
HAL Id: tel-02318449
https://theses.hal.science/tel-02318449

Submitted on 17 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full Disk Encryption and Beyond
Louiza Khati

To cite this version:
Louiza Khati. Full Disk Encryption and Beyond. Cryptography and Security [cs.CR]. Université PSL;
ENS Paris - Ecole Normale Supérieure de Paris, 2019. English. �NNT : �. �tel-02318449�

https://theses.hal.science/tel-02318449
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure

Full Disk Encryption and Beyond

Soutenue par

Louiza Khati
Le 15 juillet 2019

École doctorale noED 386
Sciences Mathématiques
de Paris centre

Spécialité
Informatique

Composition du jury :

Pierre-Alain Fouque
Université de Rennes I Rapporteur

Kenny Paterson
ETH Zurich Rapporteur

Elena Andreeva
KU Leuven Examinateur

Maria Naya Plasencia
Inria Paris Examinateur

David Pointcheval
Ecole Normale Supérieure Examinateur

Yannick Seurin
ANSSI Examinateur

Damien Vergnaud
Sorbonne Université Directeur de thèse

Full Disk Encryption and Beyond

Louiza KHATI

Supervisor: Damien VERGNAUD

Résumé
Cette thèse est dédiée à l’analyse de modes opératoires pour la protection des disques

durs. Dans un premier temps, l’analyse des modes opératoires permettant de protéger la
confidentialité des données est réalisée dans le modèle Full Disk Encryption. Ce modèle est
très contraignant puisqu’il exclut tout mode qui ne ne conserve pas la longueur (la valeur
en clair et chiffrée du secteur doivent avoir la même taille) et seuls des modes déterministes
peuvent avoir cette propriété. Néanmoins, il est possible de tirer parti d’une valeur du système
nommée le diversifiant, qui originellement a un autre but, pour apporter de l’aléa utile pour
améliorer la sécurité des modes opératoires. Dans un second temps, nous introduisons deux
méthodologies d’analyse dans le modèle Key-Dependent Message, où l’adversaire est autorisé
à chiffrer des messages qui dépendent de la clé de chiffrement, qui nous ont permis d’analyser
la sécurité des schémas Even-Mansour et Key-Alternating Feistel. Enfin, sachant qu’il est
impossible de garantir l’authenticité des données dans le modèle FDE, la présence de codes
d’authentification étant nécessaire, deux modèles où le stockage de métadonnées est possible
sont envisagés : le modèle ADE pour Authenticated Disk Encryption et le modèle FADE pour
Fully Authenticated Disk Encryption. Le premier permet de garantir l’authenticité au niveau
du secteur mais est vulnérable aux attaques par rejeu et le second garantit l’authenticité du
disque en entier et prévient ce type d’attaque. Le stockage n’est pas le seul point à prendre
en compte : les vitesses de lecture et d’écriture sont un enjeu de taille pour les constructeurs
puisque ces dernières conditionnent fortement les performances d’un disque. C’est la raison
pour laquelle, nous avons étudié les codes d’authentification incrémentaux puisque ces derniers
ont la propriété d’être mis à jour en un temps proportionnel à la modification réalisée.

— iii —

Abstract
This thesis is dedicated to the analysis of modes of operation in the context of disk

protection usage. Firstly, we give modes of operation secure in the Full Disk Encryption
(FDE) model where additional data storage are not allowed. In this context, encryption has
to be length preserving which implies length-preserving encryption. However, it is possible to
use a value already present in the system, called a diversifier, to randomize the encryption and
to have a better security. Then, we introduce two methods to analyse symmetric primitive
in the very constraint Key-Dependent Message (KDM) model which is of interest for disk
encryption because the encryption key can end up in the disk. It enables to analyse the KDM
security of the Even-Mansour and the Key-Alternating Feistel constructions which are the
basis of different block-ciphers. Moreover, knowing that data authenticity cannot be ensured
in the FDE model because tag storage is not allowed, we relax this constraint which gives us
two models: the Authenticated Disk Encryption model (ADE) and the Fully Authenticated
Disk Encryption (FADE). A secure mode in the ADE model ensures data authenticity of a
sector but can be vulnerable to replay attacks; and a secure mode in the FADE model ensures
the authenticity of the entire disk even against replay attacks. Storage is not the only point
to take into account, the read and write delays on a sector is a competitive argument for disk
manufacturers since disk performances tightly depend on it and adding the computation of
codes of authentication does not help. That is why, we tend to analyse incremental Message
Authentication Codes: they have the property to be updatable in a time proportional to the
corresponding modification.

— v —

Contents

Résumé iii

Abstract v

1 Introduction 1
1.1 Disk Protection . 3
1.2 Provable Security . 4
1.3 Notations and Definitions . 4
1.4 Our contributions . 7

1.4.1 Full Disk Encryption Modes . 7
1.4.2 Key-Dependent Message Security . 8
1.4.3 Incremental MACs . 8

2 Secure storage - Confidentiality and Authentication 11
2.1 Data Protection and Data Storage . 13

2.1.1 Data Protection . 13
2.1.2 From Disk Storage to Data Encryption 15

2.2 Full Disk Encryption . 18
2.2.1 Challenges . 18
2.2.2 FDE and Cryptography . 20

2.3 Data Authentication . 24
2.3.1 Local Authenticity . 24
2.3.2 Global Authentication and Incremental Cryptography 27
2.3.3 Merkle Tree . 29

3 Full Disk Encryption 35
3.1 Disk encryption methods and Security notions 38

3.1.1 Disk Encryption Methods . 38
3.1.2 Security Notions for FDE . 41

3.2 FDE Security with Unique First Block . 48
3.2.1 CBC-ESSIV Security . 48
3.2.2 IGE-ESSIV Security . 52

3.3 FDE Security with a Diversifier . 54
3.3.1 Solid State Drive . 55
3.3.2 Case Studies . 58

4 Key-Dependent Message Security 61
4.1 KDM Security via Splitting and Forgetting Technique 65

4.1.1 Analysis via Forgetful Oracle Replacement 68
4.1.2 KDM Security of the Ideal Cipher . 72

— vii —

viii Contents

4.2 Security of Even–Mansour Ciphers . 76
4.2.1 KDM Attacks on Even–Mansour . 76
4.2.2 KDM Security of Even–Mansour Ciphers 78

4.3 KDM Security using the H-coefficient technique 84
4.3.1 H-coefficient and KDM Security . 84
4.3.2 KDM Security with a Generic Lemma 85

4.4 Security of Key Alternating Feistel Ciphers 88
4.4.1 KDM Security of Four-Round Key-Alternating Feistel 89
4.4.2 Sliding attack for r-rounds . 100

4.5 Even-Mansour KDM security with H-coefficients 102
4.5.1 Security of 1-round Even-Mansour . 102

5 Incremental Authentication Schemes 107
5.1 Incremental MACs and Security notions . 111

5.1.1 Incremental Authentication Scheme Framework 111
5.1.2 Security Notions for Incremental MACs 115
5.1.3 Relations among Security Notions for Incremental MACs 118
5.1.4 From Single-Document to Multi-Document Security 122

5.2 Incremental MACs with IUF1 Security . 127
5.2.1 XMAC Constructions . 127
5.2.2 XS Construction . 128
5.2.3 MXS Construction . 135

5.3 Incremental MACs with IUF2 Security . 142
5.3.1 XMAC Constructions . 142
5.3.2 MXS Construction . 143

6 Conclusion and Open Questions 149
6.1 Conclusion . 149
6.2 Open Questions and futur work . 150

Bibliography 151

List of Illustrations 167
Figures . 167
Tables . 169

Personal Publications 171

Ch
ap

te
r1

Chapter 1
Introduction

Contents

1.1 Disk Protection . 3
1.2 Provable Security . 4
1.3 Notations and Definitions . 4
1.4 Our contributions . 7

1.4.1 Full Disk Encryption Modes . 7
1.4.2 Key-Dependent Message Security 8
1.4.3 Incremental MACs . 8

— 1 —

Ch
ap

te
r1

1.1 Disk Protection 3

1.1 Disk Protection

Cryptography is a well-known domain aiming at protecting communication and data. A
large part of humanity already used cryptography through communication protocols or
when accessing securely stored data. Data protection requires secure cryptographic schemes
that were, before the introduction of provable security, the result of a ping-pong game
between cryptographers, who design and patch schemes when needed, and cryptanalysts who
are looking for security flaws in those designs. A scheme that successfully resists years of
cryptanalysis does not mean that it is secure, a vulnerability can be found in the future.
This thesis aims at analysing symmetric encryption schemes for data at rest with specific
constraints.

This is all the more important since the proliferation of mobile electronic devices has made
it critical to protect the on-device data. Mobile phones or laptops have the unfortunate
propensity to be lost or stolen. In case of such an event, the data stored in the device,
which may contain extremely valuable and sensitive information, is extremely vulnerable.
Users are indeed storing nowadays copies of personal documents (e.g., social security cards,
driver’s license, financial documents, personal pictures . . .) on these devices that, if breached,
can cause significant problems for them. An important security objective is therefore to
ensure the confidentiality of on-device data for mobile devices. This mobile technology
setting implies strong constraints on the methods to be used for secure disk storage. The
encryption algorithm has to be computationally, and space efficient concerning the storage
for reading/writing access of the data.

It is usually assumed that an encryption scheme suitable for the application of disk encryp-
tion must be length-preserving. This property reduces the scheme candidates by removing
cryptographic schemes that require the storage of additional data such as initialization vectors
or tags. This so-called Full Disk Encryption (FDE) method is implemented in a large panel
of devices, from the compact and widespread ones like smartphones but also to the larger
ones more fitted to industrial needs such as data center servers, reflecting its importance.
FDE, properly used, is known guarantee the confidentiality of every bit in the disk at a low
level (e.g., sector level). Obviously, reading and writing operations in a disk should suffer as
little as possible from performance degradation that occurs when FDE technology is deployed.
This goal requires FDE to have random access to every single sector on the drive and impacts
different layers in a device: from the disk memory cells to the operating system.
FDE is now a mainstream technology that provides confidentiality but unfortunately

does not provide cryptographic data integrity protection. However, if data confidentiality is
necessary, it is perhaps even more critical to descry data alteration. A system using a memory
should detect and alert the user when undesired modifications appear on the disk. Up to
now, most disk encryption solutions rely on the so-called poor-man’s authentication to ensure
integrity, meaning if an attacker alters some encrypted data on the disk, the corresponding
plaintext will be scrambled unpredictably, and the operating system or the application would
notice that and gives an alert. However, in practice there exist applications that ignore errors
in important data and simply change behavior (e.g., if the security configuration file does not
parse, then the application simply ignores it). This poor-man’s authentication approach is
not cryptographically viable and stronger integrity should be provided. This protection comes
with a cost: any authenticity oriented cryptosystem needs at least to store authentication
tags and it seems that some latency will be added due to extra read/write accesses and tags’
computation. Having said that, it is important to analyse if a cryptographic mechanism

4 Chapter 1 Introduction

guarantees data authenticity with minimal performance impact and minimal storage.
In this thesis, we present cryptographic constructions specifically designed for disk pro-

tection, or at least very suitable for this usage and their security is analysed with security
proofs.

1.2 Provable Security

The security analysis of any scheme is not only reduced to ensure that it is not vulnerable
to all the known attacks, this is not enough. A new attack can be found every day. This
is why provable security was introduced in the seminal paper [GM84] by Goldwasser and
Micali. Its principle is that to prove that a cryptographic scheme satisfies some security
property, we must show that no algorithm running in polynomial time can be able to break
this security property assuming some mathematical assumptions. The security argument is a
reduction that uses an algorithm A against a cryptographic scheme to break the mathematical
assumption which means that breaking the security property of the scheme implies attacking
the mathematical assumption. To do so, a first step is to specify the security model which
is the definition of the security property and the adversarial model. The security property
specifies what it means to the cryptographic scheme to be secure, and the adversarial model
specifies what actions the adversary is allowed to do and what information he is allowed to
know. All cryptographic schemes proved in this thesis have been analysed in the framework
of “reductionist security” (with a concrete security approach).

Adversary. Following Church-Turing thesis, an adversary is a probabilistic Turing machine
(or algorithm, or program) which can be computationally bounded or unbounded. It is
denoted AO(.) meaning it has access to an oracle O(.).

Games. For computationally bounded adversaries, we use the game-based framework of
Bellare and Rogaway [BR06]. A Game is a program that is run with an adversary A. The
adversary interacts with procedures, usually called oracles, specified in the game Game.
A game Game starts with a Initialize procedure, follows with a non-negative number of
additional procedures called oracles, and ends with a Finalize procedure. If Finalize is
omitted it is understood to be a trivial procedure that simply returns its output. Execution of
adversary A with game Game consists of running A with oracle access to the game procedures,
with the restrictions that A’s first call must be to Initialize (if present), its last call must
be to Finalize, and it can call these procedures at most once. The output of the execution
is the output of Finalize. By Pr[Game(A)] we denote the probability that the execution of
game Game with adversary A results in this output being true. In games, integer variables,
set variables and boolean variables are assumed initialized, respectively, to 0, the empty set
∅, and false.

1.3 Notations and Definitions

We now introduce basic notations and definitions used all along this thesis. Other notations
and definitions, relevant only in specific sections, are introduced when needed.
First, we let N := {0, 1, . . . } denote the set of non-negative integers, and {0, 1}∗ denote the
set of finite binary strings.

Ch
ap

te
r1

1.3 Notations and Definitions 5

Binary strings. For two binary strings X and Y , X||Y denotes their concatenation and
(X,Y) denotes a uniquely decodable encoding of the pair X and Y . For X ∈ {0, 1}∗, we use
|X| to denote the bit length of X and |X|` denotes the number of `-bit block in the binary
string X (and in particular |X|1 = |X|). For n ∈ N, the set of all binary strings whose length
is a multiple of n is denoted {0, 1}n∗. For s ∈ {0, 1}n∗, we also wrote s = s[1]||s[2]|| . . . s[n] for
s[i] ∈ {0, 1}n.

Sets. We denote by #S the number of elements in the set S. The complement of a finite set
S is denoted S̄. By x←←S, we mean sampling x uniformly from set S. By Pr[A], we mean
the probability that the event A happens.

List. For a finite list L such that L = {(xi, yi), i ∈ {0, .., n} where #L = n, we denote by
Dom(L) the domain of L Dom(L) = (x1, .., xn) and by Rng(L) the range of L Rng(L) =
(y1, .., yn). We denote appending element X (resp., a list L′) to a list L by L : X (resp.,
L : L′) and L← [] initializing a list to empty.

Object access. The description of cryptographic scheme CS can be given a tuple

CS := (A,B,C)

where each element can be a parameter of the scheme or an associated algorithm. The
notation CS.A refers to the parameter or algorithm A of the scheme CS. Sometimes, it can
be simply denoted by A if the corresponding scheme CS is clear by context.

Definition 1.3.1. (Functions) The set of all functions D → R is denoted F∗(D,R) where
the domain D and the range R are non-empty sets.

Often D = {0, 1}` and R = {0, 1}L for (`, L) ∈ (N \ {0})2. In the following, a random
function F∗ refers to a function uniformly sampled at random in the set F∗(D,R). We
denote the composition of the same function F, i-th times, on a value x ∈ D such that
Fi(x) = F ◦ · · · ◦ F(x).

Definition 1.3.2. (Permutations) The set of all permutations is the subset of all bijections
in F∗(D,R) denoted P∗(R) such that D = R .

Often R = {0, 1}L for L ∈ N \ {0}. In the following, a random permutation P∗ refers to a
function uniformly sampled at random in the set P∗(R).

Definition 1.3.3. (Function Family) A function family F is a map F : K ×D → R where
the set of keys K, the domain D and the range R are finite non empty sets. The function F
takes two inputs: a key K ∈ K and an argument x ∈ D and returns a value y ∈ R such that
F(K,x) = y. Each key K ∈ K defines a map FK : D → R such that FK(x) = F(K,x) = y.
Then FK denotes only one instance of the function family F .

A pseudorandom function family (PRF) is a function family which behaves like a random
function for a computationally bounded adversary (e.g., input and output behavior). More
formally, we have the following definition.

Definition 1.3.4. (Pseudorandom function family) A pseudorandom function family F =
(KS,Dom,Rng, eval) is a function family F whose the key space, domain and range are
denoted respectively F.KS, F.Dom and F.Rng together with an algorithm eval such that for
all K ∈ F.KS and for all x ∈ F.Dom, F.eval(K,x) outputs F(K,x).

6 Chapter 1 Introduction

We define the prf-advantage of an adversary A against the pseudorandom function family
F as probability of success in the PRF game Gprf

F,A defined in the left of Figure 1.1, as
Advprf

F (A) = 2 · Pr
[
Gprf

F,A

]
− 1.

Usually, we have K = {0, 1}k where k is the key length. In the following, for simplicity, we
will denote F(K,x) instead of F.eval(K,x).

Game Gprf
F,A

procedure Initialize

K←←F.KS
F∗←←F∗(F.Dom,F.Rng)
b←←{0, 1}

procedure F(x)
if (b = 0) then return F∗(x)
return F.eval(K,x)

procedure Finalize(b′)
return (b′ = b)

Game Gprp
P,A

procedure Initialize

K←←P.KS
P∗←←P∗(P.Rng)
b←←{0, 1}

procedure P(x)
if (b = 0) then return P∗(x)
return P.eval(K,x)

procedure P−(y)
if (b = 0) then return P−∗ (y)
return P.inverse(K, y)

procedure Finalize(b′)
return (b′ = b)

Figure 1.1: (Right) Game for defining the prf-advantage of pseudorandom family functions F.
(Left) Game for defining the prp-advantage of pseudorandom permutation family
P.

Definition 1.3.5. (Permutation Family) A permutation family P is a map F : K ×D → D
where the set of keys K and the domain D are finite non empty sets. The function P takes two
inputs: a keyK ∈ K and an argument x ∈ D and returns a value y ∈ R such that P(K,x) = y.
Each key K ∈ K defines a permutation PK : D → R such that PK(x) = P(K,x) = y. Then
PK denotes only one instance of the function family P.

A pseudorandom permutation family (PRP) is a function family which behaves like a
random permutation for a computational bounded adversary (e.g., input and output behavior).
More formally, we have the following definition.

Definition 1.3.6. (Pseudorandom function family) A pseudorandom permutation family
P = (KS,Dom, eval, inverse) is a permutation family P whose key space and domain are
denoted respectively P.KS and P.Dom and F.Rng together with two algorithms eval and
inverse such that for all K ∈ P.KS and for all x ∈ P.Dom, P.eval(K,x) outputs P(K,x) and
P.eval(K,P(K,x)) outputs x.
We define the prp-advantage of an adversary A against a pseudorandom permutation family

Ch
ap

te
r1

1.4 Our contributions 7

P is defined in terms of the probability of success in the PRP game Gprp
P,A as defined in the

right of Figure 1.1, as Advprp
P (A) = 2 · Pr

[
Gprp

P,A

]
− 1.

In the following, for simplicity, we will denote P(K,x) instead of P.eval(K,x) and P−1(K,x)
instead of P.inverse(K,x).

Definition 1.3.7. (Block-Ciphers BC) Given two non-empty subsets K andM of {0, 1}∗,
called the key space and the message space respectively, we let Block(K,M) denote the
set of all functions E : K ×M −→ M such that for each K ∈ K the map E(K, ·) is (1) a
permutation onM and (2) length preserving in the sense that for all M ∈M we have that
|E(K,M)| = |M |. Such an E uniquely defines its inverse D : K ×M −→M. A block-cipher
for key space K and message spaceM is a triple of efficient algorithms BC := (K,E,D) such
that E ∈ Block(K,M) and its inverse is D.

A block-cipher BC is therefore a pseudorandom permutation family with key space K,
domain M and algorithm eval = E and inverse = D. In more detail, K is the randomized
key-generation algorithm which returns a key K ∈ K. Typically K = {0, 1}k for some k ∈ N
called the key length, and K endows it with the uniform distribution. Algorithm E is the
deterministic enciphering algorithm with signature E : K×M −→M. TypicallyM = {0, 1}n
for some n ∈ N called the block length. (3) D is the deterministic deciphering algorithm with
signature D : K ×M −→M. Thus a block-cipher is correct in the sense that for all K ∈ K
and all M ∈M we have that D(K,E(K,M)) = M . It is also length preserving. (Note that
length preservation follows from correctness ifM = {0, 1}n). A permutation onM is simply
a block-cipher with key space K = {ε}. We denote a permutation with P and its inverse with
P−. A permutation can be trivially obtained from block-cipher (by fixing the key). For a
block-cipher BC := (E,D), notation ABC denotes oracle access to both E and D for A. We
abbreviate Block({0, 1}k, {0, 1}n) by Block(k, n) and Block({ε}, {0, 1}n) by Perm(n).

Definition 1.3.8. (Ideal-cipher Model ICM) The ideal cipher for key space K and message
spaceM is the uniform distribution over Block(K,M). The Ideal-Cipher Model (ICM) with
key space K and message space M is a model of computation where all parties, honest
or otherwise, have an oracle access to a uniformly chosen random element in Block(K,M)
together with its inverse. The ideal-cipher model when restricted to K = {ε} gives rise to the
random-permutation model (RPM).

1.4 Our contributions
1.4.1 Full Disk Encryption Modes
In chapter 3, we revisit the problem of Full Disk Encryption (FDE), which refers to the
encryption of each sector of a disk volume. In the context of FDE, it is assumed that there is
no space to store additional data, such as an IV (Initialization Vector) or a MAC (Message
Authentication Code) value. We formally define the security notions in this model against
Chosen Plaintext Attacks(CPA) and Chosen Ciphertext Attacks (CCA). Then, we classify
various FDE modes of operation according to their security in this setting, in the presence of
various restrictions on the queries of the adversary. We will find that our approach leads to
new insights for both theory and practice. Moreover, we introduce the notion of a diversifier,
which does not require additional storage but allows the plaintext of a particular sector to be

8 Chapter 1 Introduction

encrypted to different ciphertexts. We show how a 2-bit diversifier can be implemented in
the EagleTree simulator for Solid State Drives (SSDs), while decreasing the total number of
Input/Output Operations Per Second (IOPS) by only 4%. These results were the subject of
a publication at CT-RSA 2017 entitled "Full Disk Encryption: Bridging Theory and Practice"
with Nicky Mouha and Damien Vergnaud.

1.4.2 Key-Dependent Message Security

Chapter 4 is dedicated to Key-Dependent Message security. The Key-Dependent Message
(KDM) security model enables to analyse the security of a scheme even when the messages
depend on the secret key. This approach is relevant for full disk encryption as the whole disk
is encrypted, the encryption key or a function of the encryption key can end up in the disk.
Two contributions analyse the KDM security of two constructions widely used as the basis for
block-cipher design with different security proofs techniques: the iterated Even-Mansour (EM)
ciphers also known as the Key-Alternating Ciphers is analysed with a particular framework
and the Key Alternating Cipher (KAF) is analysed with the H-Coefficient technique.
The analysis of the KDM security of the iterated Even-Mansour ciphers is a joint work

with Pooya Farshim and Damien Vergnaud; it was published with the title "Security of
Even–Mansour Ciphers under Key-Dependent Messages" at IACR Transactions on Symmetric
Cryptology in 2018. The iterated Even-Mansour ciphers form the basis of many block-cipher
designs. Several results have established their security in the CPA/CCA models, under
related-key attacks, and in the indifferentiability framework. We also formalize the folklore
result that the ideal cipher is KDM secure. We then show that EM ciphers meet varying levels
of KDM security depending on the number of rounds and permutations used. One-round EM
achieves some form of KDM security, but this excludes security against offsets of keys. With
two rounds we obtain KDM security against offsets, and using different round permutations
we achieve KDM security against all permutation-independent claw-free functions. We also
present some KDM-attacks on some EM ciphers. As a contribution of independent interest,
we present a modular framework that can facilitate the security treatment of symmetric
constructions in models that allow for correlated inputs.

The analysis of the KDM security of the Key-Alternating Feistel (KAF) constructions is a
joint work with Pooya Farshim, Yannick Seurin and Damien Vergnaud. We use a different
technique to analyse the KDM security of KAF schemes and this time, the analysis is based
on the H-coefficient technique. We give a general approach to analyse KDM security of block-
ciphers and we apply it to the 4-round KAF. This security result gives properties on the KDM
set of functions that the adversary can ask to encrypt to have a secure scheme. Moreover,
we describe a KDM-attack against 4-round KAF if those properties are not respected (and
additional attacks on other KAF schemes).

1.4.3 Incremental MACs

An interesting feature for disk protection is integrity but using regular authentication schemes
has a severe impact on performances that is why in chapter 5, we analysed some constructions
to minimize as much as possible the slowdown of performances: the incremental MACs.
Introduced in cryptography by Bellare, Goldreich and Goldwasser in 1994, incrementality
is an attractive feature that enables to update a cryptographic output efficiently like a
ciphertext, a signature or an authentication tag after modifying the corresponding input.

Ch
ap

te
r1

1.4 Our contributions 9

This property is very valuable in large scale systems where gigabytes of data are continuously
processed (e.g., in cloud storage). Adding cryptographic operations on such systems can
decrease dramatically their performances and incrementality is an interesting solution to
have security at a reduced cost.

On the one hand, we analyse the security of the original Xor-scheme construction proposed
by Bellare, Goldreich and Goldwasser in [BGG95] and based on a chained structure as defined
in [BGG94]. We provide an attack that breaks the Xor-scheme basic security claimed by
the authors1. It succeeds with probability 1 using only one MAC query. It takes advantage
of the chaining structure of this scheme and some XOR function properties. This attack is
very simple and it is surprising that it remained unnoticed until now (especially since the
paper [BGG95] appeared in a major computer science conference and was extensively cited
since 1994). We analyse our attack and the original Xor-Scheme to find where its security
breaks down. We show that the main flaw is that the Xor-Scheme does not explicitly take
into account the document length and we noticed that adding the number of data blocks to
the construction prevents this kind of attacks. We analyse different ways to patch the scheme
by introducing the document block-length in the construction and found that the scheme can
still be weak for some options. We propose a modified version of the Xor-Scheme and prove its
basic security. Our security proof for the patched Xor-Scheme uses tools from the unchained
XOR-scheme security proof [BGR95a]. This result was published in a paper co-authored with
Damien Vergnaud and entitled "Analysis and Improvement of an Authentication Scheme in
Incremental Cryptography" which was published at SAC 2018.

On the other hand, we revisit incremental MACs security notions by giving clear security
games for basic security where an adversary can call for update operations only on untampered
documents and tamper-proof security game where the adversary can call for update operations
on modified documents. We compare the relative strengths of our new security notions and
we provide generic constructions. Moreover, we analyse existing incremental constructions
and we provide a new scheme using our security proofs which is the first one achieving some
kind of tamper-proof security (as formalized by our new model). This part of the chapter is
a joint work with Vivek Arte, Mihir Bellare and Damien Vergnaud.

1In [BGG95, Theorem 3.1], Bellare, Goldreich and Goldwasser stated a security result for their scheme but
no proofs are provided in their paper.

Ch
ap

te
r2

Chapter 2
Secure storage - Confidentiality and
Authentication

Contents

2.1 Data Protection and Data Storage 13
2.1.1 Data Protection . 13
2.1.2 From Disk Storage to Data Encryption 15

2.2 Full Disk Encryption . 18
2.2.1 Challenges . 18
2.2.2 FDE and Cryptography . 20

2.3 Data Authentication . 24
2.3.1 Local Authenticity . 24
2.3.2 Global Authentication and Incremental Cryptography 27
2.3.3 Merkle Tree . 29

— 11 —

Ch
ap

te
r2

2.1 Data Protection and Data Storage 13

This chapter aims at giving in a first place a state-of-the-art of cryptographic constructions
used in FDE model and the reason for their design induced by storage constraints and perfor-
mance goals. Then we formalize new models where, in addition to confidentiality, two levels of
data authentication at low-level are possible. In section 2.1, data at rest threats are analysed
to present adversary models and explain which adversary model FDE covers and which one it
does not. Disk storage technologies are described in order to extract disk storage constraints.
In section 2.2, the challenge of FDE is to take into account these constraints to maintain
the device performances. In this context, performance impacts different aspects of a device
and developers have to consider specific implementation choices for different components and
layers. This leads to numerous types of FDE products. Section 2.3 explores the possibility to
add data authentication. Two strategies of data authentication are detailed: local and global
authentications. The first one protects authentication at a block level but does not prevent
replay attacks where an adversary tries to restore a former version of the disk content. The
second one protects the entire disk even against replay attacks by using specific authentication
schemes that have the property to be incremental. An incremental authentication scheme
enables to generate a tag on an input once and then for any modification; the tag is updated
instead of being re-computed from scratch. The implications of these authentication schemes
in terms of storage and update time are analysed and discussed.

2.1 Data Protection and Data Storage

2.1.1 Data Protection

Nowadays, the need for user data protection has become a critical matter, even more,
emphasized by democratized cheap outsourced storage and the constant rise of mobile devices.
For various reasons, a user (the device owner) can let his mobile device unattended, e.g.
when attending a meeting or doing sport. A device may be sent to repair; sold to someone
else, lost or stolen. It is also common that a device has to be given to legal authorities during
checks in airports or when entering a police station. These examples are ordinary situations
where a third party can have access to the user data stored in the disk even if the device is
switched off. Unfortunately, the user is not always aware of potential threats when this third
party is an adversary.

Devices. In the following, a device refers to a system that runs autonomously with a
persistent memory to protect. FDE concerns data at rest stored in the disk only. Data is
encrypted before being stored in the disk and decrypted after being loaded from the disk
which means that the disk should always store data encrypted1. Data is said to be encrypted
and decrypted "on the fly".
From a data at rest perspective, devices can be classified by the data size to protect, their
power on and off cycle frequency, the number of users and so on. A server stores terabytes
of data, it can be used by multiple users as it is a shared resource. It is commonly used
in professional environments where critical material is stored in a shared appliance that is
owned by the company or just rented for commodity (cloud). A desktop computer or a
laptop is used by less users than a server and has a smaller disk but is powered off more often
than a server which has to be running almost all the time. A smartphone or a digital tablet

1The strategy used for the initial encryption step depends on the FDE tool.

14 Chapter 2 Secure storage - Confidentiality and Authentication

is usually used by a single user. As they become more and more powerful, they can almost
be used as laptops and store sensitive data like contacts, business data, personal data or
passwords. These devices are designed to be small and mobile to be taken everywhere: in the
street, public transportation, at work and so on which render them easy to lose or to steal.
We can mention smartwatches, biomedical devices and IoT devices which can store data at
rest. Another category is USB thumb drives and disks which are dedicated to storing data
at rest and are powered off very often when unplugged from a computer. The power on/off
cycles frequency of a device is an important factor: FDE protects data against unauthorized
access only when a machine is powered off. In other system states (running and sleep modes)
FDE is not sufficient and additional protections are required.

Threat Models. All these devices store some amount of data that need to be protected
in confidentiality, and different solutions exist depending on the model (architecture and
adversary). In the following, we gather all these scenarios in three main attack categories
according to how the adversary accesses the disk.

1. Single passive access to the disk. When a device is stolen or lost, the user wants
to be assured of his data confidentiality: anyone except the user should learn no
information about the disk data. When the disk is encrypted, the adversary has access
to encrypted data, and he aims at discovering some information about the corresponding
plaintexts. As examples, he can cryptanalyse the cryptographic algorithms, or he can
compare some parts of the disk to others.

2. Multiple passive access to the disk. It encloses -1- but here the adversary is more
powerful as he can make copies of the disk at different times. The adversary can analyse
these copies in order to track modifications on the disk. Later, we will see that even
with a strong FDE encryption mode, an adversary is able to recognize if the same value
was stored in the same place at different moments and he knows exactly which parts
have been changed between two copies.

3. Active access to the disk. This scenario encloses -1- and the adversary can tamper
with the disk data. These attacks are also known as "active attacks" [Gjø05a]. As an
active attack, we can think about silent data corruption [BAA+08] even if it is not an
intentional attack as it can be due to random hardware failures. This issue is usually
solved by checksums and CRC32 [SSTC02] is the most used one.

Another case is an adversary that succeeds to perform malicious modifications in the disk
without the user realizing it. He can also tamper with the disk, and they can give it back to
the user. After that, the user works with his disk as usual without knowing that his data are
corrupted. An example is a copy-and-paste attack where a disk is shared between a user 1
and a user 2: the malicious user 1 copies data from the user 2 part of the disk and pastes it
in its own part. As in many FDE tools, a unique key is used for the entire disk (more details
in section 2.2.1); user 1 could be able to decrypt user 2’s data.
In addition to data confidentiality, the user wants to be able to check the authenticity of
the data he is using. A specific tampering attack is what we can call a "Downgrade attack"
or a "replay attack": the adversary snapshots the entire disk at time t and waits for a specific
moment to restore it. The desired property to thwart this is a so-called temporal data
authentication: at any moment, he wants to be sure that the data he is manipulating now
is the data stored during the previous legitimate manipulation.

Ch
ap

te
r2

2.1 Data Protection and Data Storage 15

For each category, an adversary can perform online attacks which means that it has
physical access to the device to perform his attacks. As a consequence, he can attack the
disk content but also the other components including hardware components. Otherwise, if it
performs offline attacks, we suppose that he has no access to the entire device but only to
the raw disk memory content, i.e. storage memory cells bits.

Attacks out of scope. Many other attacks [MF15] can be performed when the disk is
in use. An adversary can try to freeze and extract cryptographic secrets from the Random
Access Memory (RAM) when the disk is in use to decrypt the disk afterwards. This attack
is known as a cold boot attack [GM14, MTF12, CK10, Sim11]. The encryption key can
also be recovered through side channels by observing data manipulations on the disk and
exploiting physical leakage such as power consumption or electromagnetic radiations [UM16].
A malware can also infect a device in order to spy on the legitimate user password and other
secrets; this is the Evil Maid attack2 as exhibited in [Rut09, Kle09, Ter10, GM14].

Attack families -1- and -2- threaten data confidentiality whereas scenario -3- is also a threat
to their authenticity. In the next section, disk architectures are detailed to highlight specific
disk features that have to be taken into account to choose a disk protection mechanism.

2.1.2 From Disk Storage to Data Encryption
In this section, a simplified description of a system is provided in order to understand what
is full disk encryption and the differences between FDE products.

Kernel (Host)

ControllerDriver

Disk

Protocol

Figure 2.1: Simplified view of components involved in disk encryption.

First, let us define the taxonomy of the subjects that are of interest when studying FDE.
At the highest level, we consider systems running operating systems (OS) and hosting
applications. The core and privileged component of the OS is its kernel. In a nutshell, when a
system is powered on, the first piece of code executed is called the BIOS, which runs in chain
specific components in order to execute the kernel. After the boot, the kernel handles the
memory and peripherals. It manages data stored in the disk through different virtualization
layers as shown in Figure 2.2. Simply put, from an end-user perspective, data is abstracted
in the form of files. All the files are aggregated in a filesystem, and filesystems can be stored
in volumes or partitions (a volume can be split among different partitions). The kernel
handles physical disks through partitions with specific drivers in charge of low-level reading
and writing operations. As shown in Figure 2.1, a dedicated protocol conveys read and
write commands at the physical layer level. Such commands are limited to a fixed size data
unit called a sector. The low-level driver is consequently in charge of sector-based read and
writes operations. The Parallel ATA (PATA) and Serial ATA (SATA[Del09]) standards are
examples of such protocols, and are commonly used as classical disk interfaces.

2From "Evil Maid goes after TrueCrypt"

16 Chapter 2 Secure storage - Confidentiality and Authentication

The physical disk contains a controller and non-volatile memory units to store data sectors.
The controller is usually a dedicated micro-controller with embedded firmware that deals
with the commands received from the kernel driver and manages the internal non-volatile
memory depending on the disk technology (see Figure 2.5) as described in what follows.

file MD
file MD

file MD
file MD

Filesystem

Volume 1

Volume 2

Sectors

Figure 2.2: Simplified logical levels: from files to sectors. MD stands for Meta-data.

2.1.2.1 Hard Disk Drive

The older and well-known technology is the Hard Disk Drive (HDD) that is essentially
composed of platters. It can be read and written by a mechanical arm handled by the disk
controller. Each drive has one or more disk platters, each with two magnetic surfaces. The
platters are coated on both surfaces with magnetic particles, allowing to store and retrieve
data in the form of zeros and ones by polarizing the relevant area. Information on the disk
surface is located on a set of concentric rings called tracks. The tracks on each platter are in
turn divided into a number of sectors as shown in Figure 2.3.

Track

sector

Figure 2.3: HDD tracks and view of a sector.

As already stated, the controller communicates with a driver through a specific interface
using a protocol that enables write and read commands depending on sector numbers also
called the Logical Block Addresses (LBA).

2.1.2.2 Solid State Drive

The physical composition of a Solid State Drive (SSD) is totally different. SSDs are flash
memory devices that are gradually replacing the HDDs due to improved performances.

Ch
ap

te
r2

2.1 Data Protection and Data Storage 17

Similarly to magnetic drives, they are logically sector-addressable devices. The flash memory
cells of an SSD (see Figure 2.4) are hierarchically organized as a set of flash chips called
packages, which are further divided in dies, planes, blocks3 and pages. Every page consists
of one or more sectors and is the smallest unit that can be written. The smallest unit that
can be erased is a block. Invalidated blocks must be erased before writing. The Flash
Translation Layer (FTL) stores the mapping between LBAs and Physical Block Addresses
(PBAs). This FTL ensures an even distribution of writes to every sector number (wear
leveling) and, it invalidates blocks so that they can later be recycled (garbage collection). The
FTL is necessary due to the physical constraints of flash storage: any physical address can
only be written a limited number of times, and rewriting individual sectors is not possible:
invalidated sectors can only be recovered in multiples of the erase block size.

Figure 2.4: Hierarchically organized SSD memory

The FTL implements an abstraction layer to be compatible with systems using HDD: the
driver reads and writes sectors using LBA. Disk interfaces such as PATA or SATA have
different physical link properties, speed and communication protocols but they all enable
access to sector granularity. The driver and other components from the OS manage data and
optimize read and write access.

2.1.2.3 Physical and Logical sectors

The physical sector is the sector used internally in the disk, and the logical sector is the one
presented to the host by the disk controller. The kernel asks to write at least one logical
sector and, this operation is atomic from its point of view: the host cannot ask to write less
than one sector. Historically, the HDD had 512-bytes length sectors that were presented to
the host so, at the time, the logical and the physical distinction did not exist. To read and
write disk data efficiently, the OS used a unit called a page4 that is a virtual unit composed
usually by eight logical sectors. A page is the smallest unit the OS can read and write
and, its size is a multiple of logical sector size. OS storage page size is commonly chosen to
match the virtual memory page size: this allows file system transfers between disk and RAM,
caching and read/write operations to be optimized. Nowadays, disk manufacturers are able
to produce disks with longer sectors of 4096 bytes on par with the OS page size to increase

3These blocks should not be confused with the blocks of the block cipher, nor with the “block” (actually
“sector”) in the term Logical Block Address (LBA).

4It is different from SSD pages.

18 Chapter 2 Secure storage - Confidentiality and Authentication

disk performance at the lowest native level. Due to this heterogeneous situation regarding
logical and physical sectors sizes, the Advanced Format standard has been created to specify
various compatibility modes.

Protocol

Controller

Memory

Figure 2.5: Disk where memory are on platters for HDD and are flash cells for SSD.

2.2 Full Disk Encryption

2.2.1 Challenges

Encryption can be implemented at different levels: from file to sector-based encryption (see
Figure 2.2). File encryption aims at encrypting independently each file with different keys
and usually without encrypting the corresponding meta-data. With filesystem encryption,
the files and the meta-data (including the internal hierarchy) are encrypted as implemented
in ecryptfs [Tec] for instance. Volume encryption, partition encryption and disk encryption
use a block-oriented encryption known as Full Disk Encryption (FDE). Block refers to a
sector which is the disk data unit. It is also known as Low-level full disk encryption or whole
disk encryption[Ter10]. An advantage of FDE is that it ensures unconditional encryption
of all the data stored in the disk, instead of selectively encrypting only the data to be kept
secret. This is an advantage over file level encryption where extra data like the number of
files or the file size cannot be encrypted. Hence, FDE has an interesting feature to ensure
confidentiality for all the data while being transparent for the user. These advantages are
even more important for organizations and companies where data protection must be enforced
in contexts where human errors are unavoidable.

FDE cost. Disk memory access is time-consuming, and it is a critical issue for manufacturers
and academic research. Software and hardware manufacturers made huge efforts to optimize
memory accesses and succeeded to achieve tremendous advances in memory latency. Memory
subsystems are tuned as much as possible with cache memories and fast SRAM memory chips
to speed up computer capabilities. Adding an encryption layer could affect performance
drastically. FDE frameworks developers try to integrate encryption that takes into account
this optimization work. A consequence is that FDE is length-preserving: all the sectors
are encrypted independently without additional data; otherwise sector (un)alignment
management becomes a problem. Moreover, most of FDE implementations aim at being
compatible with a maximum number of systems. A large panel of FDE frameworks tries to
defeat different adversaries by implementing encryption at different layers and by managing
the key differently.

Ch
ap

te
r2

2.2 Full Disk Encryption 19

Key management. To perform decryption, the user has to provide a secret; it is usually a
password or a pin code. The secret will unlock the disk encryption key, and this key is then
used to decrypt the whole disk. More complicated key managements are also implemented in
some devices, but in this paper, we consider the classical FDE encryption schemes where
the whole disk is encrypted with a unique key. This choice is due to shared disk usage,
password modification and backup. The disk encryption key is encrypted with another
key derived from a user password. This provides the ability to encrypt the key encryption
key for different users with independent passwords. It is also useful in cases where a user
wants to change his password without re-encrypting the whole disk (which would prove very
inefficient), and allows to set up a backup password. Popular and well known key derivation
functions are scrypt[PJ16] and PBKDF2[Jos11] because of their resistance to brute force
attacks. These functions take as parameters the user secret, a random salt and a number
of iterations. The random salt prevents rainbow attacks [KKJ+13] where the adversary has
pre-computed hash tables for different passwords. A large number of iterations slows down
slightly the legitimate user that computes it once, but it aims at making the computation
time of the brute force attacker unpractical because it has to evaluate the key derivation
function on a very large number times. The minimum salt size recommended for PBKDF2
by the standard PKCS#5 [Jos11] is 64 bits. In 2017, NIST recommended at least 1 000
iterations[Pau17] and specifies that more iterations are better as long as it is acceptable for
the device to compute one evaluation of the derivation function (the appropriate number is
10 000 000 [Pau17]). Nowadays, attackers can use mainstream GPUs, FPGAs or dedicated
hardware like ASICs to drastically speed up and parallelize the key derivation evaluation
to recover passwords [VG18]. This is the reason why the memory-hard functions [ACP+17]
like scrypt have been designed. The idea is that if the computational time is divided by
some factor, it should cost an increase in space by the same factor. Another independent
key (specific to a device) can be added as a parameter in the key derivation function. When
this key is hardware bound and protected by a hardened circuit (like eFuses [RFC+07] in
recent processors and SoCs), offline attacks become impossible, and the adversary is forced to
perform online attacks with the devices as an oracle: brute force exhaustive search becomes
unpractical even with dedicated hardware components. This is mostly the case for mobile
phones that embed Secure Elements and/or hardened hardware: a fused AES-256 key called
UID for iPhones 5 [App18] and a key used by the hardware-backed KeyMaster module for
Android devices[LB17].

The location of the key management, the kernel driver or the disk controller, is a way
to define two families of FDE products: the first one called Self-Encrypted Disks (SEDs)
corresponds to stand-alone systems performing encryption/decryption inside the disk by the
controller and the other corresponds to implementations performing encryption/decryption
in software on the host side.

Standard Encrypted Disks . A standard disk (either HDD or SSD) usually aims only
at storing data without encryption. Software FDE solutions like dm-crypt[dm-19a] (Linux),
Bitlocker [Fer06] (Windows), FileVault[CGM13] (MacOS), Truecrypt/Veracrypt6 (multi-
platforms)[ver19] perform encryption through a computer and store the encrypted data
in the standard disk. Even though such implementations can take advantage of hardware
accelerated instructions such as AES-NI, we refer to them as software based solutions as

5iOS implements file based encryption and not full disk encryption
6Truecrypt project was ended in 2014. Veracrypt is a fork.

20 Chapter 2 Secure storage - Confidentiality and Authentication

opposed to dedicated hardware solutions where most of the FDE logic is performed in
dedicated controllers. In software oriented solutions, the standard disk does not manipulate
raw user secrets neither the raw cryptographic key but the host does. An adversary can
take advantage of this by targeting the RAM yielding in the attacks denoted "out of scope"
previously in this section. In this case, the adversary has access to the standard disk and
aims at breaking confidentiality.

Self-Encrypted Disks. In SEDs, encryption is performed by some dedicated hardware
component in the disk itself. The SED is supposed to be unlocked only by the legitimate user.
The user authentication is performed directly on a SED interface like a pinpad or through a
trusted computer. Then the storage device performs the encryption/decryption on the device
and the encryption key should never leave the device [MLF12].

Software/Hardware Implementation. Software implementations are easy to develop
and maintain contrary to hardware implementations. But hardware implementations have
the advantage to be dedicated to encrypt data making them more efficient, reliable[BE02] and
potentially more resistant to attack vectors such as side channel leakage. Such advantages
explain that SEDs are usually found at a higher price compared to software based solutions.
Different SEDs were analysed in [MvG18] and the authors exploited flaws in the firmware of
the micro-controllers handling the hardware encryption. This study disproves the common
belief that hardware FDE solutions are more secure than software based one. Building a
secure FDE solution is however not straightforward, it is a complex mechanism that that
involves a versatile skill set. The resistance of the cryptographic mechanism, the key derivation
function, the usage of hardware keys are not sufficient: the encryption and the firmware
implementations are also part of this mechanism and none of them should be neglected.
Having the control of the entire design and production chain, which is the case for SEDs and
some smartphones, can help but comes at some cost regarding the implementation neatness
and consistency.

Performance. The performance of a FDE solution can encompass the execution time and
for some specific usages power consumption.
The execution time depends essentially on the cryptographic algorithm, the way the tool is
implemented, the number of the read and write operations. The cryptographic algorithm
efficiency includes among others its structure (number of basic operations), its parallelization
capabilities for encryption and decryption, the key size. An implementation can be more or
less optimized to speed up the execution time. And a dedicated hardware implementation
should have a smaller execution time than its software version. Obviously, read and write
operations on the disk should be minimized.
It is desirable to limit the power consumption of the system for cost efficiency reasons. For
some of them like smartphones, it is crucial because the usability of the smartphone depends
on its battery: using too much power on cryptographic computations and extra read/write
operations on the memory for data protection is not an interesting deal. It is therefore
suitable to have an FDE mechanism that limits energy consumption [FPR12].

2.2.2 FDE and Cryptography
As argued above, writing and reading a sector have to be as quick as possible which implies
that encryption/decryption delays have the same requirement. That is why, each sector is

Ch
ap

te
r2

2.2 Full Disk Encryption 21

encrypted independently and encryption relies on block ciphers for their time performance.
A secure block cipher reveals no information about the plaintext knowing the ciphertext as
long as the key is randomly sampled and kept secret. Today, the most used block cipher
is AES (128 bits block length). The sector length is a multiple of the block cipher length
and a secure encryption mode has to be used because using sequentially7 the block cipher
on the sector content will lead to insecure encryption. A full disk encryption mode uses the
same key [Gjø05a, KMV17] to encrypt the whole disk and it can be the case that the key is
composed by sub-keys or used to derive sub-keys.
A widespread FDE mode is CBC-ESSIV [Fru05] for "Cipher Block Chaining-Encrypted
Salt-Sector IV". This mode is a CBC mode where the Initialization Vector (IV) is derived
from the sector number. In CBC mode, the IV is required for decryption and it is stored as
a first block in the ciphertext which is not possible for length preserving encryption. That
is why, in CBC-ESSIV, for each sector, the IV is the encryption of the sector number s
under a different key k’ and the plaintext block are encrypted using the key k. The keys
k and k′ have to be different otherwise this mode is vulnerable to sliding attacks [Rog04b].
This mode is parallelizable for decryption only and it is secure for an adversary belonging
to the threat models -1- and -2-. This mode is less and less used and it should not be used
because of its vulnerability to malleability attacks. A malleability attack consists in applying
a transformation on a ciphertext block i and knowing the impact on the plaintext. To be able
to perform a malleability attack, the adversary must have an active access to the disk (theat
model -3-). For CBC, flipping the j-th bit on the ciphertext block i will lead to decrypt the
plaintext block i+ 1 correctly but with the j-th bit also flipped as shown in Figure 2.6. The
i-th plaintext, which is 128 bits for AES, is randomized. This attack has severe impacts:
a plaintext bit can be flipped at any position which gives the power to the adversary to
change the plaintext block the way he wants. Practical attacks are demonstrated by Lell
in [Lel13] on dm-crypt. In the bitlocker solution, the elephant diffuser component[Fer06],
which is a keyed diffuser, is applied to the entire sector plaintext to mix all plaintext bits
and then CBC-ESSIV is used for encryption. The diffuser makes the malleability attack on
CBC unpractical.
Nowadays, the standard for storage devices [IEE08] specifies XTS mode for "XEX Tweakable
block cipher with ciphertext Stealing" which is based on XEX for "Xor-Encrypt-Xor" designed
by Rogaway [Rog04a]. A tweakable block cipher is a block cipher that takes not only the
classical inputs, a key and a plaintext block, but also a tweak and outputs the plaintext block.
A tweak is a public value and in the case of FDE, it is the sector number then there is no
need to store this value. This trick enables to have a length preserving mode to encrypt each
sector. A modification on a sector can be seen by a passive adversary (threat model -2-): all
unchanged plaintext blocks at the same position will have the same ciphertext blocks and
the modified ones will be different. Then it provides a "spatial" security in the senses that
each encrypted sector blocks look random for the adversary as long as there is no repetition
of plaintext block at the same position (security proof [Rog04a]). If the adversary is active
and modifies sector content (ciphertext), he is limited to tamper with one block cipher only
that corresponds to 128 bits in case of AES usage. For example, it can flip one bit in the
sector, after decryption the corresponding plaintext will look random (see Figure 2.7) but
all the other plaintext blocks will be decrypted normally. This property makes a tampering
attack harder but does not prevent it. Moreover, XTS has the advantage to be parallelizable

7This mode is called ECB.

22 Chapter 2 Secure storage - Confidentiality and Authentication

m1 s m1 m1 m2 m3 m4 m5

EK′ EK EK EK EK EK

m1 m1 c1 c2 c3 c4 c5

Encryption

m1 s m1 c1 c2 c3 c4 c5l

EK′ EK EK EK EK EK

m1 m1 m1 m2 m3 m4 m5l

Decryption
Figure 2.6: Malleability attack on CBC-ESSIV using a block cipher (EK ,Dk) where Dk = E−k .

Bit flipping ("X") in the i-th ciphertext block compromises the entire i-th block
and exactly one bit in the i+1-th block.

for encryption and decryption. Moreover, it necessitates only one AES call for each plaintext
block8.
Wide Tweakable Block Ciphers (WTBC) go further in limiting tampering ability of the
adversary but require more AES calls per block. A WTBC is based on a standard block
cipher that processes input blocks through multiple passes in order to simulate a block
cipher over the input size. This is why they are known to be slow[Fer06] and much less used
than XTS for example. In FDE context, their block size is the sector size so an adversary,
belonging to threat model -3-, corrupting one bit ciphertext will lead to randomize the
entire plaintext sector (illustration in Figure 2.8). EME2[HR04, IEE11], CMC[HR03] and
XCB[MF07, IEE11] are examples of WTBC. Recently, a new WTBC, Adiantum[CB18], was
introduced by Biggers and Crowley that is more performant that XTS when there is no
cryptographic accelerator.

8At the cost of extra computations over GF (2128).

Ch
ap

te
r2

2.2 Full Disk Encryption 23

m1 m2 m3 m4 m5

α α α α

c1 c2 c3 c4 c5

EK EK EK EK EK

EK′s

Encryption

c1 c2 c3 c4 c5l

α α α α

m1 m2 m3 m4 m5

DK DK DK DK DK

EK′s

Decryption
Figure 2.7: Malleability attack on XTS (here without ciphertext stealing) using a block

cipher (EK ,Dk) where Dk = E−k . Bit flipping ("X") in the i-th ciphertext block
compromises the i-th plaintext block (black block) after decryption.

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5

EK EK EK EK EK

EK EK EK EK EK

Encryption
c1 c2 c3 c4 c5l

m1 m2 m3 m4 m5

EK EK EK EK EK

DK DK DK DK DK

Decryption
Figure 2.8: Malleability attack on WBTC using a block cipher (EK ,Dk) where Dk = E−k . Bit

flipping ("X") in the i-th ciphertext block compromises all the plaintext (black
blockq) after decryption.

24 Chapter 2 Secure storage - Confidentiality and Authentication

2.3 Data Authentication

In the context of full disk encryption the strongest notion of integrity is the poor man’s
authentication which means that if an adversary modifies the ciphertext (here a sector content),
one can hope that this modification will lead to a random change in the corresponding plaintext
in such a way that the system or the user will detect this tampering. To be able to detect all
the illegitimate data modifications, data authenticity 9 is required in addition to encryption.
In this paper integrity and authenticity refer to the same security notion.

Data authenticity enables to detect if the adversary modified the disk content with a message
authentication scheme also called MAC for Message Authentication Code (MAC). It takes as
input a plaintext and returns a tag. This primitive is a keyed algorithm based on block-ciphers
[fS11a] like CBC-MAC and CMAC or a hash functions [fS11b] like the HMAC family. MACs
are preferred over signatures because their computational time is smaller, which is crucial
given the amount of data to process on a disk and the expected throughput. Authenticity
for disk content is not a new subject [HGX+09, BMM10]; it is the purpose of the standard
[IEE18] and was the aim of different recent projects: the dm-integrity framework [BPM18]
and dm-x [CJK+17] and StrongBox [IGFH18]. Having data authentication is out of FDE
scope due to the storage of additional data [SWZ05, KMV17, BPM18], which is the reason
why the definition of new models are required. These new models bring new challenges:
how should we store tags, which algorithms minimize the added computational latency (e.g.
additional to encryption only latency) and additional data storage. The purpose of this section
is to clarify the models where data authentication is possible and to provide solutions and
their analysis. Some solutions are practical in the sense that existing frameworks implement
the corresponding mechanism and other are, for now, only theoretical.

2.3.1 Local Authenticity

A naive solution is to compute a tag over all the disk content using a MAC and, only one tag
is stored for the whole disk. However, then each time a sector is read or written, this tag
has to be verified or re-generated which means processing all disk sectors; this is too much
time-consuming. A better and natural mechanism is to compute a local tag for each sector
to keep independence between each sector which costs to store a tag per sector. We call this
per sector data authentication local or spatial authentication.

ADE Model. The possibility to store tags for each data sector gives a model that diverges
from the FDE model called the Authenticated Disk Encryption (ADE) model in the
sequel of the paper. Depending on how these tags are stored (see section 2.3.1.2), we can
consider storing more than the local tags to make the cryptographic primitive stronger. That
is why from here local tags refer to additional data stored for data protection including
cryptographic tags, IV, etc. . . In this model, the adversary has access to the disk at several
times and can modify its content: data sectors and tags sectors. This adversary is part of
the threat model -3-, his goal is to break confidentiality or to build a forge for at least one
data sector (e.g. data sector d and the corresponding tag τ). He wins if data confidentiality
is broken of a sector content or if for the data sector number s, he builds a fresh data sector
d∗ and it corresponding tag τ∗ where verification succeeds. A mechanism secure in the ADE
model does not cover replay attacks [vDRSD07]: an adversary having a copy of the disk (or

9Data authenticity is different from user authentication.

Ch
ap

te
r2

2.3 Data Authentication 25

a part of it) at the time t can replace the disk content at any moment after that time (replay
attacks in theft with recovery described in section 2.1.1).

2.3.1.1 Authenticated Encryption (AE)

Here, we can choose among generic compositions or authenticated encryption.

Generic compositions. [BN00] There are three classical generic compositions: MAC-Then-
Encrypt, MAC-and-Encrypt or Encrypt-Then-MAC. An encryption scheme and a MAC are
composed to achieve data confidentiality and data authenticity, so two keys are needed. These
keys can be derived from a master key or generated independently. These solutions store
exactly the same amount of extra data (without taking into account the keys) and the choice
between them has to be made according to security and calculation efficiency. From a security
point of view, the composition Encrypt-Then-MAC is known to be secure if the underlying
primitives are secured10. For example, XTS-AES can be composed with HMAC-SHA-2 as in
[BPM18], but the simple approach will lead to sector reordering attacks. As the MAC
of a sector does not take as input the sector number, tag reordering will not be detected: an
adversary changing the location of a sector together with its tag will obtain a valid MAC
verification. The standard for authenticated encryption for storage devices [IEE18] specifies
that additional data for each sector should be added and the MAC ensures its authenticity.
This is also the case for authenticated encryption.

Authenticated encryption schemes (AE). They are specific schemes that provide confi-
dentiality and authenticity at the same time by design. They take usually a single key and use
derivation function(s) to obtain the required key material. For a given plaintext, it outputs
a ciphertext and a tag. As they are dedicated to this purpose, they can be more efficient.
In 2009, some schemes were standardized among them CCM [fS09, IEE18], OCB [fS09] and
GCM [fS09, IEE18] with AES as block cipher. AES-GCM is a widely deployed Authenticated
encryption scheme: it is used in protocols such as SSH [IS09], TLS [Res08], IPSec [VM05]
and storage[IEE18]. Few years ago, the CAESAR competition [Ber13] was organized with
the goal to identify a portfolio of authenticated ciphers that offer advantages over AES-GCM
and are suitable for widespread adoption. Specifically, robustness and tolerance against nonce
misuse [VV17] (a missing feature of AES-GCM) have been the leitmotiv for the emergence
of seven finalists [Ber18] ACRON, AEGIS, Ascon, COLM, Deoxys-II, Morus and OCB.

2.3.1.2 Local Tag Storage

Different ways of storing local tags on the disk can be implemented and depending on the
chosen strategy; the seek time can be more or less large.

Location. Local tags storage solutions can be: (1) to extend physical sector size; (2) to
implement virtual sector smaller than physical sector (illustration in Figure 2.9) or (3) to
keep the same sector size and dedicate some of them to store tags.
Solution (1) was proposed in[CMLS15] by arguing that it is feasible for manufacturers to
produce disks with bigger sector size because some space is already reserved for checksums.
10This is not straightforward as explained in [NRS14], some care must be taken.

26 Chapter 2 Secure storage - Confidentiality and Authentication

AE(k, i, pi)
pi

p0 p1

pn

t0

ci

c0 c1

cn tn

Plain sectors Encrypted and tagged sectors

Figure 2.9: Disk Encryption and local authentication tag within each sector. Dashed boxes
represent encrypted data and hatched boxes tags. AE stands for Authenticated
Encryption.

In this case, the only additional step is to modify the device mapper or the device controller
to take into account authentication, but this solution can not be implemented in all deployed
disks. Changing physical sector size is expensive so the majority of manufacturers will wait
for a standard. Solutions (1) relies on manufacturers.
Solution (2) avoids to wait a new disk format; it is compliant with existing disks. The
counterpart is implementing a virtualization layer. A basic virtualization strategy is to split
the physical sector into two parts: data and local tags. An example is the FreeBSD disk
encryption GELI [Daw14]: 480 bytes of data and a 32 bytes for the tag are stored in a 512
bytes physical sector.
Solutions (3) breaks atomicity contrary to solutions (1) and (2). If, for any reason, some
sectors are written and the corresponding local tags are not (or the other way around), the
data authenticity check will fail. If a sector writing operation on the disk is interrupted,
the previous sector content should be recovered otherwise authenticity check will fail. An
examplis dm-integrity: it implements interleaved meta-data sectors [Bro18] where the meta-
data include local tags. A fixed number n of consecutive sectors are processed, and the
corresponding meta-data is stored in the next sector (see Figure 2.10). The user can choose
the number n. The software dm-integrity allows the possibility to manage recovery on write
failure with journals: for example, it can save an old data content of unfinished sector write.
Enabling journals is an option and experiment with dm-integrity shows that enabling them
have severe impacts on performances.

Discussion. Disk sectors are now dedicated to store actual data (Dd sectors) and local
tags (Dla sectors) for solution (3) but this additional data estimation cost is applicable for
all solutions. We have Ds = Dd + Dla where Ds is the total number of sectors. Let τs be
the tag size and Ss the sector size. The maximum number of tags a sector can store is
TS = Ss/τs. Then we have Dla = Dd/TS and Dd = (TS ×Ds)/(TS + 1) which means that
the data sectors represent (100× TS)/(TS + 1) percent of the disk and local tags represent
100/(TS + 1) percent. For a disk with a sector size of 4096 bytes (Ss = 212 Bytes) where
1 Terabyte (240 Bytes) of actual data are stored, we have Dd = 240−12 sectors. Let’s take
the example of the following generic composition: the encryption primitive is AES-XTS
encryption where the tweak is the sector number and the MAC primitive is HMAC-256. The
HMAC is computed over the concatenation of the ciphertext and the sector number to avoid
reordering attacks. The local tag size per sector data is 32 Bytes which corresponds to the
tag produced by HMAC-256 (τs = 25 Bytes). Then a sector stores 128 local tags (TS = 27)
which gives Dla = 228−7 sectors (8 GB). Additional data represent only 0,8% of the disk. It

Ch
ap

te
r2

2.3 Data Authentication 27

is important to keep in mind that this estimation does not consider journals.

AE(k, i, pi)
pi

p0 p1

pn

ci

t0

t3
c0 c1

cn

tn

Plain sectors Encrypted and tagged sectors

Figure 2.10: Interleaved Meta-data. Large dashed boxes represent encrypted data and small
dashed boxes meta-data.

Data authentication protecting against replay attacks is a desirable property; we can call
this security notion temporal authenticity or global authenticity. The next section
aims at analyzing how we can get such property and at estimating its cost.

2.3.2 Global Authentication and Incremental Cryptography
Global authenticity is a strong security notion that aims at protecting all the local tags
from tampering. A simple solution is to store all these tags in persistent secure memory,
which means the adversary cannot tamper with it.

Secure Memory (SM). Obviously, such a component is not an accessible part of the
disk otherwise downgrade attacks are still applicable. Now, we will assume that such
memory exists otherwise replay attacks cannot be prevented in the context of full disk
encryption [HGX+09, BPM18] and also in the context of secure cloud storage with block-level
encryption [OR05, CJK+17]. Disk and cloud storage are similar from a theoretical point of
view in the sense that the server can be seen as a big remote disk. These two use cases are
different; nonetheless the data authenticity problem for data stored in a physical disk or in a
distant disk (cloud) can be solved similarly. For disk protection, we can consider a Secure
Element11 as a SM but it can store only a limited amount of data typically few kilobytes
to few megabytes[STM17]. Whereas for cloud storage, the SM can be associated with a
dedicated client local storage where it is possible to store data that cannot be tampered with
by the server. In this case, the SM can be a whole disk partition that the local OS protects
from any server access, yielding in few gigabytes of ”secure memory” size.
Once again, the naive idea is to compute a global tag over all the local tags. Then reading a
sector will lead re-computation over all the local tags which is too much time-consuming.

FADE Model. Once more, we have a different model that is slightly deviating from the ADE
one called the Fully Authenticated Disk Encryption (FADE) where the adversary has
the possibility to perform any modification on the disk. It breaks data authentication if it
succeeds to build a forge for a sector s different from the last legitimate one. In this model,
the adversary can attempt replay attacks.

Global MACs. To be secure in the FADE model, a global MAC is needed, and it should
have specific properties to be effective in the FDE context.
11This element usually embeds a small and persistent memory.

28 Chapter 2 Secure storage - Confidentiality and Authentication

-Security: It has to guarantee the authenticity of the local tags.
-Speed: It has to be fast for tag generation and tag verification. It has to minimize
cryptographic operations but also the added read and write access to the disk: tag generation
and verification must be relative to a data unit.
-Locality: If the verification fails, the index of tampered sectors should be easy to find.
-Minimal storage in the disk: If additional data has to be stored in the disk it should be
as short as possible to lose a minimum space in the disk.
-Minimal storage in secure memory As argued above, a global tag has to be stored in
secure memory that has limited storage space.

Incremental Cryptography.
Incremental MACs can fulfil some properties above. Incremental cryptography was

introduced by Bellare, Goldreich and Goldwasser in 1994 [BGG95] and it is an attractive
feature that enables to efficiently update a cryptographic output like a ciphertext, a signature
or an authentication tag after modifying the corresponding input. A MAC can be incremental
regarding some update operations like replacing, deleting or inserting a block in the input.
In our case, the input is the concatenation of the sector local tags computed with a classical
MAC e.g, not an incremental MAC then for each modification in a sector; the local tag will
be recomputed, and the global tag (output of incremental MAC) will be updated.

p1 p2 p3

fK fK fK

Combine

τ

p4 p2 p3

fK fK fK

Combine

τ ′

Figure 2.11: Overview of incremental replace operation. The function fK denotes the MAC
primitive. The inputs τ1, τ2, τ3 give the tag τ . After replacing the value τ1 by
τ4, the tag τ is updated with τ ′.

Usually, this efficiency comes from some independent MAC over all the inputs (values
pi in Figure 2.11) and the resulting output block are combined to obtain the global tag τ .
This independent processing seems to fit the independence of the disk sectors: as the sectors
are modified independently, we can imagine a root tag τ for all the disk that is updated
for each sector modification without recomputing the root tag from scratch (otherwise it
would be inefficient). A disk is a fixed number of sectors, and local tags depend on the sector
number so having an incremental MAC regarding the replace operation only is sufficient.
The chaining Xor-Scheme [BGG95][KV18], Xor-MAC [BGR95a] and GMAC [KVW04] and
Merkle tree [BGG95] are incremental MACs. These algorithms use a keyed function fK12

and, they are compared in table 2.1 with regard to the computational time of their tag
generation algorithm, the replace update operation and the tag verification algorithm. The
table gives the number of calls to fK for a disk composed of n sectors which means that the
input of the tagging algorithm is the concatenation of the sector local authentication tags. In
12To be more precise, fK is a pseudo-random function.

Ch
ap

te
r2

2.3 Data Authentication 29

Tag Replace Verify Storage L
Chaining XS n 4 n 1 N
Xor-MAC n+ 1 2 n+ 1 1 N
Merkle tree n log(n) log(n) n Y

Table 2.1: Operation and Storage costs of incremental MACS for n-block input. The column
L is for Locality property.

the following, log is for binary logarithm. For n inputs, the Xor-Scheme and the Xor-MAC
have a constant time replacing operation (respectively 4 and 2 calls to fK) and the storage
cost is only a tag size. The main drawback is the verification cost: to verify the authenticity
of 1 sector tag; it requires n calls to fK . Merkle tree is the only incremental scheme that
has the locality property and a trade-off between replace and verify operation delays. The
counterpart is that it requires more storage space, but it is not necessary to store the entire
tree. In the next section, the Merkle tree storage will be discussed in details.

2.3.3 Merkle Tree

A Merkle tree is an authentication data structure where leaves are the values to protect, and
each node is the MAC13 of the concatenation of its children. In the following, Merkle trees are
binary trees which means that each node is the MAC of its two children. This construction is
used to ensure data authenticity at block level [OR05, HGX+09, HWF15, dm-19b], in cloud
storage context [OR07, HPPT08, CJK+17] and at file level [RCPS07] due to its incremental
and locality properties. For a disk of n sectors, Merkle tree leaves are the n local tags where

n′

m

0

Figure 2.12: Perfect Merkle tree of n′ levels. Nodes of level m only are stored (m ≤ n′).

n = 2n′ .
This estimation is given for a perfect binary tree. A tree is said to be a perfect binary tree
when all its nodes have two children, and all leaves have the same depth. So the number of
actual data is exactly 2n where n is an integer. In this paper, all the Merkle tree storage cost
are computed according to a number of leaves (tags) equal to a power of 2 e.g. where n = 2n′

and n′ = log(n). The entire tree consists of 2n′ − 1 nodes. Otherwise, the value n′ can be set
to log(n) + 1 which is the worst case e.g. non-optimized tree. Let L be the output size of the
MAC algorithm fK used to compute the Merkle tree nodes. Then storing an entire Merkle
tree takes (2n′ − 1)L bits.
13To be more precise, Merkle tree uses a pseudo-random function which is the case of MACs.

30 Chapter 2 Secure storage - Confidentiality and Authentication

There are different memories where it can be stored: the SM, the disk and the RAM. But
in any case, a copy of the trusted root has to be stored in the SM. This value must not be
tampered with in order to recompute the path from the sector local tag to the root and
check the obtained root and the stored one. To simplify the analysis, we distinguish two
ways of storing the tree: either it is entirely stored in the same memory which is said to be a
stand-alone storage, or the tree is split into different memories which is said to be an hybrid
storage. It is possible to store some strategic nodes and to recompute the corresponding
subtrees when needed.
The nowadays RAM modules can store a large amount of data; typically between 4 GB

and 16 GB. In addition to current computation data, the RAM could store a part of the
Merkle tree. In the following, an estimation of the update/verify times of a sector and, the
storage cost in the different memories is given depending on the storage configurations. Some
of the following solutions are suitable for disk protection but, once again it depends on the
device: for a laptop, the disk size is in the range of gigabyte or terabyte, the RAM size is
rarely larger than 32 GB and is in average around 8 GB. The secure memory is usually only
few kilobytes. The access latencies of the different memories are also a parameter to take
into account.

Cost S1 S1’ S2 S3 S4 S5
Up/Ver n′ 1 2n′ − 1 n′ n′ n′
RAM - - - 2n′ − 1 - 2n′ − 1
Disk 0 0 0 0 2n′ − 1 2n′ − 1
SM 2n′ − 1 2n′ 1 1 1 1

Table 2.2: Estimation of Stand-alone storage of Merkle tree with n actual data sectors where
n = 2n′ . Up/Ver stands for update and verify cost.

2.3.3.1 Stand-alone Storage

Table 2.2 gives 5 possibilities for Merkle tree storage where the entire Merkle tree is stored in
the SM, the disk or the RAM.

• S1: The entire Merkle tree is stored in the SM and for each read and write operation,
the update/verify operation on the Merkle tree costs n′ calls fK . This solution does not
use disk and RAM storage but the update/verify which has a reasonable cost. If it is
possible to store 2n′ − 1 tags then it should be possible to store 2n′ which corresponds
to solution S1’. In this case, all the local tags can be stored in the SM and, as it is
assumed that this memory is tamper proof, the global authentication scheme is no
longer needed: the local tags are stored directly in SM. Then the Merkle tree is not
needed any more. If the SM is big enough, this solution should be considered otherwise
the following possibilities, where only a small value (the root) is stored in SM, are more
suitable.

• S2: The only value stored is the Merkle tree root and it is stored in the SM. The
advantage is that the storage on the disk, in the SM and RAM is minimized but the

Ch
ap

te
r2

2.3 Data Authentication 31

update/verify cost is the worst: the entire Merkle tree has to be recomputed for each
update/verify operation. For this reason, this solution seems to be unsuitable for disks.

• S3: This solution considers a context where the RAM is big enough to store the entire
Merkle tree and operates in rated conditions. The access time to Merkle tree nodes in
the RAM is smaller than in the disk but the counterpart is that the Merkle tree will
not be maintained when the system is switched off. It has to be recomputed each time
the system is switched on. This solution could be interesting if saving disk storage is
a priority. In fact, it stores only the root in SM and no additional data in the disk.
The update/verify operation cost is reasonable but a re-computation delay due to the
volatility of the RAM is added.

• S4: This solution has the same settings than S3 except that the Merkle tree is not
stored in RAM but in the disk. It has the advantage to remove the re-computation
delay, but this time the additional storage in the disk is the entire Merkle tree size.
Moreover, the time to read and write a node will be larger as it is stored in the disk.
Unsurprisingly, this solution could be implemented in an optimized manner by some
developers as solution S5.

• S5: This solution combines solutions S3 and S4: the tree is stored in the disk and also
in the RAM. Each time the device is switched on, the Merkle tree is copied from the
disk to the RAM which avoids the re-computation delay of solution S3. This solution
is the most efficient from a speed point of view.

For a reasonable amount of data, solution S1’ can be considered for cloud storage as few
gigabytes can be stored in the client side, but it seems unpractical for a stand-alone disk.
Solution S5 stores only the root in the SM and is the quickest solution described above, which
makes it the most suitable for stand-alone disk.

Cost S1 S1’ S2 S3 S4 S5
Up/Ver 28 1 268435455 28 28 28
RAM - - - 8 GB - 8 GB
Disk 0 0 0 0 8 GB 8 GB
SM 8 GB 8 GB 32 B 32 B 32 B 32 B

Table 2.3: Estimation of Stand-alone storage of Merkle tree where n = 228 and L = 32 Bytes

Discussion. Table 2.3 gives the Merkle tree storage cost in RAM, in the disk and the SM
with the same settings than in section 2.3.1.2. As explained in the analysis of S2, the update
and verify operations cost a large amount of calls to the function fK . The same problem
will emerge each time the device is switched on for solution S3 due to storage in RAM.
Solutions S1 and S1’ are not suitable for the rather small sized SM we discussed in section
2.3.2. Unsurprisingly, solution S5 seems to be the most suitable for disk protection.
In these settings, 8 GB are needed to store local tags and 8 GB for global storage then for
solutions S4 and S5, the FADE mechanism costs 1,5% of the entire disk.

32 Chapter 2 Secure storage - Confidentiality and Authentication

Cost H1 H2 H3 H4 H5
Up/Ver 2n′−m − 1 +m 2n′−m − 1 n′ −m n′ −m n′
RAM - - 2n′ − 2m+1 - 2n′ − 2m+1

Disk 2m+1 − 1 0 0 2n′ − 2m+1 2m+1 − 1
SM 1 2m 2m 2m 1

Table 2.4: Estimation of Hybrid storage of Merkle Tree with n actual data sectors where
n = 2n′ and m ≤ n′. Up/Ver stands for update and verify cost.

2.3.3.2 Hybrid Storage

Table 2.4 presents possibilities where the Merkle tree nodes of level m, where m ≤ n′, are
stored. Here, the performance depends on the choice of m and, it has to be instantiated in
table 2.4. The optimum value of m depends on many factors: the disk, the SM and the RAM
sizes, the CPU, the cryptographic algorithms etc. Due to this variety of factors, this analysis
is only theoretical: it provides insights about the main tendencies of each implementation
strategy. It would be nonetheless interesting to test these solutions in different devices to
adjust the level m and compare their real performances.

• H1: This solution minimizes the storage in SM by storing the Merkle tree root only.
The top of the Merkle tree, from the root to level m, is stored in the disk. For each
update/verify operation, recomputing the corresponding subtree costs 2m − 1 calls to
fK and the update/verify of the top of the tree cost m calls to fK . If a verification
fails, it will not be possible to find exactly which sector was tampered with, in the best
case, only the node at level m can be given as an information to the user.

• H2: The nodes at the level m (2m nodes) are stored in the SM. Here, these nodes do
not need data authenticity check; they are assumed to be authentic as they are stored
in the SM. For each update, the needed subtree is recomputed which costs 2n′−m − 1
calls to fK . Here, the SM has to store 2mL bits. Depending on the value m and the
SM size, it might be possible for a disk. For instance, if the SM can store 1 MB and
the L = 256 bits, then the maximum value of m is 12.

• H3: The nodes of the level m are stored in the SM and, the m subtrees are stored
in the RAM. Each update operation costs going through the subtree, which requires
n′ −m calls. Storage in the RAM involves a re-computation time when the device is
switched on.

• H4: The nodes of the level m are stored in the SM and all the subtrees (m) are stored
in the disk. Unlike, the previous solution, accessing tree nodes in the disk takes more
time.

• H5: The Merkle tree is split between all the memories: the root in SM, the top in the
disk and the corresponding subtrees in the RAM. Because of the storage in the RAM,
a recomputing delay is added each time the device is switched off. The update/verify
time is acceptable.

Ch
ap

te
r2

2.3 Data Authentication 33

Solution H1 seems to be the most suitable for disk encryption, the SM storage is reduced
to the Merkle tree root, the upper part is stored in the disk, and some layers have to be
recomputed. These solutions seem to remain acceptable for disk encryption as long as
the value m gives decent storage cost in the SM and, also in the RAM. Solutions where
update/verify time is minimized, seems to be better as this latency has a direct impact on
the disk performances.

Cost H1 H2 H3 H4 H5
Up/Ver 8207 8191 13 13 28
RAM - - 8 GB - 8 GB
Disk 2 MB 0 0 8 GB 2 MB
SM 32 B 1 MB 1 MB 1 MB 32 B

Table 2.5: Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 15, L = 32
Bytes.

Discussion. Table 2.5 gives an estimation for the value m = 15 with the same settings
than in the discussion for stand-alone storage. The value m was chosen to have maximum
storage in SM equal to 1 MB. We can note that the update and verification time is shorter
for solution H3 and H4 whereas it is quite long for solutions H1 and H2. Storage in RAM in
solutions H3 and H5 adds a re-computation delay that should be limited as much as possible.
Solution H4 seems to be the best solution if the SM can store 1 MB otherwise H5 has to
be considered. The storage cost for the entire FADE mechanism for H4 is close to solutions
S4 and S5, which represents about 1,5% of the disk, however, the update and verify time is
better.

Cost H1 H2 H3 H4 H5
Up/Ver 32 7 3 3 28
RAM - - 6 GB - 6 GB
Disk 2 GB 0 0 6 GB 2 GB
SM 32 B 1 GB 1 GB 1 GB 32 B

Table 2.6: Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 25, L = 32
Bytes.

In section 2.3.2, the SM was limited to a few megabytes and corresponds to realistic figures
of current state of the art of Secure Elements. Other technologies embedding more secure
memory have raised the industry attention in the last years. Examples of such solutions are
those belonging to the Trusted Execution Environment (TEE) ecosystem, with TrustZone,
Intel SGX and so on. In the TEE paradigm, a Secure Element is ”emulated” in the form of a
sandboxed execution mode (the ”Secure World”) of a general purpose processor, yielding
in more computing power and storage space when compared to classical Secure Elements.
Even though the storage space of such solution is usually shared with the so called ”Non
Secure World”, more and more SoC vendors embed non-volatile memory dedicated to the
TEE with hardware security isolation insurance. In such components, the SM considered in
our models could reach hundreds of megabytes to gigabytes of internal storage, and table 2.6

34 Chapter 2 Secure storage - Confidentiality and Authentication

gives figures in a case where 1 gigabyte can be stored in the SM. Software implementations of
FADE using TEE as a SM have been proposed in [HWF15]: the Secure Block Device Library
uses CMAC and Merkle trees to bring confidentiality and integrity to Trusted Applications
data at rest storage. Temporal integrity is ensured whenever the underlying SoC provides a
physical secure storage with non-tampering properties: the Merkle tree root as well as the
master encryption key are then stored inside it.
In tables 2.2, 2.3, 2.4, 2.5 and 2.6, the path of the Merkle tree (or a part of it in the case
of hybrid storage) stored explicitly in RAM is updated and verified for each read and write
operation. As attacks in RAM are excluded in the presented models, the verification path
can be omitted to speed up the read operation of a sector. Doing so for the write operations
is more tedious: after some number of writes, several paths in the tree are updated. These
update leads to the refreshing the tree in SM (which can be reduced to the root or more
nodes depending on the chosen solution) just before powering down the device. In case of
failure (device out of battery for instance), the device has to be able to update the tree in SM
otherwise the integrity check will fail for all sectors lately updated. Hence, this optimization
seems suitable for SEDs that embed their own emergency batteries, leaving enough time to
perform such updates.

Protection Name
Bitlocker[Fer06]
Veracrypt[ver19]

FDE dm-crypt[dm-19a]
FileVault[CGM13]
CRYHOD[Pri19]

ADE dm-integrity[BPM18]
GELI[Daw14]
Secure Block Device Library[HWF15]

FADE dm-x [CJK+17]
StrongBox [IGFH18]

Table 2.7: Some implementations giving different levels of security for a stand-alone disk.

Conclusion. Today, products implementing disk encryption are widespread. Most of
these products use the classical FDE mode of operation, namely XTS. However, adding
efficient data authenticity in the strong model (FADE) with tight constraints is an important
yet unsolved practical challenge. Developers and researchers have begun to address the
problem since a few years which gives some preliminary solutions (see table. 2.7). The
global authentication mechanism is new from a cryptographic perspective, and the question
is whether we can do better than Merkle trees. From an architectural point of view, the
introduction of a secure memory in laptops as well as in smartphones seems to be a strong
requirement to have global authentication. This is out of scope in this thesis, but there is a
crucial question for the deployment of FADE solutions: if the secure memory exists then it is
accessible to a standard FADE software for embedding authentication data (such as a root of
a Merkle tree), or is it only accessible to device manufacturers, hence entailing proprietary
implementations? The next step is to implement FADE mechanism with the Merkle tree in
different devices with different configurations: stand-alone storage, hybrid storage and in this
case we should find the trade-off for the value m.

Ch
ap

te
r3

Chapter 3
Full Disk Encryption

Contents

3.1 Disk encryption methods and Security notions 38
3.1.1 Disk Encryption Methods . 38
3.1.2 Security Notions for FDE . 41

3.2 FDE Security with Unique First Block 48
3.2.1 CBC-ESSIV Security . 48
3.2.2 IGE-ESSIV Security . 52

3.3 FDE Security with a Diversifier . 54
3.3.1 Solid State Drive . 55
3.3.2 Case Studies . 58

— 35 —

Ch
ap

te
r3

37

The term Full Disk Encryption (FDE) is commonly used when every sector of a disk
volume is encrypted. There is typically no space to store any additional data, such as an IV
or a MAC. As explained by Ferguson [Fer06], generic solutions to store additional data will
at least double the number of read and write operations, and will significantly reduce the
available disk space. They also change the disk layout, which makes it extremely complicated
to enable FDE on existing disks.
With this restriction, FDE cannot offer authentication, but at best “poor-man’s authen-
tication” [Fer06], which is to hope that ciphertext changes will result in a plaintext that
is random enough to make the application crash. It can also not achieve chosen-plaintext
indistinguishability: when the same data is encrypted twice at the same sector index, the
resulting ciphertexts will be identical.
Additional efficiency constraints may be imposed on FDE as well. For example, it can be
desirable to perform encryption and/or decryption in parallel, which is not possible for
inherently sequential constructions where one plaintext block of a sector cannot be processed
until all previous plaintext blocks are processed. If there is not enough memory available to
store an entire sector, it may be required that encryption and decryption are online, meaning
that one block of a sector may only depend on the preceding blocks.
These implementation constraints impose severe restrictions on the algorithms that can
be used for FDE. However, a general problem in the domain of FDE is that the security
properties of the resulting constructions are not always well-understood. And, cryptographers
often complain about the absence of well-defined cryptographic goals for FDE (see e.g. Rog-
away [Rog11]), which are prerequisites to find a good-trade-off between security and efficiency.

In this chapter, we want to measure “how much security is left” within the constraints
of FDE. In order to do so, we introduce a theoretical framework to capture that an FDE
algorithm behaves as “randomly as possible” subject to different practical constraints. We
consider settings where the encryption oracle can be random-up-to-repetition, random-up-to-
prefix or random-up-to-block. For each of the attack settings in the framework, we list an
efficient construction that achieves security within this setting. We recall existing security
results, and provide new proofs, in particular in the unique-first-block (ufb) setting where the
Operating System (OS) or application ensures that the first n bits of the plaintext will not
be repeated for a particular sector number, where n is the block size of the underlying block
cipher.
Our model recalls that the modes of operation CBC (Cipher Block Chaining) and IGE
(Infinite Garble Extension), even with a secret IV, do not achieve the security properties
that developers often wrongly assume for these constructions. As already shown by Bellare,
Boldyreva, Knudsen and Namprempre [BBKN12], CBC and IGE are not IND-CPA secure
up-to-prefix. We will prove, however, that both constructions are IND-CPA secure under the
ufb assumption.
Regarding chosen-ciphertext attacks, we point out that Added Redundancy Explicit Au-
thentication (AREA) [Fru05] is not secure when used with CBC or IGE, even when the
IV is secret. The insecurity of constructions such as AREA was already shown in 2001 by
Jutla [Jut01], but has nevertheless not yet been pointed out in the context of FDE. We recall
that there exist constructions that are secure in this setting, such as TC2 and TC3 [RZ11].
Secondly, we revisit the FDE constraints from an engineering point of view. We show that it
is possible to produce different ciphertexts for the same plaintext at a particular sector index,
without storing additional data. Our solution applies to solid state drives (SSDs), where we

38 Chapter 3 Full Disk Encryption

show how the SSD firmware can be modified to associate a diversifier to every sector. This
is done without modifying the data structures of the SSD, but by forcing data to be written
to a particular Logical Unit Number (LUN).
For any particular sector, the diversifier value must be unique. However, as we will explain
later, additional requirements are necessary for performance reasons. When looking at all
sectors at any particular point in time, each diversifier value should occur roughly the same
number of times. Additionally, this diversifier value can typically only be a few bits long.
These requirements put the diversifier in a class by itself, and not as a specific case of a
random IV or a nonce (i.e. a number that is only used once).
When we benchmarked our solution in a modified EagleTree simulator [DSB+13], we found
that it increases the average latency by at most 12% for reads and 2% for writes, and that it
reduces the SSD throughput (read and write combined) by less than 4%.

3.1 Disk encryption methods and Security notions

The problem of FDE has been researched extensively, see for example Rogaway [Rog11] for
a provable security treatment, or Fruhwirth [Fru05] for an implementer’s perspective. The
formal requirements of disk encryption are often not clearly stated.
FDE is a topic that has gathered significant interest from industry and standardization and
often leads to application-specific solutions due to the special requirements of full disk encryp-
tion. Of particular interest are the elephant diffuser used in Microsoft’s BitLocker [Fer06], or
IEEE P1619’s XTS standard [IEE08], which later became a NIST recommendation [Dwo10]
as well.
We assume that adversary has access to the disk volume at any time. The adversary has
(partial) knowledge and even control of the plaintext, and can even change the ciphertext as
well. We, therefore, go beyond just “single point-in-time permanent offline compromise” (see
e.g. [HSTM15, Gjø05b]). Read and write operations are assumed to be atomic (on a sector
level), so we do not consider blockwise adaptive attacks [JMV02].
Sound key management is required to avoid that the plaintext contains the key or any
function of the key [Hal06]. Physical access threats (e.g. cold boot, DMA, evil maid, or hot
plug attacks [MF15, GM14]) are also outside the scope of FDE model.

3.1.1 Disk Encryption Methods

Data is read and written in a sector-addressable device by fixed-length units called sectors,
usually 512 or 4096 bytes long. The OS can access a specific sector by its sector number s.
We consider the case of an encrypted disk volume where data is encrypted by the OS before
being stored.
We list the modes of operation that frequently appear in the context of FDE, whether it

be in academic literature or practical implementations. We also mention other modes with
interesting security or efficiency properties.

ECB (Electronic Codebook). In the simplest encryption mode, the plaintext is divided
into blocks of n bits, and each block is encrypted separately using an n-bit block cipher. It
can readily be used for FDE, even though it is well-known that it does not provide adequate
security.

Ch
ap

te
r3

3.1 Disk encryption methods and Security notions 39

m1 m2 m3 m4 mnb. . .

. . .c1 c2 c3 c4 cnb

EK EK EK EK EK

Figure 3.1: Description of the mode of operation ECB (Electronic Codebook) where E is a
block cipher.

CTR (Counter). This mode uses a counter (incremented for each block) that is encrypted
and then XORed with the plaintext block to output the ciphertext block. Typically, the
counter is the sector number, bit-shifted to the left over a sufficient number of bits so that
the least-significant bits can represent a counter for the number of blocks in one sector. CTR
mode is IND-CPA secure [BDJR97] under the assumption that the counter is a nonce. In
the context of FDE, this assumption does not hold as sectors can be overwritten.

i‖0 i‖1 i‖2 i‖3 i‖(nb− 1)

m1 m2 m3 m4 mnb

. . .

. . .

c1 c2 c3 c4 cnb

EK EK EK EK EK

Figure 3.2: Description of the counter mode (CTR) where E is a block cipher and i is the
counter.

Cipher Block Chaining (CBC). In this mode, each plaintext block is XORed with the
previous ciphertext block (or an IV for the first plaintext block) before being encrypted. To
be able to achieve the IND-CPA security notion, it is well-known that the IV has to be a
random value [BDJR97]. However, for FDE, the first natural idea is to use the sector number
as an IV. Fruhwirth [Fru05] proposed to use as an IV the encryption of the sector number by
the block cipher keyed with an independent key (see Figure 3.3).1

Infinite Garble Extension (IGE). IGE was proposed by Campbell [Cam78] as a variant
of CBC mode where each block of plaintext is XORed with the next ciphertext block (see
Figure 3.3). For FDE, since the sector number is not secret, we will consider the variant
where the IV is the encryption of the sector number s in which s is not XORed to the first
ciphertext block. We will refer to this mode as IGE-ESSIV.

XEX with CipherText Stealing (XTS). XTS [IEE08] applies a tweakable block cipher
to every n-bit block of a sector, where the tweak depends on the sector number and the

1Two distinct keys are needed: the message is encrypted with key K, and the IV is encrypted with key
K′ 6= K (see Figure 3.3), in order to avoid an attack by Rogaway [Rog04b].

40 Chapter 3 Full Disk Encryption

s m1 mnb. . .

. . .c0 c1 c3 cnb

EK′ EK EK

CBC-ESSIV

s m1 m2m3 mnb. . .

. . .c0 c1 c2 c3 cnb

EK′ EK EK EK

IGE-ESSIV

Figure 3.3: Description of the CBC-ESSIV and IGE-ESSIV modes of operation where E is a
block cipher and the keys K and K ′ are independent.

index of the block within the sector. It uses ciphertext stealing when the sector size is not a
multiple of n bits; however, such sectors sizes are not considered in this thesis.

m1 m2 m3 m4 mnb

α α α α

. . .

. . .

c1 c2 c3 c4 cnb

EK EK EK EK EK

EK′s

Figure 3.4: Description of the XEX mode of operation where E is a block cipher and K and
K ′ are independant key.

Tweakable Ciphers TC1, TC2 and TC3. These modes for tweakable block ciphers were
defined by Rogaway and Zhang in [RZ11]. The difference between these constructions is the
way the tweak is used:

• In TC1 (see Figure 3.5), the tweak is the previous ciphertext block as in the HCBC
mode [BBKN12].

• In TC2 (see Figure 3.5), the tweak is the concatenation of the previous ciphertext block
and the previous plaintext block as in the HCBC2 mode [BBKN12];

• In TC3 mode (see Figure 3.6), the tweak is the XOR of the previous ciphertext block
and the previous plaintext block as in the MHCBC2 mode [Nan08].

In FDE context, it is natural to consider a mode where the first block tweak is simply the
sector number s.

Wide Tweakable Block ciphers WTBC. In the context of FDE, the block size of a
WTBC is equal to the sector size, and the sector number is used as the tweak input. From a
security point of view, any change in the plaintext or ciphertext affects the entire sector. A

Ch
ap

te
r3

3.1 Disk encryption methods and Security notions 41

m1 m2 m3 mnb

s

. . .

. . .c1 c2 c3 c3 cnb

ẼK ẼK ẼK ẼK

TC1

m1 m2 m3 m3 mnb

s0
s1

. . .

. . .c1 c2 c3 c3 cnb

ẼK ẼK ẼK ẼK

TC2

Figure 3.5: Description of the TC1 and TC2 modes of operations where Ẽ is a tweakable
block cipher. In FDE context, the tweak can be the sector number s (for TC2,
s0||s1 = P(s) where P is a permutation.

s

m1 m2 m3 m4 mnb. . .

. . .c1 c2 c3 c4 cnb

ẼK ẼK ẼK ẼK ẼK

Figure 3.6: Description of the TC3 mode of operation where Ẽ is a tweakable block cipher.
The tweak can be the sector number s.

WTBC is typically realized using smaller (tweakable) block ciphers, for example in the EME
(Encrypt-Mix-Encrypt) [HR04] mode.

Our goal in this chapter is to analyse these constructions and to evaluate their security in
different models.

3.1.2 Security Notions for FDE

In this section, we formalize several security notions for FDE. We first give a formal syntactic
definition of block-cipher-based FDE.
It is assumed that the plaintext of a sector is a multiple of n which is the block cipher

size. All plaintexts are nb blocks of n bits. m[i] denotes the i-th block of the plaintext m
such that m = m[1]||m[2]||...||m[nb] where || denotes concatenation of strings. IND-CPA-xx
corresponds to IND-CPA up-to-block, IND-CPA up-to-prefix, IND-CPA up-to-repetition and
IND-CPA.

Definition 3.1.1 (FDE scheme). A block-cipher-based FDE scheme is a 7-tuple of parameters
and algorithms FDE = (KS, SS,BS,MS, kg, enc, dec) such that:

• KS is the key space, SS is the sector space;

• BS is the block message space and MS is the message space such that MS := BSnb

where BS = {0, 1}n; n and nb are a fixed positive integers;

• FDE.kg is the (probabilistic) key generation algorithm that takes no input and returns
a key K ∈ KS;

42 Chapter 3 Full Disk Encryption

s m1 m2 m3 mnb
. . .

. . .c0 c1 c2 c3 c3 cnb

EK′ EK EK EK EKhK′ hK′ hK′

Figure 3.7: Description of the HCBC1 mode of operation where EK is a block cipher, hK′ a
keyed hash function. The keys K and K ′ are independent.

m1 m2 m3 m4 mnb. . .

. . .c1 c2 c3 c4 cnb

EK EK EK EK EK

EK EK EK EK EK

Figure 3.8: WTBC where EK is either a block cipher or a tweakable block cipher. WTBC
can use several call to EK to process one message block.

• FDE.enc is the (deterministic) encryption algorithm that takes as input a key K ∈ KS,
a sector number s ∈ SS and a plaintext m ∈ MS and outputs a ciphertext c ∈ MS;

• FDE.dec is the (deterministic) decryption algorithm that takes as input a key K ∈ KS,
a sector number s ∈ SS and a ciphertext c ∈ MS and outputs a plaintext m ∈ MS,

such that ∀(K, s,m) ∈ KS× SS×MS : FDE.dec(K, s,FDE.enc(K, s,m)) = m.

In the rest of the thesis FDE.nb denotes the number of blocks m[i] ∈ FDE.BS of message
m ∈ FDE.MS.
For each security notion, we define two variants: security under Chosen-Plaintext Attack

(CPA) where the adversary is given access to the Encrypt procedure and security under
Chosen-Ciphertext Attack (CCA) where the adversary is also given access to the Decrypt
procedure. The adversary is not allowed to query the decryption of a ciphertext that was
previously returned by Encrypt or vice versa.

Indistinguishability up-to-block. In this definition, each ciphertext block depends
deterministically on the plaintext block, the sector number s and the block position in
the plaintext, but behaves as “randomly as possible” subject to this constraint. The
corresponding game, described in Figure 3.9, uses a random permutation family Π1 :
FDE.SS × {1, ..,FDE.nb} × FDE.BS → FDE.BS simulated by lazy sampling that takes as
input a sector number s ∈ FDE.SS, a position number i ∈ {1, ..,FDE.nb} and a message
block m ∈ FDE.BS and returns a cipher block c ∈ FDE.BS. For each couple (s, i), Π1 defines

Ch
ap

te
r3

3.1 Disk encryption methods and Security notions 43

a random permutation such that Π−1 (s, i, (Π1(s, i,m)) = m. We specifically introduce this
setting to describe the security goal of XTS, see Rogaway [Rog11] for a formal definition
(using a filter function) of what is known to leak by the XTS mode.

procedure Initialize
b←←{0, 1}; K←←FDE.kg()
Π1 ← ⊥

procedure Encrypt(s,m)
if b = 0 then c← FDE.enc(K, s,m) . Real world
else . Random world
for i from 1 to nb
if Π1(s, i,m[i]) = undef then

Π1(s, i,m[i])←←Rng Π1(s, i, .)
c[i]← Π1(s, i,m[i])

c← c[1]|| . . . ||c[nb]
return c

procedure Decrypt(s, c)
if b = 0 then m← FDE.dec(K, s, c) . Real world
else . Random world
for i from 1 to nb
if Π−1 (s, i, c[i]) = undef then

Π−1 (s, i, c[i])←←Dom(Π1(s, i, .)
m[i]← Π−1 (s, i, c[i])

m← m[1]||..||m[nb]
return m

procedure Finalize(b′)
return (b = b′)

Figure 3.9: Game “up-to-block” for the IND-CCA-block security notion.

Indistinguishability up-to-prefix. In this definition, for i ∈ {1, . . . , nb}, the i-th cipher-
text block depends deterministically on the sector number s ∈ SS and all previous plaintext
blocks at position j for j ∈ {1, . . . , i}, but again behave as “randomly as possible” subject to
this constraint. The corresponding game is described in Figure 3.11 and it uses a random
permutation family Π2 : FDE.SS× FDE.BSt × FDE.MS→ FDE.MS lazily sampled that takes
as input a sector number s ∈ FDE.SS, a plaintext prefix m′ ∈ FDE.BSt such that t ≤ nb,
a plaintext m ∈ FDE.MS and returns a ciphertext c ∈ FDE.MS. For each couple (s,m′),
Π2 defines a random permutation such that Π−2 (s,m′,Π2(s,m′,m)) = m. . This notion
corresponds to security notion described in [BBKN12] for online ciphers.

Indistinguishability up-to-repetition. In this definition, each ciphertext block depends
deterministically on the plaintext block and the sector number s, but behaves as “randomly
as possible” subject to this constraint. The corresponding game, described in Figure 3.10,

44 Chapter 3 Full Disk Encryption

procedure Initialize
b←←{0, 1}; K ← FDE.kg()

procedure Encrypt(s,m)
if b = 0 . Real world
c← FDE.enc(K, s,m)

else . Random world
if Π3(s,m) = undef then

Π3(s,m)←←Rng(Π3(s, .))
c← Π3(s,m)

return c

procedure Decrypt(s, c)
if b = 0 . Real world
m← FDE.dec(K, s, c)

else . Random world
if Π−3 (s, c) = undef then

Π−3 (s, c)←←Dom(Π3(s, .))
m← Π−3 (s, c)

return m

procedure Finalize(b′)
return (b = b′)

Figure 3.10: Game “up-to-repetition” for the IND-CPA-repetition security notion.

uses a random permutation Π3 : FDE.SS× FDE.MS→ FDE.MS that takes as input a sector
number s ∈ SS and a message m ∈ MS and returns a ciphertext c ∈ MS. It is the best
achievable notion for (length-preserving) deterministic encryption [BBO07].

Remark 3.1.2. If a construction is IND-CCA under one of these notions, it is also IND-CPA
under the corresponding security notion.

Remark 3.1.3. If a construction is not IND-CPA under one of these notions, it is also not
IND-CCA under the corresponding security notion.

As different ideal-world encryption oracles are used in the various security notions, it is
trivially possible to distinguish between the encryption oracles. For example, for a fixed sector
number and position on the plaintext, an IND-CPA up-to-block construction always returns
the same ciphertext block. This construction does not reach IND-CPA up-to-prefix security,
which requires indistinguishability up to the longest common prefix for a fixed sector number.
It also does not satisfy IND-CPA up-to-repetition security, which requires indistinguishability
up to repetition of the plaintext for a given sector number. Conversely, a construction that
achieves IND-CPA up-to-prefix security will also not be IND-CPA up-to-block nor IND-CPA
up-to-repetition using similar reasoning.

Analysis of Existing Constructions. We now analyse the FDE modes of operation
described in subsection 3.1.1 with respect to these security notions. These results are

Ch
ap

te
r3

3.1 Disk encryption methods and Security notions 45

Table 3.1: The security of FDE modes of operation when no diversifier is used. Here, 3

means that there is a security proof, and 7 means that there is an attack. Proofs
of the security results can be found in Sect. 3.1.2. XTS: see [IEE08]. TC1, TC2
and TC3 [RZ11] are generalizations of the HCBC1 [BBKN12], HCBC2 [BBKN12]
and MHCBC [Nan08] constructions. WTBC: wide tweakable block cipher. The
? symbol indicates that the property holds for some constructions, but not for
others. Here, x ≥ log2(`).

ECB CTR CBC CBC IGE XTS TC1 TC2/3WTBC
IV → n/a s� x s EK′(s)EK′(s) s s s s

IND-CPA-block 7 7 7 7 7 3 7 7 7

IND-CPA-prefix 7 7 7 7 7 7 3 3 7

IND-CPA-repetition 7 7 7 7 7 7 7 7 3

IND-CPA 7 7 7 7 7 7 7 7 7

IND-CCA-block 7 7 7 7 7 3 7 7 7

IND-CCA-prefix 7 7 7 7 7 7 7 3 7

IND-CCA-repetition 7 7 7 7 7 7 7 7 3

IND-CCA 7 7 7 7 7 7 7 7 7

online enc./dec. 3 3 3 3 3 3 3 3 7

parallelizable enc. 3 3 7 7 7 3 7 7 3?

parallelizable dec. 3 3 3 3 7 3 3 7 3?

summarized in Table 3.1. The properties shown in the three last lines of Table 3.1 are relevant
implementation properties but are not taken into account in the security proofs.
ECB mode. Unsurprisingly, ECB is not IND-CPA for any of our three security notions.
CTR mode. CTR is not IND-CPA for any of our three security notions. An adversary can
simply query the encryption of m[1] = 0n||m[2]||..||m[nb] and m[2] = 1n||m[2]||..||m[nb] for
the same sector number s (where m[2], ...,m[nb] can be any n-bit blocks). The first blocks
of the obtained ciphertexts c[1] and c[2] will always satisfy c1[1] = c2[1]⊕ 1n, whereas this
property holds only with probability 2−n in all three random worlds.
CBC mode. The attack on the CTR mode also applies to the variant of the CBC mode
where the sector number is used as an IV. In the context of FDE, this attack is known as a
Saarinen’s watermarking attack [Saa04]. Bellare et al. [BBKN12] describe an attack on the
CBC-based online cipher that shows that CBC-ESSIV is not IND-CPA up-to-prefix. This
attack can be adapted to construct an adversary A for our three security notions:

1. A arbitrarily chooses (nb− 1) blocks m[2], ..,m[nb] and a sector number s. A builds
two plaintexts m1 = 0n||m[2]|| . . . ||m[nb] and m2 = 1n||m[2]|| . . . ||m[nb] that differ only
in their first block.

2. A queries the Encrypt procedure to obtain the encryption of m1 and m2 on sector
number s: cb[1]||cb[2]|| . . . ||cb[nb]← Encrypt(s,mb) for b ∈ {1, 2}.

3. A builds m3 = 1n||m3[2]||m[3]|| . . . ||m[nb] where m3[2] = m[2]⊕c1[1]⊕c2[1] and queries
the Encrypt procedure to obtain its encryption: c3[1]||...||c3[nb]← Encrypt(s,m3)

4. A returns 0 to the Finalize procedure if c3[2] = c1[2] and 1 otherwise.

46 Chapter 3 Full Disk Encryption

The equality c3[2] = c1[2] is always satisfied in the real world but holds only with probability
2−n in all three random worlds.
IGE-ESSIV mode. The previous attack on the CBC-essiv mode can easily be adapted to
show that IGE-essiv is not IND-CPA for any of our three security notions. The attack is
identical except that the adversary A checks whether the equality c3[2] = c1[2]⊕ 1n holds or
not.
XTS mode. As explained above, in XTS every plaintext block is encrypted separately using
a tweakable block cipher, where the tweak is derived from the sector number and index of
the block within the sector. As argued by Rogaway [Rog11], XTS is IND-CPA up-to-block
secure. For syntactic reasons, it is not IND-CPA up-to-prefix nor IND-CPA up-to-repetition.
TC1, TC2, TC3 modes. Rogaway and Zhang [RZ11] showed that TC1 is IND-CPA
up-to-prefix secure but not IND-CCA up-to-prefix. They also proved that TC2 and TC3 are
IND-CCA up-to-prefix (and thus also IND-CPA up-to-prefix) secure. For syntactic reasons,
they are not IND-CPA up-to-block nor IND-CPA up-to-repetition.
WTBC modes. Halevi and Rogaway showed that EME is IND-CCA up-to-repetition (and
thus IND-CPA up-to-repetition) secure in [HR04]. For syntactic reasons, these modes are
not IND-CPA up-to-block nor IND-CPA up-to-prefix.

Ch
ap

te
r3

3.1 Disk encryption methods and Security notions 47

procedure Initialize
b←←{0, 1}; K ← FDE.kg() ; t← 0

procedure Encrypt(s,m)
t← t+ 1
if b = 0 then . Real world
c← FDE.enc(K, s,m)

else . Random world
ms,t ← m
(index, p)← findLCP(ms,t, ’m’)
for i from 1 to p
c[i]s,t ← c[i]s,index

for i from p+ 1 to k
Π2(s,m[1]..m[i-1],m[i]s,t)←←Rng Π2(s,m[1]..m[i-1], .)
c[i]s,t ← Π2(s,m[1]m[2]...m[i-1],m[i]s,t)

return cs,t

procedure Decrypt(s, c)
t← t+ 1
if b = 0 . Real world
m← FDE.dec(K, s, c)

else . Random world
(index, p)← findLCP(cs,t, ’c’)
for i from 1 to p
m[i]s,t ← m[i]s,index

for i from p+ 1 to k
Π−2 (s,m[1]..m[i-1], c[i]s,t)←←Dom Π2(s,m[1]..m[i-1], .)
m[i]s,t ← Π−2 (s,m[1]m[2]...m[i-1], c[i]s,t)

return ms,t

findLCP(ds,t, ’d’) for d ∈ {m, c}
p← 0; pref ← 0; index← 0
for j from 1 to t− 1
for i from 1 to nb
while d[i]s,j = d[i]s,t

p← i
if p >pref

pref ← p; index← j
return (index, pref)

procedure Finalize(b′)
return (b = b′)

Figure 3.11: Game “up-to-prefix” for the IND-CCA-prefix security notion.

48 Chapter 3 Full Disk Encryption

3.2 FDE Security with Unique First Block

Because encryption in the context of FDE is deterministic and length-preserving, encrypting
the same plaintext twice will always result in an identical ciphertext. The OS or application
may, therefore, want to use a particular encoding of the plaintext, in order to ensure that
the ciphertext will not be repeated. This corresponds to Bellare and Rogaway’s Encode-
Then-Encipher approach [BR00] to ensure strong privacy. One thus has to determine which
encoding is sufficient to ensure security against CPA. In the context of security “up-to-block,”
this would require a large overhead, since encoding is then required for every block of a
sector (typically 128 bits). However, for schemes that are IND-CPA “up-to-repetition” or
“up-to-prefix,” it is sufficient to ensure that the beginning of every message is unique. This
can be done by prepending either random data or a counter, as suggested by Bellare and
Rogaway [BR00].

In this section, we consider variants of the previous security notions with unique first block
(ufb) and we prove IND-CPA security for CBC-ESSIV and IGE-ESSIV under this assumption.
An application that is aware of this restriction, can therefore format its input such that the
first block of every sector is unique. In subsection 3.3.2, we give a concrete example of such
an application.

Relation to Previous Security Notions. The only difference between ufb model
and the previous model is that for a given sector number s, A cannot make two queries
to encrypt plaintexts that have same first block. So if a construction is secure under a
security notion described in subsection 3.1.2, it is still the case in this model. Furthermore,
the IND-CPA up-to-prefix, IND-CPA up-to-repetition and IND-CPA security notions be-
come equivalent. This is easy to see: if the first block of plaintext is not repeated, then
this is sufficient to ensure that the plaintext prefix or the entire plaintext is not repeated either.

Security Results. In this paragraph, we analyse the FDE modes of operation described
in subsection 3.1.1 with respect to these security notions for unique first block. These results
are summarized in Table 3.2.
ECB and CTR. The attacks described in Section 3.1.2 do not make queries with the same
first block and the same sector number, and therefore still apply.
CBC-ESSIV. For this mode, in the attack of Section 3.1.2, A makes forbidden queries with
the same first block. Theorem 3.2.1 states that CBC-ESSIV achieves IND-CPA-ufb security
if the underlying block cipher E is a Pseudo-Random Function (PRF) [BR05]. We used the
code-based game playing framework [BR06] for the security proof in subsection 3.2.1.
IGE-ESSIV. Theorem 3.2.2 states that the mode IGE-ESSIV achieves IND-CPA-ufb security
and the security proof is given in subsection 3.2.2.
The TC1, TC2, TC3 and WTBC constructions become IND-CPA with the ufb restriction
because TC1/2/3 were IND-CPA up-to-prefix and WTBC constructions were IND-CPA
up-to-repetition as explained in Section 3.1.2.

3.2.1 CBC-ESSIV Security

Theorem 3.2.1. TheIND-CPA-ufb Security of CBC-ESSIV
Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let A be an IND-CPA-ufb adversary

Ch
ap

te
r3

3.2 FDE Security with Unique First Block 49

ECB CTR CBC CBC IGE XTS TC1 TC2/3WTBC
IV → n/a s� x s EK′(s)EK′(s) s s s s

IND-CPA-block 7 7 7 7 7 3 7 7 7

IND-CPA-prefix 7 7 7 3 3 7 3 3 3

IND-CPA-repetition 7 7 7 3 3 7 3 3 3

IND-CPA 7 7 7 3 3 7 3 3 3

IND-CCA-block 7 7 7 7 7 3 7 7 7

IND-CCA-prefix 7 7 7 7 7 7 7 3 3

IND-CCA-repetition 7 7 7 7 7 7 7 7 3

IND-CCA 7 7 7 7 7 7 7 7 3

online enc./dec. 3 3 3 3 3 3 3 3 7

parallelizable enc. 3 3 7 7 7 3 7 7 3?

parallelizable dec. 3 3 3 3 7 3 3 7 3?

Table 3.2: The security of FDE modes of operation when no diversifier is used, but the first
plaintext block unique for any given sector. Here, 3 means that there is a security
proof, and 7 means that there is an attack.

against the FDE scheme obtained from the CBC-ESSIV mode on E such that A runs in
time t and makes at most q queries to the Encrypt procedure. There exists an adversary B
(attacking the PRF security of E) such that:

Advind-CPA-ufb
cbc−ESSIV (A) ≤ 8 ·Advprf

E (B) + q2(nb + 1)2

2n−1

where B runs in time at most t′ = t+O(q + nq(nb + 1)) and makes at most q′ = q(nb + 1)
queries to its oracle.

Proof. Let G0 be the real-or-random security game as defined in Figure 3.11. In the following,
we consider a sequence of modified games G1, . . . , G4. We wish to upper bound the advantage
of an adversary A, which by definition is

Advind-CPA-ufb
cbc−ESSIV (A) = 2 · Pr[GA0 ⇒ true]− 1.

• Game G1 is identical to game G0 except that instead of the keyed block cipher encryption
E(K ′, ·) with a key K ′ randomly chosen in the FDE scheme obtained from the CBC-
ESSIV, we use a random function F′ instead. As in the previous security notions, the
function F is generated via the lazy sampling method. The game G1 is given in detail
in Figure 3.12.
We consider an adversary B1 attacking the PRF security of E which runs A and
simulates these two games by replacing the evaluation of E or F′ by its own oracle (so
that if B1 is in the real world, A is in the game G0, but if B1 is in the random world, A
is in the game G1). If A makes q queries to the Encrypt procedure then B1 makes
q′ = q(nb + 1) queries to its own oracle and we have:

Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1] ≤ Advprf
E (B1).

50 Chapter 3 Full Disk Encryption

Game G1

procedure Encrypt(s,m)
if b = 0 then
c[0]←←{0, 1}n

if s ∈ Dom(F′) then c[0]← F′(s)
else F′(s)← c[0]
for i from 1 to nb
X ← c[i− 1]⊕m[i]
c[i]← E(K,X)

c← c[1]||c[2]|| . . . ||c[nb]
else c←←{0, 1}nb·n

return c

Game G2

procedure Encrypt(s,m)
if b = 0 then
c[0]←←{0, 1}n

if s ∈ Dom(F′) then c[0]← F′(s)
else F′(s)← c[0]
for i from 1 to nb
c[i]←←{0, 1}n

X ← c[i− 1]⊕m[i]
if X ∈ Dom(F) then c[i]← F(X)
F(X)← c[i]

c← c[1]||c[2]|| . . . ||c[nb]
else c←←{0, 1}nb·n

return c

Figure 3.12: Game G1 and game G2 for CBC-ESSIV IND-CPA-ufb

• Game G2 is identical to game G1 except that instead of the keyed block cipher encryption
E(K, ·) with a key K randomly chosen in the FDE scheme obtained from the CBC-
ESSIV, we use a random function F instead. As in the previous security notions, the
function F is generated via the lazy sampling method. The game G2 is given in detail
in Figure 3.12.
Again we consider an adversary B2 attacking the PRF security of E which runs A and
simulates these two games by replacing the evaluation of E or F by its own oracle (so
that if B2 is in the real world, A is in the game G0, but if B2 is in the random world, A
is in the game G1). If A makes q queries to the Encrypt procedure than B2 makes
q′ = q(nb + 1) queries to its own oracle and we have:

Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1] ≤ Advprf
E (B2).

• Game G3 (see Figure 3.13) is identical to game G2 except that we add Boolean flags in
the pseudo-code for the remainder of the proof (see Figure 3.13). We have

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

• Game G4: The games G3 and G4 (see Figure 3.13) are identical except if the boolean
flag bad2 is set to true. We thus have

Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1] ≤ Pr[GA3 sets bad2].

• Game G5: In game G5 (see Figure 3.13), the generated ciphertexts in the Encrypt
procedure are independent of the bit b and we have Pr[GA4 ⇒ 1] = 1/2.

We first evaluate Pr[GA5 sets bad1]. For the i-th request to the Encrypt procedure, the
probability to have a collision for the output of the F′ is at most (i−1)

2n then for all the q

Ch
ap

te
r3

3.2 FDE Security with Unique First Block 51

Game G3 Game G4 Game G5

procedure Encrypt(s,m)
if b = 0 then
c[0]←←{0, 1}n

if s ∈ Dom(F′) then c[0]← F′(s)
else
if c[0] ∈ Rng(F′) then bad1 ← true
F′(s)← c[0]

for i from 1 to nb
X ← c[i− 1]⊕m[i]
X←←{0, 1}n

c[i]←←{0, 1}n

if X ∈ Dom(F) then c[i]← F(X) ; bad2 ← true

F(X)← c[i]
c← c[1]||c[2]|| . . . ||c[nb]

else c←←{0, 1}nb·n

return c

Figure 3.13: Games G3, G4 and G5 CBC-ESSIV IND-CPA-ufb. The framed statement is in-
cluded in game G3 only. The statement overlined in gray is included in game G5
only.

queries:

Pr[GA5 sets bad1] ≤
q∑
i=1

(i− 1)
2n = q(q − 1)

2n+1 .

If the Boolean flag bad1 is not set to true, then in the security game, the adversary A
never queried the Encrypt procedure with two different sector numbers s and s′ such that
F(s) = F(s′). In particular, for each query, the value c[0] is random and not revealed to A
and by the unique-first-block assumption, it is never used twice with the same plaintext block
m[1]. We thus have:

Pr[GA4 sets bad2 but not bad1]

= Pr[GA5 sets bad2 but not bad1]

Finally, in game G5, we have

Pr[GA5 sets bad2] ≤
(nb+1)q−1∑

i=1

i

2n ≤
q2(nb + 1)2

2n+1 .

Summing up, we obtain that Advind-CPA-ufb
cbc−essiv (A) is upper-bounded by

2 ·Advprf
E (B′) + 2 ·Advprf

E (B′′) + q2(nb + 1)2

2n + q(q − 1)
2n .

Considering an adversary B attacking the PRF security of E that simply runs B1 with

52 Chapter 3 Full Disk Encryption

probability 1/2 and B2 with probability 1/2, we have

Advprf
E (B) ≥ 1

2Advprf
E (B1) and Advprf

E (B) ≥ 1
2Advprf

E (B2)

and we obtain the claimed bound.

Adversary. The following attack shows that CBC-ESSIV does not achieve IND-CCA-ufb
up-to-prefix security:

1. A chooses a plaintext m1 = m1[1]||m1[2]|| . . . ||m1[nb] ∈ {0, 1}nb·n and a sector number
s and queries the Encrypt procedure with (s,m1) to obtain c1[1]||c1[2]|| . . . ||c1[nb].

2. A builds a ciphertext c2 = c2[1]||c2[2]|| . . . ||c2[nb] with c2[1] = c1[2], c2[2] = c1[2] and
arbitrary c2[i] ∈ {0, 1}n for i ∈ {3, . . . , nb} and query the Decrypt procedure with
(s, c2) to obtain a plaintext m2 = m2[1]||m2[2]|| . . . ||m2[nb].

3. A outputs 0 if m2[2] = m1[3] and 1 otherwise.

The equality m2[2] = m1[3] is always satisfied in the real world but this property holds only
with probability 2−n in the random world.

3.2.2 IGE-ESSIV Security

The following theorem states that the mode IGE-ESSIV achieves IND-CPA-ufb security:

Theorem 3.2.2. [The IND-CPA-ufb Security of IGE-ESSIV]
Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher. Let A be an IND-CPA-ufb adversary
against the FDE scheme obtained from the IGE-ESSIV mode on E such that A runs in
time t and makes at most q queries to the Encrypt procedure. There exists an adversary B
(attacking the PRF security of E) such that:

Advind-CPA-ufb
ige−ESSIV (A) ≤ 8 ·Advprf

E (B) + q2(nb + 1)2

2n−1

where B runs in time at most t′ = t+O(q + nq(nb + 1)) and makes at most q′ = q(nb + 1)
queries to its oracle.

Proof. This proof is similar to CBC-ESSIV proof. Let G0 be the real-or-random security
game as defined in Figure 3.11. In the following, we consider a sequence of modified games
G1, . . . , G5. We wish to upper bound the advantage of an adversary A which by definition is

Advind-CPA-ufb
ige−ESSIV (A) = 2 · Pr[GA0 ⇒ true]− 1.

• G1 - G3: (see Figure 3.14) The only point that changes between CBC-ESSIV games
G0 to G4 is that the ciphertext block is not the output of the PRF Π but the output
XORed with the previous plaintext block.

Ch
ap

te
r3

3.2 FDE Security with Unique First Block 53

Game G1

procedure Encrypt(s,m)
if b = 0 then
m[0]← 0n

c[0]←←{0, 1}n

if s ∈ Dom(F) then c[0]← F(s)
else F(s)← c[0]
for i from 1 to nb
Y ←←{0, 1}n

X ← c[i− 1]⊕m[i]
if X ∈ Dom(F) then Y ← F(X)
F(X)← Y

c[i]← Y ⊕m[i− 1]
c← c[1]||c[2]|| . . . ||c[nb]

else c←←{0, 1}nb·n

return c

Game G2 Game G3 Game G4

procedure Encrypt(s,m)
if b = 0
m[0]← 0n

c[0]←←{0, 1}n

if s ∈ Dom(F′) then c[0]← F′(s)
else
if c[0] ∈ Rng(F′) then bad1 ← true

F′(s)← c[0]
for i from 1 to nb
X ← c[i− 1]⊕m[i]
X←←{0, 1}n

Y ←←{0, 1}n

if X ∈ Dom(F) then
Y ← F(X)

bad2 ← true

F(X)← Y

c[i]← Y ⊕m[i− 1]
c[i]←←{0, 1}n

c← c[1]||c[2]|| . . . ||c[nb]
else c←←{0, 1}nb·n

return c

Figure 3.14: Games G1 to G4 for IGE-ESSIV IND-CPA-ufb

• G4: (see Figure 3.14) We now consider IGE-ESSIV’s G4. In G4, the ciphertext blocks
c[i] are the result of an XOR between the previous plaintext block and the PRF F
output that is why the ciphertext blocks c[i] are randomly chosen in {0, 1}n.

Adversary. The following attack (inspired by Rohatgi [Jut00]) shows that IGE-ESSIV does
not achieve IND-CCA-ufb up-to-prefix security:

1. A chooses a plaintext m1 = m1[1]||m1[2]|| . . . ||m1[nb] ∈ {0, 1}nb·n and a sector number
s and queries the Encrypt procedure with (s,m1) to obtain c1[1]||c1[2]||..||c1[nb].

2. A builds a ciphertext c2 = c2[1] . . . c2[2]|| . . . ||c2[nb] with c2[1] = c1[1], c2[2] = m1[2]⊕
c1[3]⊕m1[1] and arbitrary c2[i] ∈ {0, 1}n for i ∈ {3, . . . , nb} and query the Decrypt
procedure with (s, c2) to obtain a plaintext m[]2 = m2[1]||m2[2]|| . . . ||m2[nb].

3. A outputs 0 if m2[2] = m1[3]⊕ c1[2]⊕ c1[1] and 1 otherwise.

The equality m2[2] = m1[3] ⊕ c1[2] ⊕ c1[1] is always satisfied in the real world, but this
property holds only with probability 2−n in the random world.

54 Chapter 3 Full Disk Encryption

3.3 FDE Security with a Diversifier

Typically, IND-CPA cannot be reached for FDE, as the deterministic nature of FDE means
that identical plaintexts will result in identical ciphertexts. We worked around this problem
in the previous section by imposing a restriction on the plaintext: the first plaintext block
must be unique. Now, we introduce another way to achieve IND-CPA, without restricting
the plaintext, but still without storing additional data. Instead, we will use a diversifier
j, which will be associated to every sector. To be able to stay within the constraints of
FDE, it should somehow be possible to assign a diversifier to every sector without using
additional storage. Possible candidates in the particular case of SSDs will be considered in
subsection 3.3.1. For now, it is enough to consider that for each encryption, a diversifier is
picked among {0, 1}d, in such a way this diversifier is never repeated for a particular sector.
Then two identical plaintexts with the same sector number will have different ciphertexts, a
property that could previously not be achieved within the context of FDE. The combination
of the sector number s and the diversifier j is used instead of the sector number in FDE
constructions. The combination proposed is simply the concatenation between these two
values s||j such as s ∈ {0, 1}σ, j ∈ {0, 1}d and n = d+ σ.

For the analysis in this section, it suffices that the diversifier is never repeated for a
particular sector. As such, the security analysis is the same as if the diversifier were a
nonce. However, we will explain in subsection 3.3.1 that efficiency reasons require that at
any particular point in time, all diversifier values should occur roughly the same number of
times and that the diversifier must be a rather short value, typically only a few bits.

Security Results. IND-CPA up-to-repetition becomes equivalent to IND-CPA security:
the only difference between these notions is that if A asks to encrypt twice the same query
(s,m) the answer will be the same ciphertext, but these queries are not allowed any more
under the diversifier model. Moreover, in IND-CCA game, the adversary is not allowed to
query the decryption of a ciphertext what was previously encrypted, or vice versa. It can,
therefore, be seen that IND-CCA up-to-repetition becomes equivalent to IND-CCA. Similarly,
since the adversary A is not allowed to encrypt twice with the same pair s||j, the IND-CPA
up-to-block property is also equivalent to the other IND-CPA security notions.

Table 3.3 summarizes the security properties achieved by the FDE modes of operation when
used with a diversifier. The IND-CPA attacks of Theorem 3.1.2 still carry over to ECB and
CBC with a sector-number IV. However CTR mode becomes secure as the counter value is
not repeated [BDJR97]. The IND-CPA security of XTS, TC1, TC2, TC3 and WTBC follows
from the fact that the tweak is not reused. For CBC-essiv and IGE-essiv, the IND-CPA
security follows from the proof of Sect. 3.2: now the first block may be reused, but the IV is
unique.

Let us explain the attacks under IND-CCA in Table 3.3:

• This following attack shows that CTR is not IND-CCA-xx: A encrypts (s||j,m) with m
any plaintext and any s||j and receives c then A decrypts (s||j, c′) where c′ = c⊕ 0n−11.
A. Then, m′[1] = m[1]⊕ 0n−11 is always satisfied in the real world but holds only with
probability 2−n in the ideal world.

• CBC-ESSIV and IGE-ESSIV are not secure: the attacks of section 3.2 still apply, as
they did not perform two encryptions with the same sector number.

Ch
ap

te
r3

3.3 FDE Security with a Diversifier 55

ECB CTR CBC CBC IGE XTS TC1 TC2/3WTBC
IV → n/a s‖j � x s‖j EK′(s‖j)EK′(s‖j) s‖j s‖j s‖j s‖j

IND-CPA-block 7 3 7 3 3 3 3 3 3

IND-CPA-prefix 7 3 7 3 3 3 3 3 3

IND-CPA-repetition 7 3 7 3 3 3 3 3 3

IND-CPA 7 3 7 3 3 3 3 3 3

IND-CCA-block 7 7 7 7 7 3 7 7 7

IND-CCA-prefix 7 7 7 7 7 7 7 3 7

IND-CCA-repetition 7 7 7 7 7 7 7 7 3

IND-CCA 7 7 7 7 7 7 7 7 3

online enc./dec. 3 3 3 3 3 3 3 3 7

parallelizable enc. 3 7 3 7 7 3 7 7 3?

parallelizable dec. 3 3 3 3 7 3 3 7 3?

Table 3.3: The security of FDE modes of operation when a diversifier is used. Here, 3 means
that there is a security proof, and 7 means that there is an attack.

• For syntactical reasons, an encryption scheme can only be IND-CCA up-to-block,
IND-CCA up-to-prefix, or IND-CCA up-to-repetition. XTS is only IND-CCA up-to-
block, TC2 and TC3 are only IND-CCA up-to-prefix, and WBTC are only IND-CCA
up-to-repetition.

As shown in Table 3.3, the diversifier shows how to reach IND-CPA security for most
commonly-used FDE encryption modes. It also succeeds in providing IND-CCA security for
WTBC constructions, which not achievable in a “classical” FDE model.

3.3.1 Solid State Drive

We now recall the basics of SSD storage, so that we can explain how to modify only the
firmware of SSDs to associate a diversifier to every sector. This diversifier allows us to
encrypt the same plaintext in distinct ways for the same sector number.

SSDs are flash memory devices that are gradually replacing the magnetic Hard Disk Drive
(HDD) due to their reliability and performance. Just like HDDs, they are sector-addressable
devices. They are indexed by a sector number that is also known as a Logical Block Address
(LBA). This ensures that the physical details of the storage device are not exposed to the
OS, but are managed by the firmware of the storage device. For SSDs, the Flash Translation
Layer (FTL) stores the mapping between LBAs and Physical Block Addresses (PBAs). This
FTL is necessary to ensure an even distribution of writes to every sector number (wear
leveling) and to invalidate blocks so that they can later be recycled (garbage collection). This
FTL is necessary due to the physical constraints of flash storage: any physical address can
only be written a limited number of times, and rewriting individual sectors is not possible:
invalidated sectors can only be recovered in multiples of the erase block size.

SSD Components. The flash memory of an SSD is hierarchically organized as a set of

56 Chapter 3 Full Disk Encryption

flash chips called packages, which are further divided in dies, planes, blocks2 and pages.
Every page consists of one or more sectors, and is the smallest unit that can be written.
The smallest unit that can be erased is a block. Invalidated blocks must be erased before
writing, and the number of erasures and writes to every block is limited for flash storage.
To abstract away the notion of packages, dies and planes, the Open NAND Flash Interface
(ONFI) standard introduces the notion of Logical Unit Number (LUN) as the minimum
granularity of parallelism for flash storage. As operations can be issued to several planes in
parallel, a LUN corresponds to a plane.

Introducing a Diversifier. In the context of SSD storage, we will show how to associate
a diversifier to every LBA. This diversifier will not be stored, and will not modify the data
structures of the SSD. Instead, the diversifier will impose an additional restriction on the
FTL, meaning that the diversifier determines which PBAs can store the data corresponding
to a particular LBA. The intuition is that if the diversifier is selected “randomly” for every
write operation, the data will be spread out evenly over the SSD, and the SSD performance
should not be affected too much. We will verify this by implementing and benchmarking our
proposed solution in subsection 3.3.1. When a write command is issued, there are various
ways to specify a diversifier value for a given LBA. We will prefer to transmit this information
in one operation. As such, we do not only avoid the performance drawbacks of issuing several
operations to write one sector, but we also do not need to worry about inconsistent states
when operations are lost, modified, or reordered. In particular, we propose to send the
diversifier along with the sector data as part of a “fat” sector that is already supported in
SATA (Serial ATA) interface for storage devices. This diversifier value will be returned to
the OS when a large sector read command is issued. In an attempt to make the diversifier as
long as possible, we may want to consider the optimal (yet completely unrealistic) scenario:
the diversifier uniquely specifies the physical page to which the data must be written. But,
even then, the size of the diversfier is typically be very short: e.g., only 24 bits in case of an
128 GB SSD with 8 kB pages. We will, in fact, choose the diversifier to be much shorter, so
that a practical implementation is possible that minimally modifies the SSD firmware. This
diversifier cannot be selected at random, as it would be too short to avoid repetitions for a
particular sector. However, it can also not be a counter, as all diversifier values should be
used roughly an equal number of times over all sectors to spread the writes over the entire
disk layout.
In our solution, we want to avoid that the SSD needs to send data back to the host

for decryption and re-encryption under a different diversifier, as this would affect the SSD
performance quite drastically. Therefore, wear leveling and garbage collection operations
may not change the diversifier. A straightforward solution is then to make the diversifier
correspond to the LUN (or a set of LUNs), which is what we will implement and benchmark
in the following section. The OS can freely select the diversifier values; however they may
not be repeated for any particular sector, and all diversifier values should be used roughly
the same number of times. In subsection 3.3.2, we give a concrete example of an application
where the OS implements such diversifier. More specifically, we show how the OS can ensure
randomness and uniqueness even for very short diversifier values.

2These blocks should not be confused with the blocks of the block cipher, nor with the “block” (actually
“sector”) in the term Logical Block Address (LBA).

Ch
ap

te
r3

3.3 FDE Security with a Diversifier 57

EagleTree Benchmarks. In order to confirm that the concept of a diversifier is not just
feasible but also efficient to implement, we implemented this feature in the EagleTree SSD
simulator [DSB+13] and performed various benchmarks.
Our modified EagleTree simulator is based on the latest commit of EagleTree on GitHub3 of
February 23, 2016, to which we made three small modifications. In particular:

• We added an additional diversifier data member to the Event class, which is set
to a random value every time the operating system generates a write operation in
generate_io().

• The get_free_block_pointer_with_shortest_IO_queue() function in the class
Block_manager_parent now has a diversifier argument added to it. It restricts I/O
operations to the package that is specified by the value of diversifier.

• In the block manager Block_manager_parallel, the choose_best_address() and
choose_any_address() functions were redefined. For write operations that are
issued either by the operating system or by the garbage collector, the package
will be restricted to the value of the diversifier. This value is passed on when
get_free_block_pointer_with_shortest_IO_queue() is called within this function.
No modifications are made for reads and writes to sectors that are not visible to the
OS, such as for the mapping information I/O generated by the FTL.

The device that is simulated, consists of eight packages, each containing four dies of 256
blocks. Each block consists of 128 pages of 4096 bytes. EagleTree currently does not support
multiple planes per die. The page read, page write, bus ctrl, bus data and block erase delays
are 5 µs, 20 µs, 1 µs, 10 µs and 60 µs respectively. We assume that any latencies incurred by
the OS (including sector encryption and decryption) are negligible with respect to these
numbers. The SSD has an overprovisioning factor of 0.7.
We simulate an SSD configured with DFTL and the greedy garbage collection policy.

The base benchmarks use a simple block scheduler that assigns the next write to whichever
package is free. We then compare this performance to various choices of the diversifier value,
which determines the package for every write.

The workload used in our benchmarks is the same as the example in EagleTree’s demo.cpp
file: first a large write is made to the entire logical address space. This write is performed
in random order, but without writing to the same address twice. Once this large write is
finished, two threads are started up: one performs random reads, and the other performs
random writes in the address space. After three million I/O operations, the simulation is
stopped.

The benchmark results are shown in Table 3.4. They suggest not to choose the number of
diversifier values to be equal to the number of packages, as the impact on performance is quite
significant. Compared to the benchmarks without diversifier, the throughput of the reads and
writes drop by 25% and 7% respectively. The average latency increases by 44% for reads,
and 8% for writes. In this setup, the reads and writes of each garbage collection operation
are restricted to one package, and this affects performance quite significantly. Reads suffer
more than writes; this is mainly because there is no significant drop in performance for the
initial write operations to fill up the SSD.

3https://github.com/ClydeProjects/EagleTree

https://github.com/ClydeProjects/EagleTree

58 Chapter 3 Full Disk Encryption

Table 3.4: EagleTree Benchmarks for various diversifier sizes.

diversifier size (bits)
0 1 2 3

read latency (µs) 28.292 28.862 31.619 40.640
write latency (µs) 32.009 32.070 32.470 34.560

read throughput (IOPS) 20860 20493 19050 15634
write throughput (IOPS) 31240 31181 30797 28935
garbage collector reads 1284043 1295530 1356043 1489623
garbage collectorwrites 1284043 1295530 1356041 1489622

erasures 18569 18765 19661 21634

To avoid the large impact on performance, we must, therefore, choose the number of
diversifier values to be smaller than the number of packages. When the diversifier is two bits,
our simulations show an increase of the average latency of 12% for reads and 1% for writes
and a reduction of throughput of 9% for reads and 1% for writes. The total throughput
reduction (reads and writes combined) is at most 4%. For a diversifier of one bit, latency
and throughput are affected by less than 2%. We also looked into the number of garbage
collection and the number of erasures. They worsen by less than 6% for a diversifier of two
bits, but by 16% for a diversifier of three bits.

3.3.2 Case Studies

We now present three case studies for FDE. They apply the theoretical framework developed
in this paper, in order to obtain novel practical solutions that advance state of the art. For
each of the case studies, we explain the advantages of our solutions over existing techniques.
The examples are rather concrete for the sake of clarity, but the practical relevance of our
results is not limited to these particular examples.

3.3.2.1 Online Ciphers for FDE

Case Description. We consider an FDE application for which both encryption, and
decryption must be online. Off-line modes of operation cannot be implemented due to a
practical restriction: the encryption and decryption must be performed by a hardware security
module (HSM) that does not have enough memory to store an entire sector. With this
consideration in mind, what FDE security notions can be achieved by this application?

Solution. As encryption and decryption must be online, we know that two plaintexts
with a common prefix will result in ciphertexts that have a common prefix as well. In the
“up-to-prefix” setting, Table 3.1 explains that neither the commonly-used CBC (e.g. in
Microsoft’s BitLocker [Fer06]) nor its “improved” IGE variant (see e.g. Fruhwirth [Fru05])
provides chosen-plaintext or chosen-ciphertext security. However, these security properties
can be achieved by TC2 and TC3.

Ch
ap

te
r3

3.3 FDE Security with a Diversifier 59

Advantages. We are unaware of any applications of TC2 and TC3 in FDE. However,
when encryption and decryption must be online, these constructions provide up-to-prefix
chosen-ciphertext security in a setting where the commonly-used CBC and the often-proposed
IGE are insecure.

3.3.2.2 FDE-Aware Database Applications

Case Description. After intensive benchmarking, a database application was found to
achieve an insufficiently high throughput when encryption is enabled. Without encryption,
the performance of the database application is within acceptable limits. To avoid the security
risks of storing data without encryption, a decision was made to use a hardware-based FDE
based on CBC-ESSIV. Database applications are often already aware of the sector size to
align read and write operations to sector boundaries,4 and these operations already contain
some wastage.5 This is also the case for the application that we consider, which additionally
also knows whether FDE is enabled for a particular disk volume. For the given application,
at least eight bytes of padding are added to the end of every record in order to ensure sector
alignment. Is it possible for this application to achieve indistinguishability under chosen
plaintexts, which implies that identical sector plaintexts will result in distinct ciphertexts?

Solution. CBC-ESSIV is a common solution for FDE, but unfortunately, Table 3.1 explains
that it does not achieve any of the IND-CPA notions that are defined in this paper. However,
Table 3.2 shows that IND-CPA can be achieved for CBC-ESSIV if the first plaintext block
for every sector is unique. The application can decide to reduce the padding at the end
of every record by eight bytes, and instead prepend an eight-byte time stamp. Assuming
that this time stamp will not repeat, the first plaintext block of every sector is unique, and
indistinguishability under chosen plaintext attacks holds. Of course, the application should
detect whether FDE using CBC-ESSIV is enabled for a particular disk, and return an error
if this is not the case.

Advantages. To the best of our knowledge, existing solutions would encrypt at the
application level, at the disk level using FDE, or would use a combination of both. The FDE
is unaware of the application, as it performs encryption at the sector level. However what
if the application is aware of the FDE? If that is the case, we explain how the application
can generate plaintexts of a particular structure in order to obtain a stronger notion of FDE
security, but without performing any encryption at the application level.

3.3.2.3 On-the-Fly Firmware Updates

Case Description. A medical monitoring system continuously measures the patient’s vital
signs. The device has an Internet connection, which it uses to transmit its measurements,
as well as to install security-critical on-the-fly firmware updates. The firmware is stored in
off-chip Flash memory. Hackers could easily read out previous versions of the firmware, as
they were stored without encryption. To prevent such attacks, the company has decided

4https://blogs.msdn.microsoft.com/psssql/2011/01/13/sql-server-new-drives-use-4k-sector-size/
5https://docs.oracle.com/cd/E18283_01/server.112/e17120/onlineredo002.htm

https://blogs.msdn.microsoft.com/psssql/2011/01/13/sql-server-new-drives-use-4k-sector-size/
https://docs.oracle.com/cd/E18283_01/server.112/e17120/onlineredo002.htm

60 Chapter 3 Full Disk Encryption

to use FDE because there is no space to store additional data such as IVs, nonces or tags.
However, the company identifies a problem with FDE: if hackers know which sectors in
the Flash memory are modified by a security update, they can compare these sectors with
older firmware. These hackers can then sniff around in the same part of the code to quickly
rediscover the security vulnerability, and possibly exploit it before the devices in the field are
updated. How can this problem be avoided?

Solution. It seems that the company wants to represent sectors with identical plaintexts
by different ciphertexts, in order to hide which sectors are affected by a firmware update.
Classical FDE does not allow this, as there is no space to store additional data such as
an IV or nonce. However, Flash-based storage allows us to achieve security against chosen
plaintexts, by modifying the Flash controller to introduce a diversifier. Depending on the
security requirements against chosen ciphertexts, Table 3.3 proposes various solutions. Ini-
tially, the diversifier will be the most significant d bits of the hash of the sector number,
where d is the size of the diversifier in bits. Every firmware update will have a version
number, which will be XORed to the diversifier of every sector. Clearly, the number of
firmware updates must be less than the number of diversifier values. Under this restriction, all
diversifiers will be unique for a particular sector. Note that the diversifier cannot be a counter,
as this would result in a significant degradation of performance. However, it can also not
be chosen at random, as this will likely result in collisions due to the small size of the diversifier.

Advantages. An alternative solution may be to randomize all the instructions for every
firmware update, but this technique is very error-prone and it will be difficult (if not impossible)
to ensure that the device remains in a consistent state, in particular if power is lost during
an on-the-fly firmware update. Our solution avoids this: for sectors that are unaffected by
the update, the ciphertext changes but the plaintext remains the same. Changing the FDE
key is not an option for an on-the-fly update: while the device is being updated, there is
no non-volatile memory available to store the mapping between encryption keys and sector
numbers. However, changing the FDE key is possible during scheduled maintenance, when
updates do not need to be performed on the fly. The firmware update counter can then be
reset. Therefore, as long as the number of on-the-fly updates before scheduled maintenance
is less than d, the small size of the diversifier does not present a problem.

Conclusion. We presented a theoretical framework for disk encryption, and we analysed
several existing constructions against chosen-plaintext and chosen-ciphertext attacks, under
different notions of the ideal-world encryption oracle: up-to-repetition, up-to-prefix, or up-to-
block. Using this model, we recalled that IGE-ESSIV does not have chosen-ciphertext-security
under any of the notions that we consider, which shows that the AREA construction proposed
by Fruhwirth [Fru05] is insecure. Nevertheless, we proved that IGE-ESSIV and even CBC-
ESSIV could provide security under chosen-plaintext attacks, under the assumption that the
first block of a plaintext is never repeated for the same sector number. We also revisited
FDE from an engineering perspective and showed how to modify the firmware of a solid-state
drive to associate a short “diversifier” to every sector-plaintext pair (s,m). This diversifier
makes it possible to encrypt the same plaintext into different ciphertexts, something that
was previously impossible without additional storage.

Ch
ap

te
r4

Chapter 4
Key-Dependent Message Security

Contents

4.1 KDM Security via Splitting and Forgetting Technique 65
4.1.1 Analysis via Forgetful Oracle Replacement 68
4.1.2 KDM Security of the Ideal Cipher 72

4.2 Security of Even–Mansour Ciphers 76
4.2.1 KDM Attacks on Even–Mansour 76
4.2.2 KDM Security of Even–Mansour Ciphers 78

4.3 KDM Security using the H-coefficient technique 84
4.3.1 H-coefficient and KDM Security . 84
4.3.2 KDM Security with a Generic Lemma 85

4.4 Security of Key Alternating Feistel Ciphers 88
4.4.1 KDM Security of Four-Round Key-Alternating Feistel 89
4.4.2 Sliding attack for r-rounds . 100

4.5 Even-Mansour KDM security with H-coefficients 102
4.5.1 Security of 1-round Even-Mansour 102

— 61 —

Ch
ap

te
r4

63

Early on, the seminal paper of Goldwasser and Micali [GM84] pointed out that semantic
security may not hold if the adversary gets to see an encryption of the secret key. This
practice was generally perceived as a dangerous use of an encryption scheme but several
studies have revealed that this security notion is both theoretically and practically important
(like in FDE mechanisms such as BitLocker [BHHO08] where the encryption key may be
stored in the page file and thus encrypted along with the disk content). An encryption scheme
is said to be Key-Dependent Message (KDM) secure if it is secure even against an attacker
who can encrypt messages that depend on the secret key. Formally, security is defined with
respect to a set Φ of functions φ mapping keys to messages for which the adversary can obtain
key-dependent encryptions. This security notion was first formalized by Black, Rogaway and
Shrimpton [BRS03] for symmetric encryption and was subsequently extensively studied for
both symmetric and asymmetric cryptosystems (see, e.g., [BRS03, HK07, HU08, MTY11,
DS14, App14, LLJ15]).
The Even-Mansour (EM) construction introduced in [EM93] is the simplest block-cipher

known based on a single public permutation P on n-bit strings (see Figure 4.1). It uses two
independent n-bit keys (K1,K2) and on input an n-bit plaintext m, it outputs

EMP((K1,K2),m) = K2 ⊕ P(K1 ⊕m) .

Its generalization, the iterated Even–Mansour construction (also known as the key-alternating

m

K1

P1

K2

c

Figure 4.1: The Even–Mansour cipher (1-round).

cipher) was proposed by Daemen and Rijmen [DR01] as an abstraction of the design paradigm
of substitution-permutation networks. This construction has become the object of abun-
dant analysis and many recent block-ciphers follow this design (e.g., Present [BKL+07]
and PRINCE [BCG+12]). If one models the underlying permutations as public random
permutations, it is sometimes possible to prove the nonexistence of generic attacks against the
iterated Even–Mansour construction (i.e., attacks that are possibly independent of a particular
instantiation of the permutations P1,P2, . . . ,Pr). If the adversary is only given black-box
oracle access to these random permutations, the iterated Even–Mansour cipher was proved
to achieve several security notions such as traditional indistinguishability (see [CLL+14]
and references therein), security against related-key attacks [FP15, CS15], security in the
multi-user setting [ML15, HT16] or indifferentiability from ideal ciphers1 (see [DSST17] and
references therein).

Another simple construction used to build secure block-ciphers is the Feistel Network.
Feistel Network, introduced in the seminal Luby-Rackoff paper [LR86], is a construction
that enables to build a (n1 + n2)-bits pseudorandom permutation family from a smaller
random function family that takes n1-bits inputs and gives n2-bits outputs. The network is a

1This security notion roughly ensures that the construction “behaves” in some well-defined sense as an ideal
cipher.

64 Chapter 4 Key-Dependent Message Security

repetition of a simple network (the one-round Feistel network as shown in Figure 4.2) based
on pseudorandom functions that can be the same for all rounds or different. Starting from the
Luby-Rackoff result that the 3-round Feistel scheme is a pseudorandom permutation [LR86],
Patarin [Pat90] proved that four rounds is indistinguishable from a strong pseudorandom
permutation (where strong means that CCA adversary is considered). Other analysis gave
better bounds for r rounds [Mau93, Pat98, MP03]. Dai and Steinberger[DS16] proved that
the 8-rounds Feistel network is indifferentiable from random permutations and Barbosa and
Farshim gave the analysis in the related key model[BF15].

Some Feistel block ciphers are balanced Feistel networks; the input is split into two equal
length values L, R and we have a n-bits to n-bits round function (e.g. n1 = n2). For instance,
DES and Simon [BTCS+15] are balanced whereas Bear, Lion [AB96], Misty [Mat97] and
RC6 [IK01] are unbalanced [HR10]. Usually, the round function of practical block-ciphers
(non idealized) is instantiated with a public random function and a round key K as shown in
Figure 4.2. This special case of Feistel cipher is known as the Key-Alternating Feistel [LS15]
and is of interest as it is a more practical construction; DES is a 16 rounds balanced KAF
where all the public round functions are the same and where each subkey is derived from a
master key.

L

fK

R

S T

L

F

K
R

S T

Figure 4.2: Descriptions of the round function of Feistel Network (Left) and the one round
KAF (Right).

To be more formal, the Key-Alternating Feistel cipher [LS15] (KAF) is a Feistel network
where the i-th round pseudorandom function Fi is instantiated by Fi(Ki, x) = fi(Ki ⊕ x)
where the round functions fi is a public function. The KAF construction is said to be idealized
when the public functions fi are random functions. Lampe and Seurin [LS15] analysed the
indistinguishability of this construction for r rounds (see Figure 4.15) and gave a birthday
security bound up to 2

r′n
r′+1 for 6r′-rounds KAF using the H-coefficient technique. In these

settings the adversary has to distinguish two systems (KAF, f1, . . . , fr) and (P, f1, . . . , fr)
where fi are the public random functions accessible for the adversary and P is a secret random
permutation. They also noticed that two rounds of a KAF can be seen as a single-keyed
EM cipher. Guo and Lin [GL15] proved that the 21-rounds KAF∗ construction, which is a
variant of the KAF construction where the key Ki is XORed after the application of the
public random function fi, is indifferentiable from a random permutation. The most recent
work [GW18] is the analysis of the KAF for short keys and in the multi-user settings. In the
following, we consider only balanced KAF.

The analysis of the KDM security of Even-Mansour ciphers (section 4.2) and the KDM
security of the Key-Alternating Ciphers uses two different methods. The Even-Mansour

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 65

ciphers are analysed in a new modular framework called the splitting and forgetting technique
an detailed in section 4.1. This framework is usable for other block-ciphers and possibly also
other forms of security under correlated inputs (like Related-Key Attack security) and it is
based on a two-stage adversary: an adversary A against the KDM security of any cipher
should be able to encrypt messages that depends on the key without knowing this key; that
is why an intermediate adversary B which knows the key is used as an intermediate between
A and the encryption oracle. We apply this framework to analyse the KDM security of the
Ideal Cipher (subsection 4.1.2) and the 1 and 2-round Even-Mansour construction. This
work was partially published [FKV17], at IACR Transactions on Symmetric Cryptology in
2018, with Pooya Fashim and Damien Vergnaud.

We give another method to analyse the KDM security of block-ciphers; based on the
H-coefficient [Pat09] technique. The H-coefficient technique enables to upper bound the
advantage of an adversary playing an indistinguishability game between an ideal world and
a real world. To do so, the probability distributions of the transcripts resulting from the
interactions of an adversary in the ideal world and in the real world are analysed. For the
KDM setting, we introduce an intermediate game, the perfect world, where the key is not used
and for each different input function the encryption oracle implements a random permutation.
We apply twice the H-coefficient technique: first generically (this step is independent from the
analysed block-cipher) between the ideal world and the perfect world and then between the
perfect world and the real world for a specific block-cipher. The details of this methodology
is given in section 4.3 and is applied to the Key-Alternating Feistel in section 4.4. The
one-round Even-Mansour cipher is analysed with both techniques.

4.1 KDM Security via Splitting and Forgetting Technique

Our approach is to start with a block-cipher and gradually modify its oracles with independent
ones until we arrive at a construction whose outputs are uniformly and independently
distributed. In the particular case of Even–Mansour ciphers, we will replace at most two of
the underlying permutations (namely P1 and Pr) with oracles that completely randomize the
outputs of the cipher (in both directions for decryption and encryption queries respectively);
see Figure 4.3.

We consider a general security game where an adversary A has access to an oracle through
two different interfaces. The approach consists in studying the conditions under which the
security game can be modified (in an indistinguishable way for A) so that the second interface
provides access to an independent instance of this oracle. We also analyse the conditions
under which this oracle can further be replaced by a forgetful oracle that completely removes
dependency of outputs on inputs. For KDM security, we then have to prove that this
replacement by forgetful oracles (after splitting) can be performed indistinguishably if the set
of key-dependent messages functions that the adversary has at its disposal satisfies certain
well-defined conditions. These conditions reduce to checking that the adversary A does not
query these oracles on the same inputs (in the backward and forward direction in the case of
random permutations). This general technique allows us to analyse the r-round iterated EM
construction in a unified way. It is potentially applicable for an arbitrary number of rounds r
but here we only apply to three EM cases with r = 1, 2 (the latter with(out) permutation
reuse) and also the KDM security of the ideal cipher.
We first show that our “splitting and forgetting” technique is applicable to analyse the

66 Chapter 4 Key-Dependent Message Security

m

K1

P1

K2

P2

K3

c P±1 P±2

m

K1

P−1

K2

P−2

K3

c

A

m

K1

P1

K2

$

K3

c P±1 P±2

m

K1

$

K2

P−2

K3

c

Figure 4.3: KDM-CCA analysis for 2-round Even–Mansour.

KDM security of the ideal cipher. Halevi and Krawczyk [HK07] prove that the ideal cipher
achieves KDM security if one restricts the function class Φ to be a singleton and containing
a function that is independent of the ideal cipher itself. Using our strategy, we prove the
KDM security of the ideal cipher against adversaries with significantly larger classes of KDM
functions, including functions that may depend on the ideal cipher. In the particular case
where the functions are independent of the ideal cipher itself, it is sufficient to assume that
the set of functions is claw-free, i.e., when distinct functions disagree on random inputs.
We then analyse the KDM security of the 1-round EM construction in the random-

permutation model. We consider only sets of functions that are independent of underlying
permutation (but our method can be extended to handle functions that depend on the
underlying random permutation). We first present a simple attack that excludes the practically
relevant case of KDM security with respect to the identity function (and more generally any
offset of the key). On the positive side, we prove using our framework that the 1-round EM
construction actually achieves KDM security under chosen-ciphertext attacks if the set of
functions available to the attacker is claw-free and offset-free, i.e., when functions do not
offset the key by a constant.

We apply the above method to study the KDM security of the 2-rounds EM construction
in two configurations. We present a simple slide attack [BW99] on a variant with both
permutation and key reuse where K1 = K2 = K3 and P1 = P2 are used within the
construction. The set of KDM functions considered contains the identity function (or more
generally any key offsets). We also present a simple attack with complexity 2n/2 on the most
general version. We then apply the framework to prove that 2-round EM achieves KDM
security under chosen-ciphertext attacks if the set of functions available to the attacker is only
claw-free as long as different permutations are used. When one reuses the same permutation
P1 = P2 (because of efficiency reasons or because only one “good” public permutation is

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 67

available), we prove that EM achieves KDM-CCA security if the set of functions available
to the attacker is claw-free and also offset-xor-free, meaning that functions do not output
offsets of xor of two of the keys.
Our framework is general enough to be applied to other symmetric constructions and/or

other security models. Indeed, we believe this approach can be used to re-derive the RKA
security of EM ciphers [FP15] or that for Feistel networks [BF15] in a more modular way.

KDM functions. A key-dependent-message (KDM) function/circuit for key space K and
message spaceM is a deterministic and stateless circuit φ : K −→M. A KDM set Φ is simply
a set of KDM functions φ on the same key and message spaces. We assume membership in
KDM sets can be efficiently decided. An oracle KDM function φO : K −→ M is a KDM
function with oracle gates.

KDM security. We now formalize security of block-ciphers under Key-Dependent Message
and Chosen-Ciphertext Attacks (KDM-CCA). We do this in the O-hybrid model of computa-
tion where oracle access to O sampled from some oracle space OSp is granted to all parties.
For example, in the context of Even–Mansour ciphers, O(i, x, σ ∈ {±}) := Pσi (x) for some
random permutations P±i . We therefore grant access to O to the KDM functions and the
adversary. Security is now defined in the standard way via indistinguishability from the ideal
cipher under a random key as shown in Figure 4.4.

Game KDM-CCAA,ΦBCO

O←←OSp
L← []
b←←{0, 1}
K←←K
(iE, iD)←←Block(K,M)
b′←←AO,KDMEnc,Dec

Return (b′ = b)

Proc. KDMEnc(φO)
If φO 6∈ Φ Return ⊥
M ← φO(K); C ← EO(K,M)
If b = 1 Then C ← iE(K,M)
L← L : C ; Return C

Proc. Dec(C):
If C ∈ L Return ⊥
If b = 1 Return iD(K,C)
Return DO(K,C)

Figure 4.4: Game defining Φ-KDM-CCA security for a block-cipher.

The adversary can ask for key-dependent encryption for functions φO ∈ Φ and decryption
of ciphertexts of its choice.2 To allow for expressive KDM sets and rule out trivial attacks,
we do not allow decryption of ciphertexts that were obtained from the encryption oracle
(as otherwise the key can be recovered by decrypting key-dependent ciphertexts). Given
block-cipher BCO and an oracle KDM set Φ, we define the advantage of an adversary A
against BCO with respect to Φ as

Advkdm-cca
BCO (A,Φ) := 2 · Pr

[
KDM-CCAA,ΦBCO

]
− 1 .

Feasibility of Φ-KDM-CCA security very much depends on the KDM functions available in
Φ. For instance, if Φ contains the constant functions only, we recover the standard (strong)

2Note that we do not allow for key-dependent ciphertexts (KDC) in this work as the practical motivations
are somewhat limited.

68 Chapter 4 Key-Dependent Message Security

PRP notion of security, which is feasible under standard assumptions, in the RPM. On the
other hand, the set Φ cannot be arbitrary. Consider for instance functions φi that zero
all bits of K except the i-th one. Then using encryptions of φi(K) as well as those for
Mb,i := 1i−1|b|0n−i for i = 1, . . . , n and b ∈ {0, 1} once can recover the key one bit at a time.
For other sets, however, feasibility may or may not be possible. In the coming sections, we
study this question for the EM ciphers.

4.1.1 Analysis via Forgetful Oracle Replacement

Our strategy to prove KDM security for block-ciphers is to gradually modify their internals
until we arrive at constructions whose outputs are uniformly and independently distributed.
For instance, in the case of EM ciphers we will replace one or more of their underlying
permutations with forgetful random oracles. These will completely randomize the outputs of
the cipher. To argue that this replacement can be performed indistinguishably, we will impose
certain restrictions on how the adversary can interact with the cipher, and in particular the
set of KDM functions at its disposal will be restricted.

Some notations. Throughout $ denotes a forgetful oracle over some domain and range
that on each input in the domain (even repeated ones) returns a uniformly chosen random
element from the range. For a deterministic oracle machine MO we denote by Q(MO(x))
the list of query/answer pairs made to and received from O when M is run on input x. We
recall that, for a list L of pairs (x, y), which may have repeats, we denote by Dom(L) the list
of first entries x and by Rng(L) the list of second entries.

In this section we present a more general result that comes with a number of advantages:
(1) it allows reusing parts of the analyses across different constructions, (2) it highlights the
overall proof strategy and how various assumptions are used with it, and (3) it is potentially
applicable to setting beyond KDM security, and/or to other constructions.

4.1.1.1 A framework for security analyses

The block-ciphers that we analyse are constructed in a model of computation where all
parties have access to some oracle O.3 These oracles will be sampled from some oracle space
OSp. We start with two assumptions on oracles that are of interest to us.

Splittability. Let sp(L1, L2) be a binary relation on lists L1 and L2. We say oracle O
splits under sp if access to O through two interfaces can be modified in an indistinguishable
way so that the second interface provides access to an independent instance O′. Formally, we
define the advantage of D in the split game as

Advsplit
OSp(D) := 2 · Pr

[
SplitDOSp

]
− 1 ,

where game SplitDOSp is shown in Figure 4.5.
An alternative definition would quantify over all D that do not trigger sp. Although sp is

publicly checkable, this does not necessarily mean that every D can be modified to one with
comparable advantage that never triggers sp: the relation also depends on oracle outputs,
which are outside the control of the distinguisher. Although, relations that we study here
have the extra property that D can be modified to avoid triggering sp, not all D will be able

3Access to multiple oracles can be modeled via domain separation.

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 69

Game SplitDOSp

O,O′←←OSp
b←←{0, 1}
b′←←DO,Chal

If sp(L1, L2) Then b′ ← 0
Return (b = b′)

Proc. O(x)
y ← O(x)
L1 ← L1 : (x, y)
Return y

Proc. Chal(x)
If b = 0 Then y←←O(x)
Else y ← O′(x)
L2 ← L2 : (x, y)
Return y

Figure 4.5: Game defining oracle splittability with respect to relation sp.

to perform this check. In particular certain two-stage distinguishers D cannot check for sp
as the information needed for this check is spread among its two stages. For such D we need
to keep sp in the game description.

Forgetful switching. We define the advantage of an algorithm D in the switch game as

Advforget
OSp (D) := 2 · Pr

[
ForgetDOSp

]
− 1 ,

where game ForgetDOSp is formalized in Figure 4.6. Relation fg in this game will typically
check for some form of repetitions in oracle queries. Replacing an oracle with a forgetful one
removes any dependency of outputs on inputs.

Game ForgetDOSp

O←←OSp; b←←{0, 1}
b′←←DChal

If fg(L) Then b′ ← 0
Return (b = b′)

Proc. Chal(x)
If b = 0 Then y←←O(x)
Else y ← $(x)
L← L : (x, y)
Return y

Figure 4.6: Game defining forgetful switching property.

Consider now a modified split game (m-Split) that totally drops the sp check. We have
the following result.

Theorem 4.1.1. Let OSp be a lazily samplable oracle. Let fg (resp. sp) be, by slight abuse
of notation, the event that D triggers the check fg (resp. sp) in the m-Split game. Then for
any D in the modified split game we have a D′ such that

Advm-split
OSp (D) ≤ Advsplit

OSp(D)+2·Advforget
OSp (D′)+Pr[D sets fg|b = 1]+Pr[D sets sp|b = 1] .

Proof. The proof follows 6 games hops and applies the the fundamental lemma of game playing
as follows. Below, we let Gi be the event that D outputs b′ = 0 in game i: Pr[GDi] = Pr[b′ = 0].

Game0: This is the m-SplitDOSp game with b = 0 (i.e., with respect to oracles (O,O)):
Pr[GD0] = Pr[m-SplitDOSp|b = 0].

Game1: In this game we introduce the sp check. This only increases the probability that
b′ = 0: Pr[GD0]− Pr[GD1] ≤ 0.

70 Chapter 4 Key-Dependent Message Security

Game2: In this game we use an independent oracle O′ for the challenge oracle. A direct
reduction shows that: Pr[GD1]− Pr[GD2] ≤ Advsplit

OSp(D).

Game3: In this game we drop the sp check. Note that this game is identical to m-SplitDOSp
game with b = 1. This game and the previous one are identical until a flag sp3
corresponding to check sp is set: Pr[GD2]− Pr[GD3] ≤ Pr[D sets sp3|b = 1].

Game4: In this game we introduce the fg check. This only increases the probability that
b′ = 0: Pr[GD3]− Pr[GD4] ≤ 0.

Game5: In this game we use a forgetful oracle $ for the challenge oracle. Since O is assumed
to be lazily samplable (and O and $ are independent of O′) via a direct reduction and
simulation of O we get that for some D′: Pr[GD4]− Pr[GD5] ≤ Advforget

OSp (D′).

Game6: Finally, we drop the fg check. This game and the previous one are identical until a
flag fg6 is set: Pr[GD5]− Pr[GD6] ≤ Pr[D sets fg6|b = 1].

The analysis of the probability that D sets sp3 in Game3 is pushed forward in Game6
(Game4, Game5 and Game6 are introduced to analyse this event). Let spi be the flag analogous
to sp3 in Game i. Note that the probability of sp3 and that of sp4 are the same as checking
condition fg has no effect on setting these flags. Using the fact that sp is publicly checkable
(and hence can be used to define a distinguisher) we get that for some D′′

Pr[D sets sp4|b = 1]− Pr[D sets sp5|b = 1] ≤ Advforget
OSp (D′′).

Finally, the probability of setting sp6 is identical to that of sp5 as, once again, fg has no
effect on these flags. The theorem now follows by adding the above inequities.

We now consider a class of two-stage adversaries D = (A,B). Adversary A can access the
first oracle interface directly: this models the public availability of the oracle. Its access to
the second interface, however, is restricted and is through algorithm B only. This algorithm
holds information K unavailable to A. It receives messages z from A and returns an output
after interacting with the oracles through two interfaces. Formally, we say D is two stage if
it can be written in the form shown in Figure 4.7 (left) for some algorithms A and B. The
operation of D = (A,B) in the split game is shown on the right. Although algorithm A can
be typically arbitrary, we will put restrictions on the operation of B. For example, in the
KDM setting A will correspond to the KDM adversary and B will model the operation of a
block-cipher on key-dependent messages. More concretely, for 1-round EM:

BO,Chal(K = (K1,K2), z = φ) := EMO,Chal[K1,K2](φO(K1,K2)) .

We also assume that algorithm B is stateless; that is, it does not store any local state
and each time is run a on fresh K and the incoming input z.4 This means each instance of
B(K, zi) can be run independently. We also assume B is deterministic, and hence also that
A queries B with distinct inputs z. Finally, we assume that B has simulatable outputs: its
outputs on a random K and any z are indistinguishable from $ when it is run with respect
to oracles (O, $).

4Any (A,B) with a stateful B can be modified to (A′,B′) with stateless B′ and an A′ that sends the entire
history of previous messages to B′. This allows B′ to recompute the state of B. This modification however
increases the query complexity of B, and might not preserve other properties required from B.

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 71

Algo. DO,Chal

K←←K
b′←←AO,B

Return b′

Proc. B(z)
Return BO,Chal(K, z)

O

A A

O0

OO B(K) B(K)

Figure 4.7: Two-stage adversaries and their operation in the split game.

We now consider the probability of setting sp or fg in m-Split for D that take the above
form. We consider a setting where sp and fg can be expressed as disjunctions of simpler
checks on pairs of distinct entries from the lists. More precisely, we assume for some algorithm
val:

sp(L1, L2) :=
∨
i,j

val(L1[i], L2[j]) and fg(L2) :=
∨
i 6=j

val(L2[i], L2[j]) (?)

where L[i] denotes the i-th element of the list L (which may contain repeats). Each clause
depends on at most 2 elements. Hence a clause can be set by two entries corresponding to
one of the following cases.

Sp1 : A direct O query of A and a challenge query of B(K, z1) for some z1.

Sp2 : An O query of B(K, z1) and a challenge query of B(K, z2) (possibly with z1 = z2).

Fg : Two challenge queries made by B(K, z1) and B(K, z2) with z1 6= z2.

Therefore, triggering events Sp1 and Sp2 is equivalent to triggering sp and Fg is equivalent
to fg. Note, for a B that does not place any O calls, event Sp2 never happens.

4.1.1.2 Some concrete cases

To applying the above theorem to KDM attacks, we start by observing that random oracles
H, permutations P± and ideal cipher E± can be expressed as a single oracle O via encodings

O(x) := H(x) , O(σ, x) := Pσ(x) , O(σ,K, x) := Eσ(K,x) .

Using the standard PRP/PRF switching lemma [BR06] these oracles enjoy forgetful switching
with respect to checks fgro, fgrp, and fgic defined via Equations (?) and

valro((x1, y1), (x2, y2)) := (x1 = x2) ,
valrp((σ1, x1, y1), (σ2, x2, y2)) := (σ1 =σ2 ∧ x1 =x2) ∨ (σ1 6=σ2 ∧ (x1 =y2 ∨ x2 =y1)) ,

valic((σ1, k1, x1, y1), (σ2, k2, x2, y2)) := (k1 = k2) ∧ valrp((σ1, x1, y1), (σ2, x2, y2)) .

Note that these conditions are publicly checkable. The advantage terms for q-query adversaries
D and domain size 2n are

Advforget
Perm(n)(D) ≤ q2/2n and Advforget

Block(k,n)(D) ≤ q2/2n .

72 Chapter 4 Key-Dependent Message Security

These oracles also split with respect to spro, sprp, and spic associated to their respective
val above. This is immediate for random oracles (with advantage zero) as the systems (H,H)
and (H,H′) are identical as long as the two interfaces are not queried on the same input.
Splitting for ideal ciphers, and random permutations where K = ε, is proved easily.

Theorem 4.1.2 (Splitting for the ideal cipher). For any adversary A making at most q1
queries to its first oracle and q2 queries to its second oracle we have that

Advsplit
Block(k,n)(A) ≤ q1q2

2n .

Proof. Consider an adversary A with oracle access to O1 and O2. Algorithm A cannot ask
the same query to its two oracles and it cannot ask to decrypt or encrypt a query to O1 that
has been queried or obtained to O2 and inversely. A has to distinguish between two systems
(E, E) and (E, Ẽ) where E and Ẽ are two independent ideal ciphers. After the attack A ends up
with two lists L1 and L2 containing, respectively, the q1 queries made to O1 and the q2 queries
made to O2. The only event that can enable A to trigger sp is an entry (σ1,K1, x1, y1) ∈ L1
and another (σ2,K2, x2, y2) ∈ L2 such that (σ1 6= σ2 ∧ (x1 = y2 ∨ x2 = y1)). The probability
of this event is bounded by q1q2/2n.

Relation between splitting and switching. Any oracle with forgetful replacement
also allows for splitting: start with (O,O), replace both oracles to get ($, $) and now switch
the first oracle back to get (O, $). This reduction, however, restricts the class of attacks that
can be considered. Indeed in this reduction we would need to rely on fg(L1 : L2) ∨ fg(L1)
which imposes no repeat queries to the first oracle. This oracle is also used by B, and hence
we would have to assume that it does not place repeated queries to it. It might appear that
this is not a problem as “without loss of generality” such repeat queries can be dealt with
using lists. This, however, is not the case as different instances of B often cannot freely
communicate with each other their local lists.

4.1.2 KDM Security of the Ideal Cipher
The KDM security for an ideal cipher is formulated as in Figure 4.4 with respect to an oracle
O that implements an ideal cipher and an oracle O′ that implements an indepedent ideal
cipher. A trivial construction BCO that simply uses O to encipher and decipher inputs. We
formulate a set of sufficient conditions on a KDM set Φ that allows us to establish KDM
security for the ideal cipher.

Definition 4.1.3 (Claw-freeness). We define the (single-try) claw-freeness advantage of A
against a KDM set Φ as

Advcf
OSp,Φ(A) := Pr[φO1 6= φO2 ∧ φO1 (K) = φO2 (K) :

O←←OSp;K←←{0, 1}k; (φO1 , φO2)←←AO] .

We define the (multi-try) claw-freeness advantage Advmcf
OSp,Φ(A) by considering A that return

two lists of sizes q1 and q2 and claws are checked for two distinct φ’s coming from the two
lists. A simple guessing arguments shows that for any multi-try A there is a single-try A′
such that:

Advmcf
OSp,Φ(A) ≤ q1q2 ·Advcf

OSp,Φ(A′) .

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 73

Informally, Φ is claw-free if the above advantage is “small” for every “reasonable” A. When
the KDM function are independent of O we may omit sampling of OSp from the game and
notation.

The KDM set corresponding to xoring constants into the key:

Φ⊕ := {φi[∆] : (K1, . . . ,Kr+1) 7→ Ki ⊕∆ : ∆ ∈ K} ∪ {(K1, . . . ,Kr+1) 7→ ∆ : ∆ ∈ K} .

is claw-free since the probability that Ki ⊕∆1 = Kj ⊕∆2 is 0 if i = j and ∆1 6= ∆2, and is
negligible if i 6= j.

Query-independence. We define the query-independence advantage of A against a KDM
set Φ with respect to oracle space OSp := Block(k, n) as

Advqi
Block(k,n),Φ(A) := Pr

[
φO1 (K) ∈ Q+

K(φO2 (K)) or C ∈ Q−K(φO2 (K)) :

O←←Block(k, n);K←←{0, 1}k; (C, φO1 , φO2)←←AO
]
.

Here we have used the convention O(σ,K,M) := Eσ(K,M). Note that any oracle-free KDM
set is query-independent (i.e. has zero query-independence advantage).
We now prove that the ideal cipher is KDM secure for claw-free and query-independent

KDM sets.

Theorem 4.1.4 (Ideal cipher KDM security). Let Φ be a KDM set for keys of length k and
messages of length n. Suppose Φ is claw-free and query-independent as defined above. Then
the ideal cipher is Φ-KDM-CCA secure. More precisely, for any adversary A against the Φ-
KDM-CCA security of the ideal cipher for Block(k, n), there is an adversary C1 against the
claw-freeness of Φ and an adversary C2 against the query-independence of Φ such that

Advkdm-cca
Block(k,n),Φ(A) ≤ q1q/2n + 2q2/2n + q1q/2k + q2(Advcf

Block(k,n),Φ(C1) + 2/2n)+

+ 2q2(Advqi
Block(k,n),Φ(C2) + qφ/2n) .

Here q1 is an upper bound on the number of direct queries of A to the ideal cipher (in
either direction), q an upper bound on the number of challenge queries (globally), and qφ an
upper bound on the number of oracle queries of KDM functions. Adversaries C1 and C2 place
at most q1 queries to their ideal cipher oracles.

Proof. Let A′ be a KDM-CCA adversary. We consider a two-stage adversary (A,B) against
the modified split game as follows. Algorithm A runs A′ and answers its ideal cipher queries
using its own ideal-cipher oracle. It answers a KDM query φ of A′ by forwarding (+, φ) to its
B algorithm that is shown in Figure 4.8. It answers a decryption query C of A′ by forwarding
(−,C) to B. KDM functions are deterministic and stateless and we assume A′ does not place
repeat queries. Hence neither does A. Recall that according to the rules of the KDM game
no ciphertext obtained from encryption can be subsequently decrypted. We also assume,
without loss of generality, that if a message M is obtained as a result of a ciphertext, then
the constant function mapping keys to M cannot be queried to the encryption oracle (since
the result is already known). We note that algorithm B is stateless, deterministic and places
a single Chal query. It is also simulatable as when Chal implements $ then so does B.

It is easy to see that when Chal implements the original (non-replaced) oracle (i.e., when
b = 0 in the m-Split game), algorithms (A,B) runs A′ in the KDM game with b = 0. When

74 Chapter 4 Key-Dependent Message Security

Algo. BO,Chal(K, (+, φ))
M ← φO(K)
C ← Chal(+,K,M)
Return C

Algo. BO,Chal(K, (−,C))

M ← Chal(−,K,C)
Return M

Figure 4.8: Algorithm B used for KDM analysis of the ideal cipher.

Chal implements a replaced ideal-cipher oracle, algorithms (A,B) run A′ in the KDM game
with b = 1. We emphasize that we are relying on the modified split game here as the split
game performs the sp that does not exist in the KDM game. Hence

Advkdm-cca
Block(k,n)(A′,Φ) ≤ Advm-split

Block[k,n](A,B) .

Applying Theorem 4.1.1, it remains to bound the probability that B meets the three validity
events Sp1, Sp2 and Fg with respect to spic(L1, L2) and fgic(L2) based on valic defined
above.

Let us start with the Fg event: it is triggered with z1 6= z2. Suppose σ1 = σ2 = +. In this
case adaptivity can be ignored since the event does not depend on the output of the B oracle.
Hence C must output φ?

1 6= φ?
2 such that

(+,K, φO1 (K)) = (+,K, φO2 (K))

This is equivalent to winning claw-freeness for Φ. When σ1 = σ2 = − the event cannot be
triggered as the ciphertexts must be distinct.

Let us consider now σ1 = + and σ2 = −. Then C outputs (+, φ1), receives a random value
R, and then outputs (−,C2). Let R′ be the output for the latter. Now it is either that (1)
B(+, φ1) queries forward challenge on R′, or (2) B(−,C2) queries backward challenge on R.
The former takes place with probability 1/2n as R′ is chosen after φ1. The latter can be
triggered when C2 = R. But this is a disallowed queried by the rules of the KDM game: no
encryption output can be decrypted.
Let σ1 = − and σ2 = +. Then C outputs (−,C1), receives a random value R, and then

outputs (+, φ2). Let R′ be the output for the latter. Now it is either that (1) B(−,C1)
queries backward challenge on R′. This happens with probability 1/2n. Or that (2) B(+, φ2)
queries forward challenge on R. This can be triggered in two ways: (2.1) φ2 is different from
the constant function mapping all inputs to R. In this case a claw is found. (2.2) φ2 is the
constant function mapping to R. But we have disallowed such queries.

Let us now look at Sp1. Since queries always include keys, the value x output by C must
also include the key. The probability of guessing the key (given possibly a random value R)
is at most 1/2k.

If the KDM functions are oracle-independent, event Sp2 cannot be triggered and the
analysis is done. For oracle-dependent KDM Sp2 can be triggered with z1 and z2 which
correspond to either two forward or one forward and one backward query. (Since backward
queries are oracle-independent, Sp2 cannot be triggered using two backward B queries.)

Suppose i = 1. If z1 = (−, ∗) then L′1 = []. So we assume z1 = (+, φ1). In what follows L′1
is formed first and then L′2.

Ch
ap

te
r4

4.1 KDM Security via Splitting and Forgetting Technique 75

(1) Suppose z2 := (+, φ2). Then L′2 consists of a single forward entry. (1.1) A forward
entry in L′1 with a forward entry in L′2 trigger Sp2. This violates query-independence
with a reduction that simply simulates R for C. (1.2) A backward entry in L′1 with
a forward entry in L′2 trigger Sp2. (1.2.1) An input in L′1 matches an output in L′2.
Since the output in L′2 is chosen randomly and independently of inputs in L′1, this
happens with probability at most qφ/2n, assuming the KDM functions make at most
qφ oracle queries. (1.2.2) An output in L′1 matches an input in L′2. The outputs in
L′1 are random subject to permutativity. Value R seen by C is simply a random value
independent of outputs in L′1. Hence the probability of the single entry in L′2 matching
one of the outputs in L′1 is at most qφ/2n.

(2) Suppose z2 := (−, C). Then L′2 consists of a single backward entry. (2.1) A forward
entry in L′1 with a backward entry in L′2 trigger Sp2. (2.1.1) An input in L′1 matches
an output in L′2. Since the output in L′2 is random and independent of L′1, this happens
with probability qφ/2n. (2.1.2) An output in L′1 matches an input in L′2. Since the
outputs in L′1 are random subject to permutativity and R is random and independent
of these values, this happens with probability qφ/2n. (2.2) A backward entry in L′1 with
a backward entry in L′2 trigger Sp2. This violates query-independence.

Suppose now i = 2. If z2 = (−, ∗) then L′1 = []. So we assume z2 = (+, φ2). In what follows
L′2 is formed first and then L′1.

(3) Suppose z1 := (+, φ1). Then L′2 consists a single forward entry. (3.1) A forward
entry in L′1 with a forward entry in L′2 trigger Sp2. This violates query-independence
with a reduction that simply simulates R for C. (3.2) A backward entry in L′1 with a
forward entry in L′2 trigger Sp2. (3.2.1) An input in L′1 matches an output in L′2. Note
that the KDM function can be chosen based on R, the output in L′2. This violated
query-independence. (3.2.1) An output in L′1 matches an input in L′2. Since the outputs
in L′1 are random subject to permutativity, and L′2 is chosen before L′1, this happens
with probability qφ/2n.

(4) Suppose z1 := (−, C). Then L′2 consists of a single backward entry. (4.1) A forward
entry in L′1 with a backward entry in L′2 trigger Sp2. (4.1.1) An input in L′1 matches
an output in L′2. Note that the KDM function can be chosen based on R, the output
in L′2. This violated query-independence. (4.1.2) An output in L′1 matches an input
in L′2. Since the outputs in L′1 are random subject to permutativity, and L′2 is chosen
before L′1, this happens with probability qφ/2n. (4.2) A backward entry in L′1 with a
backward entry in L′2 trigger Sp2. This violates query-independence.

Only one of the above cases need to be considered, which justifies the final term in the
advantage upper bound.

Remark 4.1.5. The converse of the above theorem does not hold. The set Φ := {φ1(K) :=
K,φ2(K) := K ⊕MSB(K)} is not claw-free as φ1(K) = φ2(K) with probability 1/2. KDM
security with respect to this set, however, can be proven along the following lines. Instead of
simulatability of BO,$, demand simulation with the help of a claw-detection oracle. This is
an oracle that given φ1 and φ2 returns (φ1(K) = φ2(K)). This means that we can modify
the validity game to one which allows C access to a claw-detection oracle. For oracle-free
KDM functions this condition boils down to unpredictability of the key in the presence of a

76 Chapter 4 Key-Dependent Message Security

claw detection oracle. This results in a characterization that is tight, as predicting the key
under claws can be easily used to win the KDM game for ideal cipher (since claws can be
read off from the outputs of the cipher).

4.2 Security of Even–Mansour Ciphers

This section 4.2 is dedicated to the study of the iterated Even-Mansour ciphers under
key-dependent message attacks.

Even-Mansour ciphers. The (iterated) Even-Mansour ciphers consider the problem of
constructing a block-cipher with a large key space from a single, or a small number of,
permutations. Formally, the r-round Even-Mansour cipher (see Figure 4.9) in a model of
computation with r permutations P±1 , . . . ,P±r with domain M = {0, 1}n is a block-cipher
with key space K = {0, 1}(r+1)n and enciphering and deciphering algorithms

EP1,...,Pr ((K1, . . . ,Kr+1),M) := Pr(· · ·P2(P1(M ⊕K1)⊕K2) · · ·)⊕Kr+1 ,

DP−1 ,...,P
−
r ((K1, . . . ,Kr+1),M) := P−1 (· · ·P−r−1(P−r (M ⊕Kr+1)⊕Kr) · · ·)⊕K1 .

m

K1

P1

K2

P2

K3 Kr

Pr

Kr+1

c

Figure 4.9: The r-round iterated Even–Mansour cipher.

The EM ciphers can be also considered in configurations where (some of the) keys and/or
(some of the) permutations are reused in different rounds. We denote the EM cipher where
Pi and Ki+1 are used in round i by EMP1,...,Pr [K1,K2, . . . ,Kr+1]. The configuration with
independent keys K0 and K1 achieves security up to approximatively 2n/2 queries and
Dunkelman, Keller and Shamir [DKS12] show that the security bound holds when K0 = K1.
The r−iterated EM construction has been deeply studied with r + 1 independent keys and
the tight security bound of 2(rn)/(r+1) has been established in [CS14].

4.2.1 KDM Attacks on Even–Mansour

In this section we present KDM attacks on the iterated Even–Mansour ciphers. First, 1-round
Even-Mansour is not KDM secure under chosen-plaintext attacks for any set Φ containing
functions that offset the key, i.e., with respect to φ(K1,K2) := K1 ⊕∆. Indeed, enciphering
φ(K1,K2) gives P(∆)⊕K2 and hence key K2 can be recovered after computing P(∆). Our
result in the next section excludes such Φ.
We next consider 2-round EM in different configurations: the two permutations can be

set to be identical or independent, and there are five possible key schedules. The simplest
possible (and also the most efficient) construction uses a single random permutation and
the same n-bit key in the two rounds. In the resulting scheme EMP,P[K,K,K], only one
key needs to be securely stored and a unique random permutation has to be implemented.

Ch
ap

te
r4

4.2 Security of Even–Mansour Ciphers 77

Unfortunately, this cipher is vulnerable to a sliding attack5 [BW99] if the set Φ contains the
key offset functions.

Indeed, if the function φ(K) := K ⊕ P−1(0n) belongs to Φ, the attacker can simply query
its encryption on it to get C1 = EMP,P[K,K,K](φ(K)) = P(K) ⊕K. It also obtains the
encryption of 0n as C2 = EMP,P[K,K,K](0n) = P(P(K) ⊕ K) ⊕ K. The attacker can
now recover the key as P(C1) ⊕ C2. The adversary AP,EMP,P[K,K,K], formally described
in Figure 4.10 (left), can recover the key and this attack can easily be adapted to any
number of rounds if all internal permutations are identical and all keys are equal. We note
that AP,EMP,P[K,K,K] can trigger the following event and does not respect fgrp for BP,Chal:
(σ1, x1, y1) = (σ1, x1, y1) with σ1 = +; x1 = P(∆⊕K)⊕K; y1 = P(P(∆⊕K)⊕K)⊕K.

This attack can be adapted to the key schedule [K1,K2,K2] as described by the adversary
AP,EMP,P[K1,K2,K2] shown in Figure 4.10 (right). The function φ2 is now different and aims to
cancel the key K1 and replace it by K2 to bring the setting back to one where a single key is
used.

Adversary AP,EMP,P[K,K,K]

Chooses a value ∆
y1 ← P(−,∆)
φ1(K) := y1 ⊕K
y2 ← KDMEnc(φ1)
φ2(K) := ∆
y′2 ← KDMEnc(φ2)
y′1 ← P(+, y2)
K ← y′1 ⊕ y′2
y ← ∆⊕K
y′′1 ← P(+, y)
If y2 = y′′1 ⊕K Return 1
b←←{0, 1}
Return b

Adversary AP,EMP,P[K1,K2,K2]

Chooses a value ∆
y1 ← P(−,∆)
φ1(K) := y1 ⊕K1
y2 ← KDMEnc(φ1)
φ2(K) := K1 ⊕K2 ⊕∆
y′2 ← KDMEnc(φ2)
y′1 ← P(+, y2)
K2 ← y′1 ⊕ y′2
y ← ∆⊕K2
y′′1 ← P(+, y)
If y2 = y′′1 ⊕K2 Return 1
b←←{0, 1}
Return b

Figure 4.10: Adversaries AP,EMP,P[K,K,K] and AP,EMP,P[K1,K2,K2].

We also show that the iterated Even–Mansour construction cannot achieve KDM-CPA
security beyond the birthday bound (for any number of rounds r ≥ 2) if the set Φ contains
the key offset functions (even if the random permutations and the keys are different). The
adversary can simply query the KDMEnc oracle on q1 ≥ 1 different messages (independent
of the key) m1, . . . ,mq1 and store the corresponding plaintext/ciphertext pairs (mi, ci) for
i ∈ {1, . . . , q1} in some hash table (indexed by the ciphertext values). The adversary can then
query the KDMEnc oracle on q2 ≥ 1 key offset functions φi(K) = K1 ⊕∆j with different
offsets ∆j for j ∈ {1, . . . , q2}. For each corresponding ciphertext zj = KDMEnc(φj),
the adversary then looks for it in the hash table. If there exist ci such that zj = ci for
i ∈ {1, . . . , q1}, then, since EM is a permutation, the adversary knows that mi = ∆j ⊕K1
and can retrieve K1 as mi ⊕∆j . If q1 · q2 ' 2n then, with high probability, the adversary
will find such a collision and therefore the first round key. The complexity to find the first

5This attack can be generalized readily for iterated r-rounds EM construction if it uses a single random
permutation and the same n-bit key for all rounds (irrelevant of the value r ≥ 2).

78 Chapter 4 Key-Dependent Message Security

round key is thus O(2n/2) queries to KDMEnc to find the first key and the attack can be
repeated to find the other keys. The overall complexity to recover the full secret key is thus
O((r − 1) · 2n/2) queries to KDMEnc (since the two keys of the last round can be obtained
easily as described above).

4.2.2 KDM Security of Even–Mansour Ciphers
In the following, three configurations of Even-Mansour cipher are analysed: EMP[K1,K2],
EMP1,P2 [K1,K2,K3] and EMP,P[K1,K2,K3].

4.2.2.1 One-round Even–Mansour

We study the KDM security of the basic Even–Mansour cipher with only a single round. We
show that this construction achieves nontrivial forms of KDM security.
Definition 4.2.1 (Offset-Freeness). We define the offset-freeness advantage of A against a
KDM set Φ consisting of functions φ : {0, 1}rn −→M as

Advoffset
Φ (A) := Pr[φ(K1, .,Kr) = Ki ⊕X : i ∈ {1, ., r}; (K1, .,Kr)←←{0, 1}rn; (φ,X)←←A] .

Our next result shows that one-round EM is KDM-secure against oracle-free claw-free and
offset-free KDM sets. Note that xor-ing with constants is not offset-free.
Theorem 4.2.2. Let Φ be an oracle-free KDM mapping 2n-bit keys to n-bit messages.
Suppose Φ is offset-free and claw-free. Then EMP[K1,K2] is Φ-KDM-CCA secure. More
precisely, for any adversary A against the Φ-KDM-CCA security of EMP[K1,K2], there are
adversaries C1 and C2 against the offset-free and claw-free properties of Φ such that

Advkdm-cca
EMP[K1,K2],Φ(A) ≤ q1q/2n+2q2/2n+q1q(2·Advoffset

Φ (C1)+4/2n)+q2(2·Advcf
Φ (C2)+2/2n) ,

where q1 is the number of queries of A to P± and q is the number of challenge queries of A
in either direction.
Proof. The proof structure is analogous to that for the KDM security of the ideal cipher. For
A′ a KDM-CCA adversary, we consider a two-stage adversary (A,B) against the modified
split game as follows. Algorithm A will run A′ as before forwarding its queries to algorithm B
shown in Figure 4.11: the oracle O implements the random permutations (P±) and the oracle
O′ implements the random permutation (P’±) where P, P’ are independent. We assume
A does not place repeat queries, respects the rules of the KDM game, and if it obtains a
message M as a result of decrypting a ciphertext C , it does not query the constant function
mapping to M to encryption. Note that algorithm B is stateless, deterministic, simulatable,
and places a single Chal query. This leads to the first two terms in the advantage upper
bound.

Since we are only considering oracle-independent KDM functions we do not need to consider
event Sp2. We consider Sp1 next. This event corresponds to finding a collision between a
direct query of A and a challenge query of B. The adversary can trigger this event in a
number of ways as follows.

(1) Two forward queries (X,φ) are such that φ(K1,K2) ⊕K1 = X. This violates offset-
freeness. Note that the order of the queries and their adaptivity do not matter as the
winning condition is independent of the oracle output.

Ch
ap

te
r4

4.2 Security of Even–Mansour Ciphers 79

Algo. BO,Chal(K, (+, φ))
(K1,K2)← K
X ← φ(K1,K2)⊕K1
Y ← Chal(+, X)
C ← Y ⊕K2
Return C

Algo. BO,Chal(K, (−,C))
(K1,K2)← K
Y ← C ⊕K2
X ← Chal(−, Y)
M ← X ⊕K1
Return M

Figure 4.11: Algorithm B used in the KDM analysis of one-round EM.

(2) Two backward queries (X,C) are such that C ⊕K2 = X. This amounts to guessing
K2, which happens with probability at most 1/2n.

(3) A forward X and a backward C are such that: (3.1) X = R⊕K1 for a possibly known
R (the output of B). This amounts to guessing K1, which happens with probability at
most 1/2n. (3.2) C ⊕K2 = P(X). This amounts to guessing K2, which happens with
probability at most 1/2n.

(4) A backward X and a forward φ are such that: (4.1) X = R⊕K2 for a possibly known
R. This amounts to guessing K2, which happens with probability at most 1/2n. (4.2)
φ(K1,K2)⊕K1 = P−(X). This violates offset-freeness.

The third term in the advantage bound in the statement of the theorem follows from a union
bound.

We now consider the Fg event, which corresponding to finding two collisions between two
distinct challenge queries of B. The adversary can trigger this event in a number of ways.

(1) Two forward queries are such that φ1 6= φ2 and φ1(K1,K2)⊕K1 = φ2(K1,K2)⊕K1.
This violates claw-freeness.

(2) Two backward queries are such that C1 ⊕K2 = C2 ⊕K2 and C1 6= C2. This is not
possible.

(3) A forward φ and a backward C such that C is chosen first and: (3.1) φ(K1,K2)⊕K1 =
R ⊕ K1 where φ can possibly depend on R. If φ(K1,K2) is the constant function
mapping to R, this query is not allowed by our restriction above. Otherwise a claw
with constant function mapping to R is found. (3.2) C ⊕K2 = R′ ⊕K2. Since R′ is
randomly and independently chosen, this happens with probability 1/2n.

(4) A forward φ and a backward C such that φ is chosen first and: (4.1) C ⊕K2 = R⊕K2.
Here C can possibly depend on R. This violates the KDM rule that output ciphertexts
(R here) are not subsequently decrypted. (4.2) φ(K1,K2)⊕K1 = R′ ⊕K1. Since R′ is
randomly and independently chosen, this happens with probability 1/2n.

The forth term in the advantage bound follows from a union bound.

4.2.2.2 Two-round Even–Mansour with independent permutations

As mentioned above, offset-freeness excludes the case of KDM security against key offsets.
We ask if by addition of extra rounds to the Even–Mansour ciphers can boost KDM-CCA

80 Chapter 4 Key-Dependent Message Security

security against this class. In this section we show the addition of a single extra round with
independent permutations is sufficient for this. (In the next subsection, we will consider
using a single permutation.) We consider an oracle O that allows access to two permutations
via O(i, σ, x) := Pσi (x). This is simply an ideal cipher oracle with two key values i = 1, 2.
Hence splitting and forgetting apply to this oracle. Our proof strategy is as before, but
to avoid offset-freeness we only replace the last permutation in forward queries and the
first permutation in backward queries. The oracle O implements the random permutations
(P±1 ,P±2) and the oracle O′ implements the random permutations (P+

1 ,P1’ −,P2 ’+,P−2) where
P1, P1’, P2, P2’ are independent. These will be sufficient to ensure that the outputs in both
directions are randomized.

Theorem 4.2.3. Let Φ be a KDM set that is claw-free. Then EMP1,P2 [K1,K2,K3] is Φ-
KDM-CCA secure. More precisely, for any adversary A against the Φ-KDM-CCA security
of EMP1,P2 [K1,K2,K3], there is an adversary C against the claw-free property of Φ such that

Advkdm-cca
EMP1,P2 [K1,K2,K3],Φ(A) ≤ 16q1q/2n + 2q2 · (Advcf

Φ (C) + 1/2n) ,

where q1 is the number of queries of A to P±i (globally) and q is the number of challenge
queries of A in either direction.

Proof. The proof structure is analogous to that previous cases and we describe the associated
algorithm B in Figure 4.12. It is easy to verify that this algorithm responds with KDM queries
under EMP1,P2 [K1,K2,K3] and φ and satisfies the requirements of statelessness, determinism,
etc. as before. We emphasize that this algorithm does not make use of queries of the form
Chal(1,+, ·) or Chal(2,−, ·). This means that queries to O(1,+, X1) (i.e., those to P1) and
queries to O(2,−, X1) (i.e., those to P−2) can be arbitrary and without any restrictions.

Algo. BO,Chal(K, (+, φ))
(K1,K2,K3)← K
X1 ← φ(K1,K2,K3)⊕K1
X2 ← O(1,+, X1)
X3 ← Chal(2,+, X2 ⊕K2)
C ← X3 ⊕K3
Return C

Algo. BO,Chal(K, (−,C))
(K1,K2,K3)← K
X3 ← C ⊕K3
X2 ← O(2,−, X3)
X1 ← Chal(1,−, X2 ⊕K2)
M ← X1 ⊕K1
Return M

Figure 4.12: Algorithm B used in the KDM analysis of two-round EM with two permutations.

We start with Sp1. This event can be triggered in one of the following ways corresponding
to choice of an input to an internally replaced oracle and a direct oracle query.

(1) Forward inputs φ and X such that P1(φ(K)⊕K1)⊕K2 = X. We argue the probability
of this event is upper-bounded by 2q1q/2n. There are two cases to be considered:
(1.1a) The value φ(K) ⊕K1 has been queried to P1. But this means the adversary
can use P1(φ(K)⊕K1) and X to compute K2. For each φ and all q1 choices of X the
probability is q1/2n and thus q1q/2n over all φ. (1.1b) The value φ(K)⊕K1 has not
been queried to P1 and P1(φ(K) ⊕ K1) is randomly chosen outside the view of the
adversary over a set of size at least (2n − q1). Hence this case happens with probability
at most 1/(2n − q1) which is ≤ 2/2n for q1 ≤ 2n/2. We thus get an overall probability

Ch
ap

te
r4

4.2 Security of Even–Mansour Ciphers 81

of 2q1q/2n. We will use this line of argument below and other proofs later on. (1.2) For
a known random R, P2(X) = R⊕K3. This amounts to guessing K3 with probability
q1q/2n over all φ and X.

(2) Backward inputs C and X such that: (2.1) P−2 (C2 ⊕K3)⊕K2 = X. This amounts to
guessing K2 with probability 2q1q/2n. (2.2) R ⊕K1 = P−1 (X) for a known value R.
This amounts to guessing K1 with probability q1q/2n over all C and X.

(3) Forward φ and backward X such that for a known random R: (3.1) R⊕K3 = X. This
amounts to guessing K3 with probability q1q/2n. (3.2) P1(φ(K)⊕K1)⊕K2 = P−2 (X).
This amounts to guessing K2 with probability 2q1q/2n.

(4) Backward C and forward X such that for a known random R: (4.1) R ⊕ K1 =
X. This amounts to guessing K1 with probability q1q/2n over all C and X. (4.2)
P−2 (C2 ⊕K3)⊕K2 = P1(X). This amounts to guessing K2 with probability 2q1q/2n.

We now look at event Fg. This event can be triggered in the following ways.

(1) Forward inputs φ1 6= φ2 such that P1(φ1(K)⊕K1)⊕K2 = P1(φ2(K)⊕K1)⊕K2. This
violates claw-freeness.

(2) Backward inputs C1 6= C2 such that C1 ⊕K3 = C2 ⊕K3. This is impossible.

Note that only P2 in the forward direction and P−1 in the backward direction are replaced.
Hence these are all the collisions that need to be taken care of. The second term in the
advantage bound follows.

Since B uses O, we need to also consider Sp2. This event can be triggered in the following
ways.

(1) Inputs φ1 and C2 such that φ1 is chosen after seeing a random R and: (1.1) φ1(K)⊕K1 =
R⊕K1. This is either a repeat query (when φ1 is constant) or breaks claw-freeness. (1.2)
P1(φ1(K)⊕K1) = P−2 (C2 ⊕K3)⊕K2. This amounts to guessing K2 with probability
2q1q/2n.

(2) Inputs φ1 and C2 such that C2 is chosen after seeing random R and: (2.1) P1(φ1(K)⊕
K1)⊕K2 = P−2 (C2⊕K3). This amounts to guessing K2 with probability 2q1q/2n. (2.2)
C2 ⊕K3 = R⊕K3. This event violates the KDM rule that an output ciphertext is not
decrypted.

This concludes the proof of theorem.

4.2.2.3 Two-round Even–Mansour with a single permutation

We now consider KDM security of two-round EM with permutation reuse.

Definition 4.2.4 (Offset-xor-freeness). We define the offset-xor-freeness advantage of A
against a KDM set Φ consisting of functions φ : {0, 1}rn −→M as

Advox
Φ (A) := Pr[φ(K1, .,Kr) = Ki ⊕Kj ⊕X : (i, j) ∈ {1, ., r}2; i 6= j;

(K1, .,Kr)←←{0, 1}rn; (φ,X)←←A]

82 Chapter 4 Key-Dependent Message Security

Offset-xor-freeness and claw-freeness are sufficient for the KDM security of two-round EM
with a single permutation.

Theorem 4.2.5. Let Φ be a KDM set that is claw-free and offset-xor-free. Then EMP,P[K1,K2,K3]
(with a single permutation) is Φ-KDM-CCA secure. More precisely, for any adversary A
against the Φ-KDM-CCA security of EMP,P[K1,K2,K3], there is an adversary C1 against the
claw-free property of Φ and an adversary C2 against the offset-xor-free property of Φ such that

Advkdm-cca
EMP,P[K1,K2,K3],Φ(A) ≤ 9q1q/2n + q2(2 ·Advcf

Φ (C1) + Advox
Φ (C2) + 9/2n) ,

where q1 is the number of queries of A to P± and q is the number of challenge queries of A
in either direction.

Proof. The proof structure is analogous to that previous case and we only present the
associated algorithm B in Figure 4.13 below.

Algo. BO,Chal(K, (+, φ))
(K1,K2,K3)← K
X1 ← φ(K1,K2)⊕K1
X2 ← O(+, X1)
X3 ← Chal(+, X2 ⊕K2)
C ← X3 ⊕K3
Return C

Algo. BO,Chal(K, (−, zC))
(K1,K2,K3)← K
X3 ← C ⊕K3
X2 ← O(−, X3)
X1 ← Chal(−, X2 ⊕K2)
M ← X1 ⊕K1
Return M

Figure 4.13: Algorithm B used in the KDM analysis of two-round EM with a single
permutation.

The oracle O implements (P±) and O′implements (P±,P’±). The adversary can trigger Sp1
in a number of ways as described below.

(1) Two forward queries (φ,X) are such that P(φ1(K)⊕K1)⊕K2 = X. This amounts to
guessing K2 with probability 2q1q/2n (Recall that in the one-round construction we
used offset-freeness at this stage.)

(2) Two backward queries (C , X) are such that P−(C⊕K3)⊕K2 = X. Again, this amounts
to guessing K2 with probability 2q1q/2n.

(3) A backward query C and a forward direct query X are such that: (3.1) P−(C ⊕K3)⊕
K2 = P(X). This amounts to guessing K2 with probability 2q1q/2n. (3.2) For some
random and known R we have R⊕K1 = X. This amounts to guessing K1.

(4) A forward query φ and a backward direct query X are such that: (4.1) P(φ(K) ⊕
K1) ⊕ K2 = P−(X). This amounts to guessing K2 with probability 2q1q/2n. (4.2)
R⊕K3 = X. This reduces to guessing K3.

The adversary can trigger Fg in one of the ways described below.

(1) Two forward queries φ1 6= φ2 are such that P(φ1(K)⊕K1)⊕K2 = P(φ2(K)⊕K1)⊕K2.
This violates claw-freeness.

Ch
ap

te
r4

4.2 Security of Even–Mansour Ciphers 83

(2) Two backward queries C1 6= C2 are such that P−(C1 ⊕K3)⊕K2 = P−(C2 ⊕K3)⊕K2.
This is not possible.

(3) A forward φ and a backward C are such that C is chosen second and: (3.1) P(φ(K)⊕
K1) ⊕K2 = R ⊕K1. Here R is a random value chosen after φ corresponding to the
output of B on C . This happens with probability 1/2n. (3.2) P−(C⊕K3)⊕K2 = R⊕K1.
Here R is a random value corresponding to the output of B on φ. Here C can depend
on R. This happens with probability 1/2n: Even if K3 is known, this event amounts to
guessing K1 ⊕K2. This event happens with probability 2q2/2n. (Note that here we
rely on round keys being different.)

(4) A forward φ and a backward C are such that φ is chosen second and: (4.1) P(φ(K)⊕
K1)⊕K2 = R ⊕K1. Here φ can depend on R. This happens with probability 1/2n:
Even if we allow the value P(φ(K)⊕K1) to be chosen, this amounts to guessing K1⊕K2.
(4.2) P−(C ⊕ K3) ⊕ K2 = R ⊕ K1. Here R is chosen after C . This happens with
probability 2q2/2n.

We also need to analyse event Sp2 here as B depends on the oracle. This event can be
triggered as a result of a collision between two queries to B one of which is to the oracle and
the other to the challenge. This can happen in one of the following ways.

(1) Inputs φ1 and φ2 such that: φ1(K)⊕K1 = P(φ2(K)⊕K1)⊕K2. If the input to the
permutation cannot be guessed, this happens with low probability. Else it violates
xor-offset-freeness.

(2) Inputs C1 and C2 such that: C1 ⊕ K3 = P−(C2 ⊕ K3) ⊕ K2. Even given K3, this
amounts to guessing K2.

(3) Inputs φ1 and C2 such that: (3.1) φ1(K)⊕K1 = R⊕K1. If R is chosen after φ1 this
happens with probability 1/2n. Else, a constant φ1 is not allowed and a non-constant φ1
violates claw-freeness with the constant function mapping to R. (3.2) C2⊕K3 = R⊕K3.
This violates the rules of the KDM game for a C2 chosen after R and otherwise happens
with probability 1/2n. (3.3) P(φ1(K)⊕K1) = P−(C2 ⊕K3)⊕K2. Even given K3, this
amounts to guessing K2. This happens with probability 2q2/2n.

Remark 4.2.6 (Comments on Adversaries). The adversary AP,EMP,P[K,K,K] described in
Figure 4.10 triggers the following event that does not respect fgrp for BP,Chal: (σ1, x1, y1) =
(σ1, x1, y1) with σ1 = +, x1 = P(∆⊕K)⊕K, y1 = P(P(∆⊕K)⊕K)⊕K. Similarly, the
adversary against the scheme EMP,P[K1,K2,K2] uses KDM functions without xor-offset-
freeness. It is however not clear if xor-offset-freeness is indeed necessary for the general key
schedule EMP,P[K1,K2,K3].

Remark 4.2.7 (Open question and conjecture). The simplest Even-Mansour configuration,
where the internal permutations are the same and keys are equal, is not KDM-secure under
a claw-free KDM set. An open question is what is the minimal configuration where the
Even-Mansour Cipher is KDM secure under a KDM set that is only claw-free? We conjecture
that the 3-round Even-Mansour cipher with the same permutations and independent keys is
KDM-secure under a claw-free set.

84 Chapter 4 Key-Dependent Message Security

4.3 KDM Security using the H-coefficient technique

KDM functions. In the following, we do not consider KDM functions φO that depend on
an oracle O; we consider only oracle-free functions. Nonetheless, the adversary can have a
direct access to an oracle O and he can use the answer from this oracle to build function φ.
We(re)-define the KDM sets from a statistical point of view and without adversary which is
useful when using H-coefficient. But the underlying properties (claw-freeness, offset-freeness,
offset-xor-freeness), on the KDM set remains the same.

Definition 4.3.1 (Claw-freeness). Let Φ be a KDM set for key space K and message space
M. The claw-freeness of Φ is defined as

cf(Φ) := max
φ1 6=φ2∈Φ

Pr[k←←K : φ1(k) = φ2(k)].

Definition 4.3.2 (Offset-Freeness). Fix integers n, ` > 0. Let Φ be a KDM set for key space
K = ({0, 1}n)` and message spaceM = {0, 1}n. The offset-freeness of Φ is defined as

of(Φ) := max
i∈{1,...,`}

φ∈Φ, x∈{0,1}n

Pr[k = (K1, . . . , k`)←←K : φ(k) = Ki ⊕ x].

Definition 4.3.3 (Offset-Xor-Freeness). Fix integers n, ` > 0. Let Φ be a KDM set for key
space K = ({0, 1}n)` and message spaceM = {0, 1}n. The offset-xor-freeness of Φ is defined
as

oxf(Φ) := max
i 6=j∈{1,...,`}
φ∈Φ, x∈{0,1}n

Pr[k = (K1, . . . ,K`)←←K : φ(k) = Ki ⊕Kj ⊕ x].

4.3.1 H-coefficient and KDM Security

H-coefficients. The H-coefficients technique [Pat09] was introduced by Patarin and
is widely used to prove the security of block cipher constructions such that Even Man-
sour [CLL+14] or Feistel schemes [Pat04]. Consider a deterministic adversary A which takes
no input, interacts with a set of oracles w (informally called a world), and returns a single
bit b, which we write Aw ⇒ b. Given two worlds w0 and w1 (offering the same interfaces),
the advantage of A in distinguishing w0 and w1 is defined as

Advw0,w1(A) := |Pr[Aw0 ⇒ 1]− Pr[Aw1 ⇒ 1]|.

The interaction between the adversary A and the oracles is recorded in a transcript τ .
The transcript is the list of all query/answer pairs respectively made by the adversary and
returned by the oracles. Let XA,w be the random variable distributed as the transcript
resulting from the interaction of A with world w. A transcript τ is said to be attainable
for A and w if this transcript can be the result of the interaction of A with world w (i.e.,
Pr[XA,w = τ] > 0).

Lemma 4.3.4 (H-Coefficients). Let w0 and w1 be two worlds and A be a distinguisher. Let
T be the set of attainable transcripts for A and w0, and let Tgood and Tbad be two disjoint

Ch
ap

te
r4

4.3 KDM Security using the H-coefficient technique 85

subsets of T such that T = Tgood ∪ Tbad. If there exist εbad such that

Pr[XA,w0 ∈ Tbad] ≤ εbad

and εgood such that for all τ ∈ Tgood,

Pr[XA,w1 = τ]
Pr[XA,w0 = τ] ≥ 1− εgood,

then Advw0,w1(A) ≤ εgood + εbad.

The proof of this lemma is standard [CLL+14]. The adversary output is a deterministic
function of the transcript, its distinguishing advantage is upper bounded by the statistical
distance between XA,w0 and XA,w1 .
For a given transcript QF and a function F, we say that F extends QF, if v = F(u) for all

(u, v) ∈ QF.

4.3.2 KDM Security with a Generic Lemma

Consider a blockcipher BCO := (K,EO,DO) with key space K and message spaceM based
on some ideal primitive O sampled from some oracle space OSp. We formalize security under
key-dependent message and chose-ciphertext attacks (KDM-CCA) as a distinguishing game
between two worlds that we call the real and ideal worlds. Given a KDM set Φ, the adversary
A has access to a KDM encryption oracle KDMEnc which takes as input a function φ ∈ Φ
and returns a ciphertext y ∈M, a decryption oracle Dec which takes as input a ciphertext
y ∈ M and returns a plaintext x ∈ M, and oracle O. We do not allow the adversary
to ask for decryption of key-dependent ciphertexts as we are not aware of any use cases
where such an oracle is available. In the real world, a key K is drawn uniformly at random
from K and KDMEnc(φ) returns EO(K,φ(K)) while Dec(y) returns DO(K, y). The ideal
world is similar to the real world except that E(K, ·) and D(K, ·) are replaced by a random
permutation P and its inverse. To exclude trivial attacks, we do not allow decryption of
ciphertexts that were obtained from the encryption oracle more precisely, such queries are
answered with ⊥ in both worlds), as otherwise the key can be recovered by decrypting the
encryption of K. The real and ideal world are formally defined in Figure 4.14 (ignore the
additional world pw for now). The KDM-CCA advantage of an adversary A against BC with
respect to Φ is defined as

Advkdm−cca
BCO (A,Φ) := Advrw,iw(A).

4.3.2.1 A Generic Lemma

In order to allow a convenient application of the H-coefficients technique when proving the
KDM security of a block cipher BCO, we introduce an intermediate world, called the perfect
world (pw), defined in Figure 4.14. Note that this world does not involve any key. The
encryption and decryption oracles lazily sample two independent random permutations stored
respectively in tables Tenc and Tdec, except that consistency is ensured for constant functions
φ ∈ ΦM: when a decryption query Dec(y) is made with y /∈ Dom(Tdec), a plaintext x is

86 Chapter 4 Key-Dependent Message Security

real world rw
O←←OSp
K←←K
L← []

oracle KDMEnc(φ)
if φ /∈ Φ thenreturn ⊥
x← φ(K)

L← L : {EO(K,x)}

return EO(K,x)

oracle Dec(y)
if y ∈ L thenreturn ⊥

else return DO(K, y)

oracle O(x)
return O(x)

ideal world iw
O←←OSp
K←←K; P←←Perm(M)
L← []

oracle KDMEnc(φ)
if φ /∈ Φ thenreturn ⊥
x← φ(K)
L← L : {P(x)}
return P(x)

oracle Dec(y)
if y ∈ L thenreturn ⊥

else return P−1(y)

oracle O(x)
return O(x)

perfect world pw
O←←OSp
Tenc ← []; Tdec ← []

oracle KDMEnc(φ)
if φ /∈ Φ thenreturn ⊥
if φ /∈ Dom(Tenc) then

Tenc(φ)←←M\ Rng(Tenc)
return Tenc(φ)

oracle Dec(y)
if y ∈ Rng(Tenc) thenreturn ⊥
if y /∈ Dom(Tdec) then
x←←M\ Rng(Tdec)
Tdec(y)← x

Tenc(φ : K 7→ x)← y

return Tdec(y)

oracle O(x)
return O(x)

Figure 4.14: Real world rw and ideal world iw defining KDM-CCA-security and perfect world
pw used in Theorem 4.3.5.

sampled fromM\Rng(Tdec) and the world assigns Tdec(y) := x and Tenc(φ) := y, where φ is
the constant function K 7→ x.
The following lemma upper-bounds the distinguishing advantage between the ideal and

the perfect worlds. It does not depend on the block cipher at hand (neither the ideal nor the
perfect world depends on it) nor on the oracle O (since neither in the ideal nor in the perfect
world the encryption/decryption oracle depend on it). For specific block ciphers, it will allow
to focus on the distinguishing advantage between the perfect and the real worlds, since by
the triangular inequality,

Adviw,rw(A) ≤ Adviw,pw(A) + Advpw,rw(A). (4.1)

Lemma 4.3.5. Let Φ be a KDM set for key space K and message space M. Let A be an
adversary making at most q queries to KDMEnc or Dec. Then

Adviw,pw(A) ≤ q2 · cf(Φ) + q2

#M− q .

Proof. We apply the H-coefficients technique with w0 = pw and w1 = iw. Fix a distinguisher

Ch
ap

te
r4

4.3 KDM Security using the H-coefficient technique 87

A making at most q encryption or decryption queries. We assume without loss of generality
that

• the adversary never repeats a query;
• the adversary never queries φ : K 7→ x to KDMEnc if it has received x as answer to

some query Dec(y) before (since in both worlds such a query would be answered with
y);

• the adversary never queries y to Dec if it has received y as answer to some query
KDMEnc(φ) before (since in both worlds such a query would be answered with ⊥).

We will refer to this as the no-pointless-query assumption.
We record the queries of the adversary to oracles KDMEnc or Dec in a list QBC: it

contains all tuples (+, φ, y) such that A queried KDMEnc(φ) and received answer y, and
all tuples (−, x, y) such that A queried Dec(y) and received answer x. The queries of the
adversary to oracle O are recorded in a list QO. After the adversary has finished querying
the oracles, we reveal the key k in case the adversary interacts with the ideal world, while in
the perfect world we reveal a uniformly random key independent from the oracles answers.
Hence, a transcript is a triple (QBC,QO,k). Let T be the set of attainable transcripts for
A and pw. An attainable transcript τ = (QBC,QO,k) is said bad if one of the following
conditions holds:

(C-1) there exists (+, φ, y) 6= (+, φ′, y′) ∈ QBC such that φ(K) = φ′(k);

(C-2) there exists (+, φ, y), (−, x, y′) ∈ QBC such that φ(k) = x;

(C-3) there exists (+, φ, y), (−, x, y′) ∈ QBC with y = y′.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad. We first upper bound
the probability to get a bad transcript in the perfect world.

Claim 1. Let A be a distinguisher making at most q ≤ 2n queries to KDMEnc or Dec.
With Tbad as defined above, one has

Pr[XA,pw ∈ Tbad] ≤ q2 · cf(Φ) + 3
2 ·

q2

#M−q .

Proof. We consider the probability of each condition in turn. Recall that in the perfect world,
the key K is drawn at random independently from the oracle answers.

(C-1) Fix two queries (+, φ, y) 6= (+, φ′, y′) ∈ QBC. Then, by Theorem 4.3.1, φ(K) = φ′(K)
with probability at most cf(Φ) over the draw of k. By summing over all possible pairs,
(C-1) happens with probability at most q2/2 · cf(Φ).

(C-2) Fix two queries (+, φ, y), (−, x, y′) ∈ QBC. If query (+, φ, y) came first, then x is
uniformly random in a set of size at least #M− q and independent from φ(k), and
hence φ(k) = x with probability at most 1/(#M−q). If query (−, x, y′) came first, then
by the no-pointless-query assumption, φ 6= (k 7→ x), so that φ(k) = x with probability
at most cf(Φ) (since it constitutes a claw with the constant function). All in all,
φ(k) = x with probability at most (1/(#M− q) + cf(Φ). By summing over all possible
pairs of queries, (C-2) happens with probability at most q2/2 · (1/(#M− q) + cf(Φ)).

88 Chapter 4 Key-Dependent Message Security

(C-3) Fix two queries (+, φ, y), (−, x, y′) ∈ QBC. If query (+, φ, y) came first, then, by the
no-pointless-query assumption, y′ 6= y. If query (−, x, y′) came first, then y is uniformly
random in a set of size at least #M− q and independent from y′, hence y = y′ with
probability at most 1/(#M− q). By summing over all possible pairs of queries, (C-3)
happens with probability at most q2/(#M− q).

The result follows by the union bound. �

Claim 2. Fix a good transcript τ = (QBC,QO,k). Then

Pr[XA,iw = τ]
Pr[XA,pw = τ] ≥ 1.

Proof. Let qenc, resp. qdec denote the number of queries to KDMEnc, resp. Dec in QBC,
with qenc + qdec = q.

In the perfect world, queries to KDMEnc and Dec are answered by lazily sampling
two independent injections Ienc : [qenc] → M and Idec : [qdec] → M (this follows from the
no-pointless-queries assumption which implies that for any query KDMEnc(φ) we have
φ /∈ Dom(Tenc) and for any query Dec(y) we have y /∈ Dom(Tdec)). Hence, letting Qenc, resp.
Qdec denote the set of encryption, resp. decryption queries in QBC, one has

Pr[XA,pw = τ] = Pr
K′←←K

[K ′ = K] · Pr
O←←OSp

[O ` QO] · Pr
Ienc

[Ienc ` Qenc] · Pr
Idec

[Idec ` Qdec]

= Pr
K′←←K

[K ′ = K] · Pr
O←←OSp

[O ` QO] · 1
(#M)qenc · (#M)qdec

.

We now compute the probability to obtain τ in the ideal world. Consider the modified
transcript Q′BC containing pairs (x, y) ∈ M2 constructed from QBC as follows: for each
triplet (+, φ, y) ∈ QBC, append (φ(x), y) to Q′BC and for each (−, x, y) ∈ QBC, append (x, y)
to Q′BC. Then, for any (x, y) 6= (x′, y′) ∈ Q′BC, we have x 6= x′ (as otherwise condition (C-1a),
(C-2a), or (C-3a) would be met) and y 6= y′ (as otherwise condition (C-1b), (C-2b), or (C-3b)
would be met). Hence,

Pr[XA,iw = τ] = Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · Pr
P←←Perm(M)

[P ` Q′BC]

= Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · 1
(#M)q

.

Thus,
Pr[XA,iw = τ]
Pr[XA,pw = τ] = (#M)qenc · (#M)qdec

(#M)q
≥ 1,

where the inequality follows from qenc + qdec = q.

The result follows by combining the two claims with Theorem 4.3.4.

4.4 Security of Key Alternating Feistel Ciphers

Key-Alternating Feistel (KAF). For a given public function F ∈ F∗({0, 1}n, {0, 1}n)

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 89

and a key K ∈ {0, 1}n, the one-round KAF is the permutation KAFF
K ∈ P∗({0, 1}2n) defined

as:
KAFF[K](LR) = R||F(K ⊕R)⊕ L.

The value L and R are respectively the left and right halves n-bits of the input. And the
left and right halves n-bits of the output are usually denoted S and T such that S = R
and T = F(K ⊕ R) ⊕ L. The r-rounds version of KAF is specified by r public functions
F1,F2, . . . ,Fr and r keys K1,K2, . . . ,Kr such that:

KAFF1,F2,...,Fr [K1,K2, . . . ,Kr](LR) = PFr
Kr
◦ · · · ◦ PF1

K1
(LR).

Usually, the round keys K1,K2, . . . ,Kr are written as a key vector k = (K1,K2, . . . ,Kr).

L

F1

K1
R

F2

K2

Fi

Ki

Fr

Kr

S T

Figure 4.15: The r-round Key-Alternating Feistel (KAF).

4.4.1 KDM Security of Four-Round Key-Alternating Feistel
We study the 4-round KAF with a single round function F and key vector k such that
k = (K1,K2,K3,K4). Given a function φ with range {0, 1}2n, we let φL, resp. φR denotes
the function which returns the n leftmost, resp. rightmost bits of φ. Given a KDM set Φ for
message spaceM = {0, 1}2n, we define ΦL := {φL : φ ∈ Φ} and ΦR := {φR : φ ∈ Φ}.
The 4-rounds KAF with the same round function F : {0, 1}n → {0, 1}n and independent

keys Ki ∈ {0, 1}n (such that k = (K1,K2,K3,K4)), denoted KAFF,F,F,F,F[K1,K2,K3,K4] can
be denoted KAFF

k in the following. For this analysis, the oracles of the real world is configured
as follows:

O := F and BC := KAFF
k.

A transcript τ is composed by the transcripts QBC and QF, and the key vector k such

90 Chapter 4 Key-Dependent Message Security

that: τ := (k,QBC,QF). QBC is the list of forward queries (+, φ, ST) (ST is the answer
of KDMEnc when called with the input φ) and backward queries (−, L′R′, S′T ′) (L′R′ is
the answer of the oracle Dec when called with S′T ′ as input) such that φ ∈ ΦR × ΦL,
(L′R′, ST, S′T ′) ∈ ({0, 1}2n)3. QF is the list of the queries (u, v) to the public function F (v
is the answer of the oracle O when called with u as input) where (u, v) ∈ ({0, 1}n)2.
Theorem 4.4.1 shows that the 4-rounds KAF, with the same rounds functions and inde-

pendent keys, is CCA-KDM secure if the set of key-dependent functions Φ := ΦL × ΦR has
a ΦR that is Offset-free and Offset-xor-free as defined respectively in Theorem 4.3.2 and
Theorem 4.3.3.

Theorem 4.4.1. For a 4-rounds Key-Alternating Cipher KAFF
k where the key vector k =

(K1,K2,K3,K4) is sampled uniformly at random, we have

Advkdm-cca
KAFF (A) ≤ q2(2 · cf(Φ) + 3/2 · oxf(ΦR) + 14/2n) + qqf(of(ΦR) + 7/2n)

where q is the number of challenge queries of A in either direction and qf is the number of
queries of A to F.

Proof. Fix a distinguisher A making at most q queries to KDMEnc or Dec and qf queries
to F. By Equation (4.1) and Theorem 4.3.5, we have:

Advkdm-cca
KAFF (A) ≤q2 · cf(Φ) + q2/(#M− q) + Advpw,rw(A)

q2 · cf(Φ) + q2/2n + Advpw,rw(A).

Due to the fact that #M = 22n and 1/(22n − q) ≤ 1/2n.
Hence, it remains to upper bound Advpw,rw(A). For this, we use the H-coefficients

technique.

Sketch of proof. We first give the definition of a bad transcript in Theorem 4.4.3 which
is a transcript that enables to distinguish easily the perfect world from the real world. A bad
transcript is defined according to conditions “C-i”: these conditions correspond to possible
collisions between the inputs of the first and the last functions of the KAF construction in
the transcript QBC and the input of the public function F in the transcript QF. These inputs
are represented in red in left part of Figure 4.16. The adversary is able to check the presence
of these collisions because the vector key is given in the transcript τ . The probability that A
produces a bad transcript in the perfect world is upper-bounded in Theorem 4.4.4 and to
make this probability low, note that the KDM set has to be offset-free, offset-xor-free and
unsurprisingly claw-free. Then, conditioning in the fact that the transcript is good (condition
C-i do not happen), the probability to pick a function F that leaks information is low (upper
bounded in Theorem 4.4.8). Conditions “C’-i”, as defined in Theorem 4.4.5, correspond to
collisions that can happen between the inputs wi, zi and other inputs of F (inputs of the
second and the third internal functions as shown in the left part of Figure 4.16) in case τ is a
good transcript.
To be more formal, combining Theorem 4.3.4, Theorem 4.4.4, and Theorem 4.4.8, we

obtain

Advpw,rw(A) ≤ q2(cf(Φ) + 3/2 · oxf(ΦR) + 13/2n) + qqf(of(ΦR) + 7/2n)

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 91

L

F

K1
R

F

K2

F

K3

F

K4

S T

u vF

L

F

K1
R

F
wi
K2

ziF

K3

F

K4

S T

u vF

Figure 4.16: (left) In red, collisions giving a bad transcript (Condition C-i). (Right) In red,
for a good transcript τ , F is bad if the inputs wi and zi collide with any other
input of F (conditions C’-i). For a good transcript τ , F is good if the values
wi,zi are all distinct;

from which the result follows.

Remark 4.4.2 (Security does not rely on K2 and K3). The proof of Theorem 4.4.1 does
not rely on the keys K2 and K3 but only K1 and K4.

We first define bad transcripts and upper bound their probability in the perfect world.
Informally, a transcript is said to be bad if some unexpected collision occurs in the set of
all inputs to the first and the fourth round functions (note that the adversary can let some
inputs collide with probability 1, for example by querying Dec(ST) and Dec(ST ′); bad
transcripts only capture collisions happening by chance).

Definition 4.4.3. A transcript τ = (QBC,QF,k) with k = (K1,K2,K3,K4) is said bad if
one of the following conditions hold:

(C-1) there exists (+, φ, ST) ∈ QBC and (u, v) ∈ QF such that
(a) φR(k)⊕K1 = u or
(b) S ⊕K4 = u;

(C-2) there exists (−, LR, ST) ∈ QBC and (u, v) ∈ QF such that
(a) R⊕K1 = u or
(b) S ⊕K4 = u;

(C-3) there exists (+, φ, ST) 6= (+, φ′, S′T ′) ∈ QBC such that

92 Chapter 4 Key-Dependent Message Security

(a) φ(k) = φ′(k) or
(b) S = S′;

(C-4) there exists (+, φ, ST), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such that
φR(k)⊕K1 = S′ ⊕K4;

(C-5) there exists (−, LR, ST) 6= (−, L′R′, S′T ′) ∈ QBC such that
R = R′;

(C-6) there exists (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct) such that
R⊕K1 = S′ ⊕K4;

(C-7) there exists (+, φ, ST), (−, L′R′, S′T ′) ∈ QBC such that
(a) φ(k) = L′R′ or
(b) ST = S′T ′ or
(c) φR(k)⊕K1 = S′ ⊕K4 or
(d) S ⊕K4 = R′ ⊕K1.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad.

Lemma 4.4.4. Let A be a distinguisher making at most q ≤ 2n queries to KDMEnc or
Dec and qf queries to F. With Tbad as defined above, one has

Pr[XA,pw ∈ Tbad] ≤ q2(cf(Φ) + 3/2 · oxf(ΦR) + 6/2n) + qqf(of(ΦR) + 3/2n).

Proof. We compute the probability of each condition in turn. Remember that in pw, the key
vector k = (K1,K2,K3,K4) is drawn at random independently of the oracles answers at the
end.

(C-1) Fix an encryption query (+, φ, ST) ∈ QBC and a query to the public function (u, v) ∈
QF.
(a) By Theorem 4.3.2, φR(k) = K1 ⊕ u with probability at most of(ΦR);
(b) Since k4 is uniformly random and independent from the query transcript, K4 =

S ⊕ u with probability at most 1/2n.
By summing over all possible pairs, condition (C-1) happens with probability at most
qqf(of(ΦR) + 1/2n).

(C-2) Fix a decryption query (−, LR, ST) ∈ QBC and a query to F (u, v) ∈ QF.
(a) Since k1 is uniformly random and independent from the query transcript, R⊕ u =

K1 with probability at most 1/2n (probability of guessing K1).
(b) Since k4 is uniformly random and independent from the query transcript, S ⊕ u =

K4 with probability at most 1/2n.
By summing over all possible pairs, condition (C-2) happens with probability at most
2qqf/2n.

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 93

(C-3) Fix two queries (+, φ, ST) 6= (+, φ′, S′T ′) ∈ QBC. Since the adversary never repeats
queries, we have φ 6= φ′.
(a) By Theorem 4.3.1, φ(k) = φ′(k) with probability at most cf(Φ) over the draw of

k.
(b) Since φ 6= φ′, the output S′T ′ are uniformly sampled at random in a set a of size

at least 22n− q (possible values after q queries) and independently from ST . Thus,
S = S′ with probability at most 2n/(22n − q) ≤ 1/(2n − 1) ≤ 2/2n.

By summing over all possible distinct pairs, condition (C-3) happens with probability
at most q2/2 · (cf(Φ) + 4/2n).

(C-4) Fix two queries (+, φ, ST), (+, φ′, S′T ′) ∈ QBC. By Theorem 4.3.3, φR(k) = S′⊕K1⊕K4
with probability at most oxf(ΦR) over the draw of k. By summing over all possible
pairs, condition (C-4) happens with probability at most q2 · oxf(ΦR).

(C-5) Fix two decryption queries (−, LR, ST) 6= (−, L′R′, S′T ′) ∈ QBC. The value L′R′ is
sampled uniformly at random in a set of size at least 22n − q and independently from
LR. Thus, R = R′ with probability at most 2n/(22n − q) ≤ 1/(2n − 1) ≤ 2/2n. By
summing over all possible distinct pairs, condition (C-5) happens with probability at
most q2/2n.

(C-6) Fix two decryption queries (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC. As K1 and K4 are
randomly sampled, R⊕S′ = K1⊕K4 with probability at most 1/2n. By summing over
all possible distinct pairs, condition (C-6) happens with probability at most q2/2n.

(C-7) Fix an encryption query (+, φ, ST) ∈ QBC and a decryption query (−, L′R′, S′T ′) ∈
QBC.
(a) By Theorem 4.3.1, φ(k) = L′R′ with probability at most cf(Φ).
(b) We distinguish two cases. If the encryption query occurs before the decryption

query, then necessarily ST 6= S′T ′ according to the no-pointless-query assumption
(the adversary cannot ask to oracle Dec to decrypt a value that was received as
an answer to the KDMEnc oracle). If the decryption query occurs before the
encryption query, then ST is uniformly random in a set of size at least 22n − q
and independent from S′T ′. Hence, the condition occurs with probability at most
1/(22n − q) ≤ 1/2n.

(c) By Theorem 4.3.3, φR(k) = S′ ⊕K1 ⊕K4 with probability at most oxf(ΦR) over
the draw of k.

(d) Since k1 and k4 are drawn uniformly at random and independently from the query
transcript, the probability that K1 ⊕K4 = S ⊕R′ is at most 1/2n.

By summing over all possible distinct pairs, condition (C-7) happens with probability
at most q2/2 · (cf(Φ) + oxf(ΦR) + 4/2n).

The result follow by the union bound over conditions (C-1) to (C-7).

We now settle to lower bound Pr[XA,rw = τ]/Pr[XA,pw = τ] for a good transcript τ . For
this, we introduce the following definition. Informally, given a good transcript τ , a function
F is bad with respect to τ is there is a collision in the set of all inputs to the second and
third round functions.

94 Chapter 4 Key-Dependent Message Security

Definition 4.4.5. Fix a good transcript τ = (QBC,QF,k). Let

Domain(F) := {u ∈ {0, 1}n : ∃(u, v) ∈ QF }

Domain′(F) :=

u ∈ {0, 1}
n :

∃(+, φ, ST) ∈ QBC, u = φR(k)⊕K1 ∨
∃(+, φ, ST) ∈ QBC, u = S ⊕K4 ∨
∃(−, LR, ST) ∈ QBC, u = R⊕K1 ∨
∃(−, LR, ST) ∈ QBC, u = S ⊕K4

 .
A function F is said bad with respect to τ , denoted bad(F, τ), if one of the following

conditions is fulfilled:

(C’-1) there exists (+, φ, ST) ∈ QBC such that

(a) φL(k)⊕ F(φR(k)⊕K1)⊕K2 ∈ Domain(F) ∪ Domain′(F) or

(b) T ⊕ F(S ⊕K4)⊕K3 ∈ Domain(F) ∪ Domain′(F);

(C’-2) there exists (−, LR, ST) ∈ QBC such that

(a) L⊕ F(R⊕K1)⊕K2 ∈ Domain(F) ∪ Domain′(F) or

(b) T ⊕ F(S ⊕K4)⊕K3 ∈ Domain(F) ∪ Domain′(F);

(C’-3) there exists (+, φ, ST) 6= (+, φ′, S′T ′) ∈ QBC such that

(a) φL(k)⊕ F (φR(k)⊕K1) = φ′L(k)⊕ F(φ′R(k)⊕K1) or

(b) T ⊕ F(S ⊕K4) = T ′ ⊕ F(S′ ⊕K4);

(C’-4) there exists (+, φ, ST), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such that

φL(k)⊕ F(φR(k)⊕K1)⊕K2 = T ′ ⊕ F(S′ ⊕ k4)⊕K3;

(C’-5) there exists (−, LR, ST) 6= (−, L′R′, S′T ′) ∈ QBC such that

(a) L⊕ F(R⊕K1) = L′ ⊕ F(R′ ⊕K1) or

(b) T ⊕ F(S ⊕K4) = T ′ ⊕ F(S′ ⊕K4);

(C’-6) there exists (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct) such that

L⊕ F(R⊕K1)⊕K2 = T ′ ⊕ F(S′ ⊕K4)⊕K3;

(C’-7) there exists (+, φ, ST), (−, L′R′, S′T ′) ∈ QBC such that

(a) φL(k)⊕ F (φR(k)⊕K1) = L′ ⊕ F (R′ ⊕K1) or

(b) T ⊕ F(S ⊕K4) = T ′ ⊕ F(S′ ⊕K4) or

(c) φL(k)⊕ F (φR(k)⊕K1)⊕K2 = T ′ ⊕ F (S′ ⊕ k4)⊕ k3 or

(d) T ⊕ F (S ⊕K4)⊕K3 = L′ ⊕ F (R′ ⊕K1)⊕K2.

Lemma 4.4.6. Fix a good transcript τ = (QBC,QF,k). Then

Pr[F←←F∗({0, 1}n, {0, 1}n) : KAFF
k ` QBC |F ` QF ∧ ¬bad(F, τ)] = 1

(2n)2q .

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 95

Proof. Let qenc, resp. qdec denote the number of queries to KDMEnc, resp. Dec in QBC,
with qenc + qdec = q. Using an arbitrary order, let

QBC = ((+, φ1, S1T1), . . . , (+, φqenc , SqencTqenc),
(−, Lqenc+1Rqenc+1, Sqenc+1Tqenc+1), . . . , (−, LqRq, SqTq)).

For a given function F, let

wi = φi,L(k)⊕ F(φi,R(k)⊕K1)⊕K2 for 1 ≤ i ≤ qenc

= Li ⊕ F(Ri ⊕K1)⊕K2 for qenc + 1 ≤ i ≤ q
zi = Ti ⊕ F(Si ⊕K4)⊕K3 for 1 ≤ i ≤ q.

Distinct input values. In the following, we will show that for any good transcript
τ = (QBC,QF,k), with k = (K1,K2,K3,K4) where the function F is a good function, all the
values wi, zi are distinct for all queries in the transcript QBC.

Since the transcript τ is good and F is a good function then

→ all the inputs wi for 1 ≤ i ≤ qenc (e.g. forward queries) are pairwise distinct otherwise
τ would fulfil condition (C’-3a);

→ all the values wi for qenc + 1 ≤ i ≤ qenc (e.g. backward queries) are pairwise distinct
otherwise τ would fulfil condition (C’-5a);

→ all the values wi for 1 ≤ i ≤ qenc and all the values wi for 1 ≤ i ≤ qenc are distinct
otherwise τ would fulfil condition (C’-7a).

Then all the values wi are pairwise distinct in a transcript QBC.

Similarly, since the transcript τ is good and F is a good function then

→ all the values zi for 1 ≤ i ≤ qenc are distinct from all values u for u ∈ QF otherwise τ
would fulfil condition (C’-1b);

→ all the values zi for qenc + 1 ≤ i ≤ qenc are distinct from all values u for u ∈ QF otherwise
τ would fulfil condition (C’-2b);

→ all the values zi for 1 ≤ i ≤ qenc are pairwise distinct otherwise τ would fulfil conditions
(C’-3b);

→ all the values zi for qenc+ 1 ≤ i ≤ q are pairwise distinct otherwise τ would fulfil condition
(C’-5b);

→ all the values zi for 1 ≤ i ≤ q and all the value zi for qenc+1 ≤ i ≤ q are distinct otherwise
τ would fulfil condition (C’-7b).

Then all the values zi are pairwise distinct in a transcript QBC.

Similarly, since the transcript τ is good and F is a good function then

96 Chapter 4 Key-Dependent Message Security

→ all the wi for 1 ≤ i ≤ qenc and all the values zi for 1 ≤ i ≤ qenc are distinct otherwise[→]
τ would fulfil condition (C’-4);

→ all the wi for qenc + 1 ≤ i ≤ q and all the values zi for qenc + 1 ≤ i ≤ q are distinct
otherwise τ would fulfil condition (C’-6);

→ all the wi for 1 ≤ i ≤ qenc and all the values zi for qenc+1 ≤ i ≤ q are distinct otherwise
τ would fulfil condition (C’-7c);

→ all the wi for qenc+1 ≤ i ≤ q and all the values zi for 1 ≤ i ≤ qenc are distinct otherwise
τ would fulfil condition (C’-7d).

Then all the values wi and zi are distinct.

Random output values. For all the 2q queries in QBC, we will show that the images F(wi)
and F(zi) are undetermined and then uniformly random.
For each forward query (+, φi, SiTi) ∈ QBC, we have

(+, φi, SiTi) ∈ QBC ⇐⇒
{

F(zi) = φi,L(k)⊕ Si ⊕ F(φi,R(k)⊕K1) for 1 ≤ i ≤ qenc
F(wi) = φi,R(k)⊕ Ti ⊕ F(Si ⊕K4) for 1 ≤ i ≤ qenc

}

For any forward query:
The value zi is different from φi,R(k)⊕K1 and different from the values u for (u, v) ∈ QF

otherwise the condition (C’-1a) would be fulfilled. Then the image F(zi) is
undetermined.

The value wi is different from Si ⊕K4 and different from the values u for (u, v) ∈ QF
otherwise the condition (C’-1b) would be fulfilled. Then the image F(wi) is
undetermined.

This reasoning is true for all the possible good transcripts τ with a good function F. Conse-
quently, for any i ∈ {1, . . . , qenc},
Pr[KAFF

k(φi,L(k)φi,R(k)) = SiTi] = Pr[F(zi) = φi,L(k)⊕ Si ⊕Xi ⊕K1) ∧ F(wi) = φi,R(k)⊕
Ti ⊕ Yi] where Xi a random value (for all transcripts). Thus, Pr[KAFF

k(φi,L(k)φi,R(k)) =
SiTi] = 1/(2n)2.

For each backward query (−, LiRi, SiTi), we have

(−, LiRi, SiTi) ∈ QBC ⇐⇒
{

F(zi) = Si ⊕ Li ⊕ F(Ri ⊕K1) for qenc + 1 ≤ i ≤ q
F(wi) = Ri ⊕ Ti ⊕ F(Si ⊕K4) for qenc + 1 ≤ i ≤ q

}

Similarly, for any backward query:
The value zi is different from Ri ⊕K1 and different from the values u for (u, v) ∈ QF

otherwise the condition (C’-2a) would be fulfilled. Then the image F(zi) is
undetermined.

The value wi is different from Si ⊕K4 and different from the values u for (u, v) ∈ QF
otherwise the condition (C’-2b) would be fulfilled. Then the image F(wi) is
undetermined.

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 97

This reasoning is true for all the possible good transcripts τ with a good function F.
Consequently, for any i ∈ {qenc + 1, q}, Pr[KAFF

k(LiRi) = SiTi] = 1/(2n)2.

The probability over the 2q queries gives the result.

Lemma 4.4.7. Fix a good transcript τ = (QBC,QF,k). Then

Pr[F←←F∗({0, 1}n, {0, 1}n) : bad(F, τ) |F ` QF] ≤ 4 · qqf/2n + 7 · q2/2n.

Proof. First, note that #Domain(F) = qf and #Domain′(F) ≤ 2q. We consider each condition
in turn. (In all the following, we will argue using the fact that the transcript is good by
referring to which specific condition defining a bad transcript would hold, saying e.g. “By
¬(C-ix), . . . ”).

(C’-1) Fix an encryption query (+, φ, ST) ∈ QBC.
(a) By ¬(C-1a), φR(k)⊕K1 is a fresh input for the function F and hence F(φR(k)⊕K1)

is uniformly random. Thus, φL(k)⊕F(φR(k)⊕K1)⊕K2 ∈ Domain(F)∪Domain′(F)
with probability at most (qf + 2q)/2n.

(b) By ¬(C-1b), S ⊕K4 is a fresh input for the function F and hence F(S ⊕K4) is
uniformly random. Thus, T ⊕ F(S ⊕K4) ⊕K3 ∈ Domain(F) ∪ Domain′(F) with
probability at most (qf + 2q)/2n.

By summing over all encryption queries, condition (C’-1) happens with probability at
most 2q(qf + 2q)/2n.

(C’-2) Fix a decryption query (−, LR, ST) ∈ QBC.
(a) By ¬(C-2a), R ⊕K1 is a fresh input for the function F and hence F(R ⊕K1) is

uniformly random. Thus, L ⊕ F(R ⊕K1) ⊕K2 ∈ Domain(F) ∪ Domain′(F) with
probability at most (qf + 2q)/2n.

(b) By ¬(C-2b), S⊕K4 is a fresh value for the function F and hence T⊕F(S⊕K4)⊕K3 ∈
Domain(F) ∪ Domain′(F) with probability at most (qf + 2q)/2n.

By summing over all encryption queries, condition (C’-2) happens with probability at
most 2q(qf + 2q)/2n.

(C’-3) Fix (+, φ, ST) 6= (+, φ′, S′T ′) ∈ QBC.
(a) By ¬(C-1a), we have φR(k) ⊕ K1 /∈ Domain(F) and φ′R(k) ⊕ K1 /∈ Domain(F).

Moreover, by ¬(C-3a), we have that φ(k) 6= φ′(k). We distinguish two cases. If
φR(k) 6= φ′R(k), then F(φR(k) ⊕K1) and F(φ′R(k) ⊕K1) are uniformly random
and independent, so that φL(k)⊕ F(φR(k)⊕K1) = φ′L(k)⊕ F(φ′R(k)⊕K1) with
probability 1/2n. If φR(k) = φ′R(k), then necessarily φL(k) 6= φ′L(k), so that the
condition cannot hold. Hence, this condition holds with probability at most 1/2n.

(b) By ¬(C-1b), S⊕ k4 /∈ Domain(F) and S′⊕ k4 /∈ Domain(F); moreover, by ¬(C-3b),
S 6= S′, so that F(S⊕K4) and F(S′⊕K4) are uniformly random and independent;
hence, T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4) with probability at most 1/2n.

By summing over all possible pairs, condition (C’-3) happens with probability at most
q2/2n.

98 Chapter 4 Key-Dependent Message Security

(C’-4) Fix two (possibly equal) encryption queries (+, φ, ST), (+, φ′, S′T ′) ∈ QBC. By ¬(C-1a),
φR(k)⊕K1 /∈ Domain(F) and by ¬(C-1b), S′ ⊕K4 /∈ Domain(F); moreover, by ¬(C-4),
we have φR(k)⊕K1 6= S′ ⊕K4, so that F(φR(k)⊕K1) and F(S′ ⊕K4) are uniformly
random and independent; hence, φL(k)⊕ F(φR(k)⊕K1)⊕K2 = T ′ ⊕ F(S′ ⊕ k4)⊕K3
with probability at most 1/2n. By summing over all possible pairs, condition (C’-4)
happens with probability at most q2/2n.

(C’-5) Fix two decryption queries (−, LR, ST) 6= (−, L′R′, S′T ′) ∈ QBC.
(a) By ¬(C-2a), R⊕k1 /∈ Domain(F) and R′⊕k1 /∈ Domain(F); moreover, by ¬(C-5a),

R 6= R′ so that F(R⊕K1) and F(R′⊕K1) are uniformly random and independent.
Hence, L⊕ F(R⊕K1) = L′ ⊕ F(R′ ⊕K1) with probability at most 1/2n.

(b) By ¬(C-2b), S ⊕ k4 /∈ Domain(F) and S′ ⊕ k4 /∈ Domain(F). We distinguish two
cases. If S 6= S′ then F(S ⊕ K4) and F(S′ ⊕ K4) are uniformly random and
independent and hence T ⊕ F (S ⊕K4) = T ′ ⊕ F (S′ ⊕K4) with probability at
most 1/2n. If S = S′ then necessarily T 6= T ′ since the adversary does not repeat
queries and hence the condition cannot hold. In all cases, the conditions holds
with probability at most 1/2n.

By summing over all possible distinct pairs, condition (C’-5) happens with probability
at most q2/2n.

(C’-6) Fix two (possibly equal) decryption queries (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC. By
¬(C-2a), R ⊕ k1 /∈ Domain(F) and by ¬(C-2b), S′ ⊕ k4 /∈ Domain(F); moreover, by
¬(C-6), R ⊕K1 6= S′ ⊕K4 so that F(R ⊕K1) and F(S′ ⊕K4) are uniformly random
and independent; hence, L⊕ F(R⊕K1)⊕K2 = T ′ ⊕ F(S′ ⊕K4)⊕K3 with probability
at most 1/2n. By summing over all possible pairs, condition (C’-6) happens with
probability at most q2/2n.

(C’-7) Fix an encryption query (+, φ, ST) ∈ QBC and a decryption query (−, L′R′, S′T ′) ∈
QBC. By respectively ¬(C-1a), ¬(C-1b), ¬(C-2a), and ¬(C-2b), φR(k)⊕K1, S ⊕K4,
R′ ⊕K1, and S′ ⊕K4 are all fresh input values to F.
(a) By ¬(C-7a), φ(k) 6= L′R′. We distinguish two cases. If φR(k) 6= R′, then

F(φR(k)⊕K1) and F(R′ ⊕K1) are uniformly random and independent and thus
φL(k) ⊕ F(φR(k) ⊕ K1) = L′ ⊕ F(R′ ⊕ K1) with probability at most 1/2n. If
φR(k) = R′, then necessarily φL(k) 6= L′ and hence the condition cannot hold. In
all cases, the condition holds with probability at most 1/2n.

(b) By ¬(C-7b), ST 6= S′T ′. If S 6= S′, then F(S ⊕K4) and F(S′ ⊕K4) are uniformly
random and independent and hence T ⊕ F(S ⊕ K4) = T ′ ⊕ F(S′ ⊕ K4) with
probability at most 1/2n. If S = S′, then necessarily T 6= T ′ and the condition
cannot hold. In all cases, the condition holds with probability at most 1/2n.

(c) By ¬(C-7c), φR(k)⊕K1 6= S′⊕k4 so that F(φR(k)⊕K1) and F(S′⊕k4) are uniformly
random and independent and thus φL(k)⊕F (φR(k)⊕K1)⊕K2 = T ′⊕F (S′⊕k4)⊕k3
with probability at most 1/2n.

(d) By ¬(C-7d), S ⊕K4 6= R′ ⊕K1 so that F(S ⊕K4) and F(R′ ⊕K1) are uniformly
random and independent and thus T ⊕ F(S ⊕K4)⊕K3 = L′ ⊕ F(R′ ⊕K1)⊕K2
with probability at most 1/2n.

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 99

By summing over all possible pairs, condition (C’-7) happens with probability at most
3q2/2n.

The result follows by the union bound over all conditions.

Lemma 4.4.8. Fix a good transcript τ = (QBC,QF ,k). Then

Pr[XA,rw = τ]
Pr[XA,iw = τ] ≥ 1− 4 · qqf/2n + 7 · q2/2n.

Proof. Let τ = (QBC,QF,k) with k = (k1, k2, k3, k4) be a good transcript, and let qenc, resp.
qdec denote the number of queries to KDMEnc, resp. Dec in QBC, with qenc + qdec = q.

Recall that one has

Pr[XA,pw = τ] = 1
#K ·

1
(22n)qenc

· 1
(22n)qdec

· 1
(2n)qf

, (4.2)

where K := ({0, 1}k)4 denote the key space of the construction.
We must now lower bound the probability that XA,rw = τ . One has

Pr[XA,rw = τ] = 1
#K · Pr[KAFF

k ` QBC ∧ F ` QF]

= 1
#K ·

1
(2n)qf

· Pr[KAFFk ` QBC |F ` QF]

= 1
#K ·

1
(2n)qf

· Pr[KAFF
k ` QBC |F ` QF ∧ ¬bad(F, τ)]

· (1− Pr[bad(F, τ) |F ` QF]), (4.3)

where all probabilities are over F←←F∗({0, 1}n, {0, 1}n).
Combining Equation (4.2) and Equation (4.3), one has

Pr[XA,rw = τ]
Pr[XA,pw = τ] = (22n)qenc · (22n)qdec

· Pr[KAFF
k ` QBC |F ` QF ∧ ¬bad(F, τ)]

· (1− Pr[bad(F, τ) |F ` QF]).

Using Theorem 4.4.6 and Theorem 4.4.7, we obtain

Pr[XA,rw = τ]
Pr[XA,pw = τ] ≥

(22n)qenc · (22n)qdec

(2n)2q · (1− 4 · qqf/2n + 7 · q2/2n)

≥ 1− 4 · qqf/2n + 7 · q2/2n.

Attack on 4 rounds KAF. If the KDM set Φ is not Offset-free then the following
adversary breaks the KDM security of a 4-rounds KAFF

k with the same round functions F and
independent keys such that k = (K1,K2,K3,K4). This attack take advantage of a collision
at the input if the third function F with two different encryption queries.

• A chooses two values x and x′ then it uses the oracle O (it implements the function F)
to obtain the values F(x), F(x′), F2(x) and F2(x′).

100 Chapter 4 Key-Dependent Message Security

• A builds the values ∆L = F2(x)⊕ x; ∆R = F(x), ∆′L = F2(x′)⊕ x′ and ∆′R = F(x′) and
calls the KDMEnc oracle twice with the inputs φ and φ′ such that φL(k) = K2 ⊕∆L,
φR(k) = K1⊕∆R, φ′L(k) = K2 ⊕∆′L and φ′R(k) = K1 ⊕∆′R. It receives the values ST
and S′T ′.

• If S ⊕ S′ = x⊕ x′, A returns 1 and it returns 0 otherwise.

4.4.2 Sliding attack for r-rounds

In this section, we analyse the simplest KAF configuration where all functions are the same
and all keys are identical. This construction, for any number of rounds, is already insecure in
the CPA model: using two encryption queries, we have KAF(LR) = ST and KAF(TS) = LR
(the adversary can recover the plaintext LR). In the KDM security model, we give a stronger
attack, namely a key-recovery attack, using only one query. Four the 4-rounds KAF, the
adversary A is the following:

• A chooses a value ∆ ∈ {0, 1}n and calls the encryption oracle KDMEnc giving as
input the function φ such that

φR(k) = K⊕F(∆)⊕F[F2(∆)⊕∆] and φL(k) = K⊕F2(∆)⊕∆⊕F[F(∆)⊕F(F2(∆)⊕∆)].

It receives the value ST .

• If S ⊕ T = ∆ then A returns the value T (which is the key K in the real world).

For this attack, one encryption query is sufficient to extract the key K. The details of this
attack is shown in Figure 4.17. This attack can be generalized for any number of rounds. We
can give a generic expression for the function φ for any number of round r but we believe
that it will be hard to read. Instead, we give the following method. The idea is that, for a
r-rounds KAF, the outputs ST has to be equal to S = L0 and T = R0 where L0 = K ⊕∆
and R0 = K. We define the following recursive sequences

∀i ∈ N, (LR)i :=


L0 = K ⊕∆ and R0 = K
Li+1 = F(Li ⊕K)⊕Ri
Ri+1 = Li

∀i ∈ N, the values Li and Ri can be written such that Li = K ⊕ ∆L and Ri = K ⊕ ∆R

where ∆L and ∆R are constants independent from K then choosing such functions (Li and
Ri) as inputs is allowed. Then the previous adversary A can be used to recover the key
in the CPA-KDM model of the r-round KAF (same round functions and same keys) with
φL(K) = Lr and φR(K) = Rr. The outputs ST will always be the same (equal to L0R0 as
shown in Figure 4.18).
Even in the r round KAF, where the keys of all odd rounds are equal to the same key

K1 and all the keys of even rounds are equal to the same K2 the keys K1 and K2 can be
extracted using one query in the KDM model. The previous attack can be adapted by
choosing L0 = K2 ⊕∆ and R0 = K1 when r is even and L0 = K1 ⊕∆ and R0 = K2 when r
is odd.

Ch
ap

te
r4

4.4 Security of Key Alternating Feistel Ciphers 101

φL(K)

F

K
φR(K)

K ⊕ F2(∆)⊕ F[F2(∆)⊕∆]

F

K
K ⊕ F2(∆)⊕∆

K ⊕ F2(∆)⊕∆

F

K
K ⊕ F(∆)

K ⊕ F(∆)

F

K
K ⊕∆

S = K ⊕∆ T = K

Figure 4.17: Details of the Sliding attack on 4-rounds KAF (same keys and same round
function).

L1

F

K
R1

L0 R0

L2

F

K
R2

L1

F

K
R1

L0 R0

L3

F

K
R3

L2

F

K
R2

L1

F

K
R1

L0 R0

Figure 4.18: Notations for Sliding attack.

102 Chapter 4 Key-Dependent Message Security

To be more formal, we have the following recursive sequences:

∀i = 2j with j ∈ N, (LR)i :=


L0 = K1 ⊕∆ and R0 = K2
Li+1 = F(Li ⊕K∗)⊕Ri
Ri+1 = Li

When computing the internal value Li+1, the key K∗ is equal to K1 if i is odd and it is equal
to K2 otherwise.

∀i = 2j + 1 with j ∈ N, (LR)i :=


L0 = K2 ⊕∆ and R0 = K1
Li+1 = F(Li ⊕K∗)⊕Ri
Ri+1 = Li

When computing the internal value Li+1, the key K∗ is equal to K1 if i is even and it is
equal to K2 otherwise.

To recover the two keys, K1 and K2, the adversary computes S ⊕∆, which corresponds to
one key (K1 or K2 depending of the number of rounds) and the other key is the output T .

4.5 Even-Mansour KDM security with H-coefficients

The KDM-security of the one-round Even-Mansour cipher is analysed in a first place in
section 4.2.2.1 with the splitting and forgetting framework. To compare the two KDM security
analysis methods, it was analysed also with the H-coefficient technique.
The r-round Even–Mansour cipher in a model of computation with r permutations

P±1 , . . . ,P±r with domainM = {0, 1}n is a block cipher with key space K = {0, 1}(r+1)n and
enciphering and deciphering algorithms

EP1,...,Pr ((K1, . . . ,Kr+1),M) := Pr(· · ·P2(P1(M ⊕K1)⊕K2) · · ·)⊕Kr+1 ,

DP−1 ,...,P
−
r ((K1, . . . ,Kr+1),M) := P−1 (· · ·P−r−1(P−r (M ⊕Kr+1)⊕Kr) · · ·)⊕K1 .

The EM ciphers can be also considered in configurations where (some of the) keys and/or
(some of the) permutations are reused in different rounds. We denote the EM cipher where
Pi and Ki+1 are used in round i by EMP1,...,Pr [K1,K2, . . . ,Kr+1].

4.5.1 Security of 1-round Even-Mansour

Theorem 4.5.1. Let Φ be a KDM set that is claw-free and offset-xor-free. Then EMP[k],
with k = (K1,K2) is Φ-KDM-secure.

Advkdm−cca
EMP

K1,K2
(A) ≤ 2q2 · cf(Φ) + qqf · of(Φ) + 3/2 · q2/(2n − 1) + 3qqf · 1/2n.

where q is the number of challenge queries of A in either direction and qf is the number of
queries of A to P.

Ch
ap

te
r4

4.5 Even-Mansour KDM security with H-coefficients 103

Proof. By Equation (4.1) and Theorem 4.3.5, we have

Advkdm−cca
EMP

K1,K2
(A) ≤ q2cf(Φ) + q2

2n − q + Advpw,rw(A).

Applying H-coefficient technique between the perfect world and the real world with Theo-
rem 4.5.3 and Theorem 4.5.4 gives

Advpw,rw(A) ≤ q2 · cf(Φ) + qqf · of(Φ) + q2/2 · 1/(2n − q) + 3qqf/2n.

Then combining the two above in-equation gives the result. This analysis gives the same
result with K1 = K2.

Real vs Perfect. In the following, we give the analysis that gives the advantage of an
adversary distinguishing the perfect world pw and the real world rw.
We define the bad transcripts for 1-round Even-Mansour as transcripts that contains

queries where trivial collisions exist. By trivial collisions, we mean collisions that enable the
adversary to distinguish the perfect world and the ideal world with high probability.

Definition 4.5.2. A transcript τ = (QEM,QF,k) with k = (K1,K2) is said bad if one of the
following condition hold

(C-1) there exist (+, φ, y) 6= (+, φ′, y′) ∈ QEM such that φ(k) 6= φ′(k).

(C-2) there exist (+, φ, y) 6= (−, x′, y′) ∈ QEM such that
(a) y = y′ or
(b) φ(k) = x′ where φ different from the constant function k 7→ x.

(C-3) there exist (+, φ, y) ∈ QEM and (u, v) ∈ QP such that
(a) φ(k)⊕K1 = u or
(b) y ⊕K2 = v.

(C-4) there exist (−, x, y) ∈ QEM and (u, v) ∈ QP such that
(a) x⊕K1 = u or
(b) y ⊕K2 = v.

Lemma 4.5.3. For the settings BC := EMK1,K2 and O := P, let A be a distinguisher making
at most q ≤ 2n queries to KDMEnc or Dec and qf queries to P. With Tbad as defined above,
one has

Pr[XA,pw ∈ Tbad] ≤ q2 · cf(Φ) + q2/2 · 1/(2n − q) + qqf · of(Φ) + 3qqf/2n.

Proof. We analyse the probability of each condition given in Theorem 4.5.2 in the perfect
world pw where the keys K1 and K2 are sampled at random independently from the oracle
answers.

(C-1) For two encryption queries in QEM, by Theorem 4.3.1, the probability of condition
(C-1) is at most cf(Φ). Summing over all the possible distinct pairs, condition (C-1)
happens wit probability at most q2/2 · cf(Φ).

104 Chapter 4 Key-Dependent Message Security

(C-2) Fix an encryption query (+, φ, y) ∈ QEM and a decryption query (−, x′, y′) ∈ QEM,
(a) The decryption query has to before the encryption query in the transcript otherwise

the encryption query is a pointless query. Then the value y is sampled in a set
of size 2n − q independently from the value y′. Then the probability to have
φ(k) = x′ is at most 1/(2n − q).

(b) Here the function φ is different from the constant function k 7→ x′ otherwise,
(+, φ, y) = (−, x′, y′) ∈ QEM. As the key vector k is sampled uniformly at random
after all encryption/decryption query, the probability to have φ(k) = x′ is cf(Φ)
by Theorem 4.3.1.

Summing over all the possible distinct pairs, condition (C-2) happens with probability
at most q2/2 · 1/(2n − q) + q2/2 · cf(Φ).

(C-3) Fix a query to the encryption oracle (+, φ, y) ∈ QEM and a query to the public
permutation (u, v) ∈ QP.
(a) By Theorem 4.3.2, φ(k)⊕K1 = u with probability at most of(Φ).
(b) As the key K2 is sampled uniformly at random and independently from all the

queries, the collision y⊕K2 = v happens with probability at most 1/2n. Summing
over all the pairs gives qqf/2n.

Summing over all the possible pairs, condition (C-3) happens with at most probability
qqf · of(Φ) + qqf/2n.

(C-4) Fix a query to the decryption oracle (−, x, y) ∈ QEM and a query to the public
permutation (u, v) ∈ QP. The keys K1 and K2 are uniformly at random and are
independent of all the queries, each collision happens with probability at most 1/2n.
By summing over all the possible pairs, condition (C-4) happens with probability at
most 2qqf/2n.

The result follows by the union bound.

Lemma 4.5.4. Let τ be a good transcript. Then

Pr[XA,rw = τ]
Pr[XA,pw = τ] ≥ 1.

Proof. Let τ = (QEM,QP,k) with k = (K1,K2) be a good transcript, and let qenc, resp. qdec
denote the number of queries to KDMEnc, resp. Dec in QEM, with qenc + qdec = q.
Recall that one has

Pr[XA,pw = τ] = 1
|K|
· 1

(2n)qenc

· 1
(2n)qdec

· 1
(2n)qf

, (4.4)

where K := ({0, 1}n)2 denotes the key space of the 1-round Even-Mansour scheme.
In the real world, one obtains the queries transcript (QEM,QP) iff P satisfies q + qf distinct
and “compatible” equations and

Pr[XA,rw = τ] = 1
|K|
· 1

(2n)q+qf

, (4.5)

Ch
ap

te
r4

4.5 Even-Mansour KDM security with H-coefficients 105

where all probabilities are over P←←P∗({0, 1}n).
Combining Equation (4.4) and Equation (4.5) gives the result.

Conclusion. This analysis of the one-round Even-Mansour cipher, using the H-coefficient
technique, gives the same security result than the the splitting and forgetting framework (the
advantages are very close). Moreover, this analysis, using H-coefficient technique, is shorter
and more readable but the intuition of the security proof is more hidden. We think that if
the reader is familiar with the H-coefficient technique, this second technique is easier to apply.
It can be interesting to prove the KDM-security for different schemes and configurations
(EM, KAF or others) with both techniques to see if for some cases, one of these methods
gives a better result.
Generally, this analysis shows that KDM security under a claw-free KDM set is not

achievable for the simple EM and KAF configurations, where the keys are equal and the
internal primitives (functions or permutations) are the same; and no matter the number of
rounds due to the slide attacks. But some level of KDM security, for a more constrained
KDM set (offset-free and/or offset-xor-free), is achievable when the underlying primitives of
the EM/KAF constructions are different or the keys are independent. The most interesting
configurations, from an implementation point of view, is where the internal primitives are
the same; it is implemented once and can be used many times. We noticed that, when the
keys are independent, the KDM security level increases: the one-round Even-Mansour is is
proved secure under a KDM set that is offset-free, offset-xor-free and claw-free; the KDM set
for the two-round Even-Mansour is expanded by removing the offset-freeness restriction and
we believe that adding one round will give KDM security with a claw-free set (for 3-round
EM). For the KAF, with the same configuration, giving a conjecture is less straightforward
but we believe that 6-round KAF cipher (same functions and independent keys) should be
secure under a claw-free KDM set.

Ch
ap

te
r5

Chapter 5
Incremental Authentication Schemes

Contents

5.1 Incremental MACs and Security notions 111
5.1.1 Incremental Authentication Scheme Framework 111
5.1.2 Security Notions for Incremental MACs 115
5.1.3 Relations among Security Notions for Incremental MACs 118
5.1.4 From Single-Document to Multi-Document Security 122

5.2 Incremental MACs with IUF1 Security 127
5.2.1 XMAC Constructions . 127
5.2.2 XS Construction . 128
5.2.3 MXS Construction . 135

5.3 Incremental MACs with IUF2 Security 142
5.3.1 XMAC Constructions . 142
5.3.2 MXS Construction . 143

— 107 —

Ch
ap

te
r5

109

Bellare, Goldreich and Goldwasser initiated the study on incremental cryptography in [BGG94]
and then refined it in [BGG95]. Cryptographic incremental constructions are meant to provide
efficient updates compared to classical algorithms. Usually, the result of a cryptographic algo-
rithm (such as encryption or authentication) over a document has to be re-computed entirely
if any change is applied to the document (and this regardless of the modification size). Incre-
mental cryptography enables to update a signature, a message authentication code (MAC) or
a ciphertext in time proportional to the number of modifications applied to the corresponding
document. This attractive feature leads to build many incremental cryptographic primitives
such as encryption schemes [BGG95, AM13, Ati14], signatures [BGG94, Fis97b, MPRS12],
MACs [BGG95, Fis97b, Mic97], hash functions [GSC01, BM97] and authenticated encryption
constructions [BKY02, AM13, SY16].
An algorithm is incremental regarding specific update operations such as inserting, deleting
or replacing a data block inside a document. A desirable incremental algorithm should
support all these operations for any position: it should be possible to insert, delete or
replace a data block of the document for all positions without breaking the security of the
cryptographic algorithm. Most known algorithms only support replacement of data blocks
and the algorithms that support insertion, deletion and replacement1 are deemed strongly
incremental.
Protection against virus is the first application of incremental cryptography quoted in the
seminal paper [BGG94]. They consider the usage scenario where a processor accesses files on
a remote host and a virus can alter these files. A simple idea is to compute authentication
tags for all files with a key stored securely by the processor and any modification by a virus
will be detected by verifying the corresponding tag. Knowing that these files will be updated
often enough, using an incremental authentication algorithm preserves the processor by
performing a lighter computation.
Bellare et al. also introduced in [BGG94] the corresponding security notions. In the basic
security model, the adversary can obtain a valid authentication tag for any message he wanted
(as in classical MAC security) and it can also update (with the supported update operations)
valid message/tag pairs. This is a first security level but it is reasonable to consider a stronger
adversary that can alter files and tags before applying update operations; it corresponds to
the tamper-proof security notion introduced in [BGG94].
Nowadays, this use case can be extended to the “digital world”. Large amount of data [GR12,
MGS15] are processed every day by different services like cloud services, distributed networks
and distributed storage. It is clear that all these data require integrity and/or privacy at a
low computational cost otherwise going through gigabytes of data for minor changes without
incremental primitives is really demanding in term of time and energy. A concrete example
is the Cloud Bigtable by Google [BM06] that stores petabytes of data across thousands of
commodity servers. This Bigtable has a particular data structure that links a unique index
number to each block. In this case an incremental hashing that supports replacement and
insertion operations is suitable as mentioned in [MGS15]. A more critical usage is storage
services in mobile cloud computing where a mobile client device is in addition limited in term of
energy consumption. To solve this issue, Itani, Kayssi and Chehab provide an energy-efficient
protocol in [IKC10] that guarantees data integrity based on incremental MACs. Another use
case is sensor networks and more specifically environmental sensors [HM06, MGS15]: several

1Actually supporting insertion and deletion is sufficient as replacement can be obtain by combining these
two update operations.

110 Chapter 5 Incremental Authentication Schemes

sensors are deployed at different physical positions and they record continuously data. At
some point, all the data end up in a big public database that has to be publicly checkable.
The database is updated (insertion operation mainly) at a high frequency and if the hash
value over all the database is entirely re-computed for each insertion it will be very consuming.
All these use cases are examples among many others. Incremental cryptography is clearly
an area to explore to solve practical issues. For now incrementality is mainly investigated
for hashing and signing even if it was also considered for encryption in [BGG94, AM13]. It
is not surprising regarding all the practical use cases that need incremental authenticated
constructions. Recently, the CAESAR2 competition stimulated research on authenticated
encryption algorithms. Sasaki and Yasuda analysed several candidates and found that none
of them performed incrementality. That is why they designed their own authenticated
encryption mode with associated data [SY16] based on existing constructions. This new
mode is incremental for the replace, insert and delete operations, but the insert and delete
operations of this mode concern only the last block of the authenticated data or the last
block of the message (and it remains open to design a strongly incremental authenticated
encryption algorithm).

In chapter 2, we define a strong model where the authenticity of the disk sectors is
guaranteed. Incremental MAC can be a possibility to enhance the disk performance by
reducing the read and write operation delays as the update and verify operations should
be done in constant time. A first scenario is to use a regular MAC scheme to compute
the local tags and an incremental MAC to ensure the authenticity of the local tags. Then
for each data sector modification (e.g. each write operation), the corresponding local tag
is recomputed from scratch and the global tag is updated quickly in the secure memory
according to the local tag. And each time, a sector is read, the authenticity of the local tag
has to be verified quickly (using the incremental MAC) before the verification of the data
sector integrity (using the MAC). Another possibility is to use the incremental MAC for
the data sector authenticity with a key K1 and for the local tag integrity with a different
key K2. But for each sector modification, even only one bit, the sector is re-written entirely
then if the local tag computation with a regular MAC takes less time than a read/write
operation (without data authenticity) then using an incremental MAC for the sector data
does not enhance the read or write operations. As the number of sectors is fixed and it is
better to guarantee the whole disk integrity, the incremental MAC set of operations can be
reduced to the replace operation. The initialisation of the disk will take some time due to
the encryption and the local tag computation of each sector and the global tag in the FADE
model (described in Section 2.3.2) but this is only the case for the first disk usage.

One can also consider encryption "on the fly" where each sector are encrypted and tagged
only when it is used for the first time. In this chapter, we introduce a specific framework
to analyse incremental MACs for different security notions. Then we give an attack against
the the basic security of the Xor-Scheme which is a strongly incremental MAC. We also give
different ways to patch this construction and a security proof for one of them. Then we
introduce a new incremental MAC scheme that achieves the strong security notion IUF2 and
the corresponding security proofs.

2Competition for Authenticated Encryption: Security, Applicability, and Robustness.

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 111

5.1 Incremental MACs and Security notions
In this section, we give a formal definition for an incremental MAC scheme and the corre-
sponding security notions using security games. We recall that the game rules and the game
notations are described in Section 1.2. We follow the line of papers oriented on incremental
MACs (like in [Fis97a]) by using the word "document" instead of message but both can be
used.

5.1.1 Incremental Authentication Scheme Framework

Document editing systems. A document editing system DES 3 specified as follows
DES := (BS,DS,OpCodes,Edit). There is a block space DES.BS = {0, 1}DES.n where DES.n ≥ 1
is the block length. The document space DES.DS is then defined as the set of all vectors over
DES.BS, meaning a document has the form D = D[1]|| . . . ||D[nb] with nb = |D|DES.n (number
of DES.n-bit blocks in D) and D[i] ∈ DES.BS for all i ∈ [1..nb]. There is a set DES.OpCodes of
operation codes, which are names or formal symbols to indicate edit operations on documents.
There is a deterministic algorithm DES.Edit which takes, as inputs, a document D ∈ DES.DS,
an operation code op ∈ DES.OpCodes and arguments arg and returns an updated document
D′ ∈ DES.DS.

op arg DES.Edit(D, op, arg)
replace i, x (D[1], . . . , D[i− 1], x,D[i+ 1], . . . , D[|D|])
insert i, x (D[1], . . . , D[i], x,D[i+ 1], . . . , D[|D|])
delete i (D[1], . . . , D[i− 1], D[i+ 1], . . . , D[|D|])

Figure 5.1: Examples of edit operations.

Examples of operations are given in Figure 5.1. The figure shows three common edit
operations, namely insert, replace and delete, whose operation codes are denoted respectively
by insert, replace and delete. The insert operation allows inserting a block x at position i in
the document D, the delete operation allows deletion of the i-th block of D, and the replace
operation allows replacement of the i-th block of D by the block x. Note that a scheme
which is incremental for the insert and delete operations is also incremental for the replace
operation: replace can be implemented by using insert and delete. But in some cases we will
consider only replace.

Incremental message authentication schemes. In the following, we define two types
of incremental schemes: probabilistic or randomized and nonce-based incremental schemes.
A nonce-based incremental message authentication scheme iMA for a document editing

system DES is specified as follows:

iMA = (KS,BS,DS,NS, IS, kg, init, tag, upd, ver).

There is a block space iMA.BS = {0, 1}iMA.n where iMA.n ≥ 1 is the block length; the document
space iMA.DS is then defined as the set of all vectors over iMA.BS and iMA.DS ⊇ DES.DS,

3In the following DES refers to this notion and not to the Data Encryption Standard.

112 Chapter 5 Incremental Authentication Schemes

so that all documents of the document editing system may be tagged. There are a document
identity space iMA.IS, a nonce space iMA.NS and a key space iMA.KS defined for the scheme.

• The iMA scheme has to be initialized by calling the probabilistic key generation algorithm
iMA.kg that takes no inputs and returns a key K ∈ iMA.KS.

• The initialization algorithm iMA.init takes an identifier id ∈ iMA.IS and returns an
initial state stid for id. It can be probabilistic.

• The tagging algorithm iMA.tag takes a key K ∈ iMA.KS, a nonce N ∈ iMA.NS, an iden-
tifier id ∈ iMA.IS, a document D ∈ iMA.DS and current state stid , and deterministically
returns a tag t and updated state stid .

• There is an update algorithm iMA.upd that takes the key K ∈ iMA.KS, a nonce
N ∈ NS, an identifier id ∈ iMA.IS, a document D ∈ iMA.DS, an operation code
op ∈ DES.OpCodes, arguments arg for the operation, a tag t and the current state stid
and deterministically returns an updated tag t and updated state stid .

• The verification algorithm iMA.ver takes a key K ∈ iMA.KS, an identifier id ∈ iMA.IS, a
document D ∈ iMA.DS, the state stid and a candidate tag t to deterministically return
either true or false.

• An iMA scheme may take other parameters and if it is the case, it will be explicitly
underlined in its specifications.

For nonce-based incremental schemes, the tagging, update and verify algorithms are deter-
ministic.

A probabilistic incremental scheme iMA such that

iMA = (KS,BS,DS,RS, IS, kg, init, tag, upd, ver),

has similar specifications except that

1. Instead of a nonce space NS, it has as a parameter a random value space RS,

2. The tagging and update algorithms are probabilistic and do not take a nonce as input.

Update time. The update time of an incremental MAC should be proportional to the
modification. This property makes an incremental MAC more efficient that a standard
MAC where for each modification, the tag is recomputed from scratch. More formally, for
a couple document/tag where the document is composed by nb blocks, if the size of the
modification in the document is m blocks, the update operation should be done in time
O(m). For the Xor-MAC, the replace operation for one document block costs 2 evaluations of
the underlying PRF which makes it incremental but the replace operation of one document
block for the Merkle tree costs O(m log2 nb) evaluations of the underlying PRF. However,
the incrementality of the tag verification is not required.
In the following, the security games are written regarding nonce-based incremental

authentication schemes. The corresponding games for probabilistic schemes are simi-
lar except that (1) for all procedures, the nonces are ignored (the corresponding nonce-
space NS to); (2) the internal iMA.tag and iMA.upd are probabilistic. For instance, the

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 113

code line (tid , stid) ← iMA.tag(K,N, id, D, stid) in the nonce-based setting is replaced by
(tid , stid)←← iMA.tag(K, id, D, stid) in the probabilistic setting.

Games Gcorr
iMA,DES Gcons

iMA,DES

procedure Initialize

K←← iMA.kg()
return K

procedure Tag(N,D′)
if (N ∈ N) then return ⊥
(t, st)← iMA.tag(K,N,D′, st)
if (iMA.ver(K,D′, t, st) = false) then

bad← true
N ← N ∪ {N}
D ← D′

return t

procedure Finalize

return bad

procedure Reset(id)
st←← iMA.init()
D ← ⊥

procedure Update(N, op, arg)
if (D = ⊥ or N ∈ N) then return ⊥
(t′, st′)← iMA.upd(K,N, ε,D, op, arg, t, st)
D ← DES.Edit(D, op, arg)
if (iMA.ver(K,D, t′, st′) = false) then

bad← true
if (t′, st′) 6∈ [iMA.tag(K,N,D, st)] then

bad← true
t← t′ ; st← st′ ; N ← N ∪ {N}
return t

Figure 5.2: Games defining Correctness and Consistency for nonce-based incremental au-
thentication scheme iMA for the single-document setting.

Stateless incremental MACs. We say that the scheme iMA is stateless if iMA.init always
returns st = ε, and the tagging and update algorithms also always return ε as the updated
state. In this scenario, we may omit the state st as an input or output to all algorithms.

Single-Document setting. We say that iMA is a Single-Document (SD) incremental
MAC scheme if the identity space iMA.IS = {ε} consists of a single identity namely the
empty string ε. As for stateless schemes, in this setting we may omit the document identity
id as an input or output to all algorithms. When we say that iMA is a Multi-Document
(MD) incremental MAC scheme, we are simply emphasizing that, as per the definition of an
incremental MAC scheme, the identity space could have any non-zero size. If a scheme iMA
achieves a security notion in the multi-document setting, it implies that it readily achieves
the same security notion in the single-document setting (see Figure 5.9).

Correctness. Correctness requires that tags generated under a certain key and state, for
a certain document, are correct, meaning accepted by the verification algorithm, for the
same key, the updated state and the same document. It also requires that update of correct
tags results in correct tags. A formal correctness condition is simple to state for stateless
schemes, but the stateful case requires more care. We do it via a game, formally asking
that Pr[Gcorr

iMA,DES(A)] = 0 for all adversaries A regardless of their running time, where game
Gcorr

iMA,DES is shown in Figure 5.2 and Figure 5.3, the boxed code excluded.
For the correctness and the consistency games (below), the adversary must query once the

Initialize procedure and then the Reset procedure in this order. The Reset procedure

114 Chapter 5 Incremental Authentication Schemes

Games Gcorr
iMA,DES Gcons

iMA,DES

procedure Initialize

K←← iMA.kg()
return K

procedure Tag(N, id, D)
if (id 6∈ S or N ∈ N) then return ⊥
(tid , stid)← iMA.tag(K,N, id, D, stid)
if (iMA.ver(K, id, D, tid , stid) = false) then

bad← true
Did ← D ; N ← N ∪ {N}
return tid

procedure Finalize

return bad

procedure Reset(id)
stid←← iMA.init(id) ; S ← S ∪ {id} ;
Did ← ⊥

procedure Update(N, id, op, arg)
if (id 6∈ S or Did = ⊥ or N ∈ N) then return ⊥
(t′id , st′id)← iMA.upd(K,N, id, Did , op, arg, tid , stid)
Did ← DES.Edit(Did , op, arg)
if (iMA.ver(K, id, Did , t

′
id , st

′
id) = false) then

bad← true
if (t′id , st′id) 6= iMA.tag(K,N, id, Did , stid) then

bad← true
tid ← t′id ; stid ← st′id ; N ← N ∪ {N}
return tid

Figure 5.3: Games defining Correctness and Consistency for nonce-based incremental au-
thentication scheme iMA for the multi-document setting.

initializes the state for a specific identification number. Then the adversary is allowed to
query the Tag procedure once per document identification number, which implies once in the
single-document setting; many times the Update and Verify procedures and he finishes
with a query to the Finalize procedure.

Consistency. We introduce a notion called consistency. It asks that tags returned
by the update algorithm are the same as if the updated document had been tagged di-
rectly4 (i.e. all pairs (t′id , st′id) obtained by running iMA.upd(K,N, id, Did , op, arg, tid , stid)
belong to the set [iMA.tag(K,N, id, D′id , stid)] of tags generated by the algorithm iMA.tag
on input (K,N, id, D′id , stid) where D′id = DES.Edit(Did , op, arg)). The formalization must
consider that the algorithms may be randomized and stateful, so that the actual condition
is more general. Namely we say that the update algorithm has the consistency property
if Pr[Gcorr

iMA,DES(A)] = 0 for all adversaries A regardless of their running time, where game
Gcorr

iMA,DES is as in Figure 5.2 and Figure 5.3 but with the boxed code now included. We do
not mandate consistency, but it is a strong and nice property that will be possessed by some
of our schemes. For greater clarity, we gave the games for the single-document setting in
Figure 5.2 and for the multi-document setting in Figure 5.2 and Figure 5.3.

4We consider a simple definition where the tag of the updated document belongs to the set of tags produced
by the algorithm iMA.tag using the same key, the same nonce and the same state. For probabilistic
incremental MACs, we could have considered a stronger consistency definition where the tag of the updated
document is uniformly distributed over this set of tags.

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 115

5.1.2 Security Notions for Incremental MACs

In the following, we will present several security notions for incremental MACs that correspond
to different types of Incremental UnForgeability (IUF). Two security notions, namely the basic
security and the tamper-proof security, were introduced in previous works [BGG94, Fis97a]
but the formal security definition of the latter was unclear. As mentioned above, in the basic
security scenario, the adversary can obtain authentication tags for any messages of its choice
and it can also update valid message/tag pairs. The corresponding security game can be easily
described (see Figure 5.4). The tamper-proof security considers much stronger adversaries
that can modify documents and tags arbitrarily before applying update operations. In this
setting, it is quite complex to define the notion of forgery since the list of messages that
are actually authenticated is difficult to define. We define several new notions that try to
capture this tamper-proof security notion. In order to do so, for each security notion, we will
consider both Single-Document (SD) and Multi-Document (MD) settings, except for basic
security as it was defined without it.
In the multi-document setting, the adversary can get signatures to multiple documents

of its choice by using the Tag procedure with different document identities. The single
document setting is the special case where the document identity id is fixed as the empty
string ε then each value Xid can be read as X in the single document setting. After calling
the Initialize procedure, the Reset procedure has to be called to initialize the state; after
that it can be called at any moment. Then the Tag procedure has to be called at most once
for each document (i.e. with a fixed identity document). After that, the adversary can make
an arbitrary number of queries to the Update and the Verify procedures. The adversary A
has access to a Reset procedure that erases the document and the state st in the SD setting
or a specific document in the MD setting if A gives the document identification number id
as input to the oracle. Finally, the last call of A is a call to Finalize. The security game
of IUF-BS is defined for any document: there is no distinction between single and multiple
document settings. The adversary A playing this security game has to follow the rules defined
above except that he can call many times the Tag oracle (otherwise only one document can
be updated).

Basic Security (IUF-BS). This security notion is the basic security as defined in [BGG94].
In this setting, the documents are not identified (and as in the single-document setting we
omit the document identity id as an input or output to all algorithms) and we assume that
the documents and tags are stored securely. Hence, the update operations have to be done on
authentic documents D and tags t that is why the update operations are done on pairs (D, t)
where iMA.ver(., D, t, .) returns true. The corresponding security game is given in Figure
5.4. Another specificity is that here the adversary can call many times the Tag oracle as
mentioned previously. Let iMA be a message authentication scheme that is incremental for
the document editing system DES. The advantages of an adversary A playing the IUF-BS
security game is defined as AdvIUF-BS

iMA = Pr[GIUF-BS
iMA].

Incremental UnForgeability 1 (IUF1). IUF1 security notion is close to the IUF-BS,
the main difference is that in IUF1 the adversary is allowed to call the Tag oracle only once
per identification number. In other words, a document, identified with the number id, can
be tagged only once. Then he can update all of them as he wants to. Each update operation
has to be applied to the previous versions of the document and the tag: A cannot ask to

116 Chapter 5 Incremental Authentication Schemes

Games GIUF-BS
iMA

procedure Initialize

K←← iMA.kg()

procedure Reset()
st←← iMA.init()

procedure Tag(N,D)
if (N ∈ N) then return ⊥
(t, st)← iMA.tag(K,N,D, st)
DL← DL ∪ {D}
return t

procedure Update(N,D, op, arg, t)
if (N ∈ N) then return ⊥
if iMA.ver(K,D, t, st) = false then return ⊥
(t, st)← iMA.upd(K,N,D, op, arg, t, st)
D ← DES.Edit(D, op, arg)
DL← DL ∪ {D}
N ← N ∪ {N}
return t

procedure Verify(D, t)
return iMA.ver(K,D, t, st)

procedure Finalize(D, t)
if (D) ∈ DL then return false
return iMA.ver(K,D, t, st)

Figure 5.4: Games defining IUF-BS security of an incremental authentication scheme iMA.

update a specific version of the document but only the latest one that will be called in the
following the current document and the current tag. Hence, the update oracle does not
take as input a document D and a tag t, these values are global variables and are updated
in the game. It also means that for each update query the document D and a tag t are
authentic as A cannot tamper with them. Let iMA be a message authentication scheme
that is incremental for the document editing system DES. The advantages of an adversary
A playing against the IUF1 security game in the single-document setting IUF1-SD and the
multi-document setting IUF1-MD are defined respectively as AdvIUF1-SD

iMA = Pr[GIUF1-SD
iMA] and

AdvIUF1-MD
iMA = Pr[GIUF1-MD

iMA]. The corresponding security games are given in Figure 5.5.

As mentioned in chapter 2, for disk authentication a specific tampering attack is what we
can call a "downgrade attack" or a "replay attack": the adversary snapshots the entire disk at
some specific time and waits for a specific moment to restore it. A desired property to thwart
this is a so-called temporal data authentication: at any moment, a user wants to be
sure that the data he is manipulating now is the data stored during the previous legitimate
manipulation. The security notions IUF1-SD and IUF1-MD does not provide such security
guarantee since the list DL contains all documents/tags generated by the procedures Tag
and Update. We thus define two stronger security notions where the document list DL
contains only the last version of the document authenticated (for each document identification
number). These security notions are described in Figure 5.6 and are called IUF1R-SD and
IUF1R-MD (where the letter R stands for "Replay attack").

Incremental UnForgeability 2 (IUF2). This security notion tries to capture what
was called tamper-proof security in [BGG95]. The adversary is given the power to tamper
with documents and authentication tags stored in the system, and thus obtain the result of
the incremental scheme on document-tag pairs which need not be valid. This is modeled
by allowing the adversary to choose the document and tag given as input to the update

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 117

Games GIUF1-SD
iMA GIUF1-MD

iMA

procedure Initialize

K←← iMA.kg()
id ← ε

procedure Reset(id)
stid←← iMA.init(id)
S ← S ∪ {id}
Did ← ⊥

procedure Tag(N, id , D)
if (id /∈ S or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.tag(K,N, id , D, stid)
Did ← D ; DL← DL ∪ {(id , D)}
Nid ← Nid ∪ {N}
return tid

procedure Update(N, id , op, arg)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.upd(K,N, id , Did , op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← DL ∪ {(id , Did)}
Nid ← Nid ∪ {N}
return tid

procedure Verify(id , D, tid)
return iMA.ver(K, id , D, tid , stid)

procedure Finalize(id , D, tid)
if (id , D) ∈ DL then return false
return iMA.ver(K, id , D, tid , stid)

Figure 5.5: Games defining IUF1 security of an incremental authentication scheme iMA for
both the Single-Document (SD) and the Multi-Document (MD) settings. The
framed boxes are excluded from the SD security game.

algorithm (as seen in the games Figure 5.7). In order to formally define what is a forgery, in
IUF2, the adversary is allowed to apply update operations on any tags and any documents;
and the list of authenticated documents DL is constructed by performing the same update
operation to the current document. The adversary succeeds in producing a forgery if it
is able to output a valid pair tag/document where the document does not belong to DL.
Let iMA be a message authentication scheme that is incremental for the document editing
system DES. The advantages of an adversary A playing against the IUF2 security game
in in the single-document setting IUF2-SD and the multi-document setting IUF2-MD are
defined respectively as AdvIUF2-MD

iMA = Pr[GIUF2-MD
iMA] and AdvIUF2-SD

iMA = Pr[GIUF2-SD
iMA]. The

corresponding security games are given in Figure 5.7.
In order to achieve temporal data authentication and prevent "replay attacks", we also

introduce the security notions described in Figure 5.8 which are called IUF2R-SD and
IUF2R-MD (where the letter R stands for "Replay attack") which differs only to IUF2-SD
and IUF2-MD by the fact that the document list DL contains only the last version of the
document authenticated (for each document identification number).

Remark 5.1.1. (Relations with other incremental security notions) In [Fis97a], Fischlin
mentioned three security models where the single and multi-document settings are not defined
(e.g. the adversary is not restricted to one Tag query):

• basic attack: the adversary plays in the basic security game IUF-BS as defined above;

• message substitution attack: the adversary A is allowed to tamper the document but

118 Chapter 5 Incremental Authentication Schemes

Games GIUF1R-SD
iMA GIUF1R-MD

iMA

procedure Initialize

K←← iMA.kg()
id ← ε

procedure Reset(id)
stid←← iMA.init(id)
S ← S ∪ {id}
Did ← ⊥

procedure Tag(N, id , D)
if (id /∈ S or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.tag(K,N, id , D, stid)
Did ← D ; DL← {(id , D)}
Nid ← Nid ∪ {N}
return tid

procedure Update(N, id , op, arg)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.upd(K,N, id , Did , op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← {(id , Did)}
Nid ← Nid ∪ {N}
return tid

procedure Verify(id , D, tid)
return iMA.ver(K, id , D, tid , stid)

procedure Finalize(id , D, tid)
if (id , D) ∈ DL then return false
return iMA.ver(K, id , D, tid , stid)

Figure 5.6: Games defining IUF1R security of an incremental authentication scheme iMA for
both the Single-Document (SD) and the Multi-Document (MD) settings. The
framed boxes are excluded from the SD security game.

not the tag. This model is close to IUF2-MD but weaker: the tag has to be kept in the
state (then A cannot tamper with it). Moreover, the Update oracle has to use the
non tampered tag then either the tag given as input by the adversary is compared to
the one stored in state or either the Tag oracle does not take as input a tag and the
tag from state is directly used.

• total substitution attack: the adversary is allowed to tamper with the documents and
the tags but the notion of forgery is not formally defined.

5.1.3 Relations among Security Notions for Incremental MACs

In this subsection, we analyse the relations among the different security models defined in
the previous subsection.

If one restricts, an incremental MAC secure in the multi-document setting, to authenticate
a single document, one gets trivially the following proposition:

Proposition 5.1.2. Let x ∈ {1, 2} and y ∈ {R, ε}. Let iMA be an incremental authentication
scheme for the document editing system DES in the multi-document setting. If we have an
adversary A against the IUFxy-SD security of iMA (restricted to one document identification
number) which makes one query to the Tag procedure and which runs in time t, then we can
construct an adversary B which makes one query to the Tag procedure, that runs in time
t′ ≤ t against the IUFxy-MD security of iMA such that AdvIUFxy-SD

iMA (A) ≤ AdvIUFxy-MD
iMA (B).

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 119

Games GIUF2-SD
iMA GIUF2-MD

iMA

procedure Initialize

K←← iMA.kg()
id ← ε

procedure Reset(id)
stid←← iMA.init(id)
S ← S ∪ {id}
Did ← ⊥

procedure Tag(N, id , D)
if (id /∈ S or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.tag(K,N, id , D, stid)
Did ← D; N ← N ∪ {N}
DL← DL ∪ {(id , D)}
return tid

procedure Update(N, id , D, op, arg, t)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.upd(K,N, id , D, op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← DL ∪ {(id , Did)}
Nid ← Nid ∪ {N}
return tid

procedure Verify(id , D, tid)
return iMA.ver(K, id , D, tid , stid)

procedure Finalize(id , D, tid)
if (id , D) ∈ DL then return false
return iMA.ver(K, id , D, tid , stid)

Figure 5.7: Game defining IUF2 security of an incremental authentication scheme iMA in the
Single-Document (SD) and in the Multi-Document (MD) settings. The framed
boxes are excluded from the SD game.

However, assuming the existence of a secure MAC, there exist incremental MAC secure in
the IUFxy-SD model which are not secure in the IUFxy-MD (for x ∈ {1, 2} and y ∈ {R, ε}). It
suffices to construct an incremental MAC in the multi-document setting from the IUFxy-SD-
secure incremental MAC in the single-document setting which produces MAC independent
of the document identification numbers. This scheme still achieves IUFxy-SD security but do
not achieves IUFxy-MD (since a valid tag for a document with identification number id is a
valid forgery for the same document with an identification number id ′ 6= id).

Let y ∈ {R, ε} and z ∈ {SD,MD}. Since the capabilities of an adversary in game GIUF2y-z
iMA

are stronger than those of an adversary in game GIUF1y-z
iMA , we get readily the following

proposition:

Proposition 5.1.3. Let y ∈ {R, ε} and z ∈ {SD,MD}. Let iMA be an incremental authenti-
cation scheme for the document editing system DES in the multi-document setting. If we have
an adversary A against the IUF1y-z security of iMA which makes no more than q queries to
the Tag procedure and runs in time t, then we can construct an adversary B which makes no
more than q′ ≤ q queries to the Tag procedure and runs in time t′ ≤ t against the IUF2y-z
security of iMA such that AdvIUF1y-z

iMA (A) ≤ AdvIUF2y-z
iMA (B).

Let y ∈ {R, ε} and z ∈ {SD,MD}. Assuming the existence of a secure MAC, there exist
incremental MAC secure in the IUF1y-z model which are not secure in the IUF2y-z. It suffices

120 Chapter 5 Incremental Authentication Schemes

Games GIUF2R-SD
iMA GIUF2R-MD

iMA

procedure Initialize

K←← iMA.kg()
id ← ε

procedure Reset(id)
stid←← iMA.init(id)
S ← S ∪ {id}
Did ← ⊥

procedure Tag(N, id , D)
if (id /∈ S or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.tag(K,N, id , D, stid)
Did ← D; N ← N ∪ {N}
DL← {(id , D)}
return tid

procedure Update(N, id , D, op, arg, t)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

(tid , stid)← iMA.upd(K,N, id , D, op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← {(id , Did)}
Nid ← Nid ∪ {N}
return tid

procedure Verify(id , D, tid)
return iMA.ver(K, id , D, tid , stid)

procedure Finalize(id , D, tid)
if (id , D) ∈ DL then return false
return iMA.ver(K, id , D, tid , stid)

Figure 5.8: Game defining IUF2R security of an incremental authentication scheme iMA
in the Single-Document (SD) and in the Multi-Document (MD) settings. The
framed boxes are excluded from the SD game.

to construct an incremental MAC from the IUF1y-z-secure incremental MAC by modifying
only the update algorithm such that it outputs the key when executed on a public specific tag
τ∗ (for any nonce, document and operation). Since the original scheme is IUF1y-z-secure, this
tag is unlikely to be output by a tag or update algorithm and the modified scheme remains
IUF1y-z-secure (since an adversary cannot query τ∗ to the update algorithm in the IUF1y-z
security game). However, the modified scheme is not IUF2y-z-secure since the query of τ∗
(for any nonce, document and operation) to the update algorithm (legitimate in this game)
reveals immediately the authenticating key.

Let x ∈ {1, 2} and z ∈ {SD,MD}. Since the games GIUFxR-z
iMA and GIUFx-z

iMA are identical
except that the document list DL in the former game is a subset of the document list in the
latter game, we get readily the following proposition:

Proposition 5.1.4. Let x ∈ {1, 2} and z ∈ {SD,MD}. Let iMA be an incremental authenti-
cation scheme for the document editing system DES in the multi-document setting. If we have
an adversary A against the IUFx-z security of iMA which makes no more than q queries to
the Tag procedure and runs in time t, then we can construct an adversary B which makes no
more than q′ ≤ q queries to the Tag procedure and runs in time t′ ≤ t against the IUFxR-z
security of iMA such that AdvIUFx-z

iMA (A) ≤ AdvIUFxR-z
iMA (B).

However, a stateless incremental MAC cannot achieve the security notions IUFxR-z (since
an adversary can simply output a previous tag as its forgery that would be accepted as

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 121

valid). This gives a simple separation with the security notions IUFx-z and IUFxR-z that can
be achieved with stateless schemes (assuming the existence of classical MACs or one-way
functions).

Remark 5.1.5 (From IUFx-z security to IUFxR-z security). If an iMA1 achieves IUFx-z
security then an IUFxR-z secure scheme iMA2 can be built as follows: let t be the tag
produced by iMA1, with the tag or update queries, it is sufficient to xor the value MAC(ctr),
where MAC is a standard authentication scheme and ctr is a counter incremented for each
tag and update queries, with the tag t. This resulting construction iMA2 is stateful and the
state contains the counter value ctr.

The following proposition states that if an incremental MAC is IUF-BS then it is also
IUF1-SD:

Proposition 5.1.6. Let iMA be an incremental authentication scheme for the document
editing system DES in the multi-document setting. If we have an adversary A against the
IUF1-SD security of iMA which makes no more than q queries to the Tag procedure and
which runs in time t, then we can construct an adversary B which makes no more than q′ ≤ q
queries to the Tag procedure that runs in time t′ ≤ t against the IUF-BS security of iMA such
that AdvIUF1-SD

iMA (A) ≤ AdvIUF-BS
iMA (B).

Proof. This proposition follows readily from the fact that an adversary A for the IUF1-SD
security notion is also a valid adversary for the IUF-BS security (with possibly several
document identifiers id) which succeeds in the game GIUF-BS

iMA if A succeeds in game GIUF1-SD
iMA

(within the same time bound). We can therefore simply consider B = A and the result
follows.

Finally, generalizing the previous examples, we can see that there exist an incremental
MAC which is IUF-BS-secure but not IUF2-SD-secure (with a construction similar to the
counter-example following Proposition 5.1.3) and an an incremental MAC which is IUF-BS-
secure but not IUF1R-SD-secure (with a construction similar to the counter-example following
Proposition 5.1.4).

Figure 5.9 presents a synthetic view of the relations among security notions for incremental
MACs.

5.1.4 From Single-Document to Multi-Document Security
In the previous subsection, after Proposition 5.1.2, we explain that there exist incremental
MAC secure in the IUFxy-SD model which are not secure in the IUFxy-MD (for x ∈ {1, 2} and
y ∈ {R, ε}). In this section, we show a generic construction of a scheme in the multi-document
setting with the latter security property from a scheme in the single document setting with
the former security property.
Suppose we have an incremental message authentication scheme iMA1 for the single-

document setting for the editing system DES. We show how to transform this into an
incremental message authentication scheme iMA2, iMA2 = SDtoMD1(iMA1,F), for the
multi-document setting (also for the same document editing system DES) such that: if
iMA1 is IUFxy-SD secure and F is a pseudorandom function, then iMA2 is IUFxy-MD secure,
for x ∈ {1, 2} and y ∈ {R, ε}. The description is given in Figure 5.10 and is denoted as
iMA2 = SDtoMD1(iMA1,F).

122 Chapter 5 Incremental Authentication Schemes

IUF-BS

IUF1-SD IUF1-MD

IUF2-SD IUF2-MD

IUF1R-SD IUF1R-MD

IUF2R-SD IUF2R-MD

Figure 5.9: Relations among security notions for incremental MACs.
A black arrow is an implication, and in the directed graph given by the black
arrows, there is a path from security notion A to security notion B if and only A
implies B. The red arrows represent separations (i.e. if there is a red arrow from
security notion A to security notion B, then – assuming the existence of one-way
functions – there exist a scheme which achieves A but does not achieve B). All
other relations follow automatically.

Theorem 5.1.7. Let x ∈ {1, 2} and y ∈ {R, ε}. Let iMA1 be an incremental authentication
scheme for the document editing system DES in the single-document setting and let F denote
a pseudorandom function F : F.KS × iMA2.IS → iMA1.KS. Let iMA2 be the incremental
authentication scheme for the same document editing system in the multi-document setting
that is generated by the transform given in Figure 5.10, as iMA2 = SDtoMD1(iMA1,F). If
we have an adversary A against the IUFxy-SD security of iMA2 which makes no more than q
queries to the Tag procedure and which runs in time t, then we can construct an adversary B
that runs in time t′ ≤ t+ q · T (iMA.init) (where T (iMA.kg) denotes the running time of the
algorithm iMA.kg) against the IUFxy-SD security of iMA1 and a distinguisher D that runs in
time t′′ ≤ t for the PRF F such that

AdvIUFxy-MD
iMA2 (A) ≤ q ·AdvIUFxy-SD

iMA1 (B) + Advprf
F (D)

Proof. We proceed via a series of games. The game G0 is exactly the IUFxy-MD game for the
transform iMA2 = SDtoMD1(iMA1,F) defined in Figure 5.12. We define the game G1 in
Figure 5.12 by replacing the PRF used to generate a key for each document in the tagging,
update and verification oracles with a random function.

The advantage of an adversary A distinguishing G0 from G1 is reduced to an adversary D
against the underlying PRF such that Pr [G0]−Pr [G1] ≤ Advprf

F (D). We built an adversary

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 123

iMA2.init(id)
stid←← iMA1.init(ε)
return stid

iMA2.ver(K, id, D, tid , stid)
Kid ← F(K, id)
return iMA1.ver(K, ε,D, t, stid)

iMA2.kg()
K←←F.KS
return K

iMA2.tag(K,N, id, D, stid)
Kid ← F(K, id)
(t, stid)← iMA1.tag(kid , N, ε,D, stid)
Nid ← Nid ∪ {N}
return (t, stid)

iMA2.upd(K,N, id, D, op, arg, tid , stid)
Kid ← F(K, id)
(t, stid)← iMA1.upd(K,N, ε,D, op, arg, tid , stid)
Nid ← Nid ∪ {N}
return (t, stid)

Figure 5.10: Transform SDtoMD1 from a single-document scheme to a multi-document
scheme, denoted as iMA2 = SDtoMD1(iMA1,F).

D using the adversary A as shown in Figure 5.11. D simulates all the oracles of G0/G1 for A
as follows: in all the simulated oracles, to compute Kid , D uses it own oracle F from PRF
game (see Figure 1.1 for more details).
The game G2 is exactly the IUFxy-SD game for iMA1. We construct an adversary B for

the IUFxy-MD game in Figure 5.13. This gives us Pr [G2] ≥ 1
qPr [G1]. The adversary A

has no information about which idi was chosen by B. This means the view of A must be
independent of the choice of i. Further, since B picks i at random from {1, 2, . . . q}, we get
the factor of q.

Putting together these equations, along with the facts that Pr [G0] = Pr
[
GIUFxy-MD

iMA2

]
and

Pr [G2] = Pr
[
GIUFxy-MD

iMA1

]
, we get the required inequality.

124 Chapter 5 Incremental Authentication Schemes

Adversary DF

Initialize (from PRF game)
(id, D, t)← AReset,Tag,Update,Verify

Kid ← F(id)
if (id, D) ∈ DL then return false
Finalize(iMA1.ver(K, ε,D, t, stid))
—————————————————————–
Update(N, id, D, op, arg, t)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

Kid ← F(id)
(t′id , st′id)← iMA1.upd(Kid , N, ε,D, op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← DL ∪ {(id, Did)}
tid ← t′id ; stid ← st′id ; Nid ← Nid ∪ {N}
return tid

Reset(id)
stid←← iMA1.init(ε)
S ← S ∪ {id} ; Did ← ⊥

Tag(N, id, D)
if (id /∈ S or N ∈ Nid) then
return ⊥

Kid ← F(id)
(tid , stid)← iMA1.tag(Kid , N, ε,D, stid)
Did ← D ; DL← DL ∪ {(id, D)}
Nid ← Nid ∪ {N}
return tid

Verify(id, D, tid)
Kid ← F(id)
return iMA1.ver(Kid , ε,D, tid , stid)

Figure 5.11: Adversary D against the PRF game using the adversary A playing the indistin-
guishability game between G0 and G1 (see Figure 5.12) used in in the proof of
Theorem 5.1.7.

procedure Initialize G0
K←←F.KS; f ← FK

procedure Reset(id) G0,G1
stid←← iMA1.init(ε)
S ← S ∪ {id} ; Did ← ⊥

procedure Update(N, id, D, op, arg, t) G0,G1
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

Kid ← f(id)
(tid , stid)← iMA1.upd(Kid , ε,D, op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← DL ∪ {(id, Did)}; Nid ← Nid ∪ {N}
return tid

procedure Verify(id, D, tid) G0,G1
Kid ← f(id)
return iMA1.ver(Kid , ε,D, tid , stid)

procedure Initialize G1
f←←F∗(F.Dom,F.Rng)

procedure Tag(N, id, D) G0,G1
if (id /∈ S or N ∈ Nid) then return ⊥
Kid ← f(id)
(tid , stid)← iMA1.tag(Kid , N, ε,D, stid)
Did ← D ; DL← DL ∪ {(id, D)}
Nid ← Nid ∪ {N}
return tid

procedure Finalize(id, D, tid) G0,G1
Kid ← f(id)
if (id, D) ∈ DL then return false
return iMA1.ver(Kid , ε,D, tid , stid)

Figure 5.12: Games for proof of security of the SDtoMD1 transform (Theorem 5.1.7).

Ch
ap

te
r5

5.1 Incremental MACs and Security notions 125

Adversary BTag,Update,Verify

Initialize

i←←{1, 2, . . . , q}
f←←F∗(F.Dom,F.Rng)
(id, D, t)← AReset′,Tag′,Update′,Verify′

if (id = idi) then Finalize(D, t)
————————————————————

Update′(N, id, D, op, arg, t)
if (id /∈ S or Did = ⊥ or N ∈ Nid) then
return ⊥

if (id = idi) then
return Update(N,D, op, arg, t)

Kid ← f(id)
(tid , stid)← iMA1.upd(Kid , N, ε,D, op, arg, t, stid)
Did ← DES.Edit(Did , op, arg)
DL← DL ∪ {(id, Did)}
Nid ← Nid ∪ {N}
return tid

Reset′(id)
if (id = idi) then Reset(ε)
stid←← iMA1.init(ε)
S ← S ∪ {id} ; Did ← ⊥

Tag′(N, id, D)
if (id /∈ S or N ∈ Nid) then
return ⊥

if (id = idi) then
return Tag(N,D)

Kid←← f(id)
(tid , stid)← iMA1.tag(Kid , N, ε,D, stid)
Did ← D ; DL← DL ∪ {(id, D)}
Nid ← Nid ∪ {N}
return tid

Verify′(id, D, tid)
if (id = idi) then re-
turn Verify(D, tid)
Kid ← f(id)
return iMA1.ver(Kid , ε,D, tid , stid)

Figure 5.13: Construction of an adversary B against the IUFxy-MD security game using A
playing the indistinguishability G1 and G2 in the proof of Theorem 5.1.7.

126 Chapter 5 Incremental Authentication Schemes

5.2 Incremental MACs with IUF1 Security
In this section, we give the description of two incremental MACs, the Xor-MAC [BGR95a]
and the chaining Xor-Scheme [BGG94] constructions, and their analysis in the IUF1 and
IUF-BS security models.

5.2.1 XMAC Constructions
The Xor-MAC scheme XMAC is an incremental scheme regarding the replace operation and
regarding the insert and delete operations for the last message block only. A randomized
version XMACR and a “counter-based” (or nonce-based) version XMACC of this scheme
was given in [BGR95b] by Bellare, Guérin and Rogaway (see Figure 5.14). The Xor-MAC
structure inspires different scheme designs such as the incremental signature [Fis97a] given
by Fischlin, the PMAC constructions [BR02, Rog04a, Yas11].

FK FK FK FK FK

τ

0||v 1||1||D[1] 1||2||D[2] 1||3||D[3] 1||nb||D[nb]

h0 h1 h2 h3 hnb

. . .

Figure 5.14: Description of the XMAC where v is a random value for XMACR and v is a nonce
for XMACC.

Then XMAC is a stateless scheme defined as follows

XMAC-C/R = (KS,BS,DS,NS/RS, kg, tag, upd, ver).

• XMAC is based on a pseudorandom function family F = (KS,Dom,Rng, eval) such that
F : F.KS× F.Dom→ F.Rng. It follows that F.Dom = {1} × {0, 1}p × XMAC.BS where
{0, 1}p is the position space and F.Rng = {0, 1}t` where t` is the tag size.

• The key generation algorithm XMAC.kg is a (probabilistic) algorithm that takes
no input and returns a key K ∈ XMAC.KS such that XMAC.KS = F.KS.

• The tagging algorithm XMAC.tag1 takes as inputs the key K ∈ XMAC.KS, a doc-
ument D ∈ XMAC.DS and outputs a tag τ . A value v prepended by the bit 0, such
that v ∈ XMACR.RS for the randomized version and such that v ∈ XMAC.NS for the
counter-based version, is given as input to F and each document block D[i] ∈ XMAC.BS
prepended by 1||i is given as input to the pseudorandom function FK then the sum of
the corresponding outputs τ and the value v is returned as the tag t = (v, τ).

• The Verification algorithm XMAC.ver takes as inputs the key K ∈ XMAC.KS, the
document D and the tag t = (v, τ). It re-computes the value τ from the inputs D and
v then it returns true if this value is equal to the input τ and false otherwise.

• The Update algorithm XMAC.upd1 takes as inputs the key K ∈ XMAC.KS, the
document D, the operation op ∈ OpCodes where OpCodes = {R, I, D}, the set of
argument arg and the tag t. The argument arg is composed by the position i where

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 127

the block value has to be inserted, deleted or replaced and the new document block
x ∈ XMAC.BS for the insert and delete operations or ε if it is a delete operation:
arg = 〈i, x〉. The insert and delete operations can be performed only for the last
position: as each document block is processed with it block position, it is not possible
to insert or delete a block efficiently.

In [BGR95b], Bellare et al. showed that XMACC (Theorem 5.2.1) and XMACR (Theo-
rem 5.2.2) are IUF-BS secure.

Theorem 5.2.1. Let A be any (computationally unbounded) an IUF-BS-adversary making
a (qt, qv, qupd)-attack against the MACC with a function picked uniformly at random from
F∗(D,R) such that D = {0, 1}2` and R = {0, 1}L. The probability that A is successful is at
most

qv · 2−L.

Here, qt is an upper bound on the number of tagging queries, qupd is an upper bound on the
number of update queries (such that q = qt + qupd), qv is an upper bound on the number of
verification queries.

Theorem 5.2.2. Let A be any (computationally unbounded) an IUF-BS-adversary making
a (qt, qv, qupd)-attack against the MACR with a function picked uniformly at random from
F∗(D,R) such that D = {0, 1}2` and R = {0, 1}L. The probability that A is successful is at
most

q2 · 2n−` + qv · 2−L.

Here, qt is an upper bound on the number of tagging queries, qupd is an upper bound on the
number of update queries (such that q = qt + qupd), qv is an upper bound on the number of
verification queries.

5.2.2 XS Construction

Until this thesis work, the only strongly incremental authentication scheme was the Xor-
Scheme, denoted XS in the following. It uses fresh random value for each processed block and
was designed by Bellare, Goldreich and Goldwasser in [BGG95] (see Figure 5.15). This strong
property comes with a cost: only basic security is claimed in [BGG94] and this algorithm
needs to generate and store a lot of randomness. The tag algorithm generates a random
value for each document block and these random values are part of the tag because they
are necessary for the verification and the update operations. The Xor-Scheme is based on a
pseudorandom function and a pseudorandom permutation and the incremental algorithms
for (single block) insert and delete operations require only two applications of the underlying
PRF and two applications of the underlying PRP. The Xor-Scheme relies on the concept
of pair block chaining (which was later used in [GSC01] which involves taking each pair of
two consecutive blocks of a message and feeding them into a pseudorandom function before
chaining all the outputs of the PRF into the final hash. This scheme extends the XMAC
schemes from [BGR95a] which are incremental only for replacement. Even if they share a
similar name, these two algorithms are different: XMAC is not based on a pair block chaining
structure and requires actually much less randomness.

1This algorithm is probabilistic for the randomized version and deterministic for the counter-based version.

128 Chapter 5 Incremental Authentication Schemes

5.2.2.1 Description of the Xor-Scheme

The Xor-Scheme XS as defined in [BGG94] is an incremental authenticated algorithm based
on pair-wise chaining. The XS scheme is based on a pseudorandom function FK1 and a
pseudorandom permutation PK2 as shown in Figure 5.15. The incremental algorithms for
(single block) insert and delete operations require only two applications of FK1 and two
applications of the PK2 . The XS scheme generates an authentication tag for a document D
by repeatedly applying FK1 to pairs of data blocks – each made of a document block D[i]
from the document D and random block ri (pick uniformly at random and independently for
each block).

FK1 FK1 FK1 FK1 FK1

PK2

τ

D[0]

r0 ||

R0

D[1]

r1 ||

R1

D[2]

r2 ||

R2

D[3]

r3 ||

R3

D[nb− 2]

rnb−2 ||

Rnb−2

D[nb− 1]

rnb−1 ||

Rnb−1

. . .

. . .

Figure 5.15: Description of the Xor-Scheme

The Xor-Scheme is probabilistic scheme and not nonce based then instead of a nonce space
XS.NS, we have a random space XS.RS from which the random data blocks are randomly
sampled. XS is stateless then the Initialisation algorithm XS.init is omitted (e.g. the state st
is empty). It is defined as follows:

XS = (KS,BS,DS,RS, kg, tag, upd, ver).

The detail of each algorithm is given in Figure 5.16.

• XS is based on a pseudorandom function family F = (KS,Dom,Rng, eval) and a pseudo-
random permutation family P = (KS,Dom, eval, inverse) such that F : F.KS× F.Dom→
F.Rng and P : P.KS×P.Dom→ P.Dom. It follows that F.Dom = XS.RS2×XS.BS2 and
F.Rng = P.Dom = {0, 1}t` where t` is the tag size.

• The key generation algorithm XS.kg is a probabilistic algorithm that takes no input
and returns a key K ∈ XS.KS such that XS.KS = F.KS× P.KS.

• The tagging algorithm XS.tag takes as inputs the key K ∈ XS.KS, a document
D ∈ XS.DS and outputs a tag t := (r, τ). For each document block D[i] ∈ XS.BS, a
random block value ri ∈ XS.RS is randomly sampled and its bit length is denoted rl.
The concatenation of these values is denoted Ri := D[i]||ri. Each couple (Ri−1, Ri)
is processed by the function F and outputs a value denoted hi then the bitwise XOR
(eXclusive OR) of all the values (denoted Σ) is processed by the permutation P to give
the value τ .

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 129

• The Verification algorithm XS.ver takes as inputs the key K ∈ XS.KS, the document
D and the tag t := (r, τ). It re-computes the value τ from the inputs r and D. It
returns 1 if this value is equal to the input τ and 0 otherwise.

• The Update algorithm XS.upd takes as inputs the key K ∈ XS.KS, the document
the operation op ∈ OpCodes where OpCodes = {I, D}, the set of argument arg and the
tag t. The argument arg is composed by the position i where the block value has to
be inserted or deleted and the new document block x ∈ XS.BS to insert or ε if it is a
delete operation: arg = 〈i, x〉. To be more specific:

– If op = I, the update algorithm enables to insert a block value in a document. It
takes as argument the position i where the block value has to be inserted, the
document D (the previous block value D[i − 1] 5 and the block value D[i] 6are
necessary), the new block value x and the tag t. It outputs the new tag.

– If op = D, the update algorithm enables to delete a block from the document. It
takes as inputs the position i where the block as to be deleted, the document D
(the block value to delete D[i], the previous and next block values D[i− 1] and
D[i+ 1] are necessary) and the tag t.

Specific features. The update algorithm is intuitive and given in Figure 5.16 for update
operations at a position different from the first block position. They can be adapted to be
applied to the first block. In the original version, it is specified that a prefix and postfix
are added to the document. For a document D = D[1] . . . D[nb], the authentication tag
is computed on D[0]||D[1] . . . D[nb]||D[nb + 1] where D[0] and D[nb + 1] are specific prefix
and postfix values. In the description given in Figure 5.16, we give the description of the
original Xor-Scheme defined for basic security (IUF-BS security game). In this work, these
specifications are not taken into account: it does not prevent our attack and the repaired
scheme is proven secure without it.

Xor-Scheme limits. Supporting insert, delete and consequently replace operations should
make the Xor-Scheme very efficient in term of update time running. The fresh random
values ri generated by this scheme for each new document block are necessary for security.
But generating so much randomness is time-consuming: for an nb-block document D, a
nb · rl-random bits value r is generated. Random generation also slows down the insertion
operation. Another drawback is the tag expansion: the random value r is part of the tag and
needs to be stored. For a nb-block document, random storage costs nb · rl bits. Even if today
storage is not an issue, having short tags is desirable.

Remark 5.2.3. A counter-based version of the Xor-Scheme can be defined: instead of
having a random value space XS.RS, it has as a parameter a nonce space NS. In this version,
a counter can be used and it has to be a stateful algorithm to store this value in order to
assure that it never repeats. It has the advantage to save all the random value generation
that can be very consuming from a practical point of view but instead the price to pay is to
store the counter.

5For the first position, there is no previous block.
6For the last position, there is no next block.

130 Chapter 5 Incremental Authentication Schemes

XS.kg()
K1←←F.KS; K2←←P.KS
return K1||K2

XS.upd(K,D, op, 〈i, x〉, t)
if op 6= D and op 6= I then return ⊥
(K1,K2)← K; nb← |D|n
r ← t[0 : (nb-1)rl-1]; τ ← t[(nb-1)rl :]
Ri ← ri||D[i]
Ri-1 ← ri||D[i-1]
if op = I then
r′i←←XS.RS
R′i ← r′i||x
h′i ← F(K1, Ri−1||R′i)
h′i+1 ← F(K1, Ri′ ||Ri)
hi ← F(K1, Ri−1||Ri)
Σ← h′i ⊕ h′i+1 ⊕ hi

if op = D then
Ri+1 ← ri+1||D[i+ 1]
hi ← F(K1, Ri−1||Ri)
hi+1 ← F(K1, Ri||Ri+1)
h′i ← F(K1, Ri−1||Ri+1)
Σ← hi ⊕ hi+1 ⊕ h′i

Σ← Σ⊕ P−(K2, τ)
τ ← P(K2,Σ)
r ← r0 . . . ri−1||ri+1 . . . rnb
t← (r, τ)
return t

XS.tag(K,D)
(K1,K2)← K; Σ← 0L

nb← |D|n
r0←←XS.RS
r ← r0
R0 ← D[0]||r0
for i = 1 to nb− 1 do
ri←←XS.RS
r ← r||ri

Ri ← ri||D[i]
hi ← F(K1, Ri−1||Ri)
Σ← Σ⊕ hi

τ ← P(K2,Σ)
t← (r, τ)
return t

XS.ver(K,D, t)
(K1,K2)← K; Σ← 0L

n← |D|n
r ← t[0 : (n− 1)rl− 1]
τ ← t[(n− 1)rl :]
R0 ← r0||D[0]
for i = 1 to n− 1 do
Ri ← ri||D[i]
hi ← F(K1, Ri−1||Ri)
Σ← Σ⊕ hi

τ ’← P(K2,Σ)
return (τ ’ = τ)

Figure 5.16: XS Original Xor-Scheme Algorithm

5.2.2.2 Forgery Attacks against the Xor-Scheme

An analysis on some incremental hash functions was provided by Phan and Wagner [PW06].
They give, inter alia, patterns that could give collisions on a hash function based on pair
block chaining. Two cases are of interest for the Xor-Scheme: non-distinct blocks and
cycling chaining. The first one considers repeated blocks messages like A||B||C||B||A and
B||C||B||A||B that would have the same sum value if no randomness was used (cf. Figure 5.15)
but as underlined by the authors the random values appended to each message block
prevents these repetitions. The second one considers a variant of the Xor-Scheme [GSC01]
where the first and the last block are chained so that some repeated patters like A||B||A
and B||A||B would have the same sum value but it not the case in the original version
from [BGG95]. Therefore, until this thesis work, no attacks were known against the original
strongly incremental Xor-Scheme proposed in [BGG95].
According to the IUF-BS security game (named basic security in [BGG94]) described in

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 131

Figure 5.4, the adversary A wins the game if it finds a new pair (D∗, t∗) such that the
verification operation returns 1. If an adversary has access to any tag t (such that t = (r, τ))
returned by the tag algorithm on a document D (for example D[0]||D[1]||D[2]), it can forge
a different document D∗ having the same value τ . The value τ is computed as follows:

τ = P(K2,F(K1, D[0]||r0 || D[1]||r1)⊕ F(K1, D[1]||r1 || D[2]||r2)] (5.1)
Σ = F(K1, R0||R1)⊕ F(K1, R1||R2) = h1 ⊕ h2 (5.2)

A can build a document D∗ 6= D and a value r∗ such that the corresponding Σ∗ value
collides with Σ even if there is no weakness on F. A way to do so consists of inserting a
specific block chain in document D in order to cancel all the new values h′i introduced by these
repetitions as shown in Figure 5.17. It seems that the chaining structure of the Xor-Scheme
should prevent this behaviour because changing or inserting a block value will affect two
values hi then the tag τ will be different. These modifications have to be compensated: the
values h′i introduced have to be canceled by xoring the same value and all the original values
hi that are deleted have to be re-introduced. We use this trick to break the claimed basic
security.

(R0, R1) (., .) (., .) (R1, R2)
↓ ↓ ↓ ↓
h1 ⊕ . . . ⊕ . . . ⊕ h2 = Σ︸ ︷︷ ︸

= 0

Figure 5.17: Xor cancellation strategy in the Xor-Scheme

Forgery Attack. Applying this strategy gives us an adversary A wining the game GIUF-BS
XS

with probability 1 and that requires only one query to the oracle Tag.

Adversary ATag,Update,Verify,Reset

1 A calls Initialize.

2 A calls the Tag oracle with a document D as input such that D = D[0]||D[1]||D[2] and
receives the corresponding authentication-tag t = (r, τ).

(R0, R1) (R1, R2)
↓ ↓
h1 ⊕ h2 = Σ

Figure 5.18: Σ computation for 3 block document

3 A builds a document D∗ from D such that D∗ = D[0]||D[1]||D[2]||D[1]||D[2]||D[1]||D[2]
and a value r∗ from r such that r∗ = r0||r1||r2||r1||r2||r1||r2. A calls Finalize with
(D∗, t∗) such that t∗ = (r∗, τ).

132 Chapter 5 Incremental Authentication Schemes

(R0, R1) (R1, R2) (R2, R1) (R1, R2) (R2, R1) (R1, R2)
↓ ↓ ↓ ↓ ↓ ↓
h1 ⊕��h2 ⊕��h

′
2 ⊕��h2 ⊕��h

′
2 ⊕ h2 = Σ

Figure 5.19: Attack on the Xor-Scheme. Here Ri = D[i]||r[i].

The document D∗ is different from D but it has the same value τ . The document D∗
given in Figure 5.19 is an example of a forgery and many other examples can be given. To
be more general, for any x ∈ XS.BS, any x′ ∈ XS.RS and for any valid pair (D, t) such that
D = D[0] . . . D[i]||D[i + 1] . . . D[nb], many forgeries (D∗, (r∗, τ)) can be built by inserting
the specific block chain D[i]||x||D[i]||x in D (and the corresponding random value chain
ri||x′||ri||x′ in r for any x′) in such a way that:

D∗ = D[0] . . . D[i− 1]|| D[i]||x||D[i]||x||D[i]︸ ︷︷ ︸ ||D[i+ 1] . . . D[nb]

r∗ = r0 . . . ri−1|| ri||x′||ri||x′||ri||︸ ︷︷ ︸ ri+1 . . . rnb.

A variant of this forgery is to insert only a repeated document block D[i] (and ri) is the
following:

D∗ = D[0] . . . D[i− 1]|| D[i]||D[i]||D[i]︸ ︷︷ ︸ ||D[i+ 1] . . . D[nb].
r∗ = r0 . . . ri−1|| ri||ri||ri||︸ ︷︷ ︸ ri+1 . . . rnb.

A more powerful forgery can be built from (D, t) by inserting any values x and y in D (and
any values x′ and y′ in r) such that:

D∗ = D[0] . . . D[i− 1]|| D[i]||x||y||x||y||x||D[i]||x||D[i]︸ ︷︷ ︸ ||D[i+ 1] . . . D[nb].

r∗ = r0 . . . ri−1|| ri||x′||y′||x′||y′||x′ri||x′||ri||︸ ︷︷ ︸ ri+1 . . . rnb.

For all these attacks, the underbraced chains can be repeated many times. These three
attacks are some of the possible attacks, following this canceling strategy, some exotic chains
can be inserted in order to end with a value τ that corresponds to a legitimate tag. A first
observation is that all these attacks are performed by inserting blocks and providing a forgery
D∗ that has the same length that the original one looks impossible or at least harder.

Remark 5.2.4. It is worth noticing that this attack also breaks the IUF1-X security notions
(in the SD and MD settings). Indeed, in our attack, the Tag oracle is called once, the
Update oracle is not called and all the other oracles are the same in the IUF-BS and the
IUF1-X security games.

5.2.2.3 Modification of the Xor-Scheme

The previous section described an attack that breaks IUF-BS and IUF1-MD securities of the
Xor-Scheme by producing a document D∗ using a MAC query (D, t) where τ = τ∗ and
|D|n 6= |D∗|n. All the forgeries D∗ produced are longer that the original document D. One
can notice that if the adversary A is only allowed to tag and verify documents that have the
same length nb then the attack presented in Section 5.2.2.2 will fail. A first naive idea is to

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 133

FK1 FK1 FK1 FK1 FK2

τ

nbD[0] D[1] D[2] D[3] D[nb-1]

h1 h2 h3 h4 hnb

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rnb-1 ||

Rnb-1

rnb ||

Rnb

. . .

. . .

Figure 5.20: Description of the fixed Xor-Scheme

force all documents to have the same length (documents that are too small can be padded in
the MAC algorithm) but this solution is not realistic and the incremental property will be
lost. A natural way to fix this flaw is to use the document length nb for the computation of
the value τ in order to make it size dependent. The size can be expressed according to any
units: number of bits, bytes, blocks. Choosing the number of blocks nb is sufficient. A suffix
block containing the number of blocks nb can be added at the end of the document then the
computation of the value Σ will become:

Σ = F(K1, D[0]||r0 ||D[1]||r1)⊕F(K1, D[1]||r1 ||D[2]||r2)⊕· · ·⊕F(K1, D[nb-1]||rnb-1 || rnb||nb)
The last block works as a mask for each value τ : incremental operation will refresh the

last random value rnb in order to have a different mask value for any modification. As a
consequence, the pseudorandom permutation P is not necessary anymore (τ = Σ), it is
removed in the modified scheme (Figure 5.20).

The last random block value rnb (concatenated with the document length nb) is necessary
otherwise the corresponding hnb value can be canceled. If it is omitted, the following attack
is indeed possible:

1. A calls the Initialize oracle.

2. A chooses a document D1 = D[0]||D[1] and calls the Tag oracle with D as input. He
receives the tag t1 = (r0||r1, τ1).

3. A calls the Update oracle to delete the first block of D by giving as inputs to the
oracle (D1, D, 〈0〉, τ1). The resulting document is D2 = DES.Edit(D1, D, 〈0〉). He receives
t2 = (r1, τ2).

4. A calls the Update oracle to insert the block D[0]′ at the first position of the document
D2. He gives as inputs (D2, I, 〈0, D[0]′〉, τ2) and receives t3 = (r′0||r1, τ3). The resulting
document is D3 = DES.Edit(D2, I, 〈0, D[0]′〉).

5. A calls the Update oracle to insert the block D[2] at the position 2 of the original
document D1 using as input (D1, I, 〈2, D[2]〉, τ1). He receives t4 = (r0||r1||r2, τ4). The
resulting document is D4 = DES.Edit(D1, I, 〈2, D[2]〉).

6. A builds the document D∗ = D[0]′||D[1]||D[2] and the tag t∗ = (r′0||r1||r2, τ1⊕ τ3⊕ τ4).
A calls the Finalize oracle with (D∗, t∗).

134 Chapter 5 Incremental Authentication Schemes

Functions Scheme rl-bits Gen F P Xor
tag XS nb nb− 1 1 nb− 1

MXS nb + 1 (nb− 1) + 1 0 nb
ver XS 0 nb− 1 1 nb− 1

MXS 0 (nb− 1) + 1 0 nb
upd.D XS 0 3 2 3

MXS 1 5 0 5
upd.I XS 1 3 2 3

MXS 2 5 0 5

Figure 5.21: Complexity of the Xor-Scheme XS and the Modified Xor-Scheme MXS.

The couple (D∗, r∗) is a forgery: it is not in the list DL of tagged document and it
has a valid tag. To avoid such attacks, for incremental operations the last random block
(concatenated with the document length) needs to be always refreshed. To be sure that none
of the previous attacks are practical, an independent key is used to process the last couple
(Rnb−1, Rnb). That way, it would be hard for an adversary to make a forgery from a linear
combination of tagged documents. This version of the Xor-Scheme is the subject of the next
section.

5.2.3 MXS Construction

We give here the description of the patched XS, called in the following Modified Xor-Scheme
MXS, and we prove its security in the IUF-BS security model.

5.2.3.1 Description of MXS

The MXS is a probabilistic scheme, we have a random space MXS.RS from which the random
data blocks are randomly sampled. MXS is stateless then the Initialisation algorithm MXS.init
is omitted (e.g. the state st is empty). It is defined as follows:

MXS = (KS,BS,DS,RS, kg, tag, upd, ver).

• MXS is based on a pseudorandom function family F = (KS,Dom,Rng, eval) such that
F : F.KS × F.Dom → F.Rng. It follows that F.Dom = MXS.RS2 × MXS.BS2 and
F.Rng = {0, 1}t` where t` is the tag size.

• The key generation algorithm MXS.kg is a probabilistic algorithm that takes no
input and returns a key K ∈ MXS.KS such that MXS.KS = F.KS2.

• The tagging algorithm MXS.tag takes as inputs the key K ∈ MXS.KS, a document
D ∈ MXS.DS and outputs a tag t := (r, τ). Similarly to the XS scheme, for each
document block D[i] ∈ MXS.BS, a random block value ri ∈ MXS.RS is randomly
sampled and its bit length is denoted MXS.rl. The concatenation of these values is
denoted Ri := D[i]||ri. Each couple (Ri−1, Ri) is processed by the function FK1 . The
concatenation of the last value Rnb and the number of blocks nb encoded as an `-bit
block is processed by a pseudorandom permutation function FK2 with a different key
K2. Then the output values denoted hi are bitwise Xored to give the value τ .

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 135

• The Verification algorithm MXS.ver takes as inputs the key K ∈ MXS.KS, the
document D and the tag t := (r, τ). It re-computes the value τ from the inputs r and
D. It returns 1 if this value is equal to the input τ and 0 otherwise.

• The Update algorithm MXS.upd takes as inputs the key K ∈ MXS.KS, the document
the operation op ∈ OpCodes where OpCodes = {I, D}, the set of argument arg and the
tag t. The argument arg is composed by the position i where the block value has to be
inserted or deleted and the new document block x ∈ MXS.BS to insert or ε if it is a
delete operation: arg = 〈i, x〉.

Contrary to XS, the MXS scheme is based on two pseudorandom functions FK1 and FK2

with independent keys but it does not rely on a pseudorandom permutation. The details of
the MXS scheme is given in Figure 5.16.

Complexity. The modified Xor-Scheme is slightly slower than the original one. For the tag
and the incremental operations the P call is removed but a call to the function FK2 is added
as shown in Figure 5.21. The delete D and insert I operations are slightly slower because of
the last block update: the last value Ri depending on the document length has to be removed
and the a new value R′i with the new document length nb′ is added.

Other Solutions. In the original Xor-Scheme (Figure 5.15), the document length can be
added differently in the algorithm (but still with a random value rnb):

1 Before the last operation P2(K2,Σ), an intermediate operation P3(K3, rnb||nb || Σ) can be
added such that τ = P2[K2,P3(K3, rnb||nb || Σ)].

2 The block length can be processed individually as a last block such that
τ = P2[K2,P3(K3, rnb||nb)⊕ Σ].

5.2.3.2 Security Proof

The security proof follows the proof strategy used in [BGR95a] for proving the security of
XMAC.

Information theoretic case. As in [BGR95a], we first consider the case where the two
underlying PRFs FK1 and FK2 are replaced by two truly random functions f1 and f2 from
{0, 1}2` to {0, 1}L. We consider an unbounded adversary and the following theorem claims
the security of this modified scheme in the information theoretic case. More precisely, it
provides an absolute bound on the success of the adversary in terms of the number of oracle
queries it makes.

Theorem 5.2.5. Let A be any (computationally unbounded) an IUF-BS-adversary making a
(qt, qv, qupd)-attack against the Modified Xor-Scheme with two functions picked uniformly at
random from F∗(D,R) such that D = {0, 1}2` and R = {0, 1}L. The probability that A is
successful is at most

AdvIUF-BS
MXS (A) ≤ q2 · 2n−` + qv · (nb2 · 2n−` + 2−L).

Here, qt is an upper bound on the number of tagging queries, qupd is an upper bound on the
number of update queries (such that q = qt + qupd), qv is an upper bound on the number of
verification queries and nb denotes the maximal block-length of the documents authenticated
in the security game.

136 Chapter 5 Incremental Authentication Schemes

Theorem 5.2.5 (Sketch.) The proof follows closely the proof from [BGR95a]. The main
difference is that we use two different random functions in the modified scheme and that we
need the following simple lemma to prove that some specific matrix (close to the one used in
[BGR95a]) is full-rank. For the reader familiar with [BGR95a], we use similar notations in
the following.

Lemma 5.2.6. Let X be some finite set and let nb ∈ N. Let (R0, R1, . . . , Rnb) ∈ Xnb+1 with
Ri 6= Rj for all i 6= j then if there exists (R∗0, R∗1, . . . , R∗nb) ∈ Xnb+1 such that

{(R0, R1), (R1, R2), . . . (Rnb−1, Rnb)} = {(R∗0, R∗1), (R∗1, R∗2), . . . (R∗nb−1, R
∗
nb)}

then for all i ∈ {0, . . . , nb}, Ri = R∗i .

Lemma 5.2.6. This lemma can be easily proved by induction over nb. Let us denote Snb
the first set {(R0, R1), (R1, R2), . . . (Rnb−1, Rnb)} where all Ri are distinct. In particular, the
set Snb contains exactly nb different couples. One can notice that the first member of each
couple is the second member of the previous couple except the first and the last couples. In
others words a value Ri appears in two couples: once as a first member and once as a second
member except the first one R0 and the last one Rnb.
The case nb = 1 is trivial. We consider the case nb = 2 that provides greater clarity. Let
assume that there exists (R∗0, R∗1, R∗2) ∈ X3 such that

{(R0, R1), (R1, R2)} = {(R∗0, R∗1), (R∗1, R∗2)}

and #{R0, R1, R2} = 3. As there are exactly two couples in each set, we have the following
two cases:

• case 1: (R0, R1) = (R∗0, R∗1) and (R1, R2) = (R∗1, R∗2) then in this case, we get R0 =
R∗0, R1 = R∗1, R2 = R∗2;

• case 2: (R0, R1) = (R∗1, R∗2) and (R1, R2) = (R∗0, R∗1). The first equality implies
R∗1 = R0 and the second equality implies R∗1 = R2 and thus R0 = R2 which contradicts
the statement R0 6= R2.

Suppose now that Lemma 5.2.6 holds for all integers k ≤ nb− 1 for some positive integer
nb. We will show that it holds for nb.

Let us suppose that there exists (R∗0, R∗1, . . . , R∗nb) ∈ Xnb+1 such that Snb = S∗nb where S∗nb
is the set {(R∗0, R∗1), (R∗1, R∗2), . . . (R∗nb−1, R

∗
nb)}. Again, as all the values Ri are different in

Snb then the n couples are different. The equality of these two sets Snb and S∗nb implies that
they contain exactly the same nb couples and that in each set a couple appears only once.
We have the following two cases:

• case 1: (Rnb−1, Rnb) = (R∗nb−1, R
∗
nb) and Snb−1 = S∗nb−1. From the induction hypothe-

sis, for all i ∈ {0, . . . , n− 1}, Ri = R∗i .

• case 2: (Rnb−1, Rnb) 6= (R∗nb−1, R
∗
nb) Then there exists i ∈ {0, . . . , nb − 1} such that

(Rnb−1, Rnb) = (R∗i−1, R
∗
i). It implies R∗i = Rn and according to the structure of these

sets, there is a couple in S∗nb that has a first member equal to R∗i = Rnb) and it has to
be the case in Snb. But as mentioned above, Rnb is a value that appears only in one
couple of Snb and we get a contradiction.

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 137

We will use this lemma with X = {0, 1}` at the end of the proof to show that different
messages of the same block-length involve different input pairs for the underlying PRF FK1 .

Since the adversary A is computationally unbounded we may assume without loss of
generality that it is deterministic. The probabilistic choices in A’s attack on the scheme
are thus the initial choice of f1 and f2 of the random functions in F∗({0, 1}2`, {0, 1}L) and
the choices of random coins made by the authentication oracles in the security game. We
assume (again without loss of generality) that A makes exactly q = qt + qupd authentication
queries (either as a direct tagging query or as an update query with the insert or the delete
operations). As in [BGR95a], there is no loss of generality to assume that A makes all its
authentication queries and then makes exactly one verify query (for its purported forgery).
We prove that in this case the probability of the event (denoted Succ) A’s forgery is valid is
upper-bounded by

q2 · 2n−` + nb2 · 2n−` + 2−L.

and using a classical argument (see e.g. [BGR95a]) we get the claimed bound for general
adversaries.
We consider the simple case where all the random coins used in the last block of each

authenticated document are different. Note that in all authentication queries (from a tagging
query or an update query), this random block is picked uniformly at random and independently
of the previous blocks. To analyse the probability of this event (denoted Distinct), we can
therefore use the following simple lemma:

Lemma 5.2.7 ([BGR95a, Fact A.1]). Let P (m, t) denote the probability of at least one
collision in the experiment of throwing t balls, independently at random, into m buckets.
Then P (m, t) ≤ t2/m.

We thus have

Pr[Succ] = Pr[Succ|Distinct] · Pr[Distinct] + Pr[Succ|Distinct] · Pr[Distinct]
≤ Pr[Succ|Distinct] + Pr[Distinct]
≤ Pr[Succ|Distinct] + P (2n−`, q)
≤ Pr[Succ|Distinct] + q2 · 2n−`.

and it remains to upper-bound Pr[Succ|Distinct].
Let us fix a particular sequence of q documents D1, . . . , Dq (each made of at most nb

blocks of n bits) corresponding to all documents authenticated in the security game by some
authentication queries (either as a tagging query or as an update query with the insert or
the delete operations). We also fix r1, . . . , rq some bit-strings possibly used as random values
in the modified Xor-Scheme for these documents (i.e. ri consists in 1 ≤ nbi ≤ nb blocks of
`− n bits if Di is made of nbi blocks of n bits) and we assume that the last blocks of all of
them are all different. Finally we fix τ1, . . . , τq some possible corresponding tags in {0, 1}L
for these documents. We consider only bit-strings (D1, . . . , Dq), (r1, . . . , rq) and (τ1, . . . , τq)
for which the probability that there exists two functions f1 and f2 such that ti = (ri, τi) is a
valid tag for Di (for all i ∈ {1, . . . , q}) for f1 and f2 is non-zero.

138 Chapter 5 Incremental Authentication Schemes

We will compute the probability of the event that A’s forgery is valid conditioned on the
event that the authentication queries made by A are on the documents D1, . . . , Dq, use the
random coins (r1, . . . , rq) and result in the tags (τ1, . . . , τq). More precisely, we will show that
this probability is upper-bounded by nb2 · 2n−` + 2−L (and since the bit-strings (D1, . . . , Dq),
(r1, . . . , rq) and (τ1, . . . , τq) are arbitrary, we will get the result by standard conditioning
arguments).
We consider a possible forgery output by A and we denote Dq+1 the corresponding

document, rq+1 the used randomness and τq+1 the tag. It is worth noting that the pair
(Dq+1, rq+1) is different from all pairs (Di, ri) for all i ∈ {1, . . . , q} (since otherwise, this is
not an actual forgery) but we cannot assume that the last block of rq+1 is different from
the last blocks of all previous random values ri for all i ∈ {1, . . . , q} (since A may choose it
arbitrarily and it can reuse a value obtained in a previous authentication query).
For i ∈ {1, . . . , q + 1}, we denote Di[j] for all j ∈ {1, . . . , nbi}, the j-th block of the

document Di and similarly ri[j] for all j ∈ {1, . . . , nbi + 1}, the j-th block of the randomness
ri. As in [BGR95a], we consider the matrix B with q + 1 rows and 22`+1 columns over
F2 = {0, 1} where the entry in row i ∈ {1, . . . , q+ 1} and column j ∈ {1, . . . , 22`+1} is defined
as follows:

• for j ∈ {1, . . . , 22`}, the entry is equal to 1 if j is the index of the 2`-bit string
(Di[nbi]||ri[nbi]||nbi||ri[nbi + 1]) in lexicographic order (and 0 otherwise).

• for j ∈ {22`+1, . . . , 22`+1}, the entry is equal to 1 if j−22` is the index of the 2`-bit string
(Di[k]||ri[k]||Di[k + 1]||ri[k + 1]) in lexicographic order for some k ∈ {1, . . . , nbi − 1}
(and 0 otherwise).

In other words, the matrix B contains a 1 on the row i for i ∈ {1, . . . , q+ 1} only at positions
corresponding to bit-strings of length 2` used as inputs to the random functions f1 and f2 in
the modified Xor-Scheme (where the left part consisting of the first 22` columns of the matrix
corresponds to the unique input of f2 and the right part corresponds to all inputs to f1).

We have the following lemma:

Lemma 5.2.8. The matrix B has full rank with probability at least 1− nb2 · 2n−`.

Lemma 5.3.3. The proof is similar to the proof of [BGR95a, Lemma A.3]. If the pair
(nbq+1, rq+1[nbq+1 +1]) is different from all (nbi, ri[nbi+1]) for i ∈ {1, . . . , q}, then the matrix
B is in echelon form (in its left part) and is thus trivially of full rank.

Otherwise, we assume that rq+1[nbq+1 + 1] is equal to some ri[nbi + 1] and if nbq+1 = nbi
(the last block of randomness of A’s forgery is equal to the last block of randomness of
the i-th authenticated message and the block-length of these two messages are equal). It
is worth noting that there exists only one index i ∈ {1, . . . , q} such that this is the case
(since we assume that these last blocks of randomness are all different). For this i-th
document, the random blocks ri[j] for j ∈ {1, . . . , nbi} are all different with probability at
least 1− nb2

i · 2n−` ≥ 1− nb2 · 2n−` by Lemma 5.2.7. Since the pair (Dq+1, rq+1) is different
from (Di, ri) and since the pairs (Di[k], ri[k]) are all different for k ∈ {1, . . . , nbi} (with
probability at least 1− nb2 · 2n−`), we can apply Lemma 5.2.6 to the sets (of the same length
nbi = nbq+1):

{Di[1]||ri[1]||Di[2]||ri[2], Di[2]||ri[2]||Di[3]||ri[3], . . . , Di[nbi − 1]||ri[nbi − 1]||Di[nbi]||ri[nbi]}

Ch
ap

te
r5

5.2 Incremental MACs with IUF1 Security 139

and

{Dq+1[1]||rq+1[1]||Dq+1[2]||rq+1[2], Dq+1[2]||rq+1[2]||Dq+1[3]||rq+1[3], . . . ,
Dq+1[nbi − 1]||rq+1[nbi-1]||Dq+1[nbi]||rq+1[nbi]}.

We thus obtain that there exists an index k ∈ {1, . . . , nbi − 1} such that

(Dq+1[k]||rq+1[k]||Dq+1[k + 1]||rq+1[k + 1]) 6= (Di[k]||ri[k]||Di[k + 1]||ri[k + 1]).

Therefore in this case the left part of the last row (consisting of the first 22` columns) is
identical to the left part of the i-th row but these rows differ in at least one position in the
right part of the matrix B. By elementary operations on the rows, one can easily transform
the matrix B in echelon form and it is therefore of full rank (with probability at least
1− nb2 · 2`−n).

To conclude the proof, one can identify the functions f1 and f2 to their vector of values
in ({0, 1}2`)L by denoting fi(x) = (ϕ(x)

i,1 , . . . , ϕ
(x)
i,L) for x ∈ {0, 1}2` and i ∈ {1, 2}, where

ϕi,j ∈ {0, 1}2` for i ∈ {1, 2} and j ∈ {1, . . . , L}. In this case by construction, τ i is the
authentication tag of the document Di with randomness ri for all i ∈ {1, . . . , q + 1} if and
only if for all j ∈ {1, . . . , L}, the j-th bit τ (j)

i of τi is equal to the dot product of the i-th row
of the matrix B and the vector ϕ2,i||ϕ1,i. Using the same argument as in [BGR95a], since B
is of full rank, the number of vectors satisfying this q + 1 equations is 2L times smaller than
the number of vectors satisfying only the first q equations (corresponding to the first q rows
of B), and therefore we obtained that the forgery τ q+1 output by the adversary is valid with
probability 2−L if the matrix B is full rank.

We have thus proved that, in the simplified case, the probability that A’s forgery is valid
is upper-bounded by

q2 · 2n−` + nb2 · 2n−` + 2−L.

and thus the claimed bound for general adversaries.
Computational case. If we replace the (truly) random functions by pseudorandom
functions in the previous result, we obtain readily the following computational security result:
Theorem 5.2.9. Let F = (KS,Dom,Rng, eval) be a pseudorandom function family such that
F.Dom = {0, 1}2·` and F.Rng = {0, 1}L. Let A be any adversary making a (qt, qv, qupd)-attack
against the modified Xor-Scheme with two functions picked uniformly at random from F and
running in time λ.
There exist an adversary B against the pseudorandomness property of F that makes q′ = q · t
queries to F, runs in time λ′ = λ+O(q′(`+ L)) such that

AdvIUF-BS
MXS (A) ≤ Advprf

F (B) + (q2 + nb2) · 2n−` + 2−L.

Here, qt is an upper bound on the number of tagging queries, qupd is an upper bound on the
number of update queries (such that q = qt + qupd), qv is an upper bound on the number of
verification queries and nb denotes the maximal block-length of the documents authenticated
in the security game.
Theorem 5.2.9. The proof is identical to the proof of [BGR95a, Theorem 4.2] and is left to
the reader.

140 Chapter 5 Incremental Authentication Schemes

MXS.kg()
K1←←F.KS; K2←←F.KS
return K1||K2

MXS.tag(K,D)
(K1,K2)← K; Σ← 0L, nb← |D|XS.n
r0←←MXS.RS
r ← r0
R0 ← r0||D[0]
for i = 1 to nb-1 do
ri←←MXS.RS
r ← r||ri

Ri ← ri||D[i]
hi ← F(K1, Ri−1||Ri)
Σ← Σ⊕ hi

rnb←←MXS.RS
Rnb ← rnb||nb
hnb ← F(K2, Rnb−1||Rnb)
τ ← Σ⊕ hnb
t← (r, τ)
return t

MXS.ver(K,D, t)
(K1,K2)← K; Σ← 0L ; nb← |D|XS.n
r ← t[0 : nb · rl-1]; τ ← t[nb · rl :]
R0 ← D[0]||r0
for i = 1 to nb-1 do
Ri ← ri||D[i]
hi ← F(K1, Ri-1||Ri)
Σ← Σ⊕ hi

Rnb ← nb||rnb
hnb ← F(K2, Rnb-1||Rnb)
τ ← Σ⊕ hnb
return τ ’ = τ

MXS.upd(K,D, op, 〈i, x〉, t)
if i > nb then return ⊥
K1||K2 ← K; nb← |D|MXS.n
r ← t[0 : nb · rl-1]; τ ← t[nb · rl :]
Ri ← ri||D[i]
Ri-1 ← ri||D[i-1]
Rnb-1 ← rnb-1||D[nb-1]
Rnb ← rnb||nb
hnb ← F(K2, Rnb-1||Rnb)
hi ← F(K1, Ri-1||Ri)
if op = I then
r′i←←MXS.RS
R′i ← r′i||x
r′nb+1←←MXS.RS
R′nb+1 ← r′nb+1||nb+1
h′nb+1 ← F(K2, Rnb-1||R′nb+1)
h′i ← F(K1, Ri-1||R′i)
h′i+1 ← F(K1, Ri′ ||Ri+1)
Σ← h′i ⊕ h′i+1 ⊕ hi ⊕ hnb ⊕ h′nb+1
r ← r0 . . . ri−1||r′i||ri . . . rnb−1||r′nb+1

if op = D then
Ri+1 ← ri+1||D[i+1]
hi+1 ← F(K1, Ri||Ri+1)
h′i ← F(K1, Ri−1||Ri+1)
r′nb←←MXS.RS
R′nb ← r′nb||nb-1
h′nb ← F(K2, Rnb−1||R′nb)
Σ← hi ⊕ hi+1 ⊕ h′i ⊕ hnb ⊕ h′nb
r ← r0 . . . ri−1||ri+1 . . . rnb−1||r′nb

τ ← τ ⊕ Σ
t← (r, τ)
return (t)

Figure 5.22: Modified Xor-Scheme Algorithm.

Ch
ap

te
r5

5.3 Incremental MACs with IUF2 Security 141

5.3 Incremental MACs with IUF2 Security

5.3.1 XMAC Constructions

Security analysis. As shown by the adversary A described below, XMACC it not IUF2-SD.
This adversary can be easily adapted for XMACR.

Attack. We give the description of an adversary A against the IUF2-SD security of XMAC
scheme.

1. A calls the Initialize oracle.

2. A builds the 3-blocks document D1 such that D1 = D[1]||D[2]||D[3] for any document
blocks.

3. A calls the Tag oracle and gives as inputs the nonce value 0 and the document D1. It
receives the tag t1.

4. A builds the document D2 such that D∗1 = D[1]||D[2]||D[2].

5. A calls the Update oracle giving as inputs the nonce value 1, the document D∗1, the
operation R, the argument 〈D[2], 3〉 and the tag t1. It receives the tag t2.

6. A builds D2 = D[1]||D[2]||D[2] and calls the Finalize oracle with (D2, t2) as input.
During the Tag call, the document D1 = D[1]||D[2]||D[3] is added to the list DL. An during
the Update call, the document D2 = D[1]||D[3]||D[3] is added to the list DL because the
document is updated according the current document which was D1 in this case. Then we
can see that the document D2 = D[1]||D[2]||D[2] provided by the adversary is not in the list
DL.

Remark 5.3.1. (Difference between Xor-MAC and Plus-MAC) This attack works only when
the operator of XMAC is a "XOR", it does not work with the modular addition. In fact,
during the replace operation, the image by F of the deleted block xd at position i and the
image by F of the inserted block xi at position i are XORed: removing a block at some
position and deleting a block at the same position are done by the same operation "XOR"
which in not the case for the modular addition: adding "+" and removing "-" are not done by
the same operation.

The previous attack does not break the IUF2-SD security, there is an other adversary that
breaks it: the following adversary B.

1. B calls the Initialize oracle.

2. B builds the document D1 such that D1 = D[1]||D[2] where D[1] and D[2] are any
document block. B calls the Tag oracle giving as input the document D1. It receives
the tag t1.

3. B builds the document D∗1 such that D∗1 = D[1]′||D[2] and calls the Update oracle
giving as input the operation R, the document D∗1, the argument 〈D[1]′′, 1〉 and the tag
t1. It receives the tag t2.

142 Chapter 5 Incremental Authentication Schemes

4. B calls the Update oracle giving as inputs the document D1, the operation R, the
argument 〈D[1]′, 1〉 and the tag t2. It receives the tag t3.

5. B calls once again the Update oracle giving as input the document D1, the operation
R, the argument 〈D[2]′, 2〉 and the tag t3. It receives the tag t4.

6. B calls the Finalize oracle giving as input the documentD∗ such thatD∗ = D[1]′′||D[2]′
and the tag t4.

The document list DL is filled as follows: [2] during Tag call, the document DDL
1 = D[1]||D[2];

[3] during the first Update call the document DDL
2 = D[1]′′||D[2]; [4] during the second

Update call, the document DDL
3 = D[1]′||D[2] and [5] during the last Update call, the

document DDL
4 = D[1]′||D[2]′ is added to the list. The document D∗ is not in the list DL. A

game where the tag and the document can be tampered with is a strong security game that
is hard to achieve.

5.3.2 MXS Construction
In this section we prove that the MXS scheme achieves IUF2-SD-security. The security proof
follows closely the IUF-BS-security proof of MXS (Theorem 5.2.5 and Theorem 5.2.9).

Information theoretic case. As above, we first consider again the case where the two
underlying PRFs FK1 and FK2 are replaced by two truly random functions f1 and f2 from
{0, 1}2` to {0, 1}L. We consider an unbounded adversary and the following theorem claims
the security of this modified scheme in the information theoretic case.

Theorem 5.3.2. Let A be any (computationally unbounded) IUF2-SD-adversary, in the
single-document setting, making a (1, qv, qupd)-attack against the MXS with two functions
picked uniformly at random from F∗(D,R) such that D = {0, 1}2` and R = {0, 1}L. The
probability that A is successful is at most

AdvIUF2-SD
MXS (A) ≤ q2 · 2n−` + qv · (nb2 · 2n−` + ·2−L).

Here the number of tagging queries is exactly 1 (single-document setting), qupd is an upper
bound on the number of update queries (such that q = 1 + qupd), qv is an upper bound on
the number of verification queries and nb denotes the maximal block-length of the documents
authenticated in the security game.

Theorem 5.3.2 (Sketch.) As in the proof of Theorem 5.2.5, since the adversary A is compu-
tationally unbounded we may assume without loss of generality that it is deterministic. The
probabilistic choices in A’s attack on the scheme are thus the initial choice of f1 and f2 of
the random functions in F∗({0, 1}2`, {0, 1}L) and the choices of random coins made by the
authentication oracles in the security game. We assume (again without loss of generality)
that A makes exactly q = qt + qupd authentication queries (either as a direct tagging query
or as an update query with the insert or the delete operations). Again, there is no loss of
generality to assume that A makes all its authentication queries and then makes exactly one
verify query (for its purported forgery). We prove that in this case the probability of the
event (denoted Succ) A’s forgery is valid is upper-bounded by

q2 · 2n−` + nb2 · 2n−` + 2−L.

Ch
ap

te
r5

5.3 Incremental MACs with IUF2 Security 143

We consider again the event (denoted Distinct) where all the random coins used in the last
block of each authenticated document are different. We have

Pr[Succ] ≤ Pr[Succ|Distinct] + q2 · 2n−`.

and it remains to upper-bound Pr[Succ|Distinct].

A priori, we cannot consider a sequence of q documents D1, . . . , Dq corresponding to all
documents authenticated in the security game by some authentication queries since the
adversary can query the Update oracle on invalid tags and therefore obtain invalid tags.
However, we can adapt the previous argument in the IUF2-SD setting.
After querying the Tag oracle on a first document D1, the adversary will query the

Update oracle times on several documents D∗2, . . . , D∗q (where D∗j is made of nbj blocks of
n bits for j ∈ {2, . . . , q}), with corresponding claimed tags t∗2, . . . , t∗q and some operation
(deletion or insertion) on the blocks i2, . . . , iq (respectively) with t∗j = (r∗j , τ∗j) and ij ≤ nbj
for j ∈ {2, . . . , q}.
The documents D∗2, . . . , D∗q , the randomness r∗2, . . . , r∗q and the tags τ∗2 , . . . , τ∗q are chosen

arbitrarily by the adversary. After the query to the Update oracle, the adversary will obtain
a new tag tj = (rj , τj) such that rj is modified in its last block and one block of randomness
is added or removed (depending of the performed operation) and τj = τ∗j ⊕Xj where Xj

depends (at most) on the documents blocks D∗j [i − 1], D∗j [i], D∗j [i + 1] and D∗j [nbj], the
random blocks r∗j [i− 1], r∗j [i] and r∗j [i+ 1] and r∗j [nbj] and the new last block of rj . Since
the queried tags are not verified, we can assume without loss of generality that the adversary
queries always use values τ∗i = 0L for j ∈ {2, . . . , q} (and thus that it gets τj = Xj as a part
of the response to its query). The value τj is then equal to XOR of at most five values of the
underlying random functions, namely two values of f2 and one or three values of f1:

• If the j-th query for j ∈ {2, . . . , q}, corresponds to insertion at the first position of D∗j
of the block D′, the Update will pick uniformly at random two blocks of randomness
r′ and r′′, compute

τj = f1(D′‖r′ || D∗j [0]‖r∗j [0])⊕ f2(D∗j [nbj]‖r∗j [nbj] || nb‖r∗j [nbj + 1])
⊕ f2(D∗j [nbj]‖r∗j [nbj] || nbj + 1‖r′′)

and output (r′||r∗j [0]|| . . . ||r∗j [nbj]||r′′, τj) as the new authentication tag.

• If the j-th query for j ∈ {2, . . . , q}, corresponds to insertion at the p-th position of Dj

of the block D′, the Update will pick uniformly at random two blocks of randomness
r′ and r′′, compute

τj = f1(D∗j [p]‖r∗j [p] || D′‖r′)⊕ f1(D′‖r′ || D∗j [p+ 1]‖r∗j [p+ 1])
⊕ f1(D∗j [p]‖r∗j [p] || D∗j [p+ 1]‖r∗j [p+ 1])⊕ f2(D∗j [nbj]‖r∗j [nbj] || nbj‖r∗j [nbj + 1])

⊕ f2(D∗j [nbj]‖r∗j [nbj] || nbj + 1‖r′′)

and output (r∗j [1]|| . . . ||r∗j [p]||r′||r∗j [p+ 1]|| . . . ||r∗j [nb]||r′′, τj) as the new authentication
tag.

144 Chapter 5 Incremental Authentication Schemes

• If the j-th query for j ∈ {2, . . . , q}, corresponds to deletion of the first block of Dj , the
Update will pick uniformly at random one block of randomness r′, compute

τj = f1(D∗j [0]‖r∗j [0] || D∗j [1]‖r∗j [1])⊕ f2(D∗j [nbj]‖r∗j [nbj] || nbj‖r∗j [nbj+1])⊕
f2(D∗j [nbj]‖r∗j [nbj] || nbj-1‖r′)

and output (r∗j [1]|| . . . ||r∗j [nbj-1]||r′′, τj) as the new authentication tag.

• If the j-th query for j ∈ {2, . . . , q}, corresponds to deletion of the p-th block of Dj , the
Update will pick uniformly at random one block of randomness r′, compute

τj = f1(D∗j [p-1]‖r∗j [p-1] ‖ D∗j [p]‖r∗j [p])⊕ f1(D∗j [p]‖r∗j [p] || D∗j [p+1]‖r∗j [p+1])
⊕ f1(D∗j [p-1]‖r∗j [p-1] ‖ D∗j [p+1]‖r∗j [p+1])⊕ f2(D∗j [nbj]‖r∗nbj

, nbj‖r∗j [nbj+1])
⊕ f2(D∗j [nbj]‖r∗j [nbj] || nbj+1‖r′′)

and output (r∗j [1]|| . . . ||r∗j [p-1]||r∗j [p+1]|| . . . ||r∗j [nb]||r′, τj) as the new authentication
tag.

The adversary is thus given some kind of authentication tags for (respectively):

• the document (D′, D∗j [1]) with “randomness” (r′, r∗j [1]) ;

• the document (D∗j [p], D′, D∗j [p+1]) with “randomness” (r∗j [p], r′, r∗j [p+1]) ;

• the document (D∗j [1], D∗j [2]) with “randomness” (r∗j [1], r∗j [2]) ;

• the document (D∗j [p-1], D∗j [p], D∗j [p+ 1]) with “randomness” (r∗j [p-1], r∗j [p], r∗j [p+1]).

which are masked by two values of f2 which depends on Dj [nbj] (with one which uses fresh
new randomness) instead of just one.
We can now consider the sequence of q documents D1, . . . , Dq (the first one made of at

most nb blocks of n bits and the other one made of at most 3 blocks of n bits) corresponding
to all documents constructed in this way during the security game. We also fix the bit-strings
possibly used as random values for these documents and we assume that the last blocks of all
of them are all different. Finally we fix τ1, . . . , τq some possible corresponding tags in {0, 1}L
for these documents.
As in the proof of Theorem 5.2.5, we will compute the probability of the event that
A’s forgery is valid conditioned on the event that the authentication queries made by A
corresponds to the constructed documents D1, . . . , Dq, use the specified random coins and
result in the tags (τ1, . . . , τq). More precisely, we will show that this probability is upper-
bounded by nb2 ·2n−`+2−L (and since the bit-strings (D1, . . . , Dq), (r1, . . . , rq) and (τ1, . . . , τq)
are arbitrary, we will get the result by standard conditioning arguments). We construct again
a matrix B containing a 1 on the row i for i ∈ {1, . . . , q + 1} only at positions corresponding
to bit-strings of length 2` used as inputs to the random functions f1 and f2 (where the left
part consisting of the first 22` columns of the matrix corresponds to the two7 inputs of f2
and the right part corresponds to all inputs to f1).

7There is only one input of f2 for the first row of the matrix

Ch
ap

te
r5

5.3 Incremental MACs with IUF2 Security 145

By our assumption on the distinctness of the random values in the last block, we have the
following lemma whose proof is identical to the one of the corresponding lemma in in the
proof of Theorem 5.2.5:

Lemma 5.3.3. The matrix B has full rank with probability at least 1− nb2 · 2n−`.

The claimed bound follows from this lemma for general adversaries as in the proof of
Theorem 5.2.5.

Computational case. If we replace the (truly) random functions by pseudorandom
functions in the previous result, we obtain readily the following computational security result:

Theorem 5.3.4. Let F = (KS,Dom,Rng, eval) be a pseudorandom function family such that
F.Dom = {0, 1}2·` and F.Rng = {0, 1}L. Let A be any adversary making a (1, qv, qupd)-attack
against the modified Xor-Scheme with two functions picked uniformly at random from F and
running in time λ.
There exist an adversary B against the pseudorandomness property of F that makes q′ = q · t
queries to F, runs in time λ′ = λ+O(q′(`+ L)) such that

AdvIUF2-SD
MXS (A) ≤ Advprf

F (B) + (q2 + nb2) · 2n−` + 2−L.

Here, the number of tagging queries is exactly 1, qupd is an upper bound on the number of
update queries (such that q = 1 + qupd), qv is an upper bound on the number of verification
queries and nb denotes the maximal block-length of the documents authenticated in the security
game.

Proof. (Theorem 5.2.9) The proof is identical to the proof of [BGR95a, Theorem 4.2] and is
left to the reader.

Remark 5.3.5 (Multi-document security). The MXS scheme is IUF2-SD and combining it
with the transform SDtoMD1 given in Section 5.1.4, we have a IUF2-MD secure scheme.

Remark 5.3.6 (Compressed version of MXS). The MXS is a strongly incremental MAC that
achieves IUF-BS and IUF2-SD security but it requires to generate an MXS.rl-bit random value
per document block and it has an impact on the tag length which is equal to nb ·MXS.rl + t`
bits for a an nb-block document. We can modify MXS in order to have smaller tag by using a
counter ctr. Let consider a MXS scheme where each block value r is equal to F′K3

(ctr) where
ctr is the counter and has a smaller bit-length (|ctr| ≤ |r|) and F′ = (KS,Dom,Rng, eval) a
pseudorandom family such that F′.Dom = {0, 1}|ctr| and F′.Rng = {0, 1}MXS.rl. In practice,
the length MXS.rl should be at least 128 bits whereas a counter of 32 bits in reasonable8.
Then the tag contains the values of the counter used to process each block (the tag length
becomes nb · |ctr|+ t`). However, this change make the MXS stateful (the counter has to be
in the state to be sure that the adversary cannot tamper with it) and requires a third key for
F′.

Conclusion. In this chapter, we revisit incrementality for MACs by first, giving a definition
of an incremental MAC with a specific syntax in order to encompass their variety and their

8Of course here, the number of processed blocks has to be smaller than 232

146 Chapter 5 Incremental Authentication Schemes

complexity. The security notions present in the literature, namely the basic security and the
tamper-proof security, are analysed: a security game is provided for the first one whereas
tamper-security proof seems to be a more vague and complex notion. This is the reason
why we define the security notion IUF2-X, inspired by the tamper-proof security, that is
close, in the single (X = SD) and multi-document (X = MD) setting. Another security notion
IUF2R-X, were replay attacks are taken into account, reinforces the IUF2-X security notion.
The relationships between all those security notions, represented in Figure 5.9, help to analyse
the security of incremental MACs.
Moreover, we showed that the XS [BGG94] does not provide the claimed basic security:

a forgery can be easily built from any tag by inserting specific document block chains to a
legitimate document and the corresponding random value chains to the legitimate random
value. We proposed the MXS that is not vulnerable to these attacks and we proved its
security not only in the IUF-BS model but also in the IUF2-SD models. From this scheme, a
IUF2-MD-secure scheme using the transform SDtoMD1 can be built9. Still from the MXS,
a stateful scheme IUF2R-X-secure against replay attack can be built using a counter10. The
XMAC is also analysed but it provides only basic security; we give attacks in the IUF2-X
security model.
The MXS is the only secure strongly incremental algorithm and it is secure in a strong

security model but unfortunately it has drawbacks that make it unpractical: it needs to
generate a lot of randomness (around one random block for one document block) which
slows down the algorithm; and the tag length is much bigger than standard MACs due
to the storage of all the random blocks essential for the tag verification (even if it can be
modified to have a smaller tag by using a counter as explained in Theorem 5.3.6). An open
problem is to find an incremental MAC producing smaller tags and achieving the same
security notion. Obviously, the MXS is not suitable as a global MAC (as defined in 2.3.2)
due to those drawbacks.

9Details given in Theorem 5.3.5
10Details given in Theorem 5.1.5

Ch
ap

te
r5

Ch
ap

te
r6

Chapter 6
Conclusion and Open Questions

6.1 Conclusion

The work presented in this thesis aims at analyzing the security of block-ciphers in the context
of Full Disk Encryption. In order to go beyond the barrier of deterministic algorithms, in
the very constraint model of Full Disk Encryption, we introduced the concept of diversifier
which is, in a word, a random value or a nonce provided by the systems for free, in the sense
that it was not meant to be used for data protection in the first place and it is not stored.
In addition, we gave the analysis of block-ciphers in a strong security model, the Key-

Dependent Message security model, where it is possible to encrypt the encryption key itself
or a function of this key. This model is of interest in FDE context; where the encryption
key, a part of it or a more complex functions of the key can end up in the disk. Another
contribution was the introduction of two methodologies to analyse the block-ciphers security
in the KDM setting: the Splitting and Forgetting technique and a KDM adaptation of the
well known H-coefficient technique. It gave notably that the Even-Mansour and KAF ciphers
with the same key and same permutation/function will never achieve the same security level
that the ideal cipher in this context (namely, KDM security for a claw-free set of functions)
and this holds for any number of rounds. Therefore, if the keys are independent, KDM
security set is less and less constrained when increasing the number of rounds as shown by
the analysis of the one-round and two-round Even-Mansour configurations (we conjectured
the KDM security of the 3-round configuration).

Knowing the limits of the FDE model, we took into account two models where metadata
storage is possible; the ADE model which does not prevent replay attacks and the stronger
model FADE that does. These ideas are natural and an ADE mechanism is already im-
plemented. However, using standard MACs to achieve FADE security has a huge impact
on performances. The read and write delays on the disk are crucial as they have a direct
impact on the whole system and cryptographic operations, encryption/decryption and tag
generation/verification, has to be as fast as possible. This is the reason why the incremental
MACs were investigated: we revisit existing security notions and give new ones (some of them
consider replay attacks) to understand how much incremental MACs can be secure. We also
give a basic security attack on the Xor-Scheme which was the only strongly incremental and
we provide a patched version. Unfortunately, achieving strong incremental security (stronger
than basic security) has a cost in terms of storage.

— 147 —

148 Chapter 6 Conclusion and Open Questions

6.2 Open Questions and futur work
In this section, we would like to hightlight some open problems and most of them can be
considered as futur works.

Disk protection mechanisms in practice. The analysis of disk protection was made step
by step; encryption (FDE with a diversifier), authenticated encryption for a sector (ADE),
authenticated encryption robustness against replay attacks (FADE); but this analysis is only
theoretical. It would be interesting to benchmark different implementations, on different
devices and with different cryptographic mechanisms. For now, the incremental scheme that
seems to be the most suitable is the Merkle tree (even if it is a bad incremental scheme in the
sense that the update complexity is logarithmic) where the update and verify times are close.

Question 6.1 (Benchmark). How much a diversifier and/or a FADE mechanism slows down
read and write operations ?

The benchmark on different devices can be a first step to see if those solutions are viable or
not.

Key-Dependent Message Security. The KDM security analysis of the Even-Mansour
and the Key-Alternating ciphers were done for some configurations and with one KDM
analysis techniques: splitting and forgetting technique and the H-coefficient technique (except
the 1-round EM).

Question 6.2 (Technique comparison). It can be interesting to prove the KDM-security for
different schemes and configurations (EM, KAF or others) with both techniques to see if for
some cases, one of these methods gives a notably better results.

Question 6.3 (Minimal KDM-secure configurations of EM and KAF ciphers). From how
many rounds, the EM and the KAF schemes, with a simple configuration (same internal
primitives and independent keys), are KDM secure under a claw-free KDM set ?

More theoretically, we can ask the following questions:

Question 6.4 (Feistel network KDM security). A more general question is: can we prove
the KDM security of the Feistel network where the underlying function are PRFs ? The main
difficulty to solve this question is that here there is no information about how the key, for
each round, is used.

Incremental MACs. For now, only MXS construction is proved IUF2-X-secure but it is
hard to use it in practice.

Question 6.5 (Better than MXS). Can we find a scheme that achieves IUF2-X security and
that is more practical than MXS ?

By practical, we mean that this should generate smaller tag, require less random generation
even if it is statefull. If it is stateful, the state has to be small.

Question 6.6 (Incremental MACs IUFR-2 suitable for disk protection). More specifically,
can we have an incremental MAC that is an IUFR-2 secure MAC with that has a small tag
and a small state ?

Ch
ap

te
r6

Bibliography
[AB96] Ross J. Anderson and Eli Biham. Two practical and provably secure block ciphers:

BEARS and LION. In Dieter Gollmann, editor, Fast Software Encryption –
FSE’96, volume 1039 of Lecture Notes in Computer Science, pages 113–120,
Cambridge, UK, February 21–23, 1996. Springer, Heidelberg, Germany.

[ACP+17] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.
Scrypt is maximally memory-hard. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part III, volume
10212 of Lecture Notes in Computer Science, pages 33–62, Paris, France, April 30 –
May 4, 2017. Springer, Heidelberg, Germany.

[AM13] Kevin Atighehchi and Traian Muntean. Towards fully incremental cryptographic
schemes. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng,
editors, ASIACCS 13: 8th ACM Symposium on Information, Computer and
Communications Security, pages 505–510, Hangzhou, China, May 8–10, 2013.
ACM Press.

[App14] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. Journal of Cryptology, 27(3):429–451, July 2014.

[App18] Apple. ios security. Technical report, Apple, November 2018.

[Ati14] Kévin Atighehchi. Space-efficient, byte-wise incremental and perfectly private
encryption schemes. Cryptology ePrint Archive, Report 2014/104, 2014. http:
//eprint.iacr.org/2014/104.

[BAA+08] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis of data corrup-
tion in the storage stack. TOS, 4(3):8:1–8:28, 2008.

[BBKN12] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprem-
pre. On-line ciphers and the hash-CBC constructions. Journal of Cryptology,
25(4):640–679, October 2012.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and effi-
ciently searchable encryption. In Alfred Menezes, editor, Advances in Cryptology
– CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
535–552, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidelberg,
Germany.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.

— 149 —

http://eprint.iacr.org/2014/104
http://eprint.iacr.org/2014/104

150 Bibliography

PRINCE - A low-latency block cipher for pervasive computing applications -
extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Science, pages 208–225, Beijing, China, December 2–6, 2012. Springer, Heidelberg,
Germany.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In 38th Annual Symposium on
Foundations of Computer Science, pages 394–403, Miami Beach, Florida, Octo-
ber 19–22, 1997. IEEE Computer Society Press.

[BE02] Hagai Bar-El. Security implications of hardware vs. software cryptographic
modules. Discretix White Paper, 2002.

[Ber13] Daniel Bernstein. Caesar competition, 2013.

[Ber18] Daniel Bernstein. Caesar finalists, 2018.

[BF15] Manuel Barbosa and Pooya Farshim. The related-key analysis of Feistel construc-
tions. In Carlos Cid and Christian Rechberger, editors, Fast Software Encryption
– FSE 2014, volume 8540 of Lecture Notes in Computer Science, pages 265–284,
London, UK, March 3–5, 2015. Springer, Heidelberg, Germany.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Yvo Desmedt, editor, Advances in Cryptology
– CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 216–233,
Santa Barbara, CA, USA, August 21–25, 1994. Springer, Heidelberg, Germany.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In 27th Annual ACM Symposium on Theory
of Computing, pages 45–56, Las Vegas, NV, USA, May 29 – June 1, 1995. ACM
Press.

[BGR95a] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New meth-
ods for message authentication using finite pseudorandom functions. In Don
Coppersmith, editor, Advances in Cryptology – CRYPTO’95, volume 963 of
Lecture Notes in Computer Science, pages 15–28, Santa Barbara, CA, USA,
August 27–31, 1995. Springer, Heidelberg, Germany.

[BGR95b] Mihir Bellare, Roch Guérin, and Phillip Rogaway. Xor macs: New methods
for message authentication using finite pseudorandom functions. In Annual
International Cryptology Conference, pages 15–28. Springer, 1995.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, Advances
in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 108–125, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

Ch
ap

te
r6

Bibliography 151

PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 450–466, Vienna, Aus-
tria, September 10–13, 2007. Springer, Heidelberg, Germany.

[BKY02] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental unforgeable
encryption. In Mitsuru Matsui, editor, Fast Software Encryption – FSE 2001,
volume 2355 of Lecture Notes in Computer Science, pages 109–124, Yokohama,
Japan, April 2–4, 2002. Springer, Heidelberg, Germany.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. Cryptology ePrint Archive, Report 1997/001,
1997. http://eprint.iacr.org/1997/001.

[BM06] Brian N. Bershad and Jeffrey C. Mogul, editors. 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA,
USA. USENIX Association, 2006.

[BMM10] Kevin R. B. Butler, Stephen E. McLaughlin, and Patrick D. McDaniel. Disk-
enabled authenticated encryption. In IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7,
2010, pages 1–6, 2010.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 531–545, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[BPM18] Milan Broz, Mikulás Patocka, and Vashek Matyás. Practical cryptographic
data integrity protection with full disk encryption. In ICT Systems Security
and Privacy Protection - 33rd IFIP TC 11 International Conference, SEC 2018,
Held at the 24th IFIP World Computer Congress, WCC 2018, Poznan, Poland,
September 18-20, 2018, Proceedings, pages 79–93, 2018.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 317–330, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for par-
allelizable message authentication. In Lars R. Knudsen, editor, Advances in
Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 384–397, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Heidelberg, Germany.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. In
UCSD CSE 207 Course Notes, page 207, 2005.

http://eprint.iacr.org/1997/001

152 Bibliography

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Heidelberg, Germany.

[Bro18] Milan Broz. Authenticated and Resilient Disk Encryption. PhD thesis, Masaryk
University, 2018.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002: 9th Annual International Workshop on
Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 62–75, St. John’s, Newfoundland, Canada, August 15–16, 2003.
Springer, Heidelberg, Germany.

[BTCS+15] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason
Smith, and Louis Wingers. The simon and speck lightweight block ciphers. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2015.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In Lars R. Knudsen, editor,
Fast Software Encryption – FSE’99, volume 1636 of Lecture Notes in Computer
Science, pages 245–259, Rome, Italy, March 24–26, 1999. Springer, Heidelberg,
Germany.

[Cam78] Carl M. Campbell. Design and Specification of Cryptographic Capabilities. IEEE
Communications Society Magazine, 16(6):15–19, November 1978.

[CB18] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption for
entry-level processors. IACR Transactions on Symmetric Cryptology, 2018(4):39–
61, 2018.

[CGM13] Omar Choudary, Felix Gröbert, and Joachim Metz. Security analysis and
decryption of filevault 2. In Advances in Digital Forensics IX - 9th IFIP WG
11.9 International Conference on Digital Forensics, Orlando, FL, USA, January
28-30, 2013, Revised Selected Papers, pages 349–363, 2013.

[CJK+17] Anrin Chakraborti, Bhushan Jain, Jan Kasiak, Tao Zhang, Donald E. Porter,
and Radu Sion. dm-x: Protecting volume-level integrity for cloud volumes and
local block devices. In Proceedings of the 8th Asia-Pacific Workshop on Systems,
Mumbai, India, September 2, 2017, pages 16:1–16:7, 2017.

[CK10] Manuel Costa and Engin Kirda, editors. Proceedings of the Third European
Workshop on System Security, EUROSEC 2010, Paris, France, April 13, 2010.
ACM, 2010.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round Even-Mansour cipher. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I,

Ch
ap

te
r6

Bibliography 153

volume 8616 of Lecture Notes in Computer Science, pages 39–56, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[CMLS15] Debrup Chakraborty, Cuauhtemoc Mancillas-Lopez, and Palash Sarkar. Disk
encryption: Do we need to preserve length? Cryptology ePrint Archive, Report
2015/594, 2015. http://eprint.iacr.org/2015/594.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 327–350, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[CS15] Benoit Cogliati and Yannick Seurin. On the provable security of the iterated
Even-Mansour cipher against related-key and chosen-key attacks. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 584–613, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[Daw14] Pawel Jakub Dawidek. GELI(8). https://www.freebsd.org/cgi/man.cgi?
query=geli, 2014.

[Del09] Dell Computer Corporation, Hewlett Packard Corporation,Hitachi Global Stor-
age Technologies, Inc., Intel Corporation, Maxim Integrated Products, Seagate
Technology, Western Digital Corporation . Serial ATA International Organization,
Serial ATA Revision 3.0. Technical report, 2009.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The Even-Mansour scheme revisited. In David Pointcheval and Thomas Johans-
son, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 336–354, Cambridge, UK, April 15–19,
2012. Springer, Heidelberg, Germany.

[dm-19a] dm-crypt: Linux device-mapper crypto target. Technical report, 2019.

[dm-19b] dm-verity: Linux device-mapper block integrity checking target. Technical report,
2019.

[DR01] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Bahram
Honary, editor, 8th IMA International Conference on Cryptography and Coding,
volume 2260 of Lecture Notes in Computer Science, pages 222–238, Cirencester,
UK, December 17–19, 2001. Springer, Heidelberg, Germany.

[DS14] Gareth T. Davies and Martijn Stam. KDM security in the hybrid framework.
In Josh Benaloh, editor, Topics in Cryptology – CT-RSA 2014, volume 8366 of
Lecture Notes in Computer Science, pages 461–480, San Francisco, CA, USA,
February 25–28, 2014. Springer, Heidelberg, Germany.

[DS16] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round Feistel
networks. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer

http://eprint.iacr.org/2015/594
https://www.freebsd.org/cgi/man.cgi?query=geli
https://www.freebsd.org/cgi/man.cgi?query=geli

154 Bibliography

Science, pages 95–120, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[DSB+13] Niv Dayan, Martin Kjær Svendsen, Matias Bjørling, Philippe Bonnet, and Luc
Bouganim. EagleTree: Exploring the Design Space of SSD-Based Algorithms.
PVLDB, 6(12):1290–1293, 2013.

[DSST17] Yuanxi Dai, Yannick Seurin, John Steinberger, and Aishwarya Thiruvengadam.
Indifferentiability of iterated Even-Mansour ciphers with non-idealized key-
schedules: Five rounds are necessary and sufficient. Cryptology ePrint Archive,
Report 2017/042, 2017. http://eprint.iacr.org/2017/042.

[Dwo10] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The
XTS-AES Mode for Confidentiality on Storage Devices. NIST SP 800-38E, 2010.

[EM93] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, Advances in Cryptology – ASIACRYPT’91, volume 739
of Lecture Notes in Computer Science, pages 210–224, Fujiyoshida, Japan,
November 11–14, 1993. Springer, Heidelberg, Germany.

[Fer06] Niels Ferguson. AES-CBC + Elephant diffuser: A Disk Encryption Algorithm
for Windows Vista. http://www.microsoft.com/en-us/download/details.
aspx?id=13866, 2006.

[Fis97a] Marc Fischlin. Incremental cryptography and memory checkers. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture
Notes in Computer Science, pages 293–408, Konstanz, Germany, May 11–15,
1997. Springer, Heidelberg, Germany.

[Fis97b] Marc Fischlin. Lower bounds for the signature size of incremental schemes. In
38th Annual Symposium on Foundations of Computer Science, pages 438–447,
Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society Press.

[FKV17] Pooya Farshim, Louiza Khati, and Damien Vergnaud. Security of even–mansour
ciphers under key-dependent messages. IACR Transactions on Symmetric Cryp-
tology, 2017(2):84–104, 2017.

[FP15] Pooya Farshim and Gordon Procter. The related-key security of iterated
Even-Mansour ciphers. In Gregor Leander, editor, Fast Software Encryption –
FSE 2015, volume 9054 of Lecture Notes in Computer Science, pages 342–363,
Istanbul, Turkey, March 8–11, 2015. Springer, Heidelberg, Germany.

[FPR12] Aaron Fujimoto, Peter Peterson, and Peter L. Reiher. Comparing the power of
full disk encryption alternatives. In IGCC, pages 1–6. IEEE Computer Society,
2012.

[Fru05] Clemens Fruhwirth. New methods in hard disk encryption. Master’s thesis,
Vienna University of Technology, 2005.

[fS09] International Organization for Standardization. Information technology – Secu-
rity techniques – Authenticated encryption. Standard, Geneva, CH, 2009.

http://eprint.iacr.org/2017/042
http://www.microsoft.com/en-us/download/details.aspx?id=13866
http://www.microsoft.com/en-us/download/details.aspx?id=13866

Ch
ap

te
r6

Bibliography 155

[fS11a] International Organization for Standardization. Information technology – Secu-
rity techniques – Message Authentication Codes (MACs) – Part 1: Mechanisms
using a block cipher. Standard, Geneva, CH, 2011.

[fS11b] International Organization for Standardization. Information technology – Secu-
rity techniques – Message Authentication Codes (MACs) – Part 2: Mechanisms
using a dedicated hash-function. Standard, Geneva, CH, 2011.

[Gjø05a] Kristian Gjøsteen. Security notions for disk encryption. In Computer Security -
ESORICS 2005, 10th European Symposium on Research in Computer Security,
Milan, Italy, September 12-14, 2005, Proceedings, pages 455–474, 2005.

[Gjø05b] Kristian Gjøsteen. Security notions for disk encryption. In Sabrina De Capitani di
Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, ESORICS 2005: 10th
European Symposium on Research in Computer Security, volume 3679 of Lecture
Notes in Computer Science, pages 455–474, Milan, Italy, September 12–14, 2005.
Springer, Heidelberg, Germany.

[GL15] Chun Guo and Dongdai Lin. On the indifferentiability of key-alternating Feistel
ciphers with no key derivation. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume
9014 of Lecture Notes in Computer Science, pages 110–133, Warsaw, Poland,
March 23–25, 2015. Springer, Heidelberg, Germany.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[GM14] Johannes Götzfried and Tilo Müller. Analysing android’s full disk encryption
feature. JoWUA, 5(1):84–100, 2014.

[GR12] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze
the future, 2007(2012):1–16, 2012.

[GSC01] Bok-Min Goi, M. U. Siddiqi, and Hean-Teik Chuah. Incremental hash function
based on pair chaining & modular arithmetic combining. In C. Pandu Rangan
and Cunsheng Ding, editors, Progress in Cryptology - INDOCRYPT 2001: 2nd
International Conference in Cryptology in India, volume 2247 of Lecture Notes in
Computer Science, pages 50–61, Chennai, India, December 16–20, 2001. Springer,
Heidelberg, Germany.

[GW18] Chun Guo and Lei Wang. Revisiting key-alternating feistel ciphers for shorter
keys and multi-user security. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part I, Lecture Notes in Computer
Science, pages 213–243, Brisbane,Queensland, Australia, December 2–6, 2018.
Springer, Heidelberg, Germany.

[Hal06] Shai Halevi. Re: Lrw key derivation (formerly pink-herring). IEEE P1619
Mailing List, May 2006.

156 Bibliography

[HGX+09] Fangyong Hou, Dawu Gu, Nong Xiao, Fang Liu, and Hongjun He. Performance
and consistency improvements of hash tree based disk storage protection. In
International Conference on Networking, Architecture, and Storage, NAS 2009,
9-11 July 2009, Zhang Jia Jie, Hunan, China, pages 51–56, 2009.

[HK07] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
CCS 07: 14th Conference on Computer and Communications Security, pages
466–475, Alexandria, Virginia, USA, October 28–31, 2007. ACM Press.

[HM06] J Hart and Kirk Martinez. Environmental sensor networks: A revolution in the
earth system science? Earth-Science Reviews, 78:177–191, 10 2006.

[HPPT08] Alexander Heitzmann, Bernardo Palazzi, Charalampos Papamanthou, and
Roberto Tamassia. Efficient integrity checking of untrusted network storage. In
Proceedings of the 2008 ACM Workshop On Storage Security And Survivability,
StorageSS 2008, Alexandria, VA, USA, October 31, 2008, pages 43–54, 2008.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 482–499, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, Topics in Cryptology – CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 292–304, San Francisco, CA, USA, February 23–
27, 2004. Springer, Heidelberg, Germany.

[HR10] Viet Tung Hoang and Phillip Rogaway. On generalized Feistel networks. In
Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 613–630, Santa Barbara, CA, USA,
August 15–19, 2010. Springer, Heidelberg, Germany.

[HSTM15] Michael Halcrow, Uday Savagaonkar, Ted Ts’o, and Ildar Muslukhov. EXT4
Encryption Design Document (public version). Google Technical Report, 2015.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length
extension: Exact bounds and multi-user security. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I, volume
9814 of Lecture Notes in Computer Science, pages 3–32, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security
in the standard model. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
108–126, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

[HWF15] Daniel Hein, Johannes Winter, and Andreas Fitzek. Secure Block Device–
Secure, Flexible, and Efficient Data Storage for ARM TrustZone Systems. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 222–229. IEEE, 2015.

Ch
ap

te
r6

Bibliography 157

[IEE08] IEEE. IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. IEEE Std 1619-2007, pages 1–32, 2008.

[IEE11] IEEE. IEEE Standard for for Wide-Block Encryption for Shared Storage Media.
IEEE Std P1619.11619-2010, 2011.

[IEE18] IEEE. IEEE Standard for Authenticated Encryption with Length Expansion for
Storage Devices. IEEE Std 1619.1-2018, pages 1–45, 2018.

[IGFH18] Bernard Dickens III, Haryadi S. Gunawi, Ariel J. Feldman, and Henry Hoffmann.
Strongbox: Confidentiality, integrity, and performance using stream ciphers
for full drive encryption. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, pages
708–721, 2018.

[IK01] Tetsu Iwata and Kaoru Kurosawa. On the pseudorandomness of the AES
finalists - RC6 and Serpent. In Bruce Schneier, editor, Fast Software Encryption
– FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 231–243,
New York, NY, USA, April 10–12, 2001. Springer, Heidelberg, Germany.

[IKC10] Wassim Itani, Ayman Kayssi, and Ali Chehab. Energy-efficient incremental
integrity for securing storage in mobile cloud computing. In 2010 International
Conference on Energy Aware Computing, pages 1–2. IEEE, 2010.

[IS09] Kevin Igoe and Jerome Solinas. Aes galois counter mode for the secure shell
transport layer protocol. Technical report, 2009.

[JMV02] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Blockwise-adaptive
attackers: Revisiting the (in)security of some provably secure encryption mod-
els: CBC, GEM, IACBC. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 17–30,
Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany.

[Jos11] Simon Josefsson. Pkcs# 5: password-based key derivation function 2 (pbkdf2)
test vectors. Technical report, Internet Engineering Task Force, 2011.

[Jut00] Charanjit Jutla. Attack on Free-MAC, 2000. https://groups.google.com/d/
msg/sci.crypt/4bkzm_n7UGA/5cDwfju6evUJ.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume
2045 of Lecture Notes in Computer Science, pages 529–544, Innsbruck, Austria,
May 6–10, 2001. Springer, Heidelberg, Germany.

[KKJ+13] Himanshu Kumar, Sudhanshu Kumar, Remya Joseph, Dhananjay Kumar, Sunil
Kumar Shrinarayan Singh, and Praveen Kumar. Rainbow table to crack password
using md5 hashing algorithm. In Information & Communication Technologies
(ICT), 2013 IEEE Conference on, pages 433–439. IEEE, 2013.

[Kle09] Peter Kleissner. Stoned bootkit. Black Hat, 2009.

https://groups.google.com/d/msg/sci.crypt/4bkzm_n7UGA/5cDwfju6evUJ
https://groups.google.com/d/msg/sci.crypt/4bkzm_n7UGA/5cDwfju6evUJ

158 Bibliography

[KMV17] Louiza Khati, Nicky Mouha, and Damien Vergnaud. Full disk encryption:
Bridging theory and practice. In Helena Handschuh, editor, Topics in Cryptology
– CT-RSA 2017, volume 10159 of Lecture Notes in Computer Science, pages
241–257, San Francisco, CA, USA, February 14–17, 2017. Springer, Heidelberg,
Germany.

[KV18] Louiza Khati and Damien Vergnaud. Analysis and Improvement of an Authenti-
cation Scheme in Incremental Cryptography. In Selected Areas in Cryptography -
SAC 2018, Calgary, Canada, August 2018.

[KVW04] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance
conventional authenticated encryption mode. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption – FSE 2004, volume 3017 of Lecture Notes
in Computer Science, pages 408–426, New Delhi, India, February 5–7, 2004.
Springer, Heidelberg, Germany.

[LB17] Ronan Loftus and Marwin Baumann. Android 7 file based encryption and the
attacks against it. 2017.

[Lel13] Jakob Lell. Practical malleability attack against cbc-encrypted luks partitions.
Blog, 2013.

[LLJ15] Xianhui Lu, Bao Li, and Dingding Jia. KDM-CCA security from RKA secure
authenticated encryption. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture
Notes in Computer Science, pages 559–583, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany.

[LR86] Michael Luby and Charles Rackoff. How to construct pseudo-random permuta-
tions from pseudo-random functions (abstract). In Hugh C. Williams, editor,
Advances in Cryptology – CRYPTO’85, volume 218 of Lecture Notes in Com-
puter Science, page 447, Santa Barbara, CA, USA, August 18–22, 1986. Springer,
Heidelberg, Germany.

[LS15] Rodolphe Lampe and Yannick Seurin. Security analysis of key-alternating
Feistel ciphers. In Carlos Cid and Christian Rechberger, editors, Fast Software
Encryption – FSE 2014, volume 8540 of Lecture Notes in Computer Science,
pages 243–264, London, UK, March 3–5, 2015. Springer, Heidelberg, Germany.

[Mat97] Mitsuru Matsui. New block encryption algorithm MISTY. In Eli Biham, editor,
Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes in Computer
Science, pages 54–68, Haifa, Israel, January 20–22, 1997. Springer, Heidelberg,
Germany.

[Mau93] Ueli M. Maurer. A simplified and generalized treatment of Luby-Rackoff pseu-
dorandom permutation generator. In Rainer A. Rueppel, editor, Advances in
Cryptology – EUROCRYPT’92, volume 658 of Lecture Notes in Computer Science,
pages 239–255, Balatonfüred, Hungary, May 24–28, 1993. Springer, Heidelberg,
Germany.

Ch
ap

te
r6

Bibliography 159

[MF07] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook
(xcb) mode of operation. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, SAC 2007: 14th Annual International Workshop on Selected Areas in
Cryptography, volume 4876 of Lecture Notes in Computer Science, pages 311–327,
Ottawa, Canada, August 16–17, 2007. Springer, Heidelberg, Germany.

[MF15] Tilo Müller and Felix C. Freiling. A Systematic Assessment of the Security of
Full Disk Encryption. IEEE Trans. Dependable Sec. Comput., 12(5):491–503,
2015.

[MGS15] Hristina Mihajloska, Danilo Gligoroski, and Simona Samardjiska. Reviving the
idea of incremental cryptography for the zettabyte era use case: Incremental
hash functions based on SHA-3. Cryptology ePrint Archive, Report 2015/1028,
2015. http://eprint.iacr.org/2015/1028.

[Mic97] Daniele Micciancio. Oblivious data structures: Applications to cryptography. In
29th Annual ACM Symposium on Theory of Computing, pages 456–464, El Paso,
TX, USA, May 4–6, 1997. ACM Press.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The Even-Mansour con-
struction revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 209–223, Santa Barbara, CA, USA, August 16–20,
2015. Springer, Heidelberg, Germany.

[MLF12] Tilo Müller, Tobias Latzo, and Felix C Freiling. Self-encrypting disks pose
self-decrypting risks. In the 29th Chaos Communinication Congress, pages 1–10,
2012.

[MP03] Ueli M. Maurer and Krzysztof Pietrzak. The security of many-round Luby-Rackoff
pseudo-random permutations. In Eli Biham, editor, Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
544–561, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[MPRS12] Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental
deterministic public-key encryption. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 628–644, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

[MTF12] Tilo Müller, Benjamin Taubmann, and Felix C. Freiling. TreVisor - OS-
independent software-based full disk encryption secure against main memory
attacks. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS 12:
10th International Conference on Applied Cryptography and Network Security,
volume 7341 of Lecture Notes in Computer Science, pages 66–83, Singapore,
June 26–29, 2012. Springer, Heidelberg, Germany.

[MTY11] Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent
public key encryption with KDM security. In Kenneth G. Paterson, editor,
Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in

http://eprint.iacr.org/2015/1028

160 Bibliography

Computer Science, pages 507–526, Tallinn, Estonia, May 15–19, 2011. Springer,
Heidelberg, Germany.

[MvG18] Carlo Meijer and Bernard van Gastel. Self-encrypting deception: weaknesses in
the encryption of solid state drives (ssds). 2018.

[Nan08] Mridul Nandi. Two new efficient CCA-secure online ciphers: MHCBC and MCBC.
In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress
in Cryptology - INDOCRYPT 2008: 9th International Conference in Cryptology
in India, volume 5365 of Lecture Notes in Computer Science, pages 350–362,
Kharagpur, India, December 14–17, 2008. Springer, Heidelberg, Germany.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsider-
ing generic composition. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 257–274, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

[OR05] Alina Oprea and Michael K. Reiter. Space-efficient block storage integrity. In
Proceedings of the Network and Distributed System Security Symposium, NDSS
2005, San Diego, California, USA, 2005.

[OR07] Alina Oprea and Michael K. Reiter. Integrity checking in cryptographic file
systems with constant trusted storage. In Proceedings of the 16th USENIX
Security Symposium, Boston, MA, USA, August 6-10, 2007, 2007.

[Pat90] Jacques Patarin. Pseudorandom permutations based on the D.E.S. scheme.
In ESORICS’90: 1st European Symposium on Research in Computer Security,
Lecture Notes in Computer Science, pages 185–187, Toulouse, France, October 24–
26, 1990. AFCET.

[Pat98] Jacques Patarin. About Feistel schemes with six (or more) rounds. In Serge
Vaudenay, editor, Fast Software Encryption – FSE’98, volume 1372 of Lecture
Notes in Computer Science, pages 103–121, Paris, France, March 23–25, 1998.
Springer, Heidelberg, Germany.

[Pat04] Jacques Patarin. Security of random Feistel schemes with 5 or more rounds. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 106–122, Santa Barbara, CA,
USA, August 15–19, 2004. Springer, Heidelberg, Germany.

[Pat09] Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008: 15th Annual
International Workshop on Selected Areas in Cryptography, volume 5381 of
Lecture Notes in Computer Science, pages 328–345, Sackville, New Brunswick,
Canada, August 14–15, 2009. Springer, Heidelberg, Germany.

[Pau17] Paul A. Grassi, James L. Fenton, Elaine M. Newton, Ray A. Perlner,Andrew
R. Regenscheid, William E. Burr,Justin P. Richer. Digital Identity Guidelines,
Authentication and Lifecycle Management. NIST Special Publication 800-63B,
2017.

Ch
ap

te
r6

Bibliography 161

[PJ16] Colin Percival and Simon Josefsson. The scrypt password-based key derivation
function. Technical report, 2016.

[Pri19] Primx. CRYHOD. Technical report, 2019.

[PW06] Raphael C-W Phan and David Wagner. Security considerations for incremental
hash functions based on pair block chaining. computers & security, 25(2):131–136,
2006.

[RCPS07] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using
address independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 183–196. IEEE
Computer Society, 2007.

[Res08] Eric Rescorla. Tls elliptic curve cipher suites with sha-256/384 and aes galois
counter mode (gcm). 2008.

[RFC+07] Richard F Rizzolo, Thomas G Foote, James M Crafts, David A Grosch, Tak O
Leung, David J Lund, Bryan L Mechtly, Bryan J Robbins, Timothy J Slegel,
Michael J Tremblay, et al. Ibm system z9 efuse applications and methodology.
IBM Journal of Research and Development, 51(1.2):65–75, 2007.

[Rog04a] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 16–31, Jeju Island, Korea, December 5–9, 2004. Springer, Heidelberg,
Germany.

[Rog04b] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi
Meier, editors, Fast Software Encryption – FSE 2004, volume 3017 of Lecture
Notes in Computer Science, pages 348–359, New Delhi, India, February 5–7,
2004. Springer, Heidelberg, Germany.

[Rog11] Phillip Rogaway. Evaluation of Some Blockcipher Modes of Operation. Technical
report, CRYPTREC Investigation Report, 2011.

[Rut09] Joanna Rutkowska. Evil maid goes after truecrypt. Blog, 2009.

[RZ11] Phillip Rogaway and Haibin Zhang. Online ciphers from tweakable blockciphers.
In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558
of Lecture Notes in Computer Science, pages 237–249, San Francisco, CA, USA,
February 14–18, 2011. Springer, Heidelberg, Germany.

[Saa04] Markku-Juhani Olavi Saarinen. Encrypted watermarks and linux laptop secu-
rity. In Chae Hoon Lim and Moti Yung, editors, WISA 04: 5th International
Workshop on Information Security Applications, volume 3325 of Lecture Notes in
Computer Science, pages 27–38, Jeju Island, Korea, August 23–25, 2004. Springer,
Heidelberg, Germany.

162 Bibliography

[Sim11] Patrick Simmons. Security through amnesia: a software-based solution to the cold
boot attack on disk encryption. In Twenty-Seventh Annual Computer Security
Applications Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011,
pages 73–82, 2011.

[SSTC02] Dafna Sheinwald, Julian Satran, Pat Thaler, and Vicente Cavanna. Inter-
net protocol small computer system interface (iscsi) cyclic redundancy check
(crc)/checksum considerations. RFC, 3385:1–23, 2002.

[STM17] STMicroelectronics. High-speed secure MCU with 32-bit ARM® SecurCore®
SC300TM CPU with SWP, ISO, SPI, I2C and high-density Flash memory.
Technical report, February 2017.

[SWZ05] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Ensuring data integrity
in storage: techniques and applications. In Proceedings of the 2005 ACM
Workshop On Storage Security And Survivability, StorageSS 2005, Fairfax, VA,
USA, November 11, 2005, pages 26–36, 2005.

[SY16] Yu Sasaki and Kan Yasuda. A new mode of operation for incremental authenti-
cated encryption with associated data. In Orr Dunkelman and Liam Keliher,
editors, SAC 2015: 22nd Annual International Workshop on Selected Areas in
Cryptography, volume 9566 of Lecture Notes in Computer Science, pages 397–416,
Sackville, NB, Canada, August 12–14, 2016. Springer, Heidelberg, Germany.

[Tec] IBM Linux Technology. ecryptfs.

[Ter10] Alexander Tereshkin. Evil maid goes after PGP whole disk encryption. In
Proceedings of the 3rd International Conference on Security of Informat ion and
Networks, SIN 2010, Rostov-on-Don, Russian Federation, September 7-11, 2010,
page 2, 2010.

[UM16] Thomas Unterluggauer and Stefan Mangard. Exploiting the physical disparity:
Side-channel attacks on memory encryption. In Constructive Side-Channel
Analysis and Secure Design - 7th International Workshop, COSADE 2016, Graz,
Austria, April 14-15, 2016, Revised Selected Papers, pages 3–18, 2016.

[vDRSD07] Marten van Dijk, Jonathan Rhodes, Luis F. G. Sarmenta, and Srinivas Devadas.
Offline untrusted storage with immediate detection of forking and replay attacks.
In Proceedings of the 2nd ACM Workshop on Scalable Trusted Computing, STC
2007, Alexandria, VA, USA, November 2, 2007, pages 41–48, 2007.

[ver19] dm-crypt: Linux device-mapper crypto target. Technical report, 2019.

[VG18] Andrea Visconti and Federico Gorla. Exploiting an hmac-sha-1 optimization to
speed up pbkdf2. 2018.

[VM05] John Viega and D McGrew. The use of galois/counter mode (gcm) in ipsec
encapsulating security payload (esp). Technical report, 2005.

[VV17] Serge Vaudenay and Damian Vizár. Under pressure: Security of caesar candidates
beyond their guarantees. Cryptology ePrint Archive, Report 2017/1147, 2017.
https://eprint.iacr.org/2017/1147.

https://eprint.iacr.org/2017/1147

Bibliography 163

[Yas11] Kan Yasuda. A new variant of PMAC: Beyond the birthday bound. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
Lecture Notes in Computer Science, pages 596–609, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Heidelberg, Germany.

List of Illustrations

Figures
1.1 (Right) Game for defining the prf-advantage of pseudorandom family functions

F. (Left) Game for defining the prp-advantage of pseudorandom permutation
family P. 6

2.1 Simplified view of components involved in disk encryption. 15
2.2 Simplified logical levels: from files to sectors. MD stands for Meta-data. . . . 16
2.3 HDD tracks and view of a sector. 16
2.4 Hierarchically organized SSD memory . 17
2.5 Disk where memory are on platters for HDD and are flash cells for SSD. . . . 18
2.6 Malleability attack on CBC-ESSIV using a block cipher (EK ,Dk) where Dk =

E−k . Bit flipping ("X") in the i-th ciphertext block compromises the entire i-th
block and exactly one bit in the i+1-th block. 22

2.7 Malleability attack on XTS (here without ciphertext stealing) using a block
cipher (EK ,Dk) where Dk = E−k . Bit flipping ("X") in the i-th ciphertext block
compromises the i-th plaintext block (black block) after decryption. 23

2.8 Malleability attack on WBTC using a block cipher (EK ,Dk) where Dk = E−k .
Bit flipping ("X") in the i-th ciphertext block compromises all the plaintext
(black blockq) after decryption. 23

2.9 Disk Encryption and local authentication tag within each sector. Dashed boxes
represent encrypted data and hatched boxes tags. AE stands for Authenticated
Encryption. 26

2.10 Interleaved Meta-data. Large dashed boxes represent encrypted data and
small dashed boxes meta-data. 27

2.11 Overview of incremental replace operation. The function fK denotes the MAC
primitive. The inputs τ1, τ2, τ3 give the tag τ . After replacing the value τ1 by
τ4, the tag τ is updated with τ ′. 28

2.12 Perfect Merkle tree of n′ levels. Nodes of level m only are stored (m ≤ n′). . . 29

3.1 Description of the mode of operation ECB (Electronic Codebook) where E is a
block cipher. 39

3.2 Description of the counter mode (CTR) where E is a block cipher and i is the
counter. 39

3.3 Description of the CBC-ESSIV and IGE-ESSIV modes of operation where E
is a block cipher and the keys K and K ′ are independent. 40

3.4 Description of the XEX mode of operation where E is a block cipher and K
and K ′ are independant key. 40

3.5 Description of the TC1 and TC2 modes of operations where Ẽ is a tweakable
block cipher. In FDE context, the tweak can be the sector number s (for TC2,
s0||s1 = P(s) where P is a permutation. 41

— 165 —

166 List of Illustrations

3.6 Description of the TC3 mode of operation where Ẽ is a tweakable block cipher.
The tweak can be the sector number s. 41

3.7 Description of the HCBC1 mode of operation where EK is a block cipher, hK′
a keyed hash function. The keys K and K ′ are independent. 42

3.8 WTBC where EK is either a block cipher or a tweakable block cipher. WTBC
can use several call to EK to process one message block. 42

3.9 Game “up-to-block” for the IND-CCA-block security notion. 43
3.10 Game “up-to-repetition” for the IND-CPA-repetition security notion. 44
3.11 Game “up-to-prefix” for the IND-CCA-prefix security notion. 47
3.12 Game G1 and game G2 for CBC-ESSIV IND-CPA-ufb 50
3.13 Games G3, G4 and G5 CBC-ESSIV IND-CPA-ufb. The framed statement is in-

cluded in game G3 only. The statement overlined in gray is included in game
G5 only. 51

3.14 Games G1 to G4 for IGE-ESSIV IND-CPA-ufb 53

4.1 The Even–Mansour cipher (1-round). 63
4.2 Descriptions of the round function of Feistel Network (Left) and the one round

KAF (Right). 64
4.3 KDM-CCA analysis for 2-round Even–Mansour. 66
4.4 Game defining Φ-KDM-CCA security for a block-cipher. 67
4.5 Game defining oracle splittability with respect to relation sp. 69
4.6 Game defining forgetful switching property. 69
4.7 Two-stage adversaries and their operation in the split game. 71
4.8 Algorithm B used for KDM analysis of the ideal cipher. 74
4.9 The r-round iterated Even–Mansour cipher. 76
4.10 Adversaries AP,EMP,P[K,K,K] and AP,EMP,P[K1,K2,K2]. 77
4.11 Algorithm B used in the KDM analysis of one-round EM. 79
4.12 Algorithm B used in the KDM analysis of two-round EM with two permutations. 80
4.13 Algorithm B used in the KDM analysis of two-round EM with a single permu-

tation. 82
4.14 Real world rw and ideal world iw defining KDM-CCA-security and perfect

world pw used in Theorem 4.3.5. 86
4.15 The r-round Key-Alternating Feistel (KAF). 89
4.16 (left) In red, collisions giving a bad transcript (Condition C-i). (Right) In red,

for a good transcript τ , F is bad if the inputs wi and zi collide with any other
input of F (conditions C’-i). For a good transcript τ , F is good if the values
wi,zi are all distinct; . 91

4.17 Details of the Sliding attack on 4-rounds KAF (same keys and same round
function). 101

4.18 Notations for Sliding attack. 101

5.1 Examples of edit operations. 111
5.2 Games defining Correctness and Consistency for nonce-based incremental

authentication scheme iMA for the single-document setting. 113
5.3 Games defining Correctness and Consistency for nonce-based incremental

authentication scheme iMA for the multi-document setting. 114
5.4 Games defining IUF-BS security of an incremental authentication scheme iMA. 116

Tables 167

5.5 Games defining IUF1 security of an incremental authentication scheme iMA
for both the Single-Document (SD) and the Multi-Document (MD) settings.
The framed boxes are excluded from the SD security game. 117

5.6 Games defining IUF1R security of an incremental authentication scheme iMA
for both the Single-Document (SD) and the Multi-Document (MD) settings.
The framed boxes are excluded from the SD security game. 118

5.7 Game defining IUF2 security of an incremental authentication scheme iMA in
the Single-Document (SD) and in the Multi-Document (MD) settings. The
framed boxes are excluded from the SD game. 119

5.8 Game defining IUF2R security of an incremental authentication scheme iMA
in the Single-Document (SD) and in the Multi-Document (MD) settings. The
framed boxes are excluded from the SD game. 120

5.9 Relations among security notions for incremental MACs.
A black arrow is an implication, and in the directed graph given by the black
arrows, there is a path from security notion A to security notion B if and only
A implies B. The red arrows represent separations (i.e. if there is a red arrow
from security notion A to security notion B, then – assuming the existence
of one-way functions – there exist a scheme which achieves A but does not
achieve B). All other relations follow automatically. 122

5.10 Transform SDtoMD1 from a single-document scheme to a multi-document
scheme, denoted as iMA2 = SDtoMD1(iMA1,F). 123

5.11 Adversary D against the PRF game using the adversary A playing the indis-
tinguishability game between G0 and G1 (see Figure 5.12) used in in the proof
of Theorem 5.1.7. 124

5.12 Games for proof of security of the SDtoMD1 transform (Theorem 5.1.7). . 125
5.13 Construction of an adversary B against the IUFxy-MD security game using A

playing the indistinguishability G1 and G2 in the proof of Theorem 5.1.7. . . 126
5.14 Description of the XMAC where v is a random value for XMACR and v is a

nonce for XMACC. 127
5.15 Description of the Xor-Scheme . 129
5.16 XS Original Xor-Scheme Algorithm . 131
5.17 Xor cancellation strategy in the Xor-Scheme 132
5.18 Σ computation for 3 block document . 132
5.19 Attack on the Xor-Scheme. Here Ri = D[i]||r[i]. 133
5.20 Description of the fixed Xor-Scheme . 134
5.21 Complexity of the Xor-Scheme XS and the Modified Xor-Scheme MXS. 135
5.22 Modified Xor-Scheme Algorithm. 141

Tables

2.1 Operation and Storage costs of incremental MACS for n-block input. The
column L is for Locality property. 29

2.2 Estimation of Stand-alone storage of Merkle tree with n actual data sectors
where n = 2n′ . Up/Ver stands for update and verify cost. 30

2.3 Estimation of Stand-alone storage of Merkle tree where n = 228 and L = 32
Bytes . 31

168 List of Illustrations

2.4 Estimation of Hybrid storage of Merkle Tree with n actual data sectors where
n = 2n′ and m ≤ n′. Up/Ver stands for update and verify cost. 32

2.5 Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 15, L = 32
Bytes. 33

2.6 Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 25, L = 32
Bytes. 33

2.7 Some implementations giving different levels of security for a stand-alone disk. 34

3.1 The security of FDE modes of operation when no diversifier is used. Here,
3 means that there is a security proof, and 7 means that there is an attack.
Proofs of the security results can be found in Sect. 3.1.2. XTS: see [IEE08].
TC1, TC2 and TC3 [RZ11] are generalizations of the HCBC1 [BBKN12],
HCBC2 [BBKN12] and MHCBC [Nan08] constructions. WTBC: wide tweak-
able block cipher. The ? symbol indicates that the property holds for some
constructions, but not for others. Here, x ≥ log2(`). 45

3.2 The security of FDE modes of operation when no diversifier is used, but the
first plaintext block unique for any given sector. Here, 3 means that there is
a security proof, and 7 means that there is an attack. 49

3.3 The security of FDE modes of operation when a diversifier is used. Here, 3

means that there is a security proof, and 7 means that there is an attack. . . 55
3.4 EagleTree Benchmarks for various diversifier sizes. 58

Personal Publications
- Full Disk Encryption: Bridging Theory and Practice
Louiza Khati, Nicky Mouha and Damien Vergnaud.
CT-RSA 2017

- Security of Even–Mansour Ciphers under Key Dependent Message Security
Pooya Farshim, Louiza Khati and Damien Vergnaud.
IACR Transactions on Symmetric Cryptology, Volume 2017.

- Analysis and Improvement of an Authentication Scheme in Incremental Cryptography
Louiza Khati and Damien Vergnaud.
Selected Areas in Cryptography - SAC 2018.

— 169 —

RÉSUMÉ

Cette thèse est dédiée à l’analyse de modes opératoires pour la protection des disques durs. Dans un premier temps,
l’analyse des modes opératoires permettant de protéger la confidentialité des données est réalisée dans le modèle Full
Disk Encryption. Ce modèle est très contraignant puisqu’il exclu tout mode qui ne ne conserve pas la longueur (la
valeur en clair et chiffrée du secteur doivent avoir la même taille) et seuls des modes déterministes peuvent avoir cette
propriété. Néanmoins, il est possible de tirer partie d’une valeur du système nommée le diversifiant, qui originellement
a un autre but, pour apporter de l’aléa utile pour améliorer la sécurité des modes opératoires. Dans un second temps,
nous introduisons deux méthodologies d’analyse dans le modèle Key-Dependent Message, où l’adversaire est autorisé
à chiffrer des messages qui dépendent de la clé de chiffrement, qui nous ont permis d’analyser la sécurité des schémas
Even-Mansour et Key-Alternating Feistel. Enfin, sachant qu’il est impossible de garantir l’authenticité des données dans le
modèle FDE, la présence de codes d’authentification étant nécéssaire, deux modèles où le stockage de métadonnées est
possible sont envisagés: le modèle ADE pour Authenticated Disk Encryption et le modèle FADE pour Fully Authenticated
Disk Encryption. Le premier permet de garantir l’authenticité au niveau du secteur mais est vulnérable aux attaques par
rejeu et le second garantit l’authenticité du disque en entier et prévient ce type d’attaque. Le stockage n’est pas le seul
point à prendre en compte: les vitesses de lecture et d’écriture sont un enjeu de taille pour les constructeurs puisque
ces dernières conditionnent fortement les performances d’un disque. C’est la raison pour laquelle, nous avons étudié les
codes d’authentification incrémentaux puisque ces derniers ont la propriété d’être mis à jour en un temps proportionnel à
la modification réalisée.

MOTS CLÉS

Cryptographie, Sécurité prouvée, Modes opératoires, Chiffrement de disque, MAC incrémentaux, Sécurité
en présence de messages dependant de la clé.

ABSTRACT

This thesis is dedicated to the analysis of modes of operation in the context of disk protection usage. Firstly, we give
modes of operation secure in the Full Disk Encryption (FDE) model where additional data storage are not allowed. In
this context, encryption has to be length preserving which implies length-preserving encryption. However, it is possible to
use a value already present in the system, called a diversifier, to randomize the encryption and to have a better security.
Then, we introduce two methods to analyse symmetric primitive in the very constraint Key-Dependent Message (KDM)
model which is of interest for disk encryption because the encryption key can end up in the disk. It enables to analyse
the KDM security of the Even-Mansour and the Key-Alternating Feistel constructions which are the basis of different
block-ciphers. Moreover, knowing that data authenticity cannot be ensured in the FDE model because tag storage is not
allowed, we relax this constraint which gives us two models: the Authenticated Disk Encryption model (ADE) and the
Fully Authenticated Disk Encryption (FADE). A secure mode in the ADE model ensures data authenticity of a sector but
can be vulnerable to replay attacks; and a secure mode in the FADE model ensures the authenticity of the entire disk
even against replay attacks. Storage is not the only point to take into account, the read and write delays on a sector is a
competitive argument for disk manufacturers since disk performances tightly depend on it and adding the computation of
codes of authentication does not help. That is why, we tend to analyse incremental Message Authentication Codes: they
have the property to be updatable in a time proportional to the corresponding modification.

KEYWORDS

Cryptography, Security Proof, Modes of Operations, Full Disk Encryption, Incremental MACs, Key-Dependent
Message Security.

	Résumé
	Abstract
	Introduction
	Disk Protection
	Provable Security
	Notations and Definitions
	Our contributions
	Full Disk Encryption Modes
	Key-Dependent Message Security
	Incremental MACs

	Secure storage - Confidentiality and Authentication
	Data Protection and Data Storage
	Data Protection
	From Disk Storage to Data Encryption
	Hard Disk Drive
	Solid State Drive
	Physical and Logical sectors

	Full Disk Encryption
	Challenges
	FDE and Cryptography

	Data Authentication
	Local Authenticity
	Authenticated Encryption (AE)
	Local Tag Storage

	Global Authentication and Incremental Cryptography
	Merkle Tree
	Stand-alone Storage
	Hybrid Storage

	Full Disk Encryption
	Disk encryption methods and Security notions
	Disk Encryption Methods
	Security Notions for FDE

	FDE Security with Unique First Block
	CBC-ESSIV Security
	IGE-ESSIV Security

	FDE Security with a Diversifier
	Solid State Drive
	Case Studies
	Online Ciphers for FDE
	FDE-Aware Database Applications
	On-the-Fly Firmware Updates

	Key-Dependent Message Security
	KDM Security via Splitting and Forgetting Technique
	Analysis via Forgetful Oracle Replacement
	A framework for security analyses
	Some concrete cases

	KDM Security of the Ideal Cipher

	Security of Even–Mansour Ciphers
	KDM Attacks on Even–Mansour
	KDM Security of Even–Mansour Ciphers
	One-round Even–Mansour
	Two-round Even–Mansour with independent permutations
	Two-round Even–Mansour with a single permutation

	KDM Security using the H-coefficient technique
	H-coefficient and KDM Security
	KDM Security with a Generic Lemma
	A Generic Lemma

	Security of Key Alternating Feistel Ciphers
	KDM Security of Four-Round Key-Alternating Feistel
	Sliding attack for r-rounds

	Even-Mansour KDM security with H-coefficients
	Security of 1-round Even-Mansour

	Incremental Authentication Schemes
	Incremental MACs and Security notions
	Incremental Authentication Scheme Framework
	Security Notions for Incremental MACs
	Relations among Security Notions for Incremental MACs
	From Single-Document to Multi-Document Security

	Incremental MACs with IUF1 Security
	XMAC Constructions
	XS Construction
	Description of the Xor-Scheme
	Forgery Attacks against the Xor-Scheme
	Modification of the Xor-Scheme

	MXS Construction
	Description of MXS
	Security Proof

	Incremental MACs with IUF2 Security
	XMAC Constructions
	MXS Construction

	Conclusion and Open Questions
	Conclusion
	Open Questions and futur work

	Bibliography
	List of Illustrations
	Figures
	Tables

	Personal Publications

