet, ici, {z#f)}mg est un ensemble d’échantillons de Monte Carlo. Dans des scénarios
My

simples, les échantillons {z,gf)}mzl

sont conditionnellement indépendants et distribués de
maniére identique selon la distribution p(z|y, O(k_l)). Néanmoins, dans la plupart des cas,
I’échantillonnage exact a partir de cette distribution n’est pas une option et I’ensemble de

Monte Carlo est échantillonné par ’algorithme MCMC.

005

0.04

0.03

0.01

0.00
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Figure 2.2 — Algorithme MH: représentation d’une distribution de proposition et d’une
distribution cible en dimension 1.

Les algorithmes MCMC sont une classe de méthodes permettant d’échantillonner a
partir d’une distribution complexe sur (éventuellement) un grand espace dimensionnel.
Une classe importante d’échantillonneurs, appelée algorithme Metropolis-Hastings (MH),

préléve itérativement des échantillons a partir d’une distribution de proposition ¢ avec la
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distribution de I’échantillon nouvellement prélevé seulement selon 1’échantillon courant.
Avec une certaine probabilité, I’échantillon est soit accepté comme le nouvel état de la
chaine, soit rejeté. Il est bien connu, voir [Mengersen and Tweedie, 1996, Roberts and
Rosenthal, 2011] que I’échantillonneur indépendant est géométriquement ergodique si et
seulement si, pour un € donné, zieanP (2)/m(z) > e > 0 oum(z) est la distribution cible. Plus
généralement, il est montré dans [Roberts and Rosenthal, 2011] que le taux de mélange
dans la variation totale dépend de ’espérance du taux d’acceptation dans la distribution
de la proposition qui est également directement lié au rapport entre la proposition et la
cible. Cette observation suggere naturellement de trouver une proposition qui se rapproche
de l'objectif. La figure 2.2 illustre cette remarque lorsque la proposition est une simple
distribution gaussienne. a partir de cette figure, on peut reconnaétre que 'efficacité de
I’échantillonneur sera influencée par le niveau de similarité (eg. ils appartiennent a la méme
famille de distributions) entre les deux distributions de I'intérét. Le Chapitre 6 développe

cette remarque en présentant une proposition MH efficace pour la tache d’échantillonnage.

Dans I’étape d’approximation stochastique, la séquence de pas positifs et décroissants
{Vk}k>0 controle la convergence de 'algorithme. En pratique, 75 est égal a 1 lors des
premieres itérations K7 pour permettre a ’algorithme d’explorer I'espace de parametres
sans mémoire et de converger rapidement vers un voisinage du MV. L’approximation
stochastique est effectuée lors des itérations finales Ko ou v = 1/k% avec en général

a = 0.7, assurant la convergence presque certaine de ’estimateur.

Travaux antérieurs Il a été démontré que I'algorithme SAEM converge théoriquement
vers un maximum de vraisemblance des observations dans des conditions générales [Delyon
et al., 1999a]. Comme déja mentionné, ce résultat a été étendu par Kuhn and Lavielle
[2004], pour inclure une procédure d’échantillonnage MCMC dans la phase de simulation.
Les travaux récents de Allassonniere and Chevallier [2019], présentent une nouvelle classe
d’algorithmes ou I’étape de simulation est effectuée en utilisant une version tempérée de

la distribution postérieure et est motivée par les problémes des points de selle.

2.4 Modeles a Effets Mixtes et Approche de Population

2.4.1 Pourquoi Les Modeles a Effets Mixtes Sont-ils Pertinents?

Les modeéles a effets mixtes (MEM), voir [Lavielle, 2014] et les références qui y figurent, sont
de plus en plus utilisés en raison de leur souplesse a analyser des données longitudinales
multiples selon des profils possiblement non linéaires. Ce sont des méthodes de référence

pour décrire la variabilité inter-individuelle au sein d’une population.

Une formulation générale des MEM pour une observation continue y;; peut s’écrire comme
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suit :
Yij = F(@ij, i) + g(24, 11, &) €15 avee 55 ~ N(0,0%) (2.4.1)

ol la quantité y;; désigne la j-ieme observation pour le i-ieme individu. z;; est un vecteur
de variables explicatives (il peut s’agir du temps ou de certaines variables telles que le
temps ou la dose d’un médicament injecté), f est le modele structurel (éventuellement non
linéaire), v; désigne les parametres individuels. La quantité ;; est une variable aléatoire
supposée étre normalement distribuée et o désigne le parameétre de variance entrant dans
la fonction g, qui exprime 1’écart-type de l'erreur de mesure et est généralement soit

constante (variance homoscédastique) ou une fonction de f.

Nous considérons ici un modele en deux étapes, comme dans [Davidian, 2017], qui fournit
une courbe de population typique, également connue sous le nom de modéle structurel.
(voir la fonction f dans (2.4.1)), et modélise les parametres individuels, dénotés 1; et
considérés comme des variables aléatoires qui fluctuent autour d’un parametre population
Ypop- Ce dernier modele probabiliste des parametres individuels montre la structure de
variabilité inter-individuelle qui régit les phénomeénes statistiques. Formellement, il se lit
comme suit :

¥i = h(Ypop, 7i)

n; ~ N(0,9)

(2.4.2)

Nous notons que les parametres individuels 9; sont liés par une fonction h & 1pp, le
vecteur p-dimensionnel contenant les effets fixes, et 7, le vecteur ¢-dimensionnel contenant
les effets aléatoires. De plus, ¢;; est une variable aléatoire supposée étre normalement
distribuée et ¢ indique la variance entrant dans la fonction g, qui exprime I’écart-type de
Perreur de mesure et est généralement soit constante (variance homoscédastique) ou une
fonction du modele structurel f. Les effets aléatoires 7; et les erreurs résiduelles ¢;; sont
supposés étre indépendants pour différents sujets et indépendants les uns des autres pour

le méme sujet.

L’objectif ici est d’etimer le vecteur de parametres 8 = (Ypop, 2, 02) par maximum de
vraisemblance. Dans les modeles a effets mixtes, la probabilité associée a (2.4.1) et (2.4.2)
est intractable car les probabilités individuelles doivent intégrer les parametres inconnus ;
selon leur distribution. Les parametres individuels estimés, appelés estimations empiriques
de Bayes (EBE), peuvent étre définis comme le mode ou la médiane de la distribution

conditionnelle.

Pour les MEM, ’espérance calculée en (2.3.5) est intractable en raison de la non-linéarité
possible du modele structurel. Nous utilisons donc 'algorithme SAEM présenté ci-
dessus ou les variables latentes, qui sont simulées a chaque itération, correspondent aux

parametres individuels ;.
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2.4.2 Applications en Pharmacocinétique

Dans des domaines tels que 1’économie, la sociologie, la génomique ou la pharmacociné-
tique (PK), on mesure les observations de plusieurs individus d’une méme population.

Considérons les observations Figure 2.3.

patient 1 patient 2 patient 3 patient 4

6 6 6\__// 6

0 200 400 0 200 400 0 200 400 0 200 400
time (days) time (days) time (days) time (days)

Log10-viral load (cp/ml)

Figure 2.3 — Charge virale pour 4 patients atteints d’hepatitis C (tiré de [Lavielle, 2014]).

Ces mesures sont des charges virales pour quatre patients différents atteints d’hépatite C
(VHC) apres un traitement qui a commencé au moment ¢ = 0. Nous notons que dans
de nombreux cas, comme celui exposé ici, les données sont des mesures répétées (pas
nécessairement en fonction du temps) d’une grandeur de sortie, c’est-a-dire qu’elles sont
longitudinales. De plus, chaque patient ne réagit pas de la méme fagon au traitement. Par
exemple, le patient 1 voit sa charge virale diminuer apres le traitement alors que le patient
3 n’a presque aucune réponse. Suite a ces deux remarques, la meilleure facon de faire face
a la modélisation statistique de la dynamique du VHC est de construire un modele qui
décrit comment la charge virale évolue dans le temps et un modele statistique qui explique
la différence entre les patients. La modélisation des effets mixtes est un cadre naturel
pour une telle analyse et a été développée en profondeur dans [Snoeck et al., 2010] pour

la modélisation dynamique du VHC.

L’approche de population devient alors pertinente car elle combine (possiblement) de pau-

vres informations individuelles pour construire un modele de population complet et riche.

Les MEM et l'algorithme SAEM sont largement utilisés pour traiter ce type d’éxample
a travers leur implémentation dans des outils logiciels tels que Monolix, NONMEM, le
package R SAEMIX [Comets et al., 2017] et la fonction Matlab nlmefitsa. Une partie de
notre travail dans cette thése repose sur le package SAEMIX (R [R Development Core
Team, 2008]), voir Chapitre 6-8.
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Chapter 3

Incremental Method for
Non-smooth Non-convex

Optimization

Abstract: Many constrained, non-convex optimization problems can
be tackled using the Majorization-Minimization (MM) method which al-
ternates between constructing a surrogate function which upper bounds
the objective function, and then minimizing this surrogate. For prob-
lems which minimize a finite sum of functions, a stochastic version of
the MM method selects a batch of functions at random at each itera-
tion and optimizes the accumulated surrogate. However, in many cases
of interest such as variational inference for latent variable models, the
surrogate functions are expressed as an expectation. In this contribu-
tion, we propose a doubly stochastic MM method based on Monte Carlo
approximation of these stochastic surrogates. We establish asymptotic
and non-asymptotic convergence of our scheme in a constrained, non-
convex, non-smooth optimization setting. We apply our new framework
for inference of logistic regression model with missing covariates and for
variational inference of autoencoder on the MNIST dataset. This chap-

ter corresponds to the article [Karimi et al., 2019b].
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3.1 Introduction

We consider the constrained minimization problem of a finite sum of functions:
n
> Li(0), (3.1.1)

where O is a convex, compact, and closed subset of R?, and for any ¢ € [1,n], the function

L; : RP — R is bounded from below and is (possibly) non-convex and non-smooth.

To tackle the optimization problem (3.1.1), a popular approach is to apply the
majorization-minimization (MM) method which iteratively minimizes a majorizing sur-
rogate function. A large number of existing procedures fall into this general framework,
for instance gradient-based or proximal methods or the Expectation-Maximization (EM)
algorithm [McLachlan and Krishnan, 2008] and some variational Bayes inference tech-
niques [Jordan et al., 1999]; see for example [Razaviyayn et al., 2013] and [Lange, 2016]
and the references therein. When the number of terms n in (3.1.1) is large, the vanilla
MM method may be intractable because it requires to construct a surrogate function for
all the n terms L£; at each iteration. Here, a remedy is to apply the Minimization by
Incremental Surrogate Optimization (MISO) method proposed by Mairal [2015b], where
the surrogate functions are updated incrementally. The MISO method can be interpreted
as a combination of MM and ideas which have emerged for variance reduction in stochastic
gradient methods [Schmidt et al., 2017].

The success of the MISO method rests upon the efficient minimization of surrogates such
as convex functions, see [Mairal, 2015b, Section 2.3]. In many applications of interest,
the natural surrogate functions are intractable, yet they are defined as expectation of
tractable functions. This for example the case for inference in latent variable models.
Another application is variational inference, [Ghahramani, 2015], in which the goal is
to approximate the posterior distribution of parameters given the observations; see for
example [Blundell et al., 2015, Li and Gal, 2017, Neal, 2012, Polson et al., 2017, Rezende
et al., 2014].

This paper fills the gap in the literature by proposing a new method called Minimization by
Incremental Stochastic Surrogate Optimization (MISSO) which is designed for the finite
sum optimization with a finite-time convergence guarantee. Our contributions can be

summarized as follows.
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e We propose a unifying framework of analysis for incremental stochastic surrogate
optimization when the surrogates are defined by expectations of tractable functions.
The proposed MISSO method is built on the Monte Carlo integration of the in-
tractable surrogate function, i.e., a doubly stochastic surrogate optimization scheme.
In addition, we present an incremental variational inference and Monte-Carlo EM

methods as two special cases of this framework.

e« We establish both asymptotic and non-asymptotic convergence for the MISSO
method. In particular, the MISSO method converges almost surely to a station-

ary point and in O(n/e) iterations to an e-stationary point.

In Section 3.2, we review the techniques for incremental minimization of finite sum func-
tions based on the MM principle; specifically, we review the MISO method as introduced
in [Mairal, 2015b], and present a class of surrogate functions expressed as an expectation
over a latent space. The MISSO method is then introduced for the latter class of surrogate
functions. In Section 4.2.1, we provide the asymptotic and non-asymptotic convergence
analysis for the MISSO method. Finally, Section 3.4 presents numerical applications to
illustrate our findings including parameter inference for logistic regression with missing

covariates and variational inference for Bayesian neural network.

Notations We denote [1,n] = {1,...,n}. Unless otherwise specified, || - | denotes the
standard Euclidean norm and (-|-) is the inner product in Euclidean space. For any
function f: © — R, f(0,d) is the directional derivative of f at 8 along the direction d,

i.e.,

0+td)— f(0
£(0.d) = 1im 10+ = /6) (3.1.2)
t—0+ t
The directional derivative is assumed to exist for the functions introduced throughout this

paper.

3.2 Incremental Minimization of Finite Sum Non-convex

Functions

The objective function in (3.1.1) is composed of a finite sum of possibly non-smooth
and non-convex functions. A popular approach here is to apply the MM method. The
MM method tackles (3.1.1) through alternating between two steps — (i) minimizing a
surrogate function which upper bounds the original objective function; and (ii) updating

the surrogate function to tighten the upper bound.

As mentioned in the Introduction, the MISO method proposed by Mairal [2015b] is de-

veloped as an iterative scheme that only updates the surrogate functions partially at each
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iteration. Formally, for any i € [1,n], we consider a surrogate function £;(6;8) which

satisfies

S3.1 For alli € [1,n] and 6 € ©, the function Zi(a;é) s convex w.r.t. 8, and it holds
L£i(6:0) > Li(0), VOO, (3.2.1)

where the equality holds when 6 = 0.

S3.2 For any 0; € ©, i € [1,n] and some € > 0, the difference function €(6;{6;}1 ;) =
% o L:(0;0;) — L£(0) is defined for all 0 € O, and differentiable for all @ € O, where
O, = {0 € R infgice ||0 — 0'|| < €} is an e-neighborhood set of ©. Moreover, for some

constant L, the gradient satisfies

|Ve(6: 8.} )| < 2L E(0:{8,}1,), V6 € ©. (3.2.2)

S3.1 is a common condition used for surrogate optimization, see [Mairal, 2015b, Section
2.3]. Meanwhile, S3.2 can be satisfied when the difference function €(6;{6;}" ) is L-
smooth for all @ € R?, where the condition can be implied through applying [Razaviyayn
et al., 2013, Proposition 1].

Algorithm 3.1 MISO method [Mairal, 2015b)]

1: Input: initialization 6. R
2: Initialize the surrogate function as A%(8) := £;(8;0), i € [1,n].
3: for k=0,1,... do
4: Pick ig uniformly from [1,n].
5: Update A¥1(0) as:

A4 (9) = L:(8;00), if i =1,

! Ak (0), otherwise.

6: Set 0°+D € argmingeg L 37, AFT(0).
7: end for

The inequality (4.2.11) implies £;(8;8) > L£;(0) > —oc for any 6 € ©. The MISO method
is an incremental version of the MM method, as summarized by 3.1. As seen in the
pseudo code, the MISO method maintains an iteratively updated set of surrogate upper-
bound functions {.A¥(6)}"_; and updates the iterate through minimizing the average of

the surrogate functions.

Particularly, only one out of the n surrogate functions is updated at each iteration
[cf. Line 5] and the sum function 1 7, AF1(8) is designed to be ‘easy to optimize’,
for example, it can be a sum of quadratic functions. As such, the MISO method is suit-

able for large-scale optimization as the computation cost per iteration is independent of n.
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Moreover, under S3.1, S3.2, it was shown that the MISO method converges almost surely

to a stationary point of (3.1.1) [Mairal, 2015b, Proposition 3.1].

We now consider the case when the surrogate functions LAZ-(O;?) are intractable. Let Z be
a measurable set, p; : Zx © — Ry be a pdf, 7, : © x © x Z — R be a measurable function
and p; be a o-finite measure, we consider surrogate functions which satisfy S3.1, S3.2 that

can be expressed as an expectation:

~

£:(0:6) = /Z ri(6:8, 2)pi(zi: O)i(dz) ¥V (0,8) €O x O (3.2.3)

Plugging (3.2.3) into the MISO method is not feasible since the update step in Step 6
involves a minimization of an expectation. Several motivating examples of (3.1.1) are

given in Section 3.2.

We propose the Minimization by Incremental Stochastic Surrogate Optimization (MISSO)
method which replaces the expectation in (3.2.3) by Monte Carlo integration and then
optimizes (3.1.1) incrementally. Denote by M € N the Monte Carlo batch size and let
Zim € Z, m =1,..., M be a set of samples for all ¢ € [1,n]. These samples can be drawn
(Case 1) i.i.d. from the distribution p;(-;0) or (Case 2) from a Markov chain with the

stationary distribution p;(-; 0); see Section 4.2.1 for illustrations. To this end, we define

1 M _
i Z 7:(0;0, 2 1) (3.2.4)

m=1

Li(6;0, {zim}M_)) =

and we summarize the proposed MISSO method in 3.2. As seen, the procedure is similar
to the MISO method but it involves two types of randomness. The first randomness comes
from the selection of i; in Line 5. The second randomness is that a set of Monte-Carlo
approximated functions A¥(0) is used in lieu of A¥ (@) when optimizing for the next iterate
0%). We now discuss two applications of the MISSO method.

Example 1: Maximum Likelihood Estimation for Latent Variable Model La-
tent variable models [Bishop, 2006] are constructed by introducing unobserved (latent)
variables which help explain the observed data. We consider n independent observations
((yi, 2i),7 € [n]), that can be non identically distributed, where y; is observed and z; is
latent. In this incomplete data framework, define {f;(z,yi,0),0 € O} to be the complete

data likelihood models, i.e., joint likelihood of the observations and latent variables. Let

9i(yi, 0) == /Zfi(zivyi79)ﬂi(dzi)7 i€ [1,n] (3.2.7)

denote the incomplete data likelihood, i.e., the marginal likelihood of the observations. For
ease of notations, the dependence on the observations is made implicit. The maximum
likelihood (ML) estimation problem takes £;(6) to be the ith negated incomplete data
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Algorithm 3.2 MISSO method

1: Input: initialization 8(°); a sequence of non-negative numbers {M ) o

2: For all i € [1,n], draw M) Monte-Carlo samples with the stationary distribution
pi(;;0©).

3: Initialize the surrogate function as

A0(0) = £:(6;0), {20170 i e [1,n] . (3.2.5)
4: for k=0,1,... do
5. Pick a function index i uniformly on [1,n].
6:  Draw M) Monte-Carlo samples with the stationary distribution p;(; 0k)).
7 Update the individual surrogate functions recursively as:
B 7o ok) 1.k M) PN
Aif-l—l(g) _ [;2(070 ’{Zz,m}mzl)v if @ =iy, (3.2.6)
Ak(0), otherwise.

8 Set 8+ ¢ argming g LFD(0) := s, A1),
9: end for

log-likelihood £;(8) := —log g;(y:, 0).

Assume without loss of generality that g¢;(y;,0) # 0 for all 8 € O, we define by
pi(zilyi, @) = fi(zi,9i,0)/9i(yi, 0) the conditional distribution of the latent variable z;

given the observation y;. A surrogate function EAZ-(O;E) satisfying S3.1 can be obtained

through writing f;(zi,y;, 0) = %pi(myi,m and applying the Jensen inequality:
L£:(6;0) = /2108; (pi(zhg)/fi(ziayiae)) pi(zilyi, @) pi(dz) (3.2.8)
=r;(6;0,2;)

We note that S3.2 can also be verified for common distribution models. We can apply the
MISSO method following the above specification of r;(0; 0, z;), pi(zi|y:, ).

Example 2: Variational Inference Let ((z;,v;),7 € [1,n]) be i.i.d. input-output pairs
and w € W C R? be a latent variable. When conditioned on the input x = (z;,4 € [1,n]),
the joint distribution of y = (y;,4 € [1,n]) and w is given by:

p(y, wlz) = m(w) [Tz pyilzi, w) - (3.2.9)

Our goal is to compute the posterior distribution p(w|y,z). In most cases, the posterior
distribution p(wly,x) is intractable and is approximated using a family of parametric
distributions, {¢(w, 8),0 € ©}. The variational inference (VI) problem [Blei et al., 2017a]

boils down to minimizing the KL divergence between g(w, @) and the posterior distribution



3.2. INCREMENTAL MINIMIZATION OF FINITE SUM NON-CONVEX
FUNCTIONS 63

p(wly, x), as follows:

min £(6) := KL (¢(w; 0) [|p(wly, 2)) = Eq(usp) [1og (a(w; 8) /p(wly,z))] . (3.2.10)

Using (3.2.9), we decompose £(0) =n~1 3" | £;(0) + const. where:

Li(0) = —Equ.0)[ log p(yi|zi, w)] + %Eq(wﬁ) [log q(w; 0)/m(w)] = r;(0) +d(0) . (3.2.11)

Directly optimizing the finite sum objective function in (3.2.10) can be difficult. First,
with n > 1, evaluating the objective function £(0) requires a full pass over the entire
dataset. Second, for some complex models, the expectations in (3.2.11) can be intractable
even if we assume a simple parametric model for g(w;@). Assume that £; is L-smooth,
i.e., L; is differentiable on © and its gradient V.£; is L-Lipschitz. We apply the MISSO

method with a quadratic surrogate function defined as:

~ —

£i(8;8) = £:(8) + (VoL:i(0)|6 - 8) + %n@ —0|2. (3.2.12)

It is easily checked that £;(0;0) satisfies $3.1, $3.2. To compute the gradient VL£;(6), we
apply the re-parametrization technique suggested in [Blundell et al., 2015, Kingma and
Welling, 2014, Paisley et al., 2012]. Let ¢t : R? x © — R? be a differentiable function
w.r.t. @ € O which is designed such that the law of w = t(z,0), where z ~ Ny(0,1), is

q(+,0). By [Blundell et al., 2015, Proposition 1], the gradient of —r;(-) in (3.2.11) is:

VoEq(w;g)[logP(yim,w)] =E. ., 010[36(2,0) Ve Ing(yi’xiuw)’w:t(zﬁ)] ;o (3.2.13)

where for each z € R?, J}(z,0) is the Jacobian of the function ¢(z,-) with respect to 8
evaluated at 6. In addition, for most cases, the term Vd(6) can be evaluated in closed

form.

_ _ _ v L _
11(6:9, 2) = (Vod(8) — T5(2,0) Yy log p(yili, w516~ 0) + 5116 B

(3.2.14)

Finally, using (3.2.12) and (3.2.14), the surrogate function (3.2.4) is given by
L£i(0;0,{z}M_) == MM (0,0, 2,) where {z,}M_| is an ii.d sample from

N(0,1).
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3.3 Convergence Analysis

We provide non-asymptotic convergence bound for the MISSO method and show that it

converges asymptotically to a stationary point. Consider the following assumptions.

H3.1 For alli € [1,n], @ € ©, z; € Z, the measurable function r;(0;0, z;) is convex in 0

and is lower bounded.

H3.2 For the samples {z;;m}M_,, there exists finite constants C, and Cg, such that

C, := sup sup sup

E,
66@ M>0 \/ 0cO

M
Z{maaqw—@wmﬁﬂ (3.3.1)
=1

£(0,0—0;0)—1r/(0,0 —0:0,z,,)
16— 0

6co M>0 © m=1

2
1
I MEg 3.2
Cyg sup sup VvV [sup i Z ] (3.3.2)
foralli € [1,n], and we denoted by Eg[-] the expectation w.r.t. a Markov chain {z;;,}M_,

with initial distribution &;(-;0), transition kernel P, L and stationary distribution p;(+;0).

H3.2 essentially requires to control the expectation of the supremum of an empirical process
[Boucheron et al., 2013, Shapiro et al., 2009]. In particular, if M — oo, the surrogate
function’s value and its directional derivative approximate that of Zi(G;g) uniformly for

all @ € ©. As discussed before, there are two relevant cases here:

Case 1: When the samples {z,}M_, used to construct the approximation L;(-;-,) are
drawn i.i.d. directly from p;(-;0) and © is bounded, then H3.2 can be implied by the

concentration of measure under certain additional regularity conditions.

Case 2: When the samples are generated by an MCMC procedure, H3.2 can be achieved
through an maximal inequality for beta-mixing sequences obtained in [Doukhan et al.,
1995]. The condition may also be implied by a number of drift and minorization conditions
[Meyn and Tweedie, 2012].

Stationarity measure As problem (3.1.1) is a constrained optimization, we consider

the following stationarity measure:

—= £'(6,0—0) — — _

0 _— d 0)=9.(0)—9g-(0), 3.3.3

oO):= ot SO0E and 0) = 0.(0) - 0@ (3.33)
where ¢, (0) := max{0,g(0)}, g_(0) := —min{0, g(6)} denote the positive and negative

part of g(0), respectively. Note that @ is a stationary point if and only if g_(8) = 0
[Conn et al., 1993]. Furthermore, suppose that the sequence {H(k)}kzo has a limit point @

that is a stationary point, then one has limg_ .o g_(O(k)) = 0. In this sense, the sequence
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{0(’“)}@0 is said to satisfy an asymptotic stationary point condition. This is equivalent to
[Mairal, 2015b, Definition 2.4].

To explain the condition (3.3.3), observe that if 8 € int(©), the directional derivative can
be replaced by the inner product between the gradient VL(0) and 8—8, i.e., L'(6,0—0) =
<V£(§) |0 —§>. Therefore, from the definition we have g(0) = —||VL(0)| = —g_(8).
If in addition ¢g_ (@) = 0, then 6 is a stationary point to (3.1.1) in the same sense as in

unconstrained optimization.

To facilitate our analysis, we define 7/ as the iteration index where the ith function is last
accessed in the MISSO method prior to iteration k. For example, we have T{ZH =k. We
define:

L®(6) := Ly £,0;00)), &¥)(6) := LM (6) — £(6). (3.3.4)

We first establish a non-asymptotic convergence rate for the MISSO method:
Theorem 1 Under S3.1, §3.2, H3.1, H3.2. For any Kmax € N, let K be an inde-

pendent discrete r.v. drawn uniformly from {0, ..., Kmax — 1} and define the following

quantity:
= 5 Keal g
A(I(max) = 2”LE[£(O) (9(0)) - L(KmQX) (O(KmaX))] + Z ‘ 9 (3.3.5)
k=0 /M)
Then we have following non-asymptotic bounds:
A(K) (K) 2 A( max) (K) A(I(max) Cgr St 71/2
E[|[ve™ (6*))]1] < m7 E[g-(6*"))] < Koo + Ko Z M(k) .

Proof The proof is postponed to Appendix 3.6

Next, we show that under an additional assumption on the sequence of batch size My,
the MISSO method converges almost surely to a stationary point:
Theorem 2 Under $3.1, §3.2, H3.1, H3.2. In addition, assume that { M }x>0 is a
non-decreasing sequence of integers which satisfies Y p— M(;)l/z < o00. Then:
1. the negative part of the stationarity measure converges almost surely to zero,
ie., limg_, oo g_(B(k')) =0 a.s..
2. the objective wvalue E(O(k)) converges almost surely to a finite number L,
ie., limy_o £(8%) = L a.s..
Proof The proof is postponed to Appendix 3.7

In particular, the first result above shows that the sequence {O(k)}kzo produced by the
MISSO method satisfies an asymptotic stationary point condition. Note that A, ) is
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finite for any Kmax € N. As expected, the MISSO method converges to a stationary point
of (3.1.1) asymptotically and at a sublinear rate E[g(_K)] < —O(y/1/Kmax). Furthermore,
we remark that the MISO method can be analyzed in 1 as a special case of the MISSO
method satisfying C, = Cg = 0. In this case, while the asymptotic convergence is well
known from [Mairal, 2015b] [cf. H3.2], Eq. (3.3.6) gives a non-asymptotic rate ofIE[g(,K)] <
—O(y/nL/Kmax) which is new to our best knowledge.

3.4 Application to Logistic Regression and Bayesian Deep

Learning

3.4.1 Binary logistic regression with missing values

This application follows Example 1 described in Section 3.2. We consider a binary
regression setup, ((yi,2i),% € [n]) where y; € {0,1} is a binary response and z; = (%,; €
R,j € [p]) is a covariate vector. The vector of covariates z; = [2imis, Zi,obs] is Dot fully
observed where we denote by z; mis the missing values and z; o,s the observed covariate.
It is assumed that (z;,7 € [n]) are i.i.d. and marginally distributed according to N (3, €2)

where 8 € R? and () is a positive definite p x p matrix.
We define the conditional distribution of the observations y; given z; = (2; mis, Zi,obs) as:

pilyilzi) = S8 )" (1 - S(«STEZ-))H” (3.4.1)

where for v € R, S(u) = 1/(1 +e™"), d = (do,--- ,0p) are the logistic parameters and
Zi = (1,%). We are interested in estimating 6 and finding the latent structure of the
covariates z;. Here, 8 = (8,3, ) is the parameter to estimate. For i € [n], the complete

data log-likelihood is expressed as:

log fi(%imis, @) y;0' Z; —log (1 —i—exp((STz_i)) — % log(|Q2|) + %Tr (Qfl(zi —08)(z — B)T) )

Choice of surrogate function for MISO: We recall the MISO deterministic surrogate
defined in (3.2.8):

L;(6;0) = /zlog (pi(zi,mis,a)/fi(zi,mis,9)) Pi(2i mis, ) i (dz;) (3.4.2)
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where 8 = (6, 3,9) and 8 = (4, 3,Q). We adapt it to our missing covariates problem and

decompose the term depending on 6, while 6 is fixed, in two following parts:

Ez(eaa) ~ - /Z IOg fi(zi,m157 Zi,0bs 0) pi(zi,mi&a)ﬂi(dzi,mis)

= —/2108; [Di (Yi] Zi,mis» Zi,obs» 0)Pi (Zimiss B, )] pi(2i, 0) pi (A2 mis)

= —/Z10gpi(yi!2i,mis,2i,ob575)P¢(Zi,9)/ti(d2i,mis)—/Z1ngi(2’i,mis,ﬁ7Q)pi(ziae)uz‘(dzi,mis)

=£1(5,0) =£%(8,0,8)
(3.4.3)

The mean § and the covariance 2 of the latent structure can be estimated minimizing
the sum of MISSO surrogates 552)(5,9,5, {zm}M_), defined as MC approximation of
ﬁgz) (8,9,0), for all i € [n], in closed-form expression.

We thus keep the surrogate ﬁl@)(ﬁ ,€,0) and consider the following quadratic approxima-

tion of ﬁﬁ”(&, 0) to estimate the vector of logistic parameters J:

ﬁ§”(5, 0) — /ZVIngi(yi|Zi,m157 Ziobs» 0)| 5_5 i (Zi,mis> @) 14 (A2 mis ) (6 — 5)

—(6-146)/2 /z V2 1og pi (i) i mis» Zi.obss 0) Di(Zi mis, 0) Di(Zimis, 0) 11 (Azi mis) (6 — ) T
(3.4.4)

Recall that:

V 1og pi(yi|2imis, Zi,obs, 0) = Zi (yz — S(5T2i)>

2 T T (3.4.5)
\Y logpi(yi‘zi,misa Zi,0bss 5) = —Zi%; S((S Zz)

where S(u) is the derivative of S(u). Note that S(u) < 1/4 and since, for all i € [n], the

P X p matrix zzzZT is semi-definite positive we can assume:

L1 For all i € [n] and € > 0, there exist, for all z; € Z, a positive definite matrix
H;(2) := $(22, + €ly) such that for all § € RP, —22) S(67 ) < Hy(z).

We thus use, for all ¢ € [n], the following surrogate function to estimate d:

Wisa) — 2DG8) - DTS5 o L(5_5 5T
L;7(6,0)=L;"(6,0)—D,; (6—0)+ 5(5 —0)H;(6 —9) (3.4.6)
where:

D; :/Vlogpi(yi‘zi,mi&zi,obsa5)’(gzgpi(zi,misyg)ﬂi(dzi,mis)
z B (3.4.7)
H; :/ZHi(zi,mis)pi(zi,misve)ﬂi(dzi,mis)
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Finally, at iteration k, the total surrogate is:

i Lgn 5 0 ek et
LW(0) =~ 3 Li(0,07), {zim}y i)
i=1
1 n - Tk ]- -
:*ZE (ﬁaQ 6 Z {sz} ( ) 72 )) (348)
N tist
1o Lk - (rk Lk
+%2(5_5(i)){HZ(’)}(5—5(i))T
i=1
where for all i € [n]:
~ Tk i Tk T
B = 1 Sl (1 () nte)
w1y o
i T AM (ky z:1 i i :

Minimizing the total surrogate (3.4.8) boils down to performing a quasi-Newton step. It
is perhaps sensible to apply some diagonal loading which is perfectly compatible with the

surrogate interpretation we just gave.

MISSO update: At the k-th iteration, and after the initialization, for all i € [n], of
the latent variables (z (0)) the MISSO algorithm consists in picking an index i; uniformly
on [n], completing the observations by sampling a Monte Carlo batch {zl mlsm}Mfi
of missing values from the conditional distribution p(zi, mis|Zi.,y1.n» Yixs ok~ 1)) using an

MCMC sampler and computing the estimated parameters as follows:

M, i
(%)
1 <. 5 k Mk 1 & 1 X
(k) — in=S" 2@ 5.k ¢ 1, Py _ L (k)
Jé; argmin - Z:Z1 (8, Q% Azimtm=1) - Z:Z1 Mo mZ:1 %
Mok
1 & 5 k 12
k) _ : (2) (k Tk <T> (k) (R)NT k) q(k)\T
Q%) _argglelgﬁgﬁi ( ) €2, o) s Zim b me E; - % m(zi,m) _/3( )(/3( ))
(3.4.10)
where zl(l:))l = (zi(ﬁisvm,zi’yl: ~) is composed of a simulated and an observed part. The
logistic parameters are estimated as follows:
(k) _ 1 (7’“)
0 argmm Zﬁ {zlm} ) (3.4.11)

e N«
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~ Mk
where EEI)((S, o), {sz}m(:i)) is the MC approximation of the MISO surrogate defined
in (3.4.6)and which leads to the following quasi-Newton step:

n

5 — Zg(rf) — (A*)=1p®) (3.4.12)

~ ~ ‘r.’C ~ r T-k
with D® — %Z?:l Dl( 1) and R — % ;Llei( i)

Fitting a logistic regression model on the TraumaBase dataset We apply
the MISSO method to fit a logistic regression model on the TraumaBase (http://
traumabase.eu) dataset, which consists of data collected from 15 trauma centers in

France, covering measurements on patients from the initial to last stage of trauma.

Similar to [Jiang et al., 2018], we select p = 16 influential quantitative measurements,
described in Appendix 3.9.1, on n = 6384 patients, and we adopt the logistic regression
model with missing covariates in (3.4.1) to predict the risk of a severe hemorrhage which
is one of the main cause of death after a major trauma. Note as the dataset considered is
heterogeneous — coming from multiple sources with frequently missed entries — we apply
the latent data model described in the above. For the Monte-Carlo sampling of 2; s, we
run a Metropolis Hastings algorithm with the target distribution p(-|2; ops, yi; %)) whose
procedure is detailed in Appendix 3.9.1.

0.005
100
0.000
90
—0.005
lOH ET_ 80
-0.010 20
—0.015 —«— SAEM —— MISS0 +— MISS050 60 —&—SAEM —— MISSO +— MISS0O50
—0.020 ) MCEM —— MISSO10 50 / MCEM —i— MISSO10
2 4 6 8 10 2 4 6 8 10
Epochs Epochs

Figure 3.1 — Convergence of first component of the vector of parameters d and 8 for the
SAEM, the MCEM and the MISSO methods. The convergence is plotted against the
number of passes over the data.

We compare in Figure 3.1 the convergence behavior of the estimated parameters 3 using
SAEM [Delyon et al., 1999a] (with stepsize v = 1/k), MCEM [Wei and Tanner, 1990a]
and the proposed MISSO method. For the MISSO method, we set the batch size to
Mgy = 10 + k% and we examine with selecting different number of functions in Line 5
in the method — the default settings with 1 function (MISSO), 10% (MISSO10) and 50%
(MISSO50) of the functions per iteration. From Figure 3.1, the MISSO method converges
to a static value with less number of epochs than the MCEM, SAEM methods. It is
worth noting that the difference among the MISSO runs for different number of selected

functions demonstrates a variance-cost tradeoff.


http://traumabase.eu
http://traumabase.eu
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3.4.2 Fitting Bayesian LeNet-5 on MINIST

This application follows Example 2 described in Section 3.2. We apply the MISSO
method to fit a Bayesian variant of LeNet-5 [LeCun et al., 1998] (see Appendix 3.9.2). We
train this network on the MNIST dataset [LeCun, 1998]. The training set is composed of
N = 55000 handwritten digits, 28 x 28 images. Each image is labelled with its correspond-
ing number (from zero to nine). Under the prior distribution 7, see (3.2.9), the weights are
assumed independent and identically distributed according to N (0,1). We also assume
that ¢(-;0) = N(u,0I). The variational posterior parameters are thus @ = (i, o) where
p = (pe, £ € [d]) where d is the number of weights in the neural network. We use the

re-parametrization as w = (0, z) = pu + oz with z ~ N(0,I).

At iteration k, minimizing the sum of stochastic surrogates defined as in (3.2.4) and
(3.2.14) yields the following MISSO update — step (i) pick a function index i uniformly
on [n]; step (ii) sample a Monte Carlo batch {z,(,]f)}i\:fi from N(0,1); and step (iii) update

the parameters as

RGN RN (" 1 PN
= 2o =3 0ah and oM =370 - SRTER L (3413)
=1 =1 i=1 i=1
where (5( ) 5;(u ; Y and 5( ) = 3((713-_1) for i # iy and:
(k) W
011 = (k=1)
6W’ik N M(k Z Vo logp(yzkmlk’ )‘ :t(e(k71)7zgr’f)) + v#éd(e ) )
(*) W
5 — (k) (k—1)
oo M, rnz Vulog plyic i, w )‘ w=t(@%k—1) () +Vod(67)

with d(6) =n~' T, (~log(0) + (0 + 7)/2 — 1/2).

We compare the convergence of the Monte Carlo variants of the following state of the art
optimization algorithms — the ADAM [Kingma and Ba, 2015], the Momentum [Sutskever
et al., 2013] and the SAG [Schmidt et al., 2017] methods versus the Bayes by Backprop
(BBB) [Blundell et al., 2015] and our proposed MISSO method. For all these methods,
the loss function (3.2.11) and its gradients were computed by Monte Carlo integration
using Tensorflow Probability library [Dillon et al., 2017], based on the re-parametrization
described above. Update rules for each algorithm are performed using their vanilla im-
plementations on TensorFlow [Abadi et al., 2015] as detailed in Appendix 3.9.2. We use
the following hyperparameters for all runs — the learning rate is 1073, we run 100 epochs
with a mini-batch size of 128 and use the batchsize of M, = k.
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Figure 3.2 — (Incremental Variational Inference) Negated ELBO versus epochs elapsed
for fitting the Bayesian LeNet-5 on MNIST using different algorithms. The solid curve
is obtained from averaging over 5 independent runs of the methods, and the shaded area
represents the standard deviation.

Figure 3.2 shows the convergence of the negated evidence lower bound against the number
of passes over data (one pass represents an epoch). As observed, the proposed MISSO
method outperforms Bayes by Backprop and Momentum, while similar convergence rates
are observed with the MISSO, ADAM and SAG methods.

3.5 Conclusions

We presented a unifying framework for minimizing a non-convex finite-sum objective func-
tion using incremental surrogates when the latter functions are expressed as an expectation
and are intractable. Our approach covers a large class of non-convex applications in ma-
chine learning such as logistic regression with missing values and variational inference. We
provide both finite-time and asymptotic guarantees of our incremental stochastic surro-
gate optimization technique and illustrate our findings training a binary logistic regression
with missing covariates to predict hemorrhagic shock and a Bayesian variant of LeNet-5
on MNIST.
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3.6 Proof of Theorem 1

Theorem Under S3.1, 53.2, H3.1, H3.2. For any Kmax € N, let K be an independent
discrete r.v. drawn uniformly from {0, ..., Kmax — 1} and define the following quantity:

A(ttnny = 2nLE[LO (0)) — LK) (gUmar))] 43

Then we have following non-asymptotic bounds:

B0 (g 12 <A< w) w9 < | Dne) | Car "R 1o
[[Ive™ ()] < Koo [9-(6"7))] < Ko TR k;] ®
Proof We begin by recalling the definition
1 & %
== ZAi (0). (3.6.1)
"=

Notice that

1 & ) Aoty Mkt
L) = > Li0:6° O A W
= (3.6.2)
~ 1 M, () Mk
= £0(0) + — (£, (0:0%), {={0), 1,1 — £, (0:07%) {741, 7).

Furthermore, we recall that

LK) =Ly £,6;0D),  &®)(9):= LW (6) — £(6). (3.6.3)
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Due to S3.2, we have
Ve (0")|? < 20e®) (o). (3.6.4)

To prove the first bound in (3.3.6), using the optimality of 0+ one has

E(k+1)(0(k+l)) < E(k+1)(0(k))
ey M, (365)

= 2000 + L(Z; (8000, () 1My _ 7, (g9 7]y Ty

(k—1)
Uk—1,M

Let Fj, be the filtration of random variables {ix_1, {z; }M('c Y 0"} up to iteration k.

We observe that the conditional expectation evaluates to

Ei, [E[2:,(00;00), {1 1)) Fr. ia] | 7]

zk m}m
My

1 k > :

= £(0") +E,, [E[% > i (0000 2y £y (0000 Fy i) | Fi (3.6.6)
m=1

C,

<LOW)+ ——,
v M)

where the last inequality is due to H3.2. Moreover,

_ & (k) 1 k), Mk
BIZ, (6% 070, (58}, A = 13 £0W;000, (1)), = 20960,

T ,m i,m
i=1
(3.6.7)
Taking the conditional expectations on both sides of (3.6.5) and re-arranging terms give:

Cy
My

(k) (O(k)) _ E(G(k)) < nE[Z(k)(g(k)) _ E(k‘f‘l)(g(k'i'l))‘]—"k] + (3.6.8)

Proceeding from (3.6.8), we observe the following lower bound for the left hand side

LW g0y — £(g®)y L £k 9k _ £) 9y 1 gk (g(k))

D EW k) — £ gy 4 %Hve*’”(t‘)"‘“)ll2

(3.6.9)
ri(8%) 00 70y 7,90, 61 +%Hv§(k)(g(k))“2

Mk

=500 (9(R))

where (a) is due to é*)(@%)) = 0 [cf. $3.1], (b) is due to (3.6.4) and we have defined the
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summation in the last equality as —6*)(@(¥)). Substituting the above into (3.6.8) yields

C,
Mg

Ive® ™)

A < wg[209(0®) - 2640 (940 7]

+ 6 @R (3.6.10)

Observe the following upper bound on the total expectations:

Zn: C ] (3.6.11)

E[(g(k) (g(k))] < IE[

which is due to H3.2. It yields

E[| Ve @W)|P] < 2nLE[LW (W) — LI+ (@] +

Finally, for any Kmax € N, we let K be a discrete r.v. that is uniformly drawn from

{0,1,..., Kmax — 1}. Using H3.2 and taking total expectations lead to

1 Kmax—1
E[|Ve™ (0 )] = =— > E[[ve™ (@)
max k=0

INLE[L)(90)) — £(Kma) (@(Kmax) 2LC, Kmat 1 13, 1
< n [ ( )I( ( )] + e E[ 4+ — Z }
max max k=0 M(k:) n i=1 A /M(le)

(3.6.12)

For all i € [1,n], the index 7 is selected with a probability equal to % when conditioned

independently on the past. We observe:

~1/2 i 1\’ ! ~-1/2
J:
Taking the sum yields:
Kmax—1 Kmax—1 k —1 Kmax—1k—1 k—(l—‘rl)
_ 1 1\/ —1/2 1 1 ~1/2
S OEM = Y Z(1-> M2 = (1-) M,
k=0 i) k=0 j=1" n (=3) k=0 1=0 " n ®
Kmaxfl Kmaxfl k_ l 1 Kmax 1
1=0 ki1 " n 1=0

(3.6.14)

where the last inequality is due to upper bounding the geometric series. Plugging this
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76
back into (3.6.12) yields

Kmax 1

E[||ve) (95 Z

max _

E[|Ve™ (6™)] 1]
(3.6.15)

L<Kmax>(0<f<max>)] 1 MRl ALC Ak

_ 2nLE[LO) () — N
- Kmax Kmax =0 /M(k) Kmax

This concludes our proof for the first inequality in (3.3.6). To prove the second inequality
of (3.3.6), we define the shorthand notations (%) := g(8()), M= min{0, g®}, gf) =

max{0, g*)}. We observe that

£'0% 6 —o®)

(k) _
97 =k ew — g
_ f{ Ly E(6M,0 - o0t (Ve (01) |0 — 6! )>} (3.6.16)
= of6 6% 9| 6% _ g
Ly 2ok g—o®),;000)
> _[ve® (W) 4 inf ni=1 Ll ’
> —|[vel™ (6 )H"‘élel(fa 6% — @

where the last inequality is due to the Cauchy-Schwarz inequality and we have defined
£/(8,d; 67 )) as the directional derivative of £;(; (7 )) at @ along the direction d. More-

over, for any 6 € O,

LS~ Z(6%, 0 — g, b))
mn -
=1
o, i 1 & k
= LB 9% g —g*))y_LF) (9% g oF)) 4 = )0 — ") 9()
(61,6~ 6%) L (6%, 6 6") + Y £i(6" ) e
=1
>0
Mk
Ly ). grtyy L 2 o) g g, girh) L)
> = 9"
R iaeto-e " = ’ )

where the inequality is due to the optimality of 8¥) and the convexity of L*) () [cf. H3.1]

Denoting a scaled version of the above term as:

1\ {Ml $ M ) /(0( ) O — e(k) o7} ) (’:L))_E;(a(k)’e_e(k:)’e(rz’“))}

=1 ("’f) m:l

*)(g) :=
<6 160~ 9]

We have

#(9)) > —[[ve®(@D)] — sup |P(@)].  (3.6.18)

g™ > ~[[ve® (W) + inf (e
€ 6co
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Since g(k) = gf) (,)

g < |V (0)] + sup € 6) (3619
€

Consider the above inequality when & = K, i.e., the random index, and taking total

expectations on both sides gives

E[¢"] < E[|ve®) (01| + E[zgg «5)(9)] (3.6.20)

We note that

A(Kmax)

(EOIVE®) (00N < B|vet(8U))?) < Zhemd,

(3.6.21)

where the first inequality is due to the convexity of (-)2 and the Jensen’s inequality, and

( ) 1 Kmax (k) (a) Cgr Kmax_l n _1/2
E[sup e\*/(0)] = Z E[sup e"(0)] < Z IE[ ZM 5 }
<0 Koax = bco Kmax SO e
(i) Cor szax: 1M—1/2 -
— k
Kmax k=0 ( )
where (a) is due to H3.2 and (b) is due to (3.6.14). This implies
A C Kmax—1
(K) < (Kmax) gr 1/2
E[g\"] < Ko TR Z Myy'", (3.6.23)
and concludes the proof of the theorem. |

3.7 Proof of Theorem 2

Theorem Under $3.1, $3.2, H3.1, H3.2. In addition, assume that { M }k>0 s a non-

decreasing sequence of integers which satisfies > - M(k)/ < o0. Then:

1. the negative part of the stationarity measure converges almost surely to zero,

ie., limg o g_(H(k)) =0 a.s..

2. the objective value ,C(O(k)) converges almost surely to a finite number L,
ie., limy_oo L(0%) = L a.s..

Proof We apply the following auxiliary lemma which proof can be found in Appendix 3.8
for the readability of the current proof:
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Lemma 1 Let (Vk)kzo be a non negative sequence of random wvariables such that
E[Vo] < co. Let (Xi),>o a non negative sequence of random variables and (Ey);~, be

a sequence of random variables such that > 3=y E[|Ex|] < co. If for any k > 1:
Vi <Vp 1 — X1+ Erp_q (3.7.1)

then:

1. for all k > 0, E[V;] < oo and the sequence (Vi)ysq converges a.s. to a finite
limit V.

2. the sequence (E[Vi]),>o converges and klim E[Vi] = E[V&].
- —00
3. the series Y 7oy X converges almost surely and Y pe o E[X}] < oo
We proceed from (3.6.5) by re-arranging terms and observing that

LD (k1)) < £R) gy — %(Eik(g(k);g(%’jc)) — L;, (0%);0%)))
L (B (gD _ 2D g1y o (F0) () _ 204 (g

~ k M -~ (372)
5 (L0 (000, {20, 1)) — Lie (0% 019))

~ ) % oy k) Mak)
+ %(ﬁik(a(k);e( zk)) _ Lik(g(k);g( Zk)’{zik,ﬁn )

Our idea is to apply Lemma 1. Under S3.1, the finite sum of surrogate functions £*)(8),
defined in (3.3.4), is lower bounded by a constant ¢, > —oo for any 6. To this end, we
observe that
— LF) k) _ i > 7.
Vi := L0V Ig%ckfo (3.7.3)

is a non-negative random variable.

Secondly, under H3.1, the following random variable is non-negative

X = L(E, (00 00)) — £, (6M;0%))) > 0, (3.7.4)

Thirdly, we define

E) = ,(E(k+1)(9(k+1)) _ E(k+1)(9(k+1))) + (E(k)(g(k)) _ E(k)(g(k)))

M, o~
") - Li, (9(’“)' 9(’“))) (3.7.5)

(’“)

Ziom dm=1" )+

Note that from the definitions (3.7.3), (3.7.4), (3.7.5), we have Vi1 < Vi — Xj + E}, for
any k > 1.

+ 5 (L (0W; 00 {= zkm}

:M—‘
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Under H3.2, we observe that

E[|£~ik( o). g(k) { 0 }Mm) (g(k) g(k))H < CrM(;;ﬂ (3.7.6)
E[Eik(esv(’f);o(ffk)) Ci (00,070 12 (k’}n) Z(f))u < CE[M, - iﬂ (3.7.7)
E[IZ0(6®) — LW (W) < Ly ¢, E[ (jﬂ (3.7.8)

Therefore,
E[|Ex] < (MG, +E [M(;;k/f + S M M) (3.7.9)

Using (3.6.14) and the assumption on the sequence { M) }x>0, We obtain that
S E[1E] < S(2 4+ 2m)S M 3.7.10
S E[E] < T2t am Y Mgl < v (3.7.10

Therefore, the conclusions in Lemma 1 hold. Precisely, we have > 72, X; < oo and

oo E[Xk] < oo almost surely. Note that this implies

i k ~
00 > Y E[X;] = ZE L (0W:0T)y — £, (9k); 9(h))]

’“1:()00 . (3.7.11)
S rE) (gk)y _ ] = = k) (g(k)
—nZE[ﬁ O™y — (0 )]—nZE[e G

k=0 k=0
Since é®)(0¥)) > 0, the above implies
lim e®(@F) =0 as. (3.7.12)

k—o0

and subsequently applying (3.6.4), we have limy_, . [|e®) (0%))|| = 0 almost surely. Finally,
it follows from (3.6.4) and (3.6.19) that

hm g® < hm V2Ly/ek) (9(k)) + hm sup [¢*) ()] = 0, (3.7.13)

k—cogco

where the last equality holds almost surely due to the fact that 37 E[supgeg ¢ (0)]] <
0o. This concludes the asymptotic convergence of the MISSO method.

Finally, we prove that L',(B(k)) converges almost surely. As a consequence of Lemma 1,
it is clear that {Vj}r>0 converges almost surely and so is {Z(k)(O(k))}kzo, i.e., we have
limg_, 0 E(k)(B(’“)) = L. Applying (3.7.12) implies that

L= lim £ZPOF) = lim £(6W) as. (3.7.14)

k—00 k—o00
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This shows that £(0%)) converges almost surely to L. |

3.8 Proof of Lemma 1

Lemma Let (Vk)k20 be a non negative sequence of random variables such that E[Vp] < oc.
Let (Xk)kzo a non negative sequence of random variables and (Ek)kzo be a sequence of
random variables such that Y72 o E[|Ex|] < co. If for any k > 1:

Vi < Vim1 — Xpo1 + B

then:

1. for all k > 0, E[Vi] < oo and the sequence (Vi)y>o converges a.s. to a finite limit
Voo

2. the sequence (E[Vi]);~o converges and khﬁn;lo E[Vi] = E[Vx].
3. the series Y poo X converges almost surely and Y 7o E[Xg] < oo.
Proof We first show that for all k£ > 0, E[V}] < co. Note indeed that:
k k k

0<Vi<Vo—> Xj+Y Ej<Vy+) Ej (3.8.1)
j=1 j=1 j=1

showing that E[V,] < E[Vy] + E [ ?:1 Ej} < 0.

Since 0 < Xy, < Vi1 — Vi + Ex we also obtain for all £ > 0, E[X}] < co. Moreover, since

E { ) |EJ|} < o0, the series 3772, E; converges a.s. We may therefore define:

We=Vi+ > E; (3.8.2)
j=k+1

Note that E[[Wy[] < E[Vi] + E |52 | Bj| < oo. Forall k> 1, we get:

Wi < Vi1 — X + ZEJ' < Wit — Xi < Wiy
j=k (3.8.3)

E[Wi] < E[Wy—1] — E[X}]

Hence the sequences (Wj)>0 and (E[Wg]),~, are non increasing. Since for all k > 0, Wy, >
—>721 |Ej| > —oc and E[W,] > — 3752 E[|Ej|] > —oo, the (random) sequence (Wi )r>o

converges a.s. to a limit W, and the (deterministic) sequence (E[W}]),~, converges to a
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limit weo. Since [Wi| < Vo + 3252, [Ejl, the Fatou lemma implies that:
E[lim inf [Wy|] = E[[Weo|] < liminf E[[W;[] < E[Vo] + > E[|Ej[] < oo (3.8.4)
k—o0 k—oo =
showing that the random variable W, is integrable.

In the sequel, set Uj, = Wo—W. By construction we have for all k > 0, U, > 0, Uy, < Ugy1
and E[Uy] < E[|Wy|] + E[|[Wk|] < oo and by the monotone convergence theorem, we get:

lim E[U] = E[ lim U] (3.8.5)
k—o00 k—00
Finally, we have:
klim E[U;] = E[Wy] — we and E[klim U] = E[Wy] — E[W] (3.8.6)
—00 —00

showing that E[W] = ws and concluding the proof of (ii). Moreover, using (3.8.3) we
have that W, < Wjy_1 — X which yields:

[e.e]
DX < Wo— W <00
j=1

0o (3.8.7)
Z]E[Xj] < E[Wp] — wee < 00
j=1

which concludes the proof of the lemma. |

3.9 Details about the Numerical Experiments

3.9.1 Binary Logistic Regression on the Traumabase

Traumabase quantitative variables The list of the 16 quantitative variables we use
in our experiments are as follows — age, weight, height, BMI (Body Mass Indez), the
Glasgow Coma Scale, the Glasgow Coma Scale motor component, the minimum systolic
blood pressure, the minimum diastolic blood pressure, the maximum number of heart rate
(or pulse) per unit time (usually a minute), the systolic blood pressure at arrival of am-
bulance, the diastolic blood pressure at arrival of ambulance, the heart rate at arrival of
ambulance, the capillary Hemoglobin concentration, the oxygen saturation, the fluid expan-
sion colloids, the fluid expansion cristalloids, the pulse pressure for the minimum value of

diastolic and systolic blood pressure, the pulse pressure at arrival of ambulance.
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Algorithm 3.3 MH aglorithm

1: Input: initialization z; mis.0 ~ ¢(2imis; 0)

2. form=1,---,M do

3: Sample Zimis,m ™ Q(zi,mis; 6)
Sample u ~ U([0, 1])
Calculate the ratio r =
if u < r then

Accept Zimis,m

else

”(Zi,mis,m,§9)/‘I(zi,mis,m)56)
7I'(«751',777‘2'5,'n’L—l ;0)/q(zi,mis,m— 1 ) ,5)

Zimis,m < Zimis,m—1
10:  end if

11: end for

12: Output: z; s, v

Metropolis Hastings algorithm During the simulation step of the MISSO method,
the sampling from the target distribution 7(2; mis; @) = P(2i,mis|Zi obs, Yi; @) is performed
using a Metropolis Hastings (MH) algorithm [Meyn and Tweedie, 2012] with proposal dis-
tribution ¢(z; mis; 0) = D(2i mis|Ziobs; 0) where 8 = (5,Q) and d = (£, X). The parameters

of the Gaussian conditional distribution of 2; ;mis|2i 0bs Tead:

f = Bmiss + Qmis,obsggls obs \%i,0bs — Bobs 5
b s ) (3.9.1)

—1
= Qmis,mis + Qmis,obsQOb&obSQobs,mis

where we have used the Schur Complement of Qs ops in © and noted Bimis (resp. Bops)

the missing (resp. observed) elements of 5. The MH algorithm is summarized in 6.1.

3.9.2 Incremental Variational Inference for MNIST

Bayesian LeNet-5 Architecture We describe in Table 3.1 the architecture of the
Convolutional Neural Network introduced in [LeCun et al., 1998] and trained on MNIST:

layer type width stride padding input shape nonlinearity
convolution (5 x 5) 6 1 0 1x32x 32 ReLU
max-pooling (2 x 2) 2 0 6 x 28 x 28

convolution (5 x 5) 6 1 0 1x14x14 ReLU
max-pooling (2 x 2) 2 0 16 x 10 x 10
fully-connected 120 400 ReLU
fully-connected 84 120 ReLU
fully-connected 10 84

Table 3.1 — LeNet-5 architecture

Algorithms updates First, we initialize the means ,uéo) for ¢ € [d] and variance esti-

mates 0(®). In the sequel, at iteration k and for all i € [n] we define the following drift
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terms:
*) 1 Mw
5 = —— k—1
Bk === 2 Vwlogpluilesw)| 0 o + Vad(0%Y),
Yo - (3.9.2)
(*) LW
5\F) — (k) N (k—1)
Ooi = gy 2= Ve togp(yilrss )|y )+ Vod(@*Y).

For all benchmark algorithms, we pick, at iteration k, a function index ¢; uniformly on
[n] and sample a Monte Carlo batch {zm b (k) from the standard Gaussian distribution.

The updates of the parameters p, for all £ € [[d]] and o break down as follows:

Monte Carlo SAG update: Set

k k—1) Y a2k - VN 4k
= )—n§5£2i and  o®) — gl 1>_n;5§m.>, (3.9.3)

where 6;(14)1 = éie ; 1 and 5( )

learning rate is set to vy = 10

= 3(]2_1) for i # ix and are defined by (3.9.2) for i = i. The
3

Bayes By Backprop update: Set

k k—1 Y 2k — Y 2k
NE )= :U’g - Eal(te?ik and o) = o) — ;5§7i)k ’ (3.9.4)
where the learning rate v = 1073,
Monte Carlo Momentum update: Set
,ugk) = ugc_l) + ﬁgz) and o =gt 4 k) (3.9.5)
where
- (k N k . o (k— sk
vl(iz? - Oz’v(k Y- n(s/(iz?lk and vr(fk) = Oz'v(gk V- 55((7,2)/% ’ (396)

where « and 7, respectively the momentum and the learning rates, are set to 1073.

Monte Carlo ADAM update: Set

Mék) :Mékfl)i YA LZ)/( mﬁf%e) and o® = 51 j 1/ +€ :
n
(3.9.7)

where

i) =m0 /(0= p) with m) = pm{EY + (1 p1)3,) (3.98)

o) = vV /(1= pf) with o) = ppwlED + (1 - p1)(61))?

e e 05tk
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and

) — /(1 ) with m® = pm®D 4 (1 p1)d®)
L 0
o) =D /(1 — pky with o) = pyolE- )—1—(1—p1)(60’ik) :

g [

The hyperparameters are set as follows: v = 1073, p; = 0.9, po = 0.999, ¢ = 10~8.



Chapter 4

Online Optimization of

Non-convex Problems

Abstract: Stochastic approrimation (SA) is a key method used in sta-
tistical learning. Recently, its non-asymptotic convergence analysis has
been considered in many papers. However, most of the prior analyses are
made under restrictive assumptions such as unbiased gradient estimates
and convex objective function, which significantly limit their applications
to sophisticated tasks such as online and reinforcement learning. These
restrictions are all essentially relaxed in this work. In particular, we
analyze a general SA scheme to minimize a non-convexr, smooth objec-
tive function. We consider update procedure whose drift term depends
on a state-dependent Markov chain and the mean field is not necessarily
of gradient type, covering approximate second-order method and allow-
ing asymptotic bias for the one-step updates. We illustrate these set-
tings with the online EM algorithm and the policy-gradient method for
average reward maximization in reinforcement learning. This chapter

corresponds to the article [Karimi et al., 2019a.
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4.1 Introduction

Stochastic Approximation (SA) schemes are sequential (online) methods for finding a zero
of a function when only noisy observations of the function values are available. Consider
the recursion:

0,11 =06, —vn+1He, (Xnt1), meN (4.1.1)
where 0, € © C R denotes the nth iterate, 7, > 0 is the step size and Hy, (Xpn+1)
is the nth stochastic update (a.k.a. drift term) depending on a random element X, 41
taking its values in a measurable space X. In the simplest setting, {X,, n € N} is an
~iid. sequence of random vectors and Hg, (X,+1) is a conditionally unbiased estimate
of the so-called mean-field h(0,), i.e., E[Hg, (Xnt+1)|Fn] = h(60,) where F, denotes
the filtration generated by the random variables (6o, { X, }m<n). In such case, ep41 =
Hg, (Xpn+1)—h(6y) is a martingale difference. In more sophisticated settings, {X,,, n € N}
is a state-dependent (or controlled) Markov chain, i.e., for any bounded measurable
function f: X — R,

B[S (Xui) | Fal = Py, f(X0) = [ S@)Py, (Xasda) (412)

where P, : X x X — Ry is a Markov kernel such that, for each 6 € ©, P, has a unique

stationary distribution mg. In such case, the mean field for the SA is defined as:
h(@) = | Ho(x)mg(dx) , (4.1.3)

where we have assumed that [ ||Hg(x)||me(dz) < 0.

Throughout this paper, we assume that the mean field h is ‘related’ (to be defined precisely
later) to a smooth Lyapunov function V : R? — R, where V() > —oc. The aim of the
SA scheme (4.1.1) is to find a minimizer or stationary point of the possibly non-convex

Lyapunov function V.

Though more than 60 years old [Robbins and Monro, 1951], SA is now of renewed interest
as it covers a wide range of applications at the heart of many successes with statistical
learning. This includes in particular the stochastic gradient (SG) method and its variants
as surveyed in [Bottou, 1998, Bottou et al., 2018], but also in reinforcement learning
[Peters and Schaal, 2008, Sutton and Barto, 2018, Williams, 1992]. Most convergence
analyses assume that {6, n € N} is bounded with probability one or visits a prescribed
compact set infinitely often. Under such global stability or recurrence conditions [and
appropriate regularity conditions on the mean field h|, the SA sequences might be seen
as approximation of the ordinary differential equation 0 = h(0). Most results available
as of today [see for example [Benveniste et al., 1990], [Kushner and Yin, 2003, Chapter 5,
Theorem 2.1] or [Borkar, 2009]] have an asymptotic flavor. The focus is to establish that
the stationary point of the sequence {8,, n € N} belongs to a stable attractor of its
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limiting ODE.

To gain insights on the difference among statistical learning algorithms, non-asymptotic
analysis of SA scheme has been considered only recently. In particular, SG methods whose
mean field is the gradient of the objective function, i.e., h(@) = VV (), are considered
by Moulines and Bach [2011] for strongly convex function V' and martingale difference
noise; see [Bottou et al., 2018] for a recent survey on the topic. Extensions to stationary
dependent noise have been considered in [Agarwal and Duchi, 2013, Duchi et al., 2012].
Meanwhile, many machine learning models can lead to non-convex optimization prob-
lems. To this end, SG methods for non-convex, smooth objective function V have been
first studied in [Ghadimi and Lan, 2013] with martingale noise (see [Bottou et al., 2018,
Section 4]), and it was extended in [Sun et al., 2018] to the case where {X,,, n € N} is a
state-independent Markov chain, i.e., the Markov kernel in (4.1.2) does not depend on 6.

Of course, SA schemes go far beyond SG methods. In fact, in many important applica-
tions, the drift term of the SA is not a noisy version of the gradient, i.e., the mean field h
is not the gradient of V. Obvious examples include second-order methods, which aim at
combatting the adverse effects of high non-linearity and ill-conditioning of the objective
function through stochastic quasi-Newton algorithms. Another closely related example is
the online Expectation Maximization (EM) algorithm introduced by Cappé and Moulines
[2009] and is further developed in [Balakrishnan et al., 2017, Chen et al., 2018]. In many
cases, the mean field of the drift term may even be asymptotically biased with the ran-
dom element {X,, n € N} drawn from a Markov chain with state-dependent transition
probability. Examples for this situation are common in reinforcement learning such as Q-
learning [Jaakkola et al., 1994], policy gradient [Baxter and Bartlett, 2001] and temporal
difference learning [Bhandari et al., 2018, Dalal et al., 2018a,b, Lakshminarayanan and

Szepesvari, 2018].

Surprisingly enough, we are not aware of non-asymptotic convergence results of the general
SA (4.1.1) comparable to [Ghadimi and Lan, 2013] and [Bottou et al., 2018, Section 4,5]
when (a) the drift term Hg(x) in (4.1.1) is not the noisy gradient of the objective function
V and is potentially biased, and/or (b) the sequence {X,, n € N} is a state-dependent
Markov chain. To this end, the main objective of this work is to fill this gap in the
literature by establishing non-asymptotic convergence of SA under the above settings.
Our main assumption is the existence of a smooth function V satisfying for all 8 € O,
co + c1 (VV(0)|h(8)) > ||h(8)|* there exists c; > 0,co > 0; see Section 4.2 and H4.1.
If cg = 0, then (VV(0)|h(6)) > 0 as soon as h(€) # 0 in which case V is a Lyapunov
function for the ODE @ = h(@). Assuming cy > 0 allows us to consider situations in which
the estimate of the mean field is biased, a situation which has been first studied in Tadi¢
and Doucet [2017]. To summarize, our contributions are two-fold:

1. We provide non-asymptotic convergence analysis for (4.1.1) with a potentially biased
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mean field h under two cases — (Case 1) {X,,, n € N} is an ~;;q. sequence; (Case
2) {X,, n € N} is a state-dependent Markov chain. For these two cases, we provide
non asymptotic bounds such that for all n € N, E[||h(0x)]|?] = O(co + log(n)//n),
for some random index N € {1,...,n} and ¢y > 0 characterizes the (potential) bias
of the mean field h.

2. We illustrate our findings by analyzing popular statistical learning algorithms such
as the online expectation maximization (EM) algorithm [Cappé and Moulines, 2009]
and the average-cost policy-gradient method [Sutton and Barto, 2018]. Our find-
ings provide new insights into the non-asymptotic convergence behavior of these

algorithms.

Our theory significantly extends the results reported in [Bottou et al., 2018, Sections 4,5]
and [Ghadimi and Lan, 2013, Theorem 2.1]. When focused on the Markov noise setting,
our result is a nontrivial relaxation of [Sun et al., 2018], which considers Markov noise
that is not state dependent and the mean field satisfies h(0) = VV(0); and of [Tadi¢ and
Doucet, 2017] which shows asymptotic convergence of (4.1.1) under the uniform bound-

edness assumption on iterates.

Notation Let (X, X’) be a measurable space. A Markov kernel R on X x X is a mapping
R : X x X — [0,1] satisfying the following conditions: (a) for every z € X, R(z,-) :
A — R(z, A) is a probability measure on X’ (b) for every A € X, R(-,A) : x — R(z, A)
is a measurable function. For any probability measure A on (X, X), we define AR by
AR(A) = [y AM(dz)R(z,A). For all k € N*, we define the Markov kernel R* recursively by
R'= R and for all z € X and A € X, RF (2, A) = [} RF(z,d2’)R(2’,A). A probability
measure 7 is invariant for R if 7R = 7. || - || denotes the standard Euclidean norm (for

vectors) or the operator norm (for matrices).

4.2 Stochastic Approximation Schemes and Their Conver-

gence

Consider the following assumptions:

H4.1 For all @ € O, there exists co > 0,c1 > 0 such that co+c1 (VV(0) | h(8)) > ||h(0)]>.
H4.2 For all 8 € ©, there exists dy > 0,d; > 0 such that do + d1||h(0)] > ||[VV ()]
H4.3 Lyapunov function V is L-smooth. For all (6,0') € 62, |VV(0) — VV(8')| <
L|j6—-0|.

A4.1, H4.2 assume that the mean field h(8) [cf. (4.1.2)] is indirectly related to the Lyapunov

function V(@) where it needs not be the same as VV'(0). In particular, the constants ¢y, dy
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characterize the ‘bias’ between the mean field and the gradient of the Lyapunov function.
From an optimization perspective, we note that the Lyapunov function V can be non-
conver under H4.3. In light of H4.1, H4.2, we study the convergence of the non-negative
quantity ||h(8,)]|?, where 6,, is produced by (4.1.1). If ¢ = dp = 0 in H4.1, H4.2, then
h(68.) = 0 implies that |VV(0.)|]| = 0, i.e., the point 6, is a stationary point of the
deterministic recursion 6,, = ,, — ’yn+1h(9_n). As a convention, for any € > 0, we say that

0. is an e-stationary point if |h(6.)||> < e.

As a common step in analyzing SA scheme for smooth but non-convex Lyapunov function
(e.g., [Ghadimi and Lan, 2013]), we shall adopt a randomized stopping rule. For any
n >1,let N € {0,...,n} be a discrete random variable (independent of {F,, n € N})
with

P(N = 0) = (Zf_ghe1) Ve s (4.2.1)
where N serves as the terminating iteration for (4.1.1). Throughout this paper, we focus
on analyzing E[||Vh(6Ox)|?] where the expectation is taken over N and the stochastic
updates in SA. We consider two settings for the noise in SA scheme. Define the following

noise vector:
ent1:= Hp,(Xnt+1) — h(6,) , (4.2.2)

where h(6,,) was defined in (7.2.17). Our settings and convergence results are in order.

Case 1. {e,}n>1 is a Martingale Difference Sequence. We first consider a case

similar to the classical SG method analyzed by Ghadimi and Lan [2013]. In particular,

H4.4 The sequence of noise vectors is a Martingale difference sequence with, for any
n €N, Elent| Fal = 0, E [en|2| Fu] < 0F +02l|h(6,)]? with 03,07 € 0, 00).

As a concrete example, H4.4 can be satisfied when Hg, (X,41) = h(0,) + X,41 where
Xn+1 is an i.i.d., zero-mean random vector with bounded variance. We show:
Theorem 3 Let Hj.1, H}.3, Hj./ hold and Y11 < (2c1L(1+ 02))~t for all n > 0.

We have o1 _ 2c1(Von +08L > %—0Vit1)
Efjaew)|) < <1
k=0 Vk+1

where N is distributed according to (4.2.1) and we have defined Vi, = E[V(6y) —
V(0n+1)]~

+ 200 , (4.2.3)

Proof The proof is postponed to Section 4.2.1

If we set v, = (2c1L(1 + 07)vk)™! for all k& > 1, then the right hand side in (4.2.3)
evaluates to O(cg + logn/y/n) for any n > 1. Therefore, the SA scheme (4.1.1) finds an
O(co + logn/+/n) stationary point within n iterations.
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Case 2. {e,}n>1 is State-dependent Markov Noise. Next, we consider a general sce-
nario when X,,;1 is drawn from a state-dependent Markov process, i.e., for any bounded
measurable function ¢ and n € N, we have E [¢(Xn 1) | Fn| = B, ¢(Xn), where P, is a
Markov kernel on X x X. We assume that for each 8 € ©, P, has a unique stationary dis-
tribution g, i.e., mgP, = mp. In addition, for each 6 € ©, we have [ ||Hg(z)||mg(dr) < 0o
and h(0) = [ Hg(x)mg(dz). Consider the following assumptions that are similar to [Tadi¢
and Doucet, 2017, Section 3|:

H4.5 There exists a Borel measurable function H:0xX — 0 where for each 6 € O,
x € X,

He(z) — P,He(x) = Hg(x) — h(0). (4.2.4)
HA4.6 There exists ng}{ < 00 and Lgl)q < 00 such that, for all 8 € © and x € X, one has
|Ho(x)|| < L, | Py Ho(x)|| < LY. Moreover, for (6,6') € 62,

(] a 1
supyex || Py Ho(z) — PoHo (2)]| < LB ) 110 — 6] . (4.2.5)

H4.7 The stochastic update is bounded, i.e., supgeg rex |[Ho(z) — h(0)| < 0.

Basically, assumption H4.5 requires that for each 8 € O, the Poisson equation associated
with the Markov kernel P, and the function H, o(+) has a solution. Assumption H4.6 implies
that for each = € X, the function @ — Hg(x) is Lipshitz and that the Lipshitz constant
is uniformly bounded in x € X. We provide in Appendix 4.8 conditions upon which these
assumptions hold. Lastly, Assumption H4.7 assumes that the drift terms are bounded

uniformly. Our main result reads as follows:

Theorem 4 Let H}.1-H}.3, H}.5-H}.7 hold. Suppose that the step sizes satisfy
=il
Yt €Yy Yo < it o= Yot1 S @ N <05(@(L+Ch)),  (426)

for some a,a’ > 0 and all n > 0. We have

2c1 (%,n + CO,n + (02L + CW) ZZ:O ’YI%+1)
ZZ:O Vk+1

E[h(On)|%] < +2¢ , (4.2.7)

where N is distributed according to (4.2.1), Vo = E[V(0y) — V(0r+1)], and the

constants are:

d
O, = (L%},(do + El(a +1) +adio) + Lﬁ?}{ (L+di{1+4d'})), (4.2.8)
C., := LY (do + doo + dyo) + LLEL (1 + o) , (4.2.9)
Con = LY (1 + do) (11 — Y1) + do(11 + Ynr1) + 2d1) - (4.2.10)

Proof The proof is postponed to Section 4.2.1

Similar to the case with Martingale difference noise, if we set 7, = (2¢1L(1 + C,)VE) ™!

for all k > 1, then the step size satisfies (4.2.6) with a = v/2 and @’ = \/?/%1 (2c1L(1+Ch)),
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and the right hand side in (4.2.7) evaluates to O(co +logn//n) for any n > 1. We obtain
a similar convergence rate as in Theorem 3. In fact, if we consider a special case when for
all @ € © and = € X, P, (z,) = mg(-), we have LSSJ)LI = ngll)q = 0. The constants evaluates
to Cy = C, = Cp = 0 and our Theorem 4 can be reduced into Theorem 3. We remark
that Theorem 4 cannot be treated as a strict generalization of Theorem 3 as H4.4 does

not imply the uniform boundedness H4.7.

Our analysis [cf. Lemma 4] relies on a new decomposition of the error terms. This allows
us to control the growth of E[||h(6,)]|?] with 6, produced by the SA scheme without
explicitly assuming that {6,,},>0 is bounded.

Lower Bound We provide a lower bound on E[||h(6x)||?] with the SA scheme (4.1.1)
and (4.2.1):

Lemma 2 Consider the SA scheme (4.1.1) with h(0) = VV(0). There exists a Lya-

punov function V(0) satisfying H4.3 and a noise sequence {e,}n>1 satisfying Hj.4-

H,.7 such that for any n > 1,

E[V(60) = V(8nt1)] + O ko Vi
D k=0 Vk+1

E[||R(6x)]7] = (4.2.11)

where N is distributed according to (4.2.1), and Ci, > 0 is some constant independent

of n.
Proof The proof is postponed to Appendix 4.5.3

For large n, setting 7, = ¢/v/k minimizes the right hand side of (4.2.11), yielding
E[|h(On)]?] = Q(log(n)//n). The considered SA scheme satisfies assumptions H4.1-
H4.7, and the lower bound (4.2.11) matches the upper bounds in Theorem 3 & 4 (when
¢o = 0). The upper bounds are therefore tight.

We remark that our proof in Appendix 4.5.3 uses the construction with a strongly convex
Lyapunov function. It does not violate the known I[*Z[Hh(n#+1 S0 01)|1?] = O(1/n) rate in
[Moulines and Bach, 2011] as the latter uses SA with a Polyak-Ruppert average estimator.
To our best knowledge, it remains an open problem to lower bound the convergence rate of
SA for smooth but non-convex Lyapunov function. We mention here a recent work [Fang
et al., 2018, Remark 1] which shows E[[|h(6,)]?] = Q(1/y/n) under different conditions
than those satisfied in this paper.

Related Studies Non-asymptotic analysis of biased SA schemes can be found in the
literature on temporal difference (TD) learning [Bhandari et al., 2018, Dalal et al., 2018a,b,
Lakshminarayanan and Szepesvari, 2018], which analyzed a special case of linear SA. Their
assumptions can essentially be covered by our H4.1-H4.3 with V(0) = ||0 — 6|3, e.g.,
[Bhandari et al., 2018, Lemma 3] shows that the TD learning has a mean field which
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satisfies H4.1. Furthermore, we note that the above mentioned analysis are based on a

strongly convex Lyapunov function.

For Case 1, our results generalizes [Ghadimi and Lan, 2013, Theorem 2.1] by accounting
for biased SA updates. In fact we recover the latter result with h(0) = VV(6), H4.1

[Co = O,Cl = 1].

For Case 2, our assumptions H4.1-H4.3, H4.5-H4.7 are similar to [Tadi¢ and Doucet,
2017, Section 3]. The exception is H4.7 which is used in place of the implicit assumption
SUp,en [|0n]| < oo of the latter. However, we note that the two conditions are neither

stronger nor weaker than the other.

4.2.1 Convergence Analysis

The detailed proofs in this section are in Appendix 4.5. To simplify notations, we shall
denote h,, := ||h(6,)||* from now on. We first describe an intermediate result that holds
under just H4.1, H4.3:

Lemma 3 Let Hj.1, H}.3 hold. It holds for all n > 1 that:

> k=0 ng (1 — c1Lykt1) b

< V(60) = V(Ont1) + LYk Vi llexall? + oo w1 (2 = (VV(0) | ery1) )
(4.2.12)

Proof The proof is postponed to Appendix 4.5.1

Proof of Theorem 3 Having established Lemma 3, the convergence of SA with Martin-
gale difference noise can be obtained. Particularly, the expected value of (VV(0y) | ex+1)
is zero when conditioned on Fj. Therefore, taking total expectation on both sides of
(4.2.12) yields:

n n
k (67)
> Tl (1= e Ly 1) Elhi] < Vo + LY (Ve Elllersa Pl + vep1—)
=0 ©1 k=0 “

n n
Co
< Vo + Log Z 713+1 + Lot Z Vi1 E[hg]) + 7k+1a) ;
k=0 k=0

(4.2.13)

where the last inequality is due to H4.4. Rearranging terms yields:

Yoo B (1= aaL(1 + 0 )y ) Elli] < Vo + 051 kg Vi1 + & Xkmo Vo1 - (4.2.14)
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Consequently, using (4.2.1) and noting that 1 — ¢1L(1 + 0%)y,41 > %, we obtain

Z Y +1E [ 201 (Vo + 08 L Y k—0Vies1)

< + 2¢q . 4.2.15
Zk 0 7k+1 ZZ:O Ve+1 ( )

Proof of Theorem 4 In the case with state-dependent Markovian noise. Under H4.7,

one has

n n
> venElllersl?] <70’ (4.2.16)
k=0 -

Unlike in Theorem 3, the expected value of the inner product (VV(6y) | ex41) is non-zero

in general. Fortunately, as we show next in Lemma 4, this issue can be mitigated.

Lemma 4 Let Hj.1-H}.3, H/.5-H}.7 hold and the step sizes satisfy (4.2.6). It holds:

E[ = 3 w1 (VV(0k) [ex) | < Cn S aReaBIIAOK) P + Cy 3o 221 + Com »
k=0 k=0 k=0
(4.2.17)
where Cy, Cy and Co,, are defined in (4.2.8), (4.2.9), (4.2.10).

Proof The proof is postponed to Appendix 4.5.2

Finally, to prove the theorem, we combine Lemma 3, (4.2.16) and Lemma 4 to obtain:

Yheo (1 — c1 Lygy1) Elhy]

(4.2.18)
< Vo + Con+ (02L + Cy) S h=0Vier1 T Cn Yo Vo1 BlAR] + £ 300 Vet -

Repeating a similar argument as in (4.2.15) using the distribution (4.2.1) shows the desired
bound (4.2.7).

4.3 Application to Online and Reinforcement Learning

In this section, we present several applications pertaining to machine learning where the

results in Section 4.2 apply and provide new non-asymptotic convergence rate for them.

4.3.1 Regularized Online Expectation Maximization

Expectation-Maximization (EM) [Dempster et al., 1977] is a powerful tool for learning
latent variable models, which can be inefficient due to the high storage cost. This has
motivated the development of online version of the EM which makes it possible to estimate
the parameters of latent variables model without storing the data; the online EM algorithm
analyzed below was introduced in [Cappé and Moulines, 2009] and later developed by many

authors: see for example [Chen et al., 2018] and the references therein. The online EM
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algorithm sticks closely to the principles of the batch-mode EM algorithm. Each iteration
of the online EM algorithm is decomposed into two steps, where the first one is a stochastic
approximation version of the E-step aimed at incorporating the information brought by the
newly available observation, and, the second step consists in the maximization program

that appears in the M-step of the traditional EM algorithm.

The latent variable statistical model postulates the existence of a latent variable X dis-
tributed under f(z; @) where {f(z;0);6 € O} is a parametric family of probability density
functions and © is an open convex subset of R, The observation Y € Y is a deterministic
function of X. We denote by g(y;0) the (observed) likelihood function. The notations
Eg[-] and Eg [-| Y] are used to denote the expectation and conditional expectation under
the statistical model {f(x;0);0 € ©}. We denote by 7 the probability density function
of the observation Y: the model might be misspecified, that is, the "true" distribution of
the observations may not belong to the family {g(y;0),0 € ©}. The notations E is used
below to denote the expectation under the actual distribution of the observations. Let S
be a convex open subset of R™ and S : X — S be a measurable function. We assume that

the complete data-likelihood function belongs to the curved exponential family

f(;0) = h(z) exp ((S(x) | $(8)) — ¥(0)) , (4.3.1)

where ¢ : © — R is twice differentiable and convex and ¢ : © — S C R™ is concave and
differentiable. In this setting, S is the complete data sufficient statistics. For any 8 € ©

and y € Y, we assume that the conditional expectation
3(y;0) =Eg [S(X)|Y =] (4.3.2)

is well-defined and belongs to S. For any s € S, we consider the penalized negated complete
data log-likelihood defined as

((s;0) == 4(0) + R(0) — (s]0(0)) , (4.3.3)

where R : © +— R is a penalization term assumed to be twice differentiable. This penalty
term is used to enforce constraints on the estimated parameter. If K : ® — R™ is a
differentiable function, we denote by J%(8’) € R"™*? the Jacobian of the map s with
respect to 0 at @’. Consider:

HA4.8 For all s € S, the function 8 — ((s;0) admits a unique global minimum in the

interior of ©, denoted by 6(s) and characterized by
Vi (0(s)) + VR(O(s)) — Jg(a(s))Ts =0. (4.3.4)

In addition, for any s € S, Jg(@(s)) is invertible and the map s — 0(s) is differentiable

on S.
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The regularized version of the online EM (ro-EM) method is an iterative procedure which
alternatively updates an estimate of the sufficient statistics and the estimated parameters

as:

§n+1 = §n + ’Yn+1(§(yn+1; én) — §n), én+1 = §(§n+1) . (435)
In the following, we show that our non-asymptotic convergence result holds for the ro-
EM. We establish convergence of the online method to a stationary point of the Lyapunov
function defined as a regularized Kullback-Leibler (KL) divergence between 7 and gg.

Precisely, we set
V(s) == KL (7,9(:8(s)) + R(B(s)) KL (r,9(+0)) = Er log(n(¥))/g(V;0)] . (4.3.6)

We establish a few key results that relate the ro-EM method to an SA scheme seeking for
a stationary point of V' (s). Denote by JF, the filtration generated by the random variables
{50, Yi}k<n. From (5.2.5) we can identify the drift term and its mean field respectively as

H;, (Yot1) = 8n —5(Ynt150(55)) ,

h(§n) =E, [H§n (Yn—‘rl)’fn} =5, —E; [§(Yn+1,§(§n))] .

(4.3.7)

and ent1 := Hs, (Ynt+1) — h(8,). Define by H? the Hessian of the function ¢ with respect

to 8. Our results are summarized by the following propositions:

Proposition 5 Assume H5.J. Then

e If h(s*) = 0 for some s* € S, then Vg KL (7, go+) + Vo R(0*) = 0 with 6* :=
0(s*).

e If VoKL (7, g0+) + Vo R(0*) = 0 for some 0* € © then s* =E.[S(Y,0%)].

Proposition 6 Assume H5.4. Then, for s € S,

VoV (s) = 198(s)) (HY(s:0)) 39(B(s)) " h(s). (4.3.8)

Proof The proofs are postponed to Appendix 4.6

Proposition 5 relates the root(s) of the mean field h(s) to the stationary condition of
the regularized KL divergence. Together with an additional condition on the smallest

eigenvalue of the Jacobian-Hessian-Jacobian product
_(19(A 0(..9 110\ T
Amin(J5(0(s)) (Hy (5;0(s)))  J5(0(s))') >2v>0,V¥s€S, (4.3.9)

Proposition 6 shows that the mean field of the stochastic update in (4.3.7) satisfies H4.1
with ¢g = 0 and ¢; = 1/v. If we assume that the Lyapunov function in (4.3.6), and

the stochastic update in (4.3.7) satisfy the assumptions in Case 1 [i.e., H4.4], then these
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results show that within n iterations, the ro-EM method finds an O(logn/\/n) stationary
solution of the Lyapunov function. To further illustrate the above principles, we look at

an example with Gaussian mixture model (GMM).

Example: GMM Inference Consider the inference problem of a mixture of M Gaus-
sian distributions, each with a unit variance from an observation stream Y7,Y5,.... The
likelihood is:

I (v— )| M (v — i)
9(y;0) x (1 - Z wm> exp <—yuM> + Z Wi €XP (_y,u,m> . (4.3.10)

m=1 2 m=1 2

The parameters are denoted by 0 := (w1, ..., wWar—1, 1, -, -1, ar) € C where the pa-
rameter set is defined as C = Apr_1 x RM with Apy 1 := {(wy,--- ,war—1) € RM 1w, >
0, %;11 wm < 1}. To apply the ro-EM method, we augment the nth data Y, with the
latent variable Z,, € {1,..., M }. The log likelihood of the complete data tuple is

2 2
(4.3.11)

The above can be written in the standard curved exponential family form (4.3.1). In
particular, we partition the sufficient statistics as S(x) = (S ()T, 5@ (z)T, 53 (z))"
RM=1xRM=1xR, and partition ¢(0) = (¢)(8) 7,6 (0)T,3)(0))T € RM-IxRM-1xR.
Using the fact that 1,_yn =1— Zn]\f:_ll T{.—m}, (7.3.1) can be expressed in the standard
form as (4.3.1) with

'LLQ M-1 'uz
s =1y, 6(0) = {log(wm) - ;} —{log(1— 3 wj) =k b

SO =Ty, OO)=pm, m=1,....M-1, &=y ¢30)=py,

o _ A e m)?] A (Y~ pm)?
‘C(m’ 9) - IL{z:M} 10g(1 Z Wm) + Z IL{z:m} log(wm)

m=1 m=1

and (0) = — {log(l M) ,202%}

We apply the ro-EM method to the above model. Following the partition of sufficient

statistics and parameters in the above, we define §,, = ((§7(11))T, (§$12))T, §6NT € RM-1 x

RM-1 x R, and 6, = (W, i), )T € RM=Lx RM=1 x R, Also, define the conditional

expected value:

A~ 1 ~ 2
~ A wmnexp(_§(yn+1 — Um n) )
B (Vs1300) 1= Eg Loy [V = Vo] = —omn .

T e e g exp(— 5 (Yo — 1))

(4.3.13)
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With the above notations, the E-step’s update in (4.3.2) can be described with

(@1(Yng1:0n), - - - 81 (Yns1: 0)) 30
5(Yni1300) = | (Yas1@1(Yas1:0n), -, Yor1@nr—1 (Yogs én))T =| s
Yo+t 523)

(4.3.14)

For the M-step, let € > 0 be a user designed parameter, we consider the following regular-
izer:

R(0) = e 0y {u2,/2 —log(wm)} —elog (1 — SN wp,) (4.3.15)

For any s with s(!) > 0, it can be shown that the regularized M-step in (5.2.5) evaluates
to

(1+ eM)’l(s(ll) +e,... ,35\2)71 + E)T

0s) = | (1" 4+ b+ )T | = | B

(1= MLl )7 () - oML () T (8)

(4.3.16)

Note that, as opposed to an unregularized solution (i.e., with ¢ = 0), the regularized

solution is numerically stable as it avoids issues such as division by zero.

To analyze the convergence of ro-EM, we verify that (5.2.5), (4.3.14), (7.3.7) yield a special
case of an SA scheme on §,, which satisfies H4.1, H4.3, H4.4. Assume the following on the

observations {Y;, }5n>0

H4.9 Each observed sample Y, is drawn i.i.d. and they are bounded as |Y,| <Y for any
n > 0.

The ro-EM method is initialized by setting 8; = (0,0,0)" and begun with the M-step.
Note that under H4.9, the sufficient statistics §, lie in the compact set S = Ap;_1 %
(<Y, Y™ for all n > 1, where Ap_y := {s1,...,801: 8m >0, "M ls,, <1} We

observe the following propositions:

Proposition 7 Under H{.9, it holds that E[||S(Yyi1;0n) — 82|12 Fn] < oMY for all
n>0 .

Proposition 8 Under H4.9 and the reqularizer (7.3.6) set with € > 0, then for all

(s,8") € S%, there exists positive constants v, Y,V such that:

(VV(s)|h(s)) =2 v [h(s)|?, [[VV(s) = VV ()| < ¥lls -5 . (4.3.17)
Proof The proofs are postponed to Appendix 4.6

The above propositions show that the ro-EM method applied to GMM is a special case of
the SA scheme with Martingale difference noise, for which H4.1 [with ¢ = 0, ¢; = v™1],
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and H4.3 [with L = U], H4.4 [with 03 = MY, 0? = (] are satisfied. As such, applying
Theorem 3 shows that

Corollary 1 Under Hj.9 and set vy = (2c1L(1 + 0?)Vk)™'. For any n € N, let
N € {0,...,n} be an independent discrete r.v. distributed according to (4.2.1). The
ro-EM method for GMM (5.2.5), (4.3.14), (7.3.7) finds a sufficient statistics such that

E[|VV (5n)|°] = O(logn/v/n) (4.3.18)

where V(-) is defined in (4.3.6). The expectation above is taken w.r.t. N and the

observation law .

Related Studies Convergence analysis for the EM method in batch mode has been the
focus of the classical work by Dempster et al. [1977], Wu et al. [1983], in which asymptotic
convergence has been established; also see the recent work by Wang et al. [2015b], Xu
et al. [2016b]. Several work has studied the convergence of stochastic EM with fized data,
e.g., Mairal [2015a] studied the asymptotic convergence to a stationary point, Chen et al.
[2018] studied the local linear convergence of a variance reduced method by assuming that
the iterates are bounded. On the other hand, the online EM method considered here,
where a fresh sample is drawn at each iteration, has only been considered by a few work.
Particularly, Cappé and Moulines [2009] showed the asymptotic convergence of the online
EM method to a stationary point; Balakrishnan et al. [2017] analyzed non-asymptotic
convergence for a variant of online EM method which requires a-priori the initial radius
160 — 6*||, where 8* is the optimal parameter. To our best knowledge, the rate results in

Corollary 1 is new.

4.3.2 Policy Gradient for Average Reward over Infinite Horizon

There has been a growing interest in policy-gradient methods for model-free planning in
Markov decision process; see [Sutton and Barto, 2018] and the references therein. Consider
a finite Markov Decision Process (MDP) (S, A, R, P), where S is a finite set of spaces (state-
space), A is a finite set of action (action-space), R : S x A — [0, Rimax] is a reward function
and P is the transition model, i.e., given an action a € A, P* = {P¢ ,} is a matrix, P
is the probability of transiting from the sth state to the s’th state upon taking action a.
The agent’s decision is characterized by a parametric family of policies {Ilg}gco: g(a;s)
which is the probability of taking action a when the current state is s (a semi-column
is used to distinguish the random variables from parameters of the distribution). The

state-action sequence {(St, A¢)}¢>1 forms an MC with the transition matrix:

Qo((s,a);(s',d")) :=Tg(d;s) s (4.3.19)
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where the above corresponds to the (s,a)th row, (s',a’)th column of the matrix Qg, and

it denotes the transition probability from (s,a) €S x A to (s',a’) € S x A.

We assume that for each 8 € O, the policy Ilg is ergodic, i.e., Qg has a unique stationary
distribution v. Under this assumption, the average reward (or undiscounted reward) is
given by

J(0) =325 ,v(s,a)R(s,a) . (4.3.20)

The goal of the agent is to find a policy that maximizes the average reward over the class
{ITp}pco. It can be verified [Sutton and Barto, 2018] that the gradient is evaluated by
the limit:

VJ(0) = limy o Bg[R(ST, A7) Syt Viog g (Ar_i; Sr—i)] - (4.3.21)

To approximate (4.3.21) with a numerically stable estimator, [Baxter and Bartlett, 2001]
proposed the following gradient estimator. Let A € [0,1) be a discount factor and 7" be

sufficiently large, one has
VrJ(0) :=R(Sr, A7) XL NV log Mg (Ar_i; Sr_i) =~ V.J(0) (4.3.22)

where (S1, A1, ..., S7, Ar) is a realization of state-action sequence generated by the policy
ITg. This gradient estimator is biased and its bias is of order O(1 — \) as the discount
factor A T 1. The approximation above leads to the following policy gradient method
[Baxter and Bartlett, 2001]:

Gn+1 = AGTL + \Y% log Hgn (An+1; Sn+1) s (4323&)
0n+1 = On + p)/n—i—lGn—‘,—l R(Sn+1, An+1) . (4323b)

We focus on a linear parameterization of the policy in the exponential family (or soft-max):

-1
Mp(a;s) = { Swenexp ((0]2(s.a') — 2(s.0)))} ", (4.3.24)
where z(s,a) € R? is a known feature vector. We make the following assumptions:

H4.10 For all s € S, a € A, the feature vector x(s,a) and reward R(s,a) are bounded
with ||z (s,a)|| < b,|R(s,a)| < Rmax-

H4.11 For all 6 € O, the MC {(St, At) }+>1, as governed by the transition matriz Qg
[ef. (4.3.19)], is uniformly geometrically ergodic: there exists p € [0,1), Kr < oo such
that, for all n > 0,

Q5 — 1vg | < oK (43.25)

where vg € ]REHAl is the stationary distribution of {(S¢, A¢)}e>1. Moreover, there exists
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Lg, Ly, < o such that for any (0,6') € ©2,
lve —verl| < Lqllo — €'l [135,(8) — I%, (8] < Lo|6 - 6], (4.3.26)
where JZG(G) denotes the Jacobian of vg w.r.t. 6.

Both H4.10 and H4.11 are regularity conditions on the MDP model that essentially hold as
we focus on the finite state/action spaces setting. Under the uniform ergodicity assumption
(4.3.25), the Lipschitz continuity conditions (4.3.26) can be implied using [Fort et al., 2011,
Tadi¢ and Doucet, 2017].

Our task is to verify that the policy gradient method (4.3.23) is an SA scheme with state-
dependent Markovian noise [cf. Case 2 in Section 4.2]. To this end, we denote the joint
state of this SA scheme as X, = (S, A, Gy) € X := S x A x R? and notice that {X,, }n>1
is a Markov chain. Adopting the same notation as in Section 4.2, the drift term and its

mean field can be written as

Ho, (Xu+1) = Gna1 R(Snt1, Angr)  with h(8) = lim E__p o g, [VrJ(0)],
(4.3.27)
where V7.J(8) is defined in (4.3.22). Moreover, we let P, : Xx X — Ry to be the Markov
kernel associated with the MC {X,},,>1. Observe that

Proposition 9 Under H/.10, it holds for any (0,0") € ©2, (s,a) €S x A,

|V logTg(a; s)|| < 2b, ||VlegIlg(a;s) — ViogIly (a;s)| < SBQHG —0'||. (4.3.28)
Proof The proof is postponed to Appendix 4.7

Using the recursive update of (4.3.23a), we show that
|Gl = IAGn_1 + ViogIg(An; Sp)ll < M|Gro1ll + 20 = O(20]|Go| /(1 — X)), (4.3.29)

for any n > 1, which then implies that the stochastic update Hg, (X, +1) in (4.3.23) is
bounded since the reward is bounded using H4.10. The above proposition also implies
that h(0) is bounded for all & € ©. Therefore, the assumption H4.7 is satisfied.

Next, with a slight abuse of notation, we shall consider the compact state space X =
SxAxG,with G={gcR?:|g|| <Cob/(1-)\)}and Cy € [1,00), and analyze the policy

gradient algorithm accordingly where {X,,41}n>0 is in X.
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Consider the following propositions whose proofs are adapted from [Fort et al., 2011, Tadi¢
and Doucet, 2017]:

Proposition 10 Under H/.10, Hj.11, the following function is well-defined:

Hy () = S0 { P Hn(z) — h(n)} , (4.3.30)

and satisfies Eq. (4.2.4). For all x € X, (n,n') € ©2%, there erwists constants ngl)q,
Lg;{ where

5 2 0 2 2 1
max{|| P By (@), | Hn(@) |} < LEYy, 1Py H(@) — Py By ()| < Lihlim— |l -

(4.3.31)
Moreover, the constants are in the order of ng}{ = O(%), ngll)q =

O( l—maic{p,)\} )

Proposition 11 Under H4.10, Hj.11, the gradient VJ(0) is Y-Lipschitz contin-
uous, where we defined T = Rpyax |S||A|. Moreover, for any 8 € © and let

I :=2b Ryax KRﬁ, it holds that

(1= N)T?+2(VJ(9)| 1h(8)) 2 [|h(8)]1%, IVI(O)] < [|h()] + (1~ AT . (4.3.32)
Proof The proofs are postponed to Appendix 4.7

Proposition 10 verifies H4.5 and H4.6 for the policy gradient algorithm, while Proposi-
tion 11 implies H4.1 [with cg = (1 — A\)?I'2, ¢; = 2], H4.2 [with dy = (1 — A\)T, d1 = 1],
H4.3 [with L = Y|. As such, applying Theorem 4 shows that

Corollary 2 Under H{.10, Hj.11 and set v, = (2c1L(1+Cy)VE)™t. For anyn € N,
let N € {0,...,n} be an independent discrete r.v. distributed according to (4.2.1), the
policy gradient algorithm (4.3.23) finds a policy such that

E[[VJ(8x)]?] = O((1 = A)*T? +logn/v/n), (4.3.33)

where J(-) is defined in (4.3.20) and the expectation is taken w.r.t. N and action-state
pairs (Ap, Sp).

Related Studies The convergence of policy gradient method is typically studied for the
episodic setting where the goal is to maximize the total reward over a finite horizon. The
REINFORCE algorithm [Williams, 1992] has been analyzed as an SG method with unbi-
ased gradient estimate in [Sutton et al., 2000], which proved an asymptotic convergence
condition. A recent work [Papini et al., 2018] combined the variance reduction technique
with the REINFORCE algorithm.
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The infinite horizon setting is more challenging. To our best knowledge, the first asymp-
totically convergent policy gradient method is the actor-critic algorithm by Konda and
Tsitsiklis [2003] which is extended to off-policy learning in [Degris et al., 2012]. The
analysis are based on the theory of two time-scales SA, which relies on controlling the
ratio between the two set of step sizes used [Borkar, 1997]. On the other hand, the al-
gorithm which we have studied was a direct policy gradient method proposed by Baxter
and Bartlett [2001], whose asymptotic convergence was proven only recently by Tadi¢ and
Doucet [2017]. In comparison, our Corollary 2 provides the first non-asymptotic conver-
gence for the policy gradient method. Of related interest, it is worthwhile to mention
that [Abbasi-Yadkori et al., 2018, Fazel et al., 2018] have studied the global convergence
for average reward maximization under the linear quadratic regulator setting where the
state transition can be characterized by a linear dynamics and the reward is a quadratic

function.

4.4 Conclusion

In this paper, we analyze under mild assumptions a general SA scheme with either zero-
mean [cf. Case 1] or state-dependent/controlled Markovian [cf. Case 2] noise. We establish
a novel non-asymptotic convergence analysis of this procedure without assuming convexity
of the Lyapunov function. In both cases, our results highlight a convergence rate of order
O(log(n)/y/n) under conservative assumptions. We verify our findings on two applications
of growing interest: the online EM for learning an exponential family distribution (e.g.,
Gaussian Mixture Model) and the policy gradient method for maximizing an average

reward.
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Optimization of Non-convex

Problems

4.5 Proofs of Section 4.2.1

4.5.1 Proof of Lemma 3
Lemma Assume Hj.1, H}.3. Then, for allmn > 1, it holds that:

Yheo B (1 = e1 Lygy1) by,
< V(60) = V(Ons1) + LY fo 72 llensll® + Sieo vt (e feo — (VV(0k) | ext1) ) -
(4.5.1)

Proof As the Lyapunov function V(6) is L smooth [cf. H4.3], we obtain:

L*yz
V(Ory1) < V() — Yer1 (VV(0r) | Ho, (Xi11)) + %HHBAXHQHQ
<V (0k) — Vi1 (VV(Or) | h(8k) + ert1) + L1 (|12 (O) 1 + |lexsal?) -
(4.5.2)

The above implies that

V1 (VV(0r) [ 1(Ok)) < V(0k) =V (Ors1) = ver1 (VV (k) | €g11)

) i 5 (4.5.3)
+ L1 (1RO + [lexsal®) -

Using H4.1, (VV(6},) | h(8y)) > L (hi, — co) and rearranging terms, we obtain

C1

%(1 = alyprn)he < V(0r) = V(Ori1) = 141 (VV(Or) [ €xt1)
: (4.5.4)
P 2, Q@
+ Ly llexl|” + o L
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Summing up both sides from k£ = 0 to k = n gives the conclusion (4.2.12). |

4.5.2 Proof of Lemma 4

Lemma Assume Hj.1-H/.3, H}.5-H/.7 and the step sizes satisfy (4.2.6). Then:
=3 e (VV(0) [ i) | < Cn o AEAEIRO I + Oy YA+ Con s (455
k=0 k=0 k=0
where Cp,, Cy and Cy,, are defined in (4.2.8), (4.2.9), (4.2.10).

Proof Under H4.5, H4.7, for any @ € O there exists a bounded, measurable function
2 — Hg(z) such that the Poisson equation holds:

en+1 = Hp, (Xn-i-l) - h(an) = ﬁﬂn (Xn-H) - P’I’]n‘ﬁon (Xn-I-l) . (4~5'6)

The inner product on the left hand side of (4.2.17) can thus be decomposed as

E [— Z Yi+1 (VV(0y) | ekH)] =E[A; + A2 + Az + Ay + A5] (4.5.7)
k=0

with

n

Ar == 3" 1 (VV(6k) | Ho (Xi11) — Py, Ho, (X))

k=1
Ag = é%+1< V(0r)| P, ﬁek(Xk)—Pnk,lﬂokfl(Xk» ;
Ay gjlml< SV O1) | Py F (K1)

Ay = :1 V1 — <VV(9k 1) | Py, 1ﬁ0k,1(Xk)> ;

As = -7 <VV (60) | Ho, ( X1)> + Ynt1 <VV(9n)’Pnnﬁen(Xn+1)> :

For A;, we note that ﬁgk (Xkt1) — PnkI:ng (X)) is a martingale difference sequence
[cf. (4.1.2)] and therefore we have E[A;] = 0 by taking the total expectation.
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For Ag, applying the Cauchy-Schwarz inequality and (4.2.5), we have

A < L90 S v [IVV(65)][]16x — 651l

k=1

=250 S el VV(O)|l| He,, (X3)
k=1

(a)

< LPH Z%H%(do + d1||h(‘9k)||)(”h(9k 1)|| + U)
k=1

(b) 1)
LPHZ’Yk+1’Yk<d00+d0|!h(9k Dl + dio||h(0x)|| + di]|h(Ok) ||| (O — 1)||) ,
=1

(4.5.8)

where (a) is due to H4.2 on the norm of VV(6;) and H4.7 on the norm of ey, (b) is
obtained by expanding the scalar product. Using the inequality ||h(8,)| < 1+ ||h(6,)]?
and 2/[A(0k)|[[|h(8x—1) || < [|A(Bk)I|* + [[P(Bk—1]|*, we obtain:

As < LYY, ((do +doo +di0) Y} + (do + 5 +adio+ =) Y 7,§+1||h(0k)\|2> .
k=1 k=0
(4.5.9)
For A3, we obtain
(a)
Az < L27k+17k”H9k 1(Xk)HH Nhe— 1H0k71(Xk)||
k=1
® 0 «
< LLpgy ) Y1 ([1(0k-1)l| + o) (4.5.10)
k=1
<LLPH<1+UZ Z thOk1|]2>,
k=1 k=1
where (a) uses H4.3, (b) uses Hg, ,(Xi) = h(6r_1) + e, and H4.6.
For A4, we have
Ap <3 ket — el (do + dal|R(Ok—1) ) 1Py, Hoy_y (X
k=1
@ n n
< LSDJ)LI <(d0 ) et — el Fdi D> e — 'Ykmh(okl)”2> (4.5.11)
k=1 k=1

—
=

=LY ((do+1>< W)+a’d1iv£uh<ek_1>12>,

k=1

where (a) is again an application of H4.6, and (b) uses the assumptions on step size
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Vi1 < Yy Ve — Vet1 < a’yi. Finally, for As, we obtain

(a)

As < 2 (do + dll(80) ) LY + Y1 (do + di[|h(6,) ) L),
()

< Ly (dofs + s} +2d1 + {23 IA00) 12 + 2 lbm)I?Y)  (45.12)
< L®) (dofon +mia} +2d1 +di D2 21 [1(61)]2) |
k=0

where (a) is an application of H4.2 and H4.6, and (b) uses a < 1 + a?. Gathering the

relevant terms and taking expectations conclude the proof of this lemma. |

4.5.3 Proof of Lemma 2

Lemma Consider the SA scheme (4.1.1) with h(0) = VV(0). There erists a Lyapunov
function V(0) satisfying H4.3 and a noise sequence {en}n>1 satisfying Hj.4-H4.7 such
that for any n > 1,

E[V(60) = V(0nt1)] + Cib k=0 V241
ZZ:O Ve+1

E[[|2(6n5)]%] > (4.5.13)

where N is distributed according to (4.2.1), and Cy, > 0 is some constant independent of

n.

Proof Our proof is achieved through constructing the Lyapunov and mean field function
below. Consider a scalar parameter 7 € R and set V(1) to be a u-strongly convex and

L-smooth function, where 0 < u < L < co. Also, the mean field is set as
h(n) =V'(n) . (4.5.14)
Consider the following SA scheme (4.1.1) defined on the mean field h as:

M1 = M — V1 (R(k) + exy1) (4.5.15)

where ey, is i.i.d. and uniformly distributed on [—¢, €].

Clearly, the SA scheme (4.5.15) satisfies H4.1-H4.3 as we have set V'(n) = h(n). The noise

sequence is i.i.d. satisfying H4.4-H4.7. As V is u-strongly convex, it can be shown
v 2
V(1) = V() — ve+1V' (k) (R (k) + ex41) + ’Yz+1§(h(77k) +ert1) (4.5.16)

Now by construction, we have E[eg 1V’ (ng)|Fi] = 0, E[(h(n) + ek+1)2\.7:k] > 12, Taking
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the total expectation on both sides gives
2 o pe”
E[V ()] 2 B[V (1)) = Y1 A% () + i1 = - (4.5.17)

Denote Cjp, := ’%2. Using (4.2.1), we observe

E[|h(nx)?)

1 = E[V(no) =V (Mnt1)] + Cib S0 72
= = > B[] = : £0 el
2 k=0 Th+1 =0 2 k=0 Vk+1
(4.5.18)

This completes the proof of the lower bound.

4.6 Proofs for the ro-EM Method

4.6.1 Proof of Proposition 5

Proposition Assume H5.4. Then
e If h(s*) = 0 for some s* €S, then Vo KL (7, go«) + Vo R(8*) = 0 with 0* = (s*).
e If VoKL (7, g9+) + Vo R(0*) =0 for some 8* € © then s* = E[S(Y,0)].

Proof We have
VoKL (m,9(:;0)) = —VeEr[log g(Y;0)] = —Ex[Velogg(Y;8)] (4.6.1)

where the last equality assumes that we can exchange integration with differentiation.

Furthermore, using the Fisher’s identity [Douc et al., 2014], it holds for any y € Y that
Volog g(y; 0) = —Veu(8) +JJ(0)3(y; ) = —Veuh(8) + JJ(8) Eg [S(X)|Y = 3] . (4.6.2)

Therefore, for any s, it holds that

VoKL (7.9(:8(5) + Vo R(B(s) = Vav(B(s)) + Vo R(B(s)) ~ J2(0(s) Ex[s(Y:8(s))]
@ J2@(s))(s ~ Ea[s(v:8(s))] ) © J2@(s)) his) (463)

where we have used the assumption H5.4 in (a) and the definition of h(s) in (b). The
conclusion follows directly from the identity (4.6.3) since J, g (0(s)) is full rank. |
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4.6.2 Proof of Proposition 6

Proposition Assume H5.4. Then, for s €S,

-1,
V.V (s) = Jg(e(s»(Hg’(s; 9)) 319(8(s)) " hs) . (4.6.4)
Proof Using chain rule and H5.4, we obtain

VaV(s) = J5(s) (Vo KL (7,9(-10(s))) + Vo R(8(s)))
B (4.6.5)
— J5(s)T J9(8(s))T h(s)
where the last equality uses the identity in (4.6.3). Consider the following vector map:
s — Vo1p(0(s)) + Vo R(0(s)) — Jg(a(s))T s. (4.6.6)

Taking the gradient of the above map w.r.t. s and note that the map is constant for all

s € S, we show that:

0 =—J50(s)) + (V3 (®(0) + R(6) — (¢(8)5)) [g_g(s) ) T5(5) - (4.6.7)

=HY(s;0)
This implies J3(s) = (H?(s;@(s)))_1 Jg(@(s)). Substituting into (5.9.1) yields the con-

clusion. m

4.6.3 Proof of Proposition 7

Proposition Under Hj.9, it holds that E[||S(Yyi1;0n) — 8n?|Fn] < oMY foralln > 0.
Proof From (4.3.7), we note that the error term is given by
Ev, .i~n[Sh | o] — 0

eni1 = Hs, (Yni1) — h(3s) = | By, 32|70 =52 |. (4.6.8)
By, i[5 | Fu] = 55

Obviously, it holds that E[e,+1|F,] = 0. Furthermore, for all m € {1,...,M — 1}, the

mth element of the first block in e,; has a bounded conditional variance

A

E|[Ey, ,smrwm (Vi1 0n)] = wm(Vor1; 007 < 1. (4.6.9)
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For the second block in e, 11, the conditional variance of its mth element is

E [‘EYnJrle[Yn—l—lwm(Yn—t—l; én)] - Yn+1wm(Yn+l; én) |2}
=E [|Yn+1wm(Yn+1; én) |2] - ’EYH+1~ﬂ[Yn+1wm(Yn+l; én)] |2

< E[|Va1wm(Yas1:00)°] <E[(Yai1)?) <77

(4.6.10)

Lastly, we also have EHEYwa[ES)\}—n] - §%S)|2] <7 Therefore, we conclude that
E[“en-ﬁ-lHQ’fn} SM_1+M?2 < 0. H

4.6.4 Proof of Proposition 8

Proposition Under H/.9 and the reqularizer (7.3.6) set with € > 0, then for all (s,s’) €

S2, there exists positive constants v, T,V such that:

(VV(s)|n(s)) = v [[B(s)|?, [IVV(s)]| < YlA(s)ll, IVV(s) = VV(s)] < ¥[ls — &'
(4.6.11)

Proof We first check that H5.4 is satisfied under H4.9. In particular, one observes that
when s €S = Ay 1 x[-Y, Y™ the M-step update (7.3.7) is the unique solution satisfying
the stationary condition of the minimization problem (5.2.5) and 0(s) € C.

As H5.4 is satisfied, applying Proposition 6 shows that the gradient of the Lyapunov

function is
VV(s) = Jg(é(s))(ﬂg’(s;a)})_l J19(8(s))" h(s) . (4.6.12)

Using (7.3.3), we observe that for any given 0 € C, the Jacobian of ¢ and the Hessian of
{(s,0) are given by

M T 1T+Diag(%) _Diag(/"’) paml

0 1- Zm 1 wWm
J3(0) = 0 I 0 , (4.6.13)
0 0 1
M—-1 (1)
EHZZ’“ 1 S’; 117 + Diag( s )+61) 0 0
0 . T 2um=1 ¥Ym
Hy (s, 0) = 0 Diag(s() + €1) 0
0 0 1+e— M1 s
M 4e1 s pe s e
where we have denoted 1< as the (M — 1)-vector (——=,..., “M=1—) Let us define
1 M-1
J11, Hyy as the top-left matrices in the above, evaluated at 6(s), as follows
14+eM
. T :

1+eM
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o lqe—YMILD (14 eM)?
Hll = ) lT(s<1)+61) 5 11 + Dlag(m) (4615)
( o 14+eM )

When € > 0, the above matrices, Ji; and Hyy, are full rank and bounded if s € S.

The matrix product Jg(?(s)) (HY(s,8(s))) - Jg(a(s))T can hence be expressed as an outer

product
JZ@(S))(H?(Sﬁ(S)))_l J6(s)T =T (s)T(s)" (4.6.16)
with
Hl‘ﬁ 0 0
g(s):=300) | ©  PRelmng) 0
0 0 1

N

1
-1 . @) (3)_1T (2
JiH;*> —Diag(—>——) it ) 71
(sM+e1)2 (1+e—§ S’ )2

(4.6.17)

m=1 "™
_ 0 Di 1 0
= iag( Tl)—i-el)
0 0 1

Jresr
Under H4.9 and using the above structured form, it can be verified that J (s) is a bounded
and full rank matrix. As such, for all s € S, there exists v > 0 such that
(VV(s) [h(s)) = (T ()T () h(s) | h(s)) = v]|A(s)]. (4.6.18)
The second part in (4.3.17) can be verified by observing that
_ -1,
18(0(s)) (1Y (s;0)})  I5(8(s))T is bounded due to HA.9,

For the third part in (4.3.17), again from (4.6.12) we obtain:
VV(s) =T (s)T(s) h(s) . (4.6.19)

From (5.13.11), it can be seen that J(s)J(s) ' is Lipschitz continuous in s and bounded,

i.e., there exists constants L, C; < oo such that
1T ()T (8)" =T (T (T < Lils=5'll, [T ()T (s)7I| <Cy, V5,6 €S. (4.6.20)

For example, the above can be checked by observing that the Hessian (w.r.t. s) of each
entry in J(s)J(s)" is bounded for s € S. On the other hand, the mean field h(s) satisfies,

1h(s) = h(s')|| = ls = 8" + By~ [5(Y;0(s")) —5(Y;8(s))]|
@ B B (4.6.21)
< [ls = &'l + Ey~x[[I3(Y;0(s") —3(Y;0(s))|] .
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where (a) uses the triangular inequality and the Jensen’s inequality. Moreover, we observe

@(Y;0(s)) —@(Y;0(s))
3(Y;0(s) —3(Y;0(s) = | Y(@(Y;8(s)) —@(Y;8(s))) | (4.6.22)
0

where @(Y;0(s)) is a collection of the M — 1 terms w,,(Y;0(s)), m = 1,...,M — 1
[cf. (7.3.4)]. Observe that

(2)

(1)
- S exp(— (Y — A)?)
om(Y;0(s)) = . @ (4.6.23)
j=1 Trear @P(—3(Y = 75(.1]46)2)
J

Under H4.9 and the condition that s € S, i.e., a compact set, there exists L, < oo such
that
G (Y58(s)) — B (V3 0(s)? < L2 ]l — /|12, (4.6.24)

forallm=1,..., M — 1. Consequently, again using H4.9, we have

[(v:8(s') — 5(¥;8(s))]| < (M — 1)(1+ )L |s — &/||, (4.6.25)

and we have [|h(s) — h(s")|| < Lp||s — §/|| for some L, < oo. It can also be shown easily

that [|h(s)|| < C} for all s € S. Finally, we observe the following chain:
IVV(s) = VV (s = T ()T (s) " h(s) = T ()T (') (s
= 1T ()T (5)" (h(s) = h(s)) + (T ()T (s)" = T(s)T(s) ") (s (4.6.26)
< (LnCy+ LyCy)lls — s,

which concludes our proof. |

4.7 Proofs for the Policy Gradient Algorithm

This section proves a few key lemmas that are modified from [Tadi¢ and Doucet, 2017]

which leads to the convergence of the policy gradient algorithm analyzed in Section 4.3.2.

Let Qg := Qg — 1vg and denote Q4 ((s,a); (s',a’)) to be the ((s,a), (s',a’))th element of
the tth power of Q}). Under H4.11, we observe that ||Qf|| < p!Kg for any t > 0. For
i =1,...,d, we also define the (s,a)th element of the |S||A|-dimensional gradient vector

V;Ily, and reward vector r, respectively as:

0logIl(a;s,0)

Villg(s,a) := on,

, 7(s,a) = "R(s,a). (4.7.1)
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Using the above notations, the mean field in (4.3.27) can be evaluated as

h(@) = Z Z MR(s',a)QL((s,a); (', ') ViogIl(a; s, 0)ve(s,a).  (4.7.2)
t=0 (s,a),(s’,a’)€Sx.A

In particular, its ith element can be expressed as

hi(0) = > Mg Diag(V;ILe)Qpr . (4.7.3)
t=0

We also define the difference between h(0) and V.J(0) as
A(0) :==h(0) —V.J(0). (4.7.4)

4.7.1 Useful Lemmas
Lemma 5 Let Hj.10, H/.11 hold. For any (0,0') € ©2 and t > 0, one has

1Q% — QoI < C1l16 - 6'll, Q- Qlyll < Cu(tp')|6 - €'l (4.7.5)
where we have set C := pK%z(2B+ Lg) + Lg in the above.

Proof For part 1), we observe that each entry of Qg is given by [cf. (4.3.19)]:
Qo((s,a); (s',d")) :==T11(d"; s, 0) P,

which is Lipschitz continuous w.r.t. 8 since

VI(als, 0) =
(X exp (0] 2(s.d) — w(s,0)))) % Y exp ((8]a(s,a) - als,a)) ) (a(s. ) - a(s,a)
a’€ A a’€ A

is bounded by max; 4 o [|(s,a’) — x(s,a)|| < 2b [cf. H4.10]. This implies
1Qo((5,0); (5',0")) — Qor (5, 0); (', a"))| < 25|P2 [ 6 — O] (476)

Since |P¢,| <1 for any s, s, a, we have [[Qg — Qer|| < 20/|60 — @'

For any 8 € © and any t > 0, we have:

t
Q' —Qp ' =D Qp(Qo— Qo )Q5 "
s ) (4.7.7)
= > Q5(Qo— Qo — 1(ve —ve) QG ™.

7=0
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As such,
Q6" — QI < Z 1Q311|Qe — Qo — 1(ve — ver) T|[[1Qg |
T t— T (478)
<KRZP (1Qo — Qorll + [lve — verll)
K7 (2b+ Lo) (tp') 6 — 0| -
Consequently,
1Q6™ — Q| < 1Q6™ — Q|| + [lve — ve|
o / (4.7.9)
< (KR(tp")(2b+ Lo) + Lq) (|10 — 0] -
Setting C1 = pK%(2b+ Lg) + Lo completes the proof. [ |

Lemma 6 Let H}.10, Hj.11 hold. The following statements are true:

1. The average reward J(0) is differentiable and for any (6,0') € ©%, one has

IV.7(8) = V.J(O)]| < Runax ||| A| L6 — 0] (4.7.10)

2. For any 6 € ©, one has

1—-A

AO)|| <2b Rpax Kp—— - 4.7.11
IAG)] < 26 Ronw Ky (47.11)
Proof For part 1), we observe that
J(8) = E(s,4)~wvp [R(S,A)] = Z ve(s,a)R(s,a) . (4.7.12)
(s,a)eSxA

It follows from the Lipschitz continuity of J¢ o (0) [cf. H4.11] that

IVI(O) - VJI@) < Y |R(s,a)||Vve(s,a) — Vve(s,a)|
(s,0)€5xA (4.7.13)
< Runax [SIJA| L [0 — 6]

The above verifies (4.7.10).

For part 2), we define

Jr(0,(s,a)) = Z R(s',a)Qb ((s,a); (s, ")) , (4.7.14)

(s',a')eSxA
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= Z Z R(s,a)Q%((s,a); (s',a’))ViogI(a;s,0)vg(s,a) .  (4.7.15)

=0 (s,a),(s',a’)€Sx A
As shown in [Tadi¢ and Doucet, 2017, Lemma 8.2], we have limz_,o, Vg Jr(0, (s,a)) = g(0)
for all @ € © and (s,a) € S x A. As such

0o ~ 4.7.16
Y Y - DR (s a)i (5,0 Vg a5 O)va(sa) .
t=0 (s,a),(s’,a’)ESx.A
and in particular, the ith element is given by
Z > (A! — 1)vg Diag(V;iIIg)QYr (4.7.17)
0 (s,a),(s',a’)eSx A
which can be bounded as
<D (1= 2wl Villa oo | QG Il
» =0 . L (4.7.18)
< 26 Rinax Kr Y (1= A)p" < 26 Rinax K5
t=0 (]‘ - p)

where (a) uses H4.11, H4.10, and Proposition 9. The above implies that ||A(0)| <

2b Rmax KR (1= p)2 u

Lemma 7 Let Hj.10, Hj.11 hold. Denote the joint state x as x = (s,a,9) € S x AX
R%. There exists § € [0,1), Cy € [1,00) such that for any t > 0,

|PLHo(x) — h(8) < Cot 841+ |lgl)) ,

(4.7.19)
| (P2 Ho () — 1(8)) — (P Hor () — h(8)|| < Cot 6% 6 — 6/[(1+ llg]) -

Proof Denote the joint state as x = (s, a, g), we observe that
P;E,HB(QU) = EHG [R<St7 At)Gt ’ (S[)v AO) = (37 a)7 GO = g]

t—1
= En, [R(St, A)(Ng+ Y NV ogTI(Ay; 5;,0) ) | (So, 4o) = (s, a)]
1=1
t—1

=YY AR )Qh(( )i (s a")V Iog II(ds ', )@ (s, ) (', ')

=0 (s',a’),(s",a”" ) ESx.A

+Ag Y R(s,d)Qp((s,a); (s, d)) -

(s',a")eSxA
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The jth element of the above is thus given by
[P} Ho(x Z Nel, ,Qp ‘Diag(V;Tle)Qyr + A\'g;1' Qpr (4.7.20)

where g; is the jth element of g and e, is the (s, a)th coordinate vector. Moreover, we
recall that

hj(0) = Mg Diag(V;TIe)Qpr - (4.7.21)
t=0
Note that

vg Diag(V;1g)1 = Z veg(s,a)Vjlogll(a;s,0)

(s,a)eSxA
— (4.7.22)
= Z ( Z II(a;s,0)V;loglIl(a;s, @) )Hg(s) =0.
s€S acA —V,I(a;5.0)

where we recalled that TIg(s) is the stationary distribution for the MDP on the state.

Using the decomposition Q} = Q) — lv;— , we observe

Z )\z{ o Diag(V,;TIp)Qlyr — vg Diag(V,;IIg)1 vg r} + Z Nwg Diag(V;T1)Qhr

1=t

=0

- Z)\’ o Diag(V;T1)Qjr + Z)\Z o Diag(V,;T19)Qlr .

Therefore,

[PhHo()], — hy(6)

t—1
= Z )\’{ez;@)(Qg_z + 1vg)Diag(V;I19)Qyr — ngiag(le'Ig)Qfgr}
i=0
S - (4.7.23)
+ )\tgleQtOT - Z )\ZU;—Diag(Vjﬂg)Qler
i=t
= Ne, Qp ‘Diag(V,;g)Qpr + \'g;17 Qpr — Y Nvg Diag(V,;Tg)Qpr .
i=0 i=t
Consequently, we obtain the upper bound as
|[PpHs(x)]; — hj(0)] < Y NQg IV Tel|oo | Qarll + A'g;1|Qp
J ‘
= (4.7.24)
+ D Nlvell[| Vg o | Q|| -
i=t

Using H4.10, H4.11 and notice that [|V;gllcc < 2b, |Qr|| < R, [|Qhr| <
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RKRr+/S[|Alp, we obtain

t—1 o)
|[PrHo(2)], — hj(0)] S20RKRY Np™ + Ng;|R+ 20 RKR\/|S[|A] Y X'p" .
1=0 i=t

(4.7.25)

Observe that each of the above term decays geometrically with ¢, as such there exists

Ch €[1,00), 6 € [0,1) such that!
[P Ho()], — hy(6)] < CA(8) (1 -+ ) (4.7.26)

which naturally implies the first equation in (4.7.19).

For the second equation in (4.7.19),

[P Ho(x)]; — hy(0) — { [Py Ho ()], — h;(6') |

t—1
= Ne, . {Qp 'Diag(V;p)Qp — Qf ‘Diag(V,;e)Qpy 7
i=0
+ g1 (Qh — Qh)r + Z A\ wg Diag(V,;Tlg ) QY — vg Diag(V;T1e)Qh ) r .

=t

(4.7.27)

This leads to the upper bound:

[Py Ho(2)]; — h;(8) — { [Pg Hor(2)], — h;(6))]]
t—i

<\/ISIAIR Y N'||Qg 'Diag(V;11s)Qp — Qg 'Diag(V;11e)Qp |
=0

+ N[SIIAlIQ — Qb | + /ISIIAIR Y X' |lvg Diag(V,ITe ) Qyr — vg Diag(V,116)Qp|| -
i=t

(4.7.28)

Using the boundedness and Lipschitz continuity of V;Ilg, vg, Q’;, Qte [cf. Lemma 5], let

Co,1,C22 € [1,00), the norms in the above can be bounded as
|QY Diag(V,;I1p) Q) — QL 'Diag(V,; e )Qly || < Cox((t —i)p" )]0 — &
g Diag(V,T1o)Qly — vg Diag(V,Tle)Qp| < Caa(ip’)[6 — 8] (4.7.29
@5~ @bl < Cillo - @]

The above shows that the three terms in the right hand side of (4.7.28) are proportional
to (1+]g/))]|@ —0’|| and decay geometrically with ¢. This implies there exists C4 € [1,00),

1. Note that an exact characterization for C4 is also possible.
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d €[0,1) such that
| P Ho () — 1(8) — { Py Ho () — h(8)}| < C5 (t6") (1 + I|g])[l0 — €']] . (4.7.30)

Setting Cy = max{C%, CY} concludes the proof of the current lemma. [

4.7.2 Proof of Proposition 9
Proposition Under H/.10, it holds for any (0,0") € ©2, (s,a) €S x A,
|V logTg(a; s)|| < 2b, ||VlegIlg(a;s) — ViogIly (a;s)| < 852”9 -0 . (4.7.31)

Proof To simplify notations, let us define Ax(a,b) := x(s,a) — x(s,b) as the difference

between two features. The proof is straightforward as we observe that

1 > exp ((0] Az(b,a)) )Az(a,b) . (4.7.32)

VlogIo(a; s) = Xaweaexp ((0]Ax(a’,a))) ;2

Observe that
|V 1logIg(a;s)| < max |x(s,a) — z(s,b)|| < 2b. (4.7.33)
a,bc

Moreover, the Hessian of the log policy can be evaluated as:

V2logTlg(a;s) =

: ex x(b,a z(a 2(b.a) —
S oo (6] e @) o 0P (@142t ) ae(a A, @

exp ((0|Ax(b,a)))
(g\ Saweaexp ((0|Az(d,a)))

exp ((0]| Ax(b,a)))
Yareaexp ((0]Az(d',a)))

Az (a,b))(

It can be checked that
|92 10g Mg as 5)| < max [Az(a,))Az(b,a)" || + (max [Az(e, b)) < 85 (47.35)

This implies smoothness condition in (4.3.28). |

4.7.3 Proof of Proposition 10

Proposition Under H/.10, Hj.11, the function

I:I,,(x) =20 {PﬁHn(@“) —h(n)}, (4.7.36)
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is well defined and satisfies the Poisson equation (4.2.4). For all x € X, (n,n') € ©2,

there exists constants LSQ}{, Lg}{ such that

maxc{| P Hy (@) . | Hy(@)|[} < Lpyy, 1Py Hy(a) = Py Hy ()| < Lpplln— '] . (4.7.37)

Moreover, the constants are in the order of ngl)q = O(W), LEDlI){ = O(M).

Proof From Lemma 7, there exists Cy € [1,00), § € [0,1) such that
|1 P} Hy(z) — h(n)|| < Catd' (1+|lgll), VE>1, VX, (4.7.38)
where we recall that 6 = max{p, A\}. It follows that the solution to the Poisson equation

ﬁn(x) in (4.3.30) is well defined.

Moreover, it satisfies (4.2.4) and

maxc{ | Hy (@), | P Hy (@)1} < LYY | (4.7.39)

(0)

for some Lpy = O( ) < oo (note that g is bounded as specified by the state

1
1—max{p,\}
space X). As such, the first equation in (4.3.31) of the proposition is proven. Finally,

applying the definition of ﬁn(x) shows that

Py Hy (@) = PyHy(2) = {(PyHy(x) = h(n)) = (P Hy(2) = h(n))} . (4.7.40)
t=1

Using Lemma 7, this implies

| Py () — <> ||(PH(2) = h(m)) = (PyHay (2) = h() |
= (4.7.41)
<> {Co(td") (1 + gl lIm = n'll} -
t=1
As such, there exists ngll)q = O(ﬁw) € [1,00) such that
1Py () = Py Hy ()] < Ll — 'l (4.7.42)
for all x € X. This proves the second equation in (4.3.31) of the proposition. |

4.7.4 Proof of Proposition 11

Proposition Under H/.10, Hj.11, the gradient V.J(0) is Rmax |S||A|-Lipschitz continu-
ous. Moreover, for any 68 € ©, it holds that

(1= X)T? +2(VJ(0)| 1(0)) > [Ih(O)[*, V(@) < [[h(O)Il + (1 =N,  (4.7.43)
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where T' := 2b Rpax KRﬁ.

Proof The first statement is a direct application of part 1) in Lemma 6 which holds under

H4.10, H4.11. To prove the second statement, let us define the error vector as
A(0) :=h(0) —VJ(0) (4.7.44)
Applying Lemma 6 shows that supgee ||A(8)]]? < T?(1 — \)%. We observe that

(VJ(8)|h(8)) = (h(6) — A(8) | 1(8)) = [h(B)[* — (A(6) | h(6))

, 1 ) ) (4.7.45)
= [Ih(@)II" = 5 (1RO + [AB)IF) -
This implies
Ir? 1
S =22+ (VIO [h(8)) > IhO)]* (4.7.46)
Furthermore, it is straightforward to show that
VIO < [[R(0)]] + [[A@)]] < [[R(O)]| +T(1 = A), (4.7.47)
which concludes the proof. |

4.8 Existence and Regularity of the Solutions of Poisson

Equations

Consider the following assumptions:
H4.12 For any 0,0' € R, we have sup,cx 1P, (%, -) — Por(z,-)|lTv < Lp||0 — 0'||.
H4.13 For any 6,0' € R, we have sup,cx | He(x) — He/(z)|| < Ly |0 — €'

H4.14 There exists p < 1, Kp < 0o such that

sup || Py (x,-) — mo(")llTv < p"Kp, (4.8.1)
0cRd zeX

Lemma 8 Assume H4.12-4.14. Then, for any @ € © and x € X,

O‘Kp

1 Ho(2)]| < 1= S (4.8.2)
~ O’pr
1P, (@] < P2 (183)
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Moreover, for 6,0' € © and x € X,

|y Ho(x) — PoHo (z)| < LG} 10 - 0], (4.8.4)
where i e
(1) poLp P
L =2P7 2P o gy + =2 Ly 4.8.5
PH (1 _ p)2( ) 1— p ( )

Proof Note that, under H4.14,

S || Py (Ho() - 1(6)) - mo(Ho() — 1(8))|
=0

o i (4.8.6)
. T
< Ho() = h(6) | Kr Y pi < T2
i=0
Therefore, for all 8 € © and x € X, the series
> Pi(He(z) — h(0)) — mo(Ho(-) — h(0)) (4.8.7)
i=0

is uniformly converging and is a solution of the Poisson equation (4.2.4). In addition,
(4.8.2) and (4.8.3) follow directly from (4.8.6). Under H4.14, applying a simple modifica-
tion? of [Fort et al., 2011, Lemma 4.2, 1st statement] shows? that for any 6,0 € O, we
have

KrU 4 Kp) op 1P, () — Por(, Yy - (4.8.8)

lmo — mor||Tv < l
P zeX

Again using a simple modification of [Fort et al., 2011, Lemma 4.2, 2nd statement] shows
that for any X € X, 6,6 € R?, it holds

|70 @) — For o (a) (4.8.9)
K2
<SP Hola) — h(6 b P
< g (2 I1Ho(@) = hO)I)(sup 1Py(a.-) = Por(w.dot)lzv)
Kp Kp
— ( sup ||Heg(z) — h(9)||> |lme — mor|| TV + — sup |Ho(z) — Ho ()]
IL—=p 0cO,zeX 1 ex

KQO'LP KP 1
< <(1P_ PE (2+ Kp) + 1L 16 -6 =LL)6—6,

where the last inequality is due to H4.12, H4.13, H4.7 and (4.8.8). |

2. We note that under H4.14, the constants pg, pe are the same in [Fort et al., 2011, Lemma 4.2] which
simplifies the derivation and yields a tighter bound.
3. Note that we take the measurable function as V' = 1 therein.
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Chapter 5

Fast Incremental EM Methods

Abstract: The EM algorithm is one of the most popular algorithm for
inference in latent data models. The original formulation of the EM
algorithm does not scale to large data set, because the whole data set
is required at each iteration of the algorithm. To alleviate this problem,
Neal and Hinton [1998] have proposed an incremental version of the EM
(iEM) in which at each iteration the conditional expectation of the latent
data (E-step) is updated only for a mini-batch of observations. Another
approach has been proposed by Cappé and Moulines [2009] in which the
E-step is replaced by a stochastic approximation step, closely related to
stochastic gradient. In this paper, we analyze incremental and stochastic
version of the EM algorithm as well as the variance reduced-version of
[Chen et al., 2018] in a common unifying framework. We also introduce
a new version incremental version, inspired by the SAGA algorithm by
Defazio et al. [2014]. We establish non-asymptotic convergence bounds
for global convergence. Numerical applications are presented in this ar-
ticle to illustrate our findings. This chapter corresponds to the article
[Karimi et al., 2019c].
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5.1 Introduction

Many problems in machine learning pertain to tackling an empirical risk minimization of

the form

n

> L Z{ logg(yi;0)} , (5.1.1)
i=1

=1

min L(0) :=R(0)+ L(0) with L(0

:M—‘

where {y;}"; are the observations, © is a convex subset of R? for the parameters, R :
© — R is a smooth convex regularization function and for each 6 € ©, g(y;0) is the
(incomplete) likelihood of each individual observation. The objective function £(8) is
possibly non-conver and is assumed to be lower bounded £(6) > —oo for all @ € ©. In
the latent variable model, g;(y;; @), is the marginal of the complete data likelihood defined
as fi(%,vi;0), ie. gi(yi;0) = [; fi(zi,vi;0)(dz;), where {z;}}'_| are the (unobserved)
latent variables. In many applications of interest, the complete data likelihood belongs to

the curved exponential family, i.e.,

fi(zi,9i;0) = h(zi, yi) exp ((Si(zi,4:) | $(8)) — ¥(0)) , (5.1.2)

where (), h(z;,y;) are scalar functions, ¢(8) € R¥ is a vector function, and S;(z;, ;) € RF
is the complete data sufficient statistics. Latent variable models are widely used in machine
learning and statistics; examples include mixture models for density estimation, clustering
document, and topic modeling; see [McLachlan and Krishnan, 2007] and the references

therein.

The basic "batch" EM (bEM) method iteratively computes a sequence of estimates
{6% k ¢ N} with an initial parameter 8. Each iteration of bEM is composed of
two steps. In the E-step, a surrogate function is computed as 6 — Q0,0 1) =

" 1Qi(60,08 1) where Qi(0,0') = — [,log fi(zi,vi;0)pi(2i|yi; 0 )u(dz;) such that
pi(zi|yi; 0) == fi(zi,vi;0)/9i(yi, @) is the conditional probability density of the latent vari-
ables z; given the observations y;. When f;(z;, yi; @) is a curved exponential family model,
the E-step amounts to computing the conditional expectation of the complete data suffi-

cient statistics,
1 n
5(0) = — Zé,;(@) where §;(0) = / Si(zis yi)pi(zilyi; O)u(dz;) . (5.1.3)
n - z

In the M-step, the surrogate function is minimized producing a new fit of the parameter

0% = argmaxgeg Q(0,0%1). The EM method has several appealing features — it is
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monotone where the likelihood do not decrease at each iteration, invariant with respect
to the parameterization, numerically stable when the optimization set is well defined, etc.
The EM method has been the subject of considerable interest since its formalization in
[Dempster et al., 1977].

With the sheer size of data sets today, the bEM method is not applicable as the E-step
(5.1.3) involves a full pass over the dataset of n observations. Several approaches based
on stochastic optimization have been proposed to address this problem. Neal and Hinton
[1998] proposed (but not analyzed) an incremental version of EM, referred to as the iEM
method. Cappé and Moulines [2009] developed the online EM (sEM) method which uses
a stochastic approximation procedure to track the sufficient statistics defined in (5.1.3).
Recently, Chen et al. [2018] proposed a variance reduced sEM (sEM-VR) method which
is inspired by the SVRG algorithm popular in stochastic convex optimization [Johnson
and Zhang, 2013]. The applications of the above stochastic EM methods are numerous,
especially with the iEM and sEM methods; e.g., [Thiesson et al., 2001] for inference with
missing data, [Ng and McLachlan, 2003] for mixture models and unsupervised clustering,
[Hinton et al., 2006] for inference of deep belief networks, [Hofmann, 1999] for probabilistic
latent semantic analysis, [Blei et al., 2017b, Wainwright et al., 2008] for variational infer-

ence of graphical models and [Ablin et al., 2018] for Independent Component Analysis.

This paper focuses on the theoretical aspect of stochastic EM methods by establishing
novel non-asymptotic and global convergence rates for them. Our contributions are as

follows.

e We offer two complementary views for the global convergence of EM methods —
one focuses on the parameter space, and one on the sufficient statistics space. On
one hand, the EM method can be studied as an majorization-minimization (MM)
method in the parameter space. On the other hand, the EM method can be studied

as a scaled-gradient method in the sufficient statistics space.

e Based on the two views described, we derive non-asymptotic convergence rate for
stochastic EM methods. First, we show that the iEM method [Neal and Hinton,
1998] is a special instance of the MISO framework [Mairal, 2015a], and takes O(n/¢)
iterations to find an e-stationary point to the ML estimation problem. Second, the
sEM-VR method [Chen et al., 2018] is an instance of variance reduced stochastic
scaled-gradient method, which takes O(n?/3 /¢) iterations to find to an e-stationary

point.

o Lastly, we develop a Fast Incremental EM (fEM) method based on the SAGA al-
gorithm [Defazio et al., 2014, Reddi et al., 2016b] for stochastic optimization. We
show that the new method is again a scaled-gradient method with the same iteration

complexity as sSEM-VR. This new method offers trade-off between storage cost and
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computation complexity.

Importantly, our results capitalizes on the efficiency of stochastic EM methods applied on

large datasets, and we support the above findings using numerical experiments.

Prior Work Since the empirical risk minimization problem (5.1.1) is typically non-
convez, most prior work studying the convergence of EM methods considered either the
asymptotic and/or local behaviors. For the classical study, the global convergence to a
stationary point (either a local minimum or a saddle point) of the bEM method has been
established by Wu et al. [1983] (by making the arguments developed in [Dempster et al.,
1977] rigorous). The global convergence is a direct consequence of the EM method to be
monotone. It is also known that in the neighborhood of a stationary point and under
regularity conditions, the local rate of convergence of the bEM is linear and is given by

the amount of missing information [McLachlan and Krishnan, 2007, Chapters 3 and 4].

The convergence of the iEM method was first tackled by Gunawardana and Byrne [2005]
exploiting the interpretation of the method as an alternating minimization procedure under
the information geometric framework developed in [Csiszar and Tusnady, 1984]. Although
the EM algorithm is presented as an alternation between the E-step and M-step, it is also
possible to take a variational perspective on EM to view both steps as maximization steps.
Nevertheless, Gunawardana and Byrne [2005] assume that the latent variables take only
a finite number of values and the order in which the observations are processed remains

the same from one pass to the other.

More recently, the local but non-asymptotic convergence of EM methods has been studied
in several works. These results typically require the initializations to be within a neigh-
borhood of an isolated stationary point and the (negated) log-likelihood function to be
strongly convex locally. Such conditions are either difficult to verify in general or have been
derived only for specific models; see for example [Balakrishnan et al., 2017, Wang et al.,
2015a, Xu et al., 2016a] and the references therein. The local convergence of SEM-VR
method has been studied in [Chen et al., 2018, Theorem 1] but under a pathwise global

stability condition.

5.2 Stochastic Optimization Techniques for EM Methods

We first describe the stochastic EM methods to be analyzed under a unified framework.

The kth iteration of a generic stochastic EM method is composed of two sub-steps —

(h+1) _ g(k)

sE-step : § — g1 (8 — SEFD) (5.2.1)
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which is a stochastic version of the E-step in (5.1.3). Note {74}32, € [0,1] is a sequence of
step sizes, S*+1) is a proxy for (%)), and 5 is defined in (5.1.3). The M-step is given by

M-step: %+ =95+ .= argmin { R(6) + ¢(0) — <.§(k+1) |¢(9)> }, (5.2.2)

0co
which is controlled by the sufficient statistics determined by the sE-step. The stochas-
tic EM methods differ in the way that S+ g computed. Existing methods employ
stochastic approximation or variance reduction without the need to fully compute §(é(k)).

To simplify notations, we define

sM = 5,(0W) = /Z Sz, y)pi(lyi; 0®)u(dz) and 5O = 5(00) =

(5.2.3)
Note that if S+ = 5(*) and 44,41 = 1, eq. (5.2.1) reduces to the E-step in the classical
bEM method. To describe the stochastic EM methods, let iy, € [1,n] be a random index
drawn at iteration k and 7F = max{k’ : ip = i, k' < k} be the iteration index where

i € [1,n] is last drawn prior to iteration k, we have:

ok
(iEM [Neal and Hinton, 1998]) St — gk) %(§Ef) - §§k'k)) (5.2.4)
(sEM [Cappé and Moulines, 2009]) S+ — 555:) (5.2.5)
(sEM-VR [Chen et al., 2018]) S+ =5tk 4 5 )y (5.2.6)

The stepsize is set to yx11 = 1 for the iEM method; ;11 = 7y is constant for the sEM-
VR method. In the original version of the sEM method, the sequence of step ;41 is a
diminishing step size. Moreover, for iEM we initialize with S ©) = 5 for SEM-VR, we
set an epoch size of m and define ¢(k) := m|k/m| as the first iteration number in the

epoch that iteration k is in.

fiEM  Our analysis framework can handle a new, yet natural application of a popu-
lar variance reduction technique to the EM method. The new method, called iEM, is
developed from the SAGA method [Defazio et al., 2014] in a similar vein as in sEM-VR.

For iteration k > 0, the iEM method draws two indices independently and uniformly as
i, jx € [1,n]. In addition to 7¥ which was defined w.r.t. iz, we define t;’-‘ ={K: jp =
J, k' < k} to be the iteration index where the sample j € [1,n] is last drawn as jj prior to
iteration k. With the initialization S\
SAGA inspired by [Reddi et al., 2016b], as described by the following recursive updates

=50, we use a slightly different update rule from

k . _ k
S0+ —3® 4 g®) gﬁt%)), St g n_1(§§lz) - §(.t”v)). (5.2.7)

k 23 Jk
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Algorithm 5.1 Stochastic EM methods.

1: Input: initializations 00 0, 8(0) §(0), Kmax + max. iteration number.

2: Set the terminating iteration number, K € {0,..., Kmax — 1}, as a discrete r.v. with:
P(K = k) = — e (5.2.8)
=0 e

3: for k=0,1,2,...,K do

4:  Draw index i; € [1,n] uniformly (and ji € [1,n] for AEM).

5. Compute the surrogate sufficient statistics S**+1) using (5.2.5) or (5.2.4) or (5.2.6)
or (5.2.7).

6:  Compute 1) via the sE-step (5.2.1).

7. Compute 0¥V via the M-step (5.2.2).

8: end for

9: Return: 9%,

where we set a constant step size as yr+1 = 7.

In the above, the update of S*+1) corresponds to an unbiased estimate of s%), while the
update for g(kﬂ) maintains the structure that g(k) =n 1y, §Z(-t§) for any £ > 0. The
two updates of (5.2.7) are based on two different and independent indices i, ji that are
randomly drawn from [n]. This is used for our fast convergence analysis in Section 5.3.
We summarize the iEM, sEM-VR, sEM, iEM methods in Algorithm 5.1. The random
termination number (5.2.8) is inspired by [Ghadimi and Lan, 2013] which enables one to
show non-asymptotic convergence to stationary point for non-convex optimization. Due
to their stochastic nature, the per-iteration complexity for all the stochastic EM methods
are independent of n, unlike the bEM method. They are thus applicable to large datasets
with n > 1.

5.3 Global Convergence of Stochastic EM Methods

We establish non-asymptotic rates for the global convergence of the stochastic EM methods.
We show that the iEM method is an instance of the incremental MM method; while SEM-
VR, iEM methods are instances of variance reduced stochastic scaled gradient methods.
As we will see, the latter interpretation allows us to establish fast convergence rates of
sEM-VR and iEM methods.

First, we list a few assumptions which will enable the convergence analysis performed later

in this section. Define:
S={>" as; : si€conv{S(z,y;) : z€Z}, oy €[-1,1], i € [1,n]}, (5.3.1)

where conv{A} denotes the closed convex hull of the set A. From (5.3.1), we observe that
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the iEM, sSEM-VR, and iEM methods generate §%) € S for any k > 0. Consider:

H5.1 The sets Z,S are compact. There exists constants Cs, Cz such that:

Cs :=maxsges||s —8'|| < oo,  Cz:=max;cp o) J7 19i(2, yi)|u(dz) < oo (5.3.2)

H5.1 depends on the latent data model used and can be satisfied by several practical
models (e.g., see Section 5.4). Denote by J%(6) the Jacobian of the function & : @ — £(0)
at 8’ € ©. Consider:

H5.2 The function ¢ is smooth and bounded on int(©), i.e., the interior of ©. For all
0,6 < int(0)2, || J(8) — I0(6")]| < Ly 6 — '] and || 3%(8")]| < Cy.

H5.3 The conditional distribution is smooth on int(0). For anyi € [1,n], z€ Z, 0,0 €
nt(0)2, we have |pi(=|y: 0) — pi(zlyis 8) < L, 6 - 0'].

H5.4 For any s € S, the function @ — L(s,0) := R(0)+(0) — (s | ¢(0)) admits a unique
global minimum 6(s) € int(©). In addition, Jg(?(s)) is full rank and 0(s) is Lg-Lipschitz.

Under H5.1, the assumptions H5.2 and H5.3 are standard for the curved exponential
family distribution and the conditional probability distributions, respectively; H5.4 can
be enforced by designing a strongly convex regularization function R(0) tailor made for ©.
We remark that for H5.3, it is possible to define the Lipschitz constant L, independently
for each data y; to yield a refined characterization. We did not pursue such assumption

to keep the notations simple.

Denote by HY(s,8) the Hessian (w.r.t to 8 for a given value of s) of the function 6
L(s,0) =R(0) + ¥(0) — (s| #(0)), and define

B(s) i= Jg(é(s))(Hg(s,é(s)))*1 VACIONE (5.3.3)

H5.5 It holds that Umax = supges || B(s)|| < 00 and 0 < Upin := infses Amin(B(s)). There
exists a constant Lp such that for all s,s’ € S?, we have || B(s) — B(s')|| < Lg||s — ¢|.

Under H5.1, we have [|§*)|| < oo since S is compact. On the other hand, under H5.4, the
EM methods generate 0%k ¢ int(©) for any & > 0. These assumptions ensure that the

EM methods operate in a ‘nice’ set throughout the optimization process.

Detailed proofs for the theoretical results in this section are relegated to the appendix.
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5.3.1 Incremental EM method

We show that the iEM method is a special case of the MISO method [Mairal, 2015a]
utilizing the majorization minimization (MM) technique. The latter is a common technique
for handling non-convex optimization. We begin by defining a surrogate function that

majorizes L;:
Qi(6;0") := —/Z{log fi(zi,yi;0) — log pi(zilyi; 0') } pi(zilyi; 0" pu(dz) - (5.3.4)

The second term inside the bracket is a constant that does not depend on the first ar-
gument 0. Since fi(2i,i;0) = pi(2ilyi; 0)gi(yi; 0), for all @' € O, we get Q;(6;6') =
—loggi(yi; 0') = L;(0"). For all 6,0’ € ©, applying the Jensen inequality shows

Qi(0,0") — /1 plalyi0) pi(2ilyi; 0")pu(dz;) > 0 (5.3.5)

Zz’ Yi; )

which is the Kullback-Leibler divergence between the conditional distribution of the latent
data p(-|y;; @) and p(-|y;; @'). Hence, for all i € [1,n], Q;(0;0’) is a majorizing surrogate to
L;(0), i.e., it satisfies for all 6,0" € O, Q;(0;0") > L;(0) with equality when 8 = 6’. For
the special case of curved exponential family distribution, the M-step of the iEM method

is expressed as

k+1) ¢ argmingco { R(0) +n 13, Qi(6; o, (e )))}

(5.3.6)

~ argmingeo {R(6)+4(6) - < Sxst o) )
The iEM method can be interpreted through the MM technique — in the M-step, ok+1)
minimizes an upper bound of £(8), while the sE-step updates the surrogate function in
(5.3.6) which tightens the upper bound. Importantly, the error between the surrogate
function and £; is a smooth function:

Lemma 9 Assume H5.1, H5.2, H5.3, H5.j. Let €;(0;60") := Q;(0;60") — L;(0). For

any (0,0,0') € ©3, we have ||Ve;(0;0') — Ve (0;0")| < Le||@ — 0|, where Le

CyC7z L, +Cs Ly.

Proof The proof is postponed to Appendix 5.6

For non-conver optimization such as (5.1.1), it has been shown [Mairal, 2015a, Propo-
sition 3.1] that the incremental MM method converges asymptotically to a stationary
solution of a problem. We strengthen their result by establishing a non-asymptotic rate,

which is new to the literature.
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Theorem 5 Consider the iEM algorithm, i.e., Algorithm 5.1 with (5.2.4). Assume
H5.1, H5.2, H5.3, H5.4. For any Knax > 1, it holds that

2L,

T(0FN 2] <
B{IVEE®)|P) < n 2o

E[£(6©) — L(9Fm=))], (5.3.7)

where L, is defined in Lemma 9 and K is a uniform random variable on [0, Kpax — 1]
[cf. (5.2.8)] independent of the {i} 26>

Proof The proof is postponed to Appendix 5.7

We remark that under suitable assumptions, our analysis in Theorem 5 also extends to

several non-exponential family distribution models.

5.3.2 Stochastic EM as Scaled Gradient Methods

We interpret the sEM-VR and fiEMmethods as scaled gradient methods on the sufficient
statistics §, tackling a non-convex optimization problem. The benefit of doing so is that
we are able to demonstrate a faster convergence rate for these methods through motivating
them as variance reduced optimization methods. The latter is shown to be more effective
when handling large datasets [Allen-Zhu and Hazan, 2016, Reddi et al., 2016a,b] than
traditional stochastic/deterministic optimization methods. To set our stage, we consider

the minimization problem:
min V(s) := £(0(s)) = R(O(s)) + — Z L£:(0(s)), (5.3.8)

where 6(s) is the unique map defined in the M-step (5.2.2). We first show that the
stationary points of (5.3.8) has a one-to-one correspondence with the stationary points of
(5.1.1):

Lemma 10 For any s € S, it holds that

VsV (s) = J5(s) VoL (6(s)). (5.3.9)

Assume H5.4. Ifs* € {s€S : VsV (s) =0}, then 0(s*) € {9 €0 : VoL(0) = 0}.
Conversely, if 6* € {9 €0 : VoLl(0) :0}, then s* = §(0%) €
{s €S : ViV(s) =0}.

Proof The proof is postponed to Appendix 5.8

The next lemmas show that the update direction, %) — S*+1) in the sE-step (5.2.1) of
sEM-VR and iEM methods is a scaled gradient of V(s). We first observe the following
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conditional expectation:
E[s® — sE+tD| 7] =50 — ) = g _5(9(5W))), (5.3.10)

where Fj, is the o-algebra generated by {ig,i1,...,i;} (or {ig,jo,-- ., ik, jr} for iEM).

The difference vector s — 5(6(s)) and the gradient vector VsV (s) are correlated, as we

observe:
Lemma 11 Assume H5.4,H5.5. For all s € S,

? > uZ IVV(s)I1%, (5.3.11)

Vi (VV(8) |5 = 5(8(s))) > ||s — 5(8(s))
Proof The proof is postponed to Appendix 5.9

Combined with (5.3.10), the above lemma shows that the update direction in the sE-step
(5.2.1) of sSEM-VR and iEM methods is a stochastic scaled gradient where () is updated

with a stochastic direction whose mean is correlated with VV(s).

Furthermore, the expectation step’s operator and the objective function in (5.3.8) are
smooth functions:
Lemma 12 Assume H5.1, H5.3, H5.4, H5.5. For alls,s’ € S and i € [1,n], we have

15:(6(s)) —8:(0(s))Il < Lslls —s'[l, [VV(s) = VV(s)| <Lv|[ls—s'll, (53.12)
where Ls :== Cz L, Ly and Ly := Umax(1 + Lg ) + L Cs.

Proof The proof is postponed to Appendix 5.10

The following theorem establishes the (fast) non-asymptotic convergence rates of sEM-
VR and iEM methods, which are similar to [Allen-Zhu and Hazan, 2016, Reddi et al.,
2016a,b]:

Theorem 6 Assume H5.1, H5.3, H5.4, H5.5. Denote L, = max{Ly,Ls} with the

constants in Lemma 12.

e Consider the sEM-VR method, i.e., Algorithm 5.1 with (5.2.6). There exists a

universal constant p € (0,1) (independent of n) such that if we set the step size

as v = £ qnd the epoch length as m =

Lvn2/3

that is a multiple of m, it holds that

m, then for any Kmax > 1

2L, v2 ~
E[IVV (U] < nf -2 B BV(EY) —VEEI)L (5.313)
max “min

o Consider the fiEM method, i.e., Algorithm 5.1 with (5.2.7). Sety = —=2min_ sych

aLyn?/3
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that o = max{6, 1 + 4vmin}. For any Kmax > 1, it holds that

o?L, vfnax = =
“max gy (50) — v (sKm)). (5.3.14)

Kmax Utim

E[||VV (%)) < ns

We recall that K in the above is a uniform and independent r.v. chosen from [Kmax—1]
[ef. (5.2.8)].

Proof The proof is postponed to Appendix 5.11

Comparing iEM, sEM-VR, and iEM Note that by (5.3.9) in Lemma 10, if
VsV (8)]|? < ¢, then |[VoL(0(8))||* = O(e), and vice versa, where the hidden constant is
independent of n. In other words, the rates for iEM, sEM-VR, iEM methods in Theorem 5

and 6 are comparable.

Importantly, the theorems show an intriguing comparison — to attain an e-stationary point
with ||[VeL(0(8))]|> < € or ||[VsV(8)]|?> < ¢, the iEM method requires O(n/e) iterations
(in expectation) while the sEM-VR, iEM methods require only O(n%/ €) iterations (in
expectation). This comparison can be surprising since the iEM method is a monotone
method as it guarantees decrease in the objective value; while the sEM-VR, iEM methods
are non-monotone. Nevertheless, it aligns with the recent analysis on stochastic variance
reduction methods on non-convex problems. In the next section, we confirm the theory

by observing a similar behavior numerically.

5.4 Application to Mixture and Topic Modeling

5.4.1 Gaussian Mixture Models

Our goal is to fit a GMM model to a set of n observations {y;};"; whose distribution is
modeled as a Gaussian mixture of M components, each with a unit variance. Let z; € [M]

be the latent labels, the complete log-likelihood is:

log fi(2i,9i:0) = Y1 Limy (20) [log(wm) — 117,/2] + Xpmy Lim} (23) s + constant .

(5.4.1)
where 0 = (w,p) with w = {w,}M=] are the mixing weights with the convention
wy = 1 — Z%z_ll wm and p = {pn}M_; are the means. We use the penalization

R(0) = gz%zl p2, —log Dir(w; M, €) where § > 0 and Dir(-; M, €) is the M dimensional
symmetric Dirichlet distribution with concentration parameter € > 0. The constraint set

on 6 is given by

O={wm, m=1,.. M =1:w, >0, "M w, <D x{umeR, m=1,..,M}. (54.2)
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In the following experiments of synthetic data, we generate samples from a GMM model
with M = 2 components with two mixtures with means pu; = —pus = 0.5, see Ap-
pendix 5.13.1 for details of the implementation and satisfaction of model assumptions
for GMM inference.

Fixed sample size We use n = 10? synthetic samples and run the bEM method until
convergence (to double precision) to obtain the ML estimate p*. We compare the bEM,
sEM, iEM, sEM-VR and iEM methods in terms of their precision measured by | — u*|?.
We set the stepsize of the sSEM as v, = 3/(k + 10), and the stepsizes of the sSEM-VR
and the iEM to a constant stepsize proportional to 1/ n?/% and equal to v = 0.003. The
left plot of Figure 5.1 shows the convergence of the precision | — pu*|? for the different
methods against the epoch(s) elapsed (one epoch equals n iterations). We observe that
the sEM-VR and iEM methods outperform the other methods, supporting our analytical

results.

Varying sample size We compare the number of iterations required to reach a precision
of 1073 as a function of the sample size from n = 10% to n = 10°. We average over 5
independent runs for each method using the same stepsizes as in the finite sample size case
above. The right plot of Figure 5.1 confirms our findings in Theorem 5 and 6. It requires
O(n/e) (resp. O(n% /€)) iterations to find a e-stationary point for the iEM (resp. sEM-VR
and fiEM) method.

10°

10-3 fin)=n EM
10-7 —c-- fin)=n3 i ﬁE:VR )’
. SEM
10-11 10° *EM Sz
o g -
* -15
3 10 b=
| 10—19 E 104
3 it
—_— 10—23 =
-27
10 o 10
10—31
2 4 6 8 10 103 104 10°
Epoch Problem size n

Figure 5.1 — Performance of stochastic EM methods for fitting a GMM. (Left) Precision
(|Ju®) — p*|?) as a function of the epoch elapsed. (Right) Number of iterations to reach a
precision of 1073.

5.4.2 Probabilistic Latent Semantic Analysis

We are given a collection of documents [D] with terms from a vocabulary [V]. The data
is summarized by a list of tokens {y; }I' ; where each token is a pair of document and word
Yi = (yz(d), ygw)) which indicates that yi(w) appears in document y,fd). The goal of pLSA is
to classify the documents into K topics, which is modeled as a latent variable z; € [K]

associated with each token [Hofmann, 1999].
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Define 6 := (81D 9(WIt)) as the parameter variable, where (14 = {ogt,lgd)}[[K—l]]x[[Dﬂ
and OV = {Ol(g‘jﬁt)}[[K]]x[[V—l]]- The constraint set O is given as — for each d € [D],
Oc(lf,‘d) € AX and for each k € [K], we have 0.(7‘2“) € AV where AK AV are the (reduced
dimension) K, V-dimensional probability simplex; see (5.13.19) in the appendix for the
precise definition.

|d) _

Denote 0( =1-yrt Oc(lt"kd) for each d € [D], and O(W‘t -te Wlt for each

k € [K], the complete log likelihood for (y;, z;) is (up to an additive constant term):

lOg fi(ziay’bv - Z Zlog :H-{k d} Zl7yl + Z Zlog :H-{k 'U}(Z’Hyl( ))

k=1d=1 k=1v=1
(5.4.3)
The penalization function is designed as
R(OUD g1y = _1og Dir(0MY; K, o) — log Dir(8™1V); v, 8", (5.4.4)

such that we ensure 0(s) € int(0©). Lastly, the model assumptions and the implementation

details are provided in Appendix 5.13.2.

Experiment We compare the EM methods on two FAO (UN Food and Agriculture
Organization) datasets [Medelyan, 2009]. The first (resp. second) dataset consists of 103
(resp. 10.5 x 10%) documents and a vocabulary of size 300. The number of topics is set
to K = 10 and the stepsizes for the iEM and sEM-VR are set to v = 1/n*/? while the
stepsize for the sEM is set to v, = 1/(k + 10). Figure 5.1 shows the evidence lower
bound (ELBO) as a function of the number of epochs for the datasets. Again, the result
shows that iEM and sEM-VR methods achieve faster convergence than the competing
EM methods, affirming our theoretical findings.

led 1e5

—4.7 5.1
—— iEM  —— SEM-VR

4.8 5.2 EM *— SEM

-4.9 _5.3] — fiEm

5.0 _
o o o 5.4
B B 55
W w

5.2 56

5.3 “a— M S SEM-VR 57

—-5.4 EM +—.5EM

—— fiEM —5.8
5.5
0 2 4 6 8 o] 2 4 6 8
Epoch Epoch

Figure 5.2 — ELBO of the stochastic EM methods on FAO datasets as a function of number
of epochs elapsed. (Left) small dataset with 103 documents. (Right) large dataset with
10.5 x 103 documents.
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5.5 Conclusion

This paper studies the global convergence for stochastic EM methods. Particularly, we
focus on the inference of latent variable model with exponential family distribution and
analyze the convergence of several stochastic EM methods. Our convergence results are
global and non-asymptotic, and we offer two complimentary views on the existing stochastic
EM methods — one interprets iEM method as an incremental MM method, and one
interprets sSEM-VR and fiEM methods as scaled gradient methods. The analysis shows
that the sEM-VR and iEM methods converge faster than the iEM method, and the result

is confirmed via numerical experiments.
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5.6 Proof of Lemma 9
Lemma Assume H5.1, H5.2, H5.3, H5.4. Let €;(0;0") := Q;(0;0") — L;(0). For any
0,0,0' € ©3, we have | Ve;(0;0')—Ve;(0;0")|| < L. ||0—0||, where L, := CyCz L, +Cs Ly.

Proof Observe the following identity

VoLi(0)|p_p = Vo{ - 10g/zfi(ziayi§0)ﬂ(dzi)}‘ 4
@ [ {Volog £z, 0)} oo il O)uldz)  (B61)
= VoQ;(0; é)|9:g

where (a) is due to the Fisher’s identity and (b) is due to the definition of @; in (5.3.4).
It follows that

Vei(8;6) = V{Qi(6,0) — Li(6)} = J5(6) (5:(0) —:(6)). (5.6.2)

We observe that

5:(8) —5:(0")|| = H/ZS(Zz’,yi){pi(ziyi§0) — pi(zilyi; 0") }u(dz)

(5.6.3)
<L,|6 ¢ /z |Si(zi, yi)|p(dzi) < Cz L, (|6 — 0|

where the last inequality is due to the compactness of Z. Finally, we have

IVei(8;0) — Vei(6; )| < || IE(6)|[5:(0) —5:(0)I| + (| I5(6) — JE(O)I[1s:(6) —si(6)
< (C¢Cz L, +Cs L¢)||9 — é||
(5.6.4)

where the last inequality is due to the compactness of S. |
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5.7 Proof of Theorem 5

Theorem Consider the iEM algorithm, i.e., Algorithm 5.1 with (5.2.4). Assume Hb5.1,
H5.2, H5.3, H5.4. For any Kmnax > 1, it holds that

2L,
Kmax

E[[VZO0U)[2] < n =2 E[Z(6©) - L(O%m)],

where L, is defined in Lemma 9 and K is a uniform random variable on [0, Kpax — 1]
[cf. (5.2.8)] independent of the {iy} 2G>

Proof We derive a non-asymptotic convergence rate for the iEM method. To begin our

analysis, define

(Y

(41 () .— R(0) + — ZQl 7 (5.7.1)

One has
2% (0) =20(60) + - (1,(6:6%) - @1, (0:07)) (672)

Observe that 1) ¢ arg ming. g £# )(0). We have
<0< 60) — Q;, (6V; 07

®)) — Q;, (8D 67))

Z(k+1)(é(k+1)) < Z(k+1)(é(k)) - Z(k)(g(k)) +

—~
)
o~

>

SI—=3=

(k)(é(k)) +

I
o
o

(5.7.3)
where we have used the identity £;, (é(k)) = Qi (é(k); é(k)). Arranging terms imply
e (0W;070)) =, (6W;00)) — £, (0W) < n(C® (9" — £* TV (§%+1)y))  (5.7.4)

For k € N*, denote by Fj the o-algebra generated by the random variables ig,...,i5_1.
Note that %) is Fr-measurable. Because the random variable i is independent of Fp_1

and is uniformly distributed over {1,...,n}, the conditional expectation evaluates to
E | e, (6%); 7)) ‘ fk] =2®@6") - (6™ (5.7.5)

where L is the global objective function defined in (5.1.1). Note that the function " (0)—
L(0) is non-negative and L.-smooth. It follows that for any 6, the inequality holds

_ _ . o o . L. .
0<2%(9) - £(6) <2(8W) —Z(6®) — (VL(OM) |6 - 6®) + =<6 — 6|,
(5.7.6)

where we have used the fact VL (")) = 0. Setting @ = %) + (L) 'VL(O®) in the
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above yields
ZOW)|2 < 2™ (0W) —Z(6™) (5.7.7)

Therefore, taking the conditional expectation on both sides of (5.7.4) leads to

1 A _ A(
S IVE@W)|2 < 27(0W) — B[ (04| 7] (5.7.8)
Note that as we have set 7511 = 1 in the iEM method, the terminating iteration number
K is chosen uniformly over {1,..., Kmax}, therefore taking the total expectations gives
N Kmax_l
E[|VL@O")] Z E[|VL(6™)]’]
2 Le - A (A max A
max
2n Le o 150)  4(0)y 7/ 4 (Kmax)
< KmaXE[c (0©) = L(8Fn)]

Lastly, we note that £(0(©) = Z(O)(é(o)). This leads to (5.3.7) and concludes our proof.
[

5.8 Proof of Lemma 10

Lemma For any s € S, it holds that

VsV (s) = J5(s) T VoL(6(s)).
Assume H5.4. Ifs* € {s €S : VsV (s) =0}, then 0(s*) € {9 €0 : VoLl(0) = O}. Con-
versely, if 0* € {9 €0 : VoL(0) = O}, then s* =8(0*) € {s €S : VsV (s) =0}.

Proof Using chain rule, we obtain VgV (s) = J%(S)TVQZ(E(S)) Obviously if VsV (s*) =

then Vo L(6(s*)) = 0 because J5(s) is invertible. Consider now the converse. By the Fisher
identity, we get VoL;(0) = ng(ﬂ)—Jg(B)T@-(O) which implies that Vo L£(0) = Vo R(0)+
Vo (0)—1J9(0)"s(6). Hence, if VoL(6*) = 0, then Vg R(0*)+Vg1h(8*)—J§(0monb) 's* =
0 where we have set 8* = §(6*). Under H5.4, the latter relation implies that 6* = 6(s*).
The proof follows. |

5.9 Proof of Lemma 11

Lemma Assume H5./,H5.5. For alls €S,

Vi (VV(5) |5 = 3(8(5))) > [[s = 5O)||” 2 vma IV (5)]I%
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Proof Using H5.4 and the fact that we can exchange integration with differentiation and

the Fisher’s identity, we obtain

VsV(s) = J%(S)T(Ve R(O(s)) + vac(é(s)))
= J5(s)" (Vou(8(s)) + Vo R(8(s)) — I5(8(s)) '5(8(s)) ) (5.9.1)

= J5(s) " J5(8(s)) T (s —5(6(s))) ,

Consider the following vector map:
s — VoL(s,0)lg_ge) = Vev(8(s)) + Vo R(B(s)) — J5(6(s)) " s . (5.9.2)
Taking the gradient of the above map w.r.t. s and using assumption H5.4, we show that:

0=—3(8(s)) + (V3((6) + R(6) — (9(6)[5)) [5_gs)) T5(S) (5.9

=HY (s;0)

The above yields
VsV (s) = B(s)(s — 3(6(s))) (5.9.4)

_ _ -1
where we recall B(s) = Jg(e(s))(H%(s; O(S))) Jg(e(s))T. The proof of (5.3.11) follows
directly from the assumption H5.5. |

5.10 Proof of Lemma 12

Lemma Assume H5.1, H5.3, H5.4, H5.5. For all s,s' €S and i € [1,n], we have
I5:(0(s)) —5i(B(s)|| < Lslls = 'll, [I[VV(s) = VV(s)] < Ly [Ils = &Y,
where Ls :== Cz L, Ly and Ly := Uyax(1 + Lg ) + L Cs.
Proof We prove the first inequality of the lemma in (5.3.12). Observe that
5:(0(s)) —5i(0(s)) = /z S(zi yi){pi(zilys; 0(s)) — pilzilyi; 0(s")) }u(dz) (5.10.1)

Taking norms on both sides and using H5.1, H5.3 yield

[5:(0(5)) —:(0() | < L, [006) = 8(s")]| [ S pilld) < Co Ly [6(5) — 05l
(5.10.2)
where we have [,[S(zi,y;)|pu(dz;) < Cz. Furthermore, under H5.4, as 6(s) is Lipschitz,
there exists Ly such that
8(s) — ()| < Lo lls — 5| (5.10.3)
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Substituting back into (5.10.2) concludes the proof with Lg = Cz L, L.
To prove the second inequality in (5.3.12), we observe that:

VsV (s) = B(s) (s — 3(6(s))) (5.10.4)
We observe the upper bound

IVV(s) - VV(s)
$)((s ~ 3(8(s))) - (s' ~ 5(8(s)))) + (B(s) — B(s))(s' ~3(8())|  (5.105)
$)l[ls - 5(8(s)) — (s~ 3(8())I| + | B(s) - B8’ — 5(6(s)]

We observe that

[5(8(s)) ~ 5@(s))]| < - Zn: I5:(6(s)) = 8:(B(s") || < Ls [Is = sl (5.10.6)

n -

which is due to (5.3.12). Furthermore, as s’ € S, a compact set, we have s’ —3(0(s))| <

Cs. Consequently, using H5.5 we have
IV () = V()| < (vmax(1+Ls) + L Cs ) [}s = ]| (5.10.7)

which proves our claim. |

5.11 Proof of Theorem 6

Theorem Assume Hb.1, H5.3, H5.4, H5.5. Denote L, = max{Ly, Ls} with the constants

in Lemma 12.
[leftmargin=>5.5mm]

e Consider the sEM-VR method, i.e., Algorithm 5.1 with (5.2.6). There exists a uni-
versal constant p € (0,1) (independent of n) such that if we set the step size as
then for any Kmnax > 1 that is a

__ MUmin - n
V= e and the epoch length as m = G,

multiple of m, it holds that

2Ly Vpax mivs -
R o E[V (3©)) — v(sKma)y],
max

E[|VV (8%)|?] < ns

min

e Consider the fiEM method, i.e., Algorithm 5.1 with (5.2.7). Set v = a%“;ig/s such
that o = max{6, 1 + 4vpin}. For any Kmax > 1, it holds that

2T 2
a“Ly UmaxE[V(é\(O)) - V(é‘(Kmax))] )

2
Kmax Uhin

E[|VV(35))[?] < ns
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We recall that K in the above is a uniform and independent r.v. chosen from [Kmax

[ef. (5.2.8)].

To simplify notation, we shall denote ¢; = v,;, and di = Umax in the below.

Proof for the sEM-VR method We first establish the following auxiliary lemma:
Lemma 13 For any k > 0 and consider the update in (5.2.6), it holds that

E[|g® — s®+D)17] < 2E[|]8® —3®)|?) + 2 LI E[|5® — 5“7, (5.11.1)

where we recall that ((k) = mL%J is the first iteration number in the epoch that

iteration k 1is in.

Proof We observe that

E[|g® — s®*V)?) < 2E[||8® — 501%] 4 2E[|)5®) — sE+V) (5.11.2)

For the latter term, we obtain its upper bound as

S;

P R

E[|s® — s*+V|17 (5113)

m-—¥“m<ﬁmm®—ﬂwﬁ
ik ik — s

Substituting into (5.11.2) proves the lemma. [ |

To proceed with our proof, we shall consider a constant step size ;. = v and observe that

2
~ ~ ~ ~ Ly |
V(EHFD) < V(W) — 5 <S(k) — Skt VV(S(’“))> + ’VTHSU@) — SEH)|2 (5.11.4)

Using (5.3.10) and taking expectations on both sides show that

B[V (8%+1)]
CE[[3W - SEII (5115

< EBV(E®)] - LE[I8® —30)) + T VE[I8® - sS4
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where (a) is due to Lemma 11. Furthermore, for k +1 < 4(k) +m (i.e., k+ 1 is in the

same epoch as k), we have

E[[|s*+1) — sR)|2] = g[||s+D) — k) 4 g(k) — 5(tR)||12]
= E[Hg — 3R )2 4y 5k+D _ gk))12 1 o <§(k) — gtk | glk+1) _ g(’f)>

s s s < ~ S (5.11.6)
= E[Hs(k) — s(f(k))HZ + 72||S(k) _ 5(k+1)||2 — 9y <S(k) _ glery) | sk _ S(k)>]

<E[(1-+95)[80 — s 425 — STV 4 250 507,
where the last inequality is due to the Young’s inequality. Consider the following sequence
Ry :=E[V(3W) + by ||s® — sk 2] (5.11.7)
where by, := b, mod m is a periodic sequence where:
by = b1 (1+98+292LY) ++*Ly L2, i=0,1,...,m—1 with b, =0. (5.11.8)

Note that b; is decreasing with 7 and this implies

(1+~8+29y2L™ -1

bi < by =~2Ly L2

L i=1,2,...,m. (5.11.9)

For k+ 1 < ¢(k) + m, we have the following inequality

21
~ TN — Y —
Ryy1 < E{V () — —Hs(k) — 502 4 %Hs(k) — S(k+1)H2]

b B [(14 9880 — S|4 425 — SEEDR 4 250 - 57
(a) Yo b1V~ _ N =
< B[VEW) (- = FFHIE = 5O + b (1498) 50 - 5]

+ (72 Ly +Qbk+w?)E{”§(k) _ 502 12|30 gtk HQL

(5.11.10)
where (a) is due to Lemma 13. Rearranging terms gives
Ry1 <E[V(EW)] - (cll - bk;l"}/ — 7 (Ly +2b11) E[|5% — 59
+ (braa (1498 +29° L) +9° Ly L JE[6® — 5O)] (5.11.11)

=by, since k+ 1 < L(k)+m

b — _
= Ri— (= 20 =2 (L b)) Ef5) — 5]
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> 0,
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! — e1v(Ly +2bg 1)

This leads to, for any v and (3 such that (1 — ¢1bg41/5
. (5.11.12)

c1(Ri — Rg+1)

EIVV(ED)P) < E[Js® - 502 <
(1 — b1 87— ary(Ly +2bk+1)>
it can be shown that there exists u € (0,1),

. Ty . _ nc?
By setting 5 = Cl1/3 V= ma Wa
such that the following lower bound holds
52
C - . n3
1—c1yLy —(= 4 2019)bpyr > 1 — % —bo(= + = #g)
B n3 L,  Tyns
Ly 42 (1 27212 32
SR\ @ Ul s 7253 (2 2R (5.11.13)
n3s  cins VB + 27 Lg L, Tyn3
(a) e—1 01
>1-L - Le-D+ By 21— p-p(+ 2 >
n3 1 1 2
where the simplification in (a) is due to
2 4221
B engrorz<ty “4 G G (1+~8+272L2) 1. (5.11.14)
n noons c n
and the required x in (b) can be found by solving the quadratic equation . This gives
2d3 —
1R = Ritws) (541 15)

Kmax 1
E[|[VV (8™)?] <
Z [l RN)12) < Ko,

E[| vV (8"
Note that Ry = E[V(5(9)] and if Knax is a multiple of m, then Rmax = E[V(8Km))]

Under the latter condition, we have
(5.11.16)

2 lecl —~
< ns VRV (0) -
Koo V(s

E[|VV (35 V(8m)).

This concludes our proof.

Proof for the iEM method Our proof proceeds by observing the following auxiliary

lemma:
Lemma 14 For any k > 0 and consider the update in (5.2.7), it holds that

2L2 "
E[||3®) — s*+1)12] < 2E[||5*) — 50| 1%) ZE 185 — 3|12 (5.11.17)
. th .
Proof We observe that S = =iy, s( ) and Efs;, (k) _ Eklk)] — 5k _ 5", Moreover,
1. In fact, for small ¢q, this gives u = O(c1)
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we recall that El(k) =35,(0%) =5,(6(5™)). Thus

k
E[[s® — 6+D 2 @ g5 +(§"“)—§(’“))—(§(k)—EZ”“))\F]

1k

< 2E[|5% — 592 + 26[| 5 - 5) - 6 — 5.+ (5.11.18)

(b) k
< 2R[|5® — 5092) 4 2E[5%) — 50|12,

where (a) uses the SAGA update in (5.2.7); (b) uses the variance inequality E[||X —

)
E[X]||?] < E[||X||?] . The last expectation can be further bounded by

3

a

B () 1 ) (tF Ls — . 4k
EIs) —5 * 121 = = S E[s® — 517 < = SUE[I8® - 502, (5.11.19)
) =1

n

N

|

where (a) is due to Lemma 11. Combining the two equations above yields the desired

lemma. [ |

Let vx4+1 = 7, i.e., with a fixed step size. We observe the following

|| Sk+D|2 - (5.11.20)

V(EED) < v(Ek) — 5 <§(k) _ S+ ]VV(§(’“))>
Taking expectations on both sides yields
E[V(s*D)]
<E[V(s®™)] - E[ (¥ - 50| vV (s k>>>} - @Emg@ el
< BV (E®)] - TE[s® 507 TR0 - sE)P)

ZE 13%) — 5|2

(5.11.21)

— R L L
< E[V(s™)] - (1—72LV)E[Hs< —s0P 4+ =2

where (a) is due to Lemma 11 and (b) is due to Lemma 14. Next, we observe that

1 & (t5+1) 1< /1 n—1 k
1 (k1) _ LEMskHD _ g®2) £ P L Rngth) _ gt 2
n 2 Ells 7] = 5 32 (GBI = 017 + ——{js+) - D))
(5.11.22)
where the equality holds as i and ji are drawn independently. For any 8 > 0, it holds

E[Js*+1) — 502
= E{Hg(k“) —g®)2 4 |3® — D)2 42 < S _ 50 | 500 _ g(tf)”
— E{HA(kz—s—l k)||2 + ||A(k (tz‘)H2 — 2y <§( ) _ 5(k) E ~k) _ S(tf)ﬂ

-~ ~(tk AT — N k
< E[s*HD — s+ 50 — 5002 4 250 502 1455 — 5]

(5.11.23)
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where the last inequality is due to the Young’s inequality. Subsequently, we have
1 n
= S E[stY - 5T
n -
=1 | (5.11.24)
Sk+1) _ gk))21 4 T stk) _ gEy2 o Y pge) _ 5k 12
<E[|s 11+ = ;E[aﬂmus s)2 4 2 )18® — 302
Observe that s++1) — 5(k) = _~(5(k) — S(k“)). Applying Lemma 14 yields
L= mrnathdl) S
~> Ells |17
mn
=1
— 1N\ " 29212 (n—1)(14+~p) N (i
2 71 (k) _ 5(k)|2 s (k) _ 5(tF))2
< (7 + = 5)Ells u 1+;( - S JEl8) — 5]
n 1 2
NEMs® _ 502 Lo n £98 42 Lo ) oty
E - E :
JElls® ~= O+ 3 - 8 I
(5.11.25)

§<272+,8

~ k:

AR = ZEHS(k -8
'Ll

Let us define
%)E[Hg(’f) — 32 (5.11.26)

From the above, we get
(¢ —1)eg > 4, a > 6, it is easy to

A < (1 1 VB + 272 L2 )A(’f) (2 2+

_ aly
— pl/3
(5.11.27)

Setting L, = max{Lg, Ly}, v = m7 B

1
1——+98+27°L2>1— =
n n

check that
(5.11.28)

acp —cp —2
1 1 <1
acin

1 2 <1
acin

and

1
l—=—4+y8+2y*L2<1— =+ —+
n o«
(0,1). Observe that as A(®) = 0 and by telescoping,

which shows that 1— % +B+272 L2
021 (5.11.29)

we have

AR < (242 4 )Ekj(l—w@wv 12)" Es - s
/=0
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Let Kmax € N. Summing k£ =0 to k = Knax — 1 gives

Kmax—1 Kmax—1 k )
> Ak < (2924 ) oy (1 — =+ 9B+ 2792 LZ) E[|s® —351?]
k=0 k=0 (=0
Kma)( 1
= +g) X 2(1—f+%8+27 12) Els® - 50
k=0 ¢=0
2,7 + 'Y Kmax—1
< g Z E[||s®) — 582,
n VB — 2L2
(5.11.30)
Summing up the both sides of (5.11.21) from k =0 to k = Kmax — 1 yields
E[V <é<Km“>> - V(é“”)]
Fra 2 k) =) 21 L 2 2 A (k)
2 2 2,7
Yo ey LOTWL)RY DN e
g (—a+7 R S b e JE(Is® — 502}
Furthermore,
> (VLv L) (29y° + %)
Y LV+ 1
5 — B8 = 292LE
7 - 2 1
(a) 1 LV(QQC%R4/3) 1(a202f2n4/3 + ac2f2n1/3)
< _— + 1-v 1-v
- O‘QC%LVTLM?’ % - % - O420%2n4/3
7 2 1
. 1 Lv(a2c%f\?n4/3 + ac%f\?nl/i”) (51132)
a2 Lyn/3 N (aernt/3)(a = 1)ep — 2
1
® 1 A A S b
2c2 L n4/3 4(acint/3) =2 T a2 Lyn*3  3a2ciLyn2/3
5/6
~ ac?Lyn?/3
where (a) uses L, > max{Lg, Ly}, (b) is due to (o — 1)c; > 4 and (c) uses acynl/3 >
1. Now, using the fact that I = Qfl s and the lower bound ||5() — 5R)|2 >
acy v 3
dy HIVV (5%W) |12, we have
Kmax 1
E[V (8m)) — v (s)] —— Z E[||s® — 502
6ac1Lvn§ _
(5.11.33)
1 Kmax 1 k)
> E[VVE")A

6adlcl ond k=0
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Recalling that K is an independent discrete r.v. drawn uniformly from {1,..., Kmnax} and

noting that o > 6, we have

N 1 Kmax—1 N 2 dQZV(OéCl)2(E V(é(o)) _ V(é(KmaX)>
EVVE)IPI = = > ENVVEM)|P <ns = [ ]
Kmax k=0 Kmax
(5.11.34)

5.12 Local Linear Convergence of iEM

In this section, we prove that the iEM method converges locally at a linear rate to a
stationary point, under a similar set of assumptions as in [Chen et al., 2018]. Note that
some of the following assumptions can be difficult to verify, and our analysis here is merely

a proof of concept.

Consider a stationary point 8* to problem (5.1.1) and its corresponding sufficient statistics

s*, also a stationary point to (5.3.8). To simplify notations, we follow [Chen et al., 2018]

and write the complete sufficient statistics as F(s’) :=§(0(s’)), and also the ith sufficient

statistics as f;(s") :=8;(6(s’)). We assume the following:

B 1 The Hessian matriz V?L(0*) is strictly positive definite such that 8* is a strict local

minimizer of problem (5.1.1).

B2 For any k > 1, we have ||8* — s*|| < L%, where Ls was defined in our Lemma 12 and

1 — X is the mazimum eigenvalue of the Jacobian matriz J%(s*).

The above assumptions correspond to assumptions (a), (c¢) in [Chen et al., 2018, Theorem

1], while we note that assumption (b) therein are shown in our Lemma 12.

We remark that B1 is strictly stronger than H5.4 used in our global convergence analy-
sis. The latter makes assumption on the actual objective function £(6*) instead of the

surrogate function @ — L(s, @). Our proof goes as follows.

Proposition 12 Under Assumption Bl, B2 and the conditions such that our
Lemma 12 holds. The fiEM method converges linearly such that

E[[|s%+) —s*|?] < (1 — 86)F+1130©) —s*|12, V k > 0, (5.12.1)

where § = ©(1/n) with an appropriately chosen step size ~y.

Proof (Sketch) For & € N*, denote by Fj, the o-algebra generated by the random variables

10,705 - - - » Uk, Jie- Consider

E[||s*) —s*?|7] = E[[|8® — (38" - sWHD) —*|*| 5]

R R R (5.12.2)
=E[|(1 = )8" +9FEW) = s+ (8T — FEW)) |27
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Note that as B[SV — F(5))|F,] = 0, we have

E[||g%*) — s*|1?| 7]
(5.12.3)
= E[|(1 = 7)8" +vF(38W) — s*|*|Fi] ++°E[|S*Y — F(3™)|1*| )
Repeating the analysis in (9) of [Chen et al., 2018], we arrive at the upper bound
E[(1 - 7)5® + 1 F(aM) - s 5] < (1 - 1A/2)50 — %) (5.12.4)

On the other hand, applying [Defazio et al., 2014, Lemma 3] shows that

E[I8* D — FE®) 27 < 2(1£iB™) — fi (5DIP + 11 D) = fir(s7)]2)

. (5.12.5)
<212 (|37 — 5|2 + |50 — s|1?)

Denote the total expectation as hy, := E[||3%%) — s*||?], and taking the total expectation on
both sides yields

E[|8%HD) — FEW)|?) < 212 (hy, + 5 i) (5.12.6)
Substituting the above into (5.12.3) yields

A
P < (1=75 + 29212 )+ 29212 (2 S0 ) (5.12.7)

Moreover, we observe the following recursion through evaluating the expectation

1 1 W1 & iy 1y k—t-1
w3 how = ~hiy + (1 - ﬁ)ﬁ Zhrf,l < (1 - 5) he (5.12.8)
i=1 i=1 (=0
Therefore, (5.12.7) simplifies to
A 272 272 Lg = Lyk=t=1
b < (1- g+ 2L Vi + - ggo (1- 5) he (5.12.9)

To this end, we let a = %, b=2 Lg, c=2 Lg and consider the following inequality,

) gty 1\ k—t—1
B < (1= ya+970)he + == 37 (1- ﬁ) he (5.12.10)
£=0

We claim that for a sufficiently small step size -, there exists § € (0, 1] such that hy < (1—
8)*hg for all k. The proof can be achieved using induction. The base case is straightforward
since:

hi < (1 —~ya +~*b)ho (5.12.11)
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For the induction case, we assume that h, < (1 —6)"hg for 7 = 1,2...., k. We observe that

the induction hypothesis implies

Pyt 2 w2 1yk—t=1 ¢
<(1- 1 TN (1o = 1
hy S A -rat )-8+ ;:0( n) (1-49)

< (1—qa+~2)(1 -8k + 'ch(l - 5)]671%
} (5.12.12)

= (1 5)k{(1 — ya 4+ ?b) +~*c

W (1—0)* {(1 —ya+¥?b) + y2e(1 + 5n)}

< (18 {(1=7a+9%) + 721 +n)}

1—nd

where the approximation holds if nd < 1. Lastly, if

y< =(b+ec(l4n))! (5.12.13)

[NV ST

Then hyy 1 < (1 —6)*hg with § < va —~2(b+c(1+n)) = O(1/n).

5.13 Practical Applications of Stochastic EM Methods

This section provides implementation details and verify the model assumptions for the

application examples provided. Only in this section, for any M > 2, we denote
AM = {wn, €R, m=1,..M —1:w, >0, M1, <1} cRM-! (5.13.1)

as the shorthand notation of the dimension reduced M-D probability simplex.

5.13.1 Gaussian mixture models
Model assumptions We first recognize that the constraint set for 6 is given by
0 =AM x RM, (5.13.2)

Using  the  partition of the sufficient  statistics as  S(yi,2i) =
(SO (yi, 2) T, 8P (ys, 2) T, 8O (s, )T € RM-1 x RM-1 x R, the partition
0(0) = (6M(O)T,6P(0)T,63)(0)T € RM-1 x RM-1 x R and the fact that
Ly (zi) = 1 — Z%;ll Igmy(2i), the complete data log-likelihood can be expressed
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as in (5.1.2) with

1) 1 MQ 1 Mz
st =Ly (z1),  o(0) = {log(wm) —~ 2’”} {log(l— T w)) — M} :

St = Ly (20)yin 02(0) = pim
D=y ¢8(0) = par

and ¢(0) = {log(l — My, — “M} We also define for each m € [1, M], j € [1, 3],

sm/ =n"tY0 51(]721 Consider the following conditional expected value:

: (5.13.4)

Wm, €X 1 7
@m(yi: ) == Eo[lzmmyly = uil = =37 o (2(1( - )M)) 2)
2 J

j=1Wj exp
where m € [1,M], i € [1,n] and @ = (w, ) € O©. In particular, given 8 € O, the E-step

updates in (5.2.3) can be written as

= ~ ~ - - T
5i(0) = (W1(:;0), ..., @n1-1(i3 0), v (¥i3 0), .., yiconr (i 9), Y ) (5.13.5)
=M (9)T =52 (9)T =5%(8)
Recall that we have used the following regularizer:
R(6) = § X1 Him — € 1 0g(wim) — elog (1 = 3571 win) . (5.13.6)
It can be shown that the regularized M-step in (5.2.5) evaluates to
T
(1+eM)™ (()—l—e le—l—e) @ (s)
()= | (1) +0) s (s +0) s T | = | EGs) (5.13.7)
(S ) ) P ()

where we have defined for all m € [1, M] and j € [1,3] , s9) = n1 A s(j)

To analyze the convergence of the EM methods, we verify H5.1 to H5.5 for the GMM

example as follows.

To verify H5.1, we observe that the set Z is the compact interval [M], in addition, the
sufficient statistics defined in (7.3.3) also leads to a bounded and closed S.

To verify H5.2, we observe that the Jacobian matrix JZ(O) can be computed as

J5(0) = 0 I o |- (5.13.8)
0 0 1
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where we have denoted % as the (M — 1)-dimensional vector (wi, ..., =2—). We observe
1 WM —1

that it is a bounded matrix and it is smooth w.r.t. 6.

We verify H5.3 next, i.e., the Lipschitz continuity of p(z;|y;; @), w.r.t to @ noting that for
all i € [n] and m € [M], p(z; = m|y;;0) = Eg[l,,—myly = yi] = Wm(yi;0). Observe
that p(z; = m|y;; 0) is given by the softmax function and the desired Lipschitz property

follows.

Next, we observe that with the designed penalty, the function 8 — L(s, 8) admits a unique
global minima with 6(s) € int(©) for all s € S. Second, since 6(s) € int(0), the Jacobian
matrix defined in (5.13.8) must be full rank. Lastly, the Lg-Lipschitzness of (s) can be
deduced by inspecting (7.3.7). The above show that Assumption H5.4 is verified.

Finally, we calculate the quantity B(s) defined in (5.3.3). Observe that the Hessian
HY (s, 0) is:

e M1 . s(Dpe
Hi(s,0) = 0 Diag(s™") + 1) 0
0 0 §4+1— M1 )
(5.13.9)
We can rewrite B(s) as an outer product:
_ _ -1 _
B(s) := J9(8(s)) (HY(s,8(s)))  I50(s)T = T ()T ()" (5.13.10)
where
_1
H,? 0 0
_ ; 1
T(s) =200 | O Peelag) 0 (5.13.11)
0 0 L
\/5+1—Z;‘f;f s
and O
 lte— M=ty + . (1 +eM)?
1+eM

Note that J(s) is a bounded and full rank matrix which yields to the upper and lower
bounds on eigenvealues in H5.5. From (5.13.11), we note that B(s) = J(s)J(s)" is
Lipschitz continuous, i.e., , there exists a constant Lp such that for all s,s’ € S?, we have
IB(s) = B(s')|| < Lp [Is = s'||
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Algorithms updates In the sequel, for all ¢ € [n] and iteration k, the conditional
expectation §Z(-k) is defined by (7.3.5) and is equal to:

(@1(yi; 0%, ..., &pr—1(ys; 6¢ ))
ST = | (yaon (s 09, . yidong—1 (i 0N T | (5.13.13)
Yi

At iteration k, the several E-steps defined by (5.2.4) or (5.2.5) or (5.2.6) or (5.2.7) leads
to the definition of the quantity §*+1). For the GMM example, after the initialization of
the quantity §(© = n—1 > (0) , those E-steps break down as follows:

Batch EM (EM): for all i € [1,n], compute §§ ) and set

g(k+1) _ -1
ZZ ) SO (5.13.14)
Online EM (sEM): draw an index ij uniformly at random on [n], compute §§]]:) and set
D) = (1 — 7)8® 4 sl (5.13.15)

(k)

Incremental EM (iEM): draw an index i; uniformly at random on [n], compute §;,

and set
k

glk+1) — g(k) 4 gl(f) — §l(:l ) — n~t ijl §§Tik) . (5.13.16)

Variance reduced stochastic EM (sEM-VR): draw an index i uniformly at random

(k)

on [n], compute s; ” and set

S+ (1 — 7)e) 4 7(gl(]i:) ( () +S(e(k)>) (5.13.17)

where §§i(k)) and 5¢(*) were computed at iteration £(k), defined as the first iteration

number in the epoch that iteration k is in.

Fast Incremental EM (iEM): draw two different and independent indices (i, j)
(k) (k)

uniformly at random on [n], compute the quantities s; ” and s, * and set

k
glk+1) — (1- 7)é(/c) i 7(8( ) n S(k;) Sgtlk))

ik
k
S0 Z 50 415 géij)

(5.13.18)

Finally, the k-th update reads 8 t1) = 9(8(*+1)) where the function s — 0(s) is defined

by (7.3.7).
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5.13.2 Probabilistic Latent Semantic Analysis

Model assumptions The constraint set © is given by

O = (xuerpA%) x (xreprgA?) - (5.13.19)

For the sE-step (5.2.1) in the EM methods, we compute the expected complete data statis-
tics as

(fl‘f)(g(t\d),a(wh))—ﬂ{d}( )(Ez ) tld)g(W\(tvz)) 9§f‘d)9,(cw|<t3v>7

(5.13.20)

_(w w w d w d w
ngklf}) (OD glwlt)y — i <yl( ))(Z 9(t<|d>)59§ U\t)) ‘9(tL1))k0](c v|t),

for each (i,k,d,v) € [n] x [K] x [D] x [V]. Meanwhile, the regularized M-step (5.2.2) in
the EM methods evaluates to:

(t|d)

-1
( 9019 (s) ) (S S st + oK) (Si s + o)

y _ y . (5.13.21)
(S Sl sl 5v) 7 (o, st + )

for each (k,d,v) € [K] x [D] x [V].

Using  the  partition of the  sufficient  statistics as  S(yi, ) =
(SUD (g, 2) T, S (s, 2) T T € REDHEV the  partition () =
(oD (0T, ) (9)T)T € REPHEV ' the complete log-likelihood (5.4.3) can be ex-
pressed in the standard form as (5.1.2) with

l;i ]l{k,d}(ziayi(d))a ¢t|d( 0) = 10g(9(t‘d)),

" . . (5.13.22)
= 1 ™), 61 (8) = log(8"1Y) |

G
l
W
l
Assumption H5.1 is verified with Z = [K] and the sufficient statistics defined in (5.13.22)

that leads to a compact S.

By using the vectorization of 8 as an (K — 1)D + (V' — 1) K-dimensional vector, we can

calculate the Jacobian as follows. In particular,

0 if d' # d, 0 if k' # k,
¢¢<it’lcllc’ -1 if d/ d k/ ;é k (b;c/ |t/> 1 if k'/ —k ’Ul 7é v
Tguia (0) =) - r Tl Jg(WIt) (0) = 1= el )
SO if d =d, k' =k. o itk =k = .
d,k kv
(5.13.23)

With the above definitions, it can be verified that the Jacobian matrix is full rank and
smooth w.r.t. @ for any 0 € int(©). This confirms H5.2.
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Next, we verify H5.3, i.e., the Lipschitz continuity of p(z;|y;; @), w.r.t to 6. Note that
for all (i,k,d) € [n] x [K] x [D], p(zs = klyi: 054", 050") = Eo[Lgeay (20 i) i] =
*(t|d)(0(t|d) 6("1Y)) as defined in (5.13.20). Observe that as we focus on @ € int(©), each

of 9(t|d)0(w‘23), B(ELd)) O(Wlt) is strictly positive and strictly less than one. The Lipschitz

property follows from the expression (5.13.20).

The expression of the regularized complete log-likelihood, 8 — L(s, 8), is defined as:

dapeu (tld ) tId) (t\d L \t) ( |t \t)
_ZZ kd )—a’log(@ ZZ zul;v )= 510%( o )
k=1 d=1 k=1v=1

This function admits a unique minimum in int(©) from the strict concavity of the log-
arithm, as the regularizations are active with o/, 3/ > 0. By the same virtue of the
verification of H5.2, we observe that H5.4 can be satisfied.

We first calculate the quantity B(s) defined in (5.3.3). Using the vectorization of 6 as a
(K —1)D + (V — 1)K-dimensional vector, we observe that the Hessian of the function

0 — L(s,0) w.r.t. to O has a block diagonal structure with D + K blocks — the dth block
(t | )

which corresponds to 9 is given by
(t|d) /
s + « std) 4 o1
HY(s,0)] = K 117 + Diag(=— -~ (5.13.24)
[ L ]d (1— i( 11 0(t|d)) (9(t|d))2
while the (D + k)th block which corresponds to 0,(;;’“) is given by
(w\t) /
4B sl 4 g1
HY (s, 0) = 11" + Diag(—— ) (5.13.25)
[H7 ]D+k (1 Ez/ 11 0 w\t)) (0(wlt))2
Since each block in the above Hessian matrix is positive definite, the matrix
_ _ -1, _
B(s) := J(8(s)) (1Y (s,8(s)))  I5(0(s)" = T ()T ()" (5.13.26)

is positive definite and bounded. Furthermore, there exists a constant Lp such that
| B(s) — B(s')|| < Lg||s — §|. Finally, this confirms H5.5.

Algorithms updates In the sequel, for all (i,d,k,v) € [n] x [D] x [[K]] x [V] the
<(tld) (a(tld)yd a(W[t)\d s(wlt) ((g(tld)yd g(wlt)yd
conditional expectations §; 4 (045 °) 0y, ")) and 5, (85, )", (6), ')") are defined
by (5.13.20). For the pLSA example, after the initialization of the quantlty (s,(C 21)0 =
_ n =(tld d) W _ n =(w d w
s a(0)" (0007)°) and (512)" = 07 S sRI00)" (01")"), the

several E-steps break down as follows:

Batch EM (EM): At iteration §: update the statistics for all (d, k,v) € [D] x [K] x [V]
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n
1)\0+1 _(t|d d)\ o W ) 5+1 wt d w )
(58 =3"809000M)°, (6719)°) and (s Ek'v 01’ (61")%)
=1 =1
(5.13.27)

Online EM (sEM): At iteration d, update the statistics for all (d, k,v) € [D] x [K] x [V]

1)\0+1 1)\0 t|d t|d wlt)\ 4
(i)™ = (1 =) (s0a)” + 9655 (63,7)", (6137)°) 5,158
2)\0+1 2)\6 wlt d wlt)\ 6 o
(552" = (1= 0)(2)" + s (O00) 0F))

Incremental EM (iEM): At iteration §, update the statistics for all (d, k,v) € [D] x
[K] <[V -

wlt)y 2
L (01%1Y)7)

>

U 157k7d ’

1)\ 6+1 1)\ 6 tld t|d)\ o wlt _(t|d t|d)y 70
(i) = (sia)” + 864, (615")°) — s (01")" (5.13.29)
2)\0+1 2)\ 8 wlt t|d)\ & wlt)\ & wlt d)\ 78 wlt)\ 78 T
(s8N = (s2))° #5100 (011)°, (819)%) — 51 (655, (61T

Variance reduced stochastic EM (sEM-VR): At iteration §, draw an index i; and
update the statistics for all (d, k,v) € [D] x [K] x [V] :

( :
_(t|d t|d)\ o wlt)y o t|d t|d)y (£(k wlt)y (£(k _ t|d)y (U(k wlt)\ (L(k
+ (505K, (017)%) = 500K ), (B) ) 5D ((8D) 1 (gI0) 1))
5+1 1)
(s2)" = (1=(s)
_(w]t tld)\ o w(t)y o _(w]t t|d)y (U(k w Uk —(w d)\ (U(k w (k
+ (50,057, (0019)°) = s, (857 . (0 ) s ((65D) 1, (g1 )
(5.13.30)

Fast Incremental EM (fiEM): At iteration d, draw two indices (is, j5) independently
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and update the statistics for all (d,k,v) € [D] x [K] x [V] :

) )

(st = (1 —)(sth) (5.13.31)

d d w _(t|d d)\(# wlt)y (& —(1)\6

+ (SO, (87" =508 ) (o) )y + (81)”)
(5.13.32)

—(1)\6+1 —(1)\§ _1/_(t|d dAN\G (Wit _(t|d d wlt)y (89
(S0 ="+t (RaO5) (6)") —sLa @) 7, (60) )
(5.13.33)
(52 = (1) (sP))’ (5.13.34)

d d)\o wlt)\ 0y —(t|d d)y wlt)y (8 —(2)\6

+ (UL (O, (0)) = s, ((650) ) (6117) ) + (S12)°)
(5.13.35)

—(2)\6+1 2 d d wlt)\ _(t|d d)y (9 wlt) (¢
(SEN™ =)+ (SO (001)") — D), (6) )
(5.13.36)

Finally, at iteration ¢, for (k,d,v) € [K] x [D] x [V], the M-step in (5.2.2) evaluates to:

(05" (S ()" +aB) " (s10)" + )
( ): ) (5.13.37)

({1071 (S 52D +8v) (2 + )

kv






Chapter 6

Fast Stochastic Approximation of
the EM

Abstract: The ability to generate samples of the random effects from
their conditional distributions is fundamental for inference in mized ef-
fects models. Random walk Metropolis is widely used to perform such
sampling, but this method is known to converge slowly for medium di-
mensional problems, or when the joint structure of the distributions to
sample is spatially heterogemeous. The main contribution consists of
an independent Metropolis-Hastings (MH) algorithm based on a multi-
dimensional Gaussian proposal that takes into account the joint condi-
tional distribution of the random effects and does not require any tuning.
Indeed, this distribution is automatically obtained thanks to a Laplace ap-
proximation of the incomplete data model. Such approximation is shown
to be equivalent to linearizing the structural model in the case of con-
tinuous data. Numerical experiments based on simulated and real data
illustrate the performance of the proposed methods. For fitting nonlinear
mized effects models, the suggested MH algorithm is efficiently combined
with a stochastic approzimation version of the EM algorithm for max-
imum likelihood estimation of the global parameters. This chapter cor-

responds to the articles [Karimi and Lavielle, 2018] and [Karimi et al.,

2020).
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6.1 Introduction

Mixed effects models are often adopted to take into account the inter-individual variability
within a population (see [Lavielle, 2014] and the references therein). Consider a study with
N individuals from a same population. The vector of observations y; associated to each
individual 7 is assumed to be a realisation of a random variable which depends on a vector
of random individual parameters ;. Then, inference on the individual parameter );

amounts to estimate its conditional distribution given the observed data y;.

When the model is a linear (mixed effects) Gaussian model, then this conditional distri-
bution is a normal distribution that can explicitly be computed [Verbeke, 1997]. For more
complex distributions and models, Monte Carlo methods must be used to approximate this
conditional distribution. Most often, direct sampling from this conditional distribution is
inefficient and it is necessary to resort to a Markov chain Monte Carlo (MCMC) method
for obtaining random samples from this distribution. Yet, MCMC requires a tractable like-
lihood in order to compute the acceptance ratio. When this computation is impossible,
a pseudo-marginal Metropolis Hastings (PMMH) has been developed in [Andrieu et al.,
2009] and consists in replacing the posterior distribution evaluated in the MH acceptance
rate by an unbiased approximation. An extension of the PMMH is the particle MCMC
method, introduced in [Andrieu et al., 2010], where a Sequential Monte Carlo sampler
[Doucet et al., 2000] is used to approximate the intractable likelihood at each iteration.
For instance, this method is relevant when the model is SDE-based (see [Donnet and
Samson, 2013]). In a fully Bayesian setting, approximation of the posterior of the global
parameters can be used to approximate the posterior of the individual parameters using
Integrated Nested Laplace Approximation (INLA) introduced in [Rue et al., 2009]. When

the goal is to do approximate inference, this method has shown great performances mainly
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because it approximates each marginal separately as univariate Gaussian distribution. In
this paper, we focus on developing a method to perform exact inference and do not treat
the case of approximate inference algorithms such as the Laplace EM or the First Order
Conditional Estimation methods [Wang, 2007] that can introduce bias in the resulting

parameters.

Note that generating random samples from p;(;|y;; @) is useful for several tasks to avoid
approximation of the model, such as linearisation or Laplace method. Such tasks include
the estimation of the population parameters 8 of the model by a maximum likelihood ap-
proach, i.e. by maximizing the observed incomplete data likelihood p(y1, . ..yn;8) using
the Stochastic Approximation of the EM algorithm (SAEM) algorithm combined with a
MCMC procedure [Kuhn and Lavielle, 2004]. Lastly, sampling from the conditional dis-
tributions p;(1;|y;; @) is also known to be useful for model building. Indeed, in [Lavielle
and Ribba, 2016], the authors argue that methods for model assessment and model valida-
tion, whether graphical or based on statistical tests, must use samples of the conditional

distribution p;(1;|y;; @) to avoid bias.

Designing a fast mixing sampler for these distributions is therefore of utmost importance
to perform Maximum Likelihood Estimation (MLE) using the SAEM algorithm. The most
common MCMC method for nonlinear mixed effects (NLME) models is the random walk
Metropolis (RWM) algorithm [Lavielle, 2014, Robert and Casella, 2010, Roberts et al.,
1997]. This method is implemented in software tools such as Monolix, NONMEM, the
SAEMIX R package [Comets et al., 2017] and the nlmefitsa Matlab function. Despite its
simplicity, it has been successfully used in many classical examples of pharmacometrics.
Nevertheless, it can show its limitations when the dependency structure of the individual
parameters is complex. Yet, maintaining an optimal acceptance rate (advocated in Roberts
and Rosenthal [1997]) most often implies very small moves and therefore a very large
number of iterations in medium and high dimensions since no information of the geometry

of the target distribution is used.

The Metropolis-adjusted Langevin algorithm (MALA) uses evaluations of the gradient
of the target density for proposing new states which are accepted or rejected using the
Metropolis-Hastings algorithm [Roberts and Tweedie, 1996, Stramer and Tweedie, 1999].
Hamiltonian Monte Carlo (HMC) is another MCMC algorithm that exploits information
about the geometry of the target distribution in order to efficiently explore the space
by selecting transitions that can follow contours of high probability mass [Betancourt,
2017]. The No-U-Turn Sampler (NUTS) is an extension to HMC that allows an automatic
and optimal selection of some of the settings required by the algorithm, [Brooks et al.,
2011, Hoffman and Gelman, 2014]. Nevertheless, these methods may be difficult to use
in practice, and are computationally involved, in particular when the structural model is

a complex ODE based model. The algorithm we propose is an independent Metropolis-



162 CHAPTER 6. FAST STOCHASTIC APPROXIMATION OF THE EM

Hastings (IMH) algorithm, but for which the proposal is a Gaussian approximation of
the target distribution. For general data model (i.e. categorical, count or time-to-event
data models or continuous data models), the Laplace approximation of the incomplete pdf

pi(yi; @) leads to a Gaussian approximation of the conditional distribution p;(;|y;; 0).

In the special case of continuous data, linearisation of the model leads, by definition, to a
Gaussian linear model for which the conditional distribution of the individual parameter
1; given the data y; is a multidimensional normal distribution that can be computed.
Therefore, we design an independent sampler using this multivariate Gaussian distribution
to sample from the target conditional distribution and embed this procedure in an exact
inference algorithm, the SAEM, to speed the convergence of the vector of estimations of

the global parameters 6.

The paper is organised as follows. Mixed effects models for continuous and noncontinuous
data are presented in Section 2. The standard MH for NLME models is described in
Section 3. The proposed method, called the nlme-IMH, is introduced in Section 4 as well
as the -SAEM, a combination of this new method with the SAEM algorithm for estimating
the population parameters of the model. Numerical examples illustrate, in Section 5, the
practical performances of the proposed method, both on a continuous pharmacokinetics
(PK) model and a time-to-event example. A Monte Carlo study confirms that this new

SAEM algorithm shows a faster convergence to the maximum likelihood estimate.

6.2 Mixed Effect Models

6.2.1 Population approach and hierarchical models

In the sequel, we adopt a population approach, where we consider N individuals and n;
observations per individual i. The set of observed data is y = (y;,1 < i < n) where
yi = (yi5,1 < j < n;) are the observations for individual i. For the sake of clarity, we
assume that each observation y;; takes its values in some subset of R. The distribution
of the n;—vector of observations y; depends on a vector of individual parameters ; that

takes its values in a subset of RP.

We assume that the pairs (y;,v;) are mutually independent and consider a parametric
framework: the joint distribution of (y;,;) is denoted by fi(yi,1:;80), where 6 is the
vector of parameters of the model. A natural decomposition of this joint distribution

reads
fi(yi, ¥i; 0) = pi(yili; 0)pi(Yi; 0) (6.2.1)

where p;(y;|¥i; @) is the conditional distribution of the observations given the individual

parameters, and where p;(1;; 6) is the so-called population distribution used to describe
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the distribution of the individual parameters within the population.

A particular case of this general framework consists in describing each individual parameter

; as the sum of a typical value ,0p and a vector of individual random effects 7;:

Vi = Ypop + 1i - (6.2.2)

In the sequel, we assume that the random effects are distributed according to a multivariate
Gaussian distribution: 7; ~;;.4. N(0,9Q). Extensions of this general model are detailed in
Appendix 6.7.1.

6.2.2 Continuous data models

A regression model is used to express the link between continuous observations and indi-

vidual parameters:
Yij = f(tij, i) +€ij (6.2.3)

where y;; is the j-th observation for individual 7 measured at index t;;, ;5 is the residual

error. It is assumed that for any index ¢, ) — f(¢,1)) is twice differentiable in ).

We start by assuming that the residual errors are independent and normally distributed
with zero-mean and a constant variance o?. Let t; = (tij,1 < n;) be the vector of

observation indices for individual 7. Then, the model for the observations reads:

ylW}Z ~ N(f(wl)a U2Idni><n,') where f(wl) = (f<ti,17 1/11)7 <o 7f(ti,nia %)) . (624)

If we assume that ; ~iiq. N (¢¥pop, 2), then the parameters of the model are 8 =
(¢pop79702)'

Remark 6.1 An extension of this model consists in assuming that the variance of the
residual errors is mot constant over time, i.e., g;; ~ N(0,g(tij,1;)?). Such extension
includes proportional error models (g = bf) and combined error models (g = a + bf)
[Lavielle, 2014] but the proposed method remains the same whatever the residual error

model 1s.

6.2.3 Noncontinuous data models

Noncontinuous data models include categorical data models [Agresti, 1990, Savic et al.,
2011], time-to-event data models [Andersen, 2006, Mbogning et al., 2015], or count
data models [Savic et al., 2011]. A categorical outcome y;; takes its value in a set
{1,...,L} of L categories. Then, the model is defined by the conditional probabilities
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(P(yi; = ¢|14),1 < £ < L), that depend on the vector of individual parameters 1); and may

be a function of the time t;;.

In a time-to-event data model, the observations are the times at which events occur. An
event may be one-off (e.g., death, hardware failure) or repeated (e.g., epileptic seizures,
mechanical incidents). To begin with, we consider a model for a one-off event. The survival

function S(t) gives the probability that the event happens after time ¢:

S(t) £ P(T > ¢) = exp {— /Ot h(u)du} , (6.2.5)

where h is called the hazard function. In a population approach, we consider a parametric
and individual hazard function h(-,1;). The random variable representing the time-to-
event for individual 7 is typically written 7; and may possibly be right-censored. Then,

the observation y; for individual i is

T; if T; <
R (6.2.6)
T; > 1.7 otherwise ,

)

where 7, is the censoring time and ”T; > 7.” is the information that the event occurred

after the censoring time.

For repeated event models, times when events occur for individual ¢ are random times

(Tij,1 < j < mny) for which conditional survival functions can be defined:

t
P(Tij > t’Ti(j—l) = ti(j—l)) = exp {—/t h(u, wz)du} . (6.2.7)
iG-1)
Here, t;; is the observed value of the random time Tj;. If the last event is right censored,
then the last observation y; ,, for individual ¢ is the information that the censoring time
has been reached "T; ,, > 7.”. The conditional pdf of y; = (y;5, 1 < n;) reads (see [Lavielle,
2014] for more details)

n;—1

pi(yilhi) = exp {—/OTC h(uﬂbi)du} 1;[1 h(tiz, i) - (6.2.8)

6.3 Sampling from Conditional Distributions

6.3.1 The conditional distribution of the individual parameters

Once the conditional distribution of the observations p;(y;|;; @) and the marginal distribu-
tion of the individual parameters 1); are defined, the joint distribution f;(y;, ;@) and the
conditional distribution p;(1;|y;; @) are implicitly specified. This conditional distribution
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pi(¥ilyi; @) plays a crucial role for inference in NLME models.

One of the main task is to compute the maximum likelihood (ML) estimate of 8

Oy, = arg max £(0), (6.3.1)
where £(0) = logg(y;6). In NLME models, this optimization is solved by using a sur-
rogate function defined as the conditional expectation of the complete data log-likelihood
[McLachlan and Krishnan, 2007]. The SAEM is an iterative procedure for ML estimation
that requires to generate one or several samples from this conditional distribution at each
iteration of the algorithm. Once the ML estimate éML has been computed, the observed
Fisher information matrix noted I (éML) = —V%E(éML) can be derived thanks to the Louis
formula [Louis, 1982] which expresses I (éML) in terms of the conditional expectation and
covariance of the complete data log-likelihood. Such procedure also requires to sample

from the conditional distributions p;(1;|y:; Our,) for all i € [1,n].

Samples from the conditional distributions might also be used to define several statistical
tests and diagnostic plots for models assessment. It is advocated in [Lavielle and Ribba,
2016] that such samples should be preferred to the modes of these distributions (also called
Empirical Bayes Estimate(EBE), or Mazimum a Posteriori Estimate), in order to provide
unbiased tests and plots. For instance, a strong bias can be observed when the EBEs
are used for testing the distribution of the parameters or the correlation between random

effects.

In short, being able to sample individual parameters from their conditional distribution is
essential in nonlinear mixed models. It is therefore necessary to design an efficient method

to sample from this distribution.

6.3.2 The Metropolis-Hastings Algorithm

Metropolis-Hasting (MH) algorithm is a powerful MCMC procedure widely used for sam-
pling from a complex distribution [Brooks et al., 2011]. To simplify the notations, we
remove the dependency on 8. For a given individual i € [1,n], the MH algorithm, to

sample from the conditional distribution p;(1;|y;), is described as:
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Algorithm 6.1 Metropolis-Hastings algorithm

Initialization: Initialize the chain sampling wz(o) from some initial distribution &; .
Iteration k: given the current state of the chain wl(k_l):

1. Sample a candidate 1§ from a proposal distribution ¢;( - ]wgk_l)).
2. Compute the MH ratio:

pi(WSly) @iV |we)

a(pFY g = L a1
i) qi (el 1)

(6.3.2)

3. Set T/Ji(k) = ¢ with probability min(1, a(¢f, @D(k*l)

]

) (otherwise, keep q/,i(k) _ w(kfl))‘

%

(%)

%

verges to the target p;(1;|y;) [Brooks et al., 2011].

Under weak conditions, (¢, ',k > 0) is an ergodic Markov chain whose distribution con-

Current implementations of the SAEM algorithm in Monolix [Chan et al., 2011], SAEMIX
(R package) [Comets et al., 2017], nlmefitsa (Matlab) and NONMEM [Beal and Sheiner,
1980] mainly use the same combination of proposals. The first proposal is an independent
MH algorithm which consists in sampling the candidate state directly from the prior distri-
bution of the individual parameter ;. The MH ratio then reduces to p;(y;[¢5)/ pi(yilwgk))
for this proposal.

The other proposals are component-wise and block-wise random walk procedures
[Metropolis et al., 1953] that updates different components of 1; using univariate and
multivariate Gaussian proposal distributions. These proposals are centered at the cur-
rent state with a diagonal variance-covariance matrix; the variance terms are adaptively
adjusted at each iteration in order to reach some target acceptance rate [Atchadé et al.,
2005, Lavielle, 2014]. Nevertheless, those proposals fail to take into account the nonlinear

dependence structure of the individual parameters.

A way to alleviate these problems is to use a proposal distribution derived from a discre-

tised Langevin diffusion whose drift term is the gradient of the logarithm of the target

density leading to the Metropolis Adjusted Langevin Algorithm (MALA). The MALA pro-

posal is a multivariate Gaussian with the following mean /%Ui\)/l aLA and covariance matrix
INVIN'Y:

B a =" 44y logpi(¥Ply;) and T — 29l 6.3.3

tiniara = i + 7V, logpi(¥; ly)  and Tnvapa =271, (6.3.3)

where 7 is a positive stepsize and |, is the identity matrix in RP*P. These methods
appear to behave well for complex models but still do not take into consideration the
multidimensional structure of the individual parameters. Recent works include efforts
in that direction, such as the Anisotropic MALA for which the covariance matrix of the
proposal depends on the gradient of the target measure [Allassonniere and Kuhn, 2013], the
Tamed Unadjusted Langevin Algorithm [Brosse et al., 2017] based on the coordinate-wise

taming of superlinear drift coefficients and a multidimensional extension of the Adaptative
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Metropolis algorithm [Haario et al., 2001] simultaneously estimating the covariance of the

target measure and coercing the acceptance rate, see [Vihola, 2012].

The MALA algorithm is a special instance of the Hybrid Monte Carlo (HMC), introduced
in [Neal et al., 2011]; see [Brooks et al., 2011] and the references therein, and consists
in augmenting the state space with an auxiliary variable p, known as the velocity in
Hamiltonian dynamics. This algorithm belongs to the class of data augmentation methods.
Indeed, the potential energy is augmented with a kinetic energy, function of an added
auxiliary variable. The MCMC procedure then consists in sampling from this augmented
posterior distribution. All those methods aim at finding the proposal g that accelerates
the convergence of the chain. Unfortunately they are computationally involved (even in
small and medium dimension settings, the computation of the gradient or the Hessian can
be overwhelming) and can be difficult to implement (stepsizes and numerical derivatives

need to be tuned and implemented).

We see in the next section how to define a multivariate Gaussian proposal for both con-
tinuous and noncontinuous data models, that is easy to implement and that takes into
account the multidimensional structure of the individual parameters in order to accelerate
the MCMC procedure.

6.4 The nlme-IMH and the -SAEM

In this section, we assume that the individual parameters (¢1,...,,) are independent
and normally distributed with mean (mq,...,my) and covariance Q2. The MAP estimate,

for individual 4, is the value of v; that maximizes the conditional distribution p;(v;|y;, ):

Y = arg nax) pi(Yily;) = arg nax, Di(yi|Vi)pi(¥s) (6.4.1)

6.4.1 Proposal based on Laplace approximation

For both continuous and noncontinuous data models, the goal is to find a simple proposal, a
multivariate Gaussian distribution in our case, that approximates the target distribution
pi(Yilyi). For general MCMC samplers, it is shown in [Roberts and Rosenthal, 2011]
that the mixing rate in total variation depends on the expectation of the acceptance
ratio under the proposal distribution which is also directly related to the ratio of the
proposal to the target in the special case of independent samplers (see [Mengersen and
Tweedie, 1996, Roberts and Rosenthal, 2011]). This observation naturally suggests to
find a proposal which approximates the target. de Freitas et al. [2001] advocates the
use a multivariate Gaussian distribution whose parameters are obtained by minimizing

the Kullback-Leibler divergence between a multivariate Gaussian variational candidate
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distribution and the target distribution. In [Andrieu and Thoms, 2008] and the references
therein, an adaptative Metropolis algorithm is studied and reconciled to a KL divergence
minimisation problem where the resulting multivariate Gaussian distribution can be used
as a proposal in a IMH algorithm. Authors note that although this proposal might be a
sensible choice when it approximates well the target, it can fail when the parametric form
of the proposal is not sufficiently rich. Thus, other parametric forms can be considered
and it is suggested in [Andrieu et al., 2006] to consider mixtures, finite or infinite, of

distributions belonging to the exponential family.

In general, this optimization step is difficult and computationally expensive since it re-
quires to approximate (using Monte Carlo integration for instance) the integral of the
log-likelihood with respect to the variational candidate distribution.
Proposition 13 We suggest a Laplace approximation of this conditional distribution
as described in [Rue et al., 2009] which is the multivariate Gaussian distribution with

mean ; and variance-covariance

lo, n —1\ !
T = (- H# (@) +071) (6.4.2)
where legp(zﬁi) € RP*P s the Hessian of log (pi(yi|v:)) evaluated at ;.

Mathematical details for computing this proposal are postponed to Appendix 6.7.2. We
use this multivariate Gaussian distribution as a proposal in our IMH algorithm introduced

in the next section, for both continuous and noncontinuous data models.

Remark 6.2 Note that the resulting proposal distribution is based on the assumption that,
in model (6.2.2), the random effects n; are normally distributed. When this assumption
does not hold, our method exploits the same Gaussian proposal, where the variance 2
in (6.4.2) is calculated explicitely. Consider the following example: the random effects
n; in (6.2.2) are no longer distributed according to a multivariate Gaussian distribution
but a multivariate Student distribution with d degrees of freedom, zero mean and a prior
shape matriz & such that n; ~ t4(0,£). Then the vector of parameters of the model is
0 = (Ypop, 2, o2) where Q = %25 is the prior covariance matriz. In that case, our method
uses the Independent proposal in Proposition 13 and computes the MH acceptance ratio

(6.3.2) with the corresponding multivariate Student density p;(1;).

We shall now see another method to derive a Gaussian proposal distribution in the specific

case of continuous data models (see (6.2.3)).
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6.4.2 Nonlinear continuous data models

When the model is described by (6.2.3), the approximation of the target distribution can
be done twofold: either by using the Laplace approximation, as explained above, or by
linearizing the structural model f for any individual ¢ of the population. using (6.2.3) and
(6.4.1), the MAP estimate can thus be derived as:

A 1
i = arg min (5l — FOOIP + (= m @ - ) L (64)

where f(1);) is defined by (6.2.4) and A’ is the transpose of the matrix A.

We linearize the structural model f around the MAP estimate 1@
F() ~ F(hs) + I () (Wi — i) (6.4.4)

where pr(@z}z) € R™*P is the Jacobian of f evaluated at ;. Defining z := y; — f(¢;) +
‘]ib (zﬂl)z/;“ this expansion yields the following linear model:

2 =I5, ()i + e - (6.4.5)

We can directly use the definition of the conditional distribution under a linear model
(see (6.7.11) in Appendix 6.7.3) to get an expression of the conditional covariance I'; of

; given z; under (6.4.5):

Ay - 1
I = (‘W + Ql> . (6.4.6)

o2

Using (6.4.3) and the definition of the conditional distribution under a linear model we
obtain that u;, = 7@ (See Appendix 6.7.4 for details). We note that the mode of the
conditional distribution of 1; in the nonlinear model (6.2.3) is also the mode and the
mean of the conditional distribution of 4); in the linear model (6.4.5).
Proposition 14 In the case of continuous data models, we propose to use the multi-
variate Gaussian distribution, with mean 1@ and variance-covariance matrix I'; defined
by (6.4.6) as a proposal for an independent MH algorithm avoiding the computation

of an Hessian matrix.

We can note that linearizing the structural model is equivalent to using the Laplace ap-

proximation with the expected information matrix. Indeed:

I8 (e T ()
= ) Syt

o

E, 15, (—HZ () (6.4.7)

Remark 6.3 When the model is linear, the probability of accepting a candidate generated
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with this proposal is equal to 1.

Remark 6.4 If we consider a more general error model, ¢; ~ N (0,%(t;,%;)) that may
depend on the individual parameters 1¥; and the observation times t;, then the conditional

variance-covariance matrix reads:
. . A -1
Ti = (I8 Sk, d0) TG (D) +Q71) (6.4.8)

Remark 6.5 In the model (6.7.1), the transformed variable ¢; = u(1);) follows a normal
distribution. Then a candidate ¢§ is drawn from the multivariate Gaussian proposal with

parameters:

pi = i, (6.4.9)
r, — (qu—l(@))’m(u—l(«z%)) . Ql>‘1 |

= (6.4.10)
where <Z§, = arg (;naﬂé pi(®ilyi) and finally the candidate vector of individual parameters is
i €

set to yf = u~1(45)

These approximations of the conditional distribution p;(;|y;) lead to our nlme-IMH algo-
rithm, an Independent Metropolis-Hastings (IMH) algorithm for NLME models. For all
individuals ¢ € [1,n], the algorithm is defined as:

Algorithm 6.2 The nlme-IMH algorithm

Initialization: Initialize the chain sampling wz(o) from some initial distribution &; .

)

Iteration t: Given the current state of the chain wz(t_l :
1. Compute the MAP estimate:

e N
%' = arg gg@)pz(wzwz) . (6'4'11)

2. Compute the covariance matrix T'\" using either (6.4.2) or (6.4.6).

i
3. Sample a candidate ¢ from a the independent proposal N (&gt),f’gt)) denoted
ai(1;"):
4. Compute the MH ratio:

pi(elys) @i ()

(), v5) = e
PP |ys) @i (|9

(6.4.12)

5. Set %(t) = ¢ with probability min(1, a (¢, 1/)?_1))) (otherwise, keep wgt) = %(t—l))‘

This method shares some similiarities with [Titsias and Papaspiliopoulos, 2018] that sug-
gests to perform a Taylor expansion of p;(y;|1;) around the current state of the chain,

leaving p;(1);) unchanged.
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Remark 6.6 Although a multivariate Gaussian proposal is used in our presentation of the
nlme-IMH, other type of distributions could be adopted. For instance, when the target dis-
tribution presents heavy tails, a Student distribution with a well-chosen degree of freedom
could improve the performance of the independent sampler. In such case, the parameters
of the Gaussian proposal are used to shift and scale the Student proposal distribution and
the acceptance rate (6.4.12) needs to be modified accordingly. The numerical applications
in Section 5 are performed using a Gaussian proposal but comparisons with a Student

proposal distribution are given in Appendix 6.8.1.

6.4.3 Maximum Likelihood Estimation

The ML estimator defined by (6.3.1) is computed using the Stochastic Approximation of
the EM algorithm (SAEM) [Delyon et al., 1999b]. The SAEM algorithm is described as

follows:

Algorithm 6.3 The SAEM algorithm
Initialization: 6y, an initial parameter estimate and M, the number of MCMC iterations.
Iteration k: given the current model parameter estimate @%—1):

1. Simulation step: For i € [1,n], draw a vector of individual parameters dji(k) re-
sulting from M iterations of the transition kernel HZ(-k), starting from @ng*l), which
admits as unique limiting distribution the conditional distribution p;(1;|yi; Ox—1)-

2. Stochastic approximation step: update the approximation of the conditional

expectation E [log p(y,¥; 0)|y, 9(’?*1)} .

Q1(6) = Qr—1(8) + (Z log fi(yi, 0" 8) — QH(e)) , (6.4.13)

=1

where {7k }k~0 is a sequence of decreasing stepsizes with v; = 1.
3. Maximisation step: Update the model parameter estimate:

o) = 0) . 6.4.14
arg max Qy (6) ( )

The SAEM algorithm is implemented in most sofware tools for NLME models and its
convergence is studied in [Allassonniere and Kuhn, 2013, Delyon et al., 1999b, Kuhn and
Lavielle, 2004]. The practical performances of SAEM are closely linked to the settings of
SAEM. In particular, the choice of the transition kernel II plays a key role. The transition
kernel IT is directly defined by the proposal(s) used for the MH algorithm.

We propose a fast version of the SAEM algorithm using our resulting independent proposal
distribution called the f-SAEM. The simulation step of the f~SAEM is achieved using the
nlme-IMH algorithm (see algorithm 6.2) for all individuals ¢ € [1,n] and the next steps

remain unchanged. In practice, the number of transitions M is small since the convergence
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of the SAEM does not require the convergence of the MCMC at each iteration [Kuhn and
Lavielle, 2004]. In the sequel, we carry out numerous numerical experiments to compare

our nlme-IMH algorithm to state-of-the-art samplers and assess its relevance in a MLE
algorithm such as the SAEM.

6.5 Application to Pharmacology

6.5.1 A pharmacokinetic example

6.5.1.1 Data and model

32 healthy volunteers received a 1.5 mg/kg single oral dose of warfarin, an anticoagulant
normally used in the prevention of thrombosis [O’Reilly and Aggeler, 1968]. Figure 6.1
shows the warfarin plasmatic concentration measured at different times for these patients

(the single dose was given at time 0 for all the patients).

=
o
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Figure 6.1 — Warfarin concentration (mg/1) over time (h) for 32 subjects

We consider a one-compartment pharmacokinetics (PK) model for oral administration,

assuming first-order absorption and linear elimination processes:

Dka

f(t,ka,V, k) = m(

—kat efkt)

, (6.5.1)
where ka is the absorption rate constant, V' the volume of distribution , k£ the elimination
rate constant, and D the dose of drug administered. Here, ka, V and k are PK parameters
that can change from one individual to another. Let ¢; = (ka;, Vi, k;) be the vector of

individual PK parameters for individual . The model for the j-th measured concentration,

noted y;;, for individual 7 writes:

yij = f(tij, i) + &5 - (6.5.2)
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We assume in this example that the residual errors are independent and normally dis-
tributed with mean 0 and variance o2. Lognormal distributions are used for the three PK

parameters:

log(kas) ~ N (log(kapop), wia) ;10g(Vi) ~ N (log(Viop), wi) ,log(ki) ~ N (log(kpop), wi) -
(6.5.3)

This is a specific instance of the nonlinear mixed effects model for continuous data de-
scribed in Section 6.2.2. We thus use the multivariate Gaussian proposal whose mean and
covariance are defined by (6.7.13) and (6.4.6). In such case the gradient can be explicitly
computed. Nevertheless, for the method to be easily extended to any structural model,
the gradient is calculated using Automatic Differentiation [Griewank and Walther, 2008]
implemented in the R package “Madness” [Pav, 2016].

6.5.1.2 MCMC Convergence Diagnostic

We study in this section the behaviour of the MH algorithm used to sample individual
parameters from the conditional distribution p;(v;|y;; @). We consider only one of the 32
individuals for this study and fix 8 close to the ML estimate obtained with the SAEM
algorithm, implemented in the SAEMIX R package [Comets et al., 2017]: kapop = 1,
Voop = 8, kpop = 0.01, wi = 0.5, wy = 0.2, w, = 0.3 and o2 = 0.5.

We run the classical version of MH implemented in the SAEMIX package and for which
different transition kernels are used successively at each iteration: independent propos-
als from the marginal distribution p;(1);), component-wise random walk and block-wise

random walk. We compare it to our proposed algorithm 6.2.

We run 20 000 iterations of these two algorithms and evaluate their convergence by looking
at the convergence of the median for the three components of ;. We see Figure 6.2 that,
for parameter k;, the sequences of empirical median obtained with the two algorithms
converge to the same value, which is supposed to be the theoretical median of the condi-
tional distribution. It is interesting to note that the empirical median with the nlme-IMH
converge very rapidly. This is interesting in the population approach framework because
it is mainly the median values of each conditional distribution that are used to infer the
population distribution. Autocorrelation plots, Figure 6.2, highlight slower mixing of the
RWM whereas samples from the nlme-IMH can be considered independent few iterations
after the chain has been initialized. Comparison for all three dimensions of the individual

parameter 1; using a Student proposal distribution can be found in Appendix 6.8.1.

The Mean Square Jump Distance (MSJD) as well as the Effective Sample Size (ESS) of the

two methods are reported in Table 6.5. MSJD is a measure used to diagnose the mixing
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of the chain. It is calculated as the mean of the squared euclidean distance between every
point and its previous point. Usually, this quantity indicates if the chain is moving enough
or getting stuck at some region and the ESS is a quantity that estimates the number of
independent samples obtained from a chain. Larger values of those two quantities for our

method show greater performance of the sampler in comparison with the RWM.
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Figure 6.2 — Modelling of the warfarin PK data. Top plot: convergence of the empirical
medians of p;(k;|y;; @) for a single individual. Comparison between the reference MH
algorithm (blue) and the nlme-IMH (red). Bottom plot: Autocorrelation plots of the
MCMC samplers for parameter k;.

Table 6.1 — MSJD and ESS per dimension.

MSJD ESS
ka; Vi ki ka; Vi k;
RWM 0.009 0.002 0.006 1728 3414 3784

nlme-IMH 0.061 0.004 0.018 13694 14907 19976

Comparison with state-of-the-art methods: We then compare our new approach to the
three following samplers: an independent sampler that uses variational approximation as
proposal distribution [de Freitas et al., 2001], the MALA [Roberts and Tweedie, 1996] and
the No-U-Turn Sampler [Hoffman and Gelman, 2014].

The same design and settings (dataset, model parameter estimate, individual) as in section

6.5.1.2 are used throughout the following experiments.
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Variational MCMC algorithm

The Variational MCMC algorithm [de Freitas et al., 2001] is a MCMC algorithm with
independent proposal. The proposal distribution is a multivariate Gaussian distribution
whose parameters are obtained by a variational approach that consists in minimising the
Kullback Leibler divergence between a multivariate Gaussian distribution g¢;(1;,9), and
the target distribution for a given model parameter estimate 8 noted p;(v;|y;,@). This
problem boils down to maximizing the so-called Evidence Lower Bound ELBO(8) defined

as:

ELBO() £ [ :(s,0) (g fits. 0. 0) —logas(wi,0)) dvi . (65.4)

We use the Automatic Differentiation Variational Inference (ADVI) [Kucukelbir et al.,
2015] implemented in RStan (R Package [Stan Development Team, 2018]) to obtain the

vector of parameters noted dy; defined as:

Syr = argmax ELBO(Y) .
SERP X RPXP
The algorithm stops when the variation of the median of the objective function falls below
the 1% threshold. The means and standard deviations of our nlme-IMH and the Vari-
ational MCMC proposals compare with the posterior mean (calculated using the NUTS
[Hoffman and Gelman, 2014]) as follows:

Table 6.2 — Means and standard deviations.

Means Stds
ka; Vi k; ka; Vi k;
Variational proposal 0.90 7.93 0.48 0.14 0.03 0.07
Laplace proposal 0.88 7.93 0.52 0.18 0.04 0.09
NUTS (ground truth) 091 793  0.51 0.18 0.05 0.09

We observe that the mean of the variational approximation is slightly shifted from the
estimated posterior mode (see table 6.2 for comparison) whereas a considerable difference
lies in the numerical value of the covariance matrix obtained with ADVI. The empirical
standard deviation of the Variational MCMC proposal is much smaller than our new
proposal defined by (6.4.6) (see table 6.2), which slows down the MCMC convergence.

Figure 6.3 shows the proposals marginals and the marginal posterior distribution for the
individual parameters k; and V;. Biplot of the samples drawn from the two multivariate
Gaussian proposals (our independent proposal and the variational MCMC proposal) as well
as samples drawn from the posterior distribution (using the NUTS) are also presented in
this figure. We conclude that both marginal and bivariate posterior distributions are better
approximated by our independent proposal than the one resulting from a KL divergence

optimization.
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Besides similar marginal variances, both our independent proposal and the true posterior
share a strong anisotropic nature, confirmed by the similar correlation values of table 6.6
(see Appendix 6.8.1). Same characteristics are observed for the other parameters. Those
highlighted properties leads to a better performance of the nlme-IMH versus the ADVI
sampler as reflected in Figure 6.4. Larger jumps of the chain and bigger ESS show how
effective the nlme-IMH is compared to the ADVI (see Table 6.3).
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Figure 6.3 — Modelling of the warfarin PK data: Comparison between the proposals of
the nlme-IMH (blue), the Variational MCMC (green) and the empirical target distribution
sampled using the NUTS (red). Marginals and biplots of the conditional distributions k;|y;
and V;|y; for a single individual. Ellipses containing 90% of the data points are represented
on the main plot.

Metropolis Adjusted Langevin Algorithm (MALA) and No-U-Turn Sampler
(NUTS)

We now compare our method to the MALA, which proposal is defined by (6.3.3). The
gradient of the log posterior distribution V,, log pi(wz(k) |y;) is also calculated by Automatic
Differentiation. In this numerical example, the MALA has been initialized at the MAP
and the stepsize (y = 1072) is tuned such that the acceptance rate of 0.57 is reached
[Roberts and Rosenthal, 1997].

We also compare the implementation of NUTS [Carpenter et al., 2017, Hoffman and Gel-
man, 2014] in the RStan package to our method in Figure 6.4. Figure 6.4 highlights good
convergence of a well-tuned MALA and the NUTS. nlme-IMH and NUTS mixing proper-
ties, from autocorrelation plots in Figure 6.4 seem to be similar and much better than all

of the other methods. Table 6.3 presents a benchmark of those methods regarding MSJD
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and ESS. Both nlme-IMH and NUTS have better performances here. For parameters
ka and V, the ESS of the NUTS, presented as a gold standard sampler for this king of
problem, are slightly higher than our proposed method.
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Figure 6.4 — Modelling of the warfarin PK data: Autocorrelation plots of the MCMC
samplers for parameter k;.

Table 6.3 — MSJD and ESS per dimension.

MSJD ESS
ka; Vi ki ka; Vi ki
RWM 0.009 0.002 0.006 1728 3414 3784
nlme-IMH 0.061 0.004 0.018 13694 14907 19976
MALA 0.024 0.002 0.006 3458 3786 3688
NUTS 0.063 0.004 0.018 18684 19327 19083
ADVI 0.037  0.002 0.010 2499 1944 2649

In practice, those three methods imply tuning phases that are computationally involved
, warming up the chain and a careful initialisation whereas our independent sampler is
automatic and fast to implement. Investigating the asymptotic convergence behavior of
those methods highlights the competitive properties of our IMH algorithm to sample from
the target distribution.

Since our goal is to embed those samplers into a MLE algorithm such as the SAEM, we
shall now study how they behave in the very first iterations of the MCMC procedure.
Recall that the SAEM requires only few iterations of MCMC sampling under the current

model parameter estimate. We present this non asymptotic study in the following section.

6.5.1.3 Comparison of the chains for the first 500 iterations

We produce 100 independent runs of the RWM, the nlme-IMH, the MALA and the NUTS
for 500 iterations. The boxplots of the samples drawn at a given iteration threshold (three
different thresholds are used) are presented Figure 6.5 against the ground truth for the
parameter ka. The ground truth has been calculated by running the NUTS for 100000

iterations.

For the three numbers of iteration (5,20,500) considered in Figure 6.5, the median of the
nlme-IMH and NUTS samples are closer to the ground truth. Figure 6.5 also highlights
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that all those methods succeed in sampling from the whole distribution after 500 iterations.

0.6

Iteration
Bl s
----- -- ----| Em 20

ix Eml

MALA NUTS RWM nime-IMH

ka;

Figure 6.5 — Modelling of the warfarin PK data: Boxplots for the RWM, the nlme-IMH, the
MALA and the NUTS algorithm, averaged over 100 independent runs. The groundtruth
median, 0.25 and 0.75 percentiles are plotted as a dashed purple line and its maximum
and minimum as a dashed grey line.

We now use the RWM, the nlme-IMH and the MALA in the SAEM algorithm and observe

the convergence of the resulting sequences of parameters.

6.5.1.4 Maximum likelihood estimation

We use the SAEM algorithm to estimate the population PK parameters kapop, Vpop and
kpop, the standard deviations of the random effects wy,, wy and wy and the residual

variance o2.

The stepsize 7, is set to 1 during the first 100 iterations and then decreases as 1/k® where

a = 0.7 during the next 100 iterations.

Here we compare the standard SAEM algorithm, as implemented in the SAEMIX R pack-
age, with the -SAEM algorithm and the SAEM using the MALA sampler. In this example,
the nlme-IMH and the MALA are only used during the first 20 iterations of the SAEM.
The standard MH algorithm is then used.

Figure 6.6 shows the estimates of Vo, and wy computed at each iteration of these three
variants of SAEM and starting from three different initial values. First of all, we notice
that, whatever the initialisation and the sampling algorithm used, all the runs converge
towards the maximum likelihood estimate. It is then very clear that the -SAEM converges
faster than the standard algorithm. The SAEM using the MALA algorithm for sampling
from the individual conditional distribution presents a similar convergence behavior as the

reference.

We can conclude, for this example, that sampling around the MAP of each individual
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conditional distribution is the key to a fast convergence of the SAEM during the first

iterations.
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Figure 6.6 — Estimation of the population PK parameters for the warfarin data: con-
vergence of the sequences of estimates {Véécl))}lgkggoo and {d}‘(f)}lgkgggo obtained with
SAEM and three different initial values using the reference MH algorithm (blue), the
f-SAEM (red) and the SAEM using the MALA sampler (black).

6.5.1.5 Monte Carlo study

We conduct a Monte Carlo study to confirm the properties of the f-SAEM algorithm for

computing the ML estimates.

M = 50 datasets have been simulated using the PK model previously used for fitting the
warfarin PK data with the following parameter values: kapop = 1, Vpop = 8, kpop = 0.1,
Wee = 0.5, wy = 0.2, wp = 0.3 and 0 = 0.5. The same original design with N = 32
patients and a total number of 251 PK measurements were used for all the simulated
datasets. Since all the simulated data are different, the value of the ML estimator varies
from one simulation to another. If we run K iterations of SAEM, the last element of
the sequence {(B(k))(m)}lgkg K is the estimate obtained from the m-th simulated dataset.
To investigate how fast (%)™ 1 < k < K) converges to (0%))(™) we study how fast
{(@®))m) — (9N (m)Y, ) i goes to 0. For a given sequence of estimates, we can then
define, at each iteration k and for each component ¢ of the parameter, the mean square

distance over the replicates
1 M

M

m=1

2

E® (0) = ((0¥)™ (e) — (8®) ™ (0" (6.5.5)

Figure 6.7 shows using the new proposal leads to a much faster convergence towards the
maximum likelihood estimate. Less than 10 iterations are required to converge with the f-
SAEM on this example, instead of 50 with the original version. It should also be noted that
the distance decreases monotonically. The sequence of estimates approaches the target at
each iteration, compared to the standard algorithm which makes twists and turns before

converging.
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Figure 6.7 — Convergence of the sequences of mean square distances (E®) (Viop), 1 < k <
200) and (E®)(wy),1 < k < 200) for Vpep and wy obtained with SAEM on M = 50
synthetic datasets using the reference MH algorithm (blue) and the f-SAEM (red).

6.5.2 Time-to-event Data Model

6.5.2.1 The model

In this section, we consider a Weibull model for time-to-event data [Lavielle, 2014, Zhang,
2016]. For individual 4, the hazard function of this model is:

Bi ( t )ﬁi—l
hit, ;) = — [ — . 6.5.6
Here, the vector of individual parameters is ¥; = (\;, ;). These two parameters are

assumed to be independent and lognormally distributed:

log(Ai) ~ N(IOg()‘por))vwi)leg(ﬁi) ~ N(log(ﬁpw)vwg) ‘ (6.5.7)

Then, the vector of population parameters is @ = (Apop, Bpop, Wr, W3)-

Repeated events were generated, for N = 100 individuals, using the Weibull model (8.3.3)
with Apop = 10, wy = 0.3, Bpop = 3 and wg = 0.3 and assuming a right censoring time
7. = 20.

6.5.2.2 MCMC Convergence Diagnostic

Similarly to the previous section, we start by looking at the behaviour of the MCMC
procedure used for sampling from the conditional distribution p;(v;|y;; @) for a given indi-
vidual ¢ and assuming that 6 is known. We use the generating model parameter in these

experiments (6 = (Apop = 10, Bpop = 3,wx = 0.3,wg = 0.3)).

We run 12000 iterations of the reference MH algorithm the nlme-IMH to estimate the
median of the posterior distribution of A;. We see Figure 6.8 that the sequences of em-

pirical medians obtained with the two procedures converge to the same value but the
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new algorithm converges faster than the standard MH algorithm. Autocorrelation plots,
Figure 6.8, are also significantly showing the advantage of the new sampler as the chain

obtained with the nlme-IMH is mixing almost ten times faster than the reference sampler.
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Figure 6.8 — Time-to-event data modelling. Top plot: convergence of the empirical medi-
ans of p;(\;|y;; @) for a single individual. Comparison between the reference MH algorithm
(blue) and the nlme-IMH (red). Bottom plot: Autocorrelation plots of the MCMC sam-
plers for parameter \;.

Table 6.4 — MSJD and ESS per dimension.

MSJD ESS
RWM 0.055  0.093 3061 1115

nlme-IMH  0.095 0.467 8759 8417

Plots for the other parameter can be found in Appendix 6.8.2. Comparisons with state-
of-the-art methods were conducted as in the previous section. These comparisons led us
to the same remarks as those made for the previous continuous data model both on the

asymptotic and non asymptotic regimes.

6.5.2.3 Maximum likelihood estimation of the population parameters

We run the standard SAEM algorithm implemented in the SAEMIX package (extension
of this package for noncontinuous data models is available on GitHub: https://github.
com/belhal/saemix) and the -SAEM on the generated dataset.

Figure 6.9 shows the estimates of Apop and wy computed at each iteration of the two

versions of the SAEM and starting from three different initial values. The same behaviour
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is observed as in the continuous case: regardless the initial values and the algorithm, all
the runs converge to the same solution but convergence is much faster with the proposed

method. The same comment applies for the two other parameters (o, and wg.

20
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Figure 6.9 — Population parameter estimation in time-to-event-data models: convergence
of the sequences of estimates {5\1()%)})}13193200 and {@&’“)}1%200 obtained with SAEM and
three different initial values using the reference MH algorithm (blue) and the f-SAEM
(red).

6.5.2.4 Monte Carlo study

We now conduct a Monte Carlo study in order to confirm the good properties of the new
version of the SAEM algorithm for estimating the population parameters of a time-to-
event data model. M = 50 synthetic datasets are generated using the same design as
above. Figure 6.10 shows the convergence of the mean square distances defined in (6.5.5)
for Apop and wy. All these distances converge monotonically to 0 which means that both
algorithms properly converge to the maximum likelihood estimate, but very few iterations
are required with the new version to converge while about thirty iterations are needed
with the SAEM.

60 08

40

E(pop)

20
0.2

0. 160 200 0. 100 200
iteration iteration
Figure 6.10 — Convergence of the sequences of mean square distances (E(k)(/\pop), 1<k<
200) and (E®)(wy),1 < k < 200) for Apep and wy obtained with SAEM from M = 50
synthetic datasets using the reference MH algorithm (blue) and the f-SAEM (red).
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6.6 Conclusion

We present in this article an independent Metropolis-Hastings procedure for sampling
random effects from their conditional distributions and a fast MLE algorithm, called the

f-SAEM, in nonlinear mixed effects models.

The idea of the method is to approximate each individual conditional distribution by a
multivariate normal distribution. A Laplace approximation makes it possible to consider
any type of data, but we have shown that, in the case of continuous data, this approxima-
tion is equivalent to linearizing the structural model around the conditional mode of the

random effects.

The numerical experiments demonstrate that the proposed nlme-IMH sampler converges
faster to the target distribution than a standard random walk Metropolis. This practi-
cal behaviour is partly explained by the fact that the conditional mode of the random
effects in the linearized model coincides with the conditional mode of the random effects
in the original model. The proposal distribution is therefore a normal distribution cen-
tered around this MAP. On the other hand, the dependency structure in the conditional
distribution of the random effects is well approximated by the covariance structure of the
Gaussian proposal. So far, we have mainly applied our method to standard problems en-
countered in pharmacometrics and for which the number of random effects remains small.
It can nevertheless be interesting to see how this method behaves in higher dimension and
compare it with methods adapted to such situations such as MALA or HMC. Lastly, we
have shown that this new IMH algorithm can easily be embedded in the SAEM algorithm
for maximum likelihood estimation of the population parameters. Our numerical studies
have shown empirically that the new transition kernel is effective in the very first itera-
tions. It is of great interest to determine automatically and in an adaptive way an optimal
scheme of kernel transitions combining this new proposal with the block-wise random walk

Metropolis.
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6.7 Mathematical Details

6.7.1 Extensions of model (6.2.2)

Several extensions of model (6.2.2) are also possible. We can assume for instance that the

transformed individual parameters are normally distributed:

w(¥i) = u(¥pop) + i (6.7.1)

where u is a strictly monotonic transformation applied on the individual parameters ;.
Examples of such transformation are the logarithmic function (in which case the compo-
nents of ; are log-normally distributed), the logit and the probit transformations [Lavielle,
2014]. In the following, we either use the original parameter 1; or the Gaussian trans-

formed parameter u(v;).

Another extension of model (6.2.2) consists in introducing individual covariates in order

to explain part of the inter-individual variability:

u(wz) = U(prp) + Czﬁ + 7, (6.7.2)

where C; is a matrix of individual covariates. Here, the fixed effects are the vector of

coefficients B and the vector of typical parameters 1pop.

6.7.2 Calculus of the proposal in the noncontinuous case

Laplace approximation (see [Migon et al., 2014]) consists in approximating an integral of

the form
I:/&Wm, (6.7.3)
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where v is at least twice differentiable.

The following second order Taylor expansion of the function v around a point xq
1
v(z) = v(zo) + Vu(zo)(z — xo) + i(x — 20)V20(z0) (z — 20) , (6.7.4)

provides an approximation of the integral I (consider a multivariate Gaussian probability

distribution function which integral sums to 1):

(2m)P
| = V2u(z0)]

I = ev(@0)

exp {—;Vv(mo)’V%(:no)_le(xo)} . (6.7.5)

In our context, we can write the marginal pdf p;(y;) that we aim to approximate as
pi(yi) = /fi(yz,wi)dw = /elogfi(y"’w") dy; (6.7.6)

Then, let
v(v;) 1= log fi(yi, i) = log pi(yi|v:) + log pi () (6.7.7)

and compute its Taylor expansion around the MAP 1211 We have by definition that

V log pi(yi, i) = 0,

which leads to the following Laplace approximation of log p;(y;):

)

We thus obtain the following approximation of the logarithm of the conditional pdf of ;

—2log pi(y;) = —plog 21 — 2log p;(y;, ¥;) + log (‘—VQ log pi (yi, Vs)

given y; evaluated at 1,?}@

)

which is precisely the log-pdf of a multivariate Gaussian distribution with mean zﬁz and

~ P 1 ~
log pi(vilyi) = —3 log 2m — 7 log (|-v*108 pityss )

variance-covariance —V? log p; (v, 1,21-)*1 with:

V2 log pi(yi, i) = V2 log pi(yi|i) + V2 log pi (i) (6.7.8)
= H () + Q71 (6.7.9)



6.8. SUPPLEMENTARY EXPERIMENTS 187

6.7.3 Linear continuous data models

Let vi = (Yin,---,Yim,) and €; = (€i1,...,€in,). Assume a linear relationship between

the observations y; and the vector of individual parameters ;:
yi = Aii + & (6.7.10)

where A; € R™*P is the design matrix for individual 4, v; is normally distributed with
mean m; € RP and covariance 2 € RP*P. Then, the conditional distribution of ; given y;

is a normal distribution with mean u; and variance-covariance matrix I'; defined as:

Ay AL A, !
M:n( i +lei> where ri:< J +Ql) (6.7.11)

o2 o2

Here, p; is the mode of the conditional distribution of ¢;, known as the Maximum A
Posteriori (MAP) estimate, or the Empirical Bayes Estimate (EBE) of ;.

6.7.4 Conditional mode under the linearised model
Using (6.4.3), v satisfies:

I8 (W)’

o2

(9 — F() + Q7' (i —my) =0, (6.7.12)

which leads to the definition of the conditional mean p; of ¢; given z;, under the linearized

model, by:

(W) . A
w((;f) (yz'—f(w¢)+pr(¢i)wi+Q—1m,») (6.7.13)

N T () JE, (i)
0-2

pi =T
=T (Ql(qui —my) Ui + lei> (6.7.14)

=TT Yy = oy . (6.7.15)

6.8 Supplementary Experiments

6.8.1 A pharmacokinetic example

Figures 6.11 and 6.12 highlight the performances of the RWM, the nlme-IMH using a Gaus-
sian proposal distribution and a Student proposal. At iteration (¢) of the MH algorithm,
samples from the Student proposal distribution are obtained using the same parameters

obtained in Proposal 14 as follows:
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Table 6.5 — MSJD and ESS per dimension.

MSJD ESS
ka; Vi k; ka; Vi k;
RWM 0.009 0.002 0.006 1728 3414 3784

nlme-IMH (Gaussian) 0.061  0.004 0.018 13694 14907 19976
nlme-IMH (Student) 0.063 0.004 0.018 14907 19946 19856

o Student samples S ®

; are drawn from a student distribution with degree of freedom
k=3 8" ~t(k)

e Individual parameters wi(t) are obtained using the mean and the covariance defined
in Proposal 14 to shift and scale the obtained samples: Tf)l(t) = in(t) + Si(t).I‘Z(t)

ka;
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Figure 6.11 — Modelling of the warfarin PK data. Top plot: convergence of the empirical
medians of p;(ka;|y;; @) for a single individual. Comparison between the reference MH
algorithm (blue) and the nlme-IMH (red). Bottom plot: Autocorrelation plots of the
MCMC samplers for parameter ka;.

Table 6.6 — Pairwise correlations of the proposals.

ka;, Vi kai, ki Vi k;
Variational proposal 0.48 -0.28  -0.61
Laplace proposal 0.56 -0.39  -0.68
NUTS (ground truth) 0.55  -0.39 -0.68

6.8.2 Time-to-event Data Model

Median convergence and autocorrelation plots of the RWM and our nlme-IMH methods

for parameter 3; are presented in Figure 6.13. Same observations as for parameter )\; can
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Figure 6.12 — Modelling of the warfarin PK data. Top plot: convergence of the empirical
medians of p;(Vi|yi; @) for a single individual. Comparison between the reference MH
algorithm (blue) and the nlme-IMH (red). Bottom plot: Autocorrelation plots of the
MCMC samplers for parameter V;.

be made.
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Figure 6.13 — Time-to-event data modelling. Top plot: convergence of the empirical
medians of p;(B;|yi; @) for a single individual. Comparison between the reference MH
algorithm (blue) and the nlme-IMH (red). Bottom plot: Autocorrelation plots of the
MCMC samplers for parameter ;.



Chapter 7

Incremental Stochastic

Approximation of the EM

Abstract: We develop in this chapter an incremental variant of the
SAEM algorithm introduced in Chapter 6. We provide almost sure con-
vergence gquaranty of the incremental algorithm and motivate its use

through several numerical applications on pharmacokinetics models.
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7.1 Introduction

We consider a complete model (y, z) where the realisations of y are observed and z is the

latent data. When the complete model f(z,y, 0) is parametric, the goal is to compute the

maximum likelihood (ML) estimate of the parameter of the incomplete likelihood:

i = 1.1
On1, = argmax g(y, 0) (7.1.1)
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where © C R? and the incomplete likelihood is defined as:

9(y,0) :/Zf(z,y,O)dz (7.1.2)

When the direct derivation of this expression is hard, several methods use the complete
model to iteratively find the quantity of interest. The EM algorithm has been the object
of considerable interest since its presentation by Dempster, Laird and Rubin in 1977, see
[Dempster et al., 1977]. It has been relatively effective in context of maximum likelihood
estimation of parameters of incomplete model (unobserved or more). This algorithm is
monotonic in likelihood making it a stable tool to work with. This two steps algorithm
consists in maximizing an auxiliary quantity that is the expectation of the complete log-
likelihood with respect to the conditional distribution over the missing variable conditioned
on the observed data and the current parameter estimate (also called the posterior distri-
bution), see [WU, 1983] for more details. Yet, when the quantity computed at the E-step
involves unfeasible computations, new methods have been developed in order to by-pass
the issue. Most of them alleviate the computation of the expectation using approximates.
The Monte Carlo EM (MCEM) algorithm, first introduced in [Wei and Tanner, 1990b],
approximates this quantity by a Monte Carlo integration. A Robbins Monroe type ap-
proximation can be used to evaluate that latter quantity after the simulation step, that
is the SAEM algorithm described in [Lavielle, 1995]. When the posterior distribution of
the individual parameters given the observed data is not tractable, sampling from this
latter is impossible. The SAEM algorithm is thus coupled with an MCMC procedure to
sample latent data from the posterior distribution. Convergence of such an algorithm has
been proven in [Kuhn and Lavielle, 2004]. In this article, we study an incremental version
of this algorithm where, at each iteration, only a mini-batch of observations are drawn

uniformly and considered for updating the optimised quantity.

Two main parts are presented in this Chapter. The first one present the theoretical con-
vergence theorem of the incremental SAEM and the second one highlights the performance

of this variant on several numerical examples.

7.2 Maximum Likelihood Estimation: the SAEM Algo-

rithm
7.2.1 Model assumptions and notations
H7.1 The parameter set © is an open subset of RP.

We use in the sequel the notations defined in the introductory Chapter 1. Let n be

an integer and for i € [1,n], Z be a subset of R™, u; be a o-finite measure on the
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Borel o-algebra Z = B(Z) and {fi(zi,yi,0),0 € ©} be a family of positive u;-integrable
Borel functions on Z. Set z = (z; € Z,1 < ¢ < n) and pu the product of the measures
(i, 1 < i <n). Define, for all i € [1,n] and 6 € ©:

fi(zmyi,g) if . .
ey gz(yue) #0
9i(yi, 0) é/zfi(zi,yiﬁ)m(dzi) and  p;(zilyi, 0) £{ 9:(v:.6)

0 otherwise

(7.2.1)

Note that p;(zi|yi,0) defines a probability density function with respect to p;. Thus
Pi = {pi(zily:,0); 0 € O} is a family of probability densities. We denote by {P; ;6 € ©}

the associated family of probability measures. For all 8 € ©, we set

(2,9,0 Hfz zi,¥i,0) , g(y,0) = Hgi(yi,ﬂ) and  p(z|y,0) sz zilyi, 0)
(7.2.2)

Our objective is to maximize the function 8 — £(0) defined as:
L(6) £1ogg(y,0) = > Li(0) (7.2.3)

where £;(0) = log gi(y;,0). The SAEM algorithm is an iterative optimisation algorithm
that maximizes the function @ — £(0) when its direct maximisation is difficult. Define
for all (0,9) € ©%:

Qu(0.9) 2 | log /(2. 0)p(=Iy. D)n(d2) (7.2.4)

Denote by 8% ~1) the current fit of the parameter at iteration k. The k-th step of the
SAEM algorithm might be decomposed into three steps:

1. Sampling latent data, for i € [1,n], zl(];)l ~ pi(zi|yi; 851 for m € [0, M, — 1] under

the current model parameter estimate 8*—1).

2. Updating the stochastic approximation Qk(G) of the quantity Q (8, O(k_l)), defined
by (7.2.4), as follows:
. . M) n .

) m=11i=1

Where {vx}r>0 is a sequence of positive stepsizes.

3. Updating the parameter fit:

(k) — )
0 arg max Qr(0) (7.2.6)

The SAEM algorithm has been shown theoretically to converge to a maximum of the
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likelihood of the observations under very general conditions [Delyon et al., 1999a]. In the
simulation step, since the relation between the observed data and the individual parame-
ters can be non linear, sampling from the posterior distribution requires using an inference
algorithm. Kuhn et al. in [Kuhn and Lavielle, 2004] proved almost sure convergence of
the sequence of parameters obtained by this algorithm coupled with an MCMC procedure

My—1

during the simulation step. Indeed, {Zi(,lz)z}m:o is a Monte Carlo batch. In simple scenar-

Mp—1

meo  are conditionally independent and identically distributed with

ios, the samples {ZZ(?L}
distribution p;(z; |y, 9(’“*1)). Nevertheless, in most cases, sampling exactly from this dis-
tribution is not an option and the Monte Carlo batch is sampled by Monte Carlo Markov
Chains (MCMC) algorithm. MCMC algorithms are a class of methods allowing to sample
from complex distribution over (possibly) large dimensional space. In the stochastic ap-
proximation step, the sequence of decreasing positive integers - controls the convergence
of the algorithm. In practice, v is set equal to 1 during the first K1 iterations to let
the algorithm explore the parameter space without memory and to converge quickly to a
neighbourhood of the ML estimate. The stochastic approximation is performed during the

final K2 iterations where 7 = 1/k, ensuring the almost sure convergence of the estimate.
In the sequel, we assume that:

H7.2 For alli € [1,n], the function @ — g;(yi, @) is continuously differentiable on 6 and
for all 8 € ©:

Vogi(yi, 0) :/Zvefi(ziayiae)ﬂi(dzi) (7.2.7)

and that the model belongs to the curved exponential family:

H7.3 For alli € [1,n] and @ € ©, The function fi(z,y:,0) belongs to the curved expo-

nential family and is given by:

log fi(zi, yi, 0) = —i(0) + (Si(2i, yi), 9:(0))- (7.2.8)

where ¥; : @ — R and ¢; : 8 — R are twice continuously differentiable functions of 6

and S : Z — S is a statistic taking its values in a convex subset S of R and such that
J7 18i(zi y) pi(zilys, 0) pi(dzi) < oo
H7.4 For alli € [1,n] and 6 € O, the the function's; : @ — S; defined as:

si(0) é/Zgi(ziayi)pi(zi‘yiae),ui(dzi) (7.2.9)
s continuously differentiable on 0

Define, for all @ € © and s = (s;,1 <7 <n) € S where S = XZLI S;, the function L(s;8)
by:

n

L(s:6) 2 =Y 0i(8) + 3 (50, 6x(0)) = —0(0) + (5.0(8)  (7.2.10)
i=1

i=1
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where 1(8) 2 Y7, ,(6) and ¢(8) 2 (¢4(8),1 < i < n).

H7.5 There exist a function 0:S— 0 such that forallse€s, :
L(s;0(s)) < L(s;0). (7.2.11)

where O(s) is continuous differentiable on S.

In many models of practical interest for all s € S, @ + L(s,0) has a unique minimum.

Define the closed set of stationary points J of £(6) as:
J={60c0;VyL(0) =0} (7.2.12)

We can now express the SAEM algorithm for curved exponential family as:

Algorithm 7.1 SAEM algorithm for a curved exponential family

Initialisation: given an initial parameter estimate 6°, for all i € [1,n] sample initial

0) Mp—1

values {z§7m}m:0 and compute s? = S; (29, ;).

Iteration k: given the current estimate ~1):
1. For i € [1,n], sample a Monte Carlo batch {zg:%}M’“*l under the current model

m=0
parameter estimate.

(k)

2. Compute s; "’ such as:
®) _ (k-1) LW m (k-1)
s; =58, 4+ Si(2;msYi) —S; ) (7.2.13)
My mZ:I 7

3. Set 8*) = §(s*)) where s = (sgk), 1<i<n).

As mentioned above, convergence properties of this algorithm have been developed in [De-
lyon et al., 1999a]. They highlight the convergence of the SAEM algorithm depending on
the choice of step sizes vy and the specification of M(;) used in the stochastic approxima-
tion. It is inappropriate to start with small values for step size v and large values for the
number of simulations M. Rather, it is recommended that one decrease 7y and increase
M(k) as the current approximation of the parameter vector moves closer to a stationary

point.

7.2.2 Convergence of the iSAEM for curved exponential family

To avoid cumbersome notations, we set M) = 1. The incremental version of the SAEM

for the curved exponential family can be expressed as:
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Algorithm 7.2 Incremental SAEM for a curved exponential family.

—_

: Input: given an initial parameter estimate 8°, for all i € [1,n] sample initial values
{zi(o)} and compute s? = S;(22, ;).

2: for k=0,1,2,...,K do

3. Pick a set Ij uniformly on {A C [1,n],card(A) = p}

4:  For i € I, sample {zi(k)} under the current model parameter estimate.

5

(k)

For i € [1,n], compute s;" such as:

(k) Sz(k_l) ~|—7k(§i(sz),yz') — Sgk_l)) it i € I.
Si =\ (k-1) . (7.2.14)
S, otherwise.
6:  Set 8%) = 9(s5() where s*) = (sgk), 1<i<n).
7: end for
8: Return: 0.
We remark that, for all ¢ € [1,n] and 6 € ©:
k
s = () (7.2.15)

where for all i € [1,n], 7,0 = 0 and k > 1 the indices 7/ are defined recursively as follows:

i k ifi € I,
T = (7.2.16)
Tf_l otherwise

Define for all k& > 1:

~(z(/€)’ y) — S(k—l)) b (E [S(Z(k), v) ‘ ]:,k_l} B s(k_l)) (7.2.17)

where @ is the Hadamard product, I, £ (uf, 1 <4 < n) and the coefficients uf are defined

as follows:

1 ifiel
uk 2 g (7.2.18)
0 otherwise

and Fj_1 is the filtration induced by the sampling of indices and the simulation step up
to iteration k — 1, S(z),y) := (S’i(zi(k),yi), 1 <i<n) €S is the vector of statistics and
stk=1) — (sl(»k_l), 1 <i<mn)e€S. Since, at iteration k, the iSAEM update can be derived

as a Robbins-Monro type update:

s®) = =1 4 o B(sBD) 4 4, B (7.2.19)
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we recall some convergence properties of a wider class of Robbin-Monro procedure taking
the form of:
s = 5= 4y B(sE1) 4 e 4y () (7.2.20)

where {e(k)}kzl, the stochastic excitation, and {r(k)}kzl, the remainder, are random pro-
cesses defined on the same probability space taking their values in an open subset H C R™

and h is referring to the mean field of the algorithm. Assume that:
SA 1 VYn>0,5% e wp.1

SA 2 The sequence of stepsizes {7V }k>0 is a decreasing sequence of positive numbers such
that 332 vk = o0

SA 3 The vector field h is continuous on H and there exists a continuously differentiable
function V : H — R such that:

e Vs e H,F(s)=(VsV(s),h(s)) <0
e int(V(J)) =2 where I ={se€H:F(s)=0}
SA 4 The closure of the set {S(k)}k21 is a compact subset of S w.p.1.

SA 5 While considering the RM stochastic approzimation procedure ,we can write that

the sufficient statistics s*®) as follows:
st = g1 4y BB 4 ype®) 4 () (7.2.21)

lim >7_, vie'®) ezists and is finite, lim r®*) =0
p—0 - k—o00

We now state the main convergence result of such algorithm:

Theorem 7 [Delyon et al., 1999a] Assume SA 1 - SA 5. Then we the sequence
{s¥)Ypso from (7.2.20) satisfies:

d({s®}r0,3) =0

In order to deal with the theoretical convergence properties of the incremental version of

the SAEM algorithm, we assume:

iISAEM 1 The sequence of stepsizes {7y} is a decreasing sequence of positive numbers
such that Yk > 0,0 < v, < 1,302 v, = 00 and Y52, 72 < oo.

iISAEM 2 For alli € [1,n] and any positive Borel function ¢;:
Elo(=" )T = [ duleipialus, 00 (72:22)

Where {Fi } >0 is the increasing family of o-algebra generated by the random variables up

to iteration k.
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iSAEM 3 For all 8 € O:

sup [ 118 PpiCails, Oz < o (7.2.23)
i€[l,n] /2

and Covg(S(z)) is continuous with respect to 6.
iSAEM 4 The functions £:0 — R and 0 : S — 6 are m times differentiable

iSAEM 5 The closure of {s"™) 51 is a compact subset of S

Lemma 15 Assume H 7.1-H 7.5 and iSAEMA4, then SA3 is satisfied with V (s) =
—L(0(s)). Also,
{s€S:F(s)=0} ={s€S:V,V(s) =0} (7.2.24)

O({se€S:F(s)=0})={6* € ©: Vyl(0*) =0} (7.2.25)
With F(s) = (VsV(s), h(s))
where the mean-field h is defined in (7.2.17).
Proof The proof is postponed to Appendix 7.5

The main convergence result is expressed as follows:
Theorem 8 Assume H 7.1-H 7.5 and iISAEM1-iSAEMS5, then the sequence of
parameters {0}~ given by Algorithm 7.2 satisfies:

1. lim d(@®,J) =0

k—o00

2. klim d(s®) {s€S:V,V(s)=0}) =0
—00

Proof The proof is postponed to Appendix 7.6

This theorem shares the same assumptions of Theorem 5 of [Delyon et al., 1999a]. The
main difference, here in the case of the incremental version, resides in the definition of the
mean field that will be shown to satisfy assumption SA3.

The results obtained in the previous section demonstrate that, under appropriate con-
ditions, the sequence {G(k)}kzl converges to a connected component of the solution set
J. We assume that those connected components are restricted to points. Then, those

converging points could be local minima, maxima or saddle points.
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7.3 Numerical Applications

7.3.1 Gaussian Mixture Models

We start by illustrating our findings on a simple GMM model as in Chapter 5. Our goal
is to fit a GMM model to a set of n observations {y;}; whose distribution is modeled
as a Gaussian mixture of V' components, each with a unit variance. Let z; € [M] be the

latent labels, the complete log-likelihood is:

g f(2i4i;0) = Xu_1 Loy (21) [log(wy) — 13 /2] + S0_1 Ly (2i)poyi + constant . (7.3.1)

where 0 := (w, p) with w = {wv} 1 are the mixing weights with the convention wy =
1->V 1w, and p = {p,}y_; are the means. We use the penalization R(8) = 5 -
log Dir(w; V,€) where § > 0 and Dir(-;V,€) is the V dimensional symmetric Dirichlet

distribution with concentration parameter ¢ > 0. The constraint set on 6 is given by

O={wp, v=1,.,V-1:w0,>0 2V ]w, <1} x{uwe€R, v=1,..,V}. (7.3.2)

Model assumptions Using the partition of the sufficient statistics as S(y;, z) =
(SO (g, 2) T, 8@ (ys, 2) T, SO (s, )T € RV x RV~ x R, the partition ¢(8) =
(6W(O0)T,02(0)7,63(0))T € RV x RV~ x R and the fact that Igy(z) = 1 —
Z}]/;ll 1y (2i), the complete data log-likelihood can be expressed as in (5.1.2) with

(1) 1 M2 V 1 M%/
Sim = l{v}<2i)> ¢1(1 )(0) {IOg(%) - 2} {log(l — i wi) — 9 } )

7.3.3
S = Ly 620 = (7:3:3)
31(3 = Yi, ¢(3) (0) =MV,
and ¥(0) = — {log(l — SV twy) - } We also define for each v € [1,V], 5 € [1,3],
sg,j ) = p1 A s(] ). Consider the following conditional expected value:
_ wy exp(— %(y 1i)?)
Wy (yi:0) = Eo[lis,—nly = yi]l = , (7.3.4)
e Forw exp(— (v — 1))

where v € [1,V], i € [1,n] and 8 = (w, u) € O. In particular, given 6 € O, the E-step
updates of the quantity defined in (7.2.9) can be written as

_ ~ ~ ~ ~ T
5i(0) = (01(y;0), ..., ov—1(yi; 0), yiw1(y:; 0), .., yiwov (vi; 6), Ji ) - (7.3.5)

=5 (0)7 =52 (o) =5,7(0)
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Recall that we have used the following regularizer:

R(6) = § 301 1 — € 0y log(wy) — elog (1= 305 wo) | (7.3.6)

It can be shown that the regularized M-step in (5.2.5) evaluates to

(1+ eV)_l(s(l) +e€... 58)_1 + e)T

w(s)
0(s) = <<s§”+6> 189,...,(“ +o) L) | =] Es) (7.3.7)
(- SV s 4 8) 7 (s - SV ) v (s)

where we have defined for all v € [1,V] and j € [1,3] , s§) =1 oy sl(jg

Algorithms updates In the sequel, for all ¢ € [n] and iteration k, the conditional

(k)

expectation s, and is equal to:

((Dl(yla a(k)), o 7(‘T}V71(yi; a(k)))—l—
gl('k) = | (i@ (yi; %)), . gy 1 (i; o(k)))T . (7.3.8)
Yi

At iteration k, the several E-steps defined by (5.2.4) or (5.2.5) or (5.2.6) or (5.2.7) leads

to the definition of the quantity §(**1). For the GMM example, after the initialization of
the quantity §(© = 1 i ( ) , those E-steps break down as follows:

Batch EM (EM): for all ¢ € [1,n], compute EE ) and set

gk +1) — —1ZZ , s (7.3.9)

(k)

Incremental EM (iEM): draw an index 4 uniformly at random on [n], compute s;

and set
ak+1) _ s(k) | g(B) _ ’“) n-1 (F)
S =8 +5; E S (7.3.10)

(%)

Online EM (sEM): draw an index iy uniformly at random on [n], compute s; ~ and set

Incremental SAEM (iSAEM): draw an index ij uniformly at random on [n], draw
(k)

from its conditional distribution p;(z;|y;, 8*~1) and set

~ Tk
g1 = 60 | (G, ( ff)wzk) _ggk >) (7.3.12)

where S;, (zi(f), Yip) = (zi(f), Yir zi(f),yik). The mini-batch version of the iISAEM boils down
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from the last update. Finally, apply the maximization step to yield the new parameter
estimate @+ = g(g(k+1)),

Experimental results We generate n = 10% samples from a GMM model with M = 2
components with two mixtures with means u; = —ps = 0.5. All plots below are generated
averaging over 15 independent simulated datasets. We use n = 10* synthetic samples and
run the EM method until convergence (to double precision) to obtain the ML estimate p*.
We compare the EM, iEM , sEM (an online version of the EM developed by Cappé and
Moulines [2009] and iSAEM methods in terms of their precision measured by |u — u*|?.
We set the stepsize of the iSAEM as vy, = 1/k%¢ and average over My = 30 MC samples
for the iISAEM runs. Figure 7.1 shows the convergence of the precision | — p*|? for the
different methods against the epoch(s) elapsed (one epoch equals n iterations). We observe
that the iSAEM and iEM methods outperform the batch methods. Though, the iISAEM
algorithm, after a certain number of epochs, seems to have reached its maximum precision.
High variance, due to its simulation step, prevents the algorithm to attain higher precision

as in the iEM algorithm.

10°

0 2 4 6 8 10 12 14
Epoch

Figure 7.1 — Performance of EM and SAEM methods for fitting a GMM: Precision (|u*) —
©*|?) as a function of the epoch elapsed.

7.3.2 Pharmacokinetic model

We consider the same PK model studied Section 6.5 of Chapter 6 We recall that the model
is a one-compartment pharmacokinetics (PK) model for oral administration, assuming

first-order absorption and linear elimination processes:

Dka o kat 7kt)

f(t,/fa,‘/,k):m( —e

, (7.3.13)
where ka is the absorption rate constant, V' the volume of distribution , k£ the elimination
rate constant, and D the dose of drug administered. Here, ka, V and k are PK parameters
that can change from one individual to another. We note 1; = (ka;, Vi, k;) be the vector
of individual PK parameters for individual i. We assume in this example that the residual

errors are independent and normally distributed with mean 0 and variance o2 and that
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lognormal distributions are used for the three PK parameters:
log(ka;) ~ N(log(kapop)»WEa) log(V;) ~ N(log(Vpop),w‘Q/) log (ki) ~ N(IOg(kmp)aw%) .

To illustrate the behaviors of the iSAEM algorithm, we generate a dataset of n = 103
individuals with n; = 5 observations per individual using the PK model described above.
We use the following generating parameters:kapop = 2, Vpop = 10, kpop = 1, wrq = 0.3,
wy = 0.2, w, = 0.1 and ¢? = 1. We then run the SAEM and the iSAEM algorithms for
200 iterations using a stepsize 7, = 1 and then 50 iterations using 7, = 1/k to ensure

almost sure convergence.

6 "lu —~ SAEM —— saemso% | 60 14 —— SAEM —— SAEM50% | 93| A —— SAEM —— SAEM 50%
[ SAEM 25%  —— SAEM75% | 5571 [ SAEM 25%  —— SAEM75% | 5.01 /0 SAEM 25%  —— SAEM 75%
il g1 RN
5 !: 11'1. v‘i 5.0 Ijj 1 i'\\ 4.5 :i 5 \\\
i, W 4594 fi L%
i ! (TR 4071
S A 407 i %
il 23 3.5 - Ao B
}I! L 3.5 :; oy li !
fii 1 A\ H A
AR B0y 3.0 ? R
b L 25{F bV 25 ——
Il U] ~— e T
2 EEs e e S A 2.0 RPN Rl T VO 2.0 B
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
L4 == sAEM == SAEMS0% | 4 || = SAEM ~= SAEM50% | 141 |- == SAEM —-— SAEM 50%
1.2 i SAEM 25% —— SAEM 75% ) il SAEM 25% —-— SAEM 75% 12 SAEM 25% —-— SAEM 75%
’ ! 121§ : %
i i
Lo Lo|f 1.0 F!',
© i I
20810 0.8 'l} 08l
1\ : Y
0.6 En‘ ) 0.6 .'*l\ . 0671t
0.4 “':f:t"i\: = 0.4 |-+ S8R, 0.4 I
. Aa, Ny ~ st
0.2 ~\";¥;:;:u..‘_:k‘f oz fiat™ ::‘“—a-_:_t_} . 0.2 B \_\\\‘“‘-ﬂ.,.
0.0 = — i
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Figure 7.2 — Estimation of the population PK parameters: convergence of the sequences of

estimates (kAagZ)p, 1 <k <250) and (cb,i?, 1 < k < 250) obtained with the SAEM and the

iSAEM algorithms. From left to right, the runs are executed averaging over, respectively,
1, 10 and 20 chains.

Figure 7.2 shows the effect of the Monte Carlo batch size on the convergence behaviors
of the incremental variants of the SAEM. While no distinct differences can be observed
when the updates use only one sample from the conditional distribution, one can notice
that increasing the number of samples not only smooth the convergence of the estimated
parameters but also exhibits a different rates according to the number of individuals picked
at each iteration. These empirical results illustrate a tradeoff between resorting to cheap
updates, independent of the problem size in general, in order to reduce the bias after a
small number of iterations, and decreasing the variance of the estimates, that generally

explodes with small mini-batch size.

An attempt to illustrate the aforementioned bias-variance tradeoff on a simple linear Gaus-

sian example can be found in Appendix 7.7.
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7.4 Conclusion

We have presented in this chapter an incremental variant of the SAEM algorithm. Based
upon important convergence results for stochastic approximation scheme, we establish the
almost sure convergence of our incremental scheme. We illustrate our findings through
numerical experiments on a simple GMM case and a more sophisticated pharmacokinetics
example. Not only do we observe asymptotic convergence, as proven in this Chapter, but
we also exhibit a bias-variance tradeoff due to the interplay between the variance caused
by the Monte Carlo batch and the mini-batch of picked individuals at each iteration. Non-
asymptotic bounds for this algorithm would be the next important result to derive along

with a thorough study of the influence of the mini-batch size on the convergence rate.
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7.5 Proof of Lemma 15

Lemma Assume H 7.1-H 7.5 and iSAEM4, then SA3 is satisfied with V(s) =

—L(6(s)). Also,
{s€S:F(s)=0} ={s€S:V,V(s) =0} (7.5.1)
O({seS:F(s)=0}) ={0" €O :Vgl(6") =0} (7.5.2)
With F(s) £ (VsV(s),h(s))
Proof In this proof, one need to express the mean field of the iSAEM algorithm at each
iteration and propose a Lyapunov function that satisfies SA 3. It is well known (see
[Delyon et al., 1999a]) that the incomplete data likelihood is a Lyapunov function relative
to the SAEM mapping. We will show that this same function is a Lyapunov function
relative to the incremental SAEM mapping. The k-th iteration of the iSAEM algorithm

is expressed as:
50 = 5E 4y T 0 (§(2®), y) — 54D (7.5.3)

Given that:

E [0 SE®, ) |86 )] = ZE [5(:0, )

o(s*))

7.5.4
E {I_k © st é(s(k—l))} _ P k1) (7.5.4)
n
we can express the mean field h(s) of the algorithm defined for all s € S as:
_P G H(s)| — s = P (5(6(s)) —
hs) =" GIE®) \ 0(s)| - s*1) = - (5(6(s)) - s) (7.5.5)

Under M7.4 and iSAEM 4 we obtain that h(s) is continuously differentiable on S. Under,
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M7.5, O(s) is a solution of the maximization of L(s, @), thus:

VoL(s,0(s)) =

f ) (7.5.6)
= — Vo1p(0(s)) + tvo¢(9( ))=0

The differentiation of the latter with respect to the vector s (under assumptions M7.3 and
M7.5) yields:

Y
(7.5.7)
v

Also , under M7.2; the Fisher identity [Fisher, 1925] gives:

VoL(8) = [ Volog (., 0)p(=ly. O)u(d2) (7.5.8)
which rewrites:
VoL(0) = —Vo1h(0) +5(6)' Voo (6) (7.5.9)

Define the following Lyapunov function and recall the mean field h(s) for all s € S:

V(s) = —L£(6(s)) and h(s):£(§(é(5))75) (7.5.10)

n

We are going to show that for all s € S, F(s) £ (VsV(s), h(s)) < 0. Plugging (7.5.6) into
(7.5.9) gives:

EVoL(B(s) = (H(5-5)  Vao(8(s))
his)  —Va0(s)'VEL(s,6(s)) (7.5.11)

= —h(s)'Vs0(5)'V3L(s,0(s))

We can derive this expression with respect to the vector s. The gradient of £(8(s)) is

given by the following relation:

EV.L(8(s) = EVoL(B(s)V.6(s))

. . . (7.5.12)
= —h(s)'V.0(s)" V5 L(s,0(s))V:0(s)
The quantity of interest can be expressed as:
F(s) = (VsV(s),h(s)) = —(VsL(0(s)), h(s))
(7.5.13)

(
- %h(s)tvsé(s)tsz(S, 0(s))V0(s)h(s)

Since, under assumption M7.5, VgL(s,é(s)) < 0 we have that (VsV(s), h(s)) < 0 which
proves the first part of SA 3.
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Obviously, {s € S: Vi V(s) =0} C {s € S: F(s) = 0}.
If s* € {se€S: F(s)=0} then:

n A

F(s*) = —h(s)'V,0(s*)'VEL(s*,0(s*))V-0(s*)h(s")
p A (7.5.14)
= (VsL(0(s)),h(s)) =0

Since V%L(s*,é(s*)) is non positive then V,£(8(s*)) = 0 which proves V,V(s*) = 0
and the reverse inclusion. Using Sard’s theorem, in [Brocker et al., 1975], we have that

V({s € S,VsV(s) = 0}) has zero Lebesgue measure which proves the second part of 15.
|

7.6 Proof of Theorem 8

Theorem Assume H 7.1-H 7.5 and iISAEM 1-iSAEM 5, then the sequence of param-
eters {0F) Yo given by Algorithm 7.2 satisfies:

1. lim d(@%®,J) =0

k—o0

2. klim d(s®) {s€S:V,V(s)=0}) =0
— 00

Proof First of all, we verify assumptions of Theorem 2. SA1 is verified under M7.1 and
iISAEM 1 because the stepsize vy, is strictly inferiror to 1 and the convex hull of S(RP) is
in S. SA2 is implied by iSAEM 1 and SA4 by iSAEM 5. Note that under iSAEM 5, there
exists w.p.1 a compact set K , such that s; € K for all k > 0. Denote M) = Iy Y E®).
Then {M ™}, is a martingale which satisfies, under iSAEM 1, iSAEM 2 and iSAEM 4:

> B[O — )P
=1

3

E[II%HE(”“)H?!H} (7.6.1)

gk

1
3 Z 3 Si(z zizi,é Si, i(dz; 00
D 7ar 3o 181 Oz | <

n=1

<

33

This proves the existence of lim M (™ see [Hall and Heyde, 2014, Theorem 2.15 p.33].
Assumption SA3 is thus verified using 15. We check the assumptions of Theorem 7 which
yields:

d@® J) -0 wp.l (7.6.2)

The second part of the Theorem is proved by applying Lemma 15. |
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7.7 Bias-Variance Tradeoff in Incremental EM and SAEM

The recent development of incremental techniques involves faster gradient descent algo-
rithms. The original full gradient descent combined with the stochastic version to propose
an averaged gradient solution [Defazio et al., 2014, Roux et al., 2012] for the strongly
convex sum of a finite set of smooth functions. It incorporates a memory of previous

gradients at each iteration to reach a faster convergence rate.

Preliminary remarks regarding incremental algorithms: In this section, we will
focus on how to practically implement this algorithm. Two main tuning parameters need to
be chosen. The first one being the size of the batch of indices considered at each iteration
and the second is the strategy of choosing those indices. Indeed, following numerous
improvement of the gradient descent algorithm for instance, justifying the incremental
choice of data sample at each iteration, considering incremental of individuals in the
context of mixed effects models makes sense. Also, usually those incremental version of
existing algorithm showcase picking the individuals according to a uniform distribution but
accelerated versions introduce different choice strategy depending on a well chosen score
parameter. Roux et al. [2012], for instance, consider at each iteration, of their averaged
version of the stochastic gradient descent, the index whose gradient is the highest. Of
course this strategy is optimal and requires computing all gradients at each iteration

which can be costly in the context of high dimensional data.

Optimal batch size for a simple linear Gaussian model:  Let us consider the case

when all the variables of interest are Gaussian.
Yi =2t €, (7.7.1)

where z; ~ N(6,w?) and ¢ ~ N(0,0%). Since the z; and ¢; are i.i.d we have that
yi ~ N(0,0% + w?) and ;|2 ~ N (z;,02). The goal is to find an estimate of the mean
that maximizes the likelihood p(y, @) considering that ¢ and €2 are known. The maximum

likelihood is easy to compute in this case since y; ~ N (0, 0% + w?):
1 n
0ML = ﬁ Zyi (772)
i=1

We can rewrite the complete log likelihood log f;(z,y, @) as part of the exponential family:

n

log fi(z,y,0) =Y (log pi(yi|zi, 8) + log p; (2, 8))

=1
(7.7.3)
~ 1 oy (Wi—=)? 1 2y (2 0)?
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The resulting statistics are:

Sl(yaz) = Zzi, SQ(yv Z) = Zzlyl and S3(y7 Z) = ZZIQ (774)
i=1 i=1 i=1

Let us define the quantity of interest p;(z;|y;, @) using Bayes rule. We find that z;|y; ~
N(a0 -+ (1 — a)g7r2) with o — #12 and T'2 = o202

o2+w?”

Incremental EM algorithm In the general case, where we consider that we pick a
batch size of size pN at each iteration, where p € [0, 1], then the general recurrent relation

between parameter estimates is:

o) — pzl)/Pg(k—l/P) + (1 - a)je (7.7.5)
where:
% .. .. %
n n 1
1 0 .. 0 0
pp=10 0 and e} = (7.7.6)
0

0

What is really important here are the eigenvalues of p at the power ]%. These are the

values that will drive the speed of convergence. Besides, the highest eigenvalue is enough
to compare the rate of two algorithms (for instance, for two different values of mini-batch
size pl and p2). We denote A(p) = (\,)'/? where )\, = max(eigenvalues(p,)) and calculate

the characteristic polynomial of p:

1/p—1
P, (X) = (—1)Y/7(z'/P — % D) (7.7.7)
i=0
Naturally P,,(A,) = 0 so:
o 1/p—1 '
P (A®)) = 0= ()Y (A) - L Y (A@))) (1.7.8)
=0
Since 0 < A(p) < 1 we have that :
o 1/p—1 '
(~D)"7(A(p) = =2 37 (M) =0
=0
ap 1 —A(p) (7.7.9)
R A Ty Vo5 T

= AP)(1 - APP) = 21— Ap))
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We can derive this expression with respect to p and find:

>0 <0 ap
VA(p) (1 = Ap)") =A(p)"In(A(p)) p+ — =) = a1 — Ap)) (7.7.10)
<0 >0

which yields VA(p) > 0.

Conclusion: The function A(p) is monotonic which means that the speed of the iEM
will be monotonic with the number of individual we pick at each iteration. Thus, faster

convergence is attained with the smallest batch size possible, i.e., of size 1.

Incremental SAEM algorithm In the iSAEM only the latent variable whose index
has been picked will be simulated. Moreover, it will be simulated by the posterior distri-

bution under the latest model parameter estimate. As a result we have for all ¢ € [1,n]:
k
2~ pilzilyi, 007)) (7.7.11)
where Tio = 0 and for all £ > 1 the index i is defined recursively as follows:

i k—1 ifiel,
T, = b1 (7712)

T; otherwise

In this case the posterior distribution being a Gaussian distribution we can write each
latent variable as:

2= a0 4 (1 - a)y; +F (7.7.13)

)

where e* ~ N(0,~2). We can now apply our maximization step considering a Monte Carlo

batch size M =1 and a mini-batch I of size 1:

o) = 6(sM) = :LGj (Si(F, yi)lys, 07 = zznj o) +(1—a)g+e, (1.7.14)
i=1 i=1
where y = % "y and ¥ ~ N(0, an) If we define the vector of parameters 8" as
follows:
710)]
0" = . = 10"+ (1 — a)ye, + érey (7.7.15)
g(k—n+1)

Now if we consider a scheme where not only a single individual is picked at each iteration

but rather a mini-batch of size pN (where p € [0,1]) and considering § = 2 and y = 0
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for ease of notations, we can write, in the scalar case:

(k) 1/pg(k—1/p) L 1/pg(k—1/p) L— gl
0\ = §/Pe\VTHP) e E t=§POVTHP) e 7.1
4] ek 2 0'=9 ek 15 (7.7.16)

We calculate the expectation and the variance of our estimator @) in the stationary
regime:

72 1— s/
n(l—4§)21+§/p

E[@®)] = §*/7° and Var [0F)] = (7.7.17)
Conclusion: With these two expressions, we understand what strategy is best for the
choice of the batch size at each iteration. Indeed the bias is small when p is small so
one should start with picking one individual first to reduce the bias and the variance is
decreasing when p is increasing. Thus, once the bias is reduced one should increase the

size of the batch to decrease the variance of the estimator.






Chapter 8

R Tutorial: MLE for

Noncontinuous Data Models

Abstract: This Chapter corresponds to a tutorial on the extension of
the saemix [Comets et al., 2017] R package. Initially developed to run the
SAEM algorithm, introduced in Chapter 6, on continuous data models,
we demonstrate in this Chapter, how its extension, useful for estimating
population parameters in noncontinuous data models, can be used. The

extended package is made available on GitHub: https: // github. com/

belhal/saemiz.
Contents

8.1 Introduction .. ... ... ... 213

8.2 Noncontinuous Data Models . . . . . ... ... ..., 214

8.3 A Repeated Time-To-Event Data Model ... .. ..... ... 215
8.3.1 Themodel . ... .. ... .. .. 215
8.3.2 Numerical application . . . . . .. .. ... ... ... ... 215

8.4 A Categorical Data Model with Regression Variables. . . . . . 218
8.4.1 Themodel . .. ... ... ... 218
8.4.2 Numerical application . . . . . .. ... .. ... ... 218

8.1 Introduction

The R package SAEMIX [Comets et al., 2017] is an implementation in R language [R
Development Core Team, 2008] of the Stochastic Approximation Expectation Maximiza-

tion algorithm developed by Kuhn and Lavielle [2004] and presented in Chapter 6. It is


https://github.com/belhal/saemix
https://github.com/belhal/saemix

214 CHAPTER 8. R TutoRrIAL: MLE FOR NONCONT. DATA MODELS

implemented in the Monolix software available in Matlab and as a standalone software for
Windows, MacOS and Linux [Lavielle, 2005].

It performs parameter estimation for nonlinear mixed effects models, goodness of fit plots
and model selection (using information criteria such as the AIC or the BIC and testing
hypotheses using the Likelihood Ratio Test). The SAEM and its associated package have
been used in several application such as agronomy [Makowski and Lavielle, 2006], animal
breeding [Jaffrézic et al., 2006] and PK-PD analysis [Bertrand et al., 2009, Lavielle and
Mentré, 2007, Samson et al., 2006].

Though, the current version of the SAEMIX R package handles only analytical structural
model functions for continuous data models. The present Chapter describes the use of
the extended version of the SAEMIX package in R for noncontinuous data models. Two
examples (a time-to-event model and a categorical model) are described along with their

code implementation.

8.2 Noncontinuous Data Models

As mentioned above, SAEMIX can also be used for noncontinuous data models. Noncon-
tinuous data models include categorical data models [Agresti, 1990, Savic et al., 2011],
time-to-event data models [Andersen, 2006, Mbogning et al., 2015], or count data models
[Savic et al., 2011].

A categorical outcome y;; takes its value in a set {1,..., L} of L categories. Then, the
model is defined by the conditional probabilities (P(y;; = ¢|¢;),1 < £ < L), that depend

on the vector of individual parameters v; and may be a function of the time ;;.

In a time-to-event data model, the observations are the times at which events occur. An
event may be one-off (e.g., death, hardware failure) or repeated (e.g., epileptic seizures,
mechanical incidents). To begin with, we consider a model for a one-off event. The survival

function S(t) gives the probability that the event happens after time ¢:

Su)épaﬁ>w:ump{—%rmumu}, (8.2.1)

where h is called the hazard function. In a population approach, we consider a parametric
and individual hazard function h(-, ).

The random variable representing the time-to-event for individual ¢ is typically written T;

and may possibly be right-censored. Then, the observation y; for individual ¢ is

T, if T <
w:{ ' Hi=Te (8.2.2)

T, > 1.7 otherwise ,
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)

where 7, is the censoring time and ”7; > 7.” is the information that the event occurred

after the censoring time.

8.3 A Repeated Time-To-Event Data Model

8.3.1 The model

For repeated event models, times when events occur for individual ¢ are random times

(Tij,1 < j < ny;) for which conditional survival functions can be defined:

t
P(Tij > t|Tjj—1) = ti(j—1)) = exp {_/t h(u,@bi)du} . (8.3.1)
i(-1)
Here, t;; is the observed value of the random time T;;. If the last event is right censored,
then the last observation y; ,, for individual 7 is the information that the censoring time
has been reached "T; ,, > 7.”. The conditional pdf of y; = (s, 1 < n;) reads (see [Lavielle,
2014] for more details)

n;—1

pilyili) = exp{—/OTc h(u,wi)du} H1 h(ti;, i) . (8.3.2)
P

8.3.2 Numerical application

In this section, we consider the example developed in Chapter 6. We recall the Weibull
model for time-to-event data [Lavielle, 2014, Zhang, 2016]. For individual 4, the hazard

function of this model is:

Bi ( t >@--1
h(t, ;) = — ( — . 8.3.3
Here, the vector of individual parameters is ¢; = (\;,8;). These two parameters are

assumed to be independent and lognormally distributed:

log(A;) ~ N(log()\pop),wi) and log(B;) ~ N(log(ﬁpop),w%) ) (8.3.4)

Then, the vector of population parameters is 8 = (Apop, Bpops Wi, ws). Repeated events
were generated using simulx (mlxR package in R [Lavielle et al., 2019]), for N = 100
individuals, using the Weibull model (8.3.3) with A,op = 10, wy = 0.3, Bpop = 3 and

wg = 0.3 and assuming a right censoring time 7. = 20.

The following code, written in R, is used to run this example. The first step consists in

importing the library, the data and initiating the Data Object as follows:



N

1
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library (saemix)
data(tte.saemix)

"

saemix . data<—saemixData (name.data=tte .saemix , header=IRUE, sep=" " ,na=NA, name

non

.group=c("id") ,name.response=c("y") ,name. predictors=c("time","y"), name.X

=c("time"))

We identify, in the object saemix.data, the name of the predictors, the response and the
identifier for each individual. Then, the structural model is written in R language and its

associated saemix Model Object is created as follows:

timetoevent . model<—function (psi,id,xidep) {
T<—xidep [, 1]
N <— nrow(psi)
Nj <— length (T)
censoringtime = 20
lambda <— psi[id, 1]
beta <— psi[id,2]
init <— which(T= 0)
cens <— which(T= censoringtime)
ind <— setdiff (1:Nj, append(init ,cens))
hazard <— (beta/lambda)=(T/lambda) (beta—1)
H <— (T/lambda) beta
logpdf <— rep(0,Nj)
logpdf[cens] <— —H[cens] + H[cens —1]
logpdf[ind] <— —H[ind] + H[ind —1] 4+ log(hazard[ind])
return (logpdf) }

saemix . model<—saemixModel (model=timetoevent.model,description="time model",
type="likelihood", psi0O=matrix(c(2,1),ncol=2,byrow=TRUE, dimnames=1ist (
NULL, c("lambda","beta"))), transform.par=c(1,1),covariance.model=matrix (
¢(1,0,0,1),ncol=2, byrow=ITRUE) )

We note in this code snippet that the model function, called timetoevent.model, defines the
log pdf, as written in (8.3.2), of the time-to-event model. The additional argument type
="likelihood", allows us to run the SAEM on such noncontinuous model (type="structural" is
the value of that argument for continuous data models. In that case, the model function
returns the structural model f, as defined in Chapter 6). Finally, we define the list of the
SAEM hyperparameters, such as the number of iterations or MCMC chains, and run the
algorithm as follows:

saemix .options<—list (map=F, fim=F, 11 .is=F, nb.chains = 1, nbiter.saemix = ¢

(200,100) ,displayProgress=IRUE, save . graphs=FALSE)

saemix . fit<—saemix (model, saemix.data ,saemix.options)

Figure 8.1 shows the convergence of the population parameters for this example. The

results are summed up in the following table:




N
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_— Results

Fixed effects

Parameter Estimate
[1,] lambda 5.0
[2,] beta 2.8

Variance of random effects

Parameter Estimate
lambda omega?2.lambda 0.039
beta omega?2. beta 0.921

Correlation matrix of random effects

omega?2.lambda omega2. beta

Iteration
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Figure 8.1 — Time-to-event data modelling: convergence of the population parameters

(A, B) and the random effects (w?\,w%).
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8.4 A Categorical Data Model with Regression Variables

8.4.1 The model

Assume now that the observed data takes its values in a fixed and finite set of nominal
categories {c1, co,...,ck}. Considering the observations (y;j, 1 < j < n;) for any individ-
ual i as a sequence of conditionally independent random variables, the model is completely
defined by the probability mass functions P(y;; = cgl¢;) for k=1,..., K and 1 < j < n;.
For a given (i,7), the sum of the K probabilities is 1, so in fact only K — 1 of them
need to be defined. In the most general way possible, any model can be considered so
long as it defines a probability distribution, i.e., for each k, P(y;; = cx|¢s) € [0,1], and
SR P(yi; = cklts) = 1. Ordinal data further assume that the categories are ordered,

i.e., there exists an order < such that

cl1 <cC3,< ... <CKg

We can think, for instance, of levels of pain (low < moderate < severe) or scores on a
discrete scale, e.g., from 1 to 10. Instead of defining the probabilities of each category, it
may be convenient to define the cumulative probabilities P(y;; < cxli;) fork=1,..., K—1,
or in the other direction: P(y;; = cx|t;) for k = 2,..., K. Any model is possible as long

as it defines a probability distribution, i.e., it satisfies

0 <P(yij < c1|ti) <Pyij < ealhy) < -+ < Pysj < ex|vs) =1

It is possible to introduce dependence between observations from the same individual by
assuming that (y;;, j = 1,2,...,n;) forms a Markov chain. For instance, a Markov chain
with memory 1 assumes that all that is required from the past to determine the distribution

of y;; is the value of the previous observation y; j_1., i.e., forall k =1,2,... K,

P(yij = cklyij—1,Yij—2, Vij—3,¥i) = P(yi; = ck|yij—1,vi)

8.4.2 Numerical application

In this example, observations are ordinal data that take their values in {0,1} Odds ratio

are used in this example to define the model

P(y;; = k)

ij —
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where y;; denotes the j-th observation for the i-th individual and:
logit(]P’(yij = 0)) = 9@71 + 01"2 Timeij +9i,3 Dosei (8.4.1)

where Dose and Time are the two regression variables.

Here, the vector of individual parameters is ¥; = (6;1,6;2,6;3). These three parameters

are assumed to be independent and normally distributed:
071,1 ~ N(epop,laW%) 7‘91',1 ~ N(epop,%wg) ’91',1 ~ N(onp,?nw%) (842)

Then, the vector of population parameters is 8 = (6pop.1, Opop,2; Opop,1, W1, w2, w3).

Data simulation: Data is generated using N = 300 and for all i € [1,n], n; = 15. For
all i € [1,n] and j € [n;], we take dijj1 = 1, djjo = =20+ (j — 1) * 5 and for ¢ € [1,n]
dij3 = 10[3¢/N]. The data is generated using the following values for the fixed and
random effects (Opop.1 = —4, Opop.2 = —0.5,0p0p, = 1, w1 = 0.3, wp = 0.2,ws = 0.2). Here is
a sample code on how to generate such data using the mlxR [Lavielle et al., 2019] package:

library ("mlxR")

catModel <— inlineModel (

" [LONGITUDINAL]

input = {betal ,gammal, deltal , dose}
dose = {use=regressor}

EQUATION:

Im0 = betal04+gammalOxt + deltaO=xdose
D = exp(lm0)+1

p0 = exp(lm0) /D

pl = 1/D

DEFINITION :

y = {type=categorical , categories={0, 1},
P(y=0)=p0,
P(y=1)=p1}

[INDIVIDUAL ]

input={betal_pop, o_betal,
gammal_pop, o_gammal,
delta0_pop, o_delta0}
DEFINITION :
betaO0 ={distribution=normal, prediction=betal0 pop, sd=o_betal}
gammal) ={distribution=normal, prediction=gammal pop, sd=o gamma0}

delta0 ={distribution=normal, prediction=deltal0 pop, sd=o deltalO} ")

nobs = 15

i tobs<— seq(—20, 50, by=nobs)

regl <— list (name=’dose’,
time=tobs,
value=10%(tobs >0))
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reg2 <— list (name=’dose’,
time=tobs ,
value=20%(tobs >0))

reg3 <— list (name='dose’,
time=tobs,
value=30*(tobs >0))

out <— list(name=’y’, time=tobs)

N <— 100

p <— c(beta0 _pop=—4, o beta0=0.3,
gammal pop= —0.5, o gamma0=0.2,
delta0 pop=1, o delta0=0.2)

gl <— list (size=N,regressor = regl)
g2 <— list (size=N,regressor = reg2)
g3 <— list (size=N,regressor = regl)

s g <— list (gl,g2,83)

res <— simulx (model=catModel ,output=out, group=g,parameter=p)

plotl <— catplotmlx (res$y)

Figure 8.3 shows the probability for each of the three subgroups:

probability
g

20 0 20 40 20 0 20 40 20 0 20
time.

Figure 8.2 — Categorical data modelling: Probabilities P(y = 0) and P(y = 1) for each of

the three subgroups.

The model is implemented in R as follows:

cat.model<—function (psi,id,xidep) {
level<—xidep [,1]

dose<—xidep [, 2]

time<—xidep [, 3]

| |
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thl <— psi[id, 1]

th2 <— psi[id,2]

delta0 <— psi[id,3]

Im0 <— thl4+th2+time + deltaOxdose
D <— exp(lm0)+1

PO <— exp(lm0) /D

P1 <- 1/D

P.obs = (level==0)%P0+(level==1)*P1
return (P.obs) }

Then, the following code was used in R to run the SAEM algorithm on this example:

saemix . model<—saemixModel (model=cat . model , description="cat model" ,type="
likelihood ", psiO=matrix(c(2,1,2),ncol=3,byrow=TRUE, dimnames=1ist (NULL, ¢ (
"th1","th2" "th3"))), transform.par=c(0,1,1),covariance.model=matrix(c
(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE) ,omega. init=matrix(c
(2,0,0,0,1,0,0,0,1),ncol=3,byrow=IRUE) ,error.model="constant")

K1 = 500
K2 = 100

#Saemix Run

options<—list (seed =39546 ,map=F, fim=F, 11 . is=F,
c¢(K1,K2) ,nbiter.sa=0,

nbiter .memc = ¢(2,2,2), nbiter.sae

mix =

displayProgress=TRUE, save . graphs=FALSE, nbiter .burn =0)

saemix . fit<—saemix (saemix.model ,saemix.data,options)
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Chapter 9

Conclusion

9.1 Summary of the Thesis

In thesis, we focused on optimization for non-convex objective functions for a particular
class of models: latent data models. For either composite function, expected risk or
incomplete likelihood functions, we address the data fitting problem with novel algorithms

and their corresponding finite-time and asymptotic analyses.

In our first main contribution, we provided MISSO, a general incremental optimization
framework for composite objective functions. The scheme is motivated by the use of flexible
surrogates illustrated through examples such as variational inference and Monte Carlo EM.
We derived non-asymptotic and asymptotic convergence of the iterates and utilized our
method to train a logistic regression on the TraumaBase dataset and a Bayesian neural
network on the MNIST. This unifying framework is shown to achieve an e-stationary point
in O(n/e) iterations, yielding at the same time the first non-asymptotic rate for MISO

(see [Mairal, 2015a]) to optimize non-convex objective functions.

In our second main contribution, a simple Stochastic Approximation scheme is analyzed
under mild assumptions. The main result we derived shows that the SA scheme finds
an O(co + logn//n) quasi-stationary point within n iterations where the drift term of
the algorithm is non necessarily a gradient and can be a biased estimator, of bias ¢,
of the mean-field. We applied our results on the online EM algorithm and the Policy
gradient algorithm for average reward over infinite horizon with rigorous verification of

the assumptions.

In our third main contribution, we studied several incremental variants of the EM al-
gorithm. We focused on the inference of latent variable models with exponential family
distribution and analyze the convergence of several stochastic EM methods. We estab-

lished these analyses based on two complimentary views, one that interprets incremental
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EM method as an incremental Majorization-Minimization method, and one that inter-
prets variance reduced and fast variants as scaled gradient,i.e., non-gradients, methods.

Numerical applications illustrate the advantages of those latter methods.

In our fourth main contribution, we considered the SAEM algorithm to train mixed effects
models. The specificity of the model implies simulating individual parameters at each iter-
ation from their intractable posterior distributions. When this sampling step is performed
using an MCMC procedure, we provided in that contribution, an efficient independent
Metropolis Hastings proposal to sample from this target. Based on a first-order Taylor ex-
pansion and the Laplace approximation of the incomplete log-likelihood, our proposal is a
simple Gaussian distribution centered around the mode of the target. A through empirical
study, presented in this contribution, highlights the advantages of the proposed sampler
as well as its virtue when embedded in a maximum likelihood estimation algorithm such

as the SAEM.

In our fifth main contribution, we derived an incremental variant of the SAEM algo-
rithm. Asymptotic convergence result was established and observed through numerical
applications. A pharmacokinetics model was trained using this incremental algorithm and
exhibited faster convergence of the parameters with a specific mini-batch size and sampling

strategy.

In our sixth main contribution, we developed an extension of an R package, called
SAEMIX, to perform maximum likelihood estimation on noncontinuous data models. We
provided two examples, Categorical data and Time-to-event data models, along with their

implementation codes.

9.2 Perspectives

This thesis aims at participating to the general efforts towards understanding how complex
models are trained on large datasets. Yet, much more challenges are left out and are worth

studying in the future. We give some of our thoughts in the following non exhaustive list:

e A question that arises while using incremental algorithms is the choice of the in-
dices at each iteration. We considered examples with uniform sampling strategy
(see Chapter 3-5-7), yet optimal ones are worth deriving. Efforts in that direction
include [Roux et al., 2012] where the index of the gradient computed at a given iter-
ation corresponds to the biggest, in norm, gradient term. Of course this strategy is
computationally involved but is intuitively optimal for gradient algorithms. Another
recent work, [Horvath and Richtarik, 2018], provides optimal rates for SVRG and

SAGA under arbitrary, i.e., non necessarily uniform, sampling strategies.

o Another straightforward question regards the optimal mini-batch size of stochastic
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and incremental algorithms. Indeed, mini-batch of size 1 are not always optimal as
developed in [Gower et al., 2019] where a variance-cost trade off has been highlighted

along with some results on the choice of the mini-batch size for SGD.

Besides a possible variance-cost trade off, we observed Chapter 3 and Chapter 7,
a bias-variance trade off due to the Monte Carlo integration of the quantities of
interest. A thorough study of the effect of this approximation on the variance of
the estimator in the incremental setting would be interesting. This study would
intuitively consider the interplay between the Monte Carlo batch and the mini-batch
of indices drawn at each iteration. We remind that these types of algorithms involve

two levels of stochasticity with two batch sizes as hyper parameters.

We recall that a complexity of O(n/e) was found for the MISO (and MISSO) method.
Yet an interesting research direction consists in finding tight upper bounds of this
incremental scheme for specific class of surrogate functions in the non-convex setting.
For instance Qian et al. [2019] provide an iteration complexity of O(n?/3/¢) for the

MISO method using quadratic surrogates.

Finally, all those incremental methods obviously trigger the question of storage and
computation. While methods like SVRG require less storage than incremental meth-
ods such as SAG or SAGA, there must be a particular focus on how to deal with
storing values when the data size is big. Regarding computation resources, many
works focus on distributed first-order optimization procedures, i.e., dispatching the
computation to a cluster of machines, instead of just one. Many challenges can be
addressed such as whether or not using a parallel or asynchronous method, or even

using a centralized or decentralized architecture.
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