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Abstract

Genomic evaluation exploits DNA marker information for selection purposes in
breeds with agricultural importance. The majority of the available genomic evaluation
methods today rely on SNP information, although it is hypothesized that haplotypes
would perform better due to their higher polymorphism. Genomic evaluation was not
implemented in regional dairy cattle breeds as of 2014, resulting in serious
economical disadvantages for these breeds, urging breeders and scientists to
address the issue. Our main aim was to evaluate haplotypes in genomic evaluation
with focus on their performance in combination with multi-breed reference
populations, which is an appealing way to enlarge the otherwise small reference
populations of regional breeds.

The performance of haplotypes compared to SNP was assessed in a large dairy
cattle breed. The higher performance of haplotypes was confirmed and haplotypes
outperformed the SNP-based analyses in all scenarios. Furthermore, we also tested
the hypotheses that information on allele frequency and on linkage pattern along the
chromosomes are both relevant in marker selection for genomic evaluation purposes.
After the development and assessment of two haplotype selection criteria capable of
incorporating these information, we could prove that these hypotheses are valid and
the efficiency of genomic evaluation methods can be improved using haplotypes. In
addition, the developed haplotype selection criteria also allowed the reduction of the

number of markers used in the prediction process by a significant proportion.

Out of these two criteria, the higher performing one was incorporated in the French
routine genomic evaluation in 2015. The performance of this evaluation in the
regional breeds was assessed and possible ways of improvements were
implemented and evaluated. As a result of the sufficiently high performance of the
French routine evaluation in the regional breeds, genomic selection was officially
implemented in these breeds in 2016. The use of the bovine high-density SNP-chip

did not improve the performance of genomic evaluation in these breeds, while multi-



breed training populations were only partially beneficial. On the other hand,
genotyping females led to notable increases in selection accuracies. Inclusion of
candidate mutations identified in large breeds also led to a small improvement in

these breeds.

Keywords : dairy cattle, genomic evaluation, multi-breed, haplotype, haploblock
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Résumeé

En sélection génomique, des marqueurs de I'ADN sont utilisés pour I'estimation des
valeurs génétiques. La sélection génomique a été mise en placedans les trois
grandes races (inter)nationales (Montbéliarde, Normande et Holstein) en 2014 en
utilisant les données SNP de la puce 50K et elle a entrainé une augmentation
significative (~2 fois plus) du progrés génétique annuel dans les caracteres
sélectionnés. Pour les races dites régionales, le nombre de taureaux testés est trop
restreint pour permettre la constitution d’'une population de référence suffisamment
grande. Le manque d’évaluation génomique chez les races régionales — étant donné
gu’elle a été mise en pratigue dans les grandes races — place les races régionales

dans un sérieux désavantage économique.

La plupart des méthodes d'évaluation génomique utilisées depuis 2014utilisent les
SNP comme marqueurs de I'ADN, bien que les haplotypes (combinaisons de N SNP)
soient plus informatifs en raison de leur polymorphisme plus élevé. En outre,
unepuceHaute Densité (HD) est disponible chez les bovins depuis 2011 en plus de la
puce 50K. Malgré les attentes initiales, aucune amélioration significative n‘a été pas

observée avec la puce HD par rapport au puce 50K.

Dans une premiere étude, nous avons évalué les avantages de l'utilisation des
haplotypes dans I|'évaluation génomique. Nous avons également évalué I'utilisation
des haplotypes en combinaison avec lapuce HD dans ['évaluation génomique.
Toutefois, le nombre d’effets de marqueur a estimer dans le modele rend cette
analyse difficile. En effet, en utilisant la puce HD, entre 1 et 2,3 millions d'effets sont
a estimer avec des haplotypes de 2 a 5 SNP ce qui est bien trop complexe pour un
modele d’évaluation génomique. Par conséquent, nous avons également di réduire

le nombre des haplotypes utilisés dans les modeles.

hY

De plus, nous avons également contribué a la mise en place d'une méthode
d'évaluation génomique efficace pour les races régionales. Afin d'augmenter la taille

de la population de référence et donc de maximiser la performance d'évaluation



génomique dans ces races, les vaches avecdes performances enregistrées ont été
génotypées en plus des taureaux testés. Avec ces populations de référence mixtes,
nous avons évalué la performance des méthodes d'évaluation génomique
disponibles dans les races régionales. En outre, nous avons également évalué
plusieurs fagons prometteuses d'améliorer la performance des évaluations
génomiques dans les races régionales.Ainsi, l'utilisation la puce HD, lespopulations
de référence multi-raciales (c'est-a-dire des populations de référence comprenant
des animaux de plus d'une seul race), l'utilisation d'information de mutation candidate
ou d'information de haploblock (c'est-a-dire exploitant l'information de déséquilibre de
liaison entre des SNP) ont été évaluées.

Pour cette analyse, cing races ont été utilisées : Une grande race bovine laitiere
francaise (la Montbéliarde) a été utilisée pour I'évaluation des nouvelles méthodes
qui utilise des haplotypes (voir ci-dessous). La population de référence de cette race
incluait 2235 taureaux testés. Par ailleurs, les quatre races laitieres régionales
suivantes étaient disponibles également: Abondance, Tarentaise, Simmental et
Vosgienne. La population de référence de ces races incluait des males et des
femelles. La taille de la population de référence— en nombre des taureaux testés —
variait entre 348 et 767 en 2015. Ces effectifs ont été revus a la hausse en2016, ce
qui a porté la population de référence a 575-1593 animaux. En fonction de la race,
entre 34 et 40 caractéres sont disponibles dont 5 caractéres de production laitieres
(quantité du lait, matiére grasse, matiére protéine, taux butyreux et taux protéique).
Les observations de performance disponibles ont été converties en 'daughter yield
deviations' (DYD) pour les males et en 'yield deviations' (YD) pour les femelles avant
les analyses. Les animaux intégrés a cette analyse ont tous été génotypés soit en
LD, 50K ou HD. Des travaux d'imputation (prédiction des génotypes) ont été menés
et ont permis d’avoir un génotype HD (imputé ou réel) pour 'ensemble des animaux
disponibles. Ainsi, les tests d’évaluation génomique ont pu étre réalisé avec
différentes densités de puce. Environ 3000 mutations candidates ont été génotypées
dans les races Abondance, Tarentaise et Vosgienne et ont donc pu étre également

exploitées.



Tous les tests ont été réalisés dans le cadre d'études de validation classiques avec
les 20% plus jeunes animaux dans la population de validation et les 80% restant
dans la population d'apprentissage. Dans le cas des races régionales, les animaux
de la population de validation étaient exclusivement des femelles. Mesurée sur la
population de validation, les coefficients de corrélation entre (D)YD et GEBV ainsi
gue les pentes de régression de (D)YD sur GEBV ont été utilisés pour évaluer la

performance de chaque densité de puce et de chaque méthode .

Une application de BayesC- capable d'utiliser des haplotypes au lieu des SNP
individuels a été développée et évaluée. Deux criteres Iégerement différents ont été
également développés afin de réduire le nombre de marqueurs utilisés dans
lesévaluations génomiques. Ces criteres ont pour but de sélectionner I'haplotype
avec les meilleures propriétés de frequence alléliqueau sein d'une région donneée.
Ces deux criteres comptent uniquement sur l'information de fréquence allélique: le
premier (que nous appelons Critére-A) maximise le nombre d'alléles dont la
fréequence alleligue est supérieure a un seuil défini par l'utilisateur, tandis que le
deuxieme critere (Critére-B) met plus d'accent sur I'équilibre entre les fréquences
alléliqueet le nombre d’allele afin de maximiser le nombre d’alleles avec une

fréquence suffisamment élevée pour pouvoir permettre I'estimation d’effet d’allélique.

Une des faiblesses de la méthode précédemment décrite est l'exigence de la
connaissance préalable de laposition desrégions QTL. Afin de contourner cette
condition, nous avons découpé le génome en régions au sein desquelles le
déséquilibre de liaison est élevé (haploblock). Au sein de ces régions, tous les
marqueurssont en fort LD avec tous les autres SNP de la méme région ce qui signifie
gue ces régions sont hérittes de génération en génération. La sélection d'un
haplotype pour représenter chacun de ces haploblock ne nécessite pas une étape de
détection QTL antérieure. L'utilisation de ces haploblocks avec les criteres de
sélection d'haplotype décrits précédemment permet de (1) réduire davantage le

nombre d'haplotypes dans le modele et (2) d'améliorer la précision de la sélection.

La performance de I'évaluation génomique de routine francaise a été évaluée chez

les races régionales qui —depuis 2015 — incorporaient la méthode de sélection



Criterion-B. En outre, les avantages possibles en raison d'addition des mutations
candidates ont été également évalués avec BayesC et BayesR en méme temps.

Des évaluations multi-raciales ont été réalisées en fusionnant la population
d'apprentissage des races régionales. L'étape de validation de ces études a été
maintenues dans un contexte intra-race, parce qu'ilnous a permis une comparaison
facile entre des résultats multi-raciauxet des résultats intra-race. Les populations
d'apprentissage multi-raciales ont été formées en incluant les 4 races régionales ou
la combinaison de 2 ou 3 races seulement. Au total, 11 scénarios multi-raciaux

différents ont été testésavec I'utilisation de la puce 50K et HD.

Nous avons pu démontrer que les haplotypes étaient plus performant que les SNP
ensélection génomique (+ 2% en coefficients de corrélation en moyenne pour les 5
caracteres de production). Nous avons é€galement pu montrer que l'information de
fréquence alléliques et I'étendu du déséquilibre de liaison sont importants pour une
construction optimale des haplotypes. Les deux critéres nous avons proposé pour la
sélection des haplotypes ont permis d’augmenter la précision de sélection de 0,7-
0,9% en moyenne sur les 5 caractéres de production. Lorsque la sélection
d'haplotypes a été conjointement utilisée avec linformation de blocs
haplotypiquesbasée sur le LD, une augmentation supplémentaire de 1,5% est
observée. Dans nos analyses, le Critere-B s’est montré plus performant que le
Critére-A. En outre, par rapport aunombre total d’haplotypes conseécutifs, le nombre
d'haplotypes pourrait étre réduit de ~26% et ~90% respectivement avec les puces
50K et HD, lorsque les haploblocks et les criteres de sélection sont utilisés

simultanément.

Le Critere-B a été includans les évaluations génomiquesofficielles en France en
2015. La performance de cette évaluation a été ensuite évaluée dans les quatre
races régionales. Cesanalyses ontabouti, pour les taureaux testés sur descendance,
a des précisions au moins semblable a celles obtenus sous un modele polygénique
(sans information de génotypage). Par conséquent, une évaluation génomique a été
mise en pratique dans ces races en 2016. En comparant les résultats obtenus en

2015 et 2016, on pourrait conclure que le génotypage d'individus supplémentaires



(principalement des femelles) était avantageux dans les races régionales
(augmentation de 4 a 7% des coefficients de corrélation entre les valeurs de YD et

de GEBYV dans la population de validation).

L'addition de l'information de mutation candidate aux données ordinaires de 50K n'a
pas permis d’améliorer notre modéle. En termes de précisions de la sélection,
BayesC a généré une augmentation moyenne de 0,5% (moyenne sur les 5 traits de
production), tout comme leBayesR(+0,3%). En termes de biais de sélection, aucune
amelioration significative n'a pas été observée avec linclusion des mutations

candidates.

L'utilisation de génotypes haute densité n'a pas amélioré la performance de
I'évaluation génomique dans les racesévaluées, alors que la formation des

populations multi-raciales ne sontbénéfiques que pour certaines d'entre elles.

L'utilisation d'une population multi-raciale a été avantageuse dans les races
Abondance (+5,8% en corrélation entre YD et GEBV en moyenne pour les 5 traits de
production) et Simmental (+ 5,4%), mais a été désavantageusepour la Tarentaise (-
3%) et la Vosgienne (-2,5%). Plusieurs auteurs ont suggéré que la puce HD seraient
nécessaires pour les évaluations multi-raciales, en raison de la diminution du
déséquilibre de liaison (LD) entre les marqueurs et QTL, lorsqu'on utilise une
population de référence multi-raciale. Cependant, ces populations de référence
sonttoujours génétiqguement plus distante que lapopulationde référence d'une seule
race et, dans notre cas, l'utilisation de la puce HD dans un contexte multi-racial n'a

pas amélioré l'efficacité de I'évaluation.

Au vu de ces résultats, une évaluation génomique officielle a été mise en placedans
trois races régionales : Abondance, Tarentaise et Vosgienne. Pour la Simmental, une
population de référence internationale, plus grande, est aussi disponible. Ainsi, cela
permet une plus grande précision de sélection et un biais plus faible par rapport a

ceux que nous pouvons fournir.

L'arrivée desévaluations génomiques dans ces races devrait également avoir un

impact positif sur la biodiversité : auparavant ~5-20 taureaux étaient testés sur



descendance (en fonction la race) et seulement une fraction de ces taureaux
devenait reproducteur. Toutefois, a partir de 2016, les organismes de sélection visent
a évaluer entre 50-150 taureaux avec une utilisation de ces taureaux plus
homogene. Plus le nombre de taureaux reproducteurs augmentera et plus la taille
efficace de la population de ces races augmentera également, ce qui facilitera la
gestion de la population et la préservation des races.

Lescoefficient de déterminationobtenus avec la sélection génomique dans ces races
est similaire a ceux obtenus sous un modele polygénique. Toutefois, les GEBV sont
disponiblespour un plus grand nombre d'animaux et a la fois pour les méle et les
femmes. Cela facilite et accélére le processus de sélection pour ces races. Ainsi,
d'apres nos estimations, on s'attend a ce que le gain génétique annuel soit multiplié
par 3 dans les races régionales, comparativement au programme de testage sur
descendants. Cependant, il sera toujours inférieur par rapport au progres génétique

annuel observé chez les grandes races laitiéres.

Nous avons également fourni des preuves empiriques de la supériorité des
haplotypes sur les SNP individuels dans les modéles d’évaluation génomique. En
outre, nous avons prouvé qu'il est avantageux de considérer linformation de
fréquence allélique et de LD lors de la sélection des marqueurs pour former les
haplotypespour les évaluations génomiques. Notre méthode est particulierement
intéressante pour améeliorer la précision de la sélection génomique, car elle n'a
besoind’aucune information supplémentaire. Ces méthodes permettent une

exploitation des données disponibles plus pertinente.
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The beginning of knowledge is the discovery of something we do not understand.

Frank Herbert






Chapter 1

Introduction

Some of the most important challenges modern agriculture faces today are the fast
human population growth (projected World population in 2050: 9.7 billion; current
increase: +83 million/year; FAO, 2015), the expected freshwater shortage and the
continuing decline of arable land in use per person (Alexandratos and Bruinsma,
2012). Livestock production is especially affected by these challenges, because it
directly (for pastures) or indirectly (for feedcrop production) uses 70% of the World’s
agricultural lands (FAO, 2006). Furthermore, especially in Western countries, a shift
can be observed in consumer expectations towards, for example, healthier products
or higher animal welfare (e.g. Stagier et al., 2016; Thaxton et al., 2016). Proper
adaptation of animals to the technological conditions in modern farming systems (e.g.
to milking machines in dairy cattle) as well as secondary traits with significant effects
on animal production, such as stress resistance or resistance against infections and
diseases are also of interest. Therefore, it is of great importance to develop
sustainable and more efficient production systems in all fields of agriculture and

especially in animal breeding.

The phenotypic characteristics of animals are determined by two major components:

the genetic background (i.e. the DNA) of the animals and the environment in which



they produce. In order to successfully cope with the challenges agriculture must face
in the foreseeable future, genetic improvement of livestock is crucial because it
focuses on maximizing genetic gain in the long-term and therefore all future
generations benefit from it. Genetic improvement in agronomically important
species/breeds is obtained through artificial selection on economically important
traits, such as milk production and udder health in dairy cattle, growth rate and stress
resistance in pigs or number of eggs produced by laying hens. Traditional selection
methods use phenotypic observations combined with pedigree information to
estimate the genetic merit of selection candidates. However, recent biotechnological
advances in molecular genetics and genomics (e.g. Bentley, 2006; Shen et al., 2005;
applications in cattle: Matukumalli et al., 2009; Liu et al., 2009) allowed the
development of genomic selection (e.g. Meuwissen et al., 2001) and its
implementation in practice, particularly in dairy cattle breeding (for example in
France: Croiseau et al., 2015b). These modern selection tools permit the direct
utilization of information on DNA sequence variations in the selection process,

leading to significant increases in annual genetic gain in the selected traits.

Genetic diversity is a key element of population management. Without genetic
diversity, there is no chance for genetic improvement of animal populations. With a
declining genetic diversity, populations (breeds or even whole species) can become
endangered and in extreme cases might ultimately face extinction. For the same
considerations, it is crucial to maintain the genetic diversity in agriculturally relevant
species and breeds. Furthermore, preservation of regional breeds (see the definition
in the next paragraph) is important as well because future production environments
are unknown and therefore it is unknown which breeds could produce efficiently in
the future. To support the preservation of regional breeds, their competitiveness has
to be maintained. However, due to their smaller population size and to the less

available funding, breeding programs are usually less efficient in these breeds.

Through this manuscript the term "regional breed" is used to denominate breeds,
which are raised in a limited area, much smaller than the whole territory of France. A
first category of regional breeds comprises native breeds with a small (e.g. the



Vosgienne with ~5,000 cows) to moderate (e.g. the Abondance with ~50,000 cows)
current population size. A second category comprises breeds of foreign origin with a
small-moderate population size in France, such as the Simmental Francaise or the

Brown Swiss breeds (both with about 25000 cows).

Currently available genomic selection methods require large animal populations with
both phenotype and genotype data in order to achieve high prediction accuracy
(Goddard, 2009), which is a prerequisite for successful selection. However, these so
called “reference populations” are limited for regional cattle breeds, which are
characterized by a small population size and are bred only by a limited number of
breeders. Breeders and breeding organizations of regional breeds are therefore in
disadvantage with regard to genomic selection with the serious risk of increasing the
gap between the genetic potential of these regional breeds compared to larger
(inter)national breeds, in which genomic selection has already been implemented.

Currently there are numerous projects in our research group aiming to improve the
efficiency of genomic selection in dairy cattle. One of these projects focuses on the
development of efficient genomic selection methods for regional breeds in
collaboration with breeding organizations representing four such French dairy cattle
breeds. The primary aim of my PhD within this framework was to investigate the
performance of state of the art genomic evaluation procedures in regional breeds and

to develop new methods to improve the genomic selection efficiency in these breeds.

In particular, testing the efficiency of new tools such as haplotype markers, the
BovineHD BeadChip® (HD; manufactured by lllumina Inc., San Diego, CA) and
putative causative mutations in genomic selection were among our aims. Our long-
term objective was to contribute to a new genomic evaluation procedure which is
efficient in breeds with small reference populations. Practical implementation of the
newly developed methods is made possible by the collaborations with breeding

organizations.



Chapter 2

Background

The main objective of animal breeding is to genetically improve animal populations
for economically important traits. The phenotypic performance of animals is affected
by both genetic and environmental factors. Although the existence of genotype-by-
environment interactions is currently actively studied — e.g. in Rauw and Gomez-
Raya, 2015 — they are most often not taken into account as its removal simplifies the
models without compromising the selection efficiency. In modern farming systems,
both of the other two factors (i.e. the environmental conditions and the genetic
background of the animals) are improved — independently from each other — in order
to increase the production level of the animals. Genetic improvement of livestock is
done by means of selection. In the following sections, we will introduce the main
characteristics of selection in dairy cattle breeding as well as the fundamental basics

of both classical and genomic selection procedures.

2.1 Characteristics of dairy cattle breeding

There are several key features of the dairy cattle industry which have major impacts
on the applied breeding system. Firstly, all the production traits (e.g. milk yield, milk
fat and protein content) and many other traits (e.g. udder health, milking speed,

somatic cell count) can be measured only on females. Hence, own performances do



not exist in males for most of the economically important traits and selection of males
must rely on information from female relatives. Secondly, a much larger proportion of
the young female animals are required in order to keep the population size constant
compared to the required proportion of males. Therefore, in dairy cattle (similarly to
most animal species) much larger selection pressure can be applied on males than
on females. In addition, most of the traits of interest have low (e.g. functional traits,
such as fertility, resistance to mastitis or ease of calving) to moderate heritabilities
(e.g. production traits, such as milk yield) in dairy cattle, although some exceptions
exist, for example milk fat content, which has a heritability of about 0.7 in certain

breeds.

Due to the extensive use of artificial insemination in dairy cattle breeding, bulls may
have several hundreds of thousands of daughters and therefore a huge contribution
to the gene pool of the next generation. In order to ensure that only the best bulls will
have such a strong contribution, an accurate breeding value estimation for male

selection candidates is inevitable in dairy cattle breeding.

As a consequence of the mainly low-moderate heritabilities and the lack of own
performance in males, progeny testing had to be implemented in order to achieve
reasonably high accuracy of breeding value estimations in males. Due to progeny
testing, the precision of the available performance information is much higher for
progeny-tested males than for females; however, this come at the cost of a
lengthened generation interval, which is usually more than 6 years when measures of

males and their offspring can be gathered (Schaeffer, 2006).

Furthermore, an important characteristic of dairy cattle breeding is the high per
animal costs (e.g. raising, housing or feeding). These costs are much higher in the
dairy cattle industry than — for example — in the pig or poultry industry. These unit
costs in dairy cattle are also considerably higher than they are in case of small
ruminants (goat, sheep), which species can be considered as competitors of dairy

cattle.



Due to the low prolificacy, the applied breeding programs in dairy cattle are aiming to
maximize the gain in the additive genetic effects, i.e. the heritable part of the genetic
effect and other types of breeding (e.g. cross-breeding) is not widespread. In the
following, | will discuss genomic evaluation methods, which are frequently used either
in practice or in research for breeding value estimation in dairy cattle. However,
before reviewing these, pedigree-based selection methods will be discussed,
because one of these (BLUP) will be used to obtain a baseline for comparison

purposes.

2.2 Pedigree-based selection methods

Pedigree-based selection methods assume that genetic relationships between
animals are known and that phenotype data is available for a significant part of the
population. The traits of interest are most often quantitative traits with a continuous
(normal) distribution. These traits are assumed to be influenced by a very large (in
theory by an infinite) number of loci, each having an (infinitesimally) small effect on

the phenotype under study.

An individual's phenotypic performance ( ) is influenced by multiple factors,
including an additive genetic effect ( ), a dominance effect ( ), epistatic effects ( )

and environmental effects ( ):

(1)

where # is the population mean. Other effects, such as genotype-environment
interactions or maternal effects can be included as well, but are usually assumed to
be negligible. and are also ignored, because they are not directly transmitted to

the next generation.

Additive genetic effects “ " (also called breeding values) are estimated using linear
regression models. Best linear predictions (or BLP) of the breeding values are
obtained by constructing optimal linear combinations of performances of each animal
and close relatives (progeny, parents, sibs) expressed as deviation from a general

mean. However, such procedures assume that breeding values do not differ



systematically within any of the environmental effects, an assumption which usually
does not hold in practical animal breeding. Therefore these estimates are usually

biased.

2.2.1 Bestlinear unbiased prediction

Best linear unbiased prediction (BLUP) can be used to estimate the environmental
effects and genetic effects simultaneously using mixed models. These models
include the identifiable environmental effects as fixed effects and the breeding values
as random effects. Since all effects are estimated at the same time and under the
same assumptions, BLUP results in unbiased estimations for both types of effects.
Using matrix notations, a statistical model including both types of explanatory

variables can be written as:

(2)

where y is a vector of phenotypic observations (dimension: n x 1, where n is the
number of phenotypes), b is a vector of fixed effects (dimension: p x 1, where p is the
total number of levels of fixed effects), a is a vector of random additive genetic effects
of all animals (dimension: g x 1, where q is the number of such “animal” effects), X is
an incidence matrix of dimension n x p relating the levels of fixed effects to the
observations, Z is an incidence matrix of dimension n x g relating the animal effects

to the observations and e is a vector of random errors (dimension: n x 1),

With (univariate) evaluation models, BLUP usually assumes that random error terms
(e) are normally distributed, have a mean equal to zero and a variance equal to
(where 1 is an n x n identity matrix): . The additive genetic effects
are also assumed to follow a normal distribution with a vector mean of 0 and a
variance-covariance matrix of ; , Where A is the additive genetic
relationship matrix built from pedigree information. It follows, that the performances
(y) are assumed to have a mean of X*b and a variance equal to
. All explanatory variables are assumed to be independent from

the random error term.



In dairy cattle breeding, a contemporary group effect is used most often as a fixed
effect, in order to integrate information from both the calendar (year/season/...)- and
herd effects. For the model presented above, the mixed model equations leading to

BLUE (for fixed effects) and BLUP (for random effects) solutions can be written as:

" #$%' " #$‘%& * " #$€y_

!& #%r o pS%Ng $%()+’ !& #3%_ ( (3a)

Best linear unbiased estimates (BLUE) of fixed effects are distinguished from best
linear unbiased predictions (BLUP) of random effects, because they are calculated
differently: for fixed effects only point estimates of the specific effect levels present in
the model (i.e. the contemporary groups) are of interest. On the other hand, in case
of the random effects first parameters of the underlying distribution (i.e. for the animal
population) are estimated and then the realized levels of this distribution (i.e. animal
effects) are predicted. Equation 3a can be simplified in case of a univariate animal
model (Henderson, 1984; Lynch and Walsh, 1998):

mon " & * "o
)&" & & ./$‘“’)+' !&-( (3b)
ﬁ %$42

7 2 h?is the heritability of the trait, A™ is the inverse of the additive
3

where .

genetic relationship matrix and all other terms are as described previously. The
heritability (more precisely, the narrow-sense heritability; h?) of a trait is defined as
the proportion of the phenotypic variance that is due to the additive genetic variance.
Therefore, heritabilities are trait-dependent and they can be different for different
breeds as well as for different populations of the same breed. Solving the mixed
model equations for b and a will give BLUE & BLUP estimates for the fixed and

random effects, respectively.

The theoretical accuracy of the estimated breeding values is often measured by the
reliability, which is the square of the correlation coefficient between the estimated and

true breeding values.
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2.2.2 Implementation in our study

The BLUP analyses were carried out using the BLUPF90 software (Misztal, 1999,
after Misztal, 2016) and the results constituted a baseline for comparisons. On
several occasions the performance of different genomic evaluation methods will be
compared to those obtained with a pedigree-based BLUP model. The models used
for breeding value estimation were the ones currently implemented for all dairy cattle
breeds in France — including the regional breeds — for the traits we were interested in
(discussed later).

Traits were analyzed in a single-trait context. Multiple-trait models also exist and they
can result in higher accuracies when the genetic correlations between the analyzed
traits are not zero. These methods assume knowledge on genetic correlations and
are computationally more demanding than single-trait analyses (Lynch and Walsh,
1998). Because these genetic correlations were not always available and also
because the French routine genomic evaluation is conducted in a single-breed

context, multiple-trait models were not used and they will not be further discussed.

2.3  Genetic background of quantitative traits and g  enetic markers

Genomic selection procedures differ from pedigree-based selection methods in their
use of genetic markers during the breeding value estimation process. In this section
first a brief introduction is given on quantitative traits, which is followed by the
presentation and characterization of the most frequently used markers and by the
detailed description of the genomic evaluation procedures.

2.3.1 Quantitative trait loci

Quantitative trait loci (QTL) are the loci (e.g. genes, non-cooding RNA, etc.) affecting
the expression of a quantitative trait. The ultimate aim of animal breeders is to
identify through genomic evaluation all QTL as well as to accurately estimate the size
of their effects. If such information would be available together with the genotypes of
animals at all QTL, selection could be done purely on observed genotype data and
phenotype recording would be dispensable. However, the identification of all QTL is



currently not possible and therefore in nearly all cases breeders have to rely on

genetic markers “linked” to the QTL.

2.3.2 Genetic markers

Genetic markers are DNA variations generated by mutations that occurred during the
evolution of the species and of the breeds. We will see in section 2.4 that such DNA
sequence information can be exploited for selection purposes in animal breeding: in
genomic selection, genetic markers are used to trace the inheritance of chromosome
segments carrying quantitative trait loci. Unless the QTL is/are known, these marker
effects are used as proxies of the QTL effects. Since the exact locations of the QTL
are unknown, denser marker maps increase the probability that at least one marker
will be “linked” to each QTL. Several types of genetic markers are used for genomic

evaluation purposes.

2.3.2.1. Microsatellite

Historically, the first markers used were microsatellites, which are defined as "simple
sequence repeats with a repeat length of up to 13 bases" (Gibson and Muse, 2009).
These markers have a high mutation rate and therefore are highly polymorphic with
an average of at least 10 alleles per locus in human (Gibson and Muse, 2009).
However, due to their sparse distribution along the genome, the observed gain in
terms of accuracy of genomic evaluation was very limited (Boichard et al., 2012b,
Guillaume et al. 2008a; Guillaume et al.,, 2008b) and genotyping costs of

microsatellites were substantial.

2.3.2.2. Single nucleotide polymorphism

The key biotechnological breakthrough that led to significant improvements in
selection accuracy (as compared to the pedigree-based selection methods) was the
development of the first commercial SNP arrays (in cattle: Matukumalli et al., 2009).
Single nucleotide polymorphisms (SNP) are mutations affecting a single locus on the
genome. Due to the nature of these mutations, multi-allelic SNP are extraordinarily
rare and the vast majority of them are bi-allelic. Furthermore, SNP are the most

frequent type of markers on the genome and per-marker genotyping costs are



constantly decreasing (e.g. Holland et al., 1991; Shen et al.,, 2005; Tobler et al.,
2005).

In cattle, three main types of SNP-chips were developed: first the Bovine SNP50
BeadChip with approximately 54,000 SNP (50K; Illumina Inc., San Diego, CA, USA;
Matukumalli et al., 2009) followed by the BovineHD BeadChip® with ~777,000 SNP
(Illumina Inc., San Diego, CA, USA; Matukumalli et al., 2011 after Rincon et al., 2011)
and finally the Illumina Infinium BovineLD Genotyping BeadChip hosting 3-18
thousand SNP, depending on the version of the SNP-chip (LD; lllumina Inc., San
Diego, CA, USA). The bovine 50K chip was developed as an initial tool to allow both
researchers and industry members to genotype a large number of animals and to
enable them to evaluate the performance of the previously proposed genomic
evaluation procedures (e.g. Meuwissen et al., 2001) on real data. The HD SNP-chip
was developed to grant very fine mapping resolution to scientists, because it was
envisioned that this would further improve the resolution and performance of QTL
detections, genomic evaluations and other studies. Finally, the LD chip was
specifically designed to include a relatively small number of SNP (~3-18 thousand) so
the chip could be efficiently used to genotype a large number of animals at a low
cost. The first LD SNP-chip contained only ~3,000 SNP and was specifically
developed for the request of the United States Department of Agriculture by Illumina
and to be used in the US Holstein population (SNP on the chip were selected
accordingly). This chip was however quickly replaced by a larger one (~7,000 SNP),
which was done for the request of the Bovine LD consortium (Boichard et al., 2012a).
The chip then went through an evolution, during which the number of SNP increased
to ~18,000; meanwhile several SNP were also replaced by others of larger
importance. The larger versions of the LD SNP-chip were also more appropriate to

be used in breeds other than the Holstein.

The development of these SNP arrays allowed breeding organizations in various
countries in collaboration with research centers to genotype cost-effectively large
numbers of SNP for thousands of individuals.



Genetic markers are said to be linked, when the co-occurrence of their different
alleles is more frequent than it is expected from their allele frequencies under the
assumption that the markers are segregating independently from each other. In other
words, linkage is the non-random association between markers (Gibson and Muse,
2009). The stronger the linkage between a marker and a QTL is, the better the QTL
effect can be “captured” with the marker alleles and therefore the more appropriate
the marker is to trace the transmission of the QTL alleles from one generation to the
other. Consequently, it is of interest to have genetic markers closely located to the
QTL in order to be able to accurately estimate the marker effects. The strength of the
linkage can be characterized by the level of linkage disequilibrium (LD). There are
two commonly used measures of LD: D' (the normalized) form of a linkage
disequilibrium measure D and r? (the square of a correlation coefficient between the
frequencies of loci). Consider two biallelic markers SNP-A (with alleles A; and Ap)
and SNP-B (with alleles B; and B»), the allele frequencies 5S¢, 5,, 55, and 5g, and

the frequency of the A;B; genotype 5¢.g, , r> and D’ are calculated as shown in

equations (4) and (5), respectively:

c R Al 77 (4)
=. 7:: 2:, 7: 2
- 5 > 54,5
T T G565, > 55,55, J K
DEF<>%,5g, >56,58,7 0 5)
8~ 96,87 > 96,98,

a GI5¢.g, > 56,55, N K

@ DLM5e,58, 56,5s,7 T

The most important disadvantage of the r? parameter is that it depends much on the
(marginal) allele frequencies and is sensitive to low allele frequencies (e.g. Devlin
and Risch, 1995). In contrast, D' is less dependent on allele frequencies, although it
is still influenced by it if a rare allele is present. D' estimates are also inflated in small

samples, which is a serious disadvantage of this parameter.

Linkage breaks down with increasing distance between markers due to a higher
probability of recombination events between more distinct markers. This

phenomenon is known as LD-decay (Baird, 2015).
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2.3.3 Haplotype

A notable disadvantage of SNP compared to microsatellites is that SNP are bi-allelic
and therefore a single SNP carries less information than a single microsatellite. A
possible solution to circumvent this issue is the use of combinations of SNP instead

of individual SNP markers. Haplotypes can be defined in at least two different ways:

- haplotypes are the sets of alleles of markers or genes of an organism, which
were inherited together by the individual on one of the ancestral chromosomes
(e.g.: The International HapMap Consortium, 2005; Gibson and Muse, 2009;
Stephens et al., 2001)

- More simply, haplotypes are combinations of N SNP markers (e.g.: Hayes et
al., 2007; Villumsen et al., 2009; Garrick et al., 2014)

In this study, the term “haplotype” refers to the second definition, while the term
“phase” will be used to cover the first definition. The term “alleles” or “haplotype
alleles” will be used to refer to the alternative forms of the haplotypes (similarly to the
case of SNP). Given this definition of a haplotype, it can be shown that a haplotype
can carry a maximum of 2" different alleles, where N is the number of bi-allelic SNP
forming the haplotype. Due to the multi-allelic nature of haplotypes, there is an
increased chance — as compared to individual SNP — that at least one of these
alleles will be in LD with the (ungenotyped) causative mutation at a QTL, if one is
present. In addition, LD between haplotype and QTL alleles are more stable over
time as well, because if a whole haplotype allele is passed to the next generation, it is
very unlikely that two recombinations took place within the chromosome segment it

represents.

Before haplotypes can be built, phases must be reconstructed from genotype data,
since these are not readily available with the genotyping tools available today.
Phase-reconstruction will be discussed in detail in the next section. Although
haplotypes can increase the LD between the genomic markers and QTL, as it was
proven by Croiseau et al. (2015b) and as we will see later, the number of alleles
increases exponentially with the haplotype size (when the latter is measured in
number of SNP), leading to a rapid increase in the number of allele effects that need



to be estimated. Figure 1 shows the average number of segregating haplotype
alleles in a Montbéliarde population either with the 50K or with the HD chip as well as
the maximum possible number of alleles for 4 different haplotype sizes (this
Montbéliarde population will be described in section 2.8 below). It can be seen that
the number of segregating alleles is close to its theoretical maximum only with short
haplotypes (2 or 3 SNP/haplotype). With haplotypes of 4 SNP, the deviation from the
theoretical maximum is ~23.0% and 33.5% with the 50K- and HD data, respectively.
This deviation shows a substantial increase with haplotypes of 5 SNP. Figure 1 also
illustrates that haplotypes built from consecutive SNP have less segregating alleles
when the HD panel is used compared to the 50K SNP-chip. This phenomenon can
be explained by the fact that markers are less dense on the 50K array and therefore
there is a higher chance for recombinations to occur between markers from this chip
than between those from the HD array. This in turn leads to a larger number of

segregating haplotype alleles.

Figure 1 : Average number of alleles when using consecutive haplotypes from either
the 50K or from the HD SNP-chip with 4 different haplotype sizes (the theoretical
maximum number of alleles (i.e. 2") is also plotted).

2.3.4 Imputation and phase reconstruction

Imputation is the prediction of ungenotyped SNP from genotypes of linked SNP
and/or with the use of pedigree information (Li et al., 2009; more generally, any type
of marker can be imputed). Phasing is the process in which the parental phases — i.e.



the ordered sequence of SNP alleles which are located either on the paternal or on
the maternal chromosome inherited by an individual (see the definition in section
2.3.3) — are reconstructed from genotype data by exploiting pedigree information
(Fallin and Schork, 2000). Through the intensive use of imputation, breeders and
breeding organizations were able to genotype animals for a decreased number of
SNP (for reduced costs), because imputation allowed them to predict the
ungenotyped markers with a high accuracy (e.g. Saintilan et al., 2015; prediction
error (as concordance rate) was less than 1%). This resulted in substantial savings.
Furthermore, determination of parental phases is a prerequisite for haplotype
construction. Therefore, both imputation and phase reconstruction (if haplotypes are
used) are of great importance with a large impact on every downstream step of a
genomic evaluation pipeline. The imputation and phasing methods used in our study
will be described later.

2.4 Genomic evaluation

The availability of genetic marker information allows us to trace the transmitted
marker alleles from ancestors to descendants. Genomic evaluation methods require
both phenotype and genotype data (although pedigree data is not a prerequisite, it
can improve the performance of genomic evaluation). Most of the genomic evaluation
methods estimate allele effects of markers (microsatellite, SNP, haplotype or any
other type of marker) using a reference population of animals, i.e. a population of
animals with both phenotype and genotype data. Once estimated allele effects are
available, they are used in combination with genotype data on the selection
candidates to calculate their genomic estimated breeding values (GEBYV).
Furthermore, availability of marker information also enables QTL detection studies as
well, which aim to identify causative mutations, i.e. those genetic markers that are
responsible for the observed genetic diversity (e.g. Grisart et al., 2002). This
information might be important to improve the performance of genomic evaluation in

the future.

Whether or not genomic selection is efficient in any animal population depends both
on the characteristics of the species and on those of the production system. Genomic

evaluation was quickly introduced in dairy cattle breeding because it allowed



breeding organizations to stop progeny testing, leading to substantial savings
(although these were then invested in further genotyping). The genetic gain obtained

annually increased significantly as well (see section 2.6 below).

2.4.1 Marker-assisted BLUP

In marker-assisted BLUP (MA-BLUP) selection, a limited number of markers are
added as random covariable effects to the pedigree-based BLUP model (Fernando
and Grossman, 1989). These markers are assumed to be the proxies of causative
mutations (i.e. the QTL). A pedigree-based residual polygenic effect is retained in the
model in order to account for the additive genetic effect of those QTL which were not
identified previously and therefore are not represented in the model by any marker. A

general MA-BLUP model can be written as:
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where y, X, b, Z and e are defined as previously for equation 2, u is the residual
polygenic effect, N is the number of markers included in the model and mj is the
effect of allele j of marker i. A major difference between MA-BLUP and pedigree-
based BLUP is the increased number of explanatory variables. Meuwissen and
Goddard (1996) showed that substantial gain can be obtained with MA-BLUP
compared to BLUP results using microsatellites. Marker-assisted BLUP was first
implemented in practice in France (Boichard et al., 2002), followed by Germany
(Bennewitz et al., 2003).

In theory, if all QTL would be known and the model would be purely additive, MA-
BLUP methods would result in 100% accuracy. However, the identification of all QTL
as well as the accurate estimation of each of their effects in any breed is currently not
feasible. The two main disadvantages of the MA-BLUP procedure is that all QTL
detection methods include false positives and that the QTL linked to the selected
markers explain only a fraction of the total genetic variance (de Roos et al., 2009a).
For example, if a single marker for each of the ~20,000 genes from the bovine



genome (data from ENSEMBL, 2016) is used, the number of marker effects would

exceed the number of phenotypes in most of the breeds.

2.4.2 Genomic-BLUP

The most straightforward genomic selection procedure is an extension of the BLUP
methodology (equation 3) with a “genomic relationship matrix” (G) replacing the
pedigree relationship matrix (A). This is called genomic-BLUP (GBLUP). This
genomic relationship matrix can be constructed in at least 3 different ways
(VanRaden, 2008), which are outlined here:

The first one is calculated as , with N being the number of bi-allelic

XYL 2X%S$ 2
SNP, p, the minor allele frequency (i.e. the frequency of the less frequent allele of a
SNP; MAF) of SNP n and Z being an incidence matrix of markers calculated as

1>~ with one row per animal. In the calculation of the Z matrix, each row of M
contains values (-1), 0 and 1 for the homozygous, heterozygous and the other
homozygous genotypes for each animal x SNP combination and any value of column
i of matrix P is calculated as # ~ a>Kbc, where p is the vector of minor allele
frequencies of the SNP. Matrices M, P and Z have as many rows as the number of
genotyped individuals in the population and as many columns as the number of SNP

genotyped.
The second one, using the same notations is Calculated as d . where
T %o T g;ﬁ/s; o This formula weights the different SNP separately based on their
0% g

expected variance in contrast with the previous one, which weighted all SNP with the

sum of variances of all the SNP.

The last method includes a regression on the pedigree relationship matrix (]]

ijkk i o | , where go and g; are the intercept and regression slopes,
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respectively) and is calculated as: -

The inverse of the genomic relationship matrix, G* is then used to replace the
inverse of the additive genetic relationship matrix in BLUP. The G matrix is supposed



to reflect the relationship between genotyped animals more accurately than the
pedigree-based A matrix, because it relies on observed genotype data. In contrast,
the A matrix is based on probabilities and expected levels of similarities between
relatives, which can be considered less accurate. That is because in case of the A
matrix all individuals that have the same relationship to each other (e.g. half-sibs)
receive the same genetic relationships based on pedigree. However, in the case of
the G matrix, genetic relationships are estimated from observed genotype data,
which can deviate from their expected values, based on the number of SNP alleles in
common between the animals (e.g. between the half-sibs).

Meuwissen et al. (2001) described a GBLUP applied to a model including marker
effects as random variables drawn from a single normal distribution (their model also
included a contemporary group effect as fixed effect). This model is equivalent to the
GBLUP model described in the previous paragraph, because the breeding values
(vector a in equation 3) equal to the sum of the allele effects, as it was shown by
(VanRaden, 2008). This implies that breeding values can be estimated indirectly, by
first estimating the allele effects and then calculating the breeding values of
individuals from the estimated allele effects and from their observed genotypes.

The problem with the G matrix is that it measures the relationship between animals
by the average number of shared alleles, i.e. it considers the alleles identity in state
rather than those identity by descent. Furthermore, usually the same weights are
given to all SNP irrespective of the trait, although it is reasonable to assume that not
all genotyped SNP are linked to QTL for all the traits (and also that their relative
importance also differ from trait to trait). However, there are some studies to
circumvent this issue and Zhang et al. (2010) for example proposed the use of a trait-

specific relationship matrix instead of a regular G-matrix.

2.4.3 Bayesian methods

To cope with the mentioned issues of MA-BLUP, Meuwissen et al. (2001) proposed
using all SNP in genomic evaluation and not a subset of them. Bayesian methods
were originally suggested to be used for genomic evaluation purposes because they

are computationally efficient and because they can successfully deal with the



problem of estimating many more effects than the number of dependent variables
available for the analysis (the 5o p problem). Furthermore, the use of the Gibbs
sampler algorithm was also suggested to generate samples from the posterior
distribution of each effect. This was a convenient choice because it allowed the
sampling of allele effects from their posterior distribution conditional on all other
effects, but not on the effect being sampled, which is relatively straightforward to

implement.

The methods proposed by Meuwissen et al. (2001) became known as BayesA (when
all SNP is assumed to have a larger-than-zero effect) and BayesB (when a
predefined proportion of the SNP are assumed to have an effect of 0 and only the
rest of the SNP to have an effect >0). We mainly worked with an extension of BayesB
which will be described in detail below. In BayesA, each marker is assumed to
explain a different proportion of the genetic variance (). The prior distribution of the
marker variances is modeled with a scaled inverted chi-square distribution. As it is
reasonable to assume that most of the SNP from any SNP panel are neither a
causative mutation nor linked to any of those, the BayesB method has a fixed prior
probability ( ) that a given marker has no effect on the analyzed trait (in Meuwissen
et al. (2001) varied between 78.8% and 94.7%, depending on the marker density).
For technical reasons (it is impossible to directly sample an effect from a “simple”
distribution), marker variances were sampled with the Metropolis-Hastings sampling
procedure with BayesB, instead of sampling with the Gibbs sampler. A serious
problem arising with both BayesA and BayesB methods is shrinkage (i.e. the risk of
shrinking allele effects when the estimates are applied on a dataset other than the
one used to calculate them), which was shown to depend on the initial value of the

scale parameter S of the scaled inverse chi-square distribution (Gianola et al., 2009).

The BayesC method was proposed as an extension to the BayesA and BayesB
methods (Habier et al., 2011). In contrast to BayesA and BayesB, the BayesC model
assumes a single marker-effect variance for all markers. This modification was

shown to decrease the chance of shrinking.



A modification of BayesC is the so called BayesC- , where the proportion “ ” (i.e.
the proportion of markers without an effect on the trait) is allowed to vary during the
analysis and is estimated from the data. In our work, we used the GS3 software with
an implementation of the BayesC and BayesC- methods (Legarra et al., 2013). In
the original paper in which the BayesC- method was introduced (Habier et al.,
2011) was defined as the proportion of SNP without an effect on the analyzed trait
(in accordance with the definition of in BayesB in Meuwissen et al., 2001).
However, in the GS3 implementation, refers to the opposite proportion, that is the
fraction of SNP with an effect on the trait of interest. In order to avoid ambiguities,
will be defined here according to the original definition given by Meuwissen et al.
(2001) and by Habier et al. (2011).

BayesC(- ) distinguishes only 2 groups of SNP: those with an effect (from a
distribution with a unique variance) and those without an effect on the analyzed trait.
However, it is known from previous studies that the size of SNP effects can differ
substantially. The distribution of the marker effects (after standardization) was shown
to follow a gamma distribution (Hayes and Goddard, 2001; also see Figure 2), i.e.
there is a small number of QTL with large effects in addition to a large number of QTL
with small effects. However, it is reasonable to assume that the parameter estimates
(scale and shape parameters were estimated by Hayes and Goddard (2001) to be

5.4 and 0.42, respectively) are dependent both on the analyzed population and trait.

Erbe et al. (2012) proposed a method termed BayesR which can distribute the SNP
into more than 2 groups, i.e. the distinction of small, medium and large QTL becomes
possible in addition to a group of SNP with no effect. In this method, each group is
defined by the proportion of genetic variance that any SNP from that group is
expected to explain.
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Figure 2 : Probability density distributions of QTL effects in dairy cattle (after Hayes
and Goddard, 2001; axis labels were removed since they are trait-dependent).

Other Bayesian methods include the BayesD(- ) (Habier et al., 2011), Bayesian
Lasso (Park and Casella, 2008; de los Campos et al., 2009; Weigel et al., 2009,
Legarra et al., 2011), emBayesR (Wang et al., 2015) or the BayesSSVS (Verbyla et
al., 2009). The latter method is very similar to BayesC- (SNP effects are assumed
to follow a normal distribution and a proportion ( ) of the SNP are assumed to have a
negligible effect on the trait of interest; Luki et al., 2015). These methods will not be

further discussed as they are not used in routine genetic evaluation.

A serious drawback of the presented Bayesian methods compared to the other
methods presented (GBLUP, MA-BLUP) is that they are not suitable to evaluate large
datasets in routine due to long running times. However, they are still adequate for
QTL detection for scientific purposes and this information can then be exploited for
routine evaluations (for example, see the French routine genomic evaluation pipeline

in section 2.5).

2.4.4 Genomic evaluation methods with haplotype mar  kers

In our studies, two haplotype-based genomic evaluation methods were implemented.
The first one, the marker-assisted BLUP model on haplotypes is a straightforward
extension of equation (6). In this model, SNP effects are simply replaced with

haplotype effects as follows:
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where y, X, b, Z, u, N and e are defined as previously for equation 6, H; is the
number of alleles carried by haplotype i and hj is the allele effect of allele j of

haplotype i.

In 2013, before our studies there was no software available for the implementation of
a Bayesian genomic evaluation procedure using haplotypes. Therefore the GS3
software by Legarra et al. (2013) was modified by P. Croiseau and M-N. Fouilloux in
our group to be able to handle multi-allelic haplotypes instead of bi-allelic SNP in a
BayesC- approach. This version of the software will be referred as haplotypic GS3
hereafter. | used this software to assess the performance of two criteria to define
optimal haplotypes. In this section the most important aspects of the method will be
described as well as the differences compared to the regular, SNP-based BayesC- .

A typical model with haplotype effects is:

U
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where vy; is the performance value of individual i, cge; is the contemporary group
effect of animal i (fixed effect; additional fixed effects can be included as well), u; is
the residual polygenic effect of animal i (uU~MVN(O, ~.), N is the total number of
haplotypes in the model, q{RSand gks are the random effects of the maternal and
paternal alleles of haplotype j of animal i, ysis a 0/1 variable indicating whether or not
marker j is assumed to have an effect (ysis zero with a probability of ; when it is

zero, all alleles of the given haplotype are assumed to have no effect on the trait) and

e is a random error term for animal i.

In this implementation, haplotype size is a user-specified parameter (usually between
1 and 5, with 1 corresponding to the SNP-based BayesC- model; this parameter will

be abbreviated as N, in this section). The software then creates every consecutive,



non-overlapping haplotypes of N, SNP from the genotype files. The last haplotypes
were truncated if a complete haplotype of N, SNP could not be built from them. In
order to avoid haplotypes spreading across multiple chromosomes, separate
genotype files must be provided for each chromosome. Similarly to the SNP-based
BayesC- , a common variance (sampled from an inverted chi-square distribution) is

used for all haplotypes in the model.

In certain cases, it is desirable to exclude certain SNP from the analysis, therefore an
important question is how one can simply remove SNP from the dataset. The solution
| proposed to this issue was not to address it within the software (i.e. making both the
code and the software input file more complex) but to simply adjust the genotype files
prior to running the software. On the one hand, this did not require further
programming and additional input files and parameters, which is convenient from the
perspective of both the programmer and the user. On the other hand, it made
necessary that the user creates a new set of genotype files each time (s)he wants to
test a different set of haplotypes, which can be — depending on the density of the
SNP-chip and on the number of different genotype sets to be tested — very
demanding in terms of data-storage.

This work was presented at the World Congress on Genetics Applied to Livestock
Production in Vancouver, Canada (Croiseau et al., 2014).

An important question that immediately arises when haplotypes are used instead of
SNP in genomic evaluation is: what is the optimal haplotype size for genomic
selection? Too long haplotypes would result in increasingly large number of
segregating alleles and therefore in a rapid decrease in the average number of
available observations per allele, leading to a quick decrease in estimation accuracy
of allele effects. To overcome this difficulty, an efficient technique is needed to
reduce the number of haplotypes used in the prediction models as much as possible

without risking the loss of relevant genotype information.

In conclusion, the use of haplotype markers in genomic prediction is intuitively a

promising way to increase the selection accuracy, because they are much more



polymorphic. However, they pose serious risks as well. On the one hand, it is
desirable to increase the number of marker alleles (i.e., the number of effects to
estimate in the genetic model) in order to increase the probability of capturing the
QTL effects. On the other hand, the increase of the number of effects in the model is
detrimental to the accuracy of parameter estimates. These issues will be addressed

in Chapter 3.

2.5 French routine genomic evaluation of dairy catt  le

In France, marker-assisted evaluation was first introduced in 2001 (Boichard et al.,
2002) based on microsatellites, but quickly evolved into a real genomic evaluation
and went through several steps of evolution (Ducrocq et al., 2009, Boichard et al.,
2012b, Croiseau et al., 2015b) with the last major changes implemented in April 2015
(Croiseau et al., 2015a). At the present time, the routine genomic evaluation consists
of 4 steps (see below) and incorporates part of my PhD work. In France, genomic
evaluation is officially applied to (i) the 3 major dairy cattle breeds, namely the
Holstein, Montbéliarde and Normande breeds (since 2009), (ii) to the Brown Swiss
(since 2014) and (iii) to 3 local breeds, namely the Abondance, Tarentaise and
Vosgienne (since 2016). In the case of five breeds (the 3 regional breeds,
Montbéliarde and Normande) both males and females are included in the training
population in contrast with the two international breeds (Holstein and Brown Swiss),
for which only males are used. It is worth mentioning, that the French Brown Swiss
population is small, but within the framework of the Intergenomics project
(http://www.brown-swiss.org/genetics), a large international reference population was
assembled for this breed from smaller national populations (contributing countries
included — among others — Germany, USA, Canada and France). Genomic
evaluation is carried out on 34-46 traits, depending on the breed. The four steps of
the evaluation pipeline are:

QTL detection
Haplotype construction

Estimation of (haplotype) allele effects

A W N B

GEBYV calculation for selection candidates



The first two steps were done in the research phase only and are not repeated at
each routine evaluation. In contrast, the last 2 steps are routinely done 3 times a year
in order to obtain estimates of marker effects using all available data to compute
GEBYV values for selection candidates. Genomic evaluation is carried out on 34-46
traits per breed (traits analyzed independently).

For the research phase (steps 1 and 2), phenotypes were first converted into
‘daughter yield deviations’ (DYD) for progeny-tested bulls and into ‘yield deviations’
(YD) for females with own performance recording only. (D)YD values are calculated
by correcting the observed phenotypes to all fixed and random effects except of the
effect of the animal (Liu et al., 2004; Szyda et al., 2008); at the end of each BLUP
genetic evaluation. (D)YD values are the most accurate indicators of the true

breeding values calculated from the available data.

Genotype data from both the 50K and LD SNP-chips are currently used. Genotype
sets are standardized for each breed: a set of 43,801 SNP are retained from the 50K

and a set of 8,218 SNP from the LD chip for genomic evaluations.

In the first step of the pipeline, SNP effects are estimated for all SNP from the 50K
SNP-chip using a BayesC- procedure with the following model:
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where vy; is the performance value of individual i, ¢ is an overall mean effect
(calculated separately for males (s=1) and females (s=2), when applicable) of animal
i, pi is the residual polygenic effect of animal i (p ~ MVN(O, ~ ¢), with MVN refering to
a multivariate normal distribution, A to the additive relationship matrix and ~; to the
genetic variance), N is the total number of SNP in the model, z; is an indicator
variable representing the number of copies of one of the alleles at marker j in animal
i, m; is the allele effect for marker j, ysis a 0/1 variable indicating whether or not
marker j has an effect and g; is the random error term for animal i. The proportion of

the genetic variance attributed to the residual polygenic effect in the BayesC- model



(equation 9) is determined empirically for each trait separately and the most optimal

value is used.

Once marker effects are available for all the 43,801 SNP, those with the highest
probability of inclusion (i.e. the highest probability to have an effect different from
zero) are identified to trace the QTL with moderate-high effects. The analyses with
1,000 and 3,000 SNP included in the model were compared and the most optimal
value is used for each trait. This is done in order to properly adapt the models to the
genetic background of the traits. In practice 3,000 SNP was found to be optimal for
most of the traits. Probability of inclusion is used preferably to the estimated allele
effects because it was found to give slightly better results (S. Fritz, 2014, personal

communication).

It is reasonable to assume that the markers selected from the 50K SNP-chip are not
the causative mutations but are merely linked to them: this is because the 43,801
SNP from the chip represent only ~0.16% of all the ~28 million known SNP on the
bovine genome (Boussaha et al., 2016). Therefore SNP from the 50K chip likely
indicate only the approximate location of the causative mutations on the
chromosomes. In order to better capture the QTL effects, haplotypes are built around
each of the selected SNP for the routine evaluation. Haplotypes are built using the
method proposed in Chapter 3. This method exploits information on haplotype allele
frequencies. In this method, a short (10 SNP-wide), symmetric window is created
around the selected SNP and from all possible haplotypes of 4 SNP within the
window, one is selected to represent the given region based on observed allele
frequencies. The main goal of this method is to balance between allele frequencies
and number of segregating alleles when a haplotype is selected. Different haplotype
sizes between 2 and 5 SNP were compared. Haplotype size of 4 SNP was found to

be optimal and therefore was applied in the routine evaluation in France.

Once the haplotypes are available, their allele effects are estimated using a marker-
assisted BLUP model:
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where Ny, is the number of haplotypes (i.e. 1,000 or — most often — 3,000), N, is the
number of segregating alleles at haplotype k,  is the estimated allele effect of allele
i at haplotype k and i is an indicator variable indicating how many copies (0, 1 or 2)
of allele | at haplotype k individual i carries. The other terms are defined as in
equation (9). The polygenic effect from equation (9) is replaced by the combined
effect of the 8,218 SNP from the LD SNP-chip in the MA-BLUP model. This
modification was done because the combined effect of the 8,218 SNP from the LD
SNP-chip can be considered as equivalent to a residual polygenic effect with a
genomic relationship matrix (see section 2.4.2) and therefore is expected to perform

better than the pedigree-based residual polygenic effect.

Following the allele effect estimation of the haplotypes, these estimates are applied
to the genotypes of the selection candidates to estimate their GEBV.

To adapt the routine evaluation procedure to the regional breeds (most importantly to
the lower amount of available performance records), there were 2 important changes.
First, the number of QTL traced was reduced to 1000 from the original 1,000-3,000.
Secondly, due to convergence problems in the first step, had to be fixed to 80%.

2.6 Consequences of genomic selection

2.6.1 Advantages of genomic selection

The technological advances previously presented and the theoretical developments
achieved since the early 2000s led to the practical implementation of genomic
evaluation in dairy and beef cattle in at least 16 countries by 2016 (e.g. for Holstein in
the USA: Wiggans et al., 2011; in France: Boichard et al., 2012b and Croiseau et al.,
2015b; in the Netherlands and in New Zealand: de Roos et al., 2009b; the
Eurogenomics initiative: Lund et al., 2011). Genomic evaluation also led to the
elimination of the expensive progeny-testing phase of the previous breeding program

in several countries (e.g. France, United States).



Genomic evaluation has an effect on the annual genetic gain. When calculating the
annual genetic gain, four different paths have to be distinguished in dairy cattle
breeding, because multiple parameters affect genetic gain (namely: the generation
interval, selection accuracy and selection intensity) differ significantly for these paths.
Generation interval is the average age of the breeding animals when their offspring,
which are kept for breeding are born. Selection accuracy is the correlation between
the true and estimated breeding values, while the selection intensity is the
performance of breeding animals expressed as a deviation from the population mean
and as a proportion of phenotypic standard deviation. The aforementioned four paths
differ mainly due to progeny testing in males and because a much larger selection
pressure can be applied on males. The paths are distinguished based on whether
bulls or cows are selected and whether they are selected to contribute to the next

generation of bulls or cows:

- males to produce females (denoted “mf” in the subscripts in equation 11)
- males to produce males (denoted as “mm”)
- females to produce females (denoted as “ff”)

- females to produce males (denoted as “fm”)

The annual genetic gain obtained with any breeding program can be calculated using
the following formula (Rendel and Robertson, 1950):
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where G is the annual genetic gain, i is the selection intensity calculated for the
four different paths, r, . is the selection accuracy calculated for the four paths, 4is
the standard deviation of the additive genetic effect of the trait under selection and L _
are the generation intervals (expressed in years) again for the four paths. Genomic

selection affects the following factors in the above equation:

1. Selection accuracy (ry,): For males, selection accuracy of genomic selection
is usually inferior compared to the selection accuracy of progeny-tested bulls

given that a large number of progeny is evaluated for the bulls (this was



typically done in large breeds). However, selection accuracy is higher for
females with genomic evaluation compared to the BLUP selection accuracy
based on own performance only (Boichard et al., 2015). Furthermore, genomic
evaluation increases the selection accuracy in case of males without a large
number of progeny as well.

2. Selection intensity (i.): Selection intensity can be increased for females
(Boichard et al., 2015). This is due to the increasing use of sexed semen as
well as due to the introduction of genomic evaluation. The former
biotechnological development leads to a larger number of selection candidates
for females while the latter results in more accurate breeding values for
females, which enables the selection of the best females. Sexed semen
accounted for 37% of all inseminations in dairy cattle in France (Institut de
'Elevage, 2016).

3. Generation interval (L.): Due to the availability of DNA sample of selection
candidates immediately after birth, generation interval is greatly reduced for
progeny-tested bulls. Schaeffer (2006) assumed the generation interval of
progeny-tested bulls between 6 and 6.5 years, while in the same study he
predicted that the generation interval with genomic selection could be ~1.75
years. Garcia-Ruiz et al. (2016) observed such trends and values in the US
Holstein population, although the decrease was more moderate (~25-50%); in
this population, the generation interval was ~6.8 years with progeny testing vs.
3-5 years with genomic selection. Le Mézec et al. (2015) observed similar
results in the French dairy cattle breeds, however, the generation interval was
slightly shorter in the French case (5.6 years before genomic evaluation;
Institut de I'Elevage, 2015c). Generation interval of dams of cows is largely
unaffected by genomic evaluation, because they were used for reproduction at
an early age previously as well, which could not be further decreased by the

introduction of genomic evaluation.

Overall, after combining all these changes, the introduction of genomic selection is
extremely advantageous in dairy cattle. Schaeffer (2006) estimated that the annual
genetic gain would be approximately doubled with genomic selection compared to

the previous state of the art breeding programs (such gains were observed in



practice in France: Le Mézec et al., 2015). Furthermore, because progeny-testing
became unnecessary, significant savings were accumulated in the dairy cattle

industry.

2.6.2 Drawbacks of genomic evaluation

Most of the currently available genomic evaluation procedures use bi-allelic SNP
markers to trace QTL on the genome, with the notable exception of the French
routine genomic evaluation procedure, which uses haplotype markers. A major
drawback of the SNP markers lies in their bi-allelic nature: because of it, SNP in
strong linkage disequilibrium with the causative mutations are required to efficiently
capture their effects. Such SNP are not always available, especially when SNP-chips
of low or moderate density are used. Yang et al. (2010) showed that even with
~300,000 SNP, part of the additive genetic variance could not be explained by SNP
due to low linkage disequilibrium between the markers and QTL. Although it is
desirable to have a high SNP density along the genome to maximize the probability
that there is a SNP linked to every imortant QTL, the abundance of SNP across the
genome can be considered as a disadvantage as well. This is because a majority of
them are not relevant for the analyzed trait(s) and these SNP make it more difficult to
identify the significant SNP as well as to obtain accurate allele effect estimates for

them.

Therefore, a major difficulty that needs to be addressed in genomic evaluation is the
balance between the number of effects that needs to be estimated and the estimation
accuracy. Due to the dense SNP assays available and efficient imputation methods,
the amount of phenotype data available is at least one order of magnitude lower than
the amount of genotype data. Therefore, the main limiting factor in genomic selection
is the size of the reference population, i.e. the number of animals with both
phenotype and genotype information available (Hayes et al., 2009a). This limitation is
more stringent in populations with a limited number of recorded animals (for example
in regional breeds) or in cases when (multi-allelic) haplotypes are used as genetic
markers. Due to the insufficient amount of phenotype data in these breeds, it is

difficult to identify all the markers with a significant effect on the analyzed trait.



Furthermore — especially when markers are linked to small QTL — accurate

estimation of the allele effects is also challenging (Wientjes et al., 2015).

2.7 Assessment of genomic evaluation studies

2.7.1 Principles of validation in genomic evaluatio  n studies

The performance of the genetic/statistical models must be assessed before they can
be applied in practical animal breeding. Validation studies have been often used to
assess the performance of genomic evaluation models since they were first proposed
(Meuwissen et al., 2001). These studies first split the available dataset into a training
set and a validation set. The model is then fitted to the training set and the quality of
genomic prediction is evaluated on the validation set, from which data was not used
for model fitting. The evaluation on the validation set incorporates two sub-steps: first
the dependent variable (that is the breeding value in a genomic evaluation
experiment) is estimated for all individuals in the validation population either using the
estimated allele effects from the training dataset (when marker effects were
estimated) or exploiting the genomic relationship information between animals (e.g. in
GBLUP). In the second step, measures of accuracy such as the correlation
coefficient between the GEBV and (D)YD are calculated.

In genomic evaluation studies, the division of the datasets into training- and
validation sets is adapted to the main target population, which is the set of young
animals, usually without any performance observations for which we want estimated
breeding values. Therefore, the validation population typically consists of the
youngest individuals (usually the 20-30% youngest animals) in order to objectively
simulate real-life conditions, where performance values are available only on the

older individuals of the populations but not on the youngest ones.

From this point on, the “training population” and “validation population” terms will be
used according to their definitions above, while the term “reference population” will be

used to refer to these two populations combined.



2.7.2 Measured parameters

The performances of different (genomic) evaluation procedures are compared based
on 2 parameters: the accuracy and bias of the (genomic) estimated breeding values.
In the following these parameters are discussed with DYD used as measure of
performance. However, it can be replaced with other measures, such as deregressed
proofs or simulated true breeding values in a simulation study. Furthermore,
observations are weighted, using equivalent daughter contributions (EDC) in case of
males and number of record equivalents (RE) in case of females.

Reliability of selection candidates

The accuracy of an EBV is the correlation between the estimated and true breeding
values. The reliability is the accuracy squared. The higher the reliability of the
selection candidates, the more accurate the breeding values are. Reliability is
bounded between 0 and 1.

In a validation study, the accuracy is measured by the weighted correlation coefficient

between DYD and GEBYV in the validation population. This is calculated as:
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where ™, is the weighted correlation coefficient between DYD and GEBV, w; is the
weighting factor of animal i, DYD; and GEBV; are the DYD and GEBV of animal i;
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corresponding reliability is ™, .

Regression slope of DYD on GEBV

In addition to be accurate, breeding values are also expected to be unbiased. In
other words, we want that the average (genomic) estimated breeding values of
particular groups of animals (in particular the youngest ones) is nearly the same as
their average (unknown) true breeding values. The regression slope of DYD on

GEBYV indicates a bias: the optimal value of this parameter is 1 (indicating no bias).



When the regression slope is less than 1 it indicates that the young animals are
overestimated, while a slope higher than 1 indicates the opposite (i.e.
underestimated young selection candidates). Regression slopes are estimated using

the following equation:

. S SYi “ (13)
where ¢ is the intercept, ; is the regression slope and e is the random error term
(wo K ¥~ , where D is a diagonal matrix with diagonal elements equal to 1/EDC
and 1/RE for males and females, respectively). Although there is no theoretical lower
or upper limit of the regression slope in terms of statistics, in the context of breeding
value estimation they are never lower than zero and not frequently higher than 1. A
large bias (say, a regression slope significantly lower than one) results in “inflation” of
GEBV of the young candidates. This is undesirable, because this leads to the
overestimation of the genetic merit of the young candidates. When young Al sires are
considered, this means that their progeny performances will be disappointing,

generating some distrust of the quality of genomic evaluation.

2.8 Analyzed breeds and traits

Five breeds were included in this work: one of them is Montbéliarde, the second
largest French dairy cattle breed with genomic evaluation. The Montbéliarde
population is currently of approximately 648,000 cows (with ~68% of them under
performance recording), which represents more than ~18% of the dairy cattle
population of France (Institut de I'Elevage, 2015a). The Montbéliarde breed was
selected to test the new methods, because of the availability of the large reference

population of progeny-tested bulls (p ~ '8¢ ).

Multi-breed tests were carried our using the following four regional French dairy
breeds (abbreviations of the breed names are given in parenthesis): Abondance (A),
Tarentaise (T), Simmental (S) and Vosgienne (V).



Table 1 shows the number of bulls progeny tested every year as well as the number
of females under performance recording, as of 2015. Table 2 shows the average

performance records of these breeds for production traits.

Table 1: Number of progeny-tested bulls and number of cows under performance
recording in the 5 breeds used through this Thesis.

Number of progeny- Number of cows under
Breed 1 -

tested males performance recording
Montbéliarde 164 439,609
Abondance 18 23,412
Tarentaise 11 7,816
Simmental 10 16,938
Vosgienne 5 1,372

1: Before the implementation of genomic evaluation. Data from Institut de TElevage, 2014 and 2015b.

Phenotype data were available in the form of daughter yield deviations in case of
progeny tested bulls and as yield deviations in case of females with own performance
information only. In case of all the 5 presented breeds, both male and female animals
were genotyped. However, while only the progeny tested bulls were used from the
Montbéliarde breed, all genotyped males and females were used in case of the
regional breeds. This decision was made because the Montbéliarde was specifically
selected due to the available large number of progeny tested bulls, which allowed an
efficient within-breed evaluation for this breed. In contrast, the lack of such a male
reference population in the regional breeds required all animals — irrespective to its
gender — to be included in the reference population to enable genomic evaluation.
Furthermore, one of the main aims was to maximize the selection efficiency in the
regional breeds, therefore it made no sense to remove animals from the reference
population of these breeds. Majority of this work was done on 5 dairy cattle
production traits (these are: milk yield, fat yield, protein yield, fat content and protein
content), which are moderately heritable traits (Table 2). Although, some of the
developed methods (mainly those that were later included in the French routine
genomic evaluation) were tested on a wider range of traits including some with lower

or higher heritabilities.



Table 2: Average standard 305-day production level of the 5 breeds used through
this Thesis (data from 2015).

Breed . Milk Fatyield Fat content Protein Protein
yield (kg) (kg) (%) yield (kg) content (%)
Heritability 0.3 0.3 0.5 0.3 0.5
Montbéliarde 6515 250 3.83 212 3.25
Abondance 5085 186 3.66 168 3.30
Tarentaise 4045 147 3.64 130 3.22
Simmental 5751 228 3.96 192 3.34
Vosgienne 3963 149 3.75 125 3.15

Data from Institut de I'Elevage, 2015a

The Simmental and Vosgienne breeds were particular among the 4 regional breeds.
The number of imported breeding animals was relatively large in the Simmental
breed and the available pedigree information on these animals (in France) was very
limited. Therefore the BLUP analysis is expected to be less accurate than it would be
in another breed with similar characteristics but more pedigree data. On the other
hand, in Vosgienne the average age of the breeding animals was higher than it was
in the other breeds and therefore more phenotype data was available on these
individuals. In consequence, the pedigree-based BLUP is expected to perform well in
this breed.

2.9 Single-breed and multi-breed genomic evaluation

As mentioned earlier, current genomic evaluation methods require reference
populations because neither the QTL nor their relative effects are known. Genomic
evaluation studies can be split into 2 groups based on the composition of the
reference population: the reference population consists of individuals either from a
single breed or from multiple breeds. The main difference between these two
scenarios is that when several breeds are considered together, either artificial or
natural barriers (or both) prevented gene flow from one population to another.
Therefore different QTL might exist in the different populations, the same QTL might
have a different relative effect (compared to the other QTL), LD phases might differ



across breeds or the linkage phases between the QTL and markers in the different
breeds might be also different (de Roos et al., 2009a). In the cases of these QTL,
multi-breed genomic evaluations can be expected to be less efficient, which can
counterbalance the impact of having a larger reference population (e. g. this was
discussed in Hayes et al., 2009). This is because the multi-breed training population
introduces mainly noise to the allele effect estimation process of these markers.
Whether or not multi-breed genomic evaluation in specific breeds is advantageous or
not depends on the relative frequency and importance of the shared QTL. Both the
emergence of new (i.e. breed-specific) QTL and the break-down of QTL-marker
phases in the breeds depend on the evolutionary distance from the most recent
common ancestors (de Roos et al., 2009a). Therefore breeds that are closer to each
other from an evolutionary perspective can be expected to benefit more from a multi-
breed genomic evaluation, while for breeds that diverged earlier in time (time
measured in number of generations) a multi-breed reference population is expected

to be detrimental.

These remarks can be generalized to a “single-subpopulation” — “multi-
subpopulation” case, because natural barriers might prevent gene flow from one

population to another even among two populations of the same breed.

Gautier et al. (2010) estimated genetic distances between 47 cattle breeds using 50K
SNP-chip data, including the five breeds presented here. All of these breeds were

clustered very closely together based on this study (Figure 3).



Figure 3 : Tree representing the genetic distances between 20 French cattle breeds.
Genetic distances were estimated from allele frequencies using the bovine 50K
SNP-chip (from Gautier et al., 2010). Breed name abbreviations: CHA — Charolais;
PAR — Parthenaise; BPN — Bretonne Pie Noire; Noire — Normande; MAI — Maine
Anjou (Rouge des prés); FLA — Flamande; PRP — Pie Rouge des Plaines|[ Red
Holstein]; HOL — Holstein; BRU — Brune; VOS - Vosgienne; TAR — Tarentaise; ABO
— Abondance; PRE - Pie Rouge de I'Est (French Simmental); MON — Montbéliarde;
BAZ — Bazadaise; GAS — Gasconne; SAL — Salers; AUB — Aubrac; LIM — Limousin;
BLA — Blonde d’aquitaine.

2.9.1 Review of the recent multi-breed genomic eval  uation studies

It was shown that allele effects estimated in one breed cannot be used for genomic
valuation in another breed to obtain accurate estimated breeding values (e.g. Hayes
et al., 2009b; Brgndum et al., 2011, Olson et al., 2012).

The most widely used multi-breed genomic evaluation method is when the training
populations of different breeds are merged into a single training population, which is
then used to estimate allele effects (e.g. Hozé et al., 2014). Other proposed multi-
breed methods include a multi-task Bayesian approach (Chen et al., 2014) or a multi-
trait model in which the same trait from different breeds are handled as different

correlated traits (Olson et al., 2012).



Simulation studies

In a simulation study Calus et al. (2008) simulated genotype data of different SNP
densities and used them to estimate breeding values. They concluded that for a trait
with moderate heritability (@ Kbc), LD with 9 K" Is sufficient between
neighboring SNP and that stronger LD does not increase selection accuracy. They
obtained a somewhat lower value (15%) for haplotypes for the same, moderately
heritable trait. For a lowly heritable trait (q Kb®©), the optimal value was 20% for
SNP and haplotypes likewise. In a very similar experimental setup, VanRaden et al.
(2009a) arrived to similar conclusions. Using real data from five populations of three
breeds (Angus, Jersey and Holstein), de Roos et al. (2008) estimated that in a within-
breed context to obtain an 9 2 Kb'K between adjacent markers, approximately ~45-
75K SNP would be needed across the genome, depending on the population
structure. In order to obtain a similar level of LD between adjacent markers, ~300K
SNP would be needed in a multi-breed context (de Roos et al., 2008).

Using a simulated 50K SNP-chip data, de Roos et al. (2009a) demonstrated that
depending on the simulated genetic distance between the breeds, on the marker
density and on the heritability of the trait, genomic evaluation can be efficient even in
a multi-breed context. It was also hypothesized that HD data is necessary only if the
training population consists of animals from different breeds (de Roos et al., 2009a).
That is because breeds are genetically more distant from each other than populations
of the same breed. Due to the longer genetic distance, the linkage between adjacent
markers (or between markers and QTL) broke down to a greater extent and therefore
to capture the effect of a common QTL, SNP that are located closer to the QTL are
required. Harris and Johnson (2010b) showed in a simulation study that in order to
efficiently exploit the larger marker density from a high-density SNP-chip, a large
reference population is required. This is in contradiction with the characteristics of
regional breeds, but fits well the concept of multi-breed genomic evaluation (given

that the multi-breed training population is large).



Results based on real data

Using 50K data, analyses of real dataset including Holstein and Jersey led to the
conclusions that multi-breed genomic evaluation can be efficient, but efficiency
depends on parameters such as marker density or genetic distance between the
breeds (Hayes et al., 2009b; Harris and Johnson, 2010a; Erbe et al., 2012). Similar
results, but lower differences were observed when 3 closely related Nordic breeds
(Danish Red, Swedish Red and Finnish Red) were analyzed simultaneously
(Bregndum et al., 2011) as well as when a mixed population of Holsteins, Jerseys and
Fleckvieh was analyzed (Pryce et al., 2011). Analysis of a joint Holstein, Jersey and

Brown Swiss population resulted in similar conclusions (Olson et al., 2012).

The genetic gain obtained with multi-breed training population was however limited in
the previously mentioned studies. Hayes et al. (2009) and de Roos et al. (2009a)
concluded that the inclusion of individuals from a different breed was beneficial if the
included breeds diverged more recently or when reference populations included
crossbred animals (Lourenco et al., 2016). Larger gains were observed for more
heritable traits and/or with a higher marker density.

Also, Bayesian methods were found to perform generally better in a multi-breed
context than a GBLUP (e.g. Hayes et al., 2009b; Pryce et al., 2011).

The use of HD data was initially expected to outperform the 50K (Brgndum et al.,
2011), especially in small breeds (Hozé et al., 2014; Khansefid et al., 2014).
Khansefid et al. (2014) divided the SNP effects into an overall- and a breed-specific
component. With such a model, they obtained a limited gain for prediction of residual
feed intake using a mixed dairy- and beef cattle population. On a combined Holstein
and Ayrshire multi-breed dataset, only a limited increase in selection accuracy was
observed with a Bayesian approach compared to a within-breed evaluation (Chen et
al., 2014). When analyzing a combined Holstein-Jersey population, Erbe et al. (2012)
obtained inferior accuracies with the HD compared to the 50K. Hozé et al. (2014)

showed that the potential gain due to a multi-breed training population (with HD data)



is limited when sires of selection candidates are genotyped, which is the case in the

four regional breeds presented earlier.

Most of these studies could not show any improvement in selection accuracy for the
larger breed contributing to the reference population (usually the Holstein) compared
to a within-breed evaluation (e.g. Chen et al., 2014; Erbe et al.,, 2012). Gains in
smaller breeds were often larger, but did not reach expectations. The main challenge
in using HD data in genomic evaluation is the ~14-fold increase in the number of
allele effects compared to the 50K SNP-chip. Accurate estimation of this many alleles
require much more phenotype data. This problem can equally affect single- and

multi-breed evaluations.

2.10 Problem statement and motivation

In the large dairy cattle breeds, genomic selection led to higher annual genetic gains,
drastically decreased costs of selection and selection for a wider range of traits also
became possible (e.g. Garcia-Ruiz et al., 2016). These advantages cannot be
reached by the means of traditional (i.e. pedigree-based) selection methods, resulting
in substantial disadvantages (including economical drawbacks) for regional breeds,
where sufficient funding is more difficult to obtain and large reference populations are

not available for the implementation of genomic selection in practice.

In our research group, there are several ongoing projects aiming at successfully
addressing these challenges. Within the framework of one of these projects, our main
aim was to develop new methods and analysis tools for the breeders and breeding
organizations of regional breeds (first and foremost the Abondance, Tarentaise and
Vosgienne breeds), which would allow them to implement genomic evaluation in

practice.

Our primary focus was initially on the use of haplotype markers in combination with
the HD SNP-chip in a multi-breed context. Indeed, because of the relatively short
genetic distance between these breeds, a multi-breed reference population seemed
a good way to increase the reference population size for these breeds. Haplotype

markers seemed necessary to maximize the probability of capturing the QTL effects



and the HD SNP-chip was also required to assure a sufficiently high LD between

markers and QTL (following the suggestion of, for example, de Roos et al., 2008).

The performance of the methods developed was first evaluated in a single-breed
context using a large breed (Montbéliarde) and then in the 4 regional breeds (the
previously mentioned 3 breeds together with the Simmental breed). Once the
performance of these methods was verified in a within-breed context, they were

applied in several multi-breed scenarios using the four regional breeds.

Our long-term aim was to provide an efficient genomic evaluation to breeding
organizations of regional breeds and to contribute to the future development of

genomic selection in these breeds.



Chapter 3

Haplotype construction for genomic evaluation

pUrposes

The use of haplotypes is expected to increase the probability of identifying markers
linked to QTL affecting the analyzed trait. Furthermore, It was hypothesized that for a
multi-breed genomic evaluation to be efficient, the use of HD SNP-chip data is a
prerequisite (de Roos et al., 2008). However, the combined use of the HD SNP-chip
and haplotypes is currently not realistic, because the number of allele effects to be
estimated dramatically increases and in parallel the estimation accuracy of every
allele decreases. Overall, this leads to decreased selection accuracy, especially in
regional breeds where the amount of phenotypic information is already scarce. To
overcome these difficulties, we intended to develop a new haplotype selection
procedure that on the one hand allows a more accurate allele effect estimation and
on the other hand reduces the number of allele effects to be predicted.

This haplotype selection procedure is presented in detail in this chapter. The chapter
is divided into five sections and it starts with the presentation of the dataset used for

evaluating the method as well as the first analyses with haplotypes. Then, the
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haplotype selection method is presented and evaluated on both 50K and HD data.

Finally, possible improvements of the method are presented and discussed.

3.1 The Montbéliarde dataset

The Montbéliarde breed was used to test the performance of the developed methods,
which breed is one of the large French dairy cattle breeds. The choice of this breed
was convenient because for this breed a large reference population of progeny-
tested bulls is available, and allows the validation of our results using accurate DYD
measures and to compare the performance of different genomic evaluation methods

to the performance of a reasonably accurate BLUP analysis.

A population of 2,235 progeny-tested bulls was available for testing. Phenotypes, in
the form of DYD were available for 5 production traits: milk yield, protein yield, protein
content, fat yield and fat content. Individuals were genotyped either for the 50K or for
both the 50K and high-density SNP-chips. Individuals genotyped only on the 50K
were imputed to the HD. Multi-allelic markers were removed prior to imputation.
Imputation was done by Hozé et al. (2013) using the BEAGLE software (Browning
and Browning, 2007). The default parameter values of the software were used for
imputation. Imputation accuracy — measured as concordance rate — was ~0.5% with
this software. For linkage phasing, the DAGPHASE software (Druet and Georges,

2009) was used, again with the default parameters.

Following imputation, a quality control step was implemented to remove SNP of poor
quality. At this step, SNP were removed if at least one of the following conditions was

not met:

a) Minor allele frequency higher than 5%
b) Minimum call rate higher than 90%
c) Hardy-Weinberg equilibrium test with 5 > «=-®* N ©K® )

After quality control, 43,801 SNP were retained from the 50K SNP-chip panel and
706,791 SNP from the HD-panel. In addition to the phenotype and genotype data,

pedigree information was also available.
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3.2 Haplotypic BayesC-  results

One of our main goals was to assess the benefits of haplotpye-based genomic
evaluation methods, particularly in regional breeds. The performance of the
developed haplotypic BayesC- (Croiseau et al., 2014; also see section 2.4.4)
procedure was first assessed in the Montbéliarde breed. The haplotypic BayesC-
was run with all consecutive haplotypes of N SNP used as explanatory variables in
the genetic model. Only the 50K SNP-chip was used in this analysis, because the
number of allele effects from the HD chip would have been excessively large (this is
discussed in detail later). Traits were evaluated independently from each other in a
classical validation study, where 20% of the youngest bulls were in the validation
population. In practice, 4 different analyses were run for each trait, depending on the
value of N (i.e. the number of SNP per haplotype), which ranged from 2 to 5.
Performance values (y;)) were DYD and the proportion of was estimated from the
data. The following model was used for these tests:

u
tk UWg Xg Q YsZOks Gkd Vr (14)
T
where all parameters are as in equation 8 (section 2.4.4). The residual polygenic
effect was assumed to account for 20% of the total genetic variance, while the rest of

the genetic variance was attributed to the markers.

Running times of the haplotypic BayesC- ranged from ~16 hours with haplotypes of
2 SNP to ~56 hours with haplotypes of 5 SNP.

Table 3 gives both the number of haplotypes and the number of allele effects to be
estimated during each genomic evaluation procedure with 4 different sizes of
haplotype and for both the 50K- and HD-chips (number of alleles per haplotype are
taken from Figure 1). To create Table 3, all consecutive, non-overlapping haplotypes
of N SNP (N=2, 3, 4 or 5) were built across all chromosomes; the last markers from
every chromosome were truncated if a complete haplotype could not be created.

Note that the number of allele effects to be estimated is the total number of alleles
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minus the total number of haplotypes, because — as with SNP — for each marker, the
effect of one of the alleles (the “reference allele”) can be considered to be equal to

Zero.

Table 3: Number of consecutive, non-overlapping haplotypes that can be built with
data from either the 50K or the HD SNP-chips and the number of allele effects to be
estimated.

Number of haplotypes Number of allele effects to be

Haplotype size estimated
50K HD 50K HD
2 21 892 353 388 62 341 915617
3 14 592 235 588 88 745 1253 312
4 10 936 176 688 123 886 1702 330
5 8 746 141 349 168 494 2270 150

Based on the Montbéliarde breed

It is clear from Table 3 that the number of allele effects to be estimated with data
from the HD SNP-chip is unreasonably large even with the shortest haplotypes. The
number of allele effects to be estimated with the HD chip is close to 1 million with
haplotypes of 2 SNP and it rapidly increases to ~2.3 million with haplotypes of 5
SNP. Therefore, it is essential to reduce the number of haplotypes before they can be
used in combination with data from the HD SNP-chip for genomic evaluation.

Ideally, the average of samples drawn for each parameter converges to their true
values. Lack of convergence of any parameter prevents the estimation of that
parameter and therefore convergence is critically important. Figure 4 gives typical
examples of convergence plots for the proportion of haplotypes without an effect ( ),
the residual variance (vare), the variance attributed to a single haplotype (vara) and
the residual polygenic variance (varg). Convergence in case of all these parameters
could be observed (visually). In case of all the tests done with the haplotypic GS3

software, the first 20,000 iterations are discarded as burn-in.
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Figure 4 : Convergence plots obtained with haplotypes of 4 SNP. Proportion of
haplotypes without an effect ( ), residual variance (vare), variance of a single locus
(vara) and residual polygenic variance (varg) are plotted. The thinning value was
1000.

Plots on Figure 4 indicate that convergence was reached as neither the variation nor
the mean of the values change with the number of iterations (x-axis). Since the plots
presented in Figure 4 can be considered as typical ones obtained with the haplotypic
BayesC(- ), no further convergence plots will be presented.

Table 4 shows the correlation coefficients and regression slopes of DYD on GEBV
values obtained in the validation population. Based on these results, the selection
accuracy did not vary to a large extent from haplotypes of 2 to 4 SNP. Haplotype size
4 was slightly better than either haplotypes of 2 or 3. The correlation coefficient
started declining with haplotypes of 5 SNP, probably due to over-parameterization of
the model. Similar trends were observed for the regression slope (on average).
Although the haplotype size of 4 SNP slightly outperformed the other haplotype
sizes, this advantage was minor and the best performing haplotype size could not be

clearly identified based on these results.



Table 4: Correlation coefficients and regression slopes of DYD on GEBV values
measured on the validation set with haplotypic-GS3 (Croiseau et al., 2014).

Correlation coefficient Regression slope

Trait name !
HS% 2 HS:3 HS:4 HS:5 |HS:2 HS:3 HS:4 HS:5

MY 0.502 0.497 0.507 0.500 | 0.863 0.869 0.885 0.895
FY 0.557 0.557 0563 0.559 | 0.863 0.871 0.912 0.905
PY 0.490 0.491 0.497 0.491 | 0.763 0.779 0.799 0.792
FC 0.576 0.572 0571 0559 | 0.868 0.874 0.894 0.894
PC 0.596 0.589 0.593 0.581 | 1.055 1.052 1.090 1.094

Average® 0.544 0541 0546 0538 | 0.140 0.132 0.120 0.122

1: Trait name abbreviations: MY — milk yield; FY — fat yield; PY — protein yield; FC — fat content; PC — protein content

2: Haplotype size

3: Average deviations from 1 are indicated for regression slopes

The results obtained with the haplotypic BayesC- slightly outperformed the
corresponding GBLUP analysis with the G matrix constructed from 50K SNP markers
(results of the GBLUP analysis are presented in S. table 1 in Appendix A on page
199). The results presented in Table 4 were also better than those of a regular, SNP-
based BayesC- (Croiseau et al., 2014).

3.3 Influence of allele frequency on genomic evalua tion

3.3.1 Introduction

In the previous study we used an intuitive way to form the haplotypes by simply
merging the adjacent SNP creating the so called flanking haplotypes. This choice (i.e.
the flanking haplotypes) is intuitive from a biological point of view, because
haplotypes are used to represent specific genomic regions and neighboring SNP
necessarily represent the same regions. Therefore, if a QTL is segregating within any
region, flanking haplotypes can be expected to be linked to the QTL in the same
region. However, from a statistical point of view, flanking haplotypes do not have
ideal allele properties: due to the relatively short distance between these markers
(see S. figure 1 in Appendix B on page 201), there is a lower chance for historical

recombination events to occur between them. This is particularly the case when data



from the HD-chip is used because LD between consecutive SNP is higher. Therefore,
flanking haplotypes are likely to carry a large number of under-represented (rare)
alleles for which allele effect estimation is difficult and a small number of largely over-
represented alleles. To circumvent these issues, instead of merging the adjacent
SNP one can select SNP that result in more appropriate allele properties (i.e. number
of alleles and allele frequency distribution), with the expectation that it would enhance
the performance of genomic evaluation based on haplotypes. Therefore, the question

is: which SNP should be used to create haplotypes with better properties?

In this study, we aimed to develop a procedure to identify haplotypes that can be
expected to outperform flanking haplotypes in genomic evaluation studies. Our goal
was to maximize the number of haplotype alleles, while taking into account the allele
frequency distribution of the haplotypes, i.e., trying to maximize the number of well-
represented alleles (alleles with a reasonably high allele frequency) and to minimize
the number of rare alleles. In addition, we tried to reduce the overall number of
haplotypes used for genomic evaluation, as this was a prerequisite for the combined
use of haplotype markers and HD-chip data in genomic evaluation. That is because if
haplotypes are used in combination with the HD SNP-chip, the number of allele
effects that needs to be estimated would increase to several million (Table 3), which
is excessive even for the largest breeds. Furthermore, the possible benefits of

haplotypes compared to SNP markers were also assessed in this study.

The expected prediction accuracy of the allele effects is also influenced by the size of
the effect of the linked QTL: estimated allele effects play an important role even for
rare alleles if the linked QTL has a large effect. However, due to lack of prior
information on the effect size of the QTL , this cannot be directly taken into account to
select haplotypes for genomic evaluation purposes before the evaluation, in contrast

with allele frequencies, which are available prior genomic evaluation.

We developed and tested two criteria to select a single haplotype from a set of

potential haplotypes based on allele frequency information.



The performance of the selected haplotypes was compared to the results obtained
earlier as well as to a regular GBLUP analysis and other SNP- and haplotype-based
genomic evaluations. Testing was done using data from both the 50K and HD SNP

panels.

3.3.2 Alternative haplotype construction methods fo r genomic evaluation

The article with the haplotype selection method and the 50K SNP-chip results was
published in Journal of Dairy Science in 2016. The results based on the HD data are

presented after the article in a separate section.

Jonas, D., Ducrocq, V., Fouilloux, M-N. and Croiseau, P. 2016. Alternative haplotype

construction methods for genomic evaluation. J. Dairy. Sci. 99: 4537-4546.
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Supplementary tables

Supplementary Table S1.Average number of alleles per haplotype with haplotypes of 4
SNP and AFT of 8%. Window size: 10 SNP.

o AFT? (%)
Criterion Nr. of QTL 1 3 5 3
1K? 14.55 14.35 14.29 13.84
CriterionA 3K 13.55 13.41 13.26 12.89
6K 12.54 12.41 12.25 11.90
1K 14.42 14.41 14.42 14.41
CriterionB 3K 13.46 13.45 13.44 13.43
6K 12.44 12.43 12.42 12.43

1: AFT=Allele frequency threshold (alleles with a frequencyhleigthan this threshold are assumed to be predictable)
2: Thousand
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Supplementary Table S2.Correlations between GEBV and DYD in the validation
population for different allele frequency thresholds using Critefi@nd-B to select the
haplotypes. Average values over the 5 production traits are shown. Window size: 10 SNP.

Haplotype size AFT? Criterion-A CriterionB
1 0.541 0.546
3 5 0.537 0.547
8 0.547 0.548
1 0.542 0.546
4 5 0.541 0.546
8 0.544 0.548
1 0.542 0.545
5 5 0.547 0.545
8 0.543 0.546

1: AFT=Allele frequency thresholthlleles with a frequency higher than this threshold sseraed to be predictable)
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Supplementary Table S3.Average DYDGEBYV correlations of the 5 production traits
using different MD values with CriterieB. AFT was set t@% andwindows ofWS = 10
SNPwere usedFor every trait separately, the highest correlatvas considered from those
observed with 1K, 3K and 6K QTL-SNP in the model.

Haplotype Maximum Deviation (MD)
size 10% 30% 50% 80%
3 0.548 0.546 0.547 0.548
4 0.548 0.548 0.546 0.545
5 0.546 0.546 0.547 0.546
Average 0.547 0.547 0.547 0.546

1: This parameter reflects the acceptable level of variationgallele frequencies.
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Supplementary Table S4.Correlation coefficients calculated between DYD and GEBV for
the haplotypdsased (CriteriorA/Criterion-B; window size:10 SNP) methods as function of
number of haplotypes in the model. Average correlations over the 5 production traits are
shown.

CriterionA CriterionB
#QTL-SNP HS!'=3 HS=4 HS=5 HS=3 HS=4 HS=5
1K? 0.506 0.509 0.494 0.505 0.516 0.501
3K 0.525 0.529 0.525 0.524 0.538 0.529
6K 0.546 0.544 0.543 0.544 0.544 0.544
Optimal 0.547 0.544 0.543 0.548 0.548 0.546

1: HS=Haplotype size
2: Thousand
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Supplementary Table S5.Correlations between genomic estimated breeding values and
DYD in the validation population. Correlations for the optimal number of Q&L
presentedAverage values of the 5 production traits; window size: 10 SNP.

Haplotyp
e Marker Haplptyp Milk' Fat Pr.otein Fat Protein Average
selection type e size quantity yield yield content content
method
TL-
%NP SNP 1 0.473 0509 0431 0567 0581 0.512
3 0.475 0525 0437 0568 0581 0.517
SNP 4 0.477 0523 0439 0575 0581 0.519
Flanking 5 0.475 0522 0443 0572 0.586 0.520
markers 3 0.496 0546 0.455 0570 0.601 0.534
hag'e"ty 4 0498 0558 0473 0571 0591 0.538
5 0.503 0.556 0.476 0.567 0.609 0.542
3 0.484 0521 0454 0581 0.586 0.525
SNP 4 0.487 0530 0.453 0.578 0.580 0.526
Criterion 5 0.476 0527 0454 0572 0577 0521
A 3 0.503 0.558 0.479 0.584 0.611 0.547
hag('a"ty 4 0.502 0.558 0.473 0582 0.606 0.544
5 0.485 0562 0.487 0577 0.602 0.543
3 0.481 0522 0.456 0575 0.588 0.524
SNP 4 0.486 0.528 0.459 0.586 0.591 0.530
Criterion 5 0.483 0530 0456 0.578 0.584 0.526
haploty 3 0.506 0554 0.487 0591 0.604 0.548
pe 4 0.496 0562 0.476 0594 0.609 0.548
5 0.499 0561 0482 0579 0.608 0.546

1:All the SNP included in the haplotypes are included énBhyes C analysis but they are used as independent axpjavariables



APPENDIX 1.

Supplementary methods

Calculation of the weighing factor for Criterion-B

In the calculation of the weighing factor, two principles need to be taken into account: on the
one hand, it is desired to maximize the number of predictable alleles of the selected haplotype
while on the other hand, it is also expected from Criterion-B that the allele frequencies of the
predictable alleles (which were identified the same way as with Criterion-A, i.e. using the

AFT parameter) do not differ extremely from each other, or in other words, their difference

do not exceed certain limits. Similarly to Criterion-A, selection of the optimal haplotype with
Criterion-B will be accomplished through the minimization of a function, which is expected

to reflect both aims.

In order to maximize the number of predictable alleles as with Criterion-A, it must be
guaranteed that any haplotype that includes a larger number of predictable alleles has a lower
score than the scores calculated for haplotypes with less predictable alleles. Therefore, the
least optimalscenario with N predictable alleles is expected tadmwer score, than the

most optimakcenario for any0™ O Opredictable alleles. Hence:

%NEPANPKRGNEPANEKIS 1)

where

N and 0 *are the number of predictable alleles (assunting@ Q
" «—1" < Fsis themost optimatase withO *predictable alleles
" «— 17 Zis theleast optimalkase with N predictable alleles

Themost optimakase with0 bredictable alleles corresponds to the situation when the
CriterionB gives the smallest possible value, which is the case ViHigakes its largest
value. Within the domain 00 (r O 0'O 0, thisisO"L : 0 F s.Therefore in the rest of
the derivation, this value is used insteaddd{proof not shown).

The general form of Criterion-B (without subscripts for simplicity) is:

%NEPANBKFSLI 0 (2a)
¢ S
5&L 11 1(o F77:° (2b)
P@5

where
OFR: observed frequency of allele k
w: the weighing factor of the number of predictable alleles
HS: haplotype size



Using equation (2a) in equation (1) leads to equation (3), which in turn (after simple algebraic
transformations) can be written as equation (4), defining a lower limit for the weighing factor:

5&,5FSU:0Fs;®&FsSUO €)

S P5&§F5<§C?5; (4)

Calculating this lower limit for all suitable values of N (that is, from 2 flf)2esults in a
sequence of lower limits, from which the maximum will satisfy all inequalities. In the
following, the two terms on the right side of equation 4 will be defined.

Calculating * p7, .

Since Criterion-B is used to solve an optimization problem by minimization, the SD value of
the most optimal situation corresponds to the situation where SD takes the lowest possible
value.

SD is the smallest for a particular N, when all the alleles have the same frequency (1/N). In
VXFK SRSWLPDO” FDVHV WKH PLQLPDO 6' FDQ EH FDOFXODYV

ré&Es Lt
> &b ID:—(s) Ft—f\i;6 0 0BB O A ©)
Because Z° is an upper limit of N, (N-1) is necessarily lower théli. Zherefore the lowest
SD for 5 &Q?g,pan be obtained by replacing N by (N-1) in equation @SFG—i S0 :0Fs;
Note that this value depends on the number of predictable alleles (N) and on the haplotype
size (HS) used in the model only.

Calculating  p?

The least optimal corresponds to a situation where the allele frequencies are as unbalanced as
possible. This is the case when (N-1) alleles have an allele frequency equal to AFT and 1
allele has a frequency equal to (1-AFT*(N-1)). The SD value then can be calculated as

follows:

6 6
S ~ ~ S
5& L 1#(6 Fxp U0 F s E dks F #(600F so Fgih (6)

At this point a new parameter was introduced to include information on the allele frequency
HTXLOLEULXP WKH PD[LPXP GHYLDWLRQ O" LV GHILQHG DV

(N-1) alleles from the ideal frequencg?ﬁ), expressed as a proportion of the ideal frequency.
The last, N allele is assumed to have an allele frequency equal to the AFT.



With the use of this parameter, the SD of the least optimal case can be calculated as:

5°LI#6|'—S«6EI—S«U/&GU'OF' (7)
& ( tAIp tAl P . S5

The right side of equation (4) can be calculated for all N and the weighing factor can be
selected as described above. From equation (7) it can be noted that with increasing N (from 2
till 2"9), the value of5 & is increasing as well, while the value 5% , 5 is decreasing (see
equation (5)). Therefore to determine the proper weighing factor, the calculation of these
parameters is enough for the largest possible value of N, that {&*for 2

In summary, to calculate the weighing factor for the number of predictable alleles in
Criterion-B, the following parameters are required:

The haplotype size (HS)
Allele frequency threshold (AFT)
The maximum deviation (MD)

All of these parameters are tested in the results section of the article. Since these parameters
are available prior to the start of the analysis of the QTL, the weighing factor can be
calculated before determining any QTL-windows on the genome and the same weighing
factor is generally applicable along the whole genome.
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Introduction

Summary

An important prerequisite for high prediction accuracy in genomic predic-
tion is the availability of a large training population, which allows accu-
rate marker effect estimation. This requirement is not fulblled in case of
regional breeds with a limited number of breeding animals. We assessed
the efpciency of the current French routine genomic evaluation proce-
dure in four regional breeds (Abondance, Tarentaise, French Simmental
and Vosgienne) as well as the potential benepts when the training popula-
tions consisting of males and females of these breeds are merged to form a
multibreed training population. Genomic evaluation was 5 —11% more
accurate than a pedigree-based BLUP in three of the four breeds, while
the numerically smallest breed showed a < 1% increase in accuracy. Mul-
tibreed genomic evaluation was benepcial for two breeds (Abondance and
French Simmental) with maximum gains of 5 and 8% in correlation coef-
bcients between yield deviations and genomic estimated breeding values,
when compared to the single-breed genomic evaluation results. In3ation
of genomic evaluation of young candidates was also reduced. Our results
indicate that genomic selection can be effective in regional breeds as well.
Here, we provide empirical evidence proving that genetic distance
between breeds is only one of the factors affecting the efbciency of multi-
breed genomic evaluation.

to lower selection efbciencies, when compared to
large breeds. Indeed, as of today, genomic selection

In order to obtain high accuracies, the current geno-
mic selection methods require large training popula-
tions (i.e. animals with both phenotypic and
genotypic records), typically consisting of several
thousands of individuals (VanRaden et al. 2008).
Genomic selection is currently implemented for the
main dairy cattle breeds (e.g. for Holstein Friesian, in
the USA: Wiggans et al. 2011; in France: Boichard
et al. 2012b; Croiseau et al. 2015; in the Netherlands
and in New Zealand: de Rooset al.2009b; the Euroge-
nomics initiative: Lund et al. 2011). In regional
breeds, the estimations of marker effects are less accu-
rate as a result of small training populations, leading

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11

has not been implemented in regional dairy breeds.
However, there is an increasing demand for it from
breeders and breeding associations due to economical
considerations as well as due to fear of a growing
genetic gap between breeds with versus without
genomic selection.

There are at least two different ways to increase the
size of the training population for these breeds: the
prst one is the inclusion of females in the training
population. However, in dairy cattle, much less infor-
mation is available from the performance of individ-
ual females than on that of males due to a lower
number of progeny per female, implying that many

doi:10.1111/jbg.12249
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more cows with records must be genotyped to
improve the efpciency of genomic evaluation (Harris
et al. 2013). The second approach is to merge the
training populations of several breeds and estimate
marker effects using the multibreed training popula-
tions. Although such a strategy can circumvent the
problem of small training populations (especially if
one or more large breeds are included as well), a
multibreed genomic evaluation can be efpcient only if
(i) quantitative trait loci (QTL) affecting the traits of
interest are shared across breeds, (ii) there is a con-
served linkage disequilibrium (LD) between QTL and
genetic markers among the breeds and (iii) the same
QTL—marker phases are present in all of these breeds
as well (de Rooset al.2008). Indeed, Porto-Neto et al.
(2015) have shown that consistent QTL-marker
phases are essential for successful multibreed genomic
evaluation. Given these requirements, markers from
the single nucleotide polymorphism (SNP) chips can
be split into two groups based on whether these con-
ditions are met or not: if QTL are shared among the
populations and the LD between the available mark-
ers and the shared QTL is conserved as well as the
phases, then marker effects are expected to be more
accurately estimated in a multibreed scenario. How-
ever, if at least one of these conditions is not met, the
accuracy of marker effect estimation may decrease
due to the additional noise introduced in the training
population with the inclusion of breeds, in which
either the QTL is not present or the linkage phases
between the QTL and marker(s) are different. Conse-
quently, to obtain the maximum gain possible, the
optimal training population should be a population
formed by individuals from breeds that are genetically
as similar to each other as possible (de Rooset al.
2008).

In a classical validation study using a simulated
multibreed experimental design derived from existing
large training populations, Hoz e et al. (2014) showed
that multibreed training populations can improve pre-
diction accuracy in breeds with small training popula-
tions. Hoze et al.(2014) also showed that breeds with
small training populations benebt more from a multi-
breed training population than large breeds.

Multibreed genomic evaluations used in combina-
tion with haplotype markers can be expected to
increase the prospect of conservation of LD between
markers and QTL and therefore increase the accuracy
of breeding value estimation. Haplotypes are combi-
nations of N neighbouring SNP (Hayes et al.2007; Vil-
lumsen et al. 2009; Garrick & Fernando 2014) and
unlike SNP with two alleles, haplotypes can theoreti-
cally carry 2V different alleles. Because of the

D. bnaset al.

increased number of alleles with haplotypes, there is a

higher chance that at least one of these alleles will be

linked to a QTL —when the latter is present —as com-

pared to SNP markers. This assumption was conpPrmed
by recent works (e.g. Croiseau et al.2015; Jonaset al.
2016).

The main aim of this study was to assess the efp-
ciency and the potential gains of genomic evaluations
in four regional breeds. In addition to single-breed
analyses, multibreed scenarios were studied in order
to investigate the potential gains or losses in terms of
accuracy due to the use of merged training popula-
tions and inclusion of females in the reference set.

Materials and methods
Data sets

Four regional French dairy cattle breeds were
included in the analysis: Abondance, Tarentaise, Sim-
mental and Vosgienne. Abondance and Simmental
are the largest of these breeds with approximately
23 000 and 17 000 cows under performance record-
ing in 2014, respectively, followed by the Tarentaise
with ~7500 cows and Pnally the Vosgienne with
~1350 cows (Institut de IOElevage, 2015). Performance
records were daughter yield deviations (DYD) for
males or yield deviations (YD) for females for the fol-
lowing Pve production traits: milk yield, fat content,
fat yield, protein content and protein yield. (D)YD
values were created by adjusting the observed perfor-
mances for all bxed effects, which were estimated in
the current genetic evaluation. When calculating the
DYD values, genotyped female performances were
excluded in order to avoid using the same phenotype
data twice during the analysis. Genotype information
from the lllumina Bovine SNP50 BeadChip (manu-
factured by lllumina Inc., San Diego, CA, USA) was
available; following a quality control pltering (mini-
mum Hardy -Weinberg equilibrium p-value: 10
minor allele frequency: 5%, minimum call rate:
10%), 43 801 SNP were retained.

A classical validation study was performed, where
the group of animals with both performance (as DYD
and YD values for males and females, respectively)
and genotype information was split into two popula-
tions based on birth date: a training population of the
80% oldest individuals and a validation population
(20% youngest individuals). In a brst step, allele
effects were estimated using genotype and phenotype
information from the training population. Once the
estimated allele effects were available, they were used
together with genotype information from the

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11
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validation population to estimate genomic estimated
breeding values (GEBV) for the validation population.
Finally, both the correlation coefpcient and the
regression slope of YD on GEBYV of the validation pop-
ulation were calculated.

Table 1 shows the total number of genotyped ani-
mals from the four different breeds as well as the
respective number of individuals in the reference and
validation populations per breed. Although the train-
ing populations of the Abondance and Tarentaise
breeds were relatively large, they mainly consisted of
females. Proportion of females in the populations ran-
ged from 36% (in Simmental) to 94% (in Vosgienne).
It can be noted that in the case of Vosgienne, nearly
all animals under performance recording have been
genotyped. All individuals in the validation popula-
tion of all breeds were females.

Because comparing the sizes of the training popula-
tions based on Table 1 is difpcult due to the different
amount of information represented by female and
male records, the number of males that represent an
equivalent amount of information as the females alto-
gether within each breed was computed. For this pur-
pose, the number of females with own performance
corresponding to a single progeny-tested bull was
obtained from Table 1 of Boichard et al. (2015). Due
to a lower number of progenies per progeny-tested
bull in the regional breeds, the reliability of these bulls
was lower than that in the large dairy cattle breeds
and was considered to be 60% here.

Pedigree-based BLUP

Based on the same phenotypes, a pedigree-based
BLUP analysis was also carried out to assess the bene-
pts of the single-breed genomic selection scenarios.

The BLUP model was as follows:

yivalsbuipe ap

where v; is the performance value of individual i (DYD
for males and YD for females), | ¢ is an overall mean

Table 1 Population size and the number of genotyped males and
females of the four analysed breeds

Number of animals in

Number of animals the ~ population

Breed Male Female Total Training Validation
Abondance 344 1482 1826 1461 365
Tarentaise 297 1167 1464 1171 293
Simmental 324 183 507 406 101
Vosgienne 60 1008 1068 854 214

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11
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effect calculated separately for males €= 1) and
females (s = 2), u; is the breeding value of animal i (u
~ MVN(O, Ar?2), where MVN refers to a multivariate
normal distribution, A is the additive relationship
matrix and r2 is the genetic variance), and g is the
random error term of animal i (e~N(0, Dr 2), where D
is a diagonal matrix with % elements (where w is the
equivalent daughter contribution for males and the
number of record equivalent for females) and r 2 is the
residual error variance.

Single-breed scenarios

In the single-breed scenarios, the routine French
genomic evaluation procedure was applied to the four
regional breeds. An outline of the applied method is
given below.

Genomic evaluation in France is performed in a sin-
gle-breed context in the four major dairy cattle breeds
of the country: using phenotype and genotype infor-
mation from bulls in the case of Holstein Friesian and
Brown Swiss and from both bulls and cows in the case
of the Normande and Montb eliarde breeds (Croiseau
et al. 2015). For each trait of interest, a set of SNP
linked to QTL were identiPed on the 50K SNP chip
using a Bayesian approach (Bayes-®) as imple-
mented in the cs3 software (Legarra et al. 2013). The
Bayes-Op procedure was originally described by Hab-
ier et al.(2011), with two main originalities compared
to Bayes-B: a single variance is used for all SNP effects
and a proportion of markers without an effect on the
trait (i.e. p) can be estimated in an iterative way.
However, p had to be bxed in the case of the regional
breeds due to convergence problems (in other words,
instead of a Bayes-( analysis, a Bayes-C was used for
the regional breeds with p Pxed to 80%). The model
used in this Bayes-C analysis was as follows:

XN
Vi Yal b pi b &P

vl

zjadip &

where p; is the polygenic effect of animal i (p ~ MVN
(O, ArZ” MVN, A and r2 are debned as for the pedi-
gree-based BLUP model), N is the total number of
SNP in the model, z is an indicator variable repre-
senting the number of copies of one of the alleles at
marker j in animal i, and g; is the substitution effect
for marker j, d; is a 0/1 variable indicating whether or
not marker j has an effect. All other terms are as
debned previously. The model includes a residual
polygenic effect in addition to the marker effects to
account for the genetic variance not explained by the
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markers. In practice, the genetic variance was split
into two parts: a certain proportion ( a) was attributed
to the markers in the model and the remaining was

assumed to be explained by the residual polygenic
component. All a values between 10 and 90% (with

10% increases) were tested and the one resulting in
the highest correlation coefbcient between YD and
GEBV measured in the validation population was
selected for each trait separately. All variance compo-
nents and the residual polygenic effect were estimated
iteratively during the analysis as well as the effects
and probabilities of inclusion of each marker in the

model.

Following the Bayes-C analysis, markers with the
highest probabilities of inclusion were selected
(n =250, 500 or 1000). Two consequences of this
selection procedure are as follows:

1 Several selected markers might be linked to the
same QTL, if the QTL has a large effect (e.g. the case
of the diacylglycerol O-acyltransferase 1 (DGATL1)
gene for fat content).

2 For each trait, the smaller sets were subsets of the
larger set(s).

Once the SNP were selected, haplotypes of four SNP
were constructed around these SNP using the Crite-
rion-B haplotype selection procedure described by
Jonaset al.(2016). This method constructs all possible
haplotypes within a short genomic window of 10 SNP
around the selected SNP. From these haplotypes, it
selects the haplotype that combines the largest num-
ber of well-represented alleles and the lowest number
of under-represented alleles. Such haplotype choice
was proven to be better in genomic evaluation than
the haplotypes built by merging the adjacent SNP into
a haplotype (Jonaset al.2016).

The selected haplotypes were then used as explana-
tory variables in the Pnal step of the genomic evalua-
tion process. Haplotype allele effects were estimated
in a marker-assisted BLUP analysis and these esti-
mated effects were used to estimate genomic breeding
values for selection candidates (i.e. animals with only
genotype information). Therefore, the model used in
the MA-BLUP analysis is as follows:

R18 Wh !
zig p

v Kl 1y

Nka

by € foc]=)

Vi Yal gp b e

where Ny, is the number of haplotypes (i.e. 250, 500
and 1000), Ny, is the number of segregating alleles at
haplotype k, by is the estimated allele effect of allele |
at haplotype k, and gy is an indicator variable
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indicating how many copies (0, 1 or 2) of allele | at
haplotype k individual i carries; all other terms were
debPned as in equations 1-2. In equation 3, the usual
residual polygenic effect was replaced by the sum of
the effects of the 8218 SNP from the BovineLD Bead-
Chip (Boichard et al.2012a). This is equivalent to con-
sidering a genomic relationship matrix rather than a
pedigree one to represent the covariance structure of
the residual polygenic effect. The value of a (i.e. the
proportion of the genetic variance allocated to the
haplotype markers) was chosen with the same proce-
dure as for the Bayes-C analysis. A more detailed
description of the pipeline with initial results was
given by Croiseau et al.(2015).

Multibreed scenarios

In order to make multibreed evaluations possible,
the performance values were standardized within
each breed to have a genetic variance of 1 for each
trait. After this scaling and assuming that the heri-
tability did not differ signibcantly among breeds,
the environmental variances were equal across the
breeds as well.

The multibreed scenarios were conducted using the
same pipeline as in the single-breed analyses. How-
ever, the training populations consisted of the merged
sets of the training population of each breed. To test
which breeds benebt from which other breed(s), 11
different training populations were constructed using
the training populations of either two or three or four
breeds (Table 2). The validation part of the pipeline
was kept in a single-breed context. This allowed an
unbiased comparison between the results of the sin-
gle-breed and multibreed tests.

The multibreed genetic models were similar to
those of the single-breed models, but the sex-specibc
overall mean effect was replaced by a breed- and sex-
specibc mean effect to account for all the differences
in the genetic background of the breeds. The modibed
equations are shown below for both the Bayes-C

Table 2 The 11 different training populations used in the multibreed
tests

Analyses with two breeds

A+T A+ S A+ V

T+S T+ V S+ V

Analyses with three breeds

A+T+S A+ T+ V A+ S+ V T+ S+ V

Analyses with four breeds
A+T+S+V

A, Abondance; T, Tarentaise; S, Simmental; V, Vosgienne.

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11
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(equation 4) and marker-assisted BLUP (equation 5)
models:

XN
Yoi Yal psP pi p AP

v

zigidip g

I
9218 '
Yoi Yal psP
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Wh
zja p

kvl

Nka

by €
1V

bg &P

where yj, is the performance value of animal i from
breed b and |  is the overall mean effect of breed b
and sex s Other variables are debned as for equations
1-3.

Results

Both correlation coefpcients and regression slopes of
DYD on GEBV were averaged over the bve production
traits, and only the average results are presented here.
Furthermore, in all cases, the presented results are
measured on the validation population. Differences
between correlation coefbcients were expressed in
percentage point and in the case of the regression
slopes, their average absolute deviations from 1 are
shown instead of the slopes themselves, as the desir-
able value of the slope of regression is 1 and several of
these values (particularly in case of the fat and protein
content traits and the Vosgienne breed) exceeded 1.

Table 3 shows the number of male-equivalent indi-
viduals (i.e. the number of males plus the number of
males representing the same amount of phenotypic
information as the genotyped females) in the four
populations studied in this study for two traits with
different heritabilities. The number of progeny-tested
bull-equivalent performances was the same for traits
with the same heritability, that is for traits with a heri-
tability of 0.3 (milk, fat and protein yield) and for
traits with a heritability of 0.5 (fat and protein con-
tents). However, due to the different heritabilities, the
females represent a very different amount of pheno-
typic information for these groups of traits.

Table 3 The number of males plus the number of male-equivalent
females'in the analysed breeds

Milk yield Fat content
Heritability 0.3 0.5
Abondance 767 1332
Tarentaise 630 1075
Simmental 376 446
Vosgienne 348 732

#Calculated based on Boichardt al. (2015).

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11
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Based on both the total number of individuals
(Table 1) and the number of male-equivalent individ-
uals, Abondance and Tarentaise had the most pheno-
typic data available. However, the difference between
the sizes of the two breeds was considerably smaller
based on the number of male-equivalent individuals
than based on the total number of individuals. Despite
a relatively large number of females genotyped
(Table 1), the number of male equivalents is the low-
est in the Vosgienne breed (348) in the moderately
heritable traits.

Linkage disequilibrium decay was compared
between the single-breed and multibreed scenarios
based on HD genotype data for more accurate esti-
mates. LD patterns were remarkably similar between
the single-breed and the 11 multibreed scenarios (see
Figure S1).

Single-breed scenarios

Figure 1 shows the part of genetic variance attributed
to the haplotypes (i.e. a) in the single-breed scenarios.
Values are averaged across the bve traits. As expected,
this parameter increased with the increase in the
number of haplotypes in the model; that is, when
more QTL were included, a larger part of the genetic
variance was explained by the markers. The increase
in a was slower in the Simmental for reasons
explained later. Results for the multibreed tests (data
not shown) were very similar to the single-breed
results presented in Figure 1.

Table 4 shows the correlation coefbcients between
GEBV and YD values for the four breeds in a single-
breed context, as function of the number of haplo-
types in the model. In addition, the results for the
pedigree-based BLUP analysis are provided as well.
The French routine genomic selection pipeline led to
increased average correlations between YD and GEBV
when compared to the correlations between YD and
EBV from the pedigree-based BLUP analysis in nearly
all traits and breeds. The gain [averaged across the bve
production traits and across the three different num-
bers of assumed QTL in the model (i.e. 250, 500 or
1000 haplotypes)] was 10.9, 5.7, 7.5 and 0.7% for the
Abondance, Tarentaise, French Simmental and Vosgi-
enne breeds, respectively. When compared to the
pedigree-based BLUP analysis, the gain observed with
the genomic evaluation was increasing with the
number of haplotypes in all breeds except in the
Simmental.

Apart from Simmental, there was a positive correla-
tion between the number of animals in the training
population (Tables 1 and 2) and the gain in terms of
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Figure 1 Estimated proportion of genetic variance attributed to the
haplotypes in the four single-breed scenarios. Average values over the
ve traits are plotted.

correlation coefpbcients with the genomic evaluation
when compared to pedigree-based BLUP results. In
spite of its smaller training population size, Simmental
outperformed the Tarentaise in terms of extra gain in
genomic selection when compared to the pedigree-
based BLUP analysis.

In general, 500 and 1000 haplotypes in the model
resulted in the highest correlations between YD and
GEBV. However, Simmental was an exception again,
with the highest observed correlation with only 250
haplotypes in the model. Differences in prediction
accuracies with the different numbers of haplotypes
in the model were relatively small, with a maximum
of 1.1% in the Vosgienne.

Deviations from 1 of the regression slopes observed
in the single-breed analyses are shown in Table 5.
Once again, the applied genomic evaluation proce-
dure outperformed the pedigree-based BLUP analysis.
The deviation of the slopes from 1 was negatively cor-
related with the number of individuals with perfor-
mance information. The average regression slope was
closest to 1 in the Abondance and Tarentaise breeds,
while it was the farthest within the Simmental. In
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general, the regression slopes were closest to 1 when
1000 haplotypes were included in the model. In addi-
tion, 500 haplotypes in the model resulted in slightly
better slopes of regression than 250 haplotypes.

Multibreed scenarios

The single-breed and multibreed tests were compared
based on the average correlation coefpcients and
regression slopes observed across the three different
numbers of haplotypes tested (250, 500 and 1000).
The training populations of the multibreed scenarios
always included the breed that was used in the valida-
tion step.

Figure 2 shows the correlation coefpcients between
YD and GEBV observed in the multibreed scenarios
for the four different breeds. In the multibreed scenar-
ios, an increased correlation coefpcient between the
GEBYV and YD values was observed in the Abondance
and Simmental breeds, while it decreased in the Tar-
entaise and Vosgienne breeds.

The Abondance breed benebted from all other
breeds in the multibreed tests, when the basis of com-
parison was the correlation coefbcient between the
YD and GEBV measured on the validation population.
When the training population of only one additional
breed was added to the training population of the
Abondance breed, an increase of 3.5 to 7.3% in corre-
lation was observed. These values increased to 5.1
and 8.0%, when two additional training populations
were merged with the training population of the
Abondance breed and the gain in a multibreed test
was 6.1%, when all the four breeds were used to esti-
mate genomic breeding values in the Abondance
breed.

Similarly, the Simmental benebted from the multi-
breed training populations, with an increase in corre-
lation coefbcient of 3.7% when the Abondance was
included in the training population, and of 4.2%
when the Vosgienne breed was added instead of the
Abondance (Figure 2). When both breeds were
included, the observed gain was lower (2.4%). In the
case of the Simmental breed, the inclusion of the Tar-
entaise was detrimental, leading to an average 2.4%

Table 4 Correlation coef cients between GEBV and YD values of the validation population in the single-breed scenarios. Results of the pedigree-
based BLUP analysis are also provided. Average correlations over the ve production traits for the four different breeds

Method Number of haplotypes Abondance Tarentaise Simmental Vosgienne
BLUP - 0.346 0.391 0.243 0.418
Genomic selection 250 0.454 0.446 0.323 0.420
500 0.454 0.449 0.318 0.426
1000 0.459 0.449 0.314 0.430
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Table 5 Regression slopes of DYD on GEBV in

the single-breed scenarios. Presented values Method Number of haplotypes Abondance Tarentaise Simmental Vosgienne
are averaged for the ve production traits and BLUP _ 0.111 0.121 0.394 0.155
measured as absolute deviations from 1 Genomic 250 0.090 0.104 0.260 0.168
selection 500 0.092 0.099 0.257 0.150
1000 0.092 0.079 0.244 0.114
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Figure 2 Correlation coef cients observed in the validation population
in the multibreed analyses in the four different breeds. Values are aver-
ages across the three tested haplotype sizes; the dashed lines corre-
spond to the single-breed scenarios. Abbreviations on the-axis labels:
A, Abondance; T, Tarentaise; S, Simmental; V, Vosgienh2/3/4-breed
scenarios

decrease in the correlations. When the Tarentaise was
added together with the Abondance (or the Vosgi-
enne) breed, the gain in terms of correlations was
lower when only the Abondance (or Vosgienne) was
included in the training population in addition to the
Simmental. The highest correlation was observed,
when the training population consisted of those from
all four breeds (average gain: 5.0%).

The accuracy of genomic evaluation decreased in
Tarentaise when multibreed training populations
were used. A similar result was found in case of the
Vosgienne breed, except with the Abondance+Vosgi-
enne training population, for which the accuracy did
not change compared to the single-breed scenario.
The decrease ranged from 0.4 to 3.6% in Tarentaise
and from 0.4 to 2.8% in Vosgienne.

Figure 3 shows the deviations of the regression
slopes from 1. The results for all multibreed scenarios
are plotted for all breeds. As for the correlation coefp-
cients, deviations of the regression slopes were also
averaged across the three tested numbers of haplo-
types in the model and across the bve traits. Similar to
the single-breed results, the estimated regression
slopes were better (i.e. closer to 1) in case of breeds
with larger training populations (i.e. with Abondance
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Figure 3 Deviation of the slopes of regressions from 1 observed in the
multibreed analyses in the four different breeds. Values are averages
across the three tested haplotype sizes; the dashed lines correspond to
the single-breed scenarios. Abbreviations on thg-axis labels: A, Abon-
dance; T, Tarentaise; S, Simmental; V, Vosgient@/3/4-breed scenarios

and Tarentaise) than with the other ones. However,

when the results are compared to the single-breed
results, the conclusions are unclear: in general, the
deviation of the regression slopes from 1 became
smaller with the Simmental and Vosgienne breeds
and increased with Abondance and Tarentaise.

Statistical analysis of the observed gains

We investigated the signibPcance of the obtained gains
using FisherOs Z-transform (implemented in the Oco-
corCr package by Diedenhofen & Musch 2015; based
on Zou 2007). Our assumption was that the genomic
evaluation results are superior compared to the BLUP
results. Therefore, a one-tailed test with an a % 5%
was implemented. Gains were signibcant in case of
two traits (fat content and protein content) in Abon-
dance and Tarentaise (see Figures S1 and S2). In case
of the multibreed scenarios, observed gains were
mainly insignibcant, when compared to the single-
breed results (data not shown).

While only very high gains ( >10%) would have
been signibcant, a smaller gain was observed in most
of the cases. To test whether a small gain can be con-
sistently expected with genomic evaluation compared
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to the pedigree-based BLUP results, a Wilcoxon
signed-rank test was implemented. Genomic evalua-
tion (with 1000 haplotypes) correlations were com-
pared to those obtained with the pedigree-based
BLUP. Once again, a one-tailed test was used with
a ¥ 5% for the bve pairs of correlations obtained in
the bve traits. The Wilcoxon signed-rank test was
used because normality could not be assumed due to
the small sample size (i.e. the number of traits) and
because the correlations were paired by trait. Based
on these tests, genomic selection can be expected to
lead to an increased selection accuracy in Abondance
(W=15; p 0.03) and in Simmental (W = 15;
p 0.03), but not in the other two breeds.

The same Wilcoxon signed-rank test was used to
compare the highest multibreed correlations with
those of the single-breed. In conclusion, in case of the
Abondance and Simmental breeds, multibreed geno-
mic evaluations led to systematically higher correla-
tions (p  0:03), when compared to the within-breed
evaluation results.

Discussion

In this study, we evaluated the performance of single-
breed and multibreed genomic evaluations in four
regional dairy cattle breeds in a classical validation
study. The training populations consisted of both
males and females, while the validation populations
included only female individuals. The population sizes
for these breeds ranged from 145 till 548 progeny-
tested bulls after accounting for the differences
between cows and bulls with respect to the repre-
sented amount of information. We showed that sin-
gle-breed genomic evaluations were more accurate
than a pedigree-based BLUP analysis even in regional
breeds with a small training population. The obtained
gains in terms of accuracy depended on the number
of individuals in the training populations, and larger
gains were observed with larger breeds (Tables 3 and
4). The Simmental breed had a particular population
structure due to its large proportion of imported
breeding animals and/or semen. Because the progeny
of these animals had only a very limited amount of
pedigree information available in France, overall per-
formance of all breeding value estimation methods
was inferior in Simmental when compared to the
other breeds. This population structure of the Sim-
mental explains why both the pedigree-based BLUP
and the applied genomic evaluation procedures per-
formed worse in Simmental than in the other breeds.
In addition, this is also the reason why we observed a
larger gain with genomic evaluations (compared to
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the pedigree-based BLUP) with Simmental (~7.54%)
than with Tarentaise (~5.68%), in spite of the larger
training population in the case of the latter breed
(Table 3). The gain with genomic evaluation com-
pared to pedigree-based BLUP was the smallest with
the Vosgienne, which can be because of the higher
average age of breeding animals within this breed,
resulting in more accurate EBV from the pedigree-
based BLUP tests. The deviations of the regression
slopes from 1 also improved with the genomic evalua-
tion, when compared to the pedigree-based BLUP
results (Table 5).

Genomic evaluation has a positive impact on the
quality of evaluation: all measured parameters
showed some improvement with the genomic evalua-
tion when compared to the pedigree-based BLUP
results. As a consequence, routine genomic selection
was implemented in the four regional breeds in
France in early 2016. The most important expected
benepts of genomic evaluation in the regional breeds
are the possibility to have shorter generation intervals
(if progeny testing is discontinued) and a larger num-
ber of evaluated animals, which has a positive inf3u-
ence on the within-breed genetic diversity as well.

Interpretation of the regression slopes is difPcult in
the multibreed tests, because they are not consistent
for each trait within a breed. The unfavourable trends
with the Abondance and Tarentaise are at least partly
due to the positive correlation between the correla-
tion coefbcient and the slope of regression of linear
regression models (i.e. given the
DYDYabgp b, GEBVp e regression model, the
regression slope can be written asb; Yar rrgEVBf;, where
r is the correlation coefpbcient between DYD and
GEBYV). In other words, the regression slope con-
stantly increases with the increase in the correlation
coefbcient and this trend is either advantageous
(when the slope of regression was lower than 1) or
disadvantageous (when the slope of regression was
higher than 1).

Hayeset al.(2009) demonstrated a large gain in the
accuracy of the Jersey GEBV when analysing a Hol-
stein—Jersey multibreed population using SNP infor-
mation from the 50K chip. Using another combined
Holstein—Jersey training population, Erbe et al.(2012)
showed a 4% increase in prediction accuracy for the
smaller breed (Jersey), when compared to the within-
breed test, using the BovineHD BeadChip (manufac-
tured by lllumina Inc., San Diego, CA), but found a
very limited gain when using 50K SNP chip data. Sim-
ilar to Hayes et al. (2009), we also observed an
improvement in terms of GEBV accuracies using the
50K SNP panel in several multibreed tests. While
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Hayes et al. (2009) did not observe any gain in the
Holstein Friesian (i.e. the large breed contributing to
the multibreed population), we could demonstrate a
large improvement of the accuracy even for the lar-
gest breed in our study. This is probably because of
the shorter genetic distance between the breeds anal-
ysed in this current study (Gautier et al. 2010). Hoze
et al. (2014) showed an improvement of 2.9% in
selection accuracy compared to a single-breed sce-
nario when analysing a Holstein -Normande—Mon-
tbeliarde multibreed population. In terms of
correlation between YD and GEBV, we observed a
maximum gain of 8 and 5% in the Abondance and
Simmental breeds, respectively.

de Rooset al.(2009a) showed that genetic distance
between the breeds participating in a multibreed
genomic evaluation is an important factor with a sig-
nibcant effect on the efbciency of the evaluations. In
our study, the Abondance breed benebted from the
addition of the training population of all other breeds,
while the Simmental benebted from the addition of
the training populations of Abondance and Vosgi-
enne. In contrast, neither the Tarentaise nor the Vos-
gienne benebted from any other breeds.

The level of accuracy of GEBV is partly due to a
quite accurate estimation of the parent average and
partly due to a relatively accurate estimation of QTL
effects. The high accuracy of the BLUP breeding val-
ues in Vosgienne indicates that the training and vali-
dation populations were closely related. In addition,
this breed had a small training population. Hence, in
Vosgienne, the high accuracies of GEBV result mainly
from an accurate estimation of the parent averages.
Adding other breeds to the reference population led
to more accurate QTL effect estimations (in the case of
the shared QTL), but probably decreased the accuracy
of the parent averages. Hence, the use of multibreed
training population was detrimental in Vosgienne.

Linkage disequilibrium persistency is another factor
that can explain the observed gains and losses in
terms of accuracy. In order to measure the LD persis-
tency, brst we calculated the r values for the neigh-
bouring SNP in each of the four breeds (Figure S1).
Next, we calculated and plotted the correlations of the
r values between the breeds for different marker dis-
tances (moving averages covering ~4Kb each are
shown in Figure S4). This way of measuring the LD
persistency is identical to that of de Roos et al.(2008).
We did not observe the same decrease in correlation
of r values with the increasing marker distance as de
Roos et al. (2008) did. This is likely because of the
much shorter range of marker distances covered by
the neighbouring SNP in our analysis (20-60 Kb
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versus 0-1 Mb in de Roos et al. 2008). The correla-
tions of r values ranged from 58% (between Abon-
dance and Tarentaise) to 70% (between Simmental
and Vosgienne). These correlations were generally
lower with the Tarentaise breed (58 -64%) and higher
with the Simmental (64 —70%). This can also partly
explain our results, for example why the multibreed
training population was detrimental for the Tarentaise
breed and why was it benepcial for the Simmental.

These results suggest that in addition to the genetic
distance between the breeds (Gautier et al. 2010),
there are other relevant factors determining the efp-
ciency of multibreed genomic selection (e.g. the fre-
guency and relative importance of breed-specibpc QTL
within each breed or the different QTL —marker allele
frequencies in the different breeds). Indeed, if only
the genetic distance would be relevant, genetically
close breeds would benebt from each other in both
ways.

Another essential condition for an efbcient multi-
breed genomic evaluation is the consistency of phases
between marker and QTL alleles among the different
breeds. We found that the LD decay observed in the
analysed breeds was remarkably similar. In addition,
it was shown earlier that these breeds are very closely
related (Gautier et al.2010); therefore, it was reason-
able to assume that these breeds would benebt from a
multibreed genomic evaluation. In contrast, the use
of a multibreed training population was detrimental
for some breeds, suggesting the lack of conserved
QTL—-marker allele phases. A possible improvement
would be to identify those markers (with signibcant
effects) that inBuenced the traits in the same direc-
tion, as suggested by Porto-Netoet al.(2015).

Conclusions

The French routine genomic evaluation method was
applied to four regional breeds in both single-breed
and multibreed contexts. We showed that genomic
evaluation outperforms a pedigree-based BLUP analy-
sis even though the available training population is of
limited size. Both the Abondance and Simmental
breeds benebted from at least two other breeds in
multibreed genomic evaluations. In some cases, the
introduction of multibreed training populations did

not affect the estimated breeding values of the differ-
ent breeds constituting to this multibreed training

population in the same direction, suggesting that fac-
tors other than genetic distance between the breeds
also infuence the efbciency of multibreed genomic
evaluations. Further research is required to better
understand the background of multibreed genomic
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evaluation. In particular, benebting from known cau-
sative mutations identiPed in other dairy cattle breeds
is especially promising when the aim is to develop an
efbcient genomic evaluation procedure for regional
breeds.
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Supporting Information

Additional Supporting Information may be found in
the online version of this article:

Figure S1. LD decay along the genome in both the
single-breed (dotted line) and multibreed (solid line)
scenarios. The slowest and fastest LD decays among
the 11 different multibreed tests are also shown
(dashed lines).

Figure S2. Results of the hypothesis testing indicat-
ing whether the observed gains in single-breed geno-
mic evaluations are statistically signibcant from zero
or not in the Abondance breed. Gains/losses in corre-
lations observed with the single-breed genomic evalu-

© 2016 Blackwell Verlag Gmble J. Anim. Breed. Genet. (2016) 1-11

Genomic evaluation of regional dairy cattle breeds

ation pipeline compared to the BLUP model are
indicated (short horizontal lines). The lower conp-
dence intervals for the gains/losses based on FisherOs
Z-transform are also shown (black triangles). The fol-
lowing trait name abbreviations are used on the plot:
MQ, milk quantity; FY, fat yield; PY, protein yield; FC,

fat content; PC, protein content.

Figure S3. Results of the hypothesis testing indicat-
ing whether the observed gains in single-breed geno-
mic evaluations are statistically signibcant from zero
or not in the Tarentaise breed. Gains/losses in correla-
tions observed with the single-breed genomic evalua-
tion pipeline compared to the BLUP model are
indicated (short horizontal lines). The lower conp-
dence intervals for the gains/losses based on FisherOs
Z-transform are also shown (black triangles). The fol-
lowing trait name abbreviations are used on the plot:
MQ, milk quantity; FY, fat yield; PY, protein yield; FC,
fat content; PC, protein content.

Figure S4. Between breeds correlation coefbcients
of r values calculated within breeds, as a function of
markers distance. Different lines correspond to the
different pairs of breeds (A, Abondance; T, Tarentaise;
S, Simmental; V, Vosgienne).
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