, INSERM Unit U932 research unit, Immunity and Cancer

, SIREDO Cancer Center (Care, innovation and research in pediatric, adolescents and young adults oncology), Institut Curie

, INSERM UMR-1153, ECSTRRA team, Statistic and epidemiologic research center Sorbonne Paris Cité

, Department of Drug Development and Innovation (D3i), Institut Curie, 15. INSERM U900 research unit, vol.11

I. Curie, DISCLOSURES Authors have no disclosure related to this work, Clinical immunology department

A. Gardner and B. Ruffell, Dendritic Cells and Cancer Immunity, Trends Immunol, vol.37, issue.12, pp.855-65, 2016.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-52, 1998.

A. M. Dudek, S. Martin, A. D. Garg, and A. P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol, vol.4, p.438, 2013.

Q. Li, Z. Guo, X. Xu, S. Xia, and X. Cao, Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation, Eur J Immunol, vol.38, issue.10, pp.2751-61, 2008.

R. A. Flavell, S. Sanjabi, S. H. Wrzesinski, and P. Licona-limón, The polarization of immune cells in the tumour environment by TGFbeta, Nat Rev Immunol, vol.10, issue.8, pp.554-67, 2010.

G. Stary, A. Olive, A. F. Radovic-moreno, D. Gondek, D. Alvarez et al., A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells, Science, vol.348, issue.6241, p.8205, 2015.

S. Manicassamy and B. Pulendran, Dendritic cell control of tolerogenic responses, Immunol Rev, issue.1, pp.206-233, 2011.

S. Trojandt, I. Bellinghausen, A. B. Reske-kunz, and M. Bros, Tumor-derived immuno-modulators induce overlapping pro-tolerogenic gene expression signatures in human dendritic cells, Hum Immunol, vol.77, issue.12, pp.1223-1254, 2016.

J. Zong, A. A. Keskinov, G. V. Shurin, and M. R. Shurin, Tumor-derived factors modulating dendritic cell function, Cancer Immunol Immunother CII, vol.65, issue.7, pp.821-854, 2016.

F. Ghiringhelli, P. E. Puig, S. Roux, A. Parcellier, E. Schmitt et al., Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J Exp Med, vol.202, issue.7, pp.919-948, 2005.

I. E. Dumitriu, D. R. Dunbar, S. E. Howie, T. Sethi, and C. D. Gregory, Human dendritic cells produce TGFbeta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells, J Immunol Baltim Md, vol.182, issue.5, pp.2795-807, 1950.

M. Dalod, R. Chelbi, B. Malissen, and T. Lawrence, Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming, EMBO J, vol.33, issue.10, pp.1104-1120, 2014.

M. Grandclaudon, M. Perrot-dockès, C. Trichot, O. Mostafa-abouzid, W. Abou-jaoudé et al., A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02316607

F. Basit, T. Mathan, D. Sancho, and I. De-vries, Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response, Front Immunol, vol.9, p.2489, 2018.

P. Michea, F. Noël, E. Zakine, U. Czerwinska, P. Sirven et al., Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific, Nat Immunol, vol.19, issue.8, pp.885-97, 2018.

L. Gañán, M. López, J. García, E. Esteller, M. Quer et al., Management of recurrent head and neck cancer: variables related to salvage surgery, Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol -Head Neck Surg, vol.273, issue.12, pp.4417-4441, 2016.

A. Argiris, M. V. Karamouzis, D. Raben, and R. L. Ferris, Head and neck cancer, Lancet Lond Engl, vol.371, issue.9625, pp.1695-709, 2008.

S. Tam, R. Araslanova, T. Low, A. Warner, J. Yoo et al., Estimating Survival After Salvage Surgery for Recurrent Oral Cavity Cancer, JAMA Otolaryngol, vol.143, issue.7, pp.685-90, 201701.

R. A. Ord, A. Kolokythas, and M. A. Reynolds, Surgical salvage for local and regional recurrence in oral cancer. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg, vol.64, pp.1409-1423, 2006.

A. G. Sacco and E. E. Cohen, Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.33, issue.29, pp.3305-3318, 2015.

C. Liao, J. Chang, H. Wang, S. Ng, C. Hsueh et al., Salvage therapy in relapsed squamous cell carcinoma of the oral cavity: how and when? Cancer, vol.112, pp.94-103, 2008.

F. Janot, D. De-raucourt, E. Benhamou, C. Ferron, G. Dolivet et al., Randomized trial of postoperative reirradiation combined with chemotherapy after salvage surgery compared with salvage surgery alone in head and neck carcinoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.26, issue.34, pp.5518-5541, 2008.

P. L. Zorat, A. Paccagnella, G. Cavaniglia, L. Loreggian, A. Gava et al., Randomized phase III trial of neoadjuvant chemotherapy in head and neck cancer: 10-year follow-up, J Natl Cancer Inst, vol.96, issue.22, pp.1714-1721, 2004.

P. Bossi, L. Vullo, S. Guzzo, M. Mariani, L. Granata et al., Preoperative chemotherapy in advanced resectable OCSCC: long-term results of a randomized phase III trial, Ann Oncol Off J Eur Soc Med Oncol, vol.25, issue.2, pp.462-468, 2014.

R. Uppaluri, P. Zolkind, T. Lin, B. Nussenbaum, R. S. Jackson et al., Neoadjuvant pembrolizumab in surgically resectable, locally advanced HPV negative head and neck squamous cell carcinoma (HNSCC), J Clin Oncol, vol.35, 2017.

R. L. Ferris, A. Gonçalves, S. Baxi, A. Martens, H. Gauthier et al., An Openlabel, Multicohort, Phase 1/2 Study in Patients With Virus-Associated Cancers (CheckMate 358): Safety and Efficacy of Neoadjuvant Nivolumab in Squamous Cell Carcinoma of the Head and Neck, Poster LBA46, 2017.

. Wise-draper, M. O. Tm, F. P. Old, P. E. Worden, E. E. O'brien et al., Phase II multi-site investigation of neoadjuvant pembrolizumab

M. B. Amin, S. Edge, F. Greene, D. R. Byrd, R. K. Brookland et al., AJCC cancer staging manual, 2017.

I. Agra, A. L. Carvalho, F. S. Ulbrich, O. D. De-campos, E. P. Martins et al., Prognostic factors in salvage surgery for recurrent oral and oropharyngeal cancer, Head Neck, vol.28, issue.2, pp.107-120, 2006.

C. Hoffmann, F. Noel, M. Grandclaudon, P. Michea, A. Surun et al., PDL1 and ICOSL discriminate human secretory and helper dendritic cells, 2019.

, , 2019.

S. Daneshmandi, A. A. Pourfathollah, and M. Forouzandeh-moghaddam, Enhanced CD40 and ICOSL expression on dendritic cells surface improve anti-tumor immune responses; effectiveness of mRNA/chitosan nanoparticles, Immunopharmacol Immunotoxicol, pp.1-12, 2018.

S. H. Huang, W. Xu, J. Waldron, L. Siu, X. Shen et al., Refining American Joint Committee on Cancer/Union for International Cancer Control TNM stage and prognostic groups for human papillomavirus-related oropharyngeal carcinomas, J Clin Oncol Off J Am Soc Clin Oncol, vol.33, issue.8, pp.836-881, 2015.

R. L. Ferris, Immunology and Immunotherapy of Head and Neck Cancer, J Clin Oncol Off J Am Soc Clin Oncol, vol.33, issue.29, pp.3293-304, 2015.

S. Lyford-pike, S. Peng, G. D. Young, J. M. Taube, W. H. Westra et al., Evidence for a role of the PD-1:PDL1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma, Cancer Res, vol.73, issue.6, pp.1733-1774, 2013.

T. Y. Seiwert, B. Burtness, R. Mehra, J. Weiss, R. Berger et al., Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial, Lancet Oncol, vol.17, issue.7, pp.956-65, 2016.

B. C. Cho, A. Daste, A. Ravaud, S. Salas, N. Isambert et al., M7824 (MSB0011359c), a bifunctional fusion protein targeting TGF-? and PDL1, N. Penel, 2018.

J. Strauss, M. E. Gatti-mays, J. Redman, R. A. Madan, E. Lamping et al., Safety and activity of M7824, a bifunctional fusion protein targeting PDL1 and TGF-?, in patients with HPV associated cancers, J Clin Oncol, vol.36, 2018.

L. G. Paz-ares, T. M. Kim, D. V. Baz, E. Felip, D. Ho-lee et al., Results from a second-line (2L) NSCLC cohort treated with M7824 (MSB0011359C), a bifunctional fusion protein targeting TGF-? and PDL1, J Clin Oncol, vol.36, 2018.

R. Ravi, K. A. Noonan, V. Pham, R. Bedi, A. Zhavoronkov et al., Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGF? enhance the efficacy of cancer immunotherapy, Nat Commun, vol.9, issue.1, p.741, 201821.

C. Jochems, S. R. Tritsch, S. T. Pellom, Z. Su, P. Soon-shiong et al., Analyses of functions of an anti-PDL1/TGF?R2 bispecific fusion protein (M7824), Oncotarget, vol.8, issue.43, pp.75217-75248, 2017.

R. Uppaluri, P. Zolkind, T. Lin, B. Nussenbaum, R. S. Jackson et al., Neoadjuvant pembrolizumab in surgically resectable, locally advanced HPV negative head and neck squamous cell carcinoma (HNSCC), J Clin Oncol, vol.35, 2017.

R. L. Ferris, A. Gonçalves, S. Baxi, A. Martens, H. Gauthier et al., An Open-label, Multicohort, Phase 1/2 Study in Patients With VirusAssociated Cancers (CheckMate 358): Safety and Efficacy of Neoadjuvant Nivolumab in Squamous Cell Carcinoma of the Head and Neck, Poster LBA46, 2017.

R. Simon, Optimal two-stage designs for phase II clinical trials, Control Clin Trials, vol.10, issue.1, pp.1-10, 1989.

Y. Vugmeyster, J. Wilkins, E. Harrison-moench, W. Geng, A. Koenig et al., Selection of the recommended phase 2 dose (RP2D) for M7824 (MSB0011359C), a bifunctional fusion protein targeting TGF-? and PDL1, J Clin Oncol, vol.36, 2018.

R. L. Ferris, G. Blumenschein, F. J. Guigay, J. Colevas, A. D. Licitra et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, N Engl J Med, vol.375, pp.1856-67, 2016.

L. Chow, R. Haddad, S. Gupta, A. Mahipal, R. Mehra et al., Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort, J Clin Oncol Off J Am Soc Clin Oncol, vol.34, issue.32, pp.3838-3883, 2016.

L. Chow, R. Mehra, and R. I. Haddad, Biomarkers and response to pembrolizumab (pembro) in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), J Clin Oncol, vol.34, p.6010, 2015.

P. Zolkind and R. Uppaluri, Checkpoint immunotherapy in head and neck cancers, Cancer Metastasis Rev, vol.36, issue.3, pp.475-89, 2017.

R. I. Haddad, T. Y. Seiwert, and L. Chow, Genomic determinants of response to pembrolizumab in head and neck squamous cell carcinoma (HNSCC), J Clin Oncol, 2017.

S. Mariathasan, S. J. Turley, D. Nickles, A. Castiglioni, K. Yuen et al., TGF? attenuates tumour response to PDL1 blockade by contributing to exclusion of T cells, Nature, vol.554, issue.7693, pp.544-552, 2018.

A. M. Bates, E. A. Lanzel, F. Qian, T. Abbasi, S. Vali et al., Cell genomics and immunosuppressive biomarker expression influence PDL1 immunotherapy treatment responses in HNSCC-a computational study. Oral Surg Oral Med Oral Pathol Oral Radiol, vol.124, pp.157-64, 2017.

S. Lu, D. Reh, A. G. Li, J. Woods, C. L. Corless et al., Overexpression of Transforming Growth Factor ?1 in Head and Neck References Baumeister, Annu Rev Immunol, vol.34, pp.539-573, 2016.

D. M. Benson, . Jr, C. C. Hofmeister, S. Padmanabhan, A. Suvannasankha et al., A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma, Blood, vol.120, pp.4324-4333, 2012.

V. M. Braud, H. Aldemir, B. Breart, and W. G. Ferlin, Expression of CD94-NKG2A inhibitory receptor is restricted to a subset of CD8+ T cells, Trends Immunol, vol.24, pp.162-164, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00170963

M. K. Callahan, M. A. Postow, and J. D. Wolchok, Targeting T Cell Co-receptors for Cancer Therapy, Immunity, vol.44, pp.1069-1078, 2016.

G. Cartron and H. Watier, Obinutuzumab: what is there to learn from clinical trials?, Blood, vol.130, pp.581-589, 2017.

A. Cerwenka and L. L. Lanier, Natural killers join the fight against cancer, Science, vol.359, pp.1460-1461, 2018.

D. Charych, S. Khalili, V. Dixit, P. Kirk, T. Chang et al., Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy, PLoS One, vol.12, 2017.

D. H. Charych, U. Hoch, J. L. Langowski, S. R. Lee, M. K. Addepalli et al., NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models, Clin Cancer Res, vol.22, pp.680-690, 2016.

L. Corrales, S. M. Mcwhirter, T. W. Dubensky, . Jr, and T. F. Gajewski, The host STING pathway at the interface of cancer and immunity, J Clin Invest, vol.126, pp.2404-2411, 2016.

M. Daeron, S. Jaeger, L. Du-pasquier, and E. Vivier, Immunoreceptor tyrosinebased inhibition motifs: a quest in the past and future, Immunol Rev, vol.224, pp.11-43, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00363863

B. Du, Q. Jiang, J. Cleveland, B. Liu, D. et al., Targeting Toll-like receptors against cancer, J Cancer Metastasis Treat, vol.2, pp.463-470, 2016.

R. L. Ferris, H. J. Lenz, A. M. Trotta, J. Garcia-foncillas, J. Schulten et al., Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation, Cancer Treat Rev, vol.63, pp.48-60, 2018.

W. H. Fridman, L. Zitvogel, C. Sautes-fridman, and G. Kroemer, The immune contexture in cancer prognosis and treatment, Nat Rev Clin Oncol, vol.14, pp.717-734, 2017.

F. Garrido, F. Ruiz-cabello, A. , and N. , Rejection versus escape: the tumor MHC dilemma, Cancer Immunol Immunother, vol.66, pp.259-271, 2017.

C. Guillerey and M. J. Smyth, NK Cells and Cancer Immunoediting, Curr Top Microbiol Immunol, vol.395, pp.115-145, 2016.

M. Hashimoto, A. O. Kamphorst, S. J. Im, H. T. Kissick, R. N. Pillai et al., CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions, Annu Rev Med, vol.69, pp.301-318, 2018.

E. Le-drean, F. Vely, L. Olcese, A. Cambiaggi, S. Guia et al., Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases, Eur J Immunol, vol.28, pp.264-276, 1998.

E. M. Levy, G. Sycz, J. M. Arriaga, M. M. Barrio, E. M. Von-euw et al., Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells, Innate Immun, vol.15, pp.91-100, 2009.

E. Mamessier, A. Sylvain, M. L. Thibult, G. Houvenaeghel, J. Jacquemier et al., Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity, J Clin Invest, vol.121, pp.3609-3622, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01765654

R. T. Manguso, H. W. Pope, M. D. Zimmer, F. D. Brown, K. B. Yates et al., vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target, vol.547, pp.413-418, 2017.

A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni et al., Activating receptors and coreceptors involved in human natural killer cellmediated cytolysis, Annu Rev Immunol, vol.19, pp.197-223, 2001.

A. Muntasell, M. C. Ochoa, L. Cordeiro, P. Berraondo, A. Lopez-diaz-de-cerio et al., Targeting NK-cell checkpoints for cancer immunotherapy, Curr Opin Immunol, vol.45, pp.73-81, 2017.

K. G. Paulson, S. Y. Park, N. A. Vandeven, K. Lachance, H. Thomas et al., Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics, J Am Acad Dermatol, vol.78, pp.457-463, 2018.

S. Platonova, J. Cherfils-vicini, D. Damotte, L. Crozet, V. Vieillard et al., Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma, Cancer Res, vol.71, pp.5412-5422, 2011.

V. Ramsuran, V. Naranbhai, A. Horowitz, Y. Qi, M. P. Martin et al., Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells, Science, vol.359, pp.86-90, 2018.

A. S. Rapaport, J. Schriewer, S. Gilfillan, E. Hembrador, R. Crump et al., The Inhibitory Receptor NKG2A Sustains Virus-Specific CD8(+) T Cells in Response to a Lethal Poxvirus Infection, vol.43, pp.1112-1124, 2015.

J. Rautela, F. Souza-fonseca-guimaraes, S. Hediyeh-zadeh, R. B. Delconte, M. J. Davis et al., Molecular insight into targeting the NK cell immune response to cancer, Immunol Cell Biol, 2018.

I. Sagiv-barfi, H. E. Kohrt, D. K. Czerwinski, P. P. Ng, B. Y. Chang et al., Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK, Proc Natl Acad Sci U S A, vol.112, pp.966-972, 2015.

R. D. Schreiber, L. J. Old, and M. J. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion, Science, vol.331, pp.1565-1570, 2011.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.348, pp.69-74, 2015.

N. H. Segal, C. Patel, S. Sahebjam, S. Papadopoulos, K. P. Gordon et al., First-in-human dose escalation of monalizumab plus durvalumab, with expansion in patients with metastatic microsatellitestable colorectal cancer, J Clin Oncol, vol.36, 2018.

P. Sharma, A. , and J. P. , The future of immune checkpoint therapy, Science, vol.348, pp.56-61, 2015.

P. Sharma, A. , and J. P. , Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, vol.161, pp.205-214, 2015.

P. Sharma, S. Hu-lieskovan, J. A. Wargo, and A. Ribas, Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, vol.168, pp.707-723, 2017.

B. C. Sheu, S. H. Chiou, H. H. Lin, S. N. Chow, S. C. Huang et al., Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical carcinoma, Cancer Res, vol.65, pp.2921-2929, 2005.

S. Sivori, M. Vitale, C. Bottino, E. Marcenaro, L. Sanseverino et al., CD94 functions as a natural killer cell inhibitory receptor for different HLA class I alleles: identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies, Eur J Immunol, vol.26, pp.2487-2492, 1996.

J. T. Sockolosky, E. Trotta, G. Parisi, L. Picton, L. L. Su et al., Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes, Science, vol.359, pp.1037-1042, 2018.

T. Yazdi, M. Van-riet, S. Van-schadewijk, A. Fiocco, M. Van-hall et al., The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma, Oncotarget, vol.7, pp.3477-3488, 2016.

R. E. Vance, A. M. Jamieson, and D. H. Raulet, Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells, J Exp Med, vol.190, pp.1801-1812, 1999.

C. Viant, A. Fenis, G. Chicanne, B. Payrastre, S. Ugolini et al., , 2014.

. Synthese and . Français, Les cellules dendritiques dans le micro-environnement tumoral des cancers ORL : des mécanismes aux biomarqueurs

S. I. Pai, S. Faivre, L. Licitra, J. Machiels, J. B. Vermorken et al., Comparative analysis of the phase III clinical trials of anti-PD1 monotherapy in head and neck squamous cell carcinoma patients (CheckMate 141 and KEYNOTE 040), J Immunother Cancer, vol.7, issue.1, p.96, 2019.

D. Rischin, K. J. Harrington, R. Greil, D. Soulieres, M. Tahara et al., Nuttapong Ngamphaiboon, Tamara Rordorf, Wan Zamaniah Wan Ishak, Yayan Zhan. Protocol-specified final analysis of the phase 3 KEYNOTE-048 trial of pembrolizumab (pembro) as first-line therapy for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), J Clin Oncol, vol.37, 2019.

O. Trédan, Q. Wang, D. Pissaloux, P. Cassier, A. De-la-fouchardière et al., Molecular screening program to select molecular-based recommended therapies for metastatic cancer patients: analysis from the ProfiLER trial, Ann Oncol Off J Eur Soc Med Oncol, vol.30, issue.5, pp.757-65, 2019.

R. Fujiwara, B. Burtness, Z. A. Husain, B. L. Judson, A. Bhatia et al., Treatment guidelines and patterns of care in oral cavity squamous cell carcinoma: Primary surgical resection vs. nonsurgical treatment, Oral Oncol, vol.71, pp.129-166, 2017.

R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, Cancer Statistics, vol.68, pp.7-30, 2018.

K. K. Ang, J. Harris, R. Wheeler, R. Weber, D. I. Rosenthal et al., Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer, N Engl J Med, vol.363, issue.1, pp.24-35, 2010.

J. Guigay, E. Sâada-bouzid, F. Peyrade, and C. Michel, Approach to the Patient with Recurrent/Metastatic Disease, Curr Treat Options Oncol, vol.20, issue.8, p.65, 2019.

L. Gañán, M. López, J. García, E. Esteller, M. Quer et al., Management of recurrent head and neck cancer: variables related to salvage surgery, Eur Arch Oto-Rhino-Laryngol Off J Eur Fed OtoRhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol -Head Neck Surg, vol.273, issue.12, pp.4417-4441, 2016.

A. Argiris, M. V. Karamouzis, D. Raben, and R. L. Ferris, Head and neck cancer, Lancet Lond Engl, vol.371, issue.9625, pp.1695-709, 2008.

S. Tam, R. Araslanova, T. Low, A. Warner, J. Yoo et al., Estimating Survival After Salvage Surgery for Recurrent Oral Cavity Cancer, JAMA Otolaryngol, vol.143, issue.7, pp.685-90, 201701.

R. A. Ord, A. Kolokythas, and M. A. Reynolds, Surgical salvage for local and regional recurrence in oral cancer. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg, vol.64, pp.1409-1423, 2006.

C. Liao, J. Chang, H. Wang, S. Ng, C. Hsueh et al., Salvage therapy in relapsed squamous cell carcinoma of the oral cavity: how and when? Cancer, vol.112, pp.94-103, 2008.

A. G. Sacco and E. E. Cohen, Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.33, issue.29, pp.3305-3318, 2015.

F. Janot, D. De-raucourt, E. Benhamou, C. Ferron, G. Dolivet et al., Randomized trial of postoperative reirradiation combined with chemotherapy after salvage surgery compared with salvage surgery alone in head and neck carcinoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.26, issue.34, pp.5518-5541, 2008.

R. L. Ferris, G. Blumenschein, F. J. Guigay, J. Colevas, A. D. Licitra et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, N Engl J Med, vol.375, pp.1856-67, 2016.

E. Cohen, D. Soulières, L. Tourneau, C. Dinis, J. Licitra et al., Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet, vol.393, pp.156-67, 2019.

P. L. Zorat, A. Paccagnella, G. Cavaniglia, L. Loreggian, A. Gava et al., Randomized phase III trial of neoadjuvant chemotherapy in head and neck cancer: 10-year follow-up, J Natl Cancer Inst, vol.96, issue.22, pp.1714-1721, 2004.

P. Bossi, L. Vullo, S. Guzzo, M. Mariani, L. Granata et al., Preoperative chemotherapy in advanced resectable OCSCC: long-term results of a randomized phase III trial, Ann Oncol Off J Eur Soc Med Oncol, vol.25, issue.2, pp.462-468, 2014.

A. Forastiere, W. Koch, A. Trotti, and D. Sidransky, Head and neck cancer, N Engl J Med, vol.345, issue.26, pp.1890-900, 2001.

V. Bykov, S. E. Eriksson, J. Bianchi, and K. G. Wiman, Targeting mutant p53 for efficient cancer therapy, Nat Rev Cancer, vol.18, issue.2, pp.89-102, 2018.

M. K. Keck, Z. Zuo, A. Khattri, T. P. Stricker, C. D. Brown et al., Integrative Analysis of Head and Neck Cancer Identifies Two Biologically Distinct HPV and Three Non-HPV Subtypes, Clin Cancer Res, vol.21, issue.4, pp.870-81, 2015.

, TCGA Releases Head and Neck Cancer Data. Cancer Discov, vol.5, pp.340-341, 2015.

L. De-cecco, M. Nicolau, M. Giannoccaro, M. G. Daidone, P. Bossi et al., Head and neck cancer subtypes with biological and clinical relevance: Meta-analysis of gene-expression data, Oncotarget, vol.6, issue.11, pp.9627-9669, 2015.

S. V. Puram, I. Tirosh, A. S. Parikh, A. P. Patel, K. Yizhak et al., Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer, vol.171, pp.1611-1624, 2017.

C. Rivera, A. K. Oliveira, R. Costa, D. Rossi, T. et al., Prognostic biomarkers in oral squamous cell carcinoma: A systematic review, Oral Oncol, vol.72, pp.38-47, 2017.

L. M. Mcshane, D. G. Altman, W. Sauerbrei, S. E. Taube, M. Gion et al., REporting recommendations for tumour MARKer prognostic studies (REMARK), Br J Cancer, vol.93, issue.4, pp.387-91, 2005.

D. F. Hayes, R. C. Bast, C. E. Desch, H. Fritsche, N. E. Kemeny et al., Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers, J Natl Cancer Inst, vol.88, issue.20, pp.1456-66, 1996.

R. M. Simon, S. Paik, and D. F. Hayes, Use of archived specimens in evaluation of prognostic and predictive biomarkers, J Natl Cancer Inst, vol.101, issue.21, pp.1446-52, 2009.

J. Dunkel, S. Vaittinen, P. Koivunen, J. Laranne, M. J. Mäkinen et al., Tumoral Expression of CD44 and HIF1? Predict Stage I Oral Cavity Squamous Cell Carcinoma Outcome, Laryngoscope Investig Otolaryngol, vol.1, issue.1, pp.6-12, 2016.

S. Shen, G. Wang, Q. Shi, R. Zhang, Y. Zhao et al., Seven-CpG-based prognostic signature coupled with gene expression predicts survival of oral squamous cell carcinoma, Clin Epigenetics, vol.9, p.88, 2017.

C. Lu, J. S. Lewis, W. D. Dupont, W. D. Plummer, A. Janowczyk et al., An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival, Mod Pathol, 2017.

,

, National Cancer Institute. NCI Dictionary of Cancer Terms, p.33, 2011.

V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone et al., The Immune Landscape of Cancer. Immunity, vol.17, pp.812-830, 2018.

R. Mandal, Y. ?enbabao?lu, A. Desrichard, J. J. Havel, M. G. Dalin et al., The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight, vol.1, p.89829, 2016.

A. Chakravarthy, A. Furness, K. Joshi, E. Ghorani, K. Ford et al., Pan-cancer deconvolution of tumour composition using DNA methylation, Nat Commun, vol.13, issue.1, p.3220, 2018.

T. A. Fehniger and M. A. Cooper, Harnessing NK Cell Memory for Cancer Immunotherapy, Trends Immunol, vol.37, issue.12, pp.877-88, 2016.

J. Zhu and . Helper, Cell Differentiation, Heterogeneity, and Plasticity, vol.10, 201801.

W. C. Van-voorhis, L. S. Hair, R. M. Steinman, and G. Kaplan, Human dendritic cells. Enrichment and characterization from peripheral blood, J Exp Med, vol.155, issue.4, pp.1172-87, 1982.

M. K. Hossain and K. A. Wall, Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers, vol.11, 2019.

R. M. Steinman and Z. A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution, J Exp Med, vol.137, issue.5, pp.1142-62, 1973.

R. M. Steinman and M. D. Witmer, Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice, Proc Natl Acad Sci U S A, vol.75, issue.10, pp.5132-5138, 1978.

P. E. Marques, S. Grinstein, and S. A. Freeman, SnapShot:Macropinocytosis. Cell, vol.169, pp.766-766, 201704.

R. M. Steinman, Decisions about dendritic cells: past, present, and future, Annu Rev Immunol, vol.30, pp.1-22, 2012.

J. M. Curtsinger, C. S. Schmidt, A. Mondino, D. C. Lins, R. M. Kedl et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells, J Immunol Baltim Md, vol.162, issue.6, pp.3256-62, 1950.

A. Jain and C. Pasare, Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm, J Immunol Baltim Md, vol.15, issue.10, pp.3791-800, 1950.

T. Worbs, S. I. Hammerschmidt, and R. Förster, Dendritic cell migration in health and disease, Nat Rev Immunol, vol.17, issue.1, pp.30-48, 2017.

P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, Antigen presentation and T cell stimulation by dendritic cells, Annu Rev Immunol, vol.20, pp.621-67, 2002.

M. J. Bevan, Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay, J Exp Med, vol.143, issue.5, pp.1283-1291, 1976.

T. R. Mosmann and R. L. Coffman, Two types of mouse helper T-cell clone Implications for immune regulation, Immunol Today, vol.8, issue.7-8, pp.223-230, 1987.

F. Chalmin, E. Humblin, F. Ghiringhelli, and F. Végran, Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions, Int Rev Cell Mol Biol, vol.341, pp.1-61, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01915895

M. B. Lutz, Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells, Immune Netw, vol.16, issue.1, pp.13-25, 2016.

H. Yamane and W. E. Paul, Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets, Immunol Rev, vol.252, issue.1, pp.12-23, 2013.

R. Gaurav and D. K. Agrawal, Clinical view on the importance of dendritic cells in asthma, Expert Rev Clin Immunol, vol.9, issue.10, pp.899-919, 2013.

S. Sozzani, D. Prete, A. Bosisio, and D. , Dendritic cell recruitment and activation in autoimmunity, J Autoimmun, vol.85, pp.126-166, 2017.

A. Gardner and B. Ruffell, Dendritic Cells and Cancer Immunity, Trends Immunol, vol.37, issue.12, pp.855-65, 2016.

H. Vroman, B. Van-den-blink, and M. Kool, Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology, vol.220, pp.254-61, 2015.

A. Zernecke, Dendritic cells in atherosclerosis: evidence in mice and humans, Arterioscler Thromb Vasc Biol, vol.35, issue.4, pp.763-70, 2015.

O. Lapérine, C. Blin-wakkach, J. Guicheux, S. Beck-cormier, and P. Lesclous, Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases, Drug Discov Today, vol.21, issue.9, pp.1345-54, 2016.

R. I. Lechler and J. R. Batchelor, Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells, J Exp Med, vol.155, issue.1, pp.31-41, 1982.

Q. Zhuang and F. G. Lakkis, Dendritic cells and innate immunity in kidney transplantation, Kidney Int, vol.87, issue.4, pp.712-720, 2015.

D. Vremec, M. Zorbas, R. Scollay, D. J. Saunders, C. F. Ardavin et al., The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells, J Exp Med, vol.176, issue.1, pp.47-58, 1992.

P. See, C. Dutertre, J. Chen, P. Günther, N. Mcgovern et al., Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, issue.6342, 201709.

A. Villani, R. Satija, G. Reynolds, S. Sarkizova, K. Shekhar et al., Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, vol.356, 2017.

C. Dutertre, E. Becht, S. E. Irac, A. Khalilnezhad, V. Narang et al., Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells, Immunity, 2019.

P. Günther, B. Cirovic, K. Baßler, K. Händler, M. Becker et al., A rule-based datainformed cellular consensus map of the human mononuclear phagocyte cell space, 2019.

V. Soumelis and Y. Liu, From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation, Eur J Immunol, vol.36, issue.9, pp.2286-92, 2006.

D. S. Lin, A. Kan, J. Gao, E. J. Crampin, P. D. Hodgkin et al., DiSNE Movie Visualization and Assessment of Clonal Kinetics Reveal Multiple Trajectories of Dendritic Cell Development, Cell Rep, vol.22, issue.10, pp.2557-66, 201806.

A. Dzionek, A. Fuchs, P. Schmidt, S. Cremer, M. Zysk et al., BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood, J Immunol Baltim Md, vol.165, issue.11, pp.6037-6083, 1950.

J. Cancel, K. Crozat, M. Dalod, and R. Mattiuz, Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? Front Immunol, vol.10, p.9, 2019.

M. Abolhalaj, D. Askmyr, C. A. Sakellariou, K. Lundberg, L. Greiff et al., Profiling dendritic cell subsets in head and neck squamous cell tonsillar cancer and benign tonsils. Sci Rep, vol.8, p.8030, 2018.

S. L. Jongbloed, A. J. Kassianos, K. J. Mcdonald, G. J. Clark, X. Ju et al.,

, + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens, J Exp Med, vol.207, issue.6, pp.1247-60, 2010.

M. Haniffa, A. Shin, V. Bigley, N. Mcgovern, P. Teo et al., Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells, Immunity, vol.37, issue.1, pp.60-73, 2012.

E. Van-der-aa, P. J. Biesta, A. M. Woltman, and S. I. Buschow, Transcriptional patterns associated with BDCA3 expression on BDCA1+ myeloid dendritic cells, Immunol Cell Biol, vol.96, issue.3, pp.330-336, 2018.

P. B. Watchmaker, K. Lahl, M. Lee, D. Baumjohann, J. Morton et al., Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice, Nat Immunol, vol.15, issue.1, pp.98-108, 2013.

M. Collin and V. Bigley, Human dendritic cell subsets: an update, Immunology, vol.154, issue.1, pp.3-20, 2018.

K. Hildner, B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita et al., Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity, Science, vol.322, issue.5904, pp.1097-100, 2008.

L. F. Poulin, M. Salio, E. Griessinger, F. Anjos-afonso, L. Craciun et al., Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells, J Exp Med, vol.207, issue.6, pp.1261-71, 2010.

O. Schulz, S. S. Diebold, M. Chen, T. I. Näslund, M. A. Nolte et al., Toll-like receptor 3 promotes cross-priming to virus-infected cells, Nature, vol.433, issue.7028, pp.887-92, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165709

T. Granot, T. Senda, D. J. Carpenter, N. Matsuoka, J. Weiner et al., Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life, Immunity, vol.46, issue.3, pp.504-519, 201721.

E. Segura, J. Valladeau-guilemond, M. Donnadieu, X. Sastre-garau, V. Soumelis et al., Characterization of resident and migratory dendritic cells in human lymph nodes, J Exp Med, vol.209, issue.4, pp.653-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00723792

B. Wylie, J. Read, A. C. Buzzai, T. Wagner, N. Troy et al., CD8+XCR1neg Dendritic Cells Express High Levels of Toll-Like Receptor 5 and a Unique Complement of Endocytic Receptors, Front Immunol, vol.9, p.2990, 2018.

E. K. Persson, H. Uronen-hansson, M. Semmrich, A. Rivollier, K. Hägerbrand et al., IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation, Immunity, vol.38, issue.5, pp.958-69, 2013.

S. Hambleton, S. Salem, J. Bustamante, V. Bigley, S. Boisson-dupuis et al., IRF8 mutations and human dendritic-cell immunodeficiency, N Engl J Med, vol.365, issue.2, pp.127-165, 2011.

S. Sontag, M. Förster, J. Qin, P. Wanek, S. Mitzka et al., Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells, Stem Cells Dayt Ohio, vol.35, issue.4, pp.898-908, 2017.

A. Krug, A. Towarowski, S. Britsch, S. Rothenfusser, V. Hornung et al., Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12, Eur J Immunol, vol.31, issue.10, pp.3026-3063, 2001.

R. Murakami, K. Denda-nagai, S. Hashimoto, S. Nagai, M. Hattori et al., A unique dermal dendritic cell subset that skews the immune response toward Th2, PloS One, vol.8, issue.9, p.73270, 2013.

M. Haniffa, M. Collin, and F. Ginhoux, Ontogeny and functional specialization of dendritic cells in human and mouse, Adv Immunol, vol.120, pp.1-49, 2013.

E. Segura and S. Amigorena, Inflammatory dendritic cells in mice and humans, Trends Immunol, vol.34, issue.9, pp.440-445, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00846095

C. Goudot, A. Coillard, A. Villani, P. Gueguen, A. Cros et al., Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages, Immunity, vol.47, issue.3, pp.582-596, 201719.
URL : https://hal.archives-ouvertes.fr/hal-01613828

O. P. Joffre, E. Segura, A. Savina, and S. Amigorena, Cross-presentation by dendritic cells, Nat Rev Immunol, vol.13, issue.8, pp.557-69, 2012.

S. Alculumbre, S. Raieli, C. Hoffmann, R. Chelbi, F. Danlos et al., Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association, Semin Cell Dev Biol, vol.86, pp.24-35, 2019.

K. Lennert and W. Remmele,

, Acta Haematol, vol.19, issue.2, pp.99-113, 1958.

G. Grouard, M. C. Rissoan, L. Filgueira, I. Durand, J. Banchereau et al., The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand, J Exp Med, vol.185, issue.6, pp.1101-1112, 1997.

M. Cella, D. Jarrossay, F. Facchetti, O. Alebardi, H. Nakajima et al., Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon, Nat Med, vol.5, issue.8, pp.919-942, 1999.

F. P. Siegal, N. Kadowaki, M. Shodell, P. A. Fitzgerald-bocarsly, K. Shah et al., The nature of the principal type 1 interferon-producing cells in human blood, Science, vol.284, issue.5421, pp.1835-1842, 1999.

C. Asselin-paturel, A. Boonstra, M. Dalod, I. Durand, N. Yessaad et al., Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology, Nat Immunol, vol.2, issue.12, pp.1144-50, 2001.

N. Kadowaki, S. Ho, S. Antonenko, R. W. Malefyt, R. A. Kastelein et al., Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens, J Exp Med, vol.194, issue.6, pp.863-872, 2001.

J. A. Villadangos and L. Young, Antigen-presentation properties of plasmacytoid dendritic cells, Immunity, vol.29, issue.3, pp.352-61, 2008.

G. Hoeffel, A. Ripoche, D. Matheoud, M. Nascimbeni, N. Escriou et al., Antigen crosspresentation by human plasmacytoid dendritic cells, Immunity, vol.27, issue.3, pp.481-92, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00360697

F. Pandolfi, S. Altamura, S. Frosali, and P. Conti, Key Role of DAMP in Inflammation, Cancer, and Tissue Repair, Clin Ther, vol.38, issue.5, pp.1017-1045, 2016.

T. Shekarian, S. Valsesia-wittmann, J. Brody, M. C. Michallet, S. Depil et al., Pattern recognition receptors: immune targets to enhance cancer immunotherapy, Ann Oncol Off J Eur Soc Med Oncol, vol.28, issue.8, pp.1756-66, 2017.

L. Cao, H. Chang, X. Shi, C. Peng, and Y. He, Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205, Proc Natl Acad Sci, vol.113, issue.47, pp.13438-13481, 201622.

K. Lim and L. M. Staudt, Toll-like receptor signaling, Cold Spring Harb Perspect Biol, vol.5, issue.1, p.11247, 2013.

M. J. Jiménez-dalmaroni, M. E. Gerswhin, and I. E. Adamopoulos, The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review, Autoimmun Rev, 2016.

M. Dalod, R. Chelbi, B. Malissen, and T. Lawrence, Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming, EMBO J, vol.33, issue.10, pp.1104-1120, 2014.

I. M. Dambuza and G. D. Brown, C-type lectins in immunity: recent developments, Curr Opin Immunol, vol.32, pp.21-28, 2015.

L. Martinez-pomares, The mannose receptor, J Leukoc Biol, vol.92, issue.6, pp.1177-86, 2012.

C. A. Iberg and D. Hawiger, Advancing immunomodulation by in vivo antigen delivery to DEC-205 and other cell surface molecules using recombinant chimeric antibodies, Int Immunopharmacol, vol.73, pp.575-80, 2019.

M. Guo, S. Gong, S. Maric, Z. Misulovin, M. Pack et al., A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells, Hum Immunol, vol.61, issue.8, pp.729-767, 2000.

T. B. Geijtenbeek, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven, G. J. Adema et al., Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses, Cell, vol.100, issue.5, pp.575-85, 2000.

C. P. Mason and A. W. Tarr, Human lectins and their roles in viral infections, 2015.

, Jan, vol.29, issue.2, pp.2229-71

O. Takeuchi and S. Akira, Pattern recognition receptors and inflammation, Cell, vol.140, issue.6, pp.805-825, 2010.

E. A. Miao, J. V. Rajan, and A. Aderem, Caspase-1-induced pyroptotic cell death, Immunol Rev, vol.243, issue.1, pp.206-220, 2011.

K. Kis-toth, A. Szanto, T. Thai, and G. C. Tsokos, Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response, J Immunol Baltim Md, vol.187, issue.3, pp.1222-1256, 1950.

A. Takaoka, Z. Wang, M. K. Choi, H. Yanai, H. Negishi et al., DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response, Cell Res, vol.448, issue.7152, pp.96-108, 2007.

A. Tammaro, M. Derive, S. Gibot, J. C. Leemans, S. Florquin et al., TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives, Pharmacol Ther, vol.177, pp.81-95, 2017.

A. L. Sedlacek, T. P. Younker, Y. J. Zhou, L. Borghesi, T. Shcheglova et al., CD91 on dendritic cells governs immunosurveillance of nascent, emerging tumors. JCI Insight, vol.4, 2019.

T. Wang, G. Niu, M. Kortylewski, L. Burdelya, K. Shain et al., Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells, Nat Med, vol.10, issue.1, pp.48-54, 2004.

C. Qian and X. Cao, Dendritic cells in the regulation of immunity and inflammation, Semin Immunol, vol.35, pp.3-11, 2018.

W. J. Leonard and J. X. Lin, Cytokine receptor signaling pathways, J Allergy Clin Immunol, vol.105, issue.5, pp.877-88, 2000.

J. Sabatté, J. Maggini, K. Nahmod, M. M. Amaral, D. Martínez et al., Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function, Cytokine Growth Factor Rev, vol.18, issue.1-2, pp.5-17, 2007.

H. S. Li and S. S. Watowich, Diversification of dendritic cell subsets: Emerging roles for STAT proteins, JAK-STAT, vol.2, issue.4, p.25112, 2013.

Z. Shi, W. Jiang, M. Wang, X. Wang, X. Li et al., Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis, Mol Cell Biochem, vol.430, issue.1-2, pp.161-170, 2017.

C. Wan, J. Oh, P. Li, E. E. West, E. A. Wong et al., The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells, Immunity, vol.38, issue.3, pp.514-541, 2013.

A. V. Villarino, Y. Kanno, J. R. Ferdinand, O. Shea, and J. J. , Mechanisms of Jak/STAT signaling in immunity and disease, J Immunol Baltim Md, vol.194, issue.1, pp.21-28, 1950.

L. K. Ward-kavanagh, W. W. Lin, J. R. ?edý, and C. F. Ware, The TNF Receptor Superfamily in Costimulating and Co-inhibitory Responses, Immunity, vol.17, issue.5, pp.1005-1024, 2016.

C. Caux, C. Massacrier, B. Vanbervliet, B. Dubois, C. Van-kooten et al., Activation of human dendritic cells through CD40 cross-linking, J Exp Med, vol.180, issue.4, pp.1263-72, 1994.

C. De-trez and C. F. Ware, The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis, Cytokine Growth Factor Rev, vol.19, issue.3-4, pp.277-84, 2008.

A. Regnault, D. Lankar, V. Lacabanne, A. Rodriguez, C. Théry et al., Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization, J Exp Med, vol.189, issue.2, pp.371-80, 1999.

A. Pincetic, S. Bournazos, D. J. Dilillo, J. Maamary, T. T. Wang et al., Type I and type II Fc receptors regulate innate and adaptive immunity, Nat Immunol, vol.15, issue.8, pp.707-723, 2014.

A. M. Boruchov, G. Heller, M. Veri, E. Bonvini, J. V. Ravetch et al., Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions, J Clin Invest, vol.115, issue.10, pp.2914-2937, 2005.

H. Sjölin, S. H. Robbins, G. Bessou, A. Hidmark, E. Tomasello et al., DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and down-modulates their function during viral infection, J Immunol Baltim Md, vol.177, issue.5, pp.2908-2924, 1950.

W. Cao, L. Zhang, D. B. Rosen, L. Bover, G. Watanabe et al., BDCA2/Fc epsilon RI gamma complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells, PLoS Biol, vol.5, issue.10, p.248, 2007.

M. Rahim, L. Tai, A. D. Troke, A. B. Mahmoud, E. Abou-samra et al., Ly49Q positively regulates type I IFN production by plasmacytoid dendritic cells in an immunoreceptor tyrosinebased inhibitory motif-dependent manner, J Immunol Baltim Md, vol.190, issue.8, pp.3994-4004, 1950.

A. Jiménez-reinoso, A. V. Marin, and J. R. Regueiro, Complement in basic processes of the cell, Mol Immunol, vol.84, pp.10-16, 2017.

K. M. Murphy and C. Weaver, Janeway Immunobiology

M. C. Nussenzweig and R. M. Steinman, Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction, J Exp Med, vol.151, issue.5, pp.1196-212, 1980.

G. Schuler and R. M. Steinman, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J Exp Med, vol.161, issue.3, pp.526-572, 1985.

K. Inaba and R. M. Steinman, Antibody responses to T-dependent antigens: contributions of dendritic cells and helper T lymphocytes, Adv Exp Med Biol, vol.186, pp.369-76, 1985.

C. T. Weaver, C. M. Hawrylowicz, and E. R. Unanue, T helper cell subsets require the expression of distinct costimulatory signals by antigen-presenting cells, Proc Natl Acad Sci U S A, vol.85, issue.21, pp.8181-8186, 1988.

S. Koide and R. M. Steinman, Induction of murine interleukin 1: stimuli and responsive primary cells, Proc Natl Acad Sci U S A, vol.84, issue.11, pp.3802-3808, 1987.

T. A. Springer, Adhesion receptors of the immune system, Nature, vol.346, issue.6283, pp.425-459, 1990.

C. P. Larsen, S. C. Ritchie, T. C. Pearson, P. S. Linsley, and R. P. Lowry, Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations, J Exp Med, vol.176, issue.4, pp.1215-1235, 1992.

I. Mellman and R. M. Steinman, Dendritic cells: specialized and regulated antigen processing machines, Cell, vol.106, issue.3, pp.255-263, 2001.

E. S. Trombetta and I. Mellman, Cell biology of antigen processing in vitro and in vivo, Annu Rev Immunol, vol.23, pp.975-1028, 2005.

G. J. Randolph, V. Angeli, and M. A. Swartz, Dendritic-cell trafficking to lymph nodes through lymphatic vessels, Nat Rev Immunol, vol.5, issue.8, pp.617-645, 2005.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-52, 1998.

K. Inaba, S. Turley, T. Iyoda, F. Yamaide, S. Shimoyama et al., The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli, J Exp Med, vol.191, issue.6, pp.927-963, 2000.

E. Fiebiger, P. Meraner, E. Weber, I. F. Fang, G. Stingl et al., Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells, J Exp Med, vol.193, issue.8, pp.881-92, 2001.

P. Pierre and I. Mellman, Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells, Cell, vol.93, issue.7, pp.1135-1180, 1998.

E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman, Activation of lysosomal function during dendritic cell maturation, Science, vol.299, issue.5611, pp.1400-1403, 2003.

C. Driessen, R. A. Bryant, A. M. Lennon-duménil, J. A. Villadangos, P. W. Bryant et al.,

, Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells, J Cell Biol, vol.147, issue.4, pp.775-90, 1999.

B. Manoury, Proteases: essential actors in processing antigens and intracellular toll-like receptors. Front Immunol, vol.4, p.299, 2013.

M. Cella, A. Engering, V. Pinet, J. Pieters, and A. Lanzavecchia, Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells, Nature, vol.388, issue.6644, pp.782-789, 1997.

S. J. Turley, K. Inaba, W. S. Garrett, M. Ebersold, J. Unternaehrer et al., Transport of peptide-MHC class II complexes in developing dendritic cells, Science, vol.288, issue.5465, pp.522-529, 2000.

P. Vargas, P. Maiuri, M. Bretou, P. J. Sáez, P. Pierobon et al., Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells, Nat Cell Biol, vol.18, issue.1, pp.43-53, 2016.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, vol.12, issue.4, pp.252-64, 2012.

A. G. Ramsay, Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity, Br J Haematol, vol.162, issue.3, pp.313-338, 2013.

K. M. Mahoney, P. D. Rennert, and G. J. Freeman, Combination cancer immunotherapy and new immunomodulatory targets, Nat Rev Drug Discov, vol.14, issue.8, pp.561-84, 2015.

A. J. Korman, K. S. Peggs, and J. P. Allison, Checkpoint blockade in cancer immunotherapy, Adv Immunol, vol.90, pp.297-339, 2006.

S. Y. Tseng, M. Otsuji, K. Gorski, X. Huang, J. E. Slansky et al., B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells, J Exp Med, vol.193, issue.7, pp.839-885, 2001.

D. A. Bleijs, R. De-waal-malefyt, C. G. Figdor, and Y. Van-kooyk, Co-stimulation of T cells results in distinct IL-10 and TNF-alpha cytokine profiles dependent on binding to ICAM-1, ICAM-2 or ICAM

, Eur J Immunol, vol.29, issue.7, pp.2248-58, 1999.

A. G. Wingren, E. Parra, M. Varga, T. Kalland, H. Sjogren et al., LFA-3, and ICAM-1 Shape Unique T Cell Profiles, Cell Activation Pathways: B7, vol.37, issue.2-6, pp.463-81, 2017.

K. Hoshino, T. Kaisho, T. Iwabe, O. Takeuchi, and S. Akira, Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation, Int Immunol, vol.14, issue.10, pp.1225-1256, 2002.

K. Hoebe, E. M. Janssen, S. O. Kim, L. Alexopoulou, R. A. Flavell et al., Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trifdependent and Trif-independent pathways, Nat Immunol, vol.4, issue.12, pp.1223-1232, 2003.

F. Mattei, G. Schiavoni, F. Belardelli, and D. F. Tough, IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation, J Immunol Baltim Md, vol.167, issue.3, pp.1179-87, 1950.

S. K. Mittal and P. A. Roche, Suppression of antigen presentation by IL-10, Curr Opin Immunol, vol.34, pp.22-29, 2015.

H. Hochrein, M. O'keeffe, T. Luft, S. Vandenabeele, R. J. Grumont et al.,

. Interleukin, 4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells, J Exp Med, vol.192, issue.6, pp.823-856, 2000.

R. Maldonado-lópez, D. Smedt, T. Michel, P. Godfroid, J. Pajak et al., CD8alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo, J Exp Med, vol.189, issue.3, pp.587-92, 1999.

L. Ohl, M. Mohaupt, N. Czeloth, G. Hintzen, Z. Kiafard et al., CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions, Immunity, vol.21, issue.2, pp.279-88, 2004.

O. Tal, H. Y. Lim, I. Gurevich, M. I. Shipony, Z. Ng et al., DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling, J Exp Med, vol.208, issue.10, pp.2141-53, 2011.

M. Rescigno, M. Martino, C. L. Sutherland, M. R. Gold, and P. Ricciardi-castagnoli, Dendritic cell survival and maturation are regulated by different signaling pathways, J Exp Med, vol.188, issue.11, pp.2175-80, 1998.

M. Wendland, S. Willenzon, J. Kocks, A. C. Davalos-misslitz, S. I. Hammerschmidt et al., Lymph node T cell homeostasis relies on steady state homing of dendritic cells, Immunity, vol.35, issue.6, pp.945-57, 2011.

H. Nakano, J. E. Burgents, K. Nakano, G. S. Whitehead, C. Cheong et al., Migratory properties of pulmonary dendritic cells are determined by their developmental lineage, Mucosal Immunol, vol.6, issue.4, pp.678-91, 2013.

E. Zigmond, C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy et al., Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells, Immunity, vol.37, issue.6, pp.1076-90, 2012.

T. Yi and J. G. Cyster, EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife, vol.2, p.757, 2013.

H. Saeki, M. T. Wu, E. Olasz, and S. T. Hwang, A migratory population of skin-derived dendritic cells expresses CXCR5, responds to B lymphocyte chemoattractant in vitro, and co-localizes to B cell zones in lymph nodes in vivo, Eur J Immunol, vol.30, issue.10, pp.2808-2822, 2000.

L. Pattarini, C. Trichot, S. Bogiatzi, M. Grandclaudon, S. Meller et al., TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand, J Exp Med, vol.214, issue.5, pp.1529-1575, 201701.

F. Benvenuti, The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation, Front Immunol, vol.7, p.70, 2016.

J. Torres-bacete, C. Delgado-martín, C. Gómez-moreira, S. Simizu, and J. L. Rodríguez-fernández, The Mammalian Sterile 20-like 1 Kinase Controls Selective CCR7-Dependent Functions in Human Dendritic Cells, J Immunol Baltim Md, vol.195, issue.3, pp.973-81, 1950.

G. Faure-andré, P. Vargas, M. Yuseff, M. Heuzé, J. Diaz et al., Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain, Science, vol.322, issue.5908, pp.1705-1715, 2008.

M. L. Heuzé, P. Vargas, M. Chabaud, L. Berre, M. Liu et al., Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications, Immunol Rev, vol.256, issue.1, pp.240-54, 2013.

S. C. Knight, J. Mertin, A. Stackpoole, and J. Clark, Induction of immune responses in vivo with small numbers of veiled (dendritic) cells, Proc Natl Acad Sci U S A, vol.80, pp.6032-6037, 1983.

M. L. Dustin and C. T. Baldari, The Immune Synapse: Past, Present, and Future, Methods Mol Biol Clifton NJ, vol.1584, pp.1-5, 2017.

A. M. Dudek, S. Martin, A. D. Garg, and A. P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol, vol.4, p.438, 2013.

R. A. Flavell, S. Sanjabi, S. H. Wrzesinski, and P. Licona-limón, The polarization of immune cells in the tumour environment by TGFbeta, Nat Rev Immunol, vol.10, issue.8, pp.554-67, 2010.

Q. Li, Z. Guo, X. Xu, S. Xia, and X. Cao, Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation, Eur J Immunol, vol.38, issue.10, pp.2751-61, 2008.

G. Stary, C. Bangert, M. Tauber, R. Strohal, T. Kopp et al., Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells, J Exp Med, vol.204, issue.6, pp.1441-51, 2007.

M. Tkach, J. Kowal, A. E. Zucchetti, L. Enserink, M. Jouve et al., Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes, EMBO J, vol.16, issue.20, pp.3012-3040, 2017.

M. B. Lutz and G. Schuler, Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?, Trends Immunol, vol.23, issue.9, pp.445-454, 2002.

M. C. Rissoan, V. Soumelis, N. Kadowaki, G. Grouard, F. Briere et al., Reciprocal control of T helper cell and dendritic cell differentiation, Science, vol.283, issue.5405, pp.1183-1189, 1999.

C. Weber, S. Meiler, Y. Döring, M. Koch, M. Drechsler et al., CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice, J Clin Invest, vol.121, issue.7, pp.2898-910, 2011.

H. Hammad and B. N. Lambrecht, Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma, Nat Rev Immunol, vol.8, issue.3, pp.193-204, 2008.

R. Spörri and C. Reis-e-sousa, Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function, Nat Immunol, vol.6, issue.2, pp.163-70, 2005.

O. Schulz, A. D. Edwards, M. Schito, J. Aliberti, S. Manickasingham et al., CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal, Immunity, vol.13, issue.4, pp.453-62, 2000.

A. Langenkamp, M. Messi, A. Lanzavecchia, and F. Sallusto, Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells, Nat Immunol, vol.1, issue.4, pp.311-317, 2000.

M. L. Kapsenberg, Dendritic-cell control of pathogen-driven T-cell polarization, Nat Rev Immunol, vol.3, issue.12, pp.984-93, 2003.

G. Stary, A. Olive, A. F. Radovic-moreno, D. Gondek, D. Alvarez et al., A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells, Science, vol.348, issue.6241, p.8205, 2015.

F. Sandoval, M. Terme, M. Nizard, C. Badoual, M. Bureau et al., , p.8

, + T cells is crucial to inhibit the growth of mucosal tumors, Sci Transl Med, vol.5, issue.172, pp.172-192, 2013.

N. A. Mitchison, Graft rejection, the histocompatibility complex and the Langerhans' cell, Clin Exp Dermatol, vol.4, issue.4, pp.489-93, 1979.

G. J. Nossal, Negative selection of lymphocytes, Cell, vol.76, issue.2, pp.229-268, 1994.

M. O. Li and R. A. Flavell, TGF-beta: a master of all T cell trades, Cell, vol.134, issue.3, pp.392-404, 2008.

J. F. Miller and G. Morahan, Peripheral T cell tolerance, Annu Rev Immunol, vol.10, pp.51-69, 1992.

H. Jonuleit, E. Schmitt, G. Schuler, J. Knop, and A. H. Enk, Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells, J Exp Med, vol.192, issue.9, pp.1213-1235, 2000.

M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells, J Exp Med, vol.193, issue.2, pp.233-241, 2001.

K. Mahnke, Y. Qian, J. Knop, and A. H. Enk, Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells, Blood, vol.15, issue.12, pp.4862-4871, 2003.

T. Zou, A. J. Caton, G. A. Koretzky, and T. Kambayashi, Dendritic cells induce regulatory T cell proliferation through antigen-dependent and -independent interactions, J Immunol Baltim Md, vol.185, issue.5, pp.2790-2799, 1950.

G. Peron, L. De-lima-thomaz, C. Da-rosa, L. Thomé, R. et al., Modulation of dendritic cell by pathogen antigens: Where do we stand?, Immunol Lett, vol.196, pp.91-102, 2018.

S. Schülke, Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses, Front Immunol, vol.9, p.455, 2018.

X. Liang, L. Lu, Z. Chen, T. Vickers, H. Zhang et al., Administration of dendritic cells transduced with antisense oligodeoxyribonucleotides targeting CD80 or CD86 prolongs allograft survival, Transplantation, 2003.

X. Zheng, M. Suzuki, T. E. Ichim, X. Zhang, H. Sun et al., Treatment of autoimmune arthritis using RNA interference-modulated dendritic cells, J Immunol Baltim Md, vol.184, issue.11, pp.6457-64, 1950.

P. T. Coates, R. Krishnan, S. Kireta, J. Johnston, and G. R. Russ, Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice, Gene Ther, vol.8, issue.16, pp.1224-1257, 2001.

G. Penna, S. Amuchastegui, N. Giarratana, K. C. Daniel, M. Vulcano et al., 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells, J Immunol Baltim Md, vol.178, issue.1, pp.145-53, 1950.

K. Sato, N. Yamashita, and T. Matsuyama, Human peripheral blood monocyte-derived interleukin-10-induced semi-mature dendritic cells induce anergic CD4(+) and CD8(+) T cells via presentation of the internalized soluble antigen and cross-presentation of the phagocytosed necrotic cellular fragments, Cell Immunol, vol.215, issue.2, pp.186-94, 2002.

F. Geissmann, P. Revy, A. Regnault, Y. Lepelletier, M. Dy et al., TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells, J Immunol Baltim Md, vol.162, issue.8, pp.4567-75, 1950.

F. Geissmann, P. Revy, N. Brousse, Y. Lepelletier, C. Folli et al., Retinoids regulate survival and antigen presentation by immature dendritic cells, J Exp Med, vol.18, issue.4, pp.623-657, 2003.

S. Rutella, G. Bonanno, A. Procoli, A. Mariotti, D. G. De-ritis et al., Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features, Blood, vol.108, issue.1, pp.218-245, 2006.

A. Jiang, O. Bloom, S. Ono, W. Cui, J. Unternaehrer et al., Disruption of E-cadherinmediated adhesion induces a functionally distinct pathway of dendritic cell maturation, Immunity, vol.27, issue.4, pp.610-634, 2007.

E. Gonzalez-rey, A. Chorny, A. Fernandez-martin, D. Ganea, and M. Delgado, Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells, Blood, vol.107, issue.9, pp.3632-3640, 2006.

C. Baron, G. Raposo, S. M. Scholl, H. Bausinger, D. Tenza et al., Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes, J Cell Sci, vol.114, pp.999-1010, 2001.

M. Y. Gerner and M. F. Mescher, Antigen processing and MHC-II presentation by dermal and tumorinfiltrating dendritic cells, J Immunol Baltim Md, vol.182, issue.5, pp.2726-2763, 1950.

I. D. Iliev, E. Mileti, G. Matteoli, M. Chieppa, and M. Rescigno, Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning, Mucosal Immunol, vol.2, issue.4, pp.340-50, 2009.

T. L. Denning, B. A. Norris, O. Medina-contreras, S. Manicassamy, D. Geem et al., Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization, J Immunol Baltim Md, vol.187, issue.2, pp.733-780, 1950.

S. Karumuthil-melethil, N. Perez, R. Li, and C. Vasu, Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes, J Immunol Baltim Md, vol.181, issue.12, pp.8323-8357, 1950.

R. W. Depaolo, F. Tang, I. Kim, M. Han, N. Levin et al., Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis, Cell Host Microbe, vol.4, issue.4, pp.350-61, 2008.

M. H. Wenink, K. Santegoets, M. F. Roelofs, R. Huijbens, H. Koenen et al., The inhibitory Fc gamma IIb receptor dampens TLR4-mediated immune responses and is selectively up-regulated on dendritic cells from rheumatoid arthritis patients with quiescent disease, J Immunol Baltim Md, vol.183, issue.7, pp.4509-4529, 1950.

J. Gil-pulido and A. Zernecke, Antigen-presenting dendritic cells in atherosclerosis, Eur J Pharmacol, vol.816, pp.25-31, 2017.

S. Zelenay and C. Reis-e-sousa, Adaptive immunity after cell death, Trends Immunol, 2013.

S. Spranger, R. Bao, and T. F. Gajewski, Melanoma-intrinsic ?-catenin signalling prevents anti-tumour immunity, Nature, vol.523, issue.7559, pp.231-236, 2009.

M. Pasparakis and P. Vandenabeele, Necroptosis and its role in inflammation, Nature, vol.517, issue.7534, pp.311-331, 2015.

L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, and G. Kroemer, Immunogenic cell death in cancer and infectious disease, Nat Rev Immunol, vol.17, issue.2, pp.97-111, 2017.

K. Aoto, K. Mimura, H. Okayama, M. Saito, S. Chida et al., Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma, Oncol Rep, vol.39, issue.1, pp.151-160, 2018.

J. J. Engelhardt, B. Boldajipour, P. Beemiller, P. Pandurangi, C. Sorensen et al.,

, Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell, vol.21, pp.402-419, 2012.

P. Michea, F. Noël, E. Zakine, U. Czerwinska, P. Sirven et al., Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific, Nat Immunol, vol.19, issue.8, pp.885-97, 2018.

Y. Lavin, S. Kobayashi, A. Leader, E. Amir, N. Elefant et al., Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses, Cell, vol.169, issue.4, pp.750-765, 201704.

H. Salmon, J. Idoyaga, A. Rahman, M. Leboeuf, R. Remark et al., Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition, Immunity, vol.44, issue.4, pp.924-962, 2016.

A. Bachem, S. Güttler, E. Hartung, F. Ebstein, M. Schaefer et al., Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells, J Exp Med, vol.207, issue.6, pp.1273-81, 2010.

K. Crozat, R. Guiton, V. Contreras, V. Feuillet, C. Dutertre et al., The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells, J Exp Med, vol.207, issue.6, pp.1283-92, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

S. Spranger, D. Dai, B. Horton, T. F. Gajewski, E. Segura et al., Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells, J Exp Med, vol.31, issue.5, pp.1035-1082, 2013.

M. Y. Gerner, K. A. Casey, and M. F. Mescher, Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses, J Immunol Baltim Md, vol.181, issue.1, pp.155-64, 1950.

M. L. Broz, M. Binnewies, B. Boldajipour, A. E. Nelson, J. L. Pollack et al., Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity, Cancer Cell, vol.26, issue.5, pp.638-52, 2014.

S. Bedoui, W. R. Heath, and S. N. Mueller, CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity, Immunol Rev, vol.272, issue.1, pp.52-64, 2016.

H. Kim and H. Cantor, CD4 T-cell subsets and tumor immunity: the helpful and the not-sohelpful, Cancer Immunol Res, vol.2, issue.2, pp.91-99, 2014.

M. B. Fuertes, A. K. Kacha, J. Kline, S. Woo, D. M. Kranz et al., Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells, J Exp Med, vol.208, issue.10, pp.2005-2021, 2011.

M. S. Diamond, M. Kinder, H. Matsushita, M. Mashayekhi, G. P. Dunn et al., Type I interferon is selectively required by dendritic cells for immune rejection of tumors, J Exp Med, vol.208, issue.10, pp.1989-2003, 2011.

E. W. Roberts, M. L. Broz, M. Binnewies, M. B. Headley, A. E. Nelson et al., Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma, Cancer Cell, vol.30, issue.2, pp.324-360, 201608.

M. Dieu-nosjean, A. M. Danel, C. Heudes, D. Wislez, M. Poulot et al., Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures, J Clin Oncol Off J Am Soc Clin Oncol, vol.26, issue.27, pp.4410-4417, 2008.

X. Zhang, H. Huang, J. Yuan, D. Sun, W. Hou et al., CD4-8-dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity, J Immunol Baltim Md, vol.175, issue.5, pp.2931-2938, 1950.

F. Ghiringhelli, P. E. Puig, S. Roux, A. Parcellier, E. Schmitt et al., Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J Exp Med, vol.202, issue.7, pp.919-948, 2005.

I. E. Dumitriu, D. R. Dunbar, S. E. Howie, T. Sethi, and C. D. Gregory, Human dendritic cells produce TGFbeta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells, J Immunol Baltim Md, vol.182, issue.5, pp.2795-807, 1950.

V. C. Liu, L. Y. Wong, T. Jang, A. H. Shah, I. Park et al., Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGFbeta, J Immunol Baltim Md, vol.178, issue.5, pp.2883-92, 1950.

Y. Chen, M. K. Ling, G. S. Chen, Y. Sun, B. Cheng et al., A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10, J Immunol Baltim Md, vol.179, issue.9, pp.6009-6024, 1950.

D. H. Munn, M. D. Sharma, and A. L. Mellor, Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells, J Immunol Baltim Md, vol.172, issue.7, pp.4100-4110, 1950.

F. Fallarino, C. Asselin-paturel, C. Vacca, R. Bianchi, S. Gizzi et al., Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement, J Immunol Baltim Md, vol.173, issue.6, pp.3748-54, 1950.

D. B. Flies, T. Higuchi, J. C. Harris, V. Jha, P. A. Gimotty et al., Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer, Oncoimmunology, vol.5, issue.8, p.1185583, 2016.

H. Kuipers, F. Muskens, M. Willart, D. Hijdra, F. Van-assema et al., Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation, Eur J Immunol, vol.36, issue.9, pp.2472-82, 2006.

J. Krempski, L. Karyampudi, M. D. Behrens, C. L. Erskine, L. Hartmann et al., Tumorinfiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer, J Immunol Baltim Md, vol.186, issue.12, pp.6905-6918, 1950.

C. Oderup, L. Cederbom, A. Makowska, C. M. Cilio, and F. Ivars, Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression, Immunology, vol.118, issue.2, pp.240-249, 2006.

B. Ruffell, D. Chang-strachan, V. Chan, A. Rosenbusch, C. Ho et al.,

. Blocks, Cell-Dependent Responses to Chemotherapy by Suppressing IL-12 Expression in Intratumoral Dendritic Cells, Cancer Cell, vol.26, issue.5, pp.623-660, 2014.

M. Reis, E. Mavin, L. Nicholson, K. Green, A. M. Dickinson et al., Mesenchymal Stromal CellDerived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function, Front Immunol, vol.9, p.2538, 2018.

P. Kali?ski, C. M. Hilkens, A. Snijders, F. G. Snijdewint, and M. L. Kapsenberg, IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells, J Immunol Baltim Md, vol.159, issue.1, pp.28-35, 1950.

D. I. Gabrilovich, H. L. Chen, K. R. Girgis, H. T. Cunningham, G. M. Meny et al., Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells, Nat Med, vol.2, issue.10, pp.1096-103, 1996.

A. S. Lo, P. Gorak-stolinska, V. Bachy, M. A. Ibrahim, D. M. Kemeny et al., Modulation of dendritic cell differentiation by colony-stimulating factor-1: role of phosphatidylinositol 3'-kinase and delayed caspase activation, J Leukoc Biol, vol.82, issue.6, pp.1446-54, 2007.

Z. Zhou, W. Li, Y. Song, L. Wang, K. Zhang et al., Growth differentiation factor-15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response, PloS One, vol.8, issue.11, p.78618, 2013.

S. A. Demoulin, J. Somja, A. Duray, S. Guénin, P. Roncarati et al., Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion, Oncoimmunology, vol.4, issue.6, p.1008334, 2015.

E. Gottfried, L. A. Kunz-schughart, S. Ebner, W. Mueller-klieser, S. Hoves et al., Tumor-derived lactic acid modulates dendritic cell activation and antigen expression, Blood, vol.107, issue.5, pp.2013-2034, 2006.

J. R. Cubillos-ruiz, S. E. Bettigole, and L. H. Glimcher, Molecular Pathways: Immunosuppressive Roles of IRE1?-XBP1 Signaling in Dendritic Cells of the Tumor Microenvironment, Clin Cancer Res Off J Am Assoc Cancer Res, vol.22, issue.9, pp.2121-2127, 2016.

S. L. Hwang, N. Chung, J. Chan, and C. Lin, (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines, Cell Res, vol.2, issue.3, pp.167-75, 2005.

K. Youlin, H. Weiyang, L. Simin, and G. Xin, Prostaglandin E2 Inhibits Prostate Cancer Progression by Countervailing Tumor Microenvironment-Induced Impairment of Dendritic Cell Migration through LXR?/CCR7 Pathway, J Immunol Res, p.5808962, 2018.

J. Constantino, C. Gomes, A. Falcão, B. M. Neves, and M. T. Cruz, Dendritic cell-based immunotherapy: a basic review and recent advances, Immunol Res, vol.65, issue.4, pp.798-810, 2017.

P. W. Kantoff, C. S. Higano, N. D. Shore, E. R. Berger, E. J. Small et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer, N Engl J Med, vol.363, issue.5, pp.411-433, 2010.

M. Mohammadzadeh, M. Shirmohammadi, M. Ghojazadeh, L. Nikniaz, M. Raeisi et al.,

, Dendritic cells pulsed with prostate-specific membrane antigen in metastatic castration-resistant prostate cancer patients: a systematic review and meta-analysis. Prostate Int, vol.6, pp.119-144, 2018.

J. Tel, E. Aarntzen, T. Baba, G. Schreibelt, B. M. Schulte et al., Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients, Cancer Res, vol.73, issue.3, pp.1063-75, 2013.

G. Schreibelt, K. F. Bol, H. Westdorp, F. Wimmers, E. Aarntzen et al., Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells, Clin Cancer Res Off J Am Assoc Cancer Res, vol.22, issue.9, pp.2155-66, 201601.

L. Deng, H. Liang, M. Xu, X. Yang, B. Burnette et al., STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors, Immunity, vol.41, issue.5, pp.843-52, 2014.

S. Woo, M. B. Fuertes, L. Corrales, S. Spranger, M. J. Furdyna et al., STINGdependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors, Immunity, vol.41, issue.5, pp.830-872, 2014.

L. Corrales, S. M. Mcwhirter, T. W. Dubensky, and T. F. Gajewski, The host STING pathway at the interface of cancer and immunity, J Clin Invest, vol.126, issue.7, pp.2404-2415, 201601.

N. I. Ho, H. In-'t-veld, L. Raaijmakers, T. K. Adema, and G. J. , Adjuvants Enhancing CrossPresentation by Dendritic Cells: The Key to More Effective Vaccines?, Front Immunol, vol.9, p.2874, 2018.

S. Cerboni, J. N. Gentili, M. Gehrmann, U. Conrad, C. Stolzenberg et al., Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes, J Exp Med, vol.214, issue.6, pp.1769-85, 201705.

L. Hammerich, T. U. Marron, R. Upadhyay, J. Svensson-arvelund, M. Dhainaut et al., Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination, Nat Med, vol.25, issue.5, pp.814-838, 2019.

A. N. Desch, S. L. Gibbings, E. T. Clambey, W. J. Janssen, J. E. Slansky et al., Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction, Nat Commun, vol.5, p.4674, 2014.

Y. Kawarada, R. Ganss, N. Garbi, T. Sacher, B. Arnold et al., NK-and CD8(+) T cellmediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides, J Immunol Baltim Md, vol.167, issue.9, pp.5247-53, 1950.

K. Heckelsmiller, K. Rall, S. Beck, A. Schlamp, J. Seiderer et al., Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model, J Immunol Baltim Md, vol.169, issue.7, pp.3892-3901, 1950.

S. Wilgenhof, J. Corthals, C. Heirman, N. Van-baren, S. Lucas et al., Phase II Study of Autologous Monocyte-Derived mRNA Electroporated Dendritic Cells (TriMixDC-MEL) Plus Ipilimumab in Patients With Pretreated Advanced Melanoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.34, issue.12, pp.1330-1338, 2016.

Y. Ma, S. Adjemian, S. R. Mattarollo, T. Yamazaki, L. Aymeric et al., Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells, Immunity, vol.38, issue.4, pp.729-770, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02047416

A. Gupta, H. C. Probst, V. Vuong, A. Landshammer, S. Muth et al., Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation, J Immunol Baltim Md, vol.15, issue.2, pp.558-66, 1950.

S. Bockel, B. Durand, and E. Deutsch, Combining radiation therapy and cancer immune therapies: From preclinical findings to clinical applications, Cancer Radiother J Soc Francaise Radiother Oncol, vol.22, issue.6-7, pp.567-80, 2018.

A. Levy, G. Nigro, P. J. Sansonetti, and E. Deutsch, Candidate immune biomarkers for radioimmunotherapy, Biochim Biophys Acta Rev Cancer, vol.1868, issue.1, pp.58-68, 2017.

M. Cao, Z. Chen, and Y. Xing, Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction, Cell Biol Int, vol.28, issue.3, pp.223-231, 2004.

M. Grandclaudon, M. Perrot-dockès, C. Trichot, O. Mostafa-abouzid, W. Abou-jaoudé et al., A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02316607

S. G. Alculumbre, V. Saint-andré, D. Domizio, J. Vargas, P. Sirven et al., Diversification of human plasmacytoid predendritic cells in response to a single stimulus, Nat Immunol, vol.19, issue.1, pp.63-75, 2018.

M. Taghavi, E. Mortaz, A. Khosravi, G. Vahedi, G. Folkerts et al., Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-? expression in mice, J Inflamm Lond Engl, vol.15, p.5, 2018.

M. Hasegawa, M. Fujimoto, T. Matsushita, Y. Hamaguchi, and K. Takehara, Augmented ICOS expression in patients with early diffuse cutaneous systemic sclerosis, Rheumatol Oxf Engl, vol.52, issue.2, pp.242-51, 2013.

O. Marinelli, M. Nabissi, M. B. Morelli, L. Torquati, C. Amantini et al., ICOS-L as a Potential Therapeutic Target for Cancer Immunotherapy, Curr Protein Pept Sci, vol.19, issue.11, pp.1107-1120, 2018.

F. Amatore, L. Gorvel, and D. Olive, Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy, Expert Opin Ther Targets, vol.22, issue.4, pp.343-51, 2018.

T. Sato, T. Kanai, M. Watanabe, A. Sakuraba, S. Okamoto et al., Hyperexpression of inducible costimulator and its contribution on lamina propria T cells in inflammatory bowel disease, Gastroenterology, vol.126, issue.3, pp.829-868, 2004.

X. Fan, S. A. Quezada, M. A. Sepulveda, P. Sharma, and J. P. Allison, Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy, J Exp Med, vol.211, issue.4, pp.715-740, 2014.

N. Cheng, R. Watkins-schulz, R. D. Junkins, C. N. David, B. M. Johnson et al., A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer, JCI Insight, vol.3, issue.22, 2018.

X. Yang, Y. Chu, Y. Wang, R. Zhang, and S. Xiong, Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity, J Leukoc Biol, vol.80, issue.6, pp.1434-1478, 2006.

A. V. Gorbachev, H. Kobayashi, D. Kudo, C. S. Tannenbaum, J. H. Finke et al., CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cellmediated suppression of cutaneous tumors, J Immunol Baltim Md, vol.178, issue.4, pp.2278-86, 1950.

R. Cristescu, R. Mogg, M. Ayers, A. Albright, E. Murphy et al., Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy, Science, vol.12, issue.6411, 2018.

J. Verweij, H. R. Hendriks, and H. Zwierzina, Cancer Drug Development Forum. Innovation in oncology clinical trial design, Cancer Treat Rev, vol.74, pp.15-20, 2019.

P. B. Burns, R. J. Rohrich, and K. C. Chung, The levels of evidence and their role in evidence-based medicine, Plast Reconstr Surg, vol.128, issue.1, pp.305-315, 2011.

M. B. Amin, S. Edge, F. Greene, D. R. Byrd, R. K. Brookland et al., AJCC cancer staging manual, 2017.

M. J. Duffy, P. M. Mcgowan, N. Harbeck, C. Thomssen, and M. Schmitt, uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies, Breast Cancer Res BCR, vol.16, issue.4, p.428, 2014.

M. P. Look, W. Van-putten, M. J. Duffy, N. Harbeck, I. J. Christensen et al., Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients, J Natl Cancer Inst, vol.94, issue.2, pp.116-144, 2002.

M. Gontarz, G. Wyszy?ska-pawelec, J. Zapa?a, J. Czopek, A. Lazar et al.,

, Immunohistochemical predictors in squamous cell carcinoma of the tongue and floor of the mouth, Head Neck, vol.38, issue.1, pp.747-753, 2016.

C. Chen, C. Chien, C. Huang, C. Hwang, H. Chuang et al., Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity, Oncogene, vol.30, issue.30, pp.2723-2760, 2009.

J. M. Mehnert, A. M. Monjazeb, J. Beerthuijzen, D. Collyar, L. Rubinstein et al., The Challenge for Development of Valuable Immuno-oncology Biomarkers, Clin Cancer Res Off J Am Assoc Cancer Res, vol.23, issue.17, pp.4970-4979, 201701.

D. Xu and G. Peltz, Can Humanized Mice Predict Drug "Behavior" in Humans?, Annu Rev Pharmacol Toxicol, vol.56, pp.323-361, 2016.

P. De-la-rochere, S. Guil-luna, D. Decaudin, G. Azar, S. S. Sidhu et al., Humanized Mice for the Study of Immuno-Oncology, Trends Immunol, vol.39, issue.9, pp.748-63, 2018.

S. M. Hadad, P. Coates, L. B. Jordan, R. Dowling, M. C. Chang et al., Open-label, non-randomized, exploratory pre-operative window-of-opportunity trial to investigate the pharmacokinetics and pharmacodynamics of the smac mimetic Debio 1143 in patients with resectable squamous cell carcinoma of the head and neck, Clinical Research (Excluding Clinical Trials, vol.150, pp.149-55, 2015.

, American Association for Cancer Research, 2019.

, , pp.5001-5001

J. Stachura, M. Wachowska, W. W. Kilarski, E. Güç, J. Golab et al., The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development, Oncoimmunology, vol.5, issue.7, p.1182278, 2016.

M. F. Fransen, M. Schoonderwoerd, P. Knopf, M. G. Camps, L. J. Hawinkels et al.,

, Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy, 2018.

J. F. Teichgraeber and A. A. Clairmont, The incidence of occult metastases for cancer of the oral tongue and floor of the mouth: treatment rationale, Head Neck Surg, vol.7, issue.1, pp.15-21, 1984.

R. De-bree, R. P. Takes, J. A. Castelijns, J. E. Medina, S. J. Stoeckli et al., Advances in diagnostic modalities to detect occult lymph node metastases in head and neck squamous cell carcinoma. Head Neck, vol.37, pp.1829-1868, 2015.

, I am grateful to the people who helped me become a surgical oncologist and a PhD candidate before 2016, and in particular: Cécile Badoual, Eric Tartour my master degree directors from the U970 unit, PARCC

, Marion Mandavit my master degree pair (one day we will decipher CD32b+ myeloid cells, I promise!); the surgeons who trained, trusted and encouraged me

, Diving from surgery to immunology was definitely a choice of getting out of the comfort zone with the objective of serving translational research and eventually our patients' future and our future patients. This personal choice would not have been possible without the warm support of my (big) family, my wonderful kids Eve and Alexis, my Love, my parents who offered me courage and self-reliance, the Sanders -my English family

, Future? It's all here: the next generation dual-cell therapy producing heart-shaped cancercell killing mediators!