G. Moore, Moore's law, Electronics Magazine, vol.38, issue.8, p.114, 1965.

M. M. Waldrop, The chips are down for Moore's law, Nat. News, vol.530, p.144, 2016.

H. Casademont, L. Fillaud, X. Lefèvre, B. Jousselme, and V. Derycke, Electrografted Fluorinated Organic Ultrathin Film as Efficient Gate Dielectric in MoS2 Transistors, J. Phys. Chem. C, vol.120, pp.9506-9510, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01332017

Y. Lin, C. H. Bennett, T. Cabaret, D. Vodenicarevic, D. Chabi et al., Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses, Sci. Rep, vol.6, p.31932, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01361933

B. Mann and H. Kuhn, Tunneling through Fatty Acid Salt Monolayers, J. Appl. Phys, vol.42, pp.4398-4405, 1971.

A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett, vol.29, pp.277-283, 1974.

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x, J. Chem. Soc. Chem. Commun, vol.0, issue.16, pp.578-580, 1977.

E. E. Polymeropoulos and J. Sagiv, Electrical conduction through adsorbed monolayers, J. Chem. Phys, vol.69, pp.1836-1847, 1978.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks et al., Electroluminescence in conjugated polymers, vol.397, p.121, 1999.

M. A. Baldo, D. F. O'brien, Y. You, A. Shoustikov, S. Sibley et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, vol.395, p.151, 1998.

L. S. Roman, M. Berggren, and O. Inganäs, Polymer diodes with high rectification, Appl. Phys. Lett, vol.75, pp.3557-3559, 1999.

S. Steudel, K. Myny, V. Arkhipov, C. Deibel, S. D. Vusser et al., 50 MHz rectifier based on an organic diode, Nat. Mater, vol.4, p.597, 2005.

A. Pierre, I. Deckman, P. B. Lechêne, and A. C. Arias, High Detectivity AllPrinted Organic Photodiodes, Adv. Mater, vol.27, issue.41, pp.6411-6417, 2015.

Y. Noda, T. Yamada, K. Kobayashi, R. Kumai, S. Horiuchi et al., Few-Volt Operation of Printed Organic Ferroelectric Capacitor, Adv. Mater, vol.27, issue.41, pp.6475-6481, 2015.

L. Qi, L. Petersson, and T. Liu, Review of Recent Activities on Dielectric Films for Capacitor Applications, Journal of International Council on Electrical Engineering, vol.4, pp.1-6, 2014.

B. S. Ong, Y. Wu, P. Liu, and S. Gardner, High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors, J. Am. Chem. Soc, vol.126, pp.3378-3379, 2004.

L. A. Agapito, S. Alkis, J. L. Krause, and H. Cheng, Atomistic Origins of Molecular Memristors, J. Phys. Chem. C, vol.113, pp.20713-20718, 2009.

J. Lee, H. Chang, S. Kim, G. S. Bang, and H. Lee, Molecular Monolayer Nonvolatile Memory with Tunable Molecules, Angew. Chem. Int. Ed, vol.48, issue.45, pp.8501-8504, 2009.

A. Tsumura, H. Koezuka, and T. Ando, Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett, vol.49, pp.1210-1212, 1986.

C. D. Dimitrakopoulos and P. R. Malenfant, Organic Thin Film Transistors for Large Area Electronics, Adv. Mater, vol.14, issue.2, pp.99-117, 2002.

P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, Carbon nanotube electronics, Proceedings of the IEEE, vol.91, pp.1772-1784, 2003.

C. Rutherglen, D. Jain, and P. Burke, Nanotube electronics for radiofrequency applications, Nat. Nanotechnol, vol.4, pp.811-819, 2009.

F. Schwierz, Graphene transistors, Nat. Nanotechnol, vol.5, pp.487-496, 2010.

S. J. Tans, A. R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, pp.49-52, 1998.

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single-and multiwall carbon nanotube field-effect transistors, Appl. Phys. Lett, vol.73, pp.2447-2449, 1998.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility, ACS Nano, vol.8, pp.4033-4041, 2014.

Y. Yoon, K. Ganapathi, and S. Salahuddin, How Good Can Monolayer MoS2 Transistors Be?, Nano Lett, vol.11, pp.3768-3773, 2011.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, vol.409, p.66, 2001.

Y. Cui and C. M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, vol.291, pp.851-853, 2001.

F. Ebisawa, T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface, J. Appl. Phys, vol.54, pp.3255-3259, 1983.

K. Kudo, M. Yamashina, and T. Moriizumi, Field Effect Measurement of Organic Dye Films, Jpn. J. Appl. Phys, vol.23, pp.130-130, 1984.

G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, A field-effect transistor based on conjugated alpha-sexithienyl, Solid State Commun, vol.72, pp.381-384, 1989.

Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya et al., High mobility of pentacene field-effect transistors with polyimide gate dielectric layers, Appl. Phys. Lett, vol.84, pp.3789-3791, 2004.

W. Wang, D. Ma, S. Pan, and Y. Yang, Hysteresis mechanism in low-voltage and high mobility pentacene thin-film transistors with polyvinyl alcohol dielectric, Appl. Phys. Lett, vol.101, p.33303, 2012.

O. D. Jurchescu, M. Popinciuc, B. J. Van-wees, and T. T. Palstra, InterfaceControlled, High-Mobility Organic Transistors, Adv. Mater, vol.19, issue.5, pp.688-692, 2007.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda et al., High-mobility double-gate organic singlecrystal transistors with organic crystal gate insulators, Appl. Phys. Lett, vol.90, p.182117, 2007.

R. J. Chesterfield, J. C. Mckeen, C. R. Newman, P. C. Ewbank, D. A. Da-silva-filho et al., Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature, J. Phys. Chem. B, vol.108, pp.19281-19292, 2004.

R. Schmidt, J. H. Oh, Y. Sun, M. Deppisch, A. Krause et al., HighPerformance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors, J. Am. Chem. Soc, vol.131, pp.6215-6228, 2009.

M. Ichikawa, T. Kato, T. Uchino, T. Tsuzuki, M. Inoue et al., Thin-film and single-crystal transistors based on a trifluoromethyl-substituted alternating (thiophene/phenylene)-co-oligomer, Org. Electron, vol.11, pp.1549-1554, 2010.

F. Zhang, Y. Hu, T. Schuettfort, C. Di, X. Gao et al., Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed NChannel Organic Thin-Film Transistors with Mobility of up to 3.50 cm2 V-1 s-1, J. Am. Chem. Soc, vol.135, pp.2338-2349, 2013.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, p.603, 1993.

D. S. Bethune, C. H. Kiang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomiclayer walls, Nature, vol.363, p.605, 1993.

T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Lett, vol.4, pp.35-39, 2004.

S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar et al., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol, vol.2, pp.230-236, 2007.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669, 2004.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Lett, vol.11, pp.2396-2399, 2011.

R. Fivaz and E. Mooser, Mobility of Charge Carriers in Semiconducting Layer Structures, Phys. Rev, vol.163, pp.743-755, 1967.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol, vol.6, pp.147-150, 2011.

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature, vol.499, pp.419-425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

H. Wang, L. Yu, Y. Lee, Y. Shi, A. Hsu et al., Integrated Circuits Based on Bilayer MoS2 Transistors, Nano Lett, vol.12, pp.4674-4680, 2012.

M. S. Fuhrer and J. Hone, Measurement of mobility in dual-gated MoS 2 transistors, Nat. Nanotechnol, vol.8, pp.146-147, 2013.

B. Radisavljevic and A. Kis, Reply to 'Measurement of mobility in dual-gated MoS 2 transistors, Nat. Nanotechnol, vol.8, pp.147-148, 2013.

J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films, Appl. Phys. Lett, vol.76, pp.1941-1943, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00158477

J. Collet and D. Vuillaume, Nano-field effect transistor with an organic selfassembled monolayer as gate insulator, Appl. Phys. Lett, vol.73, pp.2681-2683, 1998.

Y. D. Park, D. H. Kim, Y. Jang, M. Hwang, J. A. Lim et al., Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric, Appl. Phys. Lett, vol.87, p.243509, 2005.

U. Zschieschang, F. Ante, M. Schlörholz, M. Schmidt, K. Kern et al., Mixed Self-Assembled Monolayer Gate Dielectrics for Continuous Threshold Voltage Control in Organic Transistors and Circuits, Adv. Mater, vol.22, issue.40, pp.4489-4493, 2010.

S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda et al., Control of carrier density by self-assembled monolayers in organic field-effect transistors, Nat. Mater, vol.3, p.317, 2004.

K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach et al., Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator, J. Appl. Phys, vol.96, pp.6431-6438, 2004.

U. Kraft, M. Sejfi?, M. J. Kang, K. Takimiya, T. Zaki et al., Flexible Low-Voltage Organic Complementary Circuits: Finding the Optimum Combination of Semiconductors and Monolayer Gate Dielectrics, Adv. Mater, vol.27, issue.2, pp.207-214, 2015.

M. Yoon, H. Yan, A. Facchetti, and T. J. Marks, Low-Voltage Organic FieldEffect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics, J. Am. Chem. Soc, vol.127, pp.10388-10395, 2005.

K. Everaerts, J. D. Emery, D. Jariwala, H. J. Karmel, V. K. Sangwan et al., Ambient-Processable High Capacitance Hafnia-Organic SelfAssembled Nanodielectrics, J. Am. Chem. Soc, vol.135, pp.8926-8939, 2013.

Y. Baek, S. Lim, E. J. Yoo, L. H. Kim, H. Kim et al., Fluorinated Polyimide Gate Dielectrics for the Advancing the Electrical Stability of Organic Field-Effect Transistors, ACS Appl. Mater. Interfaces, vol.6, pp.15209-15216, 2014.

M. E. Roberts, N. Queraltó, S. C. Mannsfeld, B. N. Reinecke, W. Knoll et al., Cross-Linked Polymer Gate Dielectric Films for Low-Voltage Organic Transistors, Chem. Mater, vol.21, pp.2292-2299, 2009.

J. Li, J. Du, J. Xu, H. L. Chan, and F. Yan, The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors, Appl. Phys. Lett, vol.100, p.33301, 2012.

J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, Ion Gel Gated Polymer Thin-Film Transistors, J. Am. Chem. Soc, vol.129, pp.4532-4533, 2007.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.453, pp.80-83, 2008.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Lett, vol.10, pp.1297-1301, 2010.

J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nat. Nanotechnol, vol.8, pp.13-24, 2013.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories -Nanoionic Mechanisms, Prospects, and Challenges, Adv. Mater, vol.21, pp.2632-2663, 2009.

D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt et al., Emerging memories: Resistive switching mechanisms and current status, Rep. Prog. Phys, vol.75, p.76502, 2012.

F. , Switching phenomena in titanium oxide thin films, Solid-State Electron, vol.11, pp.535-541, 1968.

D. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee et al., Atomic structure of conducting nanofilaments in TiO 2 resistive switching memory, Nat. Nanotechnol, vol.5, pp.148-153, 2010.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Mechanism for bistability in organic memory elements, Appl. Phys. Lett, vol.84, pp.607-609, 2004.

M. Carlotti, S. Soni, S. Kumar, Y. Ai, E. Sauter et al., Two-Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions, Angew. Chem. Int. Ed, vol.57, issue.48, pp.15681-15685, 2018.

K. Seo, A. V. Konchenko, J. Lee, G. S. Bang, and H. Lee, Molecular Conductance Switch-On of Single Ruthenium Complex Molecules, J. Am. Chem. Soc, vol.130, pp.2553-2559, 2008.

T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari et al., Robust spin crossover and memristance across a single molecule, Nat. Commun, vol.3, p.938, 2012.

B. Pradhan and S. Das, Role of New Bis(2,2 -bipyridyl)(triazolopyridyl)ruthenium(II) Complex in the Organic Bistable Memory Application, Chem. Mater, vol.20, pp.1209-1211, 2008.

B. K. Barman, M. M. Guru, G. K. Panda, B. Maji, and R. K. Vijayaraghavan, Pyrene-affixed triazoles: A new class of molecular semiconductors for robust, non-volatile resistive memory devices, Chem. Commun, vol.55, issue.32, pp.4643-4646, 2019.

H. Yan, A. J. Bergren, R. Mccreery, M. L. Rocca, P. Martin et al., Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.5326-5330, 2013.

A. J. Bergren, K. D. Harris, F. Deng, and R. L. Mccreery, Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: Critical analysis of metal oxides and filaments, J. Phys.: Condens. Matter, vol.20, p.374117, 2008.

T. Fluteau, C. Bessis, C. Barraud, M. L. Della-rocca, P. Martin et al., Tuning the thickness of electrochemically grafted layers in large area molecular junctions, J. Appl. Phys, vol.116, p.114509, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01822392

A. Bayat, J. Lacroix, and R. L. Mccreery, Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions, J. Am. Chem. Soc, vol.138, pp.12287-12296, 2016.

V. Nguyen, D. Schaming, D. L. Tran, and J. Lacroix, Ordered Nanoporous Thin Films by Nanosphere Lithography and Diazonium Electroreduction: Simple Elaboration of Ultra-Micro-Electrode Arrays, ChemElectroChem, vol.3, issue.12, pp.2264-2269, 2016.

Q. V. Nguyen, P. Martin, D. Frath, M. L. Della-rocca, F. Lafolet et al., Highly Efficient Long-Range Electron Transport in a Viologen-Based Molecular Junction, J. Am. Chem. Soc, vol.140, pp.10131-10134, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01946033

M. Supur, C. Van-dyck, A. J. Bergren, and R. L. Mccreery, Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions, ACS Appl. Mater. Interfaces, vol.10, pp.6090-6095, 2018.

D. Ro?ca, J. A. Wright, and M. Bochmann, An element through the looking glass: Exploring the Au-C, Au-H and Au-O energy landscape, Dalton Trans, vol.44, pp.20785-20807, 2015.

B. Barbier, J. Pinson, G. Desarmot, and M. Sanchez, Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon-Epoxy Composites, J. Electrochem. Soc, vol.137, pp.1757-1764, 1990.

G. Herlem, C. Goux, B. Fahys, F. Dominati, A. M. Gonçalves et al., Surface modification of platinum and gold electrodes by anodic oxidation of pure ethylenediamine, J. Electroanal. Chem, vol.435, pp.259-265, 1997.

C. P. Andrieux, F. Gonzalez, and J. Savéant, Derivatization of Carbon Surfaces by Anodic Oxidation of Arylacetates. Electrochemical Manipulation of the Grafted Films, J. Am. Chem. Soc, vol.119, pp.4292-4300, 1997.

P. D. Astudillo, A. Galano, and F. J. González, Radical grafting of carbon surfaces with alkylic groups by mediated oxidation of carboxylates, J. Electroanal. Chem, vol.610, pp.137-146, 2007.

C. Jérôme, N. Willet, R. Jérôme, and A. Duwez, Electrografting of Polymers onto AFM Tips: A Novel Approach for Chemical Force Microscopy and Force Spectroscopy, Chem. Phys. Chem, vol.5, issue.1, pp.147-149, 2004.

G. Lecayon, Y. Bouizem, C. L. Gressus, C. Reynaud, C. Boiziau et al., Grafting and growing mechanisms of polymerised organic films onto metallic surfaces, Chem. Phys. Lett, vol.91, pp.506-510, 1982.

S. Leroy, C. Boiziau, J. Perreau, C. Reynaud, G. Zalczer et al., Molecular structure of an electropolymerized polyacrylonitrile film and its pyroylzed derivatives, J. Mol. Struct, vol.128, pp.269-281, 1985.

S. Baranton and D. Bélanger, Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations, J. Phys. Chem. B, vol.109, pp.24401-24410, 2005.

S. Cuenot, S. Gabriel, C. Jérôme, R. Jérôme, and A. Duwez, Are Electrografted Polymers Chemisorbed or Physisorbed onto their Substrate?, Macromol. Chem. Phys, vol.206, pp.1216-1220, 2005.

C. Combellas, F. Kanoufi, J. Pinson, and F. I. Podvorica, Sterically Hindered Diazonium Salts for the Grafting of a Monolayer on Metals, J. Am. Chem. Soc, vol.130, pp.8576-8577, 2008.

E. Ahlberg, B. Helgee, and V. D. Parker, The reaction of aryl radicals with metallic electrodes, Acta Chem. Scand. B, vol.34, pp.181-186, 1980.

D. Bélanger and J. Pinson, Electrografting: A powerful method for surface modification, Chem. Soc. Rev, vol.40, issue.7, p.3995, 2011.

J. Charlier, S. Ameur, J. P. Bourgoin, C. Bureau, and S. Palacin, Mask-free Localized Grafting of Organic Polymers at the Micrometer or Submicrometer Scale on Composite Conductors or Semiconductor Substrates, Adv. Funct. Mater, vol.14, pp.125-132, 2004.

C. Combellas, F. Kanoufi, and S. Nunige, Surface Modification of Halogenated Polymers. 10. Redox Catalysis Induction of the Polymerization of Vinylic Monomers. Application to the Localized Graft Copolymerization of Poly(tetrafluoroethylene) Surfaces by Vinylic Monomers, Chem. Mater, vol.19, pp.3830-3839, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00711139

R. Pazo-llorente, C. Bravo-diaz, and E. Gonzalez-romero, pH Effects on Ethanolysis of Some Arenediazonium Ions: Evidence for Homolytic Dediazoniation Proceeding through Formation of Transient Diazo Ethers, European J. Org. Chem, vol.2004, issue.15, pp.3221-3226, 2004.

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface Modification of Conducting Substrates. Existence of Azo Bonds in the Structure of Organic Layers Obtained from Diazonium Salts, Chem. Mater, vol.19, pp.4570-4575, 2007.

L. Lee, P. A. Brooksby, P. Hapiot, and A. J. Downard, Electrografting of 4-Nitrobenzenediazonium Ion at Carbon Electrodes: Catalyzed and Uncatalyzed Reduction Processes, Langmuir, vol.32, pp.468-476, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263049

A. Benedetto, M. Balog, P. Viel, F. L. Derf, M. Sallé et al., Electroreduction of diazonium salts on gold: Why do we observe multi-peaks?, Electrochim. Acta, vol.53, pp.7117-7122, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056555

K. K. Cline, L. Baxter, D. Lockwood, R. Saylor, and A. Stalzer, Nonaqueous synthesis and reduction of diazonium ions (without isolation) to modify glassy carbon electrodes using mild electrografting conditions, J. Electroanal. Chem, vol.633, pp.283-290, 2009.

C. Cannizzo, M. Wagner, J. Jasmin, C. Vautrin-ul, D. Doizi et al., Calix[6]arene mono-diazonium salt synthesis and covalent im-REFERENCES mobilization onto glassy carbon electrodes, Tetrahedron Lett, vol.55, pp.4315-4318, 2014.

L. M. Santos, J. Ghilane, C. Fave, P. Lacaze, H. Randriamahazaka et al., Electrografting Polyaniline on Carbon through the Electroreduction of Diazonium Salts and the Electrochemical Polymerization of Aniline, J. Phys. Chem. C, vol.112, pp.16103-16109, 2008.

A. C. Cruickshank, E. S. Tan, P. A. Brooksby, and A. J. Downard, Are redox probes a useful indicator of film stability? An electrochemical, AFM and XPS study of electrografted amine films on carbon, Electrochem. Commun, vol.9, pp.1456-1462, 2007.

T. Menanteau, E. Levillain, and T. Breton, Electrografting via Diazonium Chemistry: From Multilayer to Monolayer Using Radical Scavenger, Chem. Mater, vol.25, pp.2905-2909, 2013.

S. Baranton and D. Bélanger, In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface, Electrochim. Acta, vol.53, pp.6961-6967, 2008.

A. Adenier, N. Barré, E. Cabet-deliry, A. Chaussé, S. Griveau et al., Study of the spontaneous formation of organic layers on carbon and metal surfaces from diazonium salts, Surface Science, vol.600, pp.4801-4812, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00158280

V. Mévellec, S. Roussel, L. Tessier, J. Chancolon, M. Mayne-l'hermite et al., Grafting Polymers on Surfaces: A New Powerful and Versatile Diazonium Salt-Based One-Step Process in Aqueous Media, Chem. Mater, vol.19, pp.6323-6330, 2007.

A. Mesnage, S. Esnouf, P. Jégou, G. Deniau, and S. Palacin, Understanding the Redox-Induced Polymer Grafting Process: A Dual Surface-Solution Analysis, Chem. Mater, vol.22, pp.6229-6239, 2010.
URL : https://hal.archives-ouvertes.fr/cea-01022788

M. Ceccato, A. Bousquet, M. Hinge, S. U. Pedersen, and K. Daasbjerg, Using a Mediating Effect in the Electroreduction of Aryldiazonium Salts To Prepare Conducting Organic Films of High Thickness, Chem. Mater, vol.23, pp.1551-1557, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01557305

H. Randriamahazaka and J. Ghilane, Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis, Electroanalysis, vol.28, issue.1, pp.13-26, 2016.

X. Lefèvre, F. Moggia, O. Segut, Y. Lin, Y. Ksari et al., Influence of Molecular Organization on the Electrical Characteristics of ?-Conjugated Self-Assembled Monolayers, J. Phys. Chem. C, vol.119, pp.5703-5713, 2015.

C. Celle, C. Suspène, J. Simonato, S. Lenfant, M. Ternisien et al., Self-assembled monolayers for electrode fabrication and efficient threshold voltage control of organic transistors with amorphous semiconductor layer, Org. Electron, vol.10, pp.119-126, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00361965

W. Yang, K. Neoh, E. Kang, S. L. , .. Teo et al., Stainless steel surfaces with thiol -terminated hyperbranched polymers for functionalization via thiol -based chemistry, Polym. Chem, vol.4, issue.10, pp.3105-3115, 2013.

K. L. Knoche, C. Hettige, P. D. Moberg, S. Amarasinghe, and J. Leddy, Cyclic Voltammetric Diagnostics for Inert, Uniform Density Films, J. Electrochem. Soc, vol.160, pp.285-293, 2013.

V. Stockhausen, V. Q. Nguyen, P. Martin, and J. C. Lacroix, Bottom-Up Electrochemical Fabrication of Conjugated Ultrathin Layers with Tailored Switchable Properties, ACS Appl. Mater. Interfaces, vol.9, pp.610-617, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01821774

F. Lebon, R. Cornut, V. Derycke, and B. Jousselme, Fine growth control of electrografted homogeneous thin films on patterned gold electrodes, Electrochim. Acta, vol.318, pp.754-761, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02295172

H. W. Tan, J. An, C. K. Chua, and T. Tran, Metallic Nanoparticle Inks for 3D Printing of Electronics, Adv. Electron. Mater, vol.5, issue.5, p.1800831, 2019.

Y. Jo, J. Y. Kim, S. Kim, Y. Seo, K. Jang et al., 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers, Nanoscale, vol.9, issue.16, pp.5072-5084, 2017.

G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, Small particle melting of pure metals, Thin Solid Films, vol.144, pp.297-308, 1986.

E. Roduner, Size matters: Why nanomaterials are different, Chem. Soc. Rev, vol.35, issue.7, pp.583-592, 2006.

T. Bakhishev and V. Subramanian, Investigation of Gold Nanoparticle Inks for Low-Temperature Lead-Free Packaging Technology, J. Electron. Mater, vol.38, pp.2720-2725, 2009.

H. Lee, K. Chou, and K. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, vol.16, pp.2436-2441, 2005.

C. Gaspar, S. Passoja, J. Olkkonen, and M. Smolander, IR-sintering efficiency on inkjet-printed conductive structures on paper substrates, Microelectron. Eng, vol.149, pp.135-140, 2016.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films, vol.515, pp.7706-7711, 2007.

J. Ryu, H. Kim, and H. T. Hahn, Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics, J. Electron. Mater, vol.40, pp.42-50, 2011.

J. S. Kang, J. Ryu, H. S. Kim, and H. T. Hahn, Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light, J. Electron. Mater, vol.40, pp.2268-2277, 2011.

D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh et al., Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate, J. Micromech. Microeng, vol.21, p.125023, 2011.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mäntysalo, Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers, Sci. Rep, vol.5, p.8832, 2015.

T. Yeshua, M. Layani, R. Dekhter, U. Huebner, S. Magdassi et al., Micrometer to 15 nm Printing of Metallic Inks with Fountain Pen Nanolithography, Small, vol.14, p.1702324, 2018.

Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner et al., High-Performance Organic Thin-Film Transistors with Solution-Printed Gold Contacts, Adv. Mater, vol.17, issue.2, pp.184-187, 2005.

F. Basarir and T. Yoon, Preparation of gold patterns on polyimide coating via layer-by-layer deposition of gold nanoparticles, J. Colloid Interface Sci, vol.352, pp.11-18, 2010.

A. Määttänen, P. Ihalainen, P. Pulkkinen, S. Wang, H. Tenhu et al., Inkjet-Printed Gold Electrodes on Paper: Characterization and Functionalization, ACS Appl. Mater. Interfaces, vol.4, pp.955-964, 2012.

W. Cui, W. Lu, Y. Zhang, G. Lin, T. Wei et al., Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology, Colloids Surf A Physicochem Eng Asp, vol.358, pp.35-41, 2010.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, Synthesis and reactions of functionalised gold nanoparticles, J. Chem. Soc., Chem. Commun, issue.16, p.1655, 1995.

D. I. Gittins and F. Caruso, Spontaneous Phase Transfer of Nanoparticulate Metals from Organic to Aqueous Media, Angew. Chem. Int. Ed, vol.40, issue.16, pp.3001-3004, 2001.

Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering, Spectrochim. Acta A Mol. Biomol. Spectrosc, vol.61, pp.2861-2866, 2005.

, Dimethylamminopyridine chemical properties

W. Joo, T. Choi, J. Lee, S. K. Lee, M. Jung et al., Metal Filament Growth in Electrically Conductive Polymers for Nonvolatile Memory Application, J. Phys. Chem. B, vol.110, pp.23812-23816, 2006.

S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices, J. Phys. Chem. C, vol.116, pp.17955-17959, 2012.

C. Sire, S. Blonkowski, M. J. Gordon, and T. Baron, Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales, Appl. Phys. Lett, vol.91, p.242905, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00394766

Y. Noh and H. Sirringhaus, Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors, Org. Electron, vol.10, pp.174-180, 2009.

P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet et al., Octadecyltrichlorosilane monolayers as ultrathin gate insulating films in metal-insulator-semiconductor devices, Appl. Phys. Lett, vol.62, pp.2256-2258, 1993.

H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik et al., Highmobility polymer gate dielectric pentacene thin film transistors, J. Appl. Phys, vol.92, pp.5259-5263, 2002.

M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm et al., Low-voltage organic transistors with an amorphous molecular gate dielectric, Nature, vol.431, p.963, 2004.

D. Lembke, S. Bertolazzi, and A. Kis, Single-Layer MoS2 Electronics, Acc. Chem. Res, vol.48, pp.100-110, 2015.

J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind et al., FieldModulated Carrier Transport in Carbon Nanotube Transistors, Phys. Rev. Lett, vol.89, p.126801, 2002.

S. Das, H. Chen, A. V. Penumatcha, and J. Appenzeller, High Performance Multilayer MoS 2 Transistors with Scandium Contacts, Nano Lett, vol.13, pp.100-105, 2013.

S. Sze and K. N. Kwok, Physics of Semiconductor Devices, 2006.

D. M. Sim, M. Kim, S. Yim, M. Choi, J. Choi et al., Controlled Doping of Vacancy-Containing Few-Layer MoS 2 via Highly Stable Thiol-Based Molecular Chemisorption, ACS Nano, vol.9, pp.12115-12123, 2015.

Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering, Nat. Commun, vol.5, p.5290, 2014.

A. Facchetti, M. Yoon, and T. J. Marks, Gate Dielectrics for Organic FieldEffect Transistors: New Opportunities for Organic Electronics, Adv. Mater, vol.17, issue.14, pp.1705-1725, 2005.

H. Kim, S. M. Won, Y. Ha, J. Ahn, A. Facchetti et al., Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates, Appl. Phys. Lett, vol.95, p.183504, 2009.

J. E. Mcdermott, M. Mcdowell, I. G. Hill, J. Hwang, A. Kahn et al., Organophosphonate Self-Assembled Monolayers for Gate Dielectric Surface Modification of Pentacene-Based Organic Thin-Film Transistors: A Comparative Study ?, J. Phys. Chem. A, vol.111, pp.12333-12338, 2007.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev, vol.105, pp.1103-1170, 2005.

H. Haick, O. Niitsoo, J. Ghabboun, and D. Cahen, Electrical contacts to organic molecular films by metal evaporation: effect of contacting details, J. Phys. Chem. C, vol.111, pp.2318-2329, 2007.

Y. Tai, A. Shaporenko, W. Eck, M. Grunze, and M. Zharnikov, Abrupt change in the structure of self-assembled monolayers upon metal evaporation, Appl. Phys. Lett, vol.85, pp.6257-6259, 2004.

W. Chen, X. Liu, Z. Tan, K. K. Likharev, and J. E. Lukens, Fabrication and characterization of novel cross point structures for molecular electronic integrated circuits, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom, vol.24, pp.3217-3220, 2006.

A. Vilan, A. Shanzer, and D. Cahen, Molecular control over Au/GaAs diodes, Nature, vol.404, p.166, 2000.

Y. Selzer and D. Cahen, A) log(i) versus the potential applied for three selected junctions of 2000 mm 2 and (B) statistics over the log(i) measured at 500 mV for various junctions. dipoles using molecular monolayers, Fine tuning of Au/SiO2/Si diodes by varying interfacial Fig. 9, vol.13, pp.508-511, 2001.

Y. Loo, D. V. Lang, J. A. Rogers, and J. W. Hsu, Electrical contacts to molecular layers by nanotransfer printing, Nano Lett, vol.3, pp.913-917, 2003.

A. Bayat, J. Lacroix, and R. L. Mccreery, Control of electronic symmetry and rectification through energy level variations in bilayer molecular junctions, J. Am. Chem. Soc, vol.138, pp.12287-12296, 2016.

V. Rabache, J. Chaste, P. Petit, M. L. Della-rocca, P. Martin et al., Direct observation of large quantum interference effect in anthraquinone solid-state junctions, J. Am. Chem. Soc, vol.135, pp.10218-10221, 2013.

H. Casademont, L. Fillaud, X. Lef-evre, B. Jousselme, and V. Derycke, Electrografted fluorinated organic ultrathin film as efficient gate dielectric in MoS2 transistors, J. Phys. Chem. C, vol.120, pp.9506-9510, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01332017

Y. Lin, C. H. Bennett, T. Cabaret, D. Vodenicarevic, D. Chabi et al., Physical realization of a supervised learning system built with organic memristive synapses, Sci. Rep, vol.6, p.31932, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01361933

D. Elanger and J. Pinson, Electrografting: A powerful method for surface modification, Chem. Soc. Rev, vol.40, pp.3995-4048, 2011.

G. Lecayon, Y. Bouizem, C. L. Gressus, C. Reynaud, C. Boiziau et al., Grafting and growing mechanisms of polymerised organic films onto metallic surfaces, Chem. Phys. Lett, vol.91, pp.506-510, 1982.

S. Cuenot, S. Gabriel, C. Erôme, R. Erôme, and A. Duwez, Are electrografted polymers chemisorbed or physisorbed onto their substrate?, Macromol. Chem. Phys, vol.206, pp.1216-1220, 2005.

J. Charlier, S. Ameur, J. P. Bourgoin, C. Bureau, and S. Palacin, Mask-free localized grafting of organic polymers at the micrometer or submicrometer scale on composite conductors or semiconductor substrates, Adv. Funct. Mater, vol.14, pp.125-132, 2004.

C. Combellas, F. Kanoufi, and S. Nunige, Surface modification of halogenated polymers. 10. Redox catalysis induction of the polymerization of vinylic monomers. Application to the localized graft copolymerization of poly(-tetrafluoroethylene) surfaces by vinylic monomers, Chem. Mater, vol.19, pp.3830-3839, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00711139

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts, Chem. Mater, vol.19, pp.4570-4575, 2007.

M. Ceccato, A. Bousquet, M. Hinge, S. U. Pedersen, and K. Daasbjerg, Using a mediating effect in the electroreduction of aryldiazonium salts to prepare conducting organic films of high thickness, Chem. Mater, vol.23, pp.1551-1557, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01557305

F. Anariba, S. H. Duvall, and R. L. Mccreery, Mono-and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy "Scratching, Anal. Chem, vol.75, pp.3837-3844, 2003.

J. Pinson and F. Podvorica, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev, vol.34, pp.429-439, 2005.

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Sav eant, Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, J. Am. Chem. Soc, vol.119, pp.201-207, 1997.

A. Benedetto, M. Balog, P. Viel, F. L. Derf, M. Sall-e et al., Electro-reduction of diazonium salts on gold: Why do we observe multi-peaks?, Electrochim. Acta, vol.53, pp.7117-7122, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056555

L. Lee, P. A. Brooksby, P. Hapiot, and A. J. Downard, Electrografting of 4-nitrobenzenediazonium ion at carbon electrodes: Catalyzed and uncatalyzed reduction processes, Langmuir, vol.32, pp.468-476, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263049

K. K. Cline, L. Baxter, D. Lockwood, R. Saylor, and A. Stalzer, Nonaqueous synthesis and reduction of diazonium ions (without isolation) to modify glassy carbon electrodes using mild electrografting conditions, J. Electroanal. Chem, vol.633, pp.283-290, 2009.

B. Jousselme, G. Bidan, M. Billon, C. Goyer, Y. Kervella et al., One-step electrochemical modification of carbon nanotubes by ruthenium complexes via new diazonium salts, J. Electroanal. Chem, vol.621, pp.277-285, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396678

T. Menanteau, E. Levillain, A. J. Downard, and T. Breton, Evidence of monolayer formation via diazonium grafting with a radical scavenger: Electrochemical, AFM and XPS monitoring, Phys. Chem. Chem. Phys, vol.17, pp.13137-13142, 2015.

L. Pichereau, I. Opez, M. Cesbron, S. Dabos-seignon, C. Gautier et al., Controlled diazonium electrografting driven by overpotential reduction: A general strategy to prepare ultrathin layers, Chem. Commun, vol.55, pp.455-457, 2019.