W. Thomson, On the electro-dynamic qualities of metals:-Effects of magnetization on the electric conductivity of nickel and of iron, Proceedings of the Royal Society of London, vol.8, pp.546-550, 1857.

J. W. Cookson, Theory of the Piezo-Resistive Effect, Physical Review, vol.47, issue.2, pp.194-195, 1935.

H. Tomlinson, On the increase in resistance to the passage of an electric current produced on certain wires by stretching, Proceedings of the Royal Society of London, vol.26, pp.401-410, 1878.

H. Tomlinson, I. The influence of stress and strain on the action of physical forces, Philosophical Transactions of the Royal Society of London, vol.174, pp.1-172, 1883.
URL : https://hal.archives-ouvertes.fr/hal-01480588

H. Rolnick, Tension coefficient of resistance of metals, Physical Review, vol.36, issue.3, pp.506-512, 1930.

M. Allen, The Effect of Tension on the Electrical Resistance of Single Bismuth Crystals, Physical Review, vol.42, issue.6, pp.848-857, 1932.

M. Allen, The Effect of Tension on the Electrical Resistance of Single Antimony Crystals, Physical Review, vol.43, issue.7, pp.569-576, 1933.

M. Allen, The Tension Coefficients of Resistance of the Hexagonal Crystals Zinc and Cadmium, Physical Review, vol.49, issue.3, pp.248-253, 1936.

M. Allen, The Effect of Tension on the Electrical Resistance of Single Tetragonal Tin Crystals, Physical Review, vol.52, issue.12, pp.1246-1249, 1937.

P. W. Bridgman, Some Properties of Single Metal Crystals, Proceedings of the National Academy of Sciences of the United States of America, vol.10, pp.411-416, 1924.

P. W. Bridgman, General survey of the effects of pressure on the properties of matter, Proceedings of the Physical Society, vol.41, issue.1, pp.341-360, 1928.

P. W. Bridgman, The Resistance of 72 Elements, Alloys and Compounds, vol.100, p.0

/. Kg and . Cm², Proceedings of the American Academy of Arts and Sciences, vol.81, issue.4, p.165, 1952.

P. W. Bridgman, The Electrical Resistance of Metals under Pressure, Proceedings of the American Academy of Arts and Sciences, vol.52, issue.9, p.573, 1917.

A. C. Rowe, Piezoresistance in silicon and its nanostructures, Journal of Materials Research, vol.29, issue.06, pp.731-744, 2014.

P. K. Stein, 1936-a banner year for strain gages and experimental stress analysis -An historical perspective, Experimental Techniques, vol.30, issue.1, pp.23-41, 2006.

J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Physical Review, vol.80, issue.1, pp.72-80, 1950.

C. S. Smith, Piezoresistance Effect in Germanium and Silicon, Physical Review, vol.94, issue.1, pp.42-49, 1954.

Y. Kanda, A graphical representation of the piezoresistive coefficients in silicon, IEEE Trans. Electron Devices, vol.29, issue.1, pp.64-70, 1982.

A. Diebold, The ITRS metrology roadmap, 2009 International Semiconductor Device Research Symposium, pp.1-2, 2009.

S. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau et al., A Logic Nanotechnology Featuring Strained-Silicon, vol.25, pp.191-193, 2004.

R. He and P. Yang, Giant piezoresistance effect in silicon nanowires, Nature nanotechnology, vol.1, issue.1, pp.42-46, 2006.

Y. Tanimoto, T. Toriyama, and S. Sugiyama, Characteristics of Polycrystalline Si Nano Wire Piezoresistors, IEEJ Transactions on Sensors and Micromachines, vol.121, issue.4, pp.209-214, 2001.

T. Toriyama, D. Funai, and S. Sugiyama, Piezoresistance measurement on single crystal silicon nanowires, Journal of Applied Physics, vol.93, issue.1, pp.561-565, 2003.

T. Toriyama, Y. Tanimoto, and S. Sugiyama, Single crystal silicon nano-wire piezoresistors for mechanical sensors, Journal of Microelectromechanical Systems, vol.11, issue.5, pp.605-611, 2002.

M. M. Mcclarty, N. Jegenyes, M. Gaudet, C. Toccafondi, R. Ossikovski et al., Geometric and chemical components of the giant piezoresistance in silicon nanowires, Applied Physics Letters, vol.109, issue.2, p.23102, 2016.

K. Reck, J. Richter, O. Hansen, and E. V. Thomsen, Piezoresistive effect in top-down fabricated silicon nanowires, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp.717-720, 2008.

K. Reck, J. Richter, O. Hansen, and E. V. Thomsen, Increased Piezoresistive Effect in Crystalline and Polycrystalline Si Nanowires, Technical Proceedings -Materials, Fabrication, Particles, and Characterization, vol.1, pp.920-923, 2008.

A. Koumela, D. Mercier, C. Dupré, G. Jourdan, C. Marcoux et al., Piezoresistance of top-down suspended Si nanowires, Nanotechnology, vol.22, issue.39, p.395701, 2011.

Y. Yang and X. Li, Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement, Nanotechnology, vol.22, issue.1, p.15501, 2011.

J. X. Cao, X. G. Gong, and R. Q. Wu, Giant piezoresistance and its origin in Si(111) nanowires: First-principles calculations, Physical Review B -Condensed Matter and Materials Physics, vol.75, issue.23, pp.3-6, 2007.

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, Strain induced change of bandgap and effective mass in silicon nanowires, Applied Physics Letters, vol.93, issue.7, p.73114, 2008.

K. Nakamura, D. V. Dao, B. T. Tung, T. Toriyama, and S. Sugiyama, Piezoresistive effect in silicon nanowires -A comprehensive analysis based on first-principles calculations, 20th Anniversary MHS 2009 and Micro-Nano Global COE -2009 International Symposium on Micro-NanoMechatronics and Human Science, pp.38-43, 2009.

P. W. Leu, A. Svizhenko, and K. Cho, Ab initio calculations of the mechanical and electronic properties of strained Si nanowires, Physical Review B -Condensed Matter and Materials Physics, vol.77, issue.23, p.235305, 2008.

G. Dorda, Effective mass change of electrons in silicon inversion layers observed by piezoresistance, Applied Physics Letters, vol.17, issue.9, pp.406-408, 1970.

F. G. Allen and G. W. Gobeli, Work function, photoelectric threshold, and surface states of atomically clean silicon, Physical Review, vol.127, issue.1, pp.150-158, 1962.

S. Sze and K. K. Ng, Physics of Semiconductor Devices, 2006.

A. C. Rowe, Silicon nanowires feel the pinch, Nature Nanotechnology, vol.3, issue.6, pp.311-312, 2008.

J. S. Milne, A. C. Rowe, S. Arscott, and C. Renner, Giant piezoresistance effects in silicon nanowires and microwires, Physical Review Letters, vol.105, issue.22, pp.1-4, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548998

E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux et al., In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection, Nanotechnology, vol.21, issue.16, p.165504, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00445261

T. Barwicz, L. Klein, S. J. Koester, and H. Hamann, Silicon nanowire piezoresistance: Impact of surface crystallographic orientation, Applied Physics Letters, vol.97, issue.2, p.23110, 2010.

U. K. Bhaskar, T. Pardoen, V. Passi, and J. P. Raskin, Piezoresistance of nanoscale silicon up to 2 GPa in tension, Applied Physics Letters, vol.102, issue.3, p.14102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795970

H. P. Phan, T. Kozeki, T. Dinh, T. Fujii, A. Qamar et al., Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching, RSC Advances, vol.5, issue.100, pp.82121-82126, 2015.

M. M. Mcclarty, N. Jegenyes, M. Gaudet, C. Toccafondi, R. Ossikovski et al., Geometric and chemical components of the giant piezoresistance in silicon nanowires, Applied Physics Letters, vol.109, issue.2, p.23102, 2016.

M. V. Fischetti, Generation of positive charge in silicon dioxide during avalanche and tunnel electron injection, Journal of Applied Physics, vol.57, issue.8, pp.2860-2879, 1985.

E. H. Nicollian and J. R. , Brews, MOS (metal oxide semiconductor) physics and technology, 1982.

A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, and E. Bertagnolli, Anomalous piezoresistance effect in ultrastrained silicon nanowires, Nano Letters, vol.10, issue.8, pp.3204-3208, 2010.

H. Jang, J. Kim, M. S. Kim, J. H. Cho, H. Choi et al., Observation of the inverse giant piezoresistance effect in silicon nanomembranes probed by ultrafast terahertz spectroscopy, Nano Letters, vol.14, issue.12, pp.6942-6948, 2014.

K. Winkler, E. Bertagnolli, and A. Lugstein, Origin of anomalous piezoresistive effects in VLS grown Si nanowires, Nano Letters, vol.15, issue.3, pp.1780-1785, 2015.

P. Neuzil, C. C. Wong, and J. Reboud, Electrically Controlled Giant Piezoresistance in Silicon Nanowires, Nano Letters, vol.10, issue.4, pp.1248-1252, 2010.

T. Barwicz, L. Klein, S. J. Koester, and H. Hamann, Silicon nanowire piezoresistance: Impact of surface crystallographic orientation, Applied Physics Letters, vol.97, issue.2, p.23110, 2010.

J. S. Milne, I. Favorskiy, A. C. Rowe, S. Arscott, and C. Renner, Piezoresistance in Silicon at Uniaxial Compressive Stresses up to 3 GPa, Physical Review Letters, vol.108, issue.25, p.256801, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787412

P. J. Dobson, Physical Properties of Crystals -Their Representation by Tensors and Matrices, Physics Bulletin, vol.36, issue.12, pp.506-506, 1985.

L. Onsager, Reciprocal Relations in Irreversible Processes. I, Physical Review, vol.37, issue.4, pp.405-426, 1931.

M. H. Bao, Micro mechanical transducers: pressure sensors, accelerometers, and gyroscopes, vol.8, 2000.

W. P. Mason and R. N. Thurston, Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque, The Journal of the Acoustical Society of America, vol.29, issue.10, pp.1096-1101, 1957.

J. J. Wortman and R. A. Evans, Young's modulus, shear modulus, and poisson's ratio in silicon and germanium, Journal of Applied Physics, vol.36, issue.1, pp.153-156, 1965.

C. Herring and E. Vogt, Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering, Physical Review, vol.101, issue.3, pp.944-961, 1956.

J. E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig, Piezoresistance and Piezo-Hall-Effect in n-type Silicon, Physical Review, vol.130, issue.5, pp.1667-1670, 1963.

C. Herring, Theory of the Thermoelectric Power of Semiconductors, Physical Review, vol.96, issue.5, pp.1163-1187, 1954.

E. N. Adams, Elastoresistance in p-Type Ge and Si, Physical Review, vol.96, issue.3, pp.803-804, 1954.

X. F. Fan, L. F. Register, B. Winstead, M. C. Foisy, W. Chen et al., Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa, IEEE Transactions on Electron Devices, vol.54, issue.2, pp.291-296, 2007.

J. ,

J. Richter,

M. Pedersen,

E. V. Brandbyge, O. Thomsen, and . Hansen, Piezoresistance in p-type silicon revisited, Journal of Applied Physics, vol.104, issue.2, p.23715, 2008.

Y. Ohmura, Piezoresistance effect in p-type Si, Physical Review B, vol.42, issue.14, pp.9178-9181, 1990.

K. Suzuki, H. Hasegawa, and Y. Kanda, Origin of the Linear and Nonlinear Piezoresistance Effects in p-Type Silicon, Japanese Journal of Applied Physics, vol.23, issue.11, pp.871-874, 1984.

R. Coquand, M. Casse, S. Barraud, D. Cooper, V. Maffini-alvaro et al., Strain-induced performance enhancement of trigate and omega-gate nanowire FETs scaled down to 10-nm width, IEEE Transactions on Electron Devices, vol.60, issue.2, pp.727-732, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01017518

C. D. Child, Discharge From Hot Cao, Physical Review (Series I), vol.32, issue.5, pp.492-511, 1911.

J. Shao and G. Wright, Characteristics of the space-charge-limited dielectric diode at very high frequencies, Solid-State Electronics, vol.3, issue.3-4, pp.291-303, 1961.

A. Many and G. Rakavy, Theory of Transient Space-Charge-Limited Currents in Solids in the Presence of Trapping, Physical Review, vol.126, issue.6, pp.1980-1988, 1962.

D. Dascalu, Small-signal Theory of Space-charge-limited Diodes ?, International Journal of Electronics, vol.21, issue.2, pp.183-200, 1966.

G. Wright, Transit time effects in the space-charge-limited silicon microwave diode, Solid-State Electronics, vol.9, issue.1, pp.1-6, 1966.

S. Chisholm and C. Yeh, High-frequency admittance of n-v-n space-chargelimited current (SCLC) solid-state devices, Proceedings of the IEEE, vol.56, issue.12, pp.2178-2180, 1968.

M. A. Nicolet, H. R. Bilger, and R. J. Zijlstra, Noise in Single and Double Injection Currents in Solids (I), physica status solidi (b), vol.70, pp.9-45, 1975.

R. Kassing and E. Kähler, The small signal behavior of SCLC-diodes with deep traps, Solid State Communications, vol.15, issue.3, pp.673-676, 1974.

R. Kassing, Calculation of the frequency dependence of the admittance of SCLC diodes, Physica Status Solidi (a), vol.28, issue.1, pp.107-117, 1975.

J. M. Alison and R. M. Hill, A model for bipolar charge transport, trapping and recombination in degassed crosslinked polyethene, Journal of Physics D: Applied Physics, vol.27, issue.6, pp.1291-1299, 1994.

S. L. Roy, P. Segur, G. Teyssedre, and C. Laurent, Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction, Journal of Physics D: Applied Physics, vol.37, issue.2, pp.298-305, 2004.

Á. Pitarch, G. Garcia-belmonte, J. Bisquert, and H. J. Bolink, Impedance of spacecharge-limited currents in organic light-emitting diodes with double injection and strong recombination, Journal of Applied Physics, vol.100, issue.8, p.84502, 2006.

P. A. Leighton, N. F. Mott, and R. W. Gurney, Electronic Processes in Ionic Crystals, vol.18, p.249, 1941.

W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons, Physical Review, vol.87, issue.5, pp.835-842, 1952.

P. N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect, Journal of Physics D: Applied Physics, vol.3, issue.2, p.308, 1970.

J. Frenkel, On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors, Physical Review, vol.54, issue.8, pp.647-648, 1938.

O. Mitrofanov and M. Manfra, Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors, Journal of Applied Physics, vol.95, issue.11, pp.6414-6419, 2004.

S. D. Ganichev, E. Ziemann, W. Prettl, I. N. Yassievich, A. A. Istratov et al., Distinction between the Poole-Frenkel and tunneling models of electric-fieldstimulated carrier emission from deep levels in semiconductors, Physical Review B, vol.61, issue.15, pp.10361-10365, 2000.

J. B. Lasky, Wafer bonding for silicon-on-insulator technologies, Applied Physics Letters, vol.48, issue.1, pp.78-80, 1986.

W. Kern, The Evolution of Silicon Wafer Cleaning Technology, Journal of The Electrochemical Society, vol.137, issue.6, p.1887, 1990.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM -The stopping and range of ions in matter, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.268, pp.1818-1823, 2010.

W. K. Hofker, Implantation of boron in silicon, Microelectronics Reliability, vol.15, issue.3, p.189, 1976.

G. L. Pearson and J. Bardeen, Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus, Physical Review, vol.75, issue.5, pp.865-883, 1949.

K. Nishiyama, M. Arai, and N. Watanabe, Radiation Annealing of Boron-Implanted Silicon with a Halogen Lamp, Japanese Journal of Applied Physics, vol.19, issue.10, pp.563-566, 1980.

R. B. Fair, J. J. Wortman, and J. Liu, Modeling Rapid Thermal Diffusion of Arsenic and Boron in Silicon, Journal of The Electrochemical Society, vol.131, issue.10, p.2387, 1984.

H. Card, Aluminum-Silicon Schottky barriers and ohmic contacts in integrated circuits, IEEE Transactions on Electron Devices, vol.23, issue.6, pp.538-544, 1976.

F. Laermer and A. Urban, Challenges, developments and applications of silicon deep reactive ion etching, Microelectronic Engineering, pp.349-355, 2003.

C. Chang, Y. Fang, and S. Sze, Specific contact resistance of metal-semiconductor barriers, Solid-State Electronics, vol.14, issue.7, pp.541-550, 1971.

J. Suhling and R. Jaeger, Silicon piezoresistive stress sensors and their application in electronic packaging, IEEE Sensors Journal, vol.1, issue.1, pp.14-30, 2001.

S. Timoshenko and J. N. Goodier, Theory of elasticity, 1970.

D. Chong, W. Lee, B. Lim, J. Pang, and T. Low, Mechanical characterization in failure strength of silicon dice, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543), vol.2, pp.203-210, 2004.

E. Oberg, F. D. Jones, H. L. Horton, H. H. Ryffel, and C. J. Mccauley, Machinery's Handbook 29 th Edition, 2012.

A. Sagar, Piezoresistance in n-Type GaAs, Physical Review, vol.112, issue.5, pp.1533-1533, 1958.

T. Toriyama and S. Sugiyama, Analysis of piezoresistance in p-type silicon for mechanical sensors, Journal of Microelectromechanical Systems, vol.11, issue.5, pp.598-604, 2002.

P. N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect, Journal of Physics D: Applied Physics, vol.3, issue.2, p.308, 1970.

G. Papaioannou, V. Ioannou-sougleridis, S. Cristoloveanu, and C. Jaussaud, Photoinduced current transient spectroscopy in silicon-on-insulator films formed by oxygen implantation, Journal of Applied Physics, vol.65, issue.9, pp.3725-3727, 1989.

Y. Nishi, K. Tanaka, and A. Ohwada, Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance II, Japanese Journal of Applied Physics, vol.11, issue.1, pp.85-91, 1972.

E. H. Poindexter, G. J. Gerardi, M. Rueckel, P. J. Caplan, N. M. Johnson et al., Electronic traps and P b centers at the Si/SiO2 interface: Band-gap energy distribution, Journal of Applied Physics, vol.56, issue.10, pp.2844-2849, 1984.

Y. S. Choi, T. Nishida, and S. E. Thompson, Impact of mechanical stress on direct and trap-assisted gate leakage currents in p -type silicon metal-oxide-semiconductor capacitors, Applied Physics Letters, vol.92, issue.17, pp.1-4, 2008.

A. Toda, S. Fujieda, K. Kanamori, J. Suzuki, K. Kuroyanagi et al., Impact of mechanical stress on interface trap generation in flash eeproms, Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, pp.250-256, 2005.

G. Kova?evi? and B. Pivac, Structure, defects, and strain in silicon-silicon oxide interfaces, Journal of Applied Physics, vol.115, issue.4, p.43531, 2014.

A. Hamada, Hot-Electron Trapping Activation Energy in PMOSFET ' s Under Mechanical Stress, IEEE Electron Device Letters, vol.15, issue.9214885, pp.31-32, 1994.

E. H. Poindexter, MOS interface states: overview and physicochemical perspective, Semiconductor Science and Technology, vol.4, issue.12, pp.961-969, 1989.

B. J. O'sullivan, P. K. Hurley, C. Leveugle, and J. H. Das, Si(100)-SiO2 interface properties following rapid thermal processing, Journal of Applied Physics, vol.89, issue.7, pp.3811-3820, 2001.

P. M. Lenahan and P. V. Dressendorfer, Effect of bias on radiation-induced paramagnetic defects at the silicon-silicon dioxide interface, Applied Physics Letters, vol.41, issue.6, pp.542-544, 1982.

P. M. Lenahan and P. V. Dressendorfer, An electron spin resonance study of radiationinduced electrically active paramagnetic centers at the Si/SiO2 interface, Journal of Applied Physics, vol.54, issue.3, pp.1457-1460, 1983.

P. M. Lenahan and P. V. Dressendorfer, Hole traps and trivalent silicon centers in metal/oxide/silicon devices, Journal of Applied Physics, vol.55, issue.10, pp.3495-3499, 1984.

W. Low and M. Schieber, Handbook of Applied Solid State Spectroscopy, 2006.

F. J. Himpsel, G. Hollinger, and R. A. Pollak, Determination of the Fermi-level pinning position at Si(111) surfaces, Physical Review B, vol.28, issue.12, pp.7014-7018, 1983.

M. Seah and W. Dench, Quantitative Electron Spectroscopy of Surfaces, Surface And Interface Analysis, vol.1, issue.1, pp.2-11, 1979.

S. Ganesan, A. Maradudin, and J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure, Annals of Physics, vol.56, issue.2, pp.556-594, 1970.

E. Anastassakis, A. Pinczuk, E. Burstein, F. Pollak, and M. Cardona, Effect of static uniaxial stress on the Raman spectrum of silicon, Solid State Communications, vol.88, issue.11-12, pp.1053-1058, 1993.

E. Anastassakis, A. Cantarero, and M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond, Physical Review B, vol.41, issue.11, pp.7529-7535, 1990.

I. Wolf, H. E. Maes, and S. K. Jones, Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment, Journal of Applied Physics, vol.79, issue.9, pp.7148-7156, 1996.

J. J. Wortman and R. A. Evans, Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, Journal of Applied Physics, vol.36, issue.1, pp.153-156, 1965.

E. Landemark, C. J. Karlsson, Y. Chao, and R. I. Uhrberg, Core-level spectroscopy of the clean Si(001) surface: Charge transfer within asymmetric dimers of the 2×1 and c (4×2) reconstructions, Physical Review Letters, vol.69, issue.10, pp.1588-1591, 1992.

J. Gallet, M. G. Silly, M. E. Kazzi, F. Bournel, F. Sirotti et al., Chemical and kinetic insights into the Thermal Decomposition of an Oxide Layer on Si(111) from Millisecond Photoelectron Spectroscopy, Scientific Reports, vol.7, issue.1, p.14257, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634048

R. T. Sanderson, Bond energies, Physical & Theoretical Chemistry, vol.28, pp.1553-1565, 1965.

T. Eickhoff, V. Medicherla, and W. Drube, Final state contribution to the Si 2p binding energy shift in SiO2/Si(1 0 0), Journal of Electron Spectroscopy and Related Phenomena, pp.85-88, 2004.

I. Jiménez and J. L. Sacedón, Influence of Si oxidation methods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: A synchrotron photoemission study, Surface Science, vol.482, issue.1, pp.272-278, 2001.

M. Hochella and A. Carim, A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films, Surface Science, vol.197, issue.3, pp.260-268, 1988.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics, vol.68, issue.3, pp.1272-1281, 1990.

M. Sohgawa, M. Agata, T. Kanashima, K. Yamashita, K. Eriguchi et al., Nondestructive and contactless monitoring technique of Si surface stress by photoreflectance, Regular Papers and Short Notes and Review Papers, vol.1, issue.4 B, pp.2844-2848, 2001.

E. Chason, S. T. Picraux, J. M. Poate, J. O. Borland, M. I. Current et al., Ion beams in silicon processing and characterization, Journal of Applied Physics, vol.81, issue.10, pp.6513-6561, 1997.

S. R. Christopoulos, H. Wang, A. Chroneos, C. A. Londos, E. N. Sgourou et al., VV and VO2 defects in silicon studied with hybrid density functional theory, Journal of Materials Science: Materials in Electronics, vol.26, issue.3, pp.1568-1571, 2015.

J. W. Corbett and G. D. Watkins, Silicon Divacancy and its Direct Production by Electron Irradiation, Physical Review Letters, vol.7, issue.8, pp.314-316, 1961.

D. Hall, D. Wood, N. Murray, J. Gow, A. Chroneos et al., In situ trap properties in CCDs: the donor level of the silicon divacancy, Journal of Instrumentation, vol.12, issue.01, pp.1025-01025, 2017.

G. D. Watkins and J. W. Corbett, Defects in irradiated silicon: Electron paramagnetic resonance of the divacancy, Physical Review, vol.138, issue.2A, 1965.

D. K. Schroder, Semiconductor material and device characterization, 1998.

D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Bias-Dependent Generation and Quenching of Defects in Pentacene, Physical Review Letters, vol.93, issue.7, p.76601, 2004.

A. Salleo, F. Endicott, and R. A. Street, Reversible and irreversible trapping at room temperature in poly(thiophene) thin-film transistors, Applied Physics Letters, vol.86, issue.26, pp.1-3, 2005.

D. Knipp, R. A. Street, A. Völkel, and J. Ho, Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport, Journal of Applied Physics, vol.93, issue.1, pp.347-355, 2003.

R. Schmechel and H. Von-seggern, Electronic traps in organic transport layers, physica status solidi (a), vol.201, pp.1215-1235, 2004.

A. Rose, Space-Charge-Limited Currents in Solids, Physical Review, vol.97, issue.6, pp.1538-1544, 1955.

M. A. Lampert, Double injection in insulators, Physical Review, vol.125, issue.1, pp.126-141, 1962.

M. A. Lampert and A. Rose, Volume-Controlled, Two-Carrier currents in solids: The Injected Plasma Case, Physical Review, vol.121, issue.1, pp.26-37, 1961.

G. Masetti, M. Severi, and S. Solmi, Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.

Y. Zhang, X. Liu, C. Ru, Y. L. Zhang, L. Dong et al., Piezoresistivity characterization of synthetic silicon nanowires using a MEMS Device, Journal of Microelectromechanical Systems, vol.20, issue.4, pp.959-967, 2011.

Y. Zhang, X. Liu, C. Ru, Y. L. Zhang, L. Dong et al., Piezoresistivity characterization of synthetic silicon nanowires using a MEMS Device, Journal of Microelectromechanical Systems, vol.20, issue.4, pp.959-967, 2011.

R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Divacancies in proton irradiated silicon: Comparison of annealing mechanisms studied with infrared spectroscopy and positron annihilation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.206, pp.85-89, 2003.

M. Mehregany, C. Zorman, N. Rajan, and C. Wu, Silicon carbide MEMS for harsh environments, Proceedings of the IEEE, vol.86, issue.8, pp.1594-1609, 1998.

H. P. Phan, D. V. Dao, K. Nakamura, S. Dimitrijev, and N. Nguyen, The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review, Journal of Microelectromechanical Systems, vol.24, issue.6, pp.1663-1677, 2015.

J. C. Balland, J. P. Zielinger, C. Noguet, and M. Tapiero, Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy. I. Review and analysis of some basic problems, 1986.

J. C. Balland, J. P. Zielinger, M. Tapiero, J. G. Gross, and C. Noguet, Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy. II. Evaluation of various signal processing methods, 1986.

J. P. Zielinger, B. Pohoryles, J. C. Balland, J. G. Gross, and A. Coret, Investigation of deep levels in PbI2 by photoinduced current transient spectroscopy, Journal of Applied Physics, vol.57, issue.2, pp.293-301, 1985.

D. V. Lang, Deep-level transient spectroscopy: A new method to characterize traps in semiconductors, Journal of Applied Physics, vol.45, issue.7, pp.3023-3032, 1974.