J. D. Taurog, A. Chhabra, and R. A. Colbert, Ankylosing Spondylitis and Axial Spondyloarthritis, N. Engl. J. Med, vol.375, p.1303, 2016.

P. Bowness and . Hla-b27, Annu. Rev. Immunol, vol.33, pp.29-48, 2015.

N. Renlund, F. H. O'neill, L. Zhang, Y. Sidis, and J. Teixeira, Activin receptor-like kinase-2 inhibits activin signaling by blocking the binding of activin to its type II receptor, J. Endocrinol, vol.195, pp.95-103, 2007.

L. Hildebrand, K. Stange, A. Deichsel, M. Gossen, and P. Seemann, The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response, Cellular Signal, vol.29, pp.23-30, 2017.

S. P. Oh, Activin receptor-like kinase 1 modulates transforming growth factor-beta 1

, signaling in the regulation of angiogenesis, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.2626-2631, 2000.

M. J. Goumans, Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling, Mol. Cell, vol.12, pp.817-828, 2003.

A. Blees, Structure of the human MHC-I peptide-loading complex, Nature, 2017.

S. Sotillos and J. F. De-celis, Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation duringDrosophila pupal wing development, Dev. Dyn, vol.232, pp.738-752, 2005.

A. Ralston and S. S. Blair, Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone, Dev. Biol, vol.280, pp.187-200, 2005.

S. Matsuda, N. Yoshiyama, J. Künnapuu-vulli, M. Hatakeyama, and O. Shimmi, Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae, Insect Biochem. Mol. Biol, vol.43, pp.466-473, 2013.

M. Crozatier, B. Glise, and A. Vincent, Patterns in evolution: veins of the Drosophila wing, Trends Genet, vol.20, pp.498-505, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00169830

L. A. Raftery and D. M. Umulis, Regulation of BMP activity and range in Drosophila wing development, Curr. Opin. Cell Biol, vol.24, pp.158-165, 2012.

T. E. Haerry, The interaction between two TGF-beta type I receptors plays important roles in ligand binding, SMAD activation, and gradient formation, Mech. Dev, vol.127, pp.358-370, 2010.

E. Bangi, Dual function of the Drosophila Alk1/Alk2 ortholog Saxophone shapes the Bmp activity gradient in the wing imaginal disc, Development, vol.133, pp.3295-3303, 2006.

J. Horsfield, A. Penton, J. Secombe, F. M. Hoffman, and H. Richardson, decapentaplegic is required for arrest in G1 phase during Drosophila eye development, Development, vol.125, pp.5069-5078, 1998.

M. R. Jackson, E. S. Song, Y. Yang, and P. A. Peterson, Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.12117-12121, 1992.

V. Q. Le and K. A. Wharton, Hyperactive BMP signaling induced by ALK2 R206H requires type II receptor function in a Drosophila model for classic fibrodysplasia ossificans progressiva: Fop Signaling Requires Type II Receptor Function, Dev. Dyn, vol.241, pp.200-214, 2012.

D. Yadin, P. Knaus, and T. D. Mueller, Structural insights into BMP receptors: Specificity, activation and inhibition, Cytokine Growth Factor Rev, vol.27, pp.13-34, 2016.

A. J. Bridges, K. C. Hsu, A. Singh, R. Churchill, and J. Miles, Fibrodysplasia (myositis) ossificans progressiva, Semin. Arthritis Rheum, vol.24, pp.155-164, 1994.

S. J. Hatsell, ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin, Sci. Transl. Med, vol.7, pp.303-137, 2015.

Y. H. Lee and G. G. Song, Meta-analysis of differentially expressed genes in ankylosing spondylitis, Genet. Mol. Res, vol.14, pp.5161-5170, 2015.

R. J. Lories, I. Derese, and F. P. Luyten, Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis, J. Clin. Invest, vol.115, pp.1571-1579, 2005.

S. Zhang, The role of transforming growth factor ? in T helper 17 differentiation, Immunology, vol.155, pp.24-35, 2018.

S. Glatigny, Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats, Arthritis Rheum, vol.64, pp.110-120, 2012.

J. A. Smith and R. A. Colbert, Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond, Arthritis Rheum, vol.66, pp.231-241, 2014.

A. N. Bennett, Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years, Arthritis Rheum, vol.58, pp.3413-3418, 2008.

R. Kambadur, Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS, Genes Dev, vol.12, pp.246-260, 1998.

R. L. Johnson, J. K. Grenier, and M. P. Scott, patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets, Development, vol.121, pp.4161-4170, 1995.

D. J. Hazelett, M. Bourouis, U. Walldorf, and J. E. Treisman, decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc, Development, vol.125, pp.3741-3751, 1998.

H. D. Ryoo, P. M. Domingos, M. Kang, and H. Steller, Unfolded protein response in a Drosophila model for retinal degeneration, EMBO J, vol.26, pp.242-252, 2007.

T. E. Haerry, O. Khalsa, M. B. O'connor, and K. A. Wharton, Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila, Development, vol.125, pp.3977-3987, 1998.

A. H. Brand and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, vol.118, pp.401-415, 1993.

C. Jeanty, HLA-B27 subtype oligomerization and intracellular accumulation patterns correlate with predisposition to spondyloarthritis, Arthriti Rheumatol, vol.66, pp.2113-2123, 2014.

Y. Demay, J. Perochon, S. Szuplewski, B. Mignotte, and S. Gaumer, The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model, Cell Death Dis, vol.5, p.1452, 2014.

A. Florentin and E. Arama, Caspase levels and execution efficiencies determine the apoptotic potential of the cell, J. Cell Biol, vol.196, pp.513-527, 2012.

J. T. Wong, DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1, Nat. Commun, vol.8, p.759, 2017.

N. J. Stam, H. Spits, and H. L. Ploegh, Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products, J. Immunol, vol.137, pp.2299-2306, 1986.

S. A. Ellis, C. Taylor, and A. Mcmichael, Recognition of HLA-B27 and related antigen by a monoclonal antibody, Hum. Immunol, vol.5, pp.49-59, 1982.

C. J. Barnstable, Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis, Cell, vol.14, pp.9-20, 1978.

F. M. Brodsky and P. Parham, Monomorphic anti-HLA-A,B,C monoclonal antibodies detecting molecular subunits and combinatorial determinants, J. Immunol, vol.128, pp.129-135, 1982.

E. T. Hall and E. M. Verheyen, Ras-activated Dsor1 promotes Wnt signaling in Drosophila development, J. Cell. Sci, vol.128, pp.4499-4511, 2015.

A. Bellucci, C. Fiorentini, M. Zaltieri, C. Missale, and P. Spano, The 'in situ' proximity ligation assay to probe protein-protein interactions in intact tissues, Methods Mol. Biol, vol.1174, pp.397-405, 2014.

A. Sanchez-martinez, Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models, Sci. Rep, vol.6, p.31380, 2016.

S. R. Schulze, Molecular genetic analysis of the nested Drosophila melanogaster lamin C gene, Genetics, vol.171, pp.185-196, 2005.

F. Costantino, ERAP1 gene expression is influenced by non-synonymous polymorphisms associated with predisposition to spondyloarthritis, Arthritis Rheumatol, vol.67, pp.1525-1534, 2015.

A. Martín-esteban, P. Guasp, E. Barnea, A. Admon, and J. A. López-de-castro, Functional interaction of the ankylosing spondylitis-associated endoplasmic eeticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells: ERAP-2 and the HLA-B*27 peptidome, Arthritis Rheumatol, vol.68, pp.2466-2475, 2016.

M. Rudwaleit, The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection, Ann. Rheum. Dis, vol.68, pp.777-783, 2009.

S. Van-der-linden, H. A. Valkenburg, and A. Cats, Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria, Arthritis Rheum, vol.27, pp.361-368, 1984.

S. Garrett, A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index, J. Rheumatol, vol.21, pp.2286-2291, 1994.

, Il existe plusieurs allèles HLA-B27 répartis dans le monde, Certains sont associés à la SpA comme HLA

, Afin de déterminer si ce phénotype spécifique de HLA-B*2705 et HLA-B*2704 peut être associé ou non à la maladie, nous avons établi une lignée de drosophiles transgéniques pour lesquelles l'allèle HLA-B*2706 est sous le contrôle d'une séquence UAS. Comme précédemment, nous avons croisé cette lignée avec un pilote spécifique de l'aile : nubbin-GAL4. En absence de h?2m, HLA-B*2706 ne semble pas induire de phénotype (de manière similaire à HLA-B*2705 et HLA-B*2704), B*2705 et HLA-B*2704, tandis que d'autres, comme HLA-B*2706 et HLA-B*2709 sont décrits comme ne l'étant pas

, Ces résultats suggèrent que ce phénotype pourrait être spécifique des allèles HLA-B27 et non des autres allèles HLA-B (comme HLA-B07)

, une augmentation significative de quantité de HLA bien repliées avec les formes associées à la maladie (HLA-B*2705,h?2m et HLA-B*2704,h?2m), comparées à la forme non associée (HLA-B*0702,h?2m)

M. References-aliee, J. Röper, and K. P. Landsberg, Physical mechanisms shaping the Drosophila dorsoventral compartment boundary, Curr Biol, vol.22, pp.967-976, 2012.

D. S. Andersen, J. Colombani, and V. Palmerini, The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth, Nature, vol.522, pp.482-486, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01255294

T. J. Bergmann, I. Fregno, and F. Fumagalli, Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides, J Biol Chem, vol.293, pp.5600-5612, 2018.

R. Bravo, V. Parra, and D. Gatica, Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration, Int Rev Cell Mol Biol, vol.301, pp.215-290, 2013.

N. Chatterjee and D. Bohmann, A versatile PhiC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture, PLoS One, vol.7, p.34063, 2012.

K. Cheung, D. Shineman, and M. Müller, Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating, Neuron, vol.58, pp.871-883, 2008.

N. J. Colley, J. A. Cassill, E. K. Baker, and C. S. Zuker, Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration, Proc Natl Acad Sci U S A, vol.92, pp.3070-3074, 1995.

J. Colombani, D. S. Andersen, and P. Léopold, Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing, Science, vol.336, pp.582-585, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00766336

Y. Demay, J. Perochon, and S. Szuplewski, The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model, Cell Death Dis, vol.5, 2014.

S. Eaton, P. Auvinen, and L. Luo, CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium, J Cell Biol, vol.131, pp.151-164, 1995.

A. Garelli, A. M. Gontijo, and V. Miguela, Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation, Science, vol.336, pp.579-582, 2012.

V. Hayrapetyan, V. Rybalchenko, N. Rybalchenko, and P. Koulen, The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction, Cell Calcium, vol.44, pp.507-518, 2008.

M. Kang, J. Chung, and H. D. Ryoo, CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model, Nat Cell Biol, vol.14, pp.409-415, 2012.

A. Kim, J. B. Seo, and W. Kim, The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress, BMC Genomics, vol.16, p.338, 2015.

M. Michel, M. Aliee, and K. Rudolf, The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary, PLoS ONE, vol.11, 2016.

K. Michno, D. Knight, and J. M. Campusano, Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin, PLoS ONE, vol.4, p.6904, 2009.

V. Rybalchenko, S. Hwang, N. Rybalchenko, and P. Koulen, The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity, Int J Biochem Cell Biol, vol.40, pp.84-97, 2008.

H. D. Ryoo, Drosophila as a model for unfolded protein response research, BMB Rep, vol.48, pp.445-453, 2015.

H. D. Ryoo, P. M. Domingos, M. Kang, and H. Steller, Unfolded protein response in a Drosophila model for retinal degeneration, EMBO J, vol.26, pp.242-252, 2007.

S. Souid, J. Lepesant, and C. Yanicostas, The xbp-1 gene is essential for development in Drosophila, Dev Genes Evol, vol.217, pp.159-167, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00125444

G. E. Stutzmann, I. Smith, and A. Caccamo, Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models, Ann N Y Acad Sci, vol.1097, pp.265-277, 2007.

S. Wang and R. J. Kaufman, The impact of the unfolded protein response on human disease, J Cell Biol, vol.197, pp.857-867, 2012.

Y. Zhang, C. Cui, and Z. Lai, The defender against apoptotic cell death 1 gene is required for tissue growth and efficient N-glycosylation in Drosophila melanogaster, Dev Biol, vol.420, pp.186-195, 2016.

, Les gènes de la région 13q13

, dont les rôles ont été plus ou moins décrits. La protéine UFM1 (Ubiquitin-fold modifier 1) est un nouveau membre de la famille des ubiquitines, La région 13q13, qui s'étend sur 1,3 Mb, contient 6 gènes (UFM1, FREM2, STOML3, PROSER1, NHLRC3, LHFP)

, STOML3 (Stomatin-like protein 3) est un régulateur endogène de la sensibilité des canaux ioniques mécano-sensibles dans les neurones sensoriels et les sensations tactiles, vol.59

L. La-protéine, Lipoma HMGIC fusion partner) est un partenaire de la protéine HMGIC, exprimée dans les tumeurs mésenchymateuses et pouvant agir sur la régulation de la prolifération cellulaire, vol.60

, En dehors des gènes codant une protéine, on observe la présence de gènes codant un miRNA (AL590007.1), deux LnCRNA (LINC00437, LINC00366) et de quatre pseudogènes, Le rôle des protéines PROSER1

. Ii, Analyse des variants de la région 13q13

, La couverture moyenne de l'ensemble des échantillons est de 341,72 "reads", avec une moyenne de "mapping quality" de 0,03%. La majorité des variants identifiés se situent dans les régions intergéniques (70,3% des variants). Un quart des variants se situent dans les régions introniques des gènes (25% des variants). Les variants affectant les régions exoniques, 5'UTR et 3'UTR, représentent seulement 1, A la sortie du séquenceur, nous avons obtenu un total de 7747 variants correspondant à 5962 SNP, 960 délétions, et 825 insertions

, Notre projet a consisté à rechercher des variants rares qui co-ségrègent avec la maladie. Pour cela, nous avons d'abord sélectionné les variants présents uniquement chez les différents patients de toutes les familles confondues et absents de l'ensemble des témoins. Cette filtration a permis de réduire considérablement le nombre de variants d'intérêts

, La fréquence des 693 variants associés à la maladie est représentée dans la, Nous avons pu observer qu'une grande partie de ces variants n'étaient pas répertoriés dans la base de données, p.1000

. Genomes, En regardant de plus près, il apparaît qu'une grande majorité des variants avaient une fréquence inférieure à 5%, et correspondraient potentiellement à des variants rares

É. Dans-notre, nous nous sommes concentrés sur ces variants rares, avec une fréquence inférieure à 5%, réduisant ainsi nos variants d'intérêts à 449 (variants avec une fréquence non répertoriée inclus)

, Plusieurs modèles d'analyses pour l'étude de la répartition des variants rares, ont été créés pour tenter d'élucider leur effet fonctionnel, vol.28

, Une présentation de ces modèles est illustrée dans la

, Selon le modèle A, un variant causal serait plus fréquent chez les individus atteints que chez les témoins. Nous avons donc recherché ous les variants communs chez les patients et qui sont absents chez l'ensemble des témoins de chaque famille

P. Wickramaratne and S. Hodge, Estimation of sibling recurrence-risk ratio under single ascertainment in twochild families, Am J Hum Genet, vol.68, issue.3, pp.807-819, 2001.

T. Höhler, R. Hug, P. M. Schneider, F. Krummenauer, C. Gripenberg-lerche et al., Ankylosing spondylitis in monozygotic twins: studies on immunological parameters, Ann Rheum Dis, vol.58, issue.7, pp.435-475, 1999.

P. Järvinen, Occurrence of ankylosing spondylitis in a nationwide series of twins, Arthritis Rheum, vol.38, issue.3, pp.381-384, 1995.

M. A. Brown, L. G. Kennedy, A. J. Macgregor, C. Darke, E. Duncan et al., Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment, Arthritis Rheum, vol.40, issue.10, pp.1823-1831, 1997.

O. B. Pedersen, A. J. Svendsen, L. Ejstrup, A. Skytthe, J. R. Harris et al., Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs. environmental effectors in disease causation, Scand J Rheumatol, vol.37, issue.2, pp.120-126, 2008.

E. Dernis, R. Said-nahal, D. Aegerter, P. Dougados, M. Breban et al., Recurrence of spondylarthropathy among first-degree relatives of patients: a systematic cross-sectional study, Ann Rheum Dis, vol.68, issue.4, pp.502-509, 2009.

M. F. Caffrey and D. C. James, Human lymphocyte antigen association in ankylosing spondylitis, Nature, vol.242, issue.5393, p.121, 1973.

D. A. Brewerton, F. D. Hart, A. Nicholls, M. Caffrey, D. C. James et al., Ankylosing spondylitis and HL-A 27, Lancet, vol.1, issue.7809, pp.904-911, 1973.

L. Schlosstein, P. I. Terasaki, R. Bluestone, and C. M. Pearson, High association of an HL-A antigen, W27, with ankylosing spondylitis, N Engl J Med, vol.288, issue.14, pp.704-710, 1973.

L. J. Kopplin, G. Mount, and E. B. Suhler, Review for Disease of the Year: Epidemiology of HLA-B27 Associated Ocular Disorders, Ocul Immunol Inflamm, vol.24, issue.4, pp.470-475, 2016.

L. E. Dean, G. T. Jones, A. G. Macdonald, C. Downham, R. D. Sturrock et al., Global prevalence of ankylosing spondylitis. Rheumatology (Oxford), vol.53, pp.650-657, 2014.

C. Stolwijk, A. Boonen, A. Van-tubergen, and J. D. Reveille, Epidemiology of spondyloarthritis, Rheum Dis Clin North Am, vol.38, issue.3, pp.441-76, 2012.

C. López-larrea, K. Sujirachato, N. K. Mehra, P. Chiewsilp, D. Isarangkura et al., HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations, Tissue Antigens, vol.45, issue.3, pp.169-76, 1995.

F. Paladini, E. Taccari, M. T. Fiorillo, A. Cauli, G. Passiu et al., Distribution of HLA-B27 subtypes in Sardinia and continental Italy and their association with spondylarthropathies, Arthritis Rheum, vol.52, issue.10, pp.3319-3340, 2005.

F. Costantino, A. Talpin, R. Said-nahal, M. Goldberg, J. Henny et al., Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort, Ann Rheum Dis, vol.74, issue.4, pp.689-93, 2015.

M. Breban, C. Miceli-richard, E. Zinovieva, and D. Monnet, Said-Nahal R. The genetics of spondyloarthropathies, Joint Bone Spine, vol.73, issue.4, pp.355-62, 2006.

R. Said-nahal, C. Miceli-richard, . Gautreau, . Tamouza, . Borot et al., M Breban The role of HLA genes in familial spondyloarthropathy: a comprehensive study of 70 multiplex families, Ann Rheum Dis, vol.61, pp.201-206, 2002.

J. Wei, S. Hw, Y. Hsu, Y. Wen, W. Wang et al., Interaction between HLA-B60 and HLA-B27 as a Better Predictor of Ankylosing Spondylitis in a Taiwanese Population, PLoS ONE, vol.10, issue.10, p.137189, 2015.

R. Díaz-peña, M. A. Blanco-gelaz, P. Njobvu, A. López-vazquez, B. Suárez-alvarez et al., Influence of HLA-B*5703 and HLA-B*1403 on susceptibility to spondyloarthropathies in the Zambian population, J Rheumatol, vol.35, issue.11, pp.2236-2276, 2008.

F. A. Van-gaalen, W. Verduijn, D. L. Roelen, S. Böhringer, T. Huizinga et al., Epistasis between two HLA antigens defines a subset of individuals at a very high risk for ankylosing spondylitis, Ann Rheum Dis, vol.72, issue.6, pp.974-982, 2013.

A. Cortes, S. L. Pulit, P. J. Leo, J. J. Pointon, P. C. Robinson et al., Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1, Nat Commun, vol.6, p.7146, 2015.

W. Chen, C. Chu, C. Lin, C. Lee, and Y. , A new HLA-B*39 allele, HLA-B*39:01:15, discovered in a Taiwanese rheumatoid arthritis patient, Tissue Antigens, vol.86, issue.4, pp.300-301, 2015.

T. Origuchi, S. Fukui, M. Umeda, A. Nishino, Y. Nakashima et al., The Severity of Takayasu Arteritis Is Associated with the HLA-B52 Allele in Japanese Patients, Tohoku J Exp Med, vol.239, issue.1, pp.67-72, 2016.

M. A. Khan, I. Kushner, and W. E. Braun, Association of HLA-A2 with uveitis in HLA-B27 positive patients with ankylosing spondylitis, J Rheumatol, vol.8, issue.2, pp.295-303, 1981.

J. D. Reveille, Major histocompatibility genes and ankylosing spondylitis, Best Pract Res Clin Rheumatol, vol.20, issue.3, pp.601-610, 2006.

S. H. Laval, A. Timms, S. Edwards, L. Bradbury, S. Brophy et al., Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci, Am J Hum Genet, vol.68, issue.4, pp.918-944, 2001.

C. M. Lewis and J. Knight, Introduction to genetic association studies. Cold Spring Harb Protoc, pp.297-306, 2012.

V. Bansal, O. Libiger, A. Torkamani, and N. J. Schork, Statistical analysis strategies for association studies involving rare variants, Nat Rev Genet, vol.11, issue.11, pp.773-85, 2010.

P. R. Burton, D. G. Clayton, L. R. Cardon, and N. Craddock, Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants, Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC), vol.39, pp.1329-1366, 2007.

;. Australo-anglo, J. D. Tasc),-reveille, A. Sims, P. Danoy, D. M. Evans et al., Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci, Nat Genet, vol.42, issue.2, pp.123-130, 2010.

D. M. Evans, C. Spencer, J. J. Pointon, Z. Su, D. Harvey et al., Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility, Nat Genet, vol.43, issue.8, pp.761-768, 2011.

Z. Lin, J. Bei, M. Shen, Q. Li, Z. Liao et al., A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis, Nat Genet, vol.44, issue.1, pp.73-80, 2011.

A. Cortes, J. Hadler, J. P. Pointon, P. C. Robinson, and T. Karaderi, Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci, International Genetics of Ankylosing Spondylitis Consortium (IGAS), vol.45, pp.730-738, 2013.

J. Ott, J. Wang, and S. M. Leal, Genetic linkage analysis in the age of whole-genome sequencing, Nat Rev Genet, vol.16, issue.5, pp.275-84, 2015.

M. A. Brown, K. D. Pile, L. G. Kennedy, D. Campbell, L. Andrew et al., A genome-wide screen for susceptibility loci in ankylosing spondylitis, Arthritis Rheum, vol.41, issue.4, pp.588-95, 1998.

G. Zhang, J. Luo, J. Bruckel, M. A. Weisman, H. R. Schumacher et al., Genetic studies in familial ankylosing spondylitis susceptibility, Arthritis Rheum, vol.50, issue.7, pp.2246-54, 2004.

C. Miceli-richard, H. Zouali, R. Said-nahal, S. Lesage, M. F. et al., Significant linkage to spondyloarthropathy on 9q31-34, Hum Mol Genet, vol.13, issue.15, pp.1641-1649, 2004.

Y. H. Lee, Y. H. Rho, S. J. Choi, J. D. Ji, and G. G. Song, Ankylosing spondylitis susceptibility loci defined by genome-search meta-analysis, J Hum Genet, vol.50, issue.9, pp.453-462, 2005.

K. W. Carter, A. Pluzhnikov, A. E. Timms, C. Miceli-richard, C. Bourgain et al., Combined analysis of three whole genome linkage scans for Ankylosing Spondylitis. Rheumatology (Oxford), vol.46, pp.763-71, 2007.

F. Costantino, E. Chaplais, T. Leturcq, R. Said-nahal, A. Leboime et al., Whole-genome single nucleotide polymorphism-based linkage analysis in spondyloarthritis multiplex families reveals a new susceptibility locus in 13q13, Ann Rheum Dis, vol.75, issue.7, pp.1380-1385, 2016.

D. Campion, Dissection génétique des maladies à hérédité complexe. médecine/sciences, vol.17, pp.1139-1187, 2001.

J. D. Reveille and M. A. Brown, Epidemiology of ankylosing spondylitis: IGAS 2009, J Rheumatol, vol.37, issue.12, pp.2624-2629, 2010.

E. Zinovieva, Systematic candidate gene investigations in the SPA2 locus (9q32) show an association between TNFSF8 and susceptibility to spondylarthritis, Arthritis Rheum, vol.63, pp.1853-1859, 2011.

B. P. Hodkinson and E. A. Grice, Next-Generation Sequencing: A Review of Technologies and Tools for Wound Microbiome Research, Adv Wound Care, vol.4, issue.1, pp.50-58, 2015.

P. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants, Nucleic Acids Res, vol.38, issue.6, pp.1767-71, 2010.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, issue.1, p.10, 2011.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, issue.15, pp.2114-2134, 2014.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, issue.16, p.164, 2010.

P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), vol.6, pp.80-92, 2012.

W. Mclaren, L. Gil, S. E. Hunt, H. S. Riat, G. Ritchie et al., The Ensembl Variant Effect Predictor, Genome Biology, vol.17, issue.1, 2016.

,

I. P. Gorlov, O. Y. Gorlova, S. R. Sunyaev, M. R. Spitz, C. Amos et al., Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms, Genomes Project Consortium, vol.82, pp.68-74, 2008.

M. Komatsu, T. Chiba, K. Tatsumi, S. Iemura, I. Tanida et al., A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier, EMBO J, vol.23, issue.9, pp.1977-86, 2004.

J. R. Timmer, T. W. Mak, K. Manova, K. V. Anderson, and L. Niswander, Tissue morphogenesis and vascular stability require the Frem2 protein, product of the mouse myelencephalic blebs gene, Proc Natl Acad Sci, 2005.

, Aug, vol.16, issue.33, pp.11746-50

C. Wetzel, S. Pifferi, C. Picci, C. Gök, D. Hoffmann et al., Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity, Nat Neurosci, vol.20, issue.2, pp.209-227, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02061440

M. M. Petit, E. F. Schoenmakers, C. Huysmans, J. M. Geurts, N. Mandahl et al., LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes, Genomics, vol.57, issue.3, pp.438-479, 1999.

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nature Methods, vol.7, issue.4, pp.248-257, 2010.

N. Sim, P. Kumar, J. Hu, S. Henikoff, G. Schneider et al., SIFT web server: predicting effects of amino acid substitutions on proteins, Nucleic Acids Res, vol.40, pp.452-459, 2012.

Z. E. Sauna and C. Kimchi-sarfaty, Understanding the contribution of synonymous mutations to human disease, Nature Reviews Genetics, vol.12, issue.10, pp.683-91, 2011.

J. M. Schwarz, D. N. Cooper, M. Schuelke, and D. Seelow, MutationTaster2: mutation prediction for the deepsequencing age, Nat Methods, vol.11, issue.4, pp.361-363, 2014.

J. Daniel and E. Liebau, The ufm1 cascade. Cells, vol.3, pp.627-665, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01831597

H. Shiwaku, N. Yoshimura, T. Tamura, M. Sone, S. Ogishima et al., Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell autonomous toxicity, The EMBO Journal, vol.29, issue.14, pp.2446-60, 2010.

H. M. Yoo, S. H. Kang, J. Y. Kim, J. E. Lee, M. W. Seong et al., Modification of ASC1 by UFM1 Is Crucial for ER? Transactivation and Breast Cancer Development, Molecular Cell, vol.56, issue.2, pp.261-74, 2014.

H. Kim, C. Nam, H. , H. Lee, E. et al., Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation, Cell Cycle, 2013.

K. Lemaire, R. F. Moura, M. Granvik, M. Igoillo-esteve, H. E. Hohmeier et al., Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress Induced Apoptosis, PLoS ONE, vol.6, issue.4, p.18517, 2011.

X. Hu, Q. Pang, Q. Shen, H. Liu, J. He et al., Ubiquitin-fold modifier 1 inhibits apoptosis by suppressing the endoplasmic reticulum stress response in Raw264.7 cells, Int J Mol Med, vol.33, issue.6, pp.1539-1585, 2014.

J. Oh, A. E. Riek, S. Weng, M. Petty, D. Kim et al., Endoplasmic Reticulum Stress Controls M2 Macrophage Differentiation and Foam Cell Formation, Journal of Biological Chemistry, vol.287, issue.15, pp.11629-11670, 2012.

I. Tabas, The Role of Endoplasmic Reticulum Stress in the Progression of Atherosclerosis. Circulation Research, vol.107, pp.839-50, 2010.

Q. Pang, J. Xiong, X. Hu, J. He, H. Liu et al., UFM1 Protects Macrophages from oxLDL-Induced Foam Cell Formation Through a Liver X Receptor ? Dependent Pathway, Journal of Atherosclerosis and Thrombosis, vol.22, issue.11, pp.1124-1164, 2015.

Y. Li, G. Zhang, J. He, D. Zhang, X. Kong et al., Ufm1 inhibits LPS-induced endothelial cell inflammatory responses through the NF-?B signaling pathway, Int J Mol Med, vol.39, issue.5, pp.1119-1145, 2017.

M. Nagaishi, Y. Kim, M. Mittelbronn, F. Giangaspero, W. Paulus et al., Amplification of the STOML3, FREM2, and LHFP genes is associated with mesenchymal differentiation in gliosarcoma, Am J Pathol, vol.180, issue.5, pp.1816-1839, 2012.

T. Takahashi, F. Friedmacher, J. Zimmer, and P. Puri, Mesenchymal expression of the FRAS1/FREM2 gene unit is decreased in the developing fetal diaphragm of nitrofen-induced congenital diaphragmatic hernia. Pediatric Surgery International, vol.32, pp.135-175, 2016.

A. A. Saleem, S. N. Siddiqui, and . Fraser-syndrome, J Coll Physicians Surg Pak, vol.25, issue.2, pp.124-130, 2015.

J. M. Lloreda-garcia, J. D. González-rodríguez, and J. L. Leante-castellanos,

, An Pediatr (Barc), vol.82, pp.207-215, 2015.

E. Chaplais, Une approche de modélisation de biologie des systèmes sur la spondylarthrite, 2015.

K. Mcallister, N. Goodson, L. Warburton, and G. Rogers, Spondyloarthritis: diagnosis and management: summary of NICE guidance, BMJ, vol.839, 2017.

S. Garrett, T. Jenkinson, L. G. Kennedy, H. Whitelock, P. Gaisford et al., A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index, J Rheumatol, vol.21, pp.2286-2291, 1994.

J. Sieper, D. Van-der-heijde, and R. Landewe, New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS), Ann Rheum Dis, vol.68, pp.784-788, 2009.

C. J. Chua-aguilera, B. Möller, and N. Yawalkar, Skin Manifestations of Rheumatoid Arthritis, Juvenile Idiopathic Arthritis, and Spondyloarthritides, Clin Rev Allergy Immunol, vol.53, pp.371-393, 2017.

F. Azevedo, V. , G. Buiar, and P. , Concomitância de artrite reumatoide e espondilite anquilosante em um único paciente: importância dos novos critérios de classificação, Rev Bras Reumatol, vol.53, pp.115-119, 2013.

C. Stolwijk, A. Boonen, A. Van-tubergen, and J. D. Reveille, Epidemiology of spondyloarthritis, Rheum Dis Clin North Am, vol.38, pp.441-476, 2012.

G. Bakland and H. C. Nossent, Epidemiology of spondyloarthritis: a review, Curr Rheumatol Rep, vol.15, p.351, 2013.

L. E. Dean, G. T. Jones, A. G. Macdonald, C. Downham, R. D. Sturrock et al., Global prevalence of ankylosing spondylitis, Rheumatol Oxf Engl, vol.53, pp.650-657, 2014.

F. Costantino, A. Talpin, R. Said-nahal, M. Goldberg, J. Henny et al., Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort, Ann Rheum Dis, vol.74, pp.689-693, 2015.

S. P. Raychaudhuri and A. Deodhar, The classification and diagnostic criteria of ankylosing spondylitis, J Autoimmun, vol.48, pp.128-133, 2014.

J. D. Taurog, A. Chhabra, and R. A. Colbert, Ankylosing Spondylitis and Axial Spondyloarthritis, N Engl J Med, vol.374, pp.2563-2574, 2016.

H. Appel and J. Sieper, Spondyloarthritis at the crossroads of imaging, pathology, and structural damage in the era of biologics, Curr Rheumatol Rep, vol.10, pp.356-363, 2008.

R. Terenzi, S. Monti, G. Tesei, and L. Carli, One year in review 2017: spondyloarthritis, Clin Exp Rheumatol, vol.36, pp.1-14, 2018.

A. Uckun and I. Sezer, Ankylosing Spondylitis and Balance, Eurasian J Med, vol.49, pp.207-210, 2017.

K. J. Wenker and J. M. Quint, Ankylosing Spondylitis. StatPearls, vol.15, 2018.

J. T. Rosenbaum and H. L. Rosenzweig, The eyes have it: uveitis in patients with spondyloarthritis: Spondyloarthritis, Nat Rev Rheumatol, vol.8, pp.249-250, 2012.

D. Wakefield, W. Yates, S. Amjadi, and P. Mccluskey, HLA-B27 Anterior Uveitis: Immunology and Immunopathology, Ocul Immunol Inflamm, vol.24, pp.450-459, 2016.

F. Cantini, C. Nannini, E. Cassarà, O. Kaloudi, and L. Niccoli, Uveitis in Spondyloarthritis: An Overview, J Rheumatol Suppl, vol.93, pp.27-29, 2015.

C. Selmi, Diagnosis and classification of autoimmune uveitis, Autoimmun Rev, vol.13, pp.591-594, 2014.

T. G. Benedek, Psoriasis and psoriatic arthropathy, historical aspects: part I, J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis, vol.19, pp.193-198, 2013.

P. Machado, R. Landewé, J. Braun, X. Baraliakos, K. Hermann et al., Ankylosing spondylitis patients with and without psoriasis do not differ in disease phenotype, Ann Rheum Dis, vol.72, pp.1104-1107, 2013.

P. Jacques, L. Van-praet, P. Carron, F. Van-den-bosch, and D. Elewaut, Pathophysiology and role of the gastrointestinal system in spondyloarthritides, Rheum Dis Clin North Am, vol.38, pp.569-582, 2012.

S. Dubash, D. Mcgonagle, and H. Marzo-ortega, New advances in the understanding and treatment of axial spondyloarthritis: from chance to choice, Ther Adv Chronic Dis, vol.9, pp.77-87, 2018.

. Vidal-recos-spondylarthrite-ankylosante,

?. Sari, M. A. Öztürk, and N. Akkoç, Treatment of ankylosing spondylitis, Turk J Med Sci, vol.45, pp.416-430, 2015.

C. Palazzi, S. Angelo, M. Gilio, P. Leccese, A. Padula et al., Pharmacological therapy of spondyloarthritis, Expert Opin Pharmacother, vol.16, pp.1495-1504, 2015.

J. Chen, M. Veras, C. Liu, and J. Lin, Methotrexate for ankylosing spondylitis, Cochrane Database Syst Rev CD004524, 2013.

J. Chen, S. Lin, C. Liu, J. C. Van-denderen, and M. Van-der-paardt, Dijkmans B a. C, van der Horst-Bruinsma IE (2005) Double blind, randomised, placebo controlled study of leflunomide in the treatment of active ankylosing spondylitis, Ann Rheum Dis, vol.64, pp.1761-1764, 2014.

M. Corbett, M. Soares, and G. Jhuti, Tumour necrosis factor-? inhibitors for ankylosing spondylitis and non-radiographic axial spondyloarthritis: a systematic review and economic evaluation, Health Technol Assess Winch Engl, vol.20, pp.1-334, 2016.

M. Benucci, A. Damiani, F. Bandinelli, V. Grossi, M. Infantino et al., Ankylosing Spondylitis Treatment after First Anti-TNF Drug Failure, Isr Med Assoc J IMAJ, vol.20, pp.119-122, 2018.

O. Elalouf and O. Elkayam, Long-term safety and efficacy of infliximab for the treatment of ankylosing spondylitis, Ther Clin Risk Manag, vol.11, pp.1719-1726, 2015.

X. Guillot, C. Prati, M. Sondag, and D. Wendling, Etanercept for treating axial spondyloarthritis, Expert Opin Biol Ther, vol.17, pp.1173-1181, 2017.

A. Mounach and A. El-maghraoui, Efficacy and safety of adalimumab in ankylosing spondylitis, Open Access Rheumatol Res Rev, vol.6, pp.83-90, 2014.

J. E. Frampton, Golimumab: A Review in Inflammatory Arthritis, BioDrugs Clin Immunother Biopharm Gene Ther, vol.31, pp.263-274, 2017.

J. Desmarais, S. Beier, and A. Deodhar, Certolizumab pegol for treating axial spondyloarthritis, Expert Opin Biol Ther, vol.16, pp.1059-1064, 2016.

L. Garcia-montoya and H. Marzo-ortega, The role of secukinumab in the treatment of psoriatic arthritis and ankylosing spondylitis, Ther Adv Musculoskelet, vol.10, pp.169-180, 2018.

A. Deodhar, Three Multicenter Randomized, Double-Blind, Placebo-Controlled Studies Evaluating the Efficacy and Safety of Ustekinumab in Axial Spondyloarthritis, Arthritis Rheumatol, 2018.

A. L. Tan, H. Marzo-ortega, O. Connor, P. Fraser, A. Emery et al., Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study, Ann Rheum Dis, vol.63, pp.1041-1045, 2004.

U. Dundar, H. Çevik, U. S. Demirdal, and H. Toktas, Use of rituximab to treat a patient with coexistence of rheumatoid arthritis and ankylosing spondylitis: 18 months follow-up, Int J Rheum Dis, 2014.

S. Ugurlu, A. Hacioglu, Y. Adibnia, V. Hamuryudan, and H. Ozdogan, Tocilizumab in the treatment of twelve cases with aa amyloidosis secondary to familial mediterranean fever, Orphanet J Rare Dis, vol.12, p.105, 2017.

A. De-koning, J. W. Schoones, D. Van-der-heijde, and F. A. Van-gaalen, Pathophysiology of axial spondyloarthritis: Consensus and controversies, Eur J Clin Invest, vol.48, p.12913, 2018.

R. Lories and G. Schett, Pathophysiology of new bone formation and ankylosis in spondyloarthritis, Rheum Dis Clin North Am, vol.38, pp.555-567, 2012.

V. Ranganathan, E. Gracey, M. A. Brown, R. D. Inman, and N. Haroon, Pathogenesis of ankylosing spondylitis -recent advances and future directions, Nat Rev Rheumatol, vol.13, pp.359-367, 2017.

A. Rezaiemanesh, M. Abdolmaleki, K. Abdolmohammadi, H. Aghaei, F. D. Pakdel et al., Immune cells involved in the pathogenesis of ankylosing spondylitis, Biomed Pharmacother Biomedecine Pharmacother, vol.100, pp.198-204, 2018.

H. S. Hreggvidsdottir, T. Noordenbos, and D. L. Baeten, Inflammatory pathways in spondyloarthritis, Mol Immunol, vol.57, pp.28-37, 2014.

A. Paine and C. T. Ritchlin, Targeting the interleukin-23/17 axis in axial spondyloarthritis, Curr Opin Rheumatol, vol.28, pp.359-367, 2016.

T. Yago, Y. Nanke, M. Kawamoto, T. Kobashigawa, H. Yamanaka et al., IL-23 and Th17 Disease in Inflammatory Arthritis, J Clin Med, 2017.

K. Briot and C. Roux, Inflammation, bone loss and fracture risk in spondyloarthritis, RMD Open, vol.1, p.52, 2015.

R. J. Lories and N. Haroon, Bone formation in axial spondyloarthritis, Best Pract Res Clin Rheumatol, vol.28, pp.765-777, 2014.

B. Neerinckx and R. Lories, Mechanisms, impact and prevention of pathological bone regeneration in spondyloarthritis, Curr Opin Rheumatol, vol.29, pp.287-292, 2017.

M. Samson, D. Lakomy, S. Audia, and B. Bonnotte, Les lymphocytes TH17 : différenciation, phénotype, fonctions, et implications en pathologie et thérapeutique humaine, Rev Médecine Interne, vol.32, pp.292-301, 2011.

K. Okamoto, , 2017.

, Nihon Rinsho Meneki Gakkai Kaishi, vol.40, pp.361-366

G. Mori, D. 'amelio, P. Faccio, R. Brunetti, and G. , The Interplay between the Bone and the Immune System, Clin Dev Immunol, vol.2013, pp.1-16, 2013.

J. Sieper, H. Appel, J. Braun, and M. Rudwaleit, Critical appraisal of assessment of structural damage in ankylosing spondylitis: Implications for treatment outcomes, Arthritis Rheum, vol.58, pp.649-656, 2008.

P. Jacques and D. Mcgonagle, The role of mechanical stress in the pathogenesis of spondyloarthritis and how to combat it, Best Pract Res Clin Rheumatol, vol.28, pp.703-710, 2014.

W. Xie, L. Zhou, S. Li, T. Hui, and D. Chen, Wnt/?-catenin signaling plays a key role in the development of spondyloarthritis, Ann N Y Acad Sci, vol.1364, pp.25-31, 2016.

H. Liao, Y. Lin, C. Tsai, and T. Chou, Bone morphogenetic proteins and Dickkopf-1 in ankylosing spondylitis, Scand J Rheumatol, vol.47, pp.56-61, 2018.

D. D. O'rielly, M. Uddin, and P. Rahman, Ankylosing spondylitis: beyond genome-wide association studies, Curr Opin Rheumatol, vol.28, pp.337-345, 2016.

A. Hanson and M. A. Brown, Genetics and the Causes of Ankylosing Spondylitis, Rheum Dis Clin N Am, vol.43, pp.401-414, 2017.

P. C. Robinson and M. A. Brown, Genetics of ankylosing spondylitis, Mol Immunol, vol.57, pp.2-11, 2014.

M. F. Caffrey and D. C. James, Human lymphocyte antigen association in ankylosing spondylitis, Nature, vol.242, p.121, 1973.

L. Schlosstein, P. I. Terasaki, R. Bluestone, and C. M. Pearson, High association of an HL-A antigen, W27, with ankylosing spondylitis, N Engl J Med, vol.288, pp.704-706, 1973.

P. Bowness, HLA-B27, Annu Rev Immunol, vol.33, pp.29-48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00089995

N. Akkoç, H. Yarkan, G. Kenar, M. Khan, A. Cortes et al., Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci, International Genetics of Ankylosing Spondylitis Consortium (IGAS), vol.19, pp.730-738, 2013.

Z. Li and M. A. Brown, Progress of genome-wide association studies of ankylosing spondylitis, Clin Transl Immunol, vol.6, p.163, 2017.

S. Keidel, L. Chen, J. Pointon, and P. Wordsworth, ERAP1 and ankylosing spondylitis, Curr Opin Immunol, vol.25, pp.97-102, 2013.

N. Agrawal and M. A. Brown, Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases, Genes Immun, vol.15, pp.521-527, 2014.

B. Fu, S. Li, L. Wang, M. A. Berman, and M. E. Dorf, The ubiquitin conjugating enzyme UBE2L3 regulates TNF?-induced linear ubiquitination, Cell Res, vol.24, pp.376-379, 2014.

S. Wang, I. Adrianto, and G. B. Wiley, A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus, Genes Immun, vol.13, pp.380-387, 2012.

J. P. Sherlock, C. D. Buckley, and D. J. Cua, The critical role of interleukin-23 in spondyloarthropathy, Mol Immunol, vol.57, pp.38-43, 2014.

A. Ebringer, The relationship between Klebsiella infection and ankylosing spondylitis, Baillières Clin Rheumatol, vol.3, pp.321-338, 1989.

A. Kijlstra, L. Luyendijk, R. Van-der-gaag, E. Van-kregten, A. Linssen et al., IgG and IgA immune response against klebsiella in HLA-B27-associated anterior uveitis, Br J Ophthalmol, vol.70, pp.85-88, 1986.

R. W. Ebringer, D. R. Cawdell, P. Cowling, and A. Ebringer, Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease, Ann Rheum Dis, vol.37, pp.146-151, 1978.

A. F. Geczy, K. Seager, H. V. Bashir, A. De-vere-tyndall, and J. Edmonds, The role of Klebsiella in the pathogenesis of ankylosing spondylitis. II Evidence for a specific B27-associated marker on the lymphocytes of patients with ankylosing spondylitis, J Clin Lab Immunol, vol.3, pp.23-28, 1980.

L. Zhang, Y. Zhang, J. Chen, X. Huang, G. Fang et al., The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review, Microb Pathog, vol.117, pp.49-54, 2018.

T. Rashid, A. Ebringer, and C. Wilson, The Link Between Klebsiella and Ankylosing Spondylitis in Worldwide Geographical Locations, Curr Rheumatol Rev, vol.12, pp.223-231, 2016.

M. L. Stoll, Gut microbes, immunity, and spondyloarthritis, Clin Immunol, vol.159, pp.134-142, 2015.

L. Yang, L. Wang, X. Wang, C. J. Xian, and H. Lu, A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis, Int J Mol Sci, 2016.

Y. Xu, X. Tan, Y. He, Y. Zhou, X. He et al., Role of gut microbiome in ankylosing spondylitis: an analysis of studies in literature, Discov Med, vol.22, pp.361-370, 2016.

V. Moalic, Comment est réalisé un typage HLA ? Réanimation, vol.17, pp.407-411, 2008.

C. Janeway, P. Travers, M. Walport, M. Shlomchik, O. Martínez-gonzález et al., Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives, Br J Rheumatol, vol.86, pp.644-647, 1994.

A. Collado, R. Sanmarti, C. Serra, T. Gallart, J. D. Cañeté et al., Serum levels of secretory IgA in ankylosing spondylitis, Scand J Rheumatol, vol.20, pp.153-158, 1991.

C. Wen, Z. Zheng, and T. Shao, Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis, Genome Biol, 2017.

R. Y. Tito, H. Cypers, M. Joossens, G. Varkas, L. Van-praet et al., Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis, vol.69, pp.114-121, 2017.

M. Breban, J. Tap, A. Leboime, R. Said-nahal, P. Langella et al., Faecal microbiota study reveals specific dysbiosis in spondyloarthritis, Ann Rheum Dis, vol.76, pp.1614-1622, 2017.

P. B. Wright, A. Mcentegart, D. Mccarey, I. B. Mcinnes, S. Siebert et al., Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation, Rheumatology, vol.55, pp.120-132, 2016.

F. Ciccia, G. Guggino, and A. Rizzo, Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis, Ann Rheum Dis, pp.1739-1747, 2015.

F. Babaie, M. Hasankhani, H. Mohammadi, E. Safarzadeh, A. Rezaiemanesh et al., The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: New insights and updates, Immunol Lett, vol.196, pp.52-62, 2018.

M. Wieczorek, E. T. Abualrous, J. Sticht, M. Álvaro-benito, S. Stolzenberg et al., Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation, Front Immunol, vol.8, p.292, 2017.

A. S. Fauci, C. Wiener, E. Braunwald, D. Kasper, S. Hauser et al.,

D. D. Chaplin, Overview of the immune response, J Allergy Clin Immunol, vol.125, pp.3-23, 2010.

A. Blees, D. Januliene, T. Hofmann, N. Koller, C. Schmidt et al., Structure of the human MHC-I peptide-loading complex, Nature, 2017.

C. Turano, E. Gaucci, C. Grillo, and S. Chichiarelli, ERp57/GRP58: a protein with multiple functions, Cell Mol Biol Lett, vol.16, pp.539-563, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00980243

L. Ellgaard and E. Frickel, Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding, Cell Biochem Biophys, vol.39, pp.223-247, 2003.

S. Eggensperger and R. Tampé, The transporter associated with antigen processing: a key player in adaptive immunity, Biol Chem, vol.396, pp.1059-1072, 2015.

E. Reeves, T. Elliott, E. James, and C. J. Edwards, ERAP1 in the pathogenesis of ankylosing spondylitis, Immunol Res, vol.60, pp.257-269, 2014.

N. Garbi, G. Hämmerling, and S. Tanaka, Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes, Curr Opin Immunol, vol.19, pp.99-105, 2007.

J. G. Donaldson and D. B. Williams, Intracellular assembly and trafficking of MHC class I molecules, Traffic Cph Den, vol.10, pp.1745-1752, 2009.

A. Mathieu, F. Paladini, A. Vacca, A. Cauli, M. T. Fiorillo et al., The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: A unifying hypothesis, Autoimmun Rev, vol.8, pp.420-425, 2009.

M. A. Khan, Polymorphism of HLA-B27: 105 subtypes currently known, Curr Rheumatol Rep, vol.15, p.362, 2013.

M. A. Khan, An Update on the Genetic Polymorphism of HLA-B*27 With 213 Alleles Encompassing 160 Subtypes (and Still Counting), Curr Rheumatol Rep, 2017.

F. A. Van-gaalen, Does HLA-B*2706 protect against ankylosing spondylitis? A meta-analysis, Int J Rheum Dis, vol.15, pp.8-12, 2012.

J. A. Mccutcheon and C. T. Lutz, Mutagenesis around residue 176 on HLA-B * 0702 characterizes multiple distinct epitopes for anti-HLA antibodies, Hum Immunol, vol.35, pp.125-131, 1992.

B. Chen, J. Li, C. He, D. Li, W. Tong et al., Role of HLA-B27 in the pathogenesis of ankylosing spondylitis, Mol Med Rep, vol.15, pp.1943-1951, 2017.

S. Lee, S. D. Khare, M. M. Griffiths, H. S. Luthra, and C. S. David, HLA-B27 transgenic mice are susceptible to collagen-induced arthritis: type II collagen as a potential target in human disease, Hum Immunol, vol.61, pp.140-147, 2000.

M. Breban, F. Costantino, C. André, G. Chiocchia, and H. Garchon, Revisiting MHC Genes in Spondyloarthritis, Curr Rheumatol Rep, 2015.

F. Paladini, E. Cocco, A. Cauli, I. Cascino, A. Vacca et al., A functional polymorphism of the vasoactive intestinal peptide receptor 1 gene correlates with the presence of HLA-B*2705 in Sardinia, Genes Immun, vol.9, pp.659-667, 2008.

R. G. Urban, R. M. Chicz, W. S. Lane, J. L. Strominger, A. Rehm et al., A subset of HLA-B27 molecules contains peptides much longer than nonamers, Proc Natl Acad Sci U S A, vol.91, pp.1534-1538, 1994.

C. Vitulano, V. Tedeschi, F. Paladini, R. Sorrentino, and M. T. Fiorillo, The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis, Clin Exp Immunol, vol.190, pp.281-290, 2017.

C. López-larrea, S. González, and J. Martinez-borra, The role of HLA-B27 polymorphism and molecular mimicry in spondylarthropathy, Mol Med Today, vol.4, pp.540-549, 1998.

V. Montserrat, B. Galocha, M. Marcilla, M. Vázquez, L. De-castro et al., HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression, and T cell recognition: relationship to B*2705 and B*2706, J Immunol Baltim Md, vol.177, pp.7015-7023, 1950.

J. M. Brooks, R. J. Murray, W. A. Thomas, M. G. Kurilla, and A. B. Rickinson, Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide, J Exp Med, vol.178, pp.879-887, 1993.

C. Rückert, M. T. Fiorillo, B. Loll, R. Moretti, J. Biesiadka et al., Conformational dimorphism of self-peptides and molecular mimicry in a diseaseassociated HLA-B27 subtype, J Biol Chem, vol.281, pp.2306-2316, 2006.

M. A. Penttinen, P. Ekman, and K. Granfors, Non-antigen presenting effects of HLA-B27, Curr Mol Med, vol.4, pp.41-49, 2004.

M. A. Khan, A. Mathieu, R. Sorrentino, and N. Akkoc, The pathogenetic role of HLA-B27 and its subtypes, Autoimmun Rev, vol.6, pp.183-189, 2007.

S. D. Khare, S. Lee, M. J. Bull, J. Hanson, H. S. Luthra et al., Peptide binding alpha1alpha2 domain of HLA-B27 contributes to the disease pathogenesis in transgenic mice, Hum Immunol, vol.60, pp.116-126, 1999.

R. L. Allen, C. A. O'callaghan, A. J. Mcmichael, and P. Bowness, Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure, J Immunol Baltim Md, vol.162, pp.5045-5048, 1950.

S. G. Santos, S. Lynch, E. C. Campbell, A. N. Antoniou, and S. J. Powis, Induction of HLA-B27 heavy chain homodimer formation after activation in dendritic cells, Arthritis Res Ther, vol.100, p.100, 2008.

J. Giles, J. Shaw, and C. Piper, HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I, J Immunol Baltim Md, vol.188, pp.6184-6193, 1950.

T. W. Kuijpers, S. Vendelbosch, . Berg-m-van-den, and D. Baeten, Killer immunoglobulin receptor genes in spondyloarthritis, Curr Opin Rheumatol, vol.28, pp.368-375, 2016.

R. A. Colbert, T. M. Tran, and G. Layh-schmitt, HLA-B27 misfolding and ankylosing spondylitis, Mol Immunol, vol.57, pp.44-51, 2014.

J. P. Mear, K. L. Schreiber, C. Münz, X. Zhu, S. Stevanovi? et al., Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies, J Immunol Baltim Md, vol.163, pp.6665-6670, 1950.

M. J. Turner, D. P. Sowders, M. L. Delay, R. Mohapatra, S. Bai et al., HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response, J Immunol Baltim Md, vol.175, pp.2438-2448, 1950.

J. Grootjans, A. Kaser, R. J. Kaufman, and R. S. Blumberg, The unfolded protein response in immunity and inflammation, Nat Rev Immunol, vol.16, pp.469-484, 2016.

S. Lynch, S. G. Santos, E. C. Campbell, A. Nimmo, C. Botting et al., Novel MHC Class I Structures on Exosomes, J Immunol, vol.183, pp.1884-1891, 2009.

G. Raposo, D. Tenza, S. Mecheri, R. Peronet, C. Bonnerot et al., Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation, Mol Biol Cell, vol.8, pp.2631-2645, 1997.

G. Raposo, H. W. Nijman, W. Stoorvogel, R. Liejendekker, C. V. Harding et al., B lymphocytes secrete antigen-presenting vesicles, J Exp Med, vol.183, pp.1161-1172, 1996.

K. Ohashi, Pathogenesis of beta2-microglobulin amyloidosis, Pathol Int, vol.51, pp.1-10, 2001.

S. Fukunishi, K. Yoh, S. Kamae, and S. Yoshiya, Beta 2-microglobulin amyloid deposit in HLA-B27 transgenic rats, Mod Rheumatol, vol.17, pp.380-384, 2007.

R. Lories, Animal models of spondyloarthritis, Curr Opin Rheumatol, vol.18, pp.342-346, 2006.

C. Hacquard-bouder, M. Ittah, and M. Breban, Animal models of HLA-B27-associated diseases: new outcomes, Joint Bone Spine, vol.73, pp.132-138, 2006.

M. Breban, L. M. Araujo, and G. Chiocchia, Editorial: Animal Models of Spondyloarthritis: Do They Faithfully Mirror Human Disease?: Editorial, Arthritis Rheumatol, vol.66, pp.1689-1692, 2014.

J. D. Taurog, Immunology, genetics, and animal models of the spondyloarthropathies, Curr Opin Rheumatol, vol.2, pp.586-591, 1990.

M. Breban, HLA-B27 transgenic rats model, Ann Med Interne, vol.149, pp.139-141, 1998.

Q. Jouhault, Modulation de la balance Th17/Treg par l'IL-27 et ICOS dans un modèle animal de Spondyloarthrite, 2017.

E. Barnea, M. Kadosh, D. Haimovich, and Y. , The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion, Mol Cell Proteomics MCP, vol.16, pp.642-662, 2017.

O. Marroquin-belaunzaran, S. Kleber, and S. Schauer, HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats, PloS One, vol.1, p.130811, 2015.

P. Lin, M. Bach, and M. Asquith, HLA-B27 and human ?2-microglobulin affect the gut microbiota of transgenic rats, PloS One, vol.9, p.105684, 2014.

B. Uchanska-ziegler and A. Ziegler, HLA-B27-transgenic rats, amyloid deposits, and spondyloarthropathies, Mod Rheumatol, vol.18, pp.425-426, 2008.

S. D. Khare, H. S. Luthra, and C. S. David, Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies, J Exp Med, vol.182, pp.1153-1158, 1995.

D. J. Kingsbury, J. P. Mear, D. P. Witte, J. D. Taurog, D. C. Roopenian et al., Development of spontaneous arthritis in ?2-microglobulin-deficient mice without expression of HLA-B27: Association with deficiency of endogenous major histocompatibility complex class I expression, Arthritis Rheum, vol.43, pp.2290-2296, 2000.

J. Capková and P. Ivanyi, H-2 influence on ankylosing enthesopathy of the ankle (ANKENT), Folia Biol (Praha), vol.38, pp.258-262, 1992.

S. Weinreich, F. Eulderink, J. Capkova, M. Pla, K. Gaede et al., HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice, Hum Immunol, vol.42, pp.103-115, 1995.

R. Lories, I. Derese, and F. P. Luyten, Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis, J Clin Invest, vol.115, pp.1571-1579, 2005.

K. R. Haynes, A. R. Pettit, R. Duan, H. Tseng, T. T. Glant et al., Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors, Arthritis Res Ther, vol.14, p.253, 2012.

H. Tseng, T. T. Glant, M. A. Brown, T. J. Kenna, G. P. Thomas et al., Early anti-inflammatory intervention ameliorates axial disease in the proteoglycan-induced spondylitis mouse model of ankylosing spondylitis, BMC Musculoskelet Disord, vol.18, p.228, 2017.

S. Ebihara, F. Date, Y. Dong, and M. Ono, Interleukin-17 is a critical target for the treatment of ankylosing enthesitis and psoriasis-like dermatitis in mice, Autoimmunity, vol.48, pp.259-266, 2015.

J. Char, J. J. Jaller, J. A. Waibel, J. S. Bhanusali, D. G. Bhanusali et al., The Role of IL-17 in the Human Immune System and Its Blockage as a Treatment of Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis, J Drugs Dermatol JDD, vol.17, pp.539-542, 2018.

I. E. Adamopoulos, M. Tessmer, and C. Chao, IL-23 Is Critical for Induction of Arthritis, Osteoclast Formation, and Maintenance of Bone Mass, J Immunol, vol.187, pp.951-959, 2011.

S. Guerard, M. Boieri, M. Hultqvist, R. Holmdahl, and K. Wing, The SKG Mutation in ZAP-70 also Confers Arthritis Susceptibility in C57 Black Mouse Strains, Scand J Immunol, vol.84, pp.3-11, 2016.

C. Y. Chow and L. T. Reiter, Etiology of Human Genetic Disease on the Fly, Trends Genet TIG, vol.33, pp.391-398, 2017.

M. Piper and L. Partridge, Drosophila as a model for ageing, Biochim Biophys Acta, 2017.

A. Sen and R. T. Cox, Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease, Curr Top Dev Biol, vol.121, pp.1-27, 2017.

U. B. Pandey and C. D. Nichols, Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery, Pharmacol Rev, vol.63, pp.411-436, 2011.

P. L?rincz, C. Mauvezin, and G. Juhász, Exploring Autophagy in Drosophila. Cells, 2017.

X. Liu, J. J. Hodgson, and N. Buchon, Drosophila as a model for homeostatic, antibacterial, and antiviral mechanisms in the gut, PLoS Pathog, vol.13, p.1006277, 2017.

S. J. Marygold, M. A. Crosby, J. L. Goodman, and F. Consortium, Using FlyBase, a Database of Drosophila Genes and Genomes, Methods Mol Biol Clifton NJ, vol.1478, pp.1-31, 2016.

L. T. Reiter, A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster, Genome Res, vol.11, pp.1114-1125, 2001.

B. Ugur, K. Chen, and H. J. Bellen, Drosophila tools and assays for the study of human diseases, Dis Model Mech, vol.9, pp.235-244, 2016.

J. L. Marsh, J. Pallos, and L. M. Thompson, Fly models of Huntington's disease, Hum Mol Genet, vol.12, issue.2, pp.187-193, 2003.

K. Prüßing, A. Voigt, and J. B. Schulz, Drosophila melanogaster as a model organism for Alzheimer's disease, Mol Neurodegener, vol.8, p.35, 2013.

R. West, R. Furmston, C. Williams, and C. Elliott, Neurophysiology of Drosophila models of Parkinson's disease, p.381281, 2015.

M. Van-der-voet, B. Nijhof, M. Oortveld, and A. Schenck, Drosophila models of early onset cognitive disorders and their clinical applications, Neurosci Biobehav Rev, vol.46, pp.326-342, 2014.

G. P. Bell and B. J. Thompson, Colorectal cancer progression: lessons from Drosophila?, Semin Cell Dev Biol, vol.28, pp.70-77, 2014.

M. Sonoshita and R. L. Cagan, Modeling Human Cancers in Drosophila, Curr Top Dev Biol, vol.121, pp.287-309, 2017.

A. Hsouna, G. Nallamothu, N. Kose, M. Guinea, V. Dammai et al., Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis, Mol Cell Biol, vol.30, pp.3779-3794, 2010.

H. Herranz and S. M. Cohen, Drosophila as a Model to Study the Link between Metabolism and Cancer, J Dev Biol, vol.5, p.50, 2017.

J. Daenzer and J. L. Fridovich-keil, Drosophila melanogaster Models of Galactosemia, Curr Top Dev Biol, vol.121, pp.377-395, 2017.

Y. Xu, M. Condell, H. Plesken, I. Edelman-novemsky, J. Ma et al., A Drosophila model of Barth syndrome, Proc Natl Acad Sci U S A, vol.103, pp.11584-11588, 2006.

L. Qian and R. Bodmer, Probing the polygenic basis of cardiomyopathies in Drosophila, J Cell Mol Med, vol.16, pp.972-977, 2012.

L. P. Musselman and R. P. Kühnlein, Drosophila as a model to study obesity and metabolic disease, J Exp Biol, 2018.

S. M. Mcbride, A. J. Bell, and T. A. Jongens, Behavior in a Drosophila model of fragile X, Results Probl Cell Differ, vol.54, pp.83-117, 2012.

R. E. Kreipke, Y. V. Kwon, H. R. Shcherbata, and H. Ruohola-baker, Drosophila melanogaster as a Model of Muscle Degeneration Disorders, Curr Top Dev Biol, vol.121, pp.83-109, 2017.

S. Lin, Y. Chang, and C. Chan, Strategies for gene disruption in Drosophila, Cell Biosci, vol.4, p.63, 2014.

J. Xu, X. Ren, J. Sun, X. Wang, H. Qiao et al., A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila, J Genet Genomics Yi Chuan Xue Bao, vol.42, pp.141-149, 2015.

S. Majumdar and D. C. Rio, P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr, vol.3, pp.3-0004, 2015.

A. Kaya-Çopur and F. Schnorrer, A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila, Methods Mol Biol Clifton NJ, vol.1478, pp.117-143, 2016.

N. Buchon, N. Silverman, and S. Cherry, Immunity in Drosophila melanogaster -from microbial recognition to whole-organism physiology, Nat Rev Immunol, vol.14, pp.796-810, 2014.

H. G. Boman, I. Nilsson, and B. Rasmuson, Inducible antibacterial defence system in Drosophila, Nature, vol.237, pp.232-235, 1972.

L. N. Pham, M. S. Dionne, M. Shirasu-hiza, and D. S. Schneider, A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes, PLoS Pathog, vol.3, p.26, 2007.

M. Letourneau, F. Lapraz, A. Sharma, N. Vanzo, L. Waltzer et al., Drosophila hematopoiesis under normal conditions and in response to immune stress, FEBS Lett, vol.590, pp.4034-4051, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01920861

K. S. Gold and K. Brückner, Macrophages and cellular immunity in Drosophila melanogaster, Semin Immunol, vol.27, pp.357-368, 2015.

M. Crozatier, J. Krzemien, and A. Vincent, The hematopoietic niche: a Drosophila model, at last, Cell Cycle Georget Tex, vol.6, pp.1443-1444, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169739

N. Cláudio, A. Dalet, E. Gatti, and P. Pierre, Mapping the crossroads of immune activation and cellular stress response pathways, EMBO J, vol.32, pp.1214-1224, 2013.

M. Crozatier and M. Meister, Drosophila haematopoiesis, Cell Microbiol, vol.9, pp.1117-1126, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169823

I. Kounatidis and P. Ligoxygakis, Drosophila as a model system to unravel the layers of innate immunity to infection, Open Biol, p.120075, 2012.

H. Myllymäki, S. Valanne, and M. Rämet, The Drosophila imd signaling pathway, J Immunol Baltim Md, vol.192, pp.3455-3462, 1950.

S. Valanne, J. Wang, and M. Rämet, The Drosophila Toll signaling pathway, J Immunol Baltim Md, vol.186, pp.649-656, 1950.

H. D. Ryoo, Drosophila as a model for unfolded protein response research, BMB Rep, vol.48, pp.445-453, 2015.

F. Engin, ER stress and development of type 1 diabetes, J Investig Med Off Publ Am Fed Clin Res, vol.64, pp.2-6, 2016.

M. Corazzari, M. Gagliardi, G. M. Fimia, and M. Piacentini, Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate, Front Oncol, vol.7, p.78, 2017.

A. L. Clark and F. Urano, Endoplasmic reticulum stress in beta cells and autoimmune diabetes, Curr Opin Immunol, vol.43, pp.60-66, 2016.

C. D. Ochoa, R. F. Wu, and L. S. Terada, ROS signaling and ER stress in cardiovascular disease, Mol Aspects Med, 2018.

J. A. Smith, The role of the unfolded protein response in axial spondyloarthritis, Clin Rheumatol, vol.35, pp.1425-1431, 2016.

G. M. Preston and J. L. Brodsky, The evolving role of ubiquitin modification in endoplasmic reticulumassociated degradation, Biochem J, vol.474, pp.445-469, 2017.

Y. Fuchs and H. Steller, Programmed Cell Death in Animal Development and Disease, Cell, vol.147, pp.742-758, 2011.

S. Z. Hasnain, R. Lourie, I. Das, A. Chen, and M. A. Mcguckin, The interplay between endoplasmic reticulum stress and inflammation, Immunol Cell Biol, vol.90, pp.260-270, 2012.

S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicol Pathol, vol.35, p.192, 2007.

A. Clavier, A. Rincheval-arnold, C. J. Mignotte, B. Guénal, and I. , Apoptosis in Drosophila: which role for mitochondria?, Apoptosis Int J Program Cell Death, vol.21, pp.239-251, 2016.

X. Zhou, W. Jiang, Z. Liu, S. Liu, and X. Liang, Virus Infection and Death Receptor-Mediated Apoptosis. Viruses, 2017.

R. Sano and J. C. Reed, ER stress-induced cell death mechanisms, Biochim Biophys Acta, vol.1833, pp.3460-3470, 2013.

K. L. Rock and H. Kono, The Inflammatory Response to Cell Death, Annu Rev Pathol Mech Dis, vol.3, pp.99-126, 2008.

J. Bleil, J. Sieper, R. Maier, U. Schlichting, A. Hempfing et al., Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS, Arthritis Res Ther, 2015.

K. G. Guruharsha, J. Zhai, and B. , A Protein Complex Network of Drosophila melanogaster, Cell, vol.147, pp.690-703, 2011.

N. Ammeux, B. E. Housden, A. Georgiadis, Y. Hu, and N. Perrimon, Mapping signaling pathway crosstalk in Drosophila cells, Proc Natl Acad Sci, vol.113, pp.9940-9945, 2016.

V. S. Salazar, L. W. Gamer, and V. Rosen, BMP signalling in skeletal development, disease and repair, Nat Rev Endocrinol, vol.12, pp.203-221, 2016.

T. Katagiri, , 2012.

, Clin Calcium, vol.22, pp.1677-1683

T. Katagiri and S. Tsukamoto, The unique activity of bone morphogenetic proteins in bone: a critical role of the Smad signaling pathway, Biol Chem, 2013.

M. R. Urist, Bone: formation by autoinduction, Science, vol.150, pp.893-899, 1965.

A. H. Reddi and C. Huggins, Biochemical sequences in the transformation of normal fibroblasts in adolescent rats, Proc Natl Acad Sci U S A, vol.69, pp.1601-1605, 1972.

J. M. Wozney, V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters et al., Novel regulators of bone formation: molecular clones and activities, Science, vol.242, pp.1528-1534, 1988.

J. M. Wozney, V. Rosen, M. Byrne, A. J. Celeste, I. Moutsatsos et al., Growth factors influencing bone development, J Cell Sci Suppl, vol.13, pp.149-156, 1990.

C. A. Harrison, E. Wiater, P. C. Gray, J. Greenwald, S. Choe et al., Modulation of activin and BMP signaling, Mol Cell Endocrinol, vol.225, pp.19-24, 2004.

T. Katagiri and T. Watabe, Bone Morphogenetic Proteins. Cold Spring Harb Perspect Biol, vol.8, p.21899, 2016.

K. Miyazono, Y. Kamiya, and M. Morikawa, Bone morphogenetic protein receptors and signal transduction, J Biochem (Tokyo), vol.147, pp.35-51, 2010.

T. D. Mueller, Mechanisms of BMP-Receptor Interaction and Activation, Vitam. Horm. Elsevier, pp.1-61, 2015.

C. Heldin and A. Moustakas, Role of Smads in TGF? signaling, Cell Tissue Res, vol.347, pp.21-36, 2012.

K. Miyazawa and K. Miyazono, Regulation of TGF-? Family Signaling by Inhibitory Smads, Cold Spring Harb Perspect Biol, vol.9, p.22095, 2017.

R. Derynck and Y. E. Zhang, Smad-dependent and Smad-independent pathways in TGF-? family signalling, Nature, vol.425, pp.577-584, 2003.

T. M. Liu and E. H. Lee, Transcriptional regulatory cascades in Runx2-dependent bone development, Tissue Eng Part B Rev, vol.19, pp.254-263, 2013.

G. Sedlmeier and J. P. Sleeman, Extracellular regulation of BMP signaling: welcome to the matrix, Biochem Soc Trans, vol.45, pp.173-181, 2017.

W. Balemans and W. Van-hul, Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators, Dev Biol, vol.250, pp.231-250, 2002.

D. P. Brazil, R. H. Church, S. Surae, C. Godson, and F. Martin, BMP signalling: agony and antagony in the family, Trends Cell Biol, vol.25, pp.249-264, 2015.

C. Krause, A. Guzman, and P. Knaus, Int J Biochem Cell Biol, vol.43, pp.478-481, 2011.

E. M. De-robertis and Y. Moriyama, The Chordin Morphogenetic Pathway, Curr Top Dev Biol, vol.116, pp.231-245, 2016.

V. Rosen, BMP and BMP inhibitors in bone, Ann N Y Acad Sci, vol.1068, pp.19-25, 2006.

M. Ramel and C. S. Hill, Spatial regulation of BMP activity, FEBS Lett, vol.586, pp.1929-1941, 2012.

S. Piccolo, E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz et al., The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals, Nature, vol.397, pp.707-710, 1999.

A. Deglincerti, T. Haremaki, A. Warmflash, B. Sorre, and A. H. Brivanlou, Coco is a dual activity modulator of TGF? signaling, Dev Camb Engl, vol.142, pp.2678-2685, 2015.

K. Nolan and T. B. Thompson, The DAN family: modulators of TGF-? signaling and beyond, Protein Sci Publ Protein Soc, vol.23, pp.999-1012, 2014.

D. R. Hsu, A. N. Economides, X. Wang, P. M. Eimon, and R. M. Harland, The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities, Mol Cell, vol.1, pp.673-683, 1998.

R. L. Van-bezooijen, B. Roelen, A. Visser, L. Van-der-wee-pals, E. De-wilt et al., Sclerostin Is an Osteocyte-expressed Negative Regulator of Bone Formation, But Not a Classical BMP Antagonist. J Exp Med, vol.199, pp.805-814, 2004.

K. B. Lintern, S. Guidato, A. Rowe, J. W. Saldanha, and N. Itasaki, Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals, J Biol Chem, vol.284, pp.23159-23168, 2009.

D. Onichtchouk, Y. G. Chen, R. Dosch, V. Gawantka, H. Delius et al., Silencing of TGF-beta signalling by the pseudoreceptor BAMBI, Nature, vol.401, pp.480-485, 1999.

W. Jin, C. Yun, H. Kim, and S. Kim, TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling, Cancer Res, vol.67, pp.9869-9877, 2007.

E. Corradini, J. L. Babitt, and H. Y. Lin, The RGM/DRAGON family of BMP co-receptors, Cytokine Growth Factor Rev, vol.20, pp.389-398, 2009.

S. Colucci, A. Pagani, M. Pettinato, I. Artuso, A. Nai et al., The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes, Blood, vol.130, pp.2111-2120, 2017.

G. Murakami, T. Watabe, K. Takaoka, K. Miyazono, and T. Imamura, Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads, Mol Biol Cell, vol.14, pp.2809-2817, 2003.

M. Kowanetz, P. Lönn, M. Vanlandewijck, K. Kowanetz, C. Heldin et al., TGFbeta induces SIK to negatively regulate type I receptor kinase signaling, J Cell Biol, vol.182, pp.655-662, 2008.

A. J. Peterson, O. Connor, and M. B. , Strategies for exploring TGF-? signaling in Drosophila, Methods, vol.68, pp.183-193, 2014.

M. Affolter and K. Basler, The Decapentaplegic morphogen gradient: from pattern formation to growth regulation, Nat Rev Genet, vol.8, pp.663-674, 2007.

F. Hamaratoglu, M. Affolter, and G. Pyrowolakis, Dpp/BMP signaling in flies: From molecules to biology, Semin Cell Dev Biol, vol.32, pp.128-136, 2014.

E. Bangi, Dual function of the Drosophila Alk1/Alk2 ortholog Saxophone shapes the Bmp activity gradient in the wing imaginal disc, Development, vol.133, pp.3295-3303, 2006.

L. A. Raftery, V. Twombly, K. Wharton, and W. M. Gelbart, Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila, Genetics, vol.139, pp.241-254, 1995.

R. G. Wisotzkey, A. Mehra, D. J. Sutherland, L. L. Dobens, X. Liu et al., Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses, Dev Camb Engl, vol.125, pp.1433-1445, 1998.

K. Tsuneizumi, T. Nakayama, Y. Kamoshida, T. B. Kornberg, J. L. Christian et al., Daughters against dpp modulates dpp organizing activity in Drosophila wing development, Nature, vol.389, pp.627-631, 1997.

K. Arora, H. Dai, S. G. Kazuko, J. Jamal, M. B. O'connor et al., The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family, Cell, vol.81, pp.781-790, 1995.

S. E. Winter and G. Campbell, Repression of Dpp targets in the Drosophila wing by Brinker, Dev Camb Engl, vol.131, pp.6071-6081, 2004.

N. T. Takaesu, A. N. Johnson, O. H. Sultani, and S. J. Newfeld, Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches, Dev Biol, vol.247, pp.225-236, 2002.

J. F. De-celis and R. Barrio, Regulation and function of Spalt proteins during animal development, Int J Dev Biol, vol.53, pp.1385-1398, 2009.

S. Grimm and G. O. Pflugfelder, Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless, Science, vol.271, pp.1601-1604, 1996.

K. Yu, S. Srinivasan, O. Shimmi, B. Biehs, K. E. Rashka et al., Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity, Dev Camb Engl, vol.127, pp.2143-2154, 2000.

J. J. Ross, O. Shimmi, P. Vilmos, A. Petryk, H. Kim et al., Twisted gastrulation is a conserved extracellular BMP antagonist, Nature, vol.410, pp.479-483, 2001.

D. R. Hopkins, S. Keles, and D. S. Greenspan, The bone morphogenetic protein 1/Tolloid-like metalloproteinases, Matrix Biol J Int Soc Matrix Biol, vol.26, pp.508-523, 2007.

R. Fan, Genetics and its Associated Pathways of Pulmonary Arterial Hypertension, Int J Respir Pulm Med, 2015.

H. L. Ashe, Modulation of BMP signalling by integrins, Biochem Soc Trans, vol.44, pp.1465-1473, 2016.

S. M. Jackson, H. Nakato, M. Sugiura, A. Jannuzi, R. Oakes et al., ) dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp. Dev Camb Engl, vol.124, pp.4113-4120, 1997.

M. Norman, R. Vuilleumier, A. Springhorn, J. Gawlik, and G. Pyrowolakis, Pentagone internalises glypicans to fine-tune multiple signalling pathways, 2016.

M. Szuperak, S. Salah, E. J. Meyer, U. Nagarajan, A. Ikmi et al., Feedback regulation of Drosophila BMP signaling by the novel extracellular protein Larval Translucida, Development, vol.138, pp.715-724, 2011.

J. Li and W. X. Li, A novel function of Drosophila eIF4A as a negative regulator of Dpp/BMP signalling that mediates SMAD degradation, Nat Cell Biol, vol.8, pp.1407-1414, 2006.

K. Miyazawa, M. Shinozaki, T. Hara, T. Furuya, and K. Miyazono, Two major Smad pathways in TGFbeta superfamily signalling, Genes Cells Devoted Mol Cell Mech, vol.7, pp.1191-1204, 2002.

K. Miyazono, K. Kusanagi, and H. Inoue, Divergence and convergence of TGF-beta/BMP signaling, J Cell Physiol, vol.187, pp.265-276, 2001.

K. Luo, Signaling Cross Talk between TGF-?/Smad and Other Signaling Pathways, Cold Spring Harb Perspect Biol, vol.9, p.22137, 2017.

X. Guo and X. Wang, Signaling cross-talk between TGF-?/BMP and other pathways, Cell Res, vol.19, pp.71-88, 2009.

M. Ehrlich, O. Gutman, P. Knaus, and Y. I. Henis, Oligomeric interactions of TGF-? and BMP receptors, FEBS Lett, vol.586, pp.1885-1896, 2012.

O. E. Olsen, K. F. Wader, H. Hella, A. K. Mylin, I. Turesson et al., Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B, vol.13, p.27, 2015.

J. A. Montero, C. I. Lorda-diez, Y. Gañan, D. Macias, and J. M. Hurle, Activin/TGF? and BMP crosstalk determines digit chondrogenesis, Dev Biol, vol.321, pp.343-356, 2008.

E. Grönroos, I. J. Kingston, A. Ramachandran, R. A. Randall, P. Vizán et al., Transforming growth factor ? inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes, Mol Cell Biol, vol.32, pp.2904-2916, 2012.

Z. Zi, D. A. Chapnick, and X. Liu, Dynamics of TGF-?/Smad signaling, FEBS Lett, vol.586, pp.1921-1928, 2012.

G. Chen, C. Deng, and Y. Li, TGF-? and BMP signaling in osteoblast differentiation and bone formation, Int J Biol Sci, vol.8, pp.272-288, 2012.

A. Upadhyay, L. Moss-taylor, M. Kim, A. C. Ghosh, O. Connor et al., TGF-? Family Signaling in Drosophila, Cold Spring Harb Perspect Biol, 2017.

O. Shimmi, A. Ralston, S. S. Blair, O. Connor, and M. B. , The crossveinless gene encodes a new member of the Twisted gastrulation family of BMP-binding proteins which, with Short gastrulation, promotes BMP signaling in the crossveins of the Drosophila wing, Dev Biol, vol.282, pp.70-83, 2005.

C. F. Hevia and J. F. De-celis, Activation and function of TGF? signalling during Drosophila wing development and its interactions with the BMP pathway, Dev Biol, vol.377, pp.138-153, 2013.

L. A. Raftery and D. M. Umulis, Regulation of BMP activity and range in Drosophila wing development, Curr Opin Cell Biol, vol.24, pp.158-165, 2012.

S. S. Blair, Wing Vein Patterning in Drosophila and the Analysis of Intercellular Signaling, Annu Rev Cell Dev Biol, vol.23, pp.293-319, 2007.

M. Crozatier, B. Glise, and A. Vincent, Patterns in evolution: veins of the Drosophila wing, Trends Genet, vol.20, pp.498-505, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00169830

T. Klein, Wing disc development in the fly: the early stages, Curr Opin Genet Dev, vol.11, pp.470-475, 2001.

E. Bangi and K. Wharton, Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning, Dev Biol, vol.295, pp.178-193, 2006.

M. B. O'connor, Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing, Development, vol.133, pp.183-193, 2005.

J. M. Marcus, The development and evolution of crossveins in insect wings, J Anat, vol.199, pp.211-216, 2001.

A. Brooks, W. Dou, X. Yang, T. Brosnan, M. Pargett et al., BMP signaling in wing development: A critical perspective on quantitative image analysis, FEBS Lett, vol.586, pp.1942-1952, 2012.

E. Coles, J. Christiansen, A. Economou, M. Bronner-fraser, and D. G. Wilkinson, A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration, Dev Camb Engl, vol.131, pp.5309-5317, 2004.

J. Chen, S. M. Honeyager, J. Schleede, A. Avanesov, A. Laughon et al., Crossveinless d is a vitellogenin-like lipoprotein that binds BMPs and HSPGs, and is required for normal BMP signaling in the Drosophila wing, Dev Camb Engl, vol.139, pp.2170-2176, 2012.

D. Sato, K. Sugimura, D. Satoh, and T. Uemura, Crossveinless-c, the Drosophila homolog of tumor suppressor DLC1, regulates directional elongation of dendritic branches via down-regulating Rho1 activity, Genes Cells, 2010.

T. E. Haerry, O. Khalsa, M. B. O'connor, and K. A. Wharton, Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila, Dev Camb Engl, vol.125, pp.3977-3987, 1998.

J. J. Worthington, T. M. Fenton, B. I. Czajkowska, J. E. Klementowicz, and M. A. Travis, Regulation of TGF? in the immune system: An emerging role for integrins and dendritic cells, Immunobiology, vol.217, pp.1259-1265, 2012.

L. K. Bollum, K. Huse, M. P. Oksvold, B. Bai, V. I. Hilden et al., BMP-7 induces apoptosis in human germinal center B cells and is influenced by TGF-? receptor type I ALK5, PLOS ONE, vol.12, p.177188, 2017.

M. Kuczma, A. Kurczewska, and P. Kraj, Modulation of bone morphogenic protein signaling in Tcells for cancer immunotherapy, J Immunotoxicol, vol.11, pp.319-327, 2014.

R. P. Pirraco, R. L. Reis, and A. P. Marques, Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs, J Tissue Eng Regen Med, vol.7, pp.392-400, 2013.

J. H. Hong, G. T. Lee, J. H. Lee, S. J. Kwon, S. H. Park et al., Effect of bone morphogenetic protein-6 on macrophages, Immunology, vol.128, pp.442-450, 2009.

V. G. Martínez, C. Hernández-lópez, J. Valencia, L. Hidalgo, A. Entrena et al., The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation, Immunol Cell Biol, vol.89, pp.610-618, 2011.

M. Wu, G. Chen, and Y. Li, TGF-? and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res, vol.4, p.16009, 2016.

C. Zuo, Y. Huang, R. Bajis, M. Sahih, Y. Li et al., Osteoblastogenesis regulation signals in bone remodeling, Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA, vol.23, pp.1653-1663, 2012.

A. Bandyopadhyay, P. S. Yadav, and P. Prashar, BMP signaling in development and diseases: A pharmacological perspective, Biochem Pharmacol, vol.85, pp.857-864, 2013.

Y. Mishina, M. C. Hanks, S. Miura, M. D. Tallquist, and R. R. Behringer, Generation of Bmpr/Alk3 conditional knockout mice, Genes N Y N, vol.32, pp.69-72, 2000.

G. Sánchez-duffhues, C. Hiepen, P. Knaus, and P. Ten-dijke, Bone morphogenetic protein signaling in bone homeostasis, Bone, vol.80, pp.43-59, 2015.

H. J. Seeherman, X. J. Li, M. L. Bouxsein, and J. M. Wozney, rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model, J Bone Joint Surg Am, vol.92, pp.411-426, 2010.

A. Daluiski, T. Engstrand, M. E. Bahamonde, L. W. Gamer, E. Agius et al., Bone morphogenetic protein-3 is a negative regulator of bone density, Nat Genet, vol.27, pp.84-88, 2001.

D. Fong, M. Bisson, G. Laberge, S. Mcmanus, G. Grenier et al., Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro, Cell Signal, vol.25, pp.717-728, 2013.

M. Okamoto, J. Murai, Y. Imai, D. Ikegami, N. Kamiya et al., Conditional deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, increasing volume of remodeling bone in mice, J Bone Miner Res, vol.26, pp.2511-2522, 2011.

H. Kaneko, T. Arakawa, H. Mano, T. Kaneda, A. Ogasawara et al., Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts, Bone, vol.27, pp.479-486, 2000.

N. L. Nerurkar, L. Mahadevan, and C. J. Tabin, BMP signaling controls buckling forces to modulate looping morphogenesis of the gut, Proc Natl Acad Sci U S A, vol.114, pp.2277-2282, 2017.

L. E. Batts, D. B. Polk, R. N. Dubois, and H. Kulessa, Bmp signaling is required for intestinal growth and morphogenesis, Dev Dyn Off Publ Am Assoc Anat, vol.235, pp.1563-1570, 2006.

L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, pp.141-153, 2014.

B. A. Auclair, Y. D. Benoit, N. Rivard, Y. Mishina, and N. Perreault, Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage, Gastroenterology, vol.133, pp.887-896, 2007.

K. R. Taylor, M. Vinci, A. N. Bullock, and C. Jones, ACVR1 Mutations in DIPG: Lessons Learned from FOP, Cancer Res, vol.74, pp.4565-4570, 2014.

A. Tian and J. Jiang, Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut, vol.3, p.1857, 2014.

B. Kim, C. Li, and W. Qiao, Smad4 signalling in T cells is required for suppression of gastrointestinal cancer, Nature, vol.441, pp.1015-1019, 2006.

A. Ayyaz, H. Li, and H. Jasper, Haemocytes control stem cell activity in the Drosophila intestine, Nat Cell Biol, vol.17, pp.736-748, 2015.

J. Zhou, S. Florescu, A. Boettcher, L. Luo, D. Dutta et al., , 2015.

. Dpp, Gbb signaling is required for normal intestinal regeneration during infection, Dev Biol, vol.399, pp.189-203

F. S. Kaplan, S. A. Chakkalakal, and E. M. Shore, Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis, Dis Model Mech, vol.5, pp.756-762, 2012.

R. J. Pignolo, E. M. Shore, and F. S. Kaplan, Fibrodysplasia ossificans progressiva: clinical and genetic aspects, Orphanet J Rare Dis, vol.6, p.80, 2011.

A. H. Bauer, J. Bonham, L. Gutierrez, E. C. Hsiao, and D. Motamedi, Fibrodysplasia ossificans progressiva: a current review of imaging findings, Skeletal Radiol, 2018.

Y. Nakahara, R. Suzuki, T. Katagiri, J. Toguchida, and N. Haga, Phenotypic differences of patients with fibrodysplasia ossificans progressive due to p.Arg258Ser variants of ACVR1, Hum Genome Var, 2015.

V. Le, A. E. Akiyama, T. Wharton, and K. A. , Drosophila models of FOP provide mechanistic insight, 2017.

J. Hashemi, A. Shahfarhat, and A. Beheshtian, Fibrodysplasia ossificans progressiva: report of a case and review of articles, Iran J Radiol Q J Publ Iran Radiol Soc, vol.8, pp.113-117, 2011.

R. Taslimi, S. Jafarpour, and N. Hassanpour, FOP: still turning into stone, Clin Rheumatol, vol.34, pp.379-384, 2015.

A. J. Bridges, K. C. Hsu, A. Singh, R. Churchill, and J. Miles, Fibrodysplasia (myositis) ossificans progressiva, Semin Arthritis Rheum, vol.24, pp.155-164, 1994.

M. Dugar, V. Limaye, L. G. Cleland, and M. J. Ahern, Fibrodysplasia ossificans progressiva presenting as ankylosing spondylitis: Letters to the Editor, Intern Med J, vol.40, pp.862-864, 2010.

B. Grandon, N. Jah, A. Rincheval-arnold, I. Guenal, S. Gaumer et al., La drosophile comme outil de comprehension moléculaire du role de HLA-B27 dans la spondylarthrite, Rev Rhum, vol.83, p.54, 2016.

A. F. Milia, L. Ibba-manneschi, M. Manetti, G. Benelli, S. Generini et al., Evidence for the prevention of enthesitis in HLA-B27/h?2m transgenic rats treated with a monoclonal antibody against TNF-?, J Cell Mol Med, vol.15, pp.270-279, 2011.

A. F. Milia, M. Manetti, S. Generini, L. Polidori, G. Benelli et al., TNF? blockade prevents the development of inflammatory bowel disease in HLA-B27 transgenic rats, J Cell Mol Med, vol.13, pp.164-176, 2008.

D. Wendling, J. Cedoz, E. Racadot, and G. Dumoulin, Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis, Joint Bone Spine, vol.74, pp.304-305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00465291

M. Park, Y. Park, and S. Lee, Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis, Scand J Rheumatol, vol.37, pp.200-204, 2008.

H. Chen, C. Chen, Y. Lin, P. Chen, W. Chen et al., Association of Bone Morphogenetic Proteins with Spinal Fusion in Ankylosing Spondylitis, J Rheumatol, vol.37, pp.2126-2132, 2010.

R. Lories, I. Derese, J. L. Ceuppens, and F. P. Luyten, Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis: BMPs in Chronic Arthritis, Arthritis Rheum, vol.48, pp.2807-2818, 2003.

Y. B. Joo, S. Bang, T. Kim, S. Shim, S. Lee et al., Bone Morphogenetic Protein 6 Polymorphisms Are Associated with Radiographic Progression in Ankylosing Spondylitis, PLoS ONE, vol.9, p.104966, 2014.

D. Wendling, J. Cedoz, and E. Racadot, Serum levels of MMP-3 and cathepsin K in patients with ankylosing spondylitis: Effect of TNF? antagonist therapy, Joint Bone Spine, vol.75, pp.559-562, 2008.

A. Cortes, W. P. Maksymowych, and B. P. Wordsworth, Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis, Ann Rheum Dis, vol.74, pp.1387-1393, 2015.

L. Halevi, E. Barnea, I. Beer, M. Mann, and A. Admon, The HLA-B2705 peptidome, Arthritis Rheum NA-NA, 2010.

Y. H. Lee and G. G. Song, Meta-analysis of differentially expressed genes in ankylosing spondylitis, Genet Mol Res, vol.14, pp.5161-5170, 2015.

A. Wolken, D. M. Idone, V. Hatsell, S. J. Yu, P. B. Economides et al., The obligatory role of Activin A in the formation of heterotopic bone in Fibrodysplasia Ossificans Progressiva, Bone, vol.109, pp.210-217, 2018.

K. L. Jones, A. Mansell, S. Patella, B. J. Scott, M. P. Hedger et al., Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia, Proc Natl Acad Sci U S A, vol.104, pp.16239-16244, 2007.

M. R. Jackson, E. S. Song, Y. Yang, and P. A. Peterson, Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells, Proc Natl Acad Sci, vol.89, pp.12117-12121, 1992.

F. K. Tan and K. Farheen, The potential importance of Toll-like receptors in ankylosing spondylitis, Int J Clin Rheumatol, vol.6, pp.649-654, 2011.

T. Snelgrove, S. Lim, C. Greenwood, L. Peddle, S. Hamilton et al., Association of toll-like receptor 4 variants and ankylosing spondylitis: a case-control study, J Rheumatol, vol.34, pp.368-370, 2007.

Z. Yang, Y. Liang, Y. Zhu, C. Li, L. Zhang et al., Increased expression of Tolllike receptor 4 in peripheral blood leucocytes and serum levels of some cytokines in patients with ankylosing spondylitis: TLR4 in PBL and TNF-?, IL-2 and soluble TRAIL, Clin Exp Immunol, vol.149, pp.48-55, 2007.

A. Myles and A. Aggarwal, Expression of Toll-like receptors 2 and 4 is increased in peripheral blood and synovial fluid monocytes of patients with enthesitis-related arthritis subtype of juvenile idiopathic arthritis, Rheumatology, vol.50, pp.481-488, 2011.

C. Wright, M. Edelmann, K. Digleria, S. Kollnberger, H. Kramer et al., Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway, Ann Rheum Dis, vol.68, pp.1626-1632, 2009.

M. Rudwaleit and D. Baeten, Ankylosing spondylitis and bowel disease, Best Pract Res Clin Rheumatol, vol.20, pp.451-471, 2006.

I. Colmegna, R. Cuchacovich, and L. R. Espinoza, HLA-B27-Associated Reactive Arthritis: Pathogenetic and Clinical Considerations, Clin Microbiol Rev, vol.17, pp.348-369, 2004.

T. Gill, M. Asquith, S. R. Brooks, J. T. Rosenbaum, and R. A. Colbert, Effects of HLA-B27 on Gut Microbiota in Experimental Spondyloarthritis Implicate an Ecological Model of Dysbiosis, Arthritis Rheumatol, vol.70, pp.555-565, 2018.

S. Onal, H. Kazokoglu, B. Incili, E. E. Demiralp, and S. Yavuz, Prevalence and Levels of Serum Antibodies to Gram Negative Microorganisms in Turkish Patients with HLA-B27 Positive Acute Anterior Uveitis and Controls, Ocul Immunol Inflamm, vol.14, pp.293-299, 2006.

L. Päi, M. Virtala, M. Salmi, L. J. Pelliniemi, D. Yu et al., HLA-B27 modulates intracellular survival ofSalmonella enteritidis in human monocytic cells, Eur J Immunol, vol.27, pp.1331-1338, 1997.

T. David, S. F. Ling, and A. Barton, Genetics of immune-mediated inflammatory diseases, Clin Exp Immunol, 2018.