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Abstract 

Genomic evaluation exploits DNA marker information for selection purposes in 

breeds with agricultural importance. The majority of the available genomic evaluation 

methods today rely on SNP information, although it is hypothesized that haplotypes 

would perform better due to their higher polymorphism. Genomic evaluation was not 

implemented in regional dairy cattle breeds as of 2014, resulting in serious 

economical disadvantages for these breeds, urging breeders and scientists to 

address the issue. Our main aim was to evaluate haplotypes in genomic evaluation 

with focus on their performance in combination with multi-breed reference 

populations, which is an appealing way to enlarge the otherwise small reference 

populations of regional breeds. 

The performance of haplotypes compared to SNP was assessed in a large dairy 

cattle breed. The higher performance of haplotypes was confirmed and haplotypes 

outperformed the SNP-based analyses in all scenarios. Furthermore, we also tested 

the hypotheses that information on allele frequency and on linkage pattern along the 

chromosomes are both relevant in marker selection for genomic evaluation purposes. 

After the development and assessment of two haplotype selection criteria capable of 

incorporating these information, we could prove that these hypotheses are valid and 

the efficiency of genomic evaluation methods can be improved using haplotypes. In 

addition, the developed haplotype selection criteria also allowed the reduction of the 

number of markers used in the prediction process by a significant proportion. 

Out of these two criteria, the higher performing one was incorporated in the French 

routine genomic evaluation in 2015. The performance of this evaluation in the 

regional breeds was assessed and possible ways of improvements were 

implemented and evaluated. As a result of the sufficiently high performance of the 

French routine evaluation in the regional breeds, genomic selection was officially 

implemented in these breeds in 2016. The use of the bovine high-density SNP-chip 

did not improve the performance of genomic evaluation in these breeds, while multi-
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breed training populations were only partially beneficial. On the other hand, 

genotyping females led to notable increases in selection accuracies. Inclusion of 

candidate mutations identified in large breeds also led to a small improvement in 

these breeds. 

Keywords: dairy cattle, genomic evaluation, multi-breed, haplotype, haploblock 
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Résumé 

En sélection génomique, des marqueurs de l'ADN sont utilisés pour l’estimation des 

valeurs génétiques. La sélection génomique a été mise en placedans les trois 

grandes races (inter)nationales (Montbéliarde, Normande et Holstein) en 2014 en 

utilisant les données SNP de la puce 50K et elle a entraîné une augmentation 

significative (~2 fois plus) du progrès génétique annuel dans les caractères 

sélectionnés. Pour les races dites régionales, le nombre de taureaux testés est trop 

restreint pour permettre la constitution d’une population de référence suffisamment 

grande. Le manque d’évaluation génomique chez les races régionales – étant donné 

qu’elle a été mise en pratique dans les grandes races – place les races régionales 

dans un sérieux désavantage économique. 

La plupart des méthodes d'évaluation génomique utilisées depuis 2014utilisent les 

SNP comme marqueurs de l'ADN, bien que les haplotypes (combinaisons de N SNP) 

soient plus informatifs en raison de leur polymorphisme plus élevé. En outre, 

unepuceHaute Densité (HD) est disponible chez les bovins depuis 2011 en plus de la 

puce 50K. Malgré les attentes initiales, aucune amélioration significative n'a été pas 

observée avec la puce HD par rapport au puce 50K. 

Dans une première étude, nous avons évalué les avantages de l'utilisation des 

haplotypes dans l'évaluation génomique. Nous avons également évalué l'utilisation 

des haplotypes en combinaison avec lapuce HD dans l'évaluation génomique. 

Toutefois, le nombre d’effets de marqueur à estimer dans le modèle rend cette 

analyse difficile. En effet, en utilisant la puce HD, entre 1 et 2,3 millions d'effets sont 

à estimer avec des haplotypes de 2 à 5 SNP ce qui est bien trop complexe pour un 

modèle d’évaluation génomique. Par conséquent, nous avons également dû réduire 

le nombre des haplotypes utilisés dans les modèles. 

De plus, nous avons également contribué à la mise en place d’une méthode 

d'évaluation génomique efficace pour les races régionales. Afin d'augmenter la taille 

de la population de référence et donc de maximiser la performance d'évaluation 



8 

génomique dans ces races, les vaches avecdes performances enregistrées ont été 

génotypées en plus des taureaux testés. Avec ces populations de référence mixtes, 

nous avons évalué la performance des méthodes d'évaluation génomique 

disponibles dans les races régionales. En outre, nous avons également évalué 

plusieurs façons prometteuses d'améliorer la performance des évaluations 

génomiques dans les races régionales.Ainsi, l'utilisation la puce HD, lespopulations 

de référence multi-raciales (c'est-à-dire des populations de référence comprenant 

des animaux de plus d'une seul race), l'utilisation d'information de mutation candidate 

ou d'information de haploblock (c'est-à-dire exploitant l'information de déséquilibre de 

liaison entre des SNP) ont été évaluées. 

Pour cette analyse, cinq races ont été utilisées : Une grande race bovine laitière 

française (la Montbéliarde) a été utilisée pour l'évaluation des nouvelles méthodes 

qui utilise des haplotypes (voir ci-dessous). La population de référence de cette race 

incluait 2235 taureaux testés. Par ailleurs, les quatre races laitières régionales 

suivantes étaient disponibles également: Abondance, Tarentaise, Simmental et 

Vosgienne. La population de référence de ces races incluait des mâles et des 

femelles. La taille de la population de référence– en nombre des taureaux testés – 

variait entre 348 et 767 en 2015. Ces effectifs ont été revus à la hausse en2016, ce 

qui a porté la population de référence à 575-1593 animaux. En fonction de la race, 

entre 34 et 40 caractères sont disponibles dont 5 caractères de production laitières 

(quantité du lait, matière grasse, matière protéine, taux butyreux et taux protéique). 

Les observations de performance disponibles ont été converties en 'daughter yield 

deviations' (DYD) pour les mâles et en 'yield deviations' (YD) pour les femelles avant 

les analyses. Les animaux intégrés à cette analyse ont tous été génotypés soit en 

LD, 50K ou HD. Des travaux d’imputation (prédiction des génotypes) ont été menés 

et ont permis d’avoir un génotype HD (imputé ou réel) pour l’ensemble des animaux 

disponibles. Ainsi, les tests d’évaluation génomique ont pu être réalisé avec 

différentes densités de puce. Environ 3000 mutations candidates ont été génotypées 

dans les races Abondance, Tarentaise et Vosgienne et ont donc pu être également 

exploitées. 
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Tous les tests ont été réalisés dans le cadre d'études de validation classiques avec 

les 20% plus jeunes animaux dans la population de validation et les 80% restant 

dans la population d'apprentissage. Dans le cas des races régionales, les animaux 

de la population de validation étaient exclusivement des femelles. Mesurée sur la 

population de validation, les coefficients de corrélation entre (D)YD et GEBV ainsi 

que les pentes de régression de (D)YD sur GEBV ont été utilisés pour évaluer la 

performance de chaque densité de puce et de chaque méthode . 

Une application de BayesC-π capable d'utiliser des haplotypes au lieu des SNP 

individuels a été développée et évaluée. Deux critères légèrement différents ont été 

également développés afin de réduire le nombre de marqueurs utilisés dans 

lesévaluations génomiques. Ces critères ont pour but de sélectionner l'haplotype 

avec les meilleures propriétés de fréquence alléliqueau sein d'une région donnée. 

Ces deux critères comptent uniquement sur l’information de fréquence allélique: le 

premier (que nous appelons Critère-A) maximise le nombre d'allèles dont la 

fréquence allèlique est supérieure à un seuil défini par l'utilisateur, tandis que le 

deuxième critère (Critère-B) met plus d'accent sur l'équilibre entre les fréquences 

alléliqueet le nombre d’allèle afin de maximiser le nombre d’allèles avec une 

fréquence suffisamment élevée pour pouvoir permettre l’estimation d’effet d’allélique. 

Une des faiblesses de la méthode précédemment décrite est l'exigence de la 

connaissance préalable de laposition desrégions QTL. Afin de contourner cette 

condition, nous avons découpé le génome en régions au sein desquelles le 

déséquilibre de liaison est élevé (haploblock). Au sein de ces régions, tous les 

marqueurssont en fort LD avec tous les autres SNP de la même région ce qui signifie 

que ces régions sont héritées de génération en génération. La sélection d'un 

haplotype pour représenter chacun de ces haploblock ne nécessite pas une étape de 

détection QTL antérieure. L'utilisation de ces haploblocks avec les critères de 

sélection d'haplotype décrits précédemment permet de (1) réduire davantage le 

nombre d'haplotypes dans le modèle et (2) d'améliorer la précision de la sélection. 

La performance de l’évaluation génomique de routine française a été évaluée chez 

les races régionales qui –depuis 2015 – incorporaient la méthode de sélection 
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Criterion-B. En outre, les avantages possibles en raison d'addition des mutations 

candidates ont été également évalués avec BayesC et BayesR en même temps. 

Des évaluations multi-raciales ont été réalisées en fusionnant la population 

d'apprentissage des races régionales. L'étape de validation de ces études a été 

maintenues dans un contexte intra-race, parce qu'ilnous a permis une comparaison 

facile entre des résultats multi-raciauxet des résultats intra-race. Les populations 

d'apprentissage multi-raciales ont été formées en incluant les 4 races régionales ou 

la combinaison de 2 ou 3 races seulement. Au total, 11 scénarios multi-raciaux 

différents ont été testésavec l'utilisation de la puce 50K et HD. 

Nous avons pu démontrer que les haplotypes étaient plus performant que les SNP 

ensélection génomique (+ 2% en coefficients de corrélation en moyenne pour les 5 

caractères de production). Nous avons également pu montrer que l'information de 

fréquence alléliques et l’étendu du déséquilibre de liaison sont importants pour une 

construction optimale des haplotypes. Les deux critères nous avons proposé pour la 

sélection des haplotypes ont permis d’augmenter la précision de sélection de 0,7-

0,9% en moyenne sur les 5 caractères de production. Lorsque la sélection 

d'haplotypes a été conjointement utilisée avec l’information de blocs 

haplotypiquesbasée sur le LD, une augmentation supplémentaire de 1,5% est 

observée. Dans nos analyses, le Critère-B s’est montré plus performant que le 

Critère-A. En outre, par rapport aunombre total d’haplotypes consécutifs, le nombre 

d'haplotypes pourrait être réduit de ~26% et ~90% respectivement avec les puces 

50K et HD, lorsque les haploblocks et les critères de sélection sont utilisés 

simultanément. 

Le Critère-B a été includans les évaluations génomiquesofficielles en France en 

2015. La performance de cette évaluation a été ensuite évaluée dans les quatre 

races régionales. Cesanalyses ontabouti, pour les taureaux testés sur descendance, 

à des précisions au moins semblable à celles obtenus sous un modèle polygénique 

(sans information de génotypage). Par conséquent, une évaluation génomique a été 

mise en pratique dans ces races en 2016. En comparant les résultats obtenus en 

2015 et 2016, on pourrait conclure que le génotypage d'individus supplémentaires 
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(principalement des femelles) était avantageux dans les races régionales 

(augmentation de 4 à 7% des coefficients de corrélation entre les valeurs de YD et 

de GEBV dans la population de validation). 

L'addition de l'information de mutation candidate aux données ordinaires de 50K n'a 

pas permis d’améliorer notre modèle. En termes de précisions de la sélection, 

BayesC a généré une augmentation moyenne de 0,5% (moyenne sur les 5 traits de 

production), tout comme leBayesR(+0,3%). En termes de biais de sélection, aucune 

amélioration significative n'a pas été observée avec l'inclusion des mutations 

candidates. 

L'utilisation de génotypes haute densité n'a pas amélioré la performance de 

l'évaluation génomique dans les racesévaluées, alors que la formation des 

populations multi-raciales ne sontbénéfiques que pour certaines d'entre elles. 

L'utilisation d'une population multi-raciale a été avantageuse dans les races 

Abondance (+5,8% en corrélation entre YD et GEBV en moyenne pour les 5 traits de 

production) et Simmental (+ 5,4%), mais a été désavantageusepour la Tarentaise (-

3%) et la Vosgienne (-2,5%). Plusieurs auteurs ont suggéré que la puce HD seraient 

nécessaires pour les évaluations multi-raciales, en raison de la diminution du 

déséquilibre de liaison (LD) entre les marqueurs et QTL, lorsqu'on utilise une 

population de référence multi-raciale. Cependant, ces populations de référence 

sonttoujours génétiquement plus distante que lapopulationde référence d'une seule 

race et, dans notre cas, l'utilisation de la puce HD dans un contexte multi-racial n'a 

pas amélioré l'efficacité de l'évaluation. 

Au vu de ces résultats, une évaluation génomique officielle a été mise en placedans 

trois races régionales : Abondance, Tarentaise et Vosgienne. Pour la Simmental, une 

population de référence internationale, plus grande, est aussi disponible. Ainsi, cela 

permet une plus grande précision de sélection et un biais plus faible par rapport à 

ceux que nous pouvons fournir. 

L'arrivée desévaluations génomiques dans ces races devrait également avoir un 

impact positif sur la biodiversité : auparavant ~5-20 taureaux étaient testés sur 
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descendance (en fonction la race) et seulement une fraction de ces taureaux 

devenait reproducteur. Toutefois, à partir de 2016, les organismes de sélection visent 

à évaluer entre 50-150 taureaux avec une utilisation de ces taureaux plus 

homogène. Plus le nombre de taureaux reproducteurs augmentera et plus la taille 

efficace de la population de ces races augmentera également, ce qui facilitera la 

gestion de la population et la préservation des races. 

Lescoefficient de déterminationobtenus avec la sélection génomique dans ces races 

est similaire à ceux obtenus sous un modèle polygénique. Toutefois, les GEBV sont 

disponiblespour un plus grand nombre d'animaux et à la fois pour les mâle et les 

femmes. Cela facilite et accélère le processus de sélection pour ces races. Ainsi, 

d'après nos estimations, on s'attend à ce que le gain génétique annuel soit multiplié 

par 3 dans les races régionales, comparativement au programme de testage sur 

descendants. Cependant, il sera toujours inférieur par rapport au progrès génétique 

annuel observé chez les grandes races laitières. 

Nous avons également fourni des preuves empiriques de la supériorité des 

haplotypes sur les SNP individuels dans les modèles d’évaluation génomique. En 

outre, nous avons prouvé qu'il est avantageux de considérer l'information de 

fréquence allélique et de LD lors de la sélection des marqueurs pour former les 

haplotypespour les évaluations génomiques. Notre méthode est particulièrement 

intéressante pour améliorer la précision de la sélection génomique, car elle n'a 

besoind’aucune information supplémentaire. Ces méthodes permettent une 

exploitation des données disponibles plus pertinente. 
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Chapter 1  

Introduction 

Some of the most important challenges modern agriculture faces today are the fast 

human population growth (projected World population in 2050: 9.7 billion; current 

increase: +83 million/year; FAO, 2015), the expected freshwater shortage and the 

continuing decline of arable land in use per person (Alexandratos and Bruinsma, 

2012). Livestock production is especially affected by these challenges, because it 

directly (for pastures) or indirectly (for feedcrop production) uses 70% of the World’s 

agricultural lands (FAO, 2006). Furthermore, especially in Western countries, a shift 

can be observed in consumer expectations towards, for example, healthier products 

or higher animal welfare (e.g. Støier et al., 2016; Thaxton et al., 2016). Proper 

adaptation of animals to the technological conditions in modern farming systems (e.g. 

to milking machines in dairy cattle) as well as secondary traits with significant effects 

on animal production, such as stress resistance or resistance against infections and 

diseases are also of interest. Therefore, it is of great importance to develop 

sustainable and more efficient production systems in all fields of agriculture and 

especially in animal breeding. 

The phenotypic characteristics of animals are determined by two major components: 

the genetic background (i.e. the DNA) of the animals and the environment in which 
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they produce. In order to successfully cope with the challenges agriculture must face 

in the foreseeable future, genetic improvement of livestock is crucial because it 

focuses on maximizing genetic gain in the long-term and therefore all future 

generations benefit from it. Genetic improvement in agronomically important 

species/breeds is obtained through artificial selection on economically important 

traits, such as milk production and udder health in dairy cattle, growth rate and stress 

resistance in pigs or number of eggs produced by laying hens. Traditional selection 

methods use phenotypic observations combined with pedigree information to 

estimate the genetic merit of selection candidates. However, recent biotechnological 

advances in molecular genetics and genomics (e.g. Bentley, 2006; Shen et al., 2005; 

applications in cattle: Matukumalli et al., 2009; Liu et al., 2009) allowed the 

development of genomic selection (e.g. Meuwissen et al., 2001) and its 

implementation in practice, particularly in dairy cattle breeding (for example in 

France: Croiseau et al., 2015b). These modern selection tools permit the direct 

utilization of information on DNA sequence variations in the selection process, 

leading to significant increases in annual genetic gain in the selected traits. 

Genetic diversity is a key element of population management. Without genetic 

diversity, there is no chance for genetic improvement of animal populations. With a 

declining genetic diversity, populations (breeds or even whole species) can become 

endangered and in extreme cases might ultimately face extinction. For the same 

considerations, it is crucial to maintain the genetic diversity in agriculturally relevant 

species and breeds. Furthermore, preservation of regional breeds (see the definition 

in the next paragraph) is important as well because future production environments 

are unknown and therefore it is unknown which breeds could produce efficiently in 

the future. To support the preservation of regional breeds, their competitiveness has 

to be maintained. However, due to their smaller population size and to the less 

available funding, breeding programs are usually less efficient in these breeds. 

Through this manuscript the term "regional breed" is used to denominate breeds, 

which are raised in a limited area, much smaller than the whole territory of France. A 

first category of regional breeds comprises native breeds with a small (e.g. the 
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Vosgienne with ~5,000 cows) to moderate (e.g. the Abondance with ~50,000 cows) 

current population size. A second category comprises breeds of foreign origin with a 

small-moderate population size in France, such as the Simmental Française or the 

Brown Swiss breeds (both with about 25000 cows). 

Currently available genomic selection methods require large animal populations with 

both phenotype and genotype data in order to achieve high prediction accuracy 

(Goddard, 2009), which is a prerequisite for successful selection. However, these so 

called “reference populations” are limited for regional cattle breeds, which are 

characterized by a small population size and are bred only by a limited number of 

breeders. Breeders and breeding organizations of regional breeds are therefore in 

disadvantage with regard to genomic selection with the serious risk of increasing the 

gap between the genetic potential of these regional breeds compared to larger 

(inter)national breeds, in which genomic selection has already been implemented. 

Currently there are numerous projects in our research group aiming to improve the 

efficiency of genomic selection in dairy cattle. One of these projects focuses on the 

development of efficient genomic selection methods for regional breeds in 

collaboration with breeding organizations representing four such French dairy cattle 

breeds. The primary aim of my PhD within this framework was to investigate the 

performance of state of the art genomic evaluation procedures in regional breeds and 

to develop new methods to improve the genomic selection efficiency in these breeds. 

In particular, testing the efficiency of new tools such as haplotype markers, the 

BovineHD BeadChip® (HD; manufactured by Illumina Inc., San Diego, CA) and 

putative causative mutations in genomic selection were among our aims. Our long-

term objective was to contribute to a new genomic evaluation procedure which is 

efficient in breeds with small reference populations. Practical implementation of the 

newly developed methods is made possible by the collaborations with breeding 

organizations. 
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Chapter 2  

Background 

The main objective of animal breeding is to genetically improve animal populations 

for economically important traits. The phenotypic performance of animals is affected 

by both genetic and environmental factors. Although the existence of genotype-by-

environment interactions is currently actively studied – e.g. in Rauw and Gomez-

Raya, 2015 – they are most often not taken into account as its removal simplifies the 

models without compromising the selection efficiency. In modern farming systems, 

both of the other two factors (i.e. the environmental conditions and the genetic 

background of the animals) are improved – independently from each other – in order 

to increase the production level of the animals. Genetic improvement of livestock is 

done by means of selection. In the following sections, we will introduce the main 

characteristics of selection in dairy cattle breeding as well as the fundamental basics 

of both classical and genomic selection procedures. 

2.1 Characteristics of dairy cattle breeding 

There are several key features of the dairy cattle industry which have major impacts 

on the applied breeding system. Firstly, all the production traits (e.g. milk yield, milk 

fat and protein content) and many other traits (e.g. udder health, milking speed, 

somatic cell count) can be measured only on females. Hence, own performances do 
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not exist in males for most of the economically important traits and selection of males 

must rely on information from female relatives. Secondly, a much larger proportion of 

the young female animals are required in order to keep the population size constant 

compared to the required proportion of males. Therefore, in dairy cattle (similarly to 

most animal species) much larger selection pressure can be applied on males than 

on females. In addition, most of the traits of interest have low (e.g. functional traits, 

such as fertility, resistance to mastitis or ease of calving) to moderate heritabilities 

(e.g. production traits, such as milk yield) in dairy cattle, although some exceptions 

exist, for example milk fat content, which has a heritability of about 0.7 in certain 

breeds. 

Due to the extensive use of artificial insemination in dairy cattle breeding, bulls may 

have several hundreds of thousands of daughters and therefore a huge contribution 

to the gene pool of the next generation. In order to ensure that only the best bulls will 

have such a strong contribution, an accurate breeding value estimation for male 

selection candidates is inevitable in dairy cattle breeding. 

As a consequence of the mainly low-moderate heritabilities and the lack of own 

performance in males, progeny testing had to be implemented in order to achieve 

reasonably high accuracy of breeding value estimations in males. Due to progeny 

testing, the precision of the available performance information is much higher for 

progeny-tested males than for females; however, this come at the cost of a 

lengthened generation interval, which is usually more than 6 years when measures of 

males and their offspring can be gathered (Schaeffer, 2006). 

Furthermore, an important characteristic of dairy cattle breeding is the high per 

animal costs (e.g. raising, housing or feeding). These costs are much higher in the 

dairy cattle industry than – for example – in the pig or poultry industry. These unit 

costs in dairy cattle are also considerably higher than they are in case of small 

ruminants (goat, sheep), which species can be considered as competitors of dairy 

cattle. 
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Due to the low prolificacy, the applied breeding programs in dairy cattle are aiming to 

maximize the gain in the additive genetic effects, i.e. the heritable part of the genetic 

effect and other types of breeding (e.g. cross-breeding) is not widespread. In the 

following, I will discuss genomic evaluation methods, which are frequently used either 

in practice or in research for breeding value estimation in dairy cattle. However, 

before reviewing these, pedigree-based selection methods will be discussed, 

because one of these (BLUP) will be used to obtain a baseline for comparison 

purposes. 

2.2 Pedigree-based selection methods 

Pedigree-based selection methods assume that genetic relationships between 

animals are known and that phenotype data is available for a significant part of the 

population. The traits of interest are most often quantitative traits with a continuous 

(normal) distribution. These traits are assumed to be influenced by a very large (in 

theory by an infinite) number of loci, each having an (infinitesimally) small effect on 

the phenotype under study. 

An individual's phenotypic performance (��) is influenced by multiple factors, 

including an additive genetic effect (��), a dominance effect (��), epistatic effects (��) 
and environmental effects (��): 

 �� = � + �� + �� + �� + �� (1) 

where μ is the population mean. Other effects, such as genotype-environment 

interactions or maternal effects can be included as well, but are usually assumed to 

be negligible. �� and �� are also ignored, because they are not directly transmitted to 

the next generation. 

Additive genetic effects “��” (also called breeding values) are estimated using linear 

regression models. Best linear predictions (or BLP) of the breeding values are 

obtained by constructing optimal linear combinations of performances of each animal 

and close relatives (progeny, parents, sibs) expressed as deviation from a general 

mean. However, such procedures assume that breeding values do not differ 
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systematically within any of the environmental effects, an assumption which usually 

does not hold in practical animal breeding. Therefore these estimates are usually 

biased. 

2.2.1 Best linear unbiased prediction 

Best linear unbiased prediction (BLUP) can be used to estimate the environmental 

effects and genetic effects simultaneously using mixed models. These models 

include the identifiable environmental effects as fixed effects and the breeding values 

as random effects. Since all effects are estimated at the same time and under the 

same assumptions, BLUP results in unbiased estimations for both types of effects. 

Using matrix notations, a statistical model including both types of explanatory 

variables can be written as: 

 
 = �� + � + � (2) 

where y is a vector of phenotypic observations (dimension: n × 1, where n is the 

number of phenotypes), b is a vector of fixed effects (dimension: p × 1, where p is the 

total number of levels of fixed effects), a is a vector of random additive genetic effects 

of all animals (dimension: q × 1, where q is the number of such “animal” effects), X is 

an incidence matrix of dimension n × p relating the levels of fixed effects to the 

observations, Z is an incidence matrix of dimension n × q relating the animal effects 

to the observations and e is a vector of random errors (dimension: n × 1). 

With (univariate) evaluation models, BLUP usually assumes that random error terms 

(e) are normally distributed, have a mean equal to zero and a variance equal to � = ���� (where I is an n × n identity matrix): �~���, ��. The additive genetic effects 

are also assumed to follow a normal distribution with a vector mean of 0 and a 

variance-covariance matrix of � = ����: �~���, ��, where A is the additive genetic 

relationship matrix built from pedigree information. It follows, that the performances 

(y) are assumed to have a mean of X*b and a variance equal to ��� = ��� + ���: �~����,� + ��. All explanatory variables are assumed to be independent from 

the random error term. 
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In dairy cattle breeding, a contemporary group effect is used most often as a fixed 

effect, in order to integrate information from both the calendar (year/season/…)- and 

herd effects. For the model presented above, the mixed model equations leading to 

BLUE (for fixed effects) and BLUP (for random effects) solutions can be written as: 

 !" #$%" " #$%&& #$%" & #$%& + '$%( )*+, = !" #$%-& #$%-( (3a) 

Best linear unbiased estimates (BLUE) of fixed effects are distinguished from best 

linear unbiased predictions (BLUP) of random effects, because they are calculated 

differently: for fixed effects only point estimates of the specific effect levels present in 

the model (i.e. the contemporary groups) are of interest. On the other hand, in case 

of the random effects first parameters of the underlying distribution (i.e. for the animal 

population) are estimated and then the realized levels of this distribution (i.e. animal 

effects) are predicted. Equation 3a can be simplified in case of a univariate animal 

model (Henderson, 1984; Lynch and Walsh, 1998): 

 )" " " && " & & + α/$%, )*+, = !" -& -( (3b) 

where α = 012032 = %$4242 , h2 is the heritability of the trait, A-1 is the inverse of the additive 

genetic relationship matrix and all other terms are as described previously. The 

heritability (more precisely, the narrow-sense heritability; h2) of a trait is defined as 

the proportion of the phenotypic variance that is due to the additive genetic variance. 

Therefore, heritabilities are trait-dependent and they can be different for different 

breeds as well as for different populations of the same breed. Solving the mixed 

model equations for b and a will give BLUE & BLUP estimates for the fixed and 

random effects, respectively. 

The theoretical accuracy of the estimated breeding values is often measured by the 

reliability, which is the square of the correlation coefficient between the estimated and 

true breeding values. 
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2.2.2 Implementation in our study 

The BLUP analyses were carried out using the BLUPF90 software (Misztal, 1999, 

after Misztal, 2016) and the results constituted a baseline for comparisons. On 

several occasions the performance of different genomic evaluation methods will be 

compared to those obtained with a pedigree-based BLUP model. The models used 

for breeding value estimation were the ones currently implemented for all dairy cattle 

breeds in France – including the regional breeds – for the traits we were interested in 

(discussed later). 

Traits were analyzed in a single-trait context. Multiple-trait models also exist and they 

can result in higher accuracies when the genetic correlations between the analyzed 

traits are not zero. These methods assume knowledge on genetic correlations and 

are computationally more demanding than single-trait analyses (Lynch and Walsh, 

1998). Because these genetic correlations were not always available and also 

because the French routine genomic evaluation is conducted in a single-breed 

context, multiple-trait models were not used and they will not be further discussed. 

2.3 Genetic background of quantitative traits and genetic markers 

Genomic selection procedures differ from pedigree-based selection methods in their 

use of genetic markers during the breeding value estimation process. In this section 

first a brief introduction is given on quantitative traits, which is followed by the 

presentation and characterization of the most frequently used markers and by the 

detailed description of the genomic evaluation procedures. 

2.3.1 Quantitative trait loci 

Quantitative trait loci (QTL) are the loci (e.g. genes, non-cooding RNA, etc.) affecting 

the expression of a quantitative trait. The ultimate aim of animal breeders is to 

identify through genomic evaluation all QTL as well as to accurately estimate the size 

of their effects. If such information would be available together with the genotypes of 

animals at all QTL, selection could be done purely on observed genotype data and 

phenotype recording would be dispensable. However, the identification of all QTL is 



36 2.3 Genetic background of quantitative traits and genetic markers 

 

currently not possible and therefore in nearly all cases breeders have to rely on 

genetic markers “linked” to the QTL. 

2.3.2 Genetic markers 

Genetic markers are DNA variations generated by mutations that occurred during the 

evolution of the species and of the breeds. We will see in section 2.4 that such DNA 

sequence information can be exploited for selection purposes in animal breeding: in 

genomic selection, genetic markers are used to trace the inheritance of chromosome 

segments carrying quantitative trait loci. Unless the QTL is/are known, these marker 

effects are used as proxies of the QTL effects. Since the exact locations of the QTL 

are unknown, denser marker maps increase the probability that at least one marker 

will be “linked” to each QTL. Several types of genetic markers are used for genomic 

evaluation purposes. 

2.3.2.1. Microsatellite 

Historically, the first markers used were microsatellites, which are defined as "simple 

sequence repeats with a repeat length of up to 13 bases" (Gibson and Muse, 2009). 

These markers have a high mutation rate and therefore are highly polymorphic with 

an average of at least 10 alleles per locus in human (Gibson and Muse, 2009). 

However, due to their sparse distribution along the genome, the observed gain in 

terms of accuracy of genomic evaluation was very limited (Boichard et al., 2012b, 

Guillaume et al. 2008a; Guillaume et al., 2008b) and genotyping costs of 

microsatellites were substantial. 

2.3.2.2. Single nucleotide polymorphism 

The key biotechnological breakthrough that led to significant improvements in 

selection accuracy (as compared to the pedigree-based selection methods) was the 

development of the first commercial SNP arrays (in cattle: Matukumalli et al., 2009). 

Single nucleotide polymorphisms (SNP) are mutations affecting a single locus on the 

genome. Due to the nature of these mutations, multi-allelic SNP are extraordinarily 

rare and the vast majority of them are bi-allelic. Furthermore, SNP are the most 

frequent type of markers on the genome and per-marker genotyping costs are 
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constantly decreasing (e.g. Holland et al., 1991; Shen et al., 2005; Tobler et al., 

2005). 

In cattle, three main types of SNP-chips were developed: first the Bovine SNP50 

BeadChip with approximately 54,000 SNP (50K; Illumina Inc., San Diego, CA, USA; 

Matukumalli et al., 2009) followed by the BovineHD BeadChip® with ~777,000 SNP 

(Illumina Inc., San Diego, CA, USA; Matukumalli et al., 2011 after Rincon et al., 2011) 

and finally the Illumina Infinium BovineLD Genotyping BeadChip hosting 3-18 

thousand SNP, depending on the version of the SNP-chip (LD; Illumina Inc., San 

Diego, CA, USA). The bovine 50K chip was developed as an initial tool to allow both 

researchers and industry members to genotype a large number of animals and to 

enable them to evaluate the performance of the previously proposed genomic 

evaluation procedures (e.g. Meuwissen et al., 2001) on real data. The HD SNP-chip 

was developed to grant very fine mapping resolution to scientists, because it was 

envisioned that this would further improve the resolution and performance of QTL 

detections, genomic evaluations and other studies. Finally, the LD chip was 

specifically designed to include a relatively small number of SNP (~3-18 thousand) so 

the chip could be efficiently used to genotype a large number of animals at a low 

cost. The first LD SNP-chip contained only ~3,000 SNP and was specifically 

developed for the request of the United States Department of Agriculture by Illumina 

and to be used in the US Holstein population (SNP on the chip were selected 

accordingly). This chip was however quickly replaced by a larger one (~7,000 SNP), 

which was done for the request of the Bovine LD consortium (Boichard et al., 2012a). 

The chip then went through an evolution, during which the number of SNP increased 

to ~18,000; meanwhile several SNP were also replaced by others of larger 

importance. The larger versions of the LD SNP-chip were also more appropriate to 

be used in breeds other than the Holstein. 

The development of these SNP arrays allowed breeding organizations in various 

countries in collaboration with research centers to genotype cost-effectively large 

numbers of SNP for thousands of individuals. 
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Genetic markers are said to be linked, when the co-occurrence of their different 

alleles is more frequent than it is expected from their allele frequencies under the 

assumption that the markers are segregating independently from each other. In other 

words, linkage is the non-random association between markers (Gibson and Muse, 

2009). The stronger the linkage between a marker and a QTL is, the better the QTL 

effect can be “captured” with the marker alleles and therefore the more appropriate 

the marker is to trace the transmission of the QTL alleles from one generation to the 

other. Consequently, it is of interest to have genetic markers closely located to the 

QTL in order to be able to accurately estimate the marker effects. The strength of the 

linkage can be characterized by the level of linkage disequilibrium (LD). There are 

two commonly used measures of LD: D' (the normalized) form of a linkage 

disequilibrium measure D and r2 (the square of a correlation coefficient between the 

frequencies of loci). Consider two biallelic markers SNP-A (with alleles A1 and A2) 

and SNP-B (with alleles B1 and B2), the allele frequencies 567, 562, 587 and 582 and 

the frequency of the A1B1 genotype �56787�, r2 and D’ are calculated as shown in 

equations (4) and (5), respectively: 

 r:;� = <p:7;7 − p:7p;7?�
p:7p:2p;7p;2  (4) 

 �68 =
@AB
AC 56787 − 567587max<−567587 , −562582? , GH	56787 − 567587 < 056787 − 567587min<562587 , 567582? , GH	56787 − 567587 > 0O (5) 

The most important disadvantage of the r2 parameter is that it depends much on the 

(marginal) allele frequencies and is sensitive to low allele frequencies (e.g. Devlin 

and Risch, 1995). In contrast, D' is less dependent on allele frequencies, although it 

is still influenced by it if a rare allele is present. D' estimates are also inflated in small 

samples, which is a serious disadvantage of this parameter. 

Linkage breaks down with increasing distance between markers due to a higher 

probability of recombination events between more distinct markers. This 

phenomenon is known as LD-decay (Baird, 2015). 
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2.3.3 Haplotype 

A notable disadvantage of SNP compared to microsatellites is that SNP are bi-allelic 

and therefore a single SNP carries less information than a single microsatellite. A 

possible solution to circumvent this issue is the use of combinations of SNP instead 

of individual SNP markers. Haplotypes can be defined in at least two different ways: 

− haplotypes are the sets of alleles of markers or genes of an organism, which 

were inherited together by the individual on one of the ancestral chromosomes 

(e.g.: The International HapMap Consortium, 2005; Gibson and Muse, 2009; 

Stephens et al., 2001) 

− More simply, haplotypes are combinations of N SNP markers (e.g.: Hayes et 

al., 2007; Villumsen et al., 2009; Garrick et al., 2014) 

In this study, the term “haplotype” refers to the second definition, while the term 

“phase” will be used to cover the first definition. The term “alleles” or “haplotype 

alleles” will be used to refer to the alternative forms of the haplotypes (similarly to the 

case of SNP). Given this definition of a haplotype, it can be shown that a haplotype 

can carry a maximum of 2N different alleles, where N is the number of bi-allelic SNP 

forming the haplotype. Due to the multi-allelic nature of haplotypes, there is an 

increased chance – as compared to individual SNP – that at least one of these 

alleles will be in LD with the (ungenotyped) causative mutation at a QTL, if one is 

present. In addition, LD between haplotype and QTL alleles are more stable over 

time as well, because if a whole haplotype allele is passed to the next generation, it is 

very unlikely that two recombinations took place within the chromosome segment it 

represents. 

Before haplotypes can be built, phases must be reconstructed from genotype data, 

since these are not readily available with the genotyping tools available today. 

Phase-reconstruction will be discussed in detail in the next section. Although 

haplotypes can increase the LD between the genomic markers and QTL, as it was 

proven by Croiseau et al. (2015b) and as we will see later, the number of alleles 

increases exponentially with the haplotype size (when the latter is measured in 

number of SNP), leading to a rapid increase in the number of allele effects that need 
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to be estimated. Figure 1 shows the average number of segregating haplotype 

alleles in a Montbéliarde population either with the 50K or with the HD chip as well as 

the maximum possible number of alleles for 4 different haplotype sizes (this 

Montbéliarde population will be described in section 2.8 below). It can be seen that 

the number of segregating alleles is close to its theoretical maximum only with short 

haplotypes (2 or 3 SNP/haplotype). With haplotypes of 4 SNP, the deviation from the 

theoretical maximum is ~23.0% and 33.5% with the 50K- and HD data, respectively. 

This deviation shows a substantial increase with haplotypes of 5 SNP. Figure 1 also 

illustrates that haplotypes built from consecutive SNP have less segregating alleles 

when the HD panel is used compared to the 50K SNP-chip. This phenomenon can 

be explained by the fact that markers are less dense on the 50K array and therefore 

there is a higher chance for recombinations to occur between markers from this chip 

than between those from the HD array. This in turn leads to a larger number of 

segregating haplotype alleles. 

 

Figure 1: Average number of alleles when using consecutive haplotypes from either 
the 50K or from the HD SNP-chip with 4 different haplotype sizes (the theoretical 
maximum number of alleles (i.e. 2N) is also plotted). 

2.3.4 Imputation and phase reconstruction 

Imputation is the prediction of ungenotyped SNP from genotypes of linked SNP 

and/or with the use of pedigree information (Li et al., 2009; more generally, any type 

of marker can be imputed). Phasing is the process in which the parental phases – i.e. 
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the ordered sequence of SNP alleles which are located either on the paternal or on 

the maternal chromosome inherited by an individual (see the definition in section 

2.3.3) – are reconstructed from genotype data by exploiting pedigree information 

(Fallin and Schork, 2000). Through the intensive use of imputation, breeders and 

breeding organizations were able to genotype animals for a decreased number of 

SNP (for reduced costs), because imputation allowed them to predict the 

ungenotyped markers with a high accuracy (e.g. Saintilan et al., 2015; prediction 

error (as concordance rate) was less than 1%). This resulted in substantial savings. 

Furthermore, determination of parental phases is a prerequisite for haplotype 

construction. Therefore, both imputation and phase reconstruction (if haplotypes are 

used) are of great importance with a large impact on every downstream step of a 

genomic evaluation pipeline. The imputation and phasing methods used in our study 

will be described later. 

2.4 Genomic evaluation 

The availability of genetic marker information allows us to trace the transmitted 

marker alleles from ancestors to descendants. Genomic evaluation methods require 

both phenotype and genotype data (although pedigree data is not a prerequisite, it 

can improve the performance of genomic evaluation). Most of the genomic evaluation 

methods estimate allele effects of markers (microsatellite, SNP, haplotype or any 

other type of marker) using a reference population of animals, i.e. a population of 

animals with both phenotype and genotype data. Once estimated allele effects are 

available, they are used in combination with genotype data on the selection 

candidates to calculate their genomic estimated breeding values (GEBV). 

Furthermore, availability of marker information also enables QTL detection studies as 

well, which aim to identify causative mutations, i.e. those genetic markers that are 

responsible for the observed genetic diversity (e.g. Grisart et al., 2002). This 

information might be important to improve the performance of genomic evaluation in 

the future. 

Whether or not genomic selection is efficient in any animal population depends both 

on the characteristics of the species and on those of the production system. Genomic 

evaluation was quickly introduced in dairy cattle breeding because it allowed 
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breeding organizations to stop progeny testing, leading to substantial savings 

(although these were then invested in further genotyping). The genetic gain obtained 

annually increased significantly as well (see section 2.6 below). 

2.4.1 Marker-assisted BLUP 

In marker-assisted BLUP (MA-BLUP) selection, a limited number of markers are 

added as random covariable effects to the pedigree-based BLUP model (Fernando 

and Grossman, 1989). These markers are assumed to be the proxies of causative 

mutations (i.e. the QTL). A pedigree-based residual polygenic effect is retained in the 

model in order to account for the additive genetic effect of those QTL which were not 

identified previously and therefore are not represented in the model by any marker. A 

general MA-BLUP model can be written as: 

 - = "* + &P + QQmRS
�

ST%
U

RT% + V (6) 

where y, X, b, Z and e are defined as previously for equation 2, u is the residual 

polygenic effect, N is the number of markers included in the model and mij is the 

effect of allele j of marker i. A major difference between MA-BLUP and pedigree-

based BLUP is the increased number of explanatory variables. Meuwissen and 

Goddard (1996) showed that substantial gain can be obtained with MA-BLUP 

compared to BLUP results using microsatellites. Marker-assisted BLUP was first 

implemented in practice in France (Boichard et al., 2002), followed by Germany 

(Bennewitz et al., 2003). 

In theory, if all QTL would be known and the model would be purely additive, MA-

BLUP methods would result in 100% accuracy. However, the identification of all QTL 

as well as the accurate estimation of each of their effects in any breed is currently not 

feasible. The two main disadvantages of the MA-BLUP procedure is that all QTL 

detection methods include false positives and that the QTL linked to the selected 

markers explain only a fraction of the total genetic variance (de Roos et al., 2009a). 

For example, if a single marker for each of the ~20,000 genes from the bovine 
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genome (data from ENSEMBL, 2016) is used, the number of marker effects would 

exceed the number of phenotypes in most of the breeds. 

2.4.2 Genomic-BLUP 

The most straightforward genomic selection procedure is an extension of the BLUP 

methodology (equation 3) with a “genomic relationship matrix” (G) replacing the 

pedigree relationship matrix (A). This is called genomic-BLUP (GBLUP). This 

genomic relationship matrix can be constructed in at least 3 different ways 

(VanRaden, 2008), which are outlined here: 

The first one is calculated as � = W�∗∑ �Z∗�%$�Z�[Z\7 , with N being the number of bi-allelic 

SNP, pn the minor allele frequency (i.e. the frequency of the less frequent allele of a 

SNP; MAF) of SNP n and Z being an incidence matrix of markers calculated as  = ] − ^ with one row per animal. In the calculation of the Z matrix, each row of M 

contains values (-1), 0 and 1 for the homozygous, heterozygous and the other 

homozygous genotypes for each animal × SNP combination and any value of column 

i of matrix P is calculated as ^_ = 2�a − 0.5�, where p is the vector of minor allele 

frequencies of the SNP. Matrices M, P and Z have as many rows as the number of 

genotyped individuals in the population and as many columns as the number of SNP 

genotyped. 

The second one, using the same notations is Calculated as � = d , where 

��� = %ef��g∗�%$�g�h. This formula weights the different SNP separately based on their 

expected variance in contrast with the previous one, which weighted all SNP with the 

sum of variances of all the SNP. 

The last method includes a regression on the pedigree relationship matrix (]] =ijkk + i%� + l, where g0 and g1 are the intercept and regression slopes, 

respectively) and is calculated as: � = ]]W$mnkkWm7 . 

The inverse of the genomic relationship matrix, G-1 is then used to replace the 

inverse of the additive genetic relationship matrix in BLUP. The G matrix is supposed 
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to reflect the relationship between genotyped animals more accurately than the 

pedigree-based A matrix, because it relies on observed genotype data. In contrast, 

the A matrix is based on probabilities and expected levels of similarities between 

relatives, which can be considered less accurate. That is because in case of the A 

matrix all individuals that have the same relationship to each other (e.g. half-sibs) 

receive the same genetic relationships based on pedigree. However, in the case of 

the G matrix, genetic relationships are estimated from observed genotype data, 

which can deviate from their expected values, based on the number of SNP alleles in 

common between the animals (e.g. between the half-sibs). 

Meuwissen et al. (2001) described a GBLUP applied to a model including marker 

effects as random variables drawn from a single normal distribution (their model also 

included a contemporary group effect as fixed effect). This model is equivalent to the 

GBLUP model described in the previous paragraph, because the breeding values 

(vector a in equation 3) equal to the sum of the allele effects, as it was shown by 

(VanRaden, 2008). This implies that breeding values can be estimated indirectly, by 

first estimating the allele effects and then calculating the breeding values of 

individuals from the estimated allele effects and from their observed genotypes. 

The problem with the G matrix is that it measures the relationship between animals 

by the average number of shared alleles, i.e. it considers the alleles identity in state 

rather than those identity by descent. Furthermore, usually the same weights are 

given to all SNP irrespective of the trait, although it is reasonable to assume that not 

all genotyped SNP are linked to QTL for all the traits (and also that their relative 

importance also differ from trait to trait). However, there are some studies to 

circumvent this issue and Zhang et al. (2010) for example proposed the use of a trait-

specific relationship matrix instead of a regular G-matrix. 

2.4.3 Bayesian methods 

To cope with the mentioned issues of MA-BLUP, Meuwissen et al. (2001) proposed 

using all SNP in genomic evaluation and not a subset of them. Bayesian methods 

were originally suggested to be used for genomic evaluation purposes because they 

are computationally efficient and because they can successfully deal with the 
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problem of estimating many more effects than the number of dependent variables 

available for the analysis (the 5 ≫ p problem). Furthermore, the use of the Gibbs 

sampler algorithm was also suggested to generate samples from the posterior 

distribution of each effect. This was a convenient choice because it allowed the 

sampling of allele effects from their posterior distribution conditional on all other 

effects, but not on the effect being sampled, which is relatively straightforward to 

implement. 

The methods proposed by Meuwissen et al. (2001) became known as BayesA (when 

all SNP is assumed to have a larger-than-zero effect) and BayesB (when a 

predefined proportion of the SNP are assumed to have an effect of 0 and only the 

rest of the SNP to have an effect >0). We mainly worked with an extension of BayesB 

which will be described in detail below. In BayesA, each marker is assumed to 

explain a different proportion of the genetic variance (���). The prior distribution of the 

marker variances is modeled with a scaled inverted chi-square distribution. As it is 

reasonable to assume that most of the SNP from any SNP panel are neither a 

causative mutation nor linked to any of those, the BayesB method has a fixed prior 

probability (π) that a given marker has no effect on the analyzed trait (in Meuwissen 

et al. (2001) π varied between 78.8% and 94.7%, depending on the marker density). 

For technical reasons (it is impossible to directly sample an effect from a “simple” 

distribution), marker variances were sampled with the Metropolis-Hastings sampling 

procedure with BayesB, instead of sampling with the Gibbs sampler. A serious 

problem arising with both BayesA and BayesB methods is shrinkage (i.e. the risk of 

shrinking allele effects when the estimates are applied on a dataset other than the 

one used to calculate them), which was shown to depend on the initial value of the 

scale parameter S of the scaled inverse chi-square distribution (Gianola et al., 2009). 

The BayesC method was proposed as an extension to the BayesA and BayesB 

methods (Habier et al., 2011). In contrast to BayesA and BayesB, the BayesC model 

assumes a single marker-effect variance for all markers. This modification was 

shown to decrease the chance of shrinking. 
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A modification of BayesC is the so called BayesC-π, where the proportion “π” (i.e. 

the proportion of markers without an effect on the trait) is allowed to vary during the 

analysis and is estimated from the data. In our work, we used the GS3 software with 

an implementation of the BayesC and BayesC-π methods (Legarra et al., 2013). In 

the original paper in which the BayesC-π method was introduced (Habier et al., 

2011) π was defined as the proportion of SNP without an effect on the analyzed trait 

(in accordance with the definition of π in BayesB in Meuwissen et al., 2001). 

However, in the GS3 implementation, π refers to the opposite proportion, that is the 

fraction of SNP with an effect on the trait of interest. In order to avoid ambiguities, π 

will be defined here according to the original definition given by Meuwissen et al. 

(2001) and by Habier et al. (2011). 

BayesC(-π) distinguishes only 2 groups of SNP: those with an effect (from a 

distribution with a unique variance) and those without an effect on the analyzed trait. 

However, it is known from previous studies that the size of SNP effects can differ 

substantially. The distribution of the marker effects (after standardization) was shown 

to follow a gamma distribution (Hayes and Goddard, 2001; also see Figure 2), i.e. 

there is a small number of QTL with large effects in addition to a large number of QTL 

with small effects. However, it is reasonable to assume that the parameter estimates 

(scale and shape parameters were estimated by Hayes and Goddard (2001) to be 

5.4 and 0.42, respectively) are dependent both on the analyzed population and trait. 

Erbe et al. (2012) proposed a method termed BayesR which can distribute the SNP 

into more than 2 groups, i.e. the distinction of small, medium and large QTL becomes 

possible in addition to a group of SNP with no effect. In this method, each group is 

defined by the proportion of genetic variance that any SNP from that group is 

expected to explain. 
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Figure 2: Probability density distributions of QTL effects in dairy cattle (after Hayes 
and Goddard, 2001; axis labels were removed since they are trait-dependent). 

Other Bayesian methods include the BayesD(-π) (Habier et al., 2011), Bayesian 

Lasso (Park and Casella, 2008; de los Campos et al., 2009; Weigel et al., 2009, 

Legarra et al., 2011), emBayesR (Wang et al., 2015) or the BayesSSVS (Verbyla et 

al., 2009). The latter method is very similar to BayesC-π (SNP effects are assumed 

to follow a normal distribution and a proportion (π) of the SNP are assumed to have a 

negligible effect on the trait of interest; Lukić et al., 2015). These methods will not be 

further discussed as they are not used in routine genetic evaluation. 

A serious drawback of the presented Bayesian methods compared to the other 

methods presented (GBLUP, MA-BLUP) is that they are not suitable to evaluate large 

datasets in routine due to long running times. However, they are still adequate for 

QTL detection for scientific purposes and this information can then be exploited for 

routine evaluations (for example, see the French routine genomic evaluation pipeline 

in section 2.5). 

2.4.4 Genomic evaluation methods with haplotype markers 

In our studies, two haplotype-based genomic evaluation methods were implemented. 

The first one, the marker-assisted BLUP model on haplotypes is a straightforward 

extension of equation (6). In this model, SNP effects are simply replaced with 

haplotype effects as follows: 
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 - = "* + &P + QQhRS
rs
ST%

U
RT% + V (7) 

where y, X, b, Z, u, N and e are defined as previously for equation 6, Hi is the 

number of alleles carried by haplotype i and hij is the allele effect of allele j of 

haplotype i. 

In 2013, before our studies there was no software available for the implementation of 

a Bayesian genomic evaluation procedure using haplotypes. Therefore the GS3 

software by Legarra et al. (2013) was modified by P. Croiseau and M-N. Fouilloux in 

our group to be able to handle multi-allelic haplotypes instead of bi-allelic SNP in a 

BayesC-π approach. This version of the software will be referred as haplotypic GS3 

hereafter. I used this software to assess the performance of two criteria to define 

optimal haplotypes. In this section the most important aspects of the method will be 

described as well as the differences compared to the regular, SNP-based BayesC-π. 

A typical model with haplotype effects is: 

 yR = cgeR + uR + QδS zhRS{ + hRS|}U
ST% + eR (8) 

where yi is the performance value of individual i, cgei is the contemporary group 

effect of animal i (fixed effect; additional fixed effects can be included as well), ui is 

the residual polygenic effect of animal i (u~MVN(0, �σ��), N is the total number of 

haplotypes in the model, hRS{ and hRS| are the random effects of the maternal and 

paternal alleles of haplotype j of animal i, δS is a 0/1 variable indicating whether or not 

marker j is assumed to have an effect (δS is zero with a probability of π; when it is 

zero, all alleles of the given haplotype are assumed to have no effect on the trait) and 

ei is a random error term for animal i. 

In this implementation, haplotype size is a user-specified parameter (usually between 

1 and 5, with 1 corresponding to the SNP-based BayesC-π model; this parameter will 

be abbreviated as Nh in this section). The software then creates every consecutive, 
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non-overlapping haplotypes of Nh SNP from the genotype files. The last haplotypes 

were truncated if a complete haplotype of Nh SNP could not be built from them. In 

order to avoid haplotypes spreading across multiple chromosomes, separate 

genotype files must be provided for each chromosome. Similarly to the SNP-based 

BayesC-π, a common variance (sampled from an inverted chi-square distribution) is 

used for all haplotypes in the model. 

In certain cases, it is desirable to exclude certain SNP from the analysis, therefore an 

important question is how one can simply remove SNP from the dataset. The solution 

I proposed to this issue was not to address it within the software (i.e. making both the 

code and the software input file more complex) but to simply adjust the genotype files 

prior to running the software. On the one hand, this did not require further 

programming and additional input files and parameters, which is convenient from the 

perspective of both the programmer and the user. On the other hand, it made 

necessary that the user creates a new set of genotype files each time (s)he wants to 

test a different set of haplotypes, which can be – depending on the density of the 

SNP-chip and on the number of different genotype sets to be tested – very 

demanding in terms of data-storage. 

This work was presented at the World Congress on Genetics Applied to Livestock 

Production in Vancouver, Canada (Croiseau et al., 2014). 

An important question that immediately arises when haplotypes are used instead of 

SNP in genomic evaluation is: what is the optimal haplotype size for genomic 

selection? Too long haplotypes would result in increasingly large number of 

segregating alleles and therefore in a rapid decrease in the average number of 

available observations per allele, leading to a quick decrease in estimation accuracy 

of allele effects. To overcome this difficulty, an efficient technique is needed to 

reduce the number of haplotypes used in the prediction models as much as possible 

without risking the loss of relevant genotype information. 

In conclusion, the use of haplotype markers in genomic prediction is intuitively a 

promising way to increase the selection accuracy, because they are much more 
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polymorphic. However, they pose serious risks as well. On the one hand, it is 

desirable to increase the number of marker alleles (i.e., the number of effects to 

estimate in the genetic model) in order to increase the probability of capturing the 

QTL effects. On the other hand, the increase of the number of effects in the model is 

detrimental to the accuracy of parameter estimates. These issues will be addressed 

in Chapter 3. 

2.5 French routine genomic evaluation of dairy cattle 

In France, marker-assisted evaluation was first introduced in 2001 (Boichard et al., 

2002) based on microsatellites, but quickly evolved into a real genomic evaluation 

and went through several steps of evolution (Ducrocq et al., 2009, Boichard et al., 

2012b, Croiseau et al., 2015b) with the last major changes implemented in April 2015 

(Croiseau et al., 2015a). At the present time, the routine genomic evaluation consists 

of 4 steps (see below) and incorporates part of my PhD work. In France, genomic 

evaluation is officially applied to (i) the 3 major dairy cattle breeds, namely the 

Holstein, Montbéliarde and Normande breeds (since 2009), (ii) to the Brown Swiss 

(since 2014) and (iii) to 3 local breeds, namely the Abondance, Tarentaise and 

Vosgienne (since 2016). In the case of five breeds (the 3 regional breeds, 

Montbéliarde and Normande) both males and females are included in the training 

population in contrast with the two international breeds (Holstein and Brown Swiss), 

for which only males are used. It is worth mentioning, that the French Brown Swiss 

population is small, but within the framework of the Intergenomics project 

(http://www.brown-swiss.org/genetics), a large international reference population was 

assembled for this breed from smaller national populations (contributing countries 

included – among others – Germany, USA, Canada and France). Genomic 

evaluation is carried out on 34-46 traits, depending on the breed. The four steps of 

the evaluation pipeline are: 

1 QTL detection 

2 Haplotype construction 

3 Estimation of (haplotype) allele effects 

4 GEBV calculation for selection candidates 
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The first two steps were done in the research phase only and are not repeated at 

each routine evaluation. In contrast, the last 2 steps are routinely done 3 times a year 

in order to obtain estimates of marker effects using all available data to compute 

GEBV values for selection candidates. Genomic evaluation is carried out on 34-46 

traits per breed (traits analyzed independently). 

For the research phase (steps 1 and 2), phenotypes were first converted into 

‘daughter yield deviations’ (DYD) for progeny-tested bulls and into ‘yield deviations’ 

(YD) for females with own performance recording only. (D)YD values are calculated 

by correcting the observed phenotypes to all fixed and random effects except of the 

effect of the animal (Liu et al., 2004; Szyda et al., 2008); at the end of each BLUP 

genetic evaluation. (D)YD values are the most accurate indicators of the true 

breeding values calculated from the available data. 

Genotype data from both the 50K and LD SNP-chips are currently used. Genotype 

sets are standardized for each breed: a set of 43,801 SNP are retained from the 50K  

and a set of 8,218 SNP from the LD chip for genomic evaluations. 

In the first step of the pipeline, SNP effects are estimated for all SNP from the 50K 

SNP-chip using a BayesC-π procedure with the following model: 

 �� = μ�R + pR + QzRSmSδS
U

ST% + eR (9) 

where yi is the performance value of individual i, µsi is an overall mean effect 

(calculated separately for males (s=1) and females (s=2), when applicable) of animal 

i, pi is the residual polygenic effect of animal i (p ~ MVN(0, �σ��), with MVN refering to 

a multivariate normal distribution, A to the additive relationship matrix and σ�� to the 

genetic variance), N is the total number of SNP in the model, zij is an indicator 

variable representing the number of copies of one of the alleles at marker j in animal 

i, mj is the allele effect for marker j, δS is a 0/1 variable indicating whether or not 

marker j has an effect and ei is the random error term for animal i. The proportion of 

the genetic variance attributed to the residual polygenic effect in the BayesC-π model 
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(equation 9) is determined empirically for each trait separately and the most optimal 

value is used. 

Once marker effects are available for all the 43,801 SNP, those with the highest 

probability of inclusion (i.e. the highest probability to have an effect different from 

zero) are identified to trace the QTL with moderate-high effects. The analyses with 

1,000 and 3,000 SNP included in the model were compared and the most optimal 

value is used for each trait. This is done in order to properly adapt the models to the 

genetic background of the traits. In practice 3,000 SNP was found to be optimal for 

most of the traits. Probability of inclusion is used preferably to the estimated allele 

effects because it was found to give slightly better results (S. Fritz, 2014, personal 

communication). 

It is reasonable to assume that the markers selected from the 50K SNP-chip are not 

the causative mutations but are merely linked to them: this is because the 43,801 

SNP from the chip represent only ~0.16% of all the ~28 million known SNP on the 

bovine genome (Boussaha et al., 2016). Therefore SNP from the 50K chip likely 

indicate only the approximate location of the causative mutations on the 

chromosomes. In order to better capture the QTL effects, haplotypes are built around 

each of the selected SNP for the routine evaluation. Haplotypes are built using the 

method proposed in Chapter 3. This method exploits information on haplotype allele 

frequencies. In this method, a short (10 SNP-wide), symmetric window is created 

around the selected SNP and from all possible haplotypes of 4 SNP within the 

window, one is selected to represent the given region based on observed allele 

frequencies. The main goal of this method is to balance between allele frequencies 

and number of segregating alleles when a haplotype is selected. Different haplotype 

sizes between 2 and 5 SNP were compared. Haplotype size of 4 SNP was found to 

be optimal and therefore was applied in the routine evaluation in France. 

Once the haplotypes are available, their allele effects are estimated using a marker-

assisted BLUP model: 
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where Nh is the number of haplotypes (i.e. 1,000 or – most often – 3,000), Nka is the 

number of segregating alleles at haplotype k, βkl is the estimated allele effect of allele 

i at haplotype k and εikl is an indicator variable indicating how many copies (0, 1 or 2) 

of allele l at haplotype k individual i carries. The other terms are defined as in 

equation (9). The polygenic effect from equation (9) is replaced by the combined 

effect of the 8,218 SNP from the LD SNP-chip in the MA-BLUP model. This 

modification was done because the combined effect of the 8,218 SNP from the LD 

SNP-chip can be considered as equivalent to a residual polygenic effect with a 

genomic relationship matrix (see section 2.4.2) and therefore is expected to perform 

better than the pedigree-based residual polygenic effect. 

Following the allele effect estimation of the haplotypes, these estimates are applied 

to the genotypes of the selection candidates to estimate their GEBV. 

To adapt the routine evaluation procedure to the regional breeds (most importantly to 

the lower amount of available performance records), there were 2 important changes. 

First, the number of QTL traced was reduced to 1000 from the original 1,000-3,000. 

Secondly, due to convergence problems in the first step, π had to be fixed to 80%. 

2.6 Consequences of genomic selection 

2.6.1 Advantages of genomic selection 

The technological advances previously presented and the theoretical developments 

achieved since the early 2000s led to the practical implementation of genomic 

evaluation in dairy and beef cattle in at least 16 countries by 2016 (e.g. for Holstein in 

the USA: Wiggans et al., 2011; in France: Boichard et al., 2012b and Croiseau et al., 

2015b; in the Netherlands and in New Zealand: de Roos et al., 2009b; the 

Eurogenomics initiative: Lund et al., 2011). Genomic evaluation also led to the 

elimination of the expensive progeny-testing phase of the previous breeding program 

in several countries (e.g. France, United States). 
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Genomic evaluation has an effect on the annual genetic gain. When calculating the 

annual genetic gain, four different paths have to be distinguished in dairy cattle 

breeding, because multiple parameters affect genetic gain (namely: the generation 

interval, selection accuracy and selection intensity) differ significantly for these paths. 

Generation interval is the average age of the breeding animals when their offspring, 

which are kept for breeding are born. Selection accuracy is the correlation between 

the true and estimated breeding values, while the selection intensity is the 

performance of breeding animals expressed as a deviation from the population mean 

and as a proportion of phenotypic standard deviation. The aforementioned four paths 

differ mainly due to progeny testing in males and because a much larger selection 

pressure can be applied on males. The paths are distinguished based on whether 

bulls or cows are selected and whether they are selected to contribute to the next 

generation of bulls or cows: 

− males to produce females (denoted “mf” in the subscripts in equation 11) 

− males to produce males (denoted as “mm”) 

− females to produce females (denoted as “ff”) 

− females to produce males (denoted as “fm”) 

The annual genetic gain obtained with any breeding program can be calculated using 

the following formula (Rendel and Robertson, 1950): 

∆G = <i|� ∗ r�r,|� + i|| ∗ r�r,|| + i�� ∗ r�r,�� + i�| ∗ r�r,�|? ∗ σ�L|� + L|| + L�| + L��  (11) 

where ∆G is the annual genetic gain, i.. is the selection intensity calculated for the 

four different paths, rIH,.. is the selection accuracy calculated for the four paths, σa is 

the standard deviation of the additive genetic effect of the trait under selection and L.. 

are the generation intervals (expressed in years) again for the four paths. Genomic 

selection affects the following factors in the above equation: 

1. Selection accuracy (rIH,..): For males, selection accuracy of genomic selection 

is usually inferior compared to the selection accuracy of progeny-tested bulls 

given that a large number of progeny is evaluated for the bulls (this was 
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typically done in large breeds). However, selection accuracy is higher for 

females with genomic evaluation compared to the BLUP selection accuracy 

based on own performance only (Boichard et al., 2015). Furthermore, genomic 

evaluation increases the selection accuracy in case of males without a large 

number of progeny as well. 

2. Selection intensity (i..): Selection intensity can be increased for females 

(Boichard et al., 2015). This is due to the increasing use of sexed semen as 

well as due to the introduction of genomic evaluation. The former 

biotechnological development leads to a larger number of selection candidates 

for females while the latter results in more accurate breeding values for 

females, which enables the selection of the best females. Sexed semen 

accounted for 37% of all inseminations in dairy cattle in France (Institut de 

l’Elevage, 2016). 

3. Generation interval (L..): Due to the availability of DNA sample of selection 

candidates immediately after birth, generation interval is greatly reduced for 

progeny-tested bulls. Schaeffer (2006) assumed the generation interval of 

progeny-tested bulls between 6 and 6.5 years, while in the same study he 

predicted that the generation interval with genomic selection could be ~1.75 

years. García-Ruiz et al. (2016) observed such trends and values in the US 

Holstein population, although the decrease was more moderate (~25-50%); in 

this population, the generation interval was ~6.8 years with progeny testing vs. 

3-5 years with genomic selection. Le Mézec et al. (2015) observed similar 

results in the French dairy cattle breeds, however, the generation interval was 

slightly shorter in the French case (5.6 years before genomic evaluation; 

Institut de l’Elevage, 2015c). Generation interval of dams of cows is largely 

unaffected by genomic evaluation, because they were used for reproduction at 

an early age previously as well, which could not be further decreased by the 

introduction of genomic evaluation. 

Overall, after combining all these changes, the introduction of genomic selection is 

extremely advantageous in dairy cattle. Schaeffer (2006) estimated that the annual 

genetic gain would be approximately doubled with genomic selection compared to 

the previous state of the art breeding programs (such gains were observed in 
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practice in France: Le Mézec et al., 2015). Furthermore, because progeny-testing 

became unnecessary, significant savings were accumulated in the dairy cattle 

industry. 

2.6.2 Drawbacks of genomic evaluation 

Most of the currently available genomic evaluation procedures use bi-allelic SNP 

markers to trace QTL on the genome, with the notable exception of the French 

routine genomic evaluation procedure, which uses haplotype markers. A major 

drawback of the SNP markers lies in their bi-allelic nature: because of it, SNP in 

strong linkage disequilibrium with the causative mutations are required to efficiently 

capture their effects. Such SNP are not always available, especially when SNP-chips 

of low or moderate density are used. Yang et al. (2010) showed that even with 

~300,000 SNP, part of the additive genetic variance could not be explained by SNP 

due to low linkage disequilibrium between the markers and QTL. Although it is 

desirable to have a high SNP density along the genome to maximize the probability 

that there is a SNP linked to every imortant QTL, the abundance of SNP across the 

genome can be considered as a disadvantage as well. This is because a majority of 

them are not relevant for the analyzed trait(s) and these SNP make it more difficult to 

identify the significant SNP as well as to obtain accurate allele effect estimates for 

them. 

Therefore, a major difficulty that needs to be addressed in genomic evaluation is the 

balance between the number of effects that needs to be estimated and the estimation 

accuracy. Due to the dense SNP assays available and efficient imputation methods, 

the amount of phenotype data available is at least one order of magnitude lower than 

the amount of genotype data. Therefore, the main limiting factor in genomic selection 

is the size of the reference population, i.e. the number of animals with both 

phenotype and genotype information available (Hayes et al., 2009a). This limitation is 

more stringent in populations with a limited number of recorded animals (for example 

in regional breeds) or in cases when (multi-allelic) haplotypes are used as genetic 

markers. Due to the insufficient amount of phenotype data in these breeds, it is 

difficult to identify all the markers with a significant effect on the analyzed trait. 
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Furthermore – especially when markers are linked to small QTL – accurate 

estimation of the allele effects is also challenging (Wientjes et al., 2015). 

2.7 Assessment of genomic evaluation studies 

2.7.1 Principles of validation in genomic evaluation studies 

The performance of the genetic/statistical models must be assessed before they can 

be applied in practical animal breeding. Validation studies have been often used to 

assess the performance of genomic evaluation models since they were first proposed 

(Meuwissen et al., 2001). These studies first split the available dataset into a training 

set and a validation set. The model is then fitted to the training set and the quality of 

genomic prediction is evaluated on the validation set, from which data was not used 

for model fitting. The evaluation on the validation set incorporates two sub-steps: first 

the dependent variable (that is the breeding value in a genomic evaluation 

experiment) is estimated for all individuals in the validation population either using the 

estimated allele effects from the training dataset (when marker effects were 

estimated) or exploiting the genomic relationship information between animals (e.g. in 

GBLUP). In the second step, measures of accuracy such as the correlation 

coefficient between the GEBV and (D)YD are calculated. 

In genomic evaluation studies, the division of the datasets into training- and 

validation sets is adapted to the main target population, which is the set of young 

animals, usually without any performance observations for which we want estimated 

breeding values. Therefore, the validation population typically consists of the 

youngest individuals (usually the 20-30% youngest animals) in order to objectively 

simulate real-life conditions, where performance values are available only on the 

older individuals of the populations but not on the youngest ones. 

From this point on, the “training population” and “validation population” terms will be 

used according to their definitions above, while the term “reference population” will be 

used to refer to these two populations combined. 
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2.7.2 Measured parameters 

The performances of different (genomic) evaluation procedures are compared based 

on 2 parameters: the accuracy and bias of the (genomic) estimated breeding values. 

In the following these parameters are discussed with DYD used as measure of 

performance. However, it can be replaced with other measures, such as deregressed 

proofs or simulated true breeding values in a simulation study. Furthermore, 

observations are weighted, using equivalent daughter contributions (EDC) in case of 

males and number of record equivalents (RE) in case of females. 

Reliability of selection candidates 

The accuracy of an EBV is the correlation between the estimated and true breeding 

values. The reliability is the accuracy squared. The higher the reliability of the 

selection candidates, the more accurate the breeding values are. Reliability is 

bounded between 0 and 1. 

In a validation study, the accuracy is measured by the weighted correlation coefficient 

between DYD and GEBV in the validation population. This is calculated as: 

 
��� = ∑ ������� − ������������� ¡� − �� ¡���������¢�T%£∑ ������� − �����������¢�T% ∑ ����� ¡� − �� ¡����������¢�T%

 
(12) 

where ��� is the weighted correlation coefficient between DYD and GEBV, wi is the 

weighting factor of animal i, DYDi and GEBVi are the DYD and GEBV of animal i; ��������� and �� ¡�������� are the weighted means of DYD and GEBV, respectively. The 

corresponding reliability is ���� . 

Regression slope of DYD on GEBV 

In addition to be accurate, breeding values are also expected to be unbiased. In 

other words, we want that the average (genomic) estimated breeding values of 

particular groups of animals (in particular the youngest ones) is nearly the same as 

their average (unknown) true breeding values. The regression slope of DYD on 

GEBV indicates a bias: the optimal value of this parameter is 1 (indicating no bias). 
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When the regression slope is less than 1 it indicates that the young animals are 

overestimated, while a slope higher than 1 indicates the opposite (i.e. 

underestimated young selection candidates). Regression slopes are estimated using 

the following equation: 

 ��� = �j + �%�� ¡ + � (13) 

where β0 is the intercept, β1 is the regression slope and e is the random error term 

(e~N�0, ¥σ¦��, where D is a diagonal matrix with diagonal elements equal to 1/EDC 

and 1/RE for males and females, respectively). Although there is no theoretical lower 

or upper limit of the regression slope in terms of statistics, in the context of breeding 

value estimation they are never lower than zero and not frequently higher than 1. A 

large bias (say, a regression slope significantly lower than one) results in “inflation” of 

GEBV of the young candidates. This is undesirable, because this leads to the 

overestimation of the genetic merit of the young candidates. When young AI sires are 

considered, this means that their progeny performances will be disappointing, 

generating some distrust of the quality of genomic evaluation. 

2.8 Analyzed breeds and traits 

Five breeds were included in this work: one of them is Montbéliarde, the second 

largest French dairy cattle breed with genomic evaluation. The Montbéliarde 

population is currently of approximately 648,000 cows (with ~68% of them under 

performance recording), which represents more than ~18% of the dairy cattle 

population of France (Institut de l’Elevage, 2015a). The Montbéliarde breed was 

selected to test the new methods, because of the availability of the large reference 

population of progeny-tested bulls (p = 2,235). 

Multi-breed tests were carried our using the following four regional French dairy 

breeds (abbreviations of the breed names are given in parenthesis): Abondance (A), 

Tarentaise (T), Simmental (S) and Vosgienne (V). 
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Table 1 shows the number of bulls progeny tested every year as well as the number 

of females under performance recording, as of 2015. Table 2 shows the average 

performance records of these breeds for production traits. 

Table 1: Number of progeny-tested bulls and number of cows under performance 
recording in the 5 breeds used through this Thesis. 

Breed 
Number of progeny-

tested males1 
Number of cows under 
performance recording 

Montbéliarde 164 439,609 

Abondance 18 23,412 

Tarentaise 11 7,816 

Simmental 10 16,938 

Vosgienne 5 1,372 
1: Before the implementation of genomic evaluation. Data from Institut de l’Elevage, 2014 and 2015b. 

 

Phenotype data were available in the form of daughter yield deviations in case of 

progeny tested bulls and as yield deviations in case of females with own performance 

information only. In case of all the 5 presented breeds, both male and female animals 

were genotyped. However, while only the progeny tested bulls were used from the 

Montbéliarde breed, all genotyped males and females were used in case of the 

regional breeds. This decision was made because the Montbéliarde was specifically 

selected due to the available large number of progeny tested bulls, which allowed an 

efficient within-breed evaluation for this breed. In contrast, the lack of such a male 

reference population in the regional breeds required all animals – irrespective to its 

gender – to be included in the reference population to enable genomic evaluation. 

Furthermore, one of the main aims was to maximize the selection efficiency in the 

regional breeds, therefore it made no sense to remove animals from the reference 

population of these breeds. Majority of this work was done on 5 dairy cattle 

production traits (these are: milk yield, fat yield, protein yield, fat content and protein 

content), which are moderately heritable traits (Table 2). Although, some of the 

developed methods (mainly those that were later included in the French routine 

genomic evaluation) were tested on a wider range of traits including some with lower 

or higher heritabilities. 
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Table 2: Average standard 305-day production level of the 5 breeds used through 
this Thesis (data from 2015). 

Breed 
Milk 

yield (kg) 
Fat yield 

(kg) 
Fat content 

(%) 
Protein 

yield (kg) 
Protein 

content (%) 

Heritability 0.3 0.3 0.5 0.3 0.5 

Montbéliarde 6515 250 3.83 212 3.25 

Abondance 5085 186 3.66 168 3.30 

Tarentaise 4045 147 3.64 130 3.22 

Simmental 5751 228 3.96 192 3.34 

Vosgienne 3963 149 3.75 125 3.15 

Data from Institut de l’Elevage, 2015a 
 

The Simmental and Vosgienne breeds were particular among the 4 regional breeds. 

The number of imported breeding animals was relatively large in the Simmental 

breed and the available pedigree information on these animals (in France) was very 

limited. Therefore the BLUP analysis is expected to be less accurate than it would be 

in another breed with similar characteristics but more pedigree data. On the other 

hand, in Vosgienne the average age of the breeding animals was higher than it was 

in the other breeds and therefore more phenotype data was available on these 

individuals. In consequence, the pedigree-based BLUP is expected to perform well in 

this breed. 

2.9 Single-breed and multi-breed genomic evaluation 

As mentioned earlier, current genomic evaluation methods require reference 

populations because neither the QTL nor their relative effects are known. Genomic 

evaluation studies can be split into 2 groups based on the composition of the 

reference population: the reference population consists of individuals either from a 

single breed or from multiple breeds. The main difference between these two 

scenarios is that when several breeds are considered together, either artificial or 

natural barriers (or both) prevented gene flow from one population to another. 

Therefore different QTL might exist in the different populations, the same QTL might 

have a different relative effect (compared to the other QTL), LD phases might differ 
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across breeds or the linkage phases between the QTL and markers in the different 

breeds might be also different (de Roos et al., 2009a). In the cases of these QTL, 

multi-breed genomic evaluations can be expected to be less efficient, which can 

counterbalance the impact of having a larger reference population (e. g. this was 

discussed in Hayes et al., 2009). This is because the multi-breed training population 

introduces mainly noise to the allele effect estimation process of these markers. 

Whether or not multi-breed genomic evaluation in specific breeds is advantageous or 

not depends on the relative frequency and importance of the shared QTL. Both the 

emergence of new (i.e. breed-specific) QTL and the break-down of QTL-marker 

phases in the breeds depend on the evolutionary distance from the most recent 

common ancestors (de Roos et al., 2009a). Therefore breeds that are closer to each 

other from an evolutionary perspective can be expected to benefit more from a multi-

breed genomic evaluation, while for breeds that diverged earlier in time (time 

measured in number of generations) a multi-breed reference population is expected 

to be detrimental. 

These remarks can be generalized to a “single-subpopulation” – “multi-

subpopulation” case, because natural barriers might prevent gene flow from one 

population to another even among two populations of the same breed. 

Gautier et al. (2010) estimated genetic distances between 47 cattle breeds using 50K 

SNP-chip data, including the five breeds presented here. All of these breeds were 

clustered very closely together based on this study (Figure 3). 
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Figure 3: Tree representing the genetic distances between 20 French cattle breeds. 
Genetic distances were estimated from allele frequencies using the bovine 50K 
SNP-chip (from Gautier et al., 2010). Breed name abbreviations: CHA – Charolais; 
PAR – Parthenaise; BPN – Bretonne Pie Noire; Noire – Normande; MAI – Maine 
Anjou (Rouge des prês); FLA – Flamande; PRP – Pie Rouge des Plaines [→Red 
Holstein]; HOL – Holstein; BRU – Brune; VOS – Vosgienne; TAR – Tarentaise; ABO 
– Abondance; PRE – Pie Rouge de l’Est (French Simmental); MON – Montbéliarde; 
BAZ – Bazadaise; GAS – Gasconne; SAL – Salers; AUB – Aubrac; LIM – Limousin; 
BLA – Blonde d’aquitaine. 

2.9.1 Review of the recent multi-breed genomic evaluation studies 

It was shown that allele effects estimated in one breed cannot be used for genomic 

valuation in another breed to obtain accurate estimated breeding values (e.g. Hayes 

et al., 2009b; Brøndum et al., 2011; Olson et al., 2012). 

The most widely used multi-breed genomic evaluation method is when the training 

populations of different breeds are merged into a single training population, which is 

then used to estimate allele effects (e.g. Hozé et al., 2014). Other proposed multi-

breed methods include a multi-task Bayesian approach (Chen et al., 2014) or a multi-

trait model in which the same trait from different breeds are handled as different 

correlated traits (Olson et al., 2012). 
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Simulation studies 

In a simulation study Calus et al. (2008) simulated genotype data of different SNP 

densities and used them to estimate breeding values. They concluded that for a trait 

with moderate heritability (h� = 0.5), LD with r� = 20% is sufficient between 

neighboring SNP and that stronger LD does not increase selection accuracy. They 

obtained a somewhat lower value (15%) for haplotypes for the same, moderately 

heritable trait. For a lowly heritable trait (h� = 0.1), the optimal value was 20% for 

SNP and haplotypes likewise. In a very similar experimental setup, VanRaden et al. 

(2009a) arrived to similar conclusions. Using real data from five populations of three 

breeds (Angus, Jersey and Holstein), de Roos et al. (2008) estimated that in a within-

breed context to obtain an r� ≥ 0.20 between adjacent markers, approximately ~45-

75K SNP would be needed across the genome, depending on the population 

structure. In order to obtain a similar level of LD between adjacent markers, ~300K 

SNP would be needed in a multi-breed context (de Roos et al., 2008). 

Using a simulated 50K SNP-chip data, de Roos et al. (2009a) demonstrated that 

depending on the simulated genetic distance between the breeds, on the marker 

density and on the heritability of the trait, genomic evaluation can be efficient even in 

a multi-breed context. It was also hypothesized that HD data is necessary only if the 

training population consists of animals from different breeds (de Roos et al., 2009a). 

That is because breeds are genetically more distant from each other than populations 

of the same breed. Due to the longer genetic distance, the linkage between adjacent 

markers (or between markers and QTL) broke down to a greater extent and therefore 

to capture the effect of a common QTL, SNP that are located closer to the QTL are 

required. Harris and Johnson (2010b) showed in a simulation study that in order to 

efficiently exploit the larger marker density from a high-density SNP-chip, a large 

reference population is required. This is in contradiction with the characteristics of 

regional breeds, but fits well the concept of multi-breed genomic evaluation (given 

that the multi-breed training population is large). 
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Results based on real data 

Using 50K data, analyses of real dataset including Holstein and Jersey led to the 

conclusions that multi-breed genomic evaluation can be efficient, but efficiency 

depends on parameters such as marker density or genetic distance between the 

breeds (Hayes et al., 2009b; Harris and Johnson, 2010a; Erbe et al., 2012). Similar 

results, but lower differences were observed when 3 closely related Nordic breeds 

(Danish Red, Swedish Red and Finnish Red) were analyzed simultaneously 

(Brøndum et al., 2011) as well as when a mixed population of Holsteins, Jerseys and 

Fleckvieh was analyzed (Pryce et al., 2011). Analysis of a joint Holstein, Jersey and 

Brown Swiss population resulted in similar conclusions (Olson et al., 2012). 

The genetic gain obtained with multi-breed training population was however limited in 

the previously mentioned studies. Hayes et al. (2009) and de Roos et al. (2009a) 

concluded that the inclusion of individuals from a different breed was beneficial if the 

included breeds diverged more recently or when reference populations included 

crossbred animals (Lourenco et al., 2016). Larger gains were observed for more 

heritable traits and/or with a higher marker density. 

Also, Bayesian methods were found to perform generally better in a multi-breed 

context than a GBLUP (e.g. Hayes et al., 2009b; Pryce et al., 2011). 

The use of HD data was initially expected to outperform the 50K (Brøndum et al., 

2011), especially in small breeds (Hozé et al., 2014; Khansefid et al., 2014). 

Khansefid et al. (2014) divided the SNP effects into an overall- and a breed-specific 

component. With such a model, they obtained a limited gain for prediction of residual 

feed intake using a mixed dairy- and beef cattle population. On a combined Holstein 

and Ayrshire multi-breed dataset, only a limited increase in selection accuracy was 

observed with a Bayesian approach compared to a within-breed evaluation (Chen et 

al., 2014). When analyzing a combined Holstein-Jersey population, Erbe et al. (2012) 

obtained inferior accuracies with the HD compared to the 50K. Hozé et al. (2014) 

showed that the potential gain due to a multi-breed training population (with HD data) 
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is limited when sires of selection candidates are genotyped, which is the case in the 

four regional breeds presented earlier. 

Most of these studies could not show any improvement in selection accuracy for the 

larger breed contributing to the reference population (usually the Holstein) compared 

to a within-breed evaluation (e.g. Chen et al., 2014; Erbe et al., 2012). Gains in 

smaller breeds were often larger, but did not reach expectations. The main challenge 

in using HD data in genomic evaluation is the ~14-fold increase in the number of 

allele effects compared to the 50K SNP-chip. Accurate estimation of this many alleles 

require much more phenotype data. This problem can equally affect single- and 

multi-breed evaluations. 

2.10 Problem statement and motivation 

In the large dairy cattle breeds, genomic selection led to higher annual genetic gains, 

drastically decreased costs of selection and selection for a wider range of traits also 

became possible (e.g. García-Ruiz et al., 2016). These advantages cannot be 

reached by the means of traditional (i.e. pedigree-based) selection methods, resulting 

in substantial disadvantages (including economical drawbacks) for regional breeds, 

where sufficient funding is more difficult to obtain and large reference populations are 

not available for the implementation of genomic selection in practice. 

In our research group, there are several ongoing projects aiming at successfully 

addressing these challenges. Within the framework of one of these projects, our main 

aim was to develop new methods and analysis tools for the breeders and breeding 

organizations of regional breeds (first and foremost the Abondance, Tarentaise and 

Vosgienne breeds), which would allow them to implement genomic evaluation in 

practice. 

Our primary focus was initially on the use of haplotype markers in combination with 

the HD SNP-chip in a multi-breed context. Indeed, because of the relatively short 

genetic distance between these breeds, a multi-breed reference population seemed 

a good way to increase the reference population size for these breeds. Haplotype 

markers seemed necessary to maximize the probability of capturing the QTL effects 
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and the HD SNP-chip was also required to assure a sufficiently high LD between 

markers and QTL (following the suggestion of, for example, de Roos et al., 2008). 

The performance of the methods developed was first evaluated in a single-breed 

context using a large breed (Montbéliarde) and then in the 4 regional breeds (the 

previously mentioned 3 breeds together with the Simmental breed). Once the 

performance of these methods was verified in a within-breed context, they were 

applied in several multi-breed scenarios using the four regional breeds. 

Our long-term aim was to provide an efficient genomic evaluation to breeding 

organizations of regional breeds and to contribute to the future development of 

genomic selection in these breeds. 
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Chapter 3  

Haplotype construction for genomic evaluation 

purposes 

The use of haplotypes is expected to increase the probability of identifying markers 

linked to QTL affecting the analyzed trait. Furthermore, It was hypothesized that for a 

multi-breed genomic evaluation to be efficient, the use of HD SNP-chip data is a 

prerequisite (de Roos et al., 2008). However, the combined use of the HD SNP-chip 

and haplotypes is currently not realistic, because the number of allele effects to be 

estimated dramatically increases and in parallel the estimation accuracy of every 

allele decreases. Overall, this leads to decreased selection accuracy, especially in 

regional breeds where the amount of phenotypic information is already scarce. To 

overcome these difficulties, we intended to develop a new haplotype selection 

procedure that on the one hand allows a more accurate allele effect estimation and 

on the other hand reduces the number of allele effects to be predicted. 

This haplotype selection procedure is presented in detail in this chapter. The chapter 

is divided into five sections and it starts with the presentation of the dataset used for 

evaluating the method as well as the first analyses with haplotypes. Then, the 
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haplotype selection method is presented and evaluated on both 50K and HD data. 

Finally, possible improvements of the method are presented and discussed. 

3.1 The Montbéliarde dataset 

The Montbéliarde breed was used to test the performance of the developed methods, 

which breed is one of the large French dairy cattle breeds. The choice of this breed 

was convenient because for this breed a large reference population of progeny-

tested bulls is available, and allows the validation of our results using accurate DYD 

measures and to compare the performance of different genomic evaluation methods 

to the performance of a reasonably accurate BLUP analysis. 

A population of 2,235 progeny-tested bulls was available for testing. Phenotypes, in 

the form of DYD were available for 5 production traits: milk yield, protein yield, protein 

content, fat yield and fat content. Individuals were genotyped either for the 50K or for 

both the 50K and high-density SNP-chips. Individuals genotyped only on the 50K 

were imputed to the HD. Multi-allelic markers were removed prior to imputation. 

Imputation was done by Hozé et al. (2013) using the BEAGLE software (Browning 

and Browning, 2007). The default parameter values of the software were used for 

imputation. Imputation accuracy – measured as concordance rate – was ~0.5% with 

this software. For linkage phasing, the DAGPHASE software (Druet and Georges, 

2009) was used, again with the default parameters. 

Following imputation, a quality control step was implemented to remove SNP of poor 

quality. At this step, SNP were removed if at least one of the following conditions was 

not met: 

a) Minor allele frequency higher than 5% 

b) Minimum call rate higher than 90% 

c) Hardy-Weinberg equilibrium test with 5 − «¬®� > 10$¯) 

After quality control, 43,801 SNP were retained from the 50K SNP-chip panel and 

706,791 SNP from the HD-panel. In addition to the phenotype and genotype data, 

pedigree information was also available. 
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3.2 Haplotypic BayesC-π results 

One of our main goals was to assess the benefits of haplotpye-based genomic 

evaluation methods, particularly in regional breeds. The performance of the 

developed haplotypic BayesC-π (Croiseau et al., 2014; also see section 2.4.4) 

procedure was first assessed in the Montbéliarde breed. The haplotypic BayesC-π 

was run with all consecutive haplotypes of N SNP used as explanatory variables in 

the genetic model. Only the 50K SNP-chip was used in this analysis, because the 

number of allele effects from the HD chip would have been excessively large (this is 

discussed in detail later). Traits were evaluated independently from each other in a 

classical validation study, where 20% of the youngest bulls were in the validation 

population. In practice, 4 different analyses were run for each trait, depending on the 

value of N (i.e. the number of SNP per haplotype), which ranged from 2 to 5. 

Performance values (yi) were DYD and the proportion of π was estimated from the 

data. The following model was used for these tests: 

 yR = cgeR + uR + QδS zhRS{ + hRS|}U
ST% + eR (14) 

where all parameters are as in equation 8 (section 2.4.4). The residual polygenic 

effect was assumed to account for 20% of the total genetic variance, while the rest of 

the genetic variance was attributed to the markers. 

Running times of the haplotypic BayesC-π ranged from ~16 hours with haplotypes of 

2 SNP to ~56 hours with haplotypes of 5 SNP. 

Table 3 gives both the number of haplotypes and the number of allele effects to be 

estimated during each genomic evaluation procedure with 4 different sizes of 

haplotype and for both the 50K- and HD-chips (number of alleles per haplotype are 

taken from Figure 1). To create Table 3, all consecutive, non-overlapping haplotypes 

of N SNP (N=2, 3, 4 or 5) were built across all chromosomes; the last markers from 

every chromosome were truncated if a complete haplotype could not be created. 

Note that the number of allele effects to be estimated is the total number of alleles 
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minus the total number of haplotypes, because – as with SNP – for each marker, the 

effect of one of the alleles (the “reference allele”) can be considered to be equal to 

zero. 

Table 3: Number of consecutive, non-overlapping haplotypes that can be built with 
data from either the 50K or the HD SNP-chips and the number of allele effects to be 
estimated. 

Haplotype size 
Number of haplotypes 

Number of allele effects to be 
estimated 

50K HD 50K HD 

2 21 892 353 388 62 341 915 617 

3 14 592 235 588 88 745 1 253 312 

4 10 936 176 688 123 886 1 702 330 

5 8 746 141 349 168 494 2 270 150 
Based on the Montbéliarde breed 

 

It is clear from Table 3 that the number of allele effects to be estimated with data 

from the HD SNP-chip is unreasonably large even with the shortest haplotypes. The 

number of allele effects to be estimated with the HD chip is close to 1 million with 

haplotypes of 2 SNP and it rapidly increases to ~2.3 million with haplotypes of 5 

SNP. Therefore, it is essential to reduce the number of haplotypes before they can be 

used in combination with data from the HD SNP-chip for genomic evaluation. 

Ideally, the average of samples drawn for each parameter converges to their true 

values. Lack of convergence of any parameter prevents the estimation of that 

parameter and therefore convergence is critically important. Figure 4 gives typical 

examples of convergence plots for the proportion of haplotypes without an effect (π), 

the residual variance (vare), the variance attributed to a single haplotype (vara) and 

the residual polygenic variance (varg). Convergence in case of all these parameters 

could be observed (visually). In case of all the tests done with the haplotypic GS3 

software, the first 20,000 iterations are discarded as burn-in. 
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Figure 4: Convergence plots obtained with haplotypes of 4 SNP. Proportion of 
haplotypes without an effect (π), residual variance (vare), variance of a single locus 
(vara) and residual polygenic variance (varg) are plotted. The thinning value was 
1000. 

Plots on Figure 4 indicate that convergence was reached as neither the variation nor 

the mean of the values change with the number of iterations (x-axis). Since the plots 

presented in Figure 4 can be considered as typical ones obtained with the haplotypic 

BayesC(-π), no further convergence plots will be presented. 

Table 4 shows the correlation coefficients and regression slopes of DYD on GEBV 

values obtained in the validation population. Based on these results, the selection 

accuracy did not vary to a large extent from haplotypes of 2 to 4 SNP. Haplotype size 

4 was slightly better than either haplotypes of 2 or 3. The correlation coefficient 

started declining with haplotypes of 5 SNP, probably due to over-parameterization of 

the model. Similar trends were observed for the regression slope (on average). 

Although the haplotype size of 4 SNP slightly outperformed the other haplotype 

sizes, this advantage was minor and the best performing haplotype size could not be 

clearly identified based on these results. 
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Table 4: Correlation coefficients and regression slopes of DYD on GEBV values 
measured on the validation set with haplotypic-GS3 (Croiseau et al., 2014). 

Trait name1 
Correlation coefficient Regression slope 

HS2: 2 HS: 3 HS: 4 HS: 5 HS: 2 HS: 3 HS: 4 HS: 5 

MY 0.502 0.497 0.507 0.500 0.863 0.869 0.885 0.895 

FY 0.557 0.557 0.563 0.559 0.863 0.871 0.912 0.905 

PY 0.490 0.491 0.497 0.491 0.763 0.779 0.799 0.792 

FC 0.576 0.572 0.571 0.559 0.868 0.874 0.894 0.894 

PC 0.596 0.589 0.593 0.581 1.055 1.052 1.090 1.094 

Average3 0.544 0.541 0.546 0.538 0.140 0.132 0.120 0.122 
1: Trait name abbreviations: MY – milk yield; FY – fat yield; PY – protein yield; FC – fat content; PC – protein content 

2: Haplotype size 

3: Average deviations from 1 are indicated for regression slopes 

 

The results obtained with the haplotypic BayesC-π slightly outperformed the 

corresponding GBLUP analysis with the G matrix constructed from 50K SNP markers 

(results of the GBLUP analysis are presented in S. table 1 in Appendix A on page 

199). The results presented in Table 4 were also better than those of a regular, SNP-

based BayesC-π (Croiseau et al., 2014). 

3.3 Influence of allele frequency on genomic evaluation 

3.3.1 Introduction 

In the previous study we used an intuitive way to form the haplotypes by simply 

merging the adjacent SNP creating the so called flanking haplotypes. This choice (i.e. 

the flanking haplotypes) is intuitive from a biological point of view, because 

haplotypes are used to represent specific genomic regions and neighboring SNP 

necessarily represent the same regions. Therefore, if a QTL is segregating within any 

region, flanking haplotypes can be expected to be linked to the QTL in the same 

region. However, from a statistical point of view, flanking haplotypes do not have 

ideal allele properties: due to the relatively short distance between these markers 

(see S. figure 1 in Appendix B on page 201), there is a lower chance for historical 

recombination events to occur between them. This is particularly the case when data 
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from the HD-chip is used because LD between consecutive SNP is higher. Therefore, 

flanking haplotypes are likely to carry a large number of under-represented (rare) 

alleles for which allele effect estimation is difficult and a small number of largely over-

represented alleles. To circumvent these issues, instead of merging the adjacent 

SNP one can select SNP that result in more appropriate allele properties (i.e. number 

of alleles and allele frequency distribution), with the expectation that it would enhance 

the performance of genomic evaluation based on haplotypes. Therefore, the question 

is: which SNP should be used to create haplotypes with better properties? 

In this study, we aimed to develop a procedure to identify haplotypes that can be 

expected to outperform flanking haplotypes in genomic evaluation studies. Our goal 

was to maximize the number of haplotype alleles, while taking into account the allele 

frequency distribution of the haplotypes, i.e., trying to maximize the number of well-

represented alleles (alleles with a reasonably high allele frequency) and to minimize 

the number of rare alleles. In addition, we tried to reduce the overall number of 

haplotypes used for genomic evaluation, as this was a prerequisite for the combined 

use of haplotype markers and HD-chip data in genomic evaluation. That is because if 

haplotypes are used in combination with the HD SNP-chip, the number of allele 

effects that needs to be estimated would increase to several million (Table 3), which 

is excessive even for the largest breeds. Furthermore, the possible benefits of 

haplotypes compared to SNP markers were also assessed in this study. 

The expected prediction accuracy of the allele effects is also influenced by the size of 

the effect of the linked QTL: estimated allele effects play an important role even for 

rare alleles if the linked QTL has a large effect. However, due to lack of prior 

information on the effect size of the QTL , this cannot be directly taken into account to 

select haplotypes for genomic evaluation purposes before the evaluation, in contrast 

with allele frequencies, which are available prior genomic evaluation. 

We developed and tested two criteria to select a single haplotype from a set of 

potential haplotypes based on allele frequency information. 
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The performance of the selected haplotypes was compared to the results obtained 

earlier as well as to a regular GBLUP analysis and other SNP- and haplotype-based 

genomic evaluations. Testing was done using data from both the 50K and HD SNP 

panels. 

3.3.2 Alternative haplotype construction methods for genomic evaluation 

The article with the haplotype selection method and the 50K SNP-chip results was 

published in Journal of Dairy Science in 2016. The results based on the HD data are 

presented after the article in a separate section. 

Jónás, D., Ducrocq, V., Fouilloux, M-N. and Croiseau, P. 2016. Alternative haplotype 

construction methods for genomic evaluation. J. Dairy. Sci. 99: 4537-4546. 
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ABSTRACT

Genomic evaluation methods today use single nucleo-
tide polymorphism (SNP) as genomic markers to trace 
quantitative trait loci (QTL). Today most genomic 
prediction procedures use biallelic SNP markers. How-
ever, SNP can be combined into short, multiallelic 
haplotypes that can improve genomic prediction due 
to higher linkage disequilibrium between the haplo-
types and the linked QTL. The aim of this study was 
to develop a method to identify the haplotypes, which 
can be expected to be superior in genomic evaluation, 
as compared with either SNP or other haplotypes of 
the same size. We first identified the SNP (termed as 
QTL-SNP) from the bovine 50K SNP chip that had the 
largest effect on the analyzed trait. It was assumed that 
these SNP were not the causative mutations and they 
merely indicated the approximate location of the QTL. 
Haplotypes of 3, 4, or 5 SNP were selected from short 
genomic windows surrounding these markers to capture 
the effect of the QTL. Two methods described in this 
paper aim at selecting the most optimal haplotype for 
genomic evaluation. They assumed that if an allele has 
a high frequency, its allele effect can be accurately pre-
dicted. These methods were tested in a classical vali-
dation study using a dairy cattle population of 2,235 
bulls with genotypes from the bovine 50K SNP chip 
and daughter yield deviations (DYD) on 5 dairy cattle 
production traits. Combining the SNP into haplotypes 
was beneficial with all tested haplotypes, leading to an 
average increase of 2% in terms of correlations between 
DYD and genomic breeding value estimates compared 
with the analysis when the same SNP were used indi-
vidually. Compared with haplotypes built by merging 
the QTL-SNP with its flanking SNP, the haplotypes 
selected with the proposed criteria carried less under- 
and over-represented alleles: the proportion of alleles 
with frequencies <1 or >40% decreased, on average, by 
17.4 and 43.4%, respectively. The correlations between 

DYD and genomic breeding value estimates increased 
by 0.7 to 0.9 percentage points when the haplotypes 
were selected using any of the proposed methods com-
pared with using the haplotypes built from the QTL-
SNP and its flanking markers. We showed that the 
efficiency of genomic prediction could be improved at 
no extra costs, only by selecting the proper markers or 
combinations of markers for genomic prediction. One of 
the presented approaches was implemented in the new 
genomic evaluation procedure applied in dairy cattle in 
France in April 2015.
Key words: single nucleotide polymorphism, 
haplotype, genomic evaluation, dairy cattle

INTRODUCTION

Virtually all current genomic prediction methods 
use information from SNP markers (e.g., Meuwissen 
et al., 2001; Habier et al., 2011), which are abundant 
all over the genome. However, a major limitation of 
individual SNP markers as explanatory variables is 
that each significant causal mutation should be in high 
linkage disequilibrium (LD), with at least 1 SNP to 
ensure a good prediction. Given the fact that SNP on 
the commercial SNP chips were selected to have a high 
minor allele frequency, this requirement is not neces-
sarily fulfilled when the mutated alleles are rare. For 
example, the development of high-density SNP chips in 
cattle was expected to overcome this limitation and in-
crease genomic prediction accuracy, but recent studies 
could show only a limited gain (e.g., Erbe et al., 2012; 
VanRaden et al., 2013; Ma et al., 2014). Furthermore, 
the accurate separation and estimation of the effects of 
closely linked QTL with SNP is not feasible either.

Haplotypes (defined as combinations of 2 or more 
SNP as in Hayes et al., 2007; Villumsen et al., 2009; 
Garrick and Fernando, 2014) are multiallelic genomic 
markers that hold the promise of improving genomic 
prediction due to higher expected LD between the hap-
lotype and the QTL alleles (e.g., Hayes et al., 2007). 
Indeed, haplotype information has been used in practi-
cal genomic selection in France since 2008, leading to 
an increased correlation between estimated breeding 
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values and performances as compared with genomic 
prediction methods based on SNP (Boichard et al., 
2012).

Several methods have been used to construct haplo-
types for genomic evaluation (Calus et al., 2008, 2009; 
Boichard et al., 2012; Cuyabano et al., 2014). Allele ef-
fect predictability can be defined as the expected predic-
tion accuracy of the effect of haplotype alleles, and it is 
expected to have a significant effect on the performance 
of genomic prediction. However, none of the previously 
mentioned methods take into account any information 
on this predictability. The construction of haplotypes 
at a particular SNP position by merging this SNP with 
the flanking markers is straightforward. However, be-
cause of the short distance between the markers, the 
resulting haplotypes most frequently include a small 
number of over-represented alleles together with a large 
number of alleles with low frequencies within the popu-
lation. An accurate estimation of allele effects for the 
haplotype alleles that are greatly under-represented is 
difficult, whereas the abundant information on over-
represented alleles does not contribute efficiently to 
the improvement of genomic estimated breeding value 
(GEBV). The complexity of the statistical model can-
not be increased to the range of hundreds of thousands 
of effects to be estimated, as would happen if all pos-
sible nonoverlapping haplotypes of 4 to 5 SNP were 
considered. Therefore, an efficient haplotype selection 
procedure is required to identify the haplotypes most 
suitable for genomic evaluation purposes. In addition, 
the estimated effects of rare alleles would be gener-
ally inaccurate. Hence, the selection of haplotypes with 
fewer rare alleles would also be beneficial.

For QTL fine mapping, Grapes et al. (2006) showed 
that it is beneficial to use a selected subset of mark-
ers instead of all available markers within a genomic 
region to build haplotypes, especially when markers are 
densely distributed. The main objective of the present 
study was to develop a method to, a priori, construct 
the most appropriate haplotype for genomic prediction, 
given a set of SNP previously detected to be in LD with 
QTL influencing the trait of interest. These SNP will 
be called QTL-SNP hereafter. Two haplotype selec-
tion methods are proposed to select the best haplotype 
within a window of N SNP around the QTL-SNP based 
on observed allele frequencies. The goal is to reduce 
the number of under-represented alleles and to maxi-
mize the number of alleles properly represented in the 
population under study. The predictability of an allele 
effect also depends on the effect size of the linked QTL 
(Meuwissen et al., 2001), but this information is not 
available at the haplotype selection step. The effect on 
genomic prediction of haplotypes from the 2 haplotype 
selection methods versus haplotypes built from flanking 

markers around the QTL-SNP was compared on a real 
data set.

MATERIALS AND METHODS

General Notation

The term “QTL-SNP” refers to SNP in strong LD 
with causative mutations affecting a trait of interest. 
These SNP were identified using a Bayes-Cπ procedure 
(see details below). Haplotypes are defined as combina-
tions of N SNP along a chromosome (similar to the 
definitions of Hayes et al., 2007; Villumsen et al., 2009; 
Garrick and Fernando, 2014). The term “allele” refers 
to the alternative forms of a genetic marker present in 
a population; considering SNP, 2 alleles are present per 
marker, whereas haplotypes can be composed of 2N dif-
ferent alleles, where N is the haplotype size in number 
of SNP. “Flanking SNP” of a QTL-SNP are the nearest 
SNP surrounding the QTL-SNP. “Flanking haplotypes” 
are the haplotypes that are built by merging the QTL-
SNP and the flanking SNP into a single haplotype. A 
short genomic segment around the QTL-SNP defined 
in number of SNP is referred to as a “QTL window,” or 
simply as a “window.”

In this study, the QTL-SNP were considered as mark-
ers indicating the approximate positions of the QTL af-
fecting the trait of interest. A short, symmetric genomic 
window was constructed around each QTL-SNP and 
these genomic segments were assumed to contain the 
linked QTL. Our aim was to select a single haplotype 
of N SNP per window to represent the QTL within that 
window in genomic prediction. Once haplotypes were 
selected around each QTL-SNP, all of them were used 
in genomic prediction to predict breeding values for the 
individuals in the validation population.

Data and QTL Detection Methods

Performance values in the form of average daughter 
yield deviations (DYD) for 5 dairy cattle production 
traits (milk quantity, fat content, fat yield, protein 
content, and protein yield) were available for 2,235 
Montbéliarde bulls genotyped with the Bovine SNP50 
BeadChip (50K; Illumina Inc., San Diego, CA). Only 
autosomal chromosomes were used. After quality con-
trol, 43,801 SNP were retained from the 50K chip. In 
a first step, a QTL detection was undertaken using a 
Bayes-Cπ approach as implemented in the GS3 soft-
ware by Legarra et al. (2013). The model used in this 
SNP-based Bayes-C analysis was:

 y u z a ei i ij j j

j

N

i= + + +
=
∑μ δ

1

, 



Journal of Dairy Science Vol. 99 No. 6, 2016

HAPLOTYPE MARKERS FOR GENOMIC EVALUATION 4539

where yi is the performance value of individual i, μ is an 
overall mean effect, ui is the residual polygenic effect of 

animal i u MVN u~ , ,0 2
Aσ( )⎡

⎣⎢
⎤
⎦⎥
 where MVN is multivariate 

normal distribution, A is the additive relationship ma-
trix, and σu

2 is 0.2 times the genetic variance, N is the 
total number of SNP in the model, zij is an indicator 
variable representing the number of copies of one of the 
alleles at marker j in animal i, aj is the substitution ef-
fect of marker j, δj is a 0/1 variable indicating whether 
or not marker j is assumed to have an effect, and ei is a 
random error term for animal i. The residual polygenic 
effect was assumed to account for 20% of the total ge-
netic variance, whereas the rest of the genetic variance 
was attributed to the selected markers. Following the 
Bayes-Cπ analysis, the k SNP with the largest probabil-
ity of inclusion in the model were considered to be 
QTL. These SNP will be called QTL-SNP. This step 
was done within the framework of a classical validation 
study, using the same training and validation popula-
tions as for the haplotype-based tests (see in detail be-
low). In practice, the first 1,000, 3,000, and 6,000 QTL-
SNP were selected for each trait (denoted as 1K, 3K, 
and 6K, respectively). Due to this selection procedure, 
for each trait, every smaller set is a subset of the larger 
set(s). It is expected that these QTL-SNP were in 
strongest LD with the causative mutations.

The original GS3 software by Legarra et al. (2013) 
was extended to deal with haplotypes (Croiseau et al., 
2014). This haplotypic Bayes-C was used for genomic 
evaluation and for testing the performance of the differ-
ent haplotype construction methods. Haplotypes were 
modeled as class variables, with one effect predicted for 
each haplotype allele. The proportion π of haplotypes 
with no effect was fixed because of practical consider-
ations: the haplotypic Bayes C was very time-consum-
ing due to the increased number of effects to estimate. 
Fixing π allowed us to perform a large number of tests 
within a reasonable time, without sacrificing accuracy. 
Moreover, preliminary tests showed that fixing π led to 
validation correlations slightly higher as compared with 
a scenario where π was estimated during the analysis 
due to poor mixing in the latter case (data not shown). 
A constant value of π (90%) was selected because it 
gave a number of marker effects to be estimated similar 
to the number of individuals in the training popula-
tion. The same model was used for the haplotype-based 
Bayes-C analyses as for the SNP-based tests, with the 
SNP effects being replaced by the haplotype effects.

Out of the 2,235 bulls with both phenotype and 
genotype information, the youngest 20% of individuals 
were selected as the validation population. Allele effects 
were estimated using the training population (that is, 
the oldest 80% of animals) and GEBV were estimated 

for the individuals in the validation population using 
only genomic information of that population and the 
estimated allele effects. Accuracy of the breeding value 
estimation was measured by the correlation coefficient 
between GEBV and DYD values of the validation 
population. The performance of the different haplotype 
construction methods was evaluated based on this 
parameter. In addition, the slopes of the regression of 
DYD on GEBV were calculated and compared.

Haplotype Selection

Haplotypes were constructed within each QTL win-
dow. The most desirable one was supposed to maximize 
the number of alleles with an allele frequency higher 
than a given threshold. As previously mentioned, it 
is advantageous in genomic prediction to avoid both 
under- and over-represented alleles.

Once a window of window size (WS; the size in num-
ber of markers) SNP was defined around each QTL po-
sition, every possible haplotype of haplotype size (HS; 
the size in number of markers) SNP was constructed. 
Three different methods with different criteria were 
used, and each of these methods resulted in a haplotype 
within each window. The performances of these haplo-
types (methods) in genomic evaluation were compared. 
These criteria are described in detail below. Consider-
ing that the QTL-SNP had the strongest LD within 
a window with the linked QTL, this SNP was always 
forced to be part of the final haplotype. The number 
of haplotypes that can be built within the window is 
therefore
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One haplotype was selected from each window to be 
used in genomic evaluation based on 3 different ap-
proaches. These approaches were termed as flanking 
markers, criterion-A, and criterion-B and their perfor-
mances were compared. To test the effect of the WS 
and HS on genomic prediction, windows of size WS = 
10, 15, and 20 SNP, as well as haplotypes of size HS 
= 3, 4, and 5 SNP were constructed. All WS and HS 
combinations were tested.

Flanking Markers. The QTL-SNP and its flank-
ing markers were grouped into a haplotype. Haplotype 
allele frequency was not considered. Flanking mark-
ers were always considered symmetrically around the 
QTL-SNP: the flanking haplotype built from 5 SNP 
included the QTL-SNP and 2–2 flanking SNP on both 
sides of the QTL-SNP. When HS was an even number 
(i.e., an odd number of SNP had to be selected on the 2 
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sides of the QTL-SNP), a symmetric haplotype of (HS 
+ 1) SNP was created around the QTL-SNP and the 
marker that was the farthest from the QTL-SNP was 
excluded from the haplotype. The same principle was 
used when asymmetric windows had to be constructed 
around the QTL-SNP.

Criterion-A. A threshold level denoted as allele fre-
quency threshold (AFT) was used to determine which 
alleles are considered predictable (i.e., which allele ef-
fects can be predicted with satisfactory accuracy). The 
following AFT values were tested: 1, 3, 5, and 8%.

With criterion-A, a 2-step approach was imple-
mented. First, for each haplotype i within a specific 
window, the number of predictable alleles (i.e., with a 
frequency higher than AFT) was determined. Then for 
the haplotypes carrying the maximum number (Nmax) 
of predictable alleles within the window, a score (SDhi) 
was calculated as the squared deviation of observed 
allele frequencies from the ideally balanced allele fre-
quency, where the latter was equal to 1/Nmax. The score 
can be written as

 SD OF
N

hi i k
ik

Ni

= −
⎛

⎝
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⎞

⎠


=
∑ , ,

1
2

1

 

where hi is haplotype i, Ni (=Nmax) is the number of 
predictable alleles of haplotype i, and OFi,k is the ob-
served frequency of allele k of haplotype i. Retaining 
the haplotype with the lowest squared deviation score 
guarantees that the observed allele frequencies are as 
balanced as possible.

Criterion-B. A drawback of criterion-A is that the 
allele frequencies can still be unbalanced to a high de-
gree, because haplotypes with more predictable alleles 
are always preferred over haplotypes with fewer pre-
dictable alleles. This is true even if, for example, many 
alleles of a certain haplotype have a frequency that 
barely exceeds the threshold level, whereas a small 
number of alleles are greatly over-represented in the 
population. Criterion-B consists of 2 parts, from which 
the first part is a modified version of the SD score cal-
culated for criterion-A. The difference is that 1/Ni is 
replaced by 1/2HS to ensure that this part is, assuming 
similar variations in the allele frequencies, smaller for 
haplotypes with a higher number of predictable alleles. 
This is guaranteed because the observed frequencies of 
the predictable alleles will on average get closer to 
1/2HS as their number is increasing. The second part is 
a weighted number of predictable alleles. It ensures 
that out of haplotypes that carry the same number of 
alleles, the haplotype(s) that include more predictable 
alleles have a lower score. A parameter that we call 
maximum deviation (MD) was introduced in the com-

putation of the weight (see Supplemental Materials for 
details; http://dx.doi.org/10.3168/jds.2015-10433). It 
is defined as the average acceptable deviation of (n − 

1) alleles from the ideal frequency 
1

2HS

⎛

⎝
⎜⎜⎜

⎞

⎠

, expressed as a 

proportion of the ideal frequency. The nth allele must 
have a frequency equal to or larger than AFT. The MD 
parameter can be interpreted as follows: the smaller its 
value is, the less the allele frequencies are allowed to 
deviate from their mean. For example, if MD is set to a 
relatively strict value of 10%, haplotypes with fewer 
predictable alleles are favored when their allele frequen-
cies are more balanced against haplotypes with more 
predictable alleles, but with a larger variation among 
the frequencies of those alleles.

In practice, criterion-B is calculated as

 Criterion-B
HShi i k

k

N

iOF w N
i

= −
⎛
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⎞
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where w is the weighing factor of the number of predict-
able alleles. The second term of criterion-B is negative 
to be consistent with the first term, which is optimal 
when it takes the smallest value.

Table 1 illustrates the difference between criterion-A 
and -B. Criterion-A would prefer the second haplotype 
over the fourth despite of its highly unbalanced allele 
frequencies. This preference is reversed with criterion-
B, assuming appropriate AFT and MD values.

An analysis using only the QTL-SNP as genomic 
markers was conducted to obtain a basis for com-
parisons. This analysis was conducted on all sets of 
QTL-SNP (1K, 3K, and 6K) and the optimal number 
of QTL-SNP was selected for each trait. The benefit 
of haplotypes versus SNP was judged by analyzing 
the same SNP selected by each method in a Bayes C 
model utilizing them as single-SNP information. The 
observed correlations between DYD and GEBV from 
these analyses were compared with those obtained with 
their haplotype counterparts. A genomic BLUP analy-
sis with all retained SNP markers was also performed 
to complete the tests.

RESULTS AND DISCUSSION

Table 2 shows the number of haplotypes that can be 
built for several different WS and HS values. The win-
dows have a reasonably small number of combinations. 
Haplotype selection was performed on a single proces-
sor and running time was less than 1 min for windows 
of 10 SNP, haplotypes of 4 SNP and 3,000 QTL-SNP, 
where the total number of evaluated haplotypes was 
252,000.
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Distribution of Allele Frequencies

The number of alleles with very low allele frequencies 
(<1%) decreased with criterion-A and -B compared 
with the flanking markers approach. With flanking 
markers and 6K QTL-SNP in the model, 2,660 alleles 
(i.e., 3.6% of the alleles in the population had frequency 
>40%) were termed as over-represented alleles; almost 
half of the flanking haplotypes included one such al-
lele. The proportion of over-represented alleles with the 
haplotypes selected by either criterion-A or criterion-B 
was approximately half of this value: 2.1 and 1.56%, 
respectively. In case of haplotypes of 4 and 5 SNP, 
criterion-B tended to select haplotypes with slightly 
fewer rare and over-represented alleles than criterion-A.

Figure 1 shows the distribution of alleles present in 
the population according to their allele frequency for 
HS = 4, WS = 10 SNP, and 6,000 QTL-SNP. The use 
of criterion-A and -B led to a higher proportion of hap-
lotype alleles in the 5 to 30% frequency range, but also 
to a lower proportion of over-represented alleles. These 
trends were observed whatever the haplotype size. The 
difference between the haplotypes built from the flank-
ing markers and from the selected markers decreased 
when the haplotype size increased (data not shown).

Table 3 shows the average number of alleles per 
haplotype for different haplotype selection methods, 
haplotype sizes, and number of QTL-SNP. As expected, 
with the increase of the haplotype size, the number of 
segregating alleles increased rapidly. However, it was 

close to its theoretical maximum value (2HS; i.e., 8, 16, 
or 32 for HS = 3, 4, or 5) only when HS = 3. This is 
not surprising, given the relatively dense SNP chips 
available and the corresponding high LD.

Interestingly, the average number of segregating al-
leles per haplotype was decreasing as the number of 
QTL was increasing from 1,000 to 6,000 (Table 3). One 
interpretation is that QTL with smaller effects (i.e., 
those QTL-SNP added when moving from 1,000 to 6,000 
QTL in the model) are segregating in less polymorphic 
regions of the genome compared with QTL with larger 
effects. The reduced number of haplotype alleles might 
also slightly affect the prediction accuracy, as the prob-
ability of having at least 1 allele in strong LD with 
the QTL is reduced. This trend was apparent with all 
marker construction methods; however, the magnitude 
of the decrease is larger with criterion-A and -B than it 
is with the flanking marker haplotypes.

The number of rare and over-represented alleles was 
lower with criterion-B. The frequencies of these alleles 
were also more favorable with criterion-B than with 
criterion-A; rare alleles had a higher average frequency 
with criterion-B, whereas the average frequency of the 
over-represented alleles decreased when compared with 
criterion-A (data not shown). All of these are ben-
eficial features for genomic prediction, which can be 
attributed to the changes made in criterion-B. These 
are the additional constraint on the allele frequency 
equilibrium and the replacement of 1/Ni by 1/2HS in 
the equation of the SD. The total number of segregat-

Table 1. Allele frequencies for 4 haplotypes; the selection order with both criterion-A and -B is also shown

Criterion-A  Criterion-B

Allele frequencies

A1 A2 A3 A4 A5 A6

1 1 0.167 0.167 0.167 0.167 0.167 0.165
2 4 0.70 0.06 0.06 0.06 0.06 0.06
—1 3 0.2 0.2 0.2 0.19 0.19 0.02
—1 2 0.2 0.2 0.2 0.2 0.2 —

1As the first 2 haplotypes have 6 predictable alleles (assuming a threshold of allele frequency threshold = 5%), 
these haplotypes are not considered in the second step of criterion-A.

Table 2. Number of possible haplotypes with different window and haplotype sizes

Window  
size

Without forcing the QTL-SNP1

 

With forcing the QTL-SNP2

HS3 = 3 HS = 4 HS = 5 HS = 3 HS = 4 HS = 5

10 120 210 252 36 84 126
15 455 1,365 3,003 91 364 1,001
20 1,140 4,845 1.55 × 104 171 969 3,876

1All possible haplotypes within the window are considered, whether they include the QTL-SNP or not.
2Within a window, only haplotypes that include the QTL-SNP are considered. Good candidate QTL-SNP are 
required.
3HS = haplotype size.
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ing alleles with criterion-B did not change as the AFT 
threshold increased, in contrast with criterion-A (see 
Supplemental Table S1; http://dx.doi.org/10.3168/
jds.2015-10433). The number of alleles with very low 
(<1%) allele frequencies tended to increase with in-
creasing AFT, whereas the number of the moderately 
frequent alleles (1–10%) systematically decreased (data 
not shown).

Although the proposed methods favor haplotypes 
with intermediate allele frequencies, rare alleles are 
inevitable. For example, with haplotypes of 4 SNP and 
AFT of 8%, the proportion of alleles with frequency 
less than 8% was 63 to 64% with the haplotypes se-
lected by criterion-A or -B instead of ~69% with the 
flanking markers.

Correlations Between DYD and GEBV Values

Genomic prediction of a set of dairy cattle production 
traits was implemented to investigate the performance 
of the haplotypes selected by the different methods.

AFT Tests. The optimal AFT for the studied 
population with both criterion-A and -B was 8% (see 
Supplemental Table S2; http://dx.doi.org/10.3168/
jds.2015-10433). The effect of the choice of AFT on cor-
relations decreased when the number of QTL increased 
(data not shown). This may be related to the fact that 
the smaller QTL were segregating in less polymorphic 
parts of the genome, where fewer but more frequent 
alleles were segregating. The AFT parameter had only 
a minor effect on the prediction accuracy; it also had a 
smaller effect on the results of criterion-B than on those 
of criterion-A (Supplemental Table S2). The AFT was 
fixed to 8% for the rest of the analysis.

MD Tests. Several values were tested for the MD 
parameter of criterion-B, which were chosen to cover 

Figure 1. Overall distribution of haplotype allele frequencies according to the haplotype construction approach (haplotype size: 4 SNP; 
window size: 10 SNP; 6,000 QTL-SNP). The 0 to 10% region is also depicted with more detailed scale on the x-axis.

Table 3. Average number of alleles per haplotype observed with the 
3 different haplotype construction methods, as function of haplotype 
size and number of QTL-SNP in the model1

Item

Number of QTL-SNP

1,000 3,000 6,000

HS2 = 3
 Flanking markers 7.40 7.22 7.08
 Criterion-A 7.51 7.21 6.87
 Criterion-B 7.56 7.23 6.86
HS = 4
 Flanking markers 13.42 12.80 12.33
 Criterion-A 13.84 12.89 11.90
 Criterion-B 14.41 13.43 12.43
HS = 5
 Flanking markers 23.16 21.43 20.27
 Criterion-A 22.70 20.74 18.81
 Criterion-B 26.62 24.04 21.78

1Window size: 10 SNP 
2HS = haplotype size.
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the whole range between 0 and 1. No large differences 
were observed in correlations with regard to this pa-
rameter (see Supplemental Table S3; http://dx.doi.
org/10.3168/jds.2015-10433). As the MD value had 
only a marginal effect on the results, its value was fixed 
to 10% (i.e., more strongly favoring more balanced 
allele frequencies over a higher number of predictable 
alleles).

Comparison of the Haplotype Construction 
Methods. Table 4 shows the correlations between 
DYD and GEBV in the validation population obtained 
with the analysis using either only the QTL-SNP as 
genomic markers or the haplotypes built from the 
flanking markers. Hereafter, all correlations and differ-
ences in correlations are reported in percentage points. 
Flanking markers outperformed the analyses, which 
solely used the QTL-SNP in all scenarios. The observed 
gain ranged between 0.8 and 2.9%, and it was larger 
with longer haplotypes and with a higher number of 
QTL-SNP in the model. The optimal number of QTL-
SNP was 6,000 for most of the traits. The average gain 
observed for the 5 traits was 2.1 to 2.9% with flanking 
markers, again increasing with haplotype size. Similar 
results were found with criterion-A and -B, except that 
haplotype size 5 did not result in higher correlations 
than haplotypes of 4 SNP (see Supplemental Table S4; 
http://dx.doi.org/10.3168/jds.2015-10433).

Figure 2 shows the obtained correlations between 
DYD and GEBV values of the validation population 
with the different haplotype sizes and haplotype se-
lection methods after selecting the optimal number 
of QTL-SNP for each trait. The solid lines represent 
the analyses using the selected SNP as haplotypes 
and the dashed lines correspond to the analyses using 
the same SNP as individual SNP information sources 
in genomic prediction. Average correlations of the 5 
production traits are shown (for the individual results, 
see Supplemental Table S5; http://dx.doi.org/10.3168/
jds.2015-10433). Merging the SNP into haplotypes was 
beneficial in all cases, leading to an increase of 1.4% in 
correlations when the obtained gain was averaged across 
the 3 haplotype construction methods. This increase in 

correlation was 2% when only the highest correlation 
for each trait was considered from those observed with 
1K, 3K, and 6K haplotypes in the model. This gain 
was positively correlated with the increase of number 
of haplotypes in the model, showing an increase of 0.7, 
1.6, and 1.9% with 1,000, 3,000, and 6,000 QTL mod-
eled, respectively. No large differences were observed 
between the haplotype selection methods in this aspect. 
With the presented criteria in general, haplotypes of 5 
SNP performed worse than the shorter haplotypes; on 
average for the 5 production traits, no additional gain 
was observed with criterion-A and HS = 5, compared 
with its flanking haplotypes counterpart (see Supple-
mental Table S5). The poor performance of haplotypes 
of 5 SNP might be a result of over-parameterization 
of the model. The average gains with criterion-A com-
pared with the flanking marker haplotypes were 1.3 
and 0.6% with haplotypes of 3 and 4 SNP, respectively. 
Haplotypes selected by criterion-B outperformed those 
selected by criterion-A by 0.3% on average. The ob-
served gain compared with the flanking haplotypes 
with both criterion-A and criterion-B was decreasing 
as the haplotype size increased. This can be attributed 
to the diminishing differences in total number of al-
leles between the haplotype construction methods with 
increasing haplotype size (data not shown). Finally, the 
average correlation of the 5 production traits with ge-
nomic BLUP was 0.535; the correlations between DYD 
and GEBV were 1.1% higher with haplotypes built 
with criterion-A or -B than with a standard genomic 
BLUP analysis.

WS Tests. The effect of window size used for hap-
lotype construction on genomic prediction results was 
also investigated. Windows of 10, 15, and 20 SNP were 
constructed and haplotypes were selected from these 
windows for genomic prediction, using a value of 8% 
for AFT and 10% for MD. Table 5 shows the results 
obtained with the different window sizes for both crite-
rion-A and criterion-B and for the 3 tested haplotype 
sizes. It was expected that wider windows would result 
in lower correlation due to a decreasing LD between 
QTL and haplotypes. This was indeed observed for 

Table 4. Observed correlations between daughter-yield deviations and genetic EBV values using either only 
the QTL-SNP or the flanking haplotypes as genomic markers (average correlations over the 5 traits)

Number of 
QTL-SNP QTL-SNP

Flanking markers

HS1 = 3 HS = 4 HS = 5

1K 0.480 0.491 0.492 0.488
3K 0.499 0.523 0.526 0.528
6K 0.512 0.534 0.538 0.541
Optimal2 0.512 0.534 0.538 0.542

1HS = haplotype size.
2For each trait separately, the number of QTL-SNP/haplotypes is the one leading to the highest correlation.
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the correlations obtained with haplotypes constructed 
using criterion-B. However, the results obtained with 
criterion-A showed a small increase in correlations 
with the increase of window sizes. The apparent in-
consistency in the results with respect to the effect of 
window size might be a result of different LD patterns 
around the different QTL-SNP in the model, for which 

the same window size was applied in our study. This 
might have resulted in windows that overlap with re-
combination sites or hotspots, greatly reducing the LD 
between the selected haplotypes and the linked QTL. 
Undoubtedly, the frequency of such windows increases 
with the increase of the window size. Therefore, in 
practical applications, it might be beneficial to take 
into account additional information for the definition 
of the windows, such as recombination hotspots or the 
LD pattern of the SNP along the genome. However, the 
testing of the effect of this information was outside the 
scope of our study.

Obviously, it is desirable to adjust parameter values 
for the model to the studied population. For example, 
population size has a major effect on the optimal AFT 
value; in larger populations, lower AFT values can be 
used. However, the presented criteria (especially crite-
rion-B) appear to be robust to the choice of parameter 
values within the tested limits. With criterion-B, an 
increased risk of over-parameterization was noted with 
haplotypes of 5 SNP (compared with the flanking hap-
lotype situation) due to the higher number of segregat-
ing alleles per haplotype (11.5% larger, on average).

Slope of Regression

The average slope of regression of DYD on GEBV with 
haplotypes of 4 SNP over the 5 traits were 0.80, 0.80, 
and 0.83 with the flanking, criterion-A, and criterion-B 
haplotypes, respectively. When the same markers were 
used as single-SNP information, the slopes of regression 
were in the same order, 0.71, 0.73, and 0.75, respec-
tively. The regression slope was 0.83 with the genomic 
BLUP model. In all cases, these values are relatively 
far from the desirable value of 1. Higher values were 
obtained when the fraction of the total genetic variance 
allocated to the residual polygenic effect was increased 
(data not shown); however, optimization of this slope 
was outside the scope of this paper.

Figure 2. Observed correlations between daughter yield deviation 
(DYD) and genetic EBV (GEBV) values in the validation population 
with the different haplotype selection methods and haplotype sizes 
after selecting the optimal number of QTL-SNP for each trait. Average 
correlations of the 5 production traits are shown. Solid lines show the 
correlations for the haplotype-based analyses, whereas dashed lines 
show the correlations observed when the same SNP were used as sin-
gle-SNP markers. Windows of 10 SNP were used for criterion-A and 
criterion-B.

Table 5. Correlations between the daughter-yield deviations and genetic EBV values for the tested window 
sizes1

Haplotype selection 
method

Window 
size

Haplotype size

3 4 5

Criterion-A 10 0.537 0.541 0.547
15 0.542 0.550 0.543
20 0.538 0.548 0.547

Criterion-B 10 0.548 0.548 0.546
15 0.541 0.543 0.549
20 0.540 0.546 0.545

1Average correlations over the 5 traits are shown (allele frequency threshold: 8%; maximum deviation: 10%). 
The optimal number of QTL-SNP was selected, as described in the manuscript. Allele frequency threshold = 
only alleles with a frequency higher than this threshold are assumed to be sufficiently predictable; maximum 
deviation = controls the acceptable level of variation among allele frequencies.
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Statistical Analysis

The average differences between the correlations of 
criterion-B and those of the flanking markers (short 
horizontal lines), as well as the calculated lower con-
fidence bounds of the tests (triangles), are shown on 
Figure 3. Criterion-B led to a small increase in correla-
tion in almost all of the cases (see also Supplemental 
Table S5; http://dx.doi.org/10.3168/jds.2015-10433). 
The significance of the observed increase in correlation 
between DYD and GEBV was tested using Fisher’s Z-
transform, as implemented in the “cocor” R package 
(Diedenhofen and Musch, 2015) based on the work of 
Zou (2007). As the results of criterion-B were slightly 
better than those with criterion-A, these were com-
pared with the flanking haplotypes. To test whether 
haplotypes selected with criterion-B outperform flank-
ing haplotypes, a one-tailed test with α = 0.05 and 
the null hypothesis that the 2 correlations are equal 
was performed. Out of the 15 correlations (5 traits × 3 
haplotype sizes; the correlation coefficients are present 
in Supplemental Table S5), 3 were found to be signifi-
cantly better with criterion-B than with the flanking 
haplotypes.

A Wilcoxon signed-rank test was performed to as-
sess whether criterion-B, compared with the flanking 
markers, led globally to increased correlations. The 
Wilcoxon signed-rank test was chosen because normal-
ity could not be assumed due to the low sample size (n 
= 15) and because the available data were paired; for 
every HS or trait combination, a correlation coefficient 
was available in both the flanking marker and criterion-
B cases.

To account for the wide range of correlations for the 
different traits, they were first standardized by calcu-
lating their deviation from the correlation coefficients 
observed when only the QTL-SNP were used:

 gain QTL-SNPz t z hap t tp p, . , , ,= ( )−1  

where z refers to one of the haplotype selection sce-
narios (flanking marker, criterion-A, or criterion-B), 
pz.hap,t is the observed correlation coefficient with the 
haplotype-based analysis using scenario z for trait t, 
pQTL-SNP,t is the observed correlation coefficient with the 
analysis using only the QTL-SNP as genetic markers 
for trait t, and gainz,t is the observed relative gain in 
correlation between the 2. The Wilcoxon signed-rank 
test was performed using α = 0.05 (one-tailed test). 
The test results (W = 111 and P = 0.001) indicate 
that the haplotypes selected by criterion-B significantly 
increased the correlations between DYD and GEBV 
compared with the flanking haplotypes. The test with 
criterion-A was also significant (W = 76, P = 0.02).

Final Remarks

The alleles that are considered predictable based 
solely on their allele frequencies and those that are 
actually well predicted in genomic selection are not 
equivalent because the predictability of an allele also 
depends on the effect size of the linked QTL. Therefore, 
whereas alleles carried by a sufficiently large number of 
individuals in the population are always predictable, 
effects of rare alleles can be also accurately predicted if 
those alleles are in strong LD with large QTL. Hence, 
the efficiency of haplotype selection procedures can be 
further improved in the future, once objective measures 
of QTL effect sizes will be available.

At present, interest is increased in using haplotypes 
as genomic markers in genomic evaluation procedures. 
The efficiency of the methods presented in our study 
might be further improved by, for example, identifying 
window boundaries in a more precise way [for examples, 
see Cuyabano et al. (2014) and Beissinger et al. (2015)].

Criterion-B is part of the new genomic evaluation 
procedure, which was implemented for the 4 dairy 
cattle breeds (Holstein, Montbéliarde, Normande, and 
Brown Swiss) in France in April 2015 (Croiseau et al., 
2015).

CONCLUSIONS

Two methods to improve haplotype allele predict-
ability based on observed allele frequencies were pre-
sented and compared with haplotypes created from the 

Figure 3. Average differences between the correlation coefficients 
(correlations calculated with criterion-B (using windows of 10 SNP) 
minus those calculated using the flanking markers) are represented by 
the short horizontal lines. The lower confidence intervals for the differ-
ences based on Fisher’s Z-transform are also shown (black triangles). 
HS3, HS4, and HS5 = haplotype sizes 3, 4 and 5, respectively; MQ = 
milk quantity; FY = fat yield; PY = protein yield; FC = fat content; 
PC = protein content.
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flanking markers. The obtained results indicate that an 
a priori selection of haplotypes from a small genomic 
region around each QTL-SNP can improve the correla-
tions between DYD and GEBV at no extra costs. In ad-
dition, the proposed methods are data-independent and 
require neither large computing power nor excessive 
running time. The inclusion of additional constraints 
on the allele frequency equilibrium in the haplotype 
selection procedure was beneficial, further increasing 
the correlations between DYD and GEBV by 0.3% on 
average over 5 production traits.
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Supplementary tables 

Supplementary Table S1. Average number of alleles per haplotype with haplotypes of 4 

SNP and AFT of 1-8%. Window size: 10 SNP. 

Criterion Nr. of QTL 
AFT1 (%) 

1 3 5 8 

Criterion-A 

1K2 14.55 14.35 14.29 13.84 

3K 13.55 13.41 13.26 12.89 

6K 12.54 12.41 12.25 11.90 

Criterion-B 

1K 14.42 14.41 14.42 14.41 

3K 13.46 13.45 13.44 13.43 

6K 12.44 12.43 12.42 12.43 
1: AFT=Allele frequency threshold (alleles with a frequency higher than this threshold are assumed to be predictable) 

2: Thousand 
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Supplementary Table S2. Correlations between GEBV and DYD in the validation 

population for different allele frequency thresholds using Criterion-A and -B to select the 

haplotypes. Average values over the 5 production traits are shown. Window size: 10 SNP. 

Haplotype size AFT1 Criterion-A Criterion-B 

3 

1 0.541 0.546 

5 0.537 0.547 

8 0.547 0.548 

4 

1 0.542 0.546 

5 0.541 0.546 

8 0.544 0.548 

5 

1 0.542 0.545 

5 0.547 0.545 

8 0.543 0.546 
1: AFT=Allele frequency threshold (alleles with a frequency higher than this threshold are assumed to be predictable) 
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Supplementary Table S3. Average DYD-GEBV correlations of the 5 production traits 

using different MD values with Criterion-B.  AFT was set to 8% and windows of WS = 10 

SNP were used. For every trait separately, the highest correlation was considered from those 

observed with 1K, 3K and 6K QTL-SNP in the model. 

Haplotype 

size 

Maximum Deviation (MD)1 

10% 30% 50% 80% 

3 0.548 0.546 0.547 0.548 

4 0.548 0.548 0.546 0.545 

5 0.546 0.546 0.547 0.546 

Average 0.547 0.547 0.547 0.546 
1: This parameter reflects the acceptable level of variation among allele frequencies. 
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Supplementary Table S4. Correlation coefficients calculated between DYD and GEBV for 

the haplotype-based (Criterion-A/Criterion-B; window size: 10 SNP) methods as function of 

number of haplotypes in the model. Average correlations over the 5 production traits are 

shown. 

#QTL-SNP 
Criterion-A Criterion-B 

HS1=3 HS=4 HS=5 HS=3 HS=4 HS=5 

1K2 0.506 0.509 0.494 0.505 0.516 0.501 

3K 0.525 0.529 0.525 0.524 0.538 0.529 

6K 0.546 0.544 0.543 0.544 0.544 0.544 

Optimal 0.547 0.544 0.543 0.548 0.548 0.546 
1: HS=Haplotype size 

2: Thousand 
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Supplementary Table S5. Correlations between genomic estimated breeding values and 

DYD in the validation population. Correlations for the optimal number of QTL are 

presented. Average values of the 5 production traits; window size: 10 SNP. 

Haplotyp

e 

selection 

method 

Marker 

type 

Haplotyp

e size 

Milk 

quantity 

Fat 

yield 

Protein 

yield 

Fat 

content 

Protein 

content 
Average 

QTL-

SNP 
SNP 1 

0.473 0.509 0.431 0.567 0.581 0.512 

Flanking 

markers 

SNP1 

3 0.475 0.525 0.437 0.568 0.581 0.517 

4 0.477 0.523 0.439 0.575 0.581 0.519 

5 0.475 0.522 0.443 0.572 0.586 0.520 

haploty

pe 

3 0.496 0.546 0.455 0.570 0.601 0.534 

4 0.498 0.558 0.473 0.571 0.591 0.538 

5 0.503 0.556 0.476 0.567 0.609 0.542 

Criterion-

A 

SNP1 

3 0.484 0.521 0.454 0.581 0.586 0.525 

4 0.487 0.530 0.453 0.578 0.580 0.526 

5 0.476 0.527 0.454 0.572 0.577 0.521 

haploty

pe 

3 0.503 0.558 0.479 0.584 0.611 0.547 

4 0.502 0.558 0.473 0.582 0.606 0.544 

5 0.485 0.562 0.487 0.577 0.602 0.543 

Criterion-

B 

SNP1 

3 0.481 0.522 0.456 0.575 0.588 0.524 

4 0.486 0.528 0.459 0.586 0.591 0.530 

5 0.483 0.530 0.456 0.578 0.584 0.526 

haploty

pe 

3 0.506 0.554 0.487 0.591 0.604 0.548 

4 0.496 0.562 0.476 0.594 0.609 0.548 

5 0.499 0.561 0.482 0.579 0.608 0.546 
1:All the SNP included in the haplotypes are included in the Bayes C analysis but they are used as independent explanatory variables. 
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APPENDIX I. 

Supplementary methods 

Calculation of the weighing factor for Criterion-B 

In the calculation of the weighing factor, two principles need to be taken into account: on the 
one hand, it is desired to maximize the number of predictable alleles of the selected haplotype 
while on the other hand, it is also expected from Criterion-B that the allele frequencies of the 
predictable alleles (which were identified the same way as with Criterion-A, i.e. using the 
AFT parameter) do not differ extremely from each other, or in other words, their differences 
do not exceed certain limits. Similarly to Criterion-A, selection of the optimal haplotype with 
Criterion-B will be accomplished through the minimization of a function, which is expected 
to reflect both aims. 

In order to maximize the number of predictable alleles as with Criterion-A, it must be 
guaranteed that any haplotype that includes a larger number of predictable alleles has a lower 
score than the scores calculated for haplotypes with less predictable alleles. Therefore, the 
least optimal scenario with N predictable alleles is expected to get a lower score, than the 
most optimal scenario for any       predictable alleles. Hence: 

                           (1) 

where 
N and    are the number of predictable alleles (assuming     )             

  is the most optimal case with    predictable alleles              is the least optimal case with N predictable alleles 

The most optimal case with   predictable alleles corresponds to the situation when the 
Criterion-B gives the smallest possible value, which is the case when    takes its largest 
value. Within the domain of    (      ), this is         . Therefore in the rest of 
the derivation, this value is used instead of    (proof not shown). 

The general form of Criterion-B (without subscripts for simplicity) is: 

                  (2a) 

                
    (2b) 

where 
OFk: observed frequency of allele k 
w: the weighing factor of the number of predictable alleles 
HS: haplotype size 
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Using equation (2a) in equation (1) leads to equation (3), which in turn (after simple algebraic 
transformations) can be written as equation (4), defining a lower limit for the weighing factor: 

                          (3) 

                (4) 

 

Calculating this lower limit for all suitable values of N (that is, from 2 till 2HS) results in a 
sequence of lower limits, from which the maximum will satisfy all inequalities. In the 
following, the two terms on the right side of equation 4 will be defined. 

Calculating          

Since Criterion-B is used to solve an optimization problem by minimization, the SD value of 
the most optimal situation corresponds to the situation where SD takes the lowest possible 
value. 

SD is the smallest for a particular N, when all the alleles have the same frequency (1/N). In 
such “optimal” cases, the minimal SD can be calculated by equation (5): 

                                      (5) 

Because 2HS is an upper limit of N, (N-1) is necessarily lower than 2HS. Therefore the lowest 
SD for          can be obtained by replacing N by (N-1) in equation (5):                   . 
Note that this value depends on the number of predictable alleles (N) and on the haplotype 
size (HS) used in the model only. 

Calculating      

The least optimal corresponds to a situation where the allele frequencies are as unbalanced as 
possible. This is the case when (N-1) alleles have an allele frequency equal to AFT and 1 
allele has a frequency equal to (1-AFT*(N-1)). The SD value then can be calculated as 
follows: 

                                             (6) 

At this point a new parameter was introduced to include information on the allele frequency 
equilibrium: the maximum deviation (MD) is defined as the average “allowed” deviation of 
(N-1) alleles from the ideal frequency (

    ), expressed as a proportion of the ideal frequency. 

The last, Nth allele is assumed to have an allele frequency equal to the AFT. 
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With the use of this parameter, the SD of the least optimal case can be calculated as: 

                                  (7) 

The right side of equation (4) can be calculated for all N and the weighing factor can be 
selected as described above. From equation (7) it can be noted that with increasing N (from 2 
till 2HS), the value of      is increasing as well, while the value of          is decreasing (see 

equation (5)). Therefore to determine the proper weighing factor, the calculation of these 
parameters is enough for the largest possible value of N, that is for 2HS. 

In summary, to calculate the weighing factor for the number of predictable alleles in 
Criterion-B, the following parameters are required: 

 The haplotype size (HS) 

 Allele frequency threshold (AFT) 

 The maximum deviation (MD) 

All of these parameters are tested in the results section of the article. Since these parameters 
are available prior to the start of the analysis of the QTL, the weighing factor can be 
calculated before determining any QTL-windows on the genome and the same weighing 
factor is generally applicable along the whole genome. 
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3.3.3 Discussion 

The most important benefits of the developed methods were described in the paper. 

In short, we could prove that using allele frequency information to select haplotypes 

for genomic evaluation purposes was beneficial. Furthermore, we could also provide 

empirical proof for the superiority of haplotypes over SNP. 

A computer program was written and optimized to implement the two criteria in 

practice. All important parameters (such as AFT, haplotype size, window size and – 

in case of Criterion-B – MD as well) can be defined in the program by the user. Other 

features of this software are: 

− the possibility of multi-processing using a user-defined number of processors 

− the handling of different window sizes for the different QTL regions 

− the possibility to force a (single) SNP per window to be part of the final 

haplotype 

The last feature is especially important when putative causative mutations are 

available. Due to optimization and parallel programming, several thousands of 

windows as wide as 200 SNP can be analyzed simultaneously in a reasonable time. 

By selecting a single haplotype of ‘HS’ SNP from a window of ‘WS’ SNP, the number 

of haplotypes to be used in the model can be reduced by a proportion equal to 

��� � ������ (e.g. 60% in case of WS=10 and HS=4), compared to the case when 

all consecutive, non-overlapping haplotypes of HS SNP are built. This is a very 

important feature, which alleviates the computational burden when using HD SNP-

chip data with haplotype markers. 

Following the presented analyses, this method was applied to the other dairy breeds 

(the Holstein, Normande and Brown-Swiss populations) using the French routine 

genomic evaluation pipeline. These analyses are not presented here but they 

resulted in similar gains in terms of correlation coefficients and regression slopes of 

DYD on GEBV, as presented above. 
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QTL-mapping results can also be incorporated into these haplotype selection 

methods in the future, which might further improve selection accuracies. 

Furthermore, different QTL can be identified with different degrees of accuracy, 

depending on the size of the QTL effect and the LD between the QTL and the 

neighboring SNP. Therefore, it is reasonable to assume that different window sizes 

should be used for the different QTL, depending on the accuracy of QTL localization. 

The testing and implementation of such refined methods are interesting directions for 

future research. 

This haplotype selection procedure became part of the new French genomic 

selection pipeline in April 2015 and it was used in the implementation of the new 

genomic evaluation in the four main dairy cattle breeds in France (Holstein, 

Montbéliarde, Normande and Brown Swiss breeds). A longer description of this 

genomic evaluation pipeline was given in section 2.5 of Chapter 2. 

3.4 Genomic evaluation with HD data 

As already indicated, it was hypothesized in the past that the HD SNP-chip could 

significantly improve the performance of genomic evaluation (Brøndum et al., 2011), 

but recent studies could not verify this expectation (e.g. Chen et al., 2014; Hozé et 

al., 2014). Therefore we were interested whether we can observe any improvement 

with our haplotype construction method combined with HD data in a single-breed 

scenario, compared to the similar tests using the 50K SNP-chip. 

For this, the performance of Criterion-B was tested on the HD SNP-chip in the 

Montbéliarde breed in a within-breed context. We used the exact same Montbéliarde 

population as for the tests with the 50K SNP-chip data. The training and validation 

populations were the same as well. 

Due to the shorter distances between the markers on the HD-chip (see S. figure 1 in 

Appendix B on page 201), a window size covering approximately the same genomic 

regions as the 10 SNP-wide windows on the 50K was selected for the HD data. On 

average, 144 SNP from the HD-chip fell under the windows of the 50K, therefore this 

value was evaluated together with windows of 80 and 160. Windows of 80 SNP 
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outperformed the other window sizes, therefore only this analysis is presented here. 

When the QTL-SNP were not available in the HD data, the closest SNP were used as 

QTL-SNP instead. Similarly to the tests conducted on the 50K SNP-chip data, the 

QTL-SNP were forced to be part of the selected haplotypes with the HD data as well. 

Only haplotypes of 3 and 4 SNP were tested in combination with data from the HD 

chip to avoid over-parameterization with haplotypes of 5 SNP. 

Table 5 shows the average number of alleles per haplotype with the 2 haplotype 

building methods and for the 2 haplotype sizes. The average number of segregating 

alleles with Criterion-B was larger than that with the flanking haplotypes. The 

difference was larger with haplotypes of 4 SNP (~30%) than with haplotypes of 3 

SNP (~16%). As expected, in case of the flanking haplotypes, the number of 

segregating alleles was lower with the HD data than with the 50K SNP-chip data 

(Table 3 from the article). It is due to the much shorter genetic distance between the 

SNP from the HD chip, which corresponds to a larger LD between consecutive SNP. 

However, the haplotypes selected by Criterion-B carried slightly more alleles, when 

they were selected from the HD data compared to the haplotypes selected from the 

50K data. The increase in the average number of alleles was ~7% and ~11% with 

haplotype size of 3 and 4 SNP, respectively. 

Table 5: Average number of alleles per haplotype observed with the 3 different 
haplotype construction methods, as function of haplotype size and number of QTL-
SNP in the model. Window size: 80 SNP. 

 

Number of QTL-SNP 

1,000 3,000 6,000 

HS1=3 

Flanking markers 6.59 6.43 6.32 

Criterion-B 7.64 7.49 7.33 

HS1=4 

Flanking markers 11.57 11.02 10.63 

Criterion-B 14.89 14.34 13.79 
1 : HS=Haplotype size 

 

Figure 5 shows the distribution of allele frequencies with haplotypes of 4 SNP (for 

results on haplotypes of 3 SNP, see S. figure 2 in Appendix B on page 202). 
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Similarly to the 50K results, Criterion-B outperformed the flanking-haplotype case in 

terms of allele frequency. A larger proportion of the alleles had an intermediate allele 

frequency (i.e. a frequency between 10 and 40%), while the proportion of over-

represented alleles (alleles with a frequency of >40%) in the population decreased by 

60% and 79% with haplotypes of 3 and 4 SNP, respectively. The frequency of under-

represented alleles (i.e. alleles with a frequency < 1%) decreased by 25% with 

haplotypes of 3 SNP and increased by 5% with haplotypes of 4 SNP. These values 

(with the exception of the frequency of the under-represented alleles with haplotypes 

of 4 SNP) were more favorable with the HD-chip than with the 50K chip. 

 

Figure 5: Overall distribution of haplotype allele frequencies with either flanking or 
with Criterion-B selected haplotypes (haplotype size: 4 SNP; window size: 80 SNP; 
6,000 QTL-SNP). The 0-10% region is also depicted with more detailed scale on the 
x-axis. 

Based on the allele numbers and allele frequency results shown earlier, Criterion-B is 

expected to outperform the flanking haplotypes in genomic evaluation. Like 

previously with the 50K data,the flanking haplotypes are expected to outperform the 

analysis where only the QTL-SNP are used as genetic markers due to the more 

informative markers. 

Table 6 shows the correlation coefficients between DYD and GEBV values in case 

when only the QTL-SNP are used as genetic markers and when flanking haplotypes 
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are built from the QTL-SNP and their neighboring markers. The flanking haplotypes 

outperformed the analyses with only QTL-SNP information (with the exception of the 

HS=3 and 1K QTL-SNP model). However, these correlations were consistently lower 

than their 50K SNP-chip counterparts (also see Table 4 from the above paper). 

Table 6: Observed correlations in the validation set between DYD and GEBV values 
using either only the QTL-SNP or the flanking haplotypes as genomic markers. 
Average correlations over the 5 traits. 

Number of 
QTL-SNP 

QTL-SNP 
Flanking haplotypes 

HS1=3 HS1=4 

1K 0.459 0.454 0.463 

3K 0.484 0.499 0.516 

6K 0.498 0.521 0.528 

Optimal2 0.498 0.523 0.529 
1: HS=Haplotype size 

2: For each trait separately, the number of QTL-SNP/haplotypes is the one leading to the highest correlation. 
 

The comparison of the performance of the flanking markers with the selected 

markers is shown on Figure 6. This figure shows the correlation coefficients with the 

2 haplotype building methods for haplotypes of 3 and 4 SNP (for individual results of 

each trait, see S. table 2 in Appendix B on page 203). Combining the markers into 

haplotypes was beneficial, leading to an average increase of 1.8% in correlation. 

Criterion-B performed better than the flanking haplotypes, leading to an extra ~1% 

increase in correlation. These trends are similar to those with the 50K SNP-chip data. 

However, data from the 50K SNP-chip were superior compared to those of the HD 

chip. Averaged over the 2 haplotype sizes and 5 traits, HD data resulted in ~1% 

lower correlations either when the markers were used as single-SNP information or 

when they were combined into haplotype markers, as compared to the 50K data. 



��������������	
������������������ ���

�

 

Figure 6: Average observed correlations between DYD and GEBV values for 5 
production traits with different haplotype selection methods and haplotype sizes. 
Solid lines indicate the correlations for the haplotype-based tests while dashed lines 
show the correlations observed when the same SNP were used but as single-SNP 
markers (Criterion-B; validation set). 

Until now, for each trait only the “optimal” (i.e. the highest) correlation coefficient was 

considered from among those obtained with 1,000, 3,000 and 6,000 haplotypes in 

the model. The performance of the different number of haplotypes are compared in 

Table 7, which presents the average correlation coefficients for Criterion-B and for 

the 2 haplotype sizes with either 1,000 or 3,000 or 6,000 haplotypes included in the 

model (for comparison purposes, the “optimal” values – i.e. those plotted on Figure 6 

– are also shown). 

Table 7: Average correlations calculated between DYD and GEBV of the validation 
set for 5 production traits (Criterion-B). 

#QTL-SNP HS1=3 HS1=4 

1K2 0.494 0.487 

3K2 0.521 0.526 

6K2 0.532 0.536 

Optimal 0.533 0.537 
1: HS=Haplotype size 

2: Thousand  

Higher correlations were observed when more QTL were modeled. For most of the 

traits, 6,000 haplotypes in the model was found to be optimal. For individual results, 
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see S. table 2 in Appendix B on page 203. With the exception of 1,000 QTL in the 

model, haplotypes of 4 SNP led to higher correlation coefficients than haplotypes of 3 

SNP. 

In addition to the selection accuracy, inflation of breeding values is also an important 

aspect that has to be considered. Table 8 shows the estimated regression slopes of 

DYD on GEBV, averaged over the 5 production traits. Results of individual traits can 

be found in S. table 3 in Appendix B on page 204. Criterion-B resulted in the highest 

regression slopes, followed by the flanking-marker scenario. Once again, the use of 

haplotypes instead of individual SNP markers was beneficial. These results were 

very similar to the regression slopes observed with the 50K SNP-chip data. 

Table 8: Regression slopes with the 2 different haplotype construction methods and 
when only QTL-SNP were used as genetic markers. Values measured on the 
validation set and averaged over 5 traits. 

Haplotype selection method Marker type 
Haplotype size (#SNP) 

3 4 

QTL-SNP SNP 0.656 

Flanking markers 
SNP 0.685 0.687 

haplotype 0.742 0.768 

Criterion-B 
SNP 0.735 0.751 

haplotype 0.796 0.825 

 

Similarly to the 50K SNP-chip situation, Criterion-B outperformed the flanking 

haplotypes when data from the HD SNP-chip was used. However, the HD SNP-chip 

performed worse than the 50K SNP panel. The inferior performance of the HD chip 

data compared to the 50K SNP panel might be because the windows used for the 2 

tests differed significantly in length and in turn the LD-patterns beneath these 

windows were different as well. By potentially having a large effect on the selected 

haplotypes, this could result in different selection accuracies. 



�������	
,�����	��&������,��
�	�-��
������������ # #�

�

In conclusion, haplotypes can outperform individual SNP markers in genomic 

evaluation with the HD SNP-chip as well and the application of the haplotype 

selection criterion was also beneficial. However, in the studied cases the efficiency of 

genomic selection was lower with HD data compared to 50K data. These tests should 

be performed in a potentially more favorable situation for the HD data, for example in 

a multi-breed context, where larger differences can be expected between the 

performances of the HD and 50K SNP-chips in genomic selection. Indeed, it was 

shown earlier that in a within-breed context the resolution of the 50K SNP-chip is 

sufficiently high for genomic evaluation (Hozé et al., 2013; de Roos et al., 2008). 

3.5 Inclusion of linkage disequilibrium information 

3.5.1 Introduction 

In the previous study QTL were assumed to segregate within a short (10-SNP wide) 

window surrounding the SNP identified in the QTL detection step. Although this 

window size was found to be better on average across the genome when compared 

to 15- and 20-SNP wide windows, this approach is not perfect and could be 

improved. Using a fixed window was a compromise that had to be made during the 

previous study. This allowed us to test a wide range of values for the different 

parameters. However, it is reasonable to assume that different window limits should 

be used along the genome as a result of adaptation to the local recombination rates 

(e.g. Coop et al., 2008; other drawbacks of fixed window sizes were outlined by 

Beissinger et al., 2015). Recombination rates can differ across chromosomes, 

genomic regions and populations as well (e.g. Jeffreys et al., 2005 in human or Weng 

et al., 2014 in beef cattle, Ma et al., 2015). Furthermore, the SNP from the SNP-chips 

are not equidistant (S. figure 1 and S. figure 2 in Appendix B on page 201), which 

also implies that even for a fixed window size, the different genomic regions do not 

have the same length. In order to remove the requirement of a preliminary QTL-

detection step, one can build windows of SNP along the genome based on LD 

information. Haplotypes can then be selected to best represent these segments in 

stronger LD instead of representing the regions surrounding pre-selected SNP. 
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In what follows, windows are defined as a set of consecutive SNP where the LD 

measured with D’ (after Cuyabano et al., 2014) between every pair of neighboring 

SNP has to exceed a pre defined limit. These windows will be called haploblocks 

hereafter (as in Knürr et al., 2013). Although D’ is known to be more sensitive to rare 

alleles (McRae et al., 2002), Cuyabano et al. (2014) showed that D’ performed 

equally well compared to the r2 in creating haploblocks for genomic evaluation 

purposes. This can be due to the lower number of haploblocks identified with D’, 

which leads to fewer effects to be estimated in genomic evaluation. 

The definition of haploblocks based on the LD-pattern allows to account for the 

variable recombination rate along the genome, and in particular to avoid the inclusion 

of a recombination hot-spots or any historical recombination with a large impact 

within any window. Since haploblocks are defined using the LD-pattern along the 

genome, they are expected to segregate as a single unit from generation to 

generation (at least as long as the pre-defined D’ threshold is close to its maximum). 

Because in genomic evaluation the aim is to capture the combined effect of all the 

QTL affecting the trait of interest, the precise positioning of these QTL may not be 

essential in contrast to QTL detection studies, where the emphasis is on the 

identification and accurate positioning of the QTL. Therefore, in genomic evaluation 

the scenarios when the effects of two (or more) closely linked QTL are accurately 

separated and estimated independently, or when their combined effect is estimated 

jointly can be considered as equally good. In this context, it is sufficient to estimate a 

single effect for each haploblock allele, because these blocks are – by construction – 

closely linked chromosome segments. After determining the haploblocks, a single 

haplotype can be selected to represent every haploblock along the genome. Such a 

haplotype within each haploblock can be then selected using Criterion-B and the 

optimal parameter values (see section 3.3.2). 

3.5.2 Combining LD and allele frequency information to improve selection 
accuracy 

This article was submitted for publication to the Journal of Dairy Science in 2016: 

Jónás, D., Ducrocq, V. and Croiseau, P. Submitted. Short communication: The 
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combined use of LD-based haploblock and allele frequency-based haplotype 

selection method enhances genomic evaluation accuracy in dairy cattle. J. Dairy. Sci. 
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SHORT COMMUNICATION: HAPLOBLOCK CONSTRUCTION FOR GENOMIC 

EVALUATION 

1 

 

Exploiting simultaneously marker linkage disequilibrium) and allele frequency information 1 

improves genomic evaluation accuracy (Jónás) 2 

Either nonrandom association between markers from dense SNP panels and marker allele 3 

frequency information has been used to reduce the number of explanatory variables in 4 

genomic evaluation and to improve its accuracy in dairy cattle. Marker allele frequency 5 

information can also reduce the number of rare alleles, which is beneficial, because their 6 

estimated effects are usually less accurate. In this paper we propose to use these information 7 

simultaneously. Our results confirm that this is a promising way to improve genomic selection 8 

efficiency. 9 

 10 
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The construction and use of haploblocks – i.e. adjacent SNP in strong linkage disequilibrium 24 

– for genomic evaluation purposes is advantageous, because it allows the reduction of the 25 

number of effects to be estimated in genomic prediction without the risk of discarding 26 

relevant genomic information. Furthermore, haplotypes – i.e. the combination of 2 or more 27 

SNP – can increase the probability of capturing the QTL effect compared to individual SNP 28 

markers. With regards to haplotypes, the allele frequency parameter is also of interest because 29 

as a selection criterion, it allows the reduction of the number of rare alleles, which alleles’ 30 

effects are usually difficult to estimate. We propose a simple pipeline that simultaneously 31 

incorporates both linkage disequilibrium and allele)frequency information in genomic 32 

evaluation and we also present the first results we obtained with this procedure. A population 33 

of 2,235 progeny tested bulls from the Montbéliarde breed was used for the tests. Phenotype 34 

data in the form of daughter yield deviations on 5 production traits as well as genotype data 35 

from the 50K SNP)chip was available. A classical validation study was conducted by splitting 36 

the population into a training (80% oldest animals) and validation (20% youngest animals) set 37 

to emulate a real)life scenario where the selection candidates have no available phenotype 38 

data. All reported parameters were measured on the validation set. 39 

Our results prove that the outlined method is indeed advantageous and accuracy of genomic 40 

evaluation can be improved. Correlation coefficients between true and estimated breeding 41 

values increased by 2.7% on average of the 5 traits, when results were compared to results of 42 

a GBLUP analysis. Inflation of genomic evaluation of the simulated selection candidates was 43 

significantly reduced as well. The proposed method outperformed all other SNP and 44 

haplotype)based tests we evaluated in a previous study. Therefore, the combined use of LD)45 

based haploblocks and allele frequency)based haplotype selection methods is a promising way 46 

to improve the efficiency of genomic evaluation. Further work is still needed to optimize each 47 

step in the proposed analysis pipeline, but the first results are very promising. 48 
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Keywords: haplotype, haploblock, genomic evaluation 49 

 50 

The development of cost)efficient SNP)chips as well as elaborate evaluation methods, such as 51 

the Bayes Alphabet: A, B, C()π), D()π), R (by Meuwissen et al., 2001, Habier et al., 2011 and 52 

Erbe et al., 2012) led to the practical implementation of genomic selection in dairy cattle 53 

breeding in most developed countries (e.g. in France: Boichard et al., 2012). The majority of 54 

the currently available methods use bi)allelic single nucleotide polymorphisms (SNP) as 55 

genetic markers to trace quantitative trait loci (QTL). However, haplotype markers (defined as 56 

a combination of 2 or more SNP markers, as in: Hayes et al., 2007; Villumsen et al., 2009; 57 

Garrick and Fernando, 2014) can outperform individual SNP markers in genomic evaluation 58 

(Croiseau et al., 2015 and Jónás e al., 2016). The main advantage of haplotypes lies in their 59 

multi)allelic nature: when more alleles can be tracked at a given locus, there is a higher 60 

chance that at least one of those alleles will be linked to existing QTL. However, allele effects 61 

are not always predicted more accurately with haplotypes than with SNP. The accuracy with 62 

which allele effects can be estimated is largely influenced by the alleles frequency, which 63 

determines how much phenotypic information can be directly linked to each allele. Rare 64 

haplotype alleles are more likely than with SNP, especially if the flanking (i.e., neighboring) 65 

SNP are combined into a haplotype marker, because of the short genetic distance (i.e., high 66 

LD) between SNP on medium) and high)density SNP)chips. Therefore, on one hand, it is 67 

desirable to maximize the number of haplotype alleles in genomic prediction to maximize the 68 

probability that at least one allele will be linked to the QTL (if present). But on the other 69 

hand, it is necessary to avoid rare alleles to have accurate allele effect estimation, which is 70 

essential for an efficient genomic evaluation. 71 

Following these considerations, Jónás et al. (2016) proposed a method to select haplotype 72 

markers ����� to genomic evaluation based on observed allele frequencies. It was shown that 73 
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such selected haplotypes outperform haplotypes of flanking SNP in genomic evaluation. 74 

However, a major drawback of the proposed method is the prerequisite that the approximate 75 

location of the QTL must be determined in a first step prior to genomic evaluation. Here we 76 

present an extension of this work aiming at removing this prerequisite by exploiting 77 

information on the linkage disequilibrium (LD) pattern along the genome. 78 

�������79 

Two criteria were proposed in Jónás et al. (2016) to select haplotypes, with a small difference 80 

between their formulations. In this study, only the one with the higher performance will be 81 

considered and it will be termed as “Criterion)B” as in Jónás et al. (2016). This selection 82 

procedure selects from a set of haplotypes the one leading to the best balance between 83 

haplotype allele frequencies and number of haplotype alleles. 84 

The exact same dataset described in Jónás et al. (2016) is used here, allowing an easy 85 

comparison between the results published earlier and the ones obtained here. The dataset 86 

included 2,235 progeny)tested bulls from the French Montbéliarde population. Phenotype 87 

data (in the form of daughter yield deviations or DYD) was available on 5 production traits, 88 

namely milk), protein) and fat yield, protein) and fat content. Genotype data from the Bovine 89 

SNP50 BeadChip (50K; Illumina Inc., San Diego, USA) was used. After quality control, 90 

43,801 SNP were retained for genomic evaluation. 91 

Analyses were done in a cross)validation study with the 20% youngest animals in the 92 

validation population (as follows, the 80% oldest animals formed the training population). 93 

Haplotype allele effects were estimated using the training set; using these estimated allele 94 

effects together with genotype and pedigree information from the validation population, 95 

GEBV were estimated for all individuals within the validation set. Finally, correlations 96 

between estimated GEBV and DYD as well as regression slopes of DYD on GEBV were 97 

calculated and compared to the results published in Jónás et al. (2016), i.e. results obtained 98 
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with a GBLUP model as well as with the Criterion)B haplotype selection approach, because 99 

this approach was previously found to be optimal. In the latter procedure, SNP effects were 100 

estimated via a Bayes)Cπ analysis and the SNP with the highest probability of inclusion in the 101 

model were selected (in practice, 1000, 3000 or 6000 SNP were identified). These SNP were 102 

not assumed to be the causative mutations themselves but to merely indicate the approximate 103 

location of the QTL affecting the trait of interest. In a 10)SNP wide window symmetrically 104 

surrounding these pre)selected SNP, all possible combinations of 4 SNP were considered as a 105 

different haplotype and one haplotype was selected using Criterion)B to represent the linked 106 

QTL. These haplotypes were used to better capture the QTL effects. This procedure will be 107 

referred as “Pre)selection method” hereafter. 108 

&���������������������	�
�109 

A fixed window size was used in Jónás et al. (2016). However, it is reasonable to assume that 110 

different window boundaries should be used along the genome, adapting to the local LD (e.g. 111 

Jeffreys et al., 2005 in human or Weng et al., 2014 in beef cattle; other drawbacks of fixed 112 

window sizes were outlined by Beissinger et al., 2015). In order to account for the different 113 

recombination rates as well as to remove the prerequisite of information on the approximate 114 

location of QTL, windows of SNP in strong LD along the genome were built and haplotypes 115 

were selected to represent these windows. Windows were defined as a set of consecutive SNP 116 

where the LD measured between every neighboring SNP exceeded a pre)defined limit. These 117 

windows will be called haploblocks following Knürr et al. (2013). In this study, D’ was used 118 

as a measure of linkage disequilibrium and the threshold level was set to 45% following 119 

Cuyabano et al. (2014; a threshold of 90% was also evaluated). After determining the 120 

haploblocks, a single haplotype of 4 SNP was selected from among all possible haplotypes of 121 

4 SNP to represent each haploblock along the genome. Haplotypes within each haploblock 122 
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were selected using Criterion)B and the optimal parameter values (i.e. haplotype size: 4 SNP, 123 

AFT: 8%; MD: 10%), as they were identified in Jónás et al. (2016). 124 

This process also allowed to identify those haplotypes that are expected to be the most 125 

significant in genomic evaluation based on both LD and allele frequency information, before 126 

using any phenotype data. This is a notable advantage, because identification of significant 127 

markers is usually done in a prior genomic evaluation run after the training population was 128 

split into further sub)populations, which method is clearly suboptimal. This aspect is 129 

especially relevant for regional breeds, where the number of animals with both genotype and 130 

phenotype data is already scarce and their division into more sub)populations is detrimental to 131 

a greater extent. 132 

Another advantage of this procedure is that it allowed using the same haplotypes for all the 133 

traits analyzed. This is because the haploblock construction is based on observed LD)patterns 134 

while the haplotype selection process assumes knowledge on the allele frequencies only; no 135 

information on performances were used to select the genetic markers to be used. The 136 

differences between the genetic backgrounds of the traits are expected to be reflected in the 137 

different estimated allele effects of the haplotyes. 138 

'�
��	���������	�
�������139 

Haplotype allele effects were estimated using a haplotypic Bayes)Cπ approach (Croiseau et 140 

al., 2014). The model included an overall mean effect and a residual polygenic effect in 141 

addition to the haplotype marker effects (as in Jónás et al., 2016). It can be written as: 142 

y� = μ + u� +�z�	a	δ	
�

	�
+ e� 

where yi is the performance value (DYD) of individual i, S is an overall mean effect, ui is the 143 

residual polygenic effect of animal i (u~MVN(0, �σ��), N is the total number of haplotypes in 144 

the model, zij is a vector of dimension 1×kj (where kj is the number of alleles at haplotype j) 145 
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indicating the number of each haplotype allele copies animal i carries at haplotype j for every 146 

allele of that haplotype (i.e. vector sum of zij is 2), aj is a vector of substitution effects of 147 

haplotype j (of dimension kj×1), δj is a 0/1 variable indicating whether or not marker j is 148 

assumed to have an effect and ei is a random error term for animal i. The proportion of genetic 149 

variance attributed to the residual polygenic effect was allowed to vary. 150 

(�����151 

Two different threshold values of the D’ parameter were tested: 45% and 90%. The value of 152 

45% was found to be optimal in Cuyabano et al. (2014) and our tests confirmed their results 153 

(data not shown). Therefore only results with a D’ threshold of 45% will be presented here. 154 

Table 1 gives a short summary of the characteristics of the haploblocks and the selected 155 

haplotypes. The 43,801 SNP were divided into 8,393 haploblocks with an average of 5.22 156 

SNP per haploblock. This number of SNP per haploblock is relatively small due to the long 157 

distance between the markers on the 50K SNP)chip panel (on average ~57,300 bp, exceeding 158 

100,000 bp only in 11.5% of the cases). Sometimes haploblocks were shorter than the desired 159 

haplotype size (4 SNP). In such cases, haplotypes were built using all of the SNP from the 160 

haploblock and the closest flanking SNP were added to extend the haplotypes to 4 SNP. 161 

When such short haploblocks were adjacent to each other, it was likely that the exact same 162 

haplotypes were built for them and only one of them was kept for the analysis. This is the 163 

reason why there were less haplotypes in total than haploblocks (Table 1). The average 164 

number of alleles per haplotype was higher than those observed with 6,000 haplotypes in 165 

(Jónás et al., 2016). 166 

Table 2 presents the GBLUP results as well as the results of the pre)selection method (these 167 

results were taken from Jónás et al., 2016) together with the new results obtained using 168 

haploblock information. Both the correlation coefficients between DYD and GEBV and 169 

regression slopes of DYD on GEBV are presented. The “pre)selection method” column of the 170 
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table corresponds to the second last row of Supplementary Table S5. of (Jónás et al., 2016), 171 

displaying the best results obtained in that study. 172 

The proportion of variance attributed to the residual polygenic effect with the haploblock 173 

based method converged to 5.7% (average of the 5 traits). The rest of the genetic variance was 174 

explained by the haplotypes. Results obtained with the combined use of LD)based 175 

haploblocks and haplotype selection based on allele frequencies outperformed the traditional 176 

GBLUP analysis by 2.7 percentage points (pp) in correlation coefficients. An average gain of 177 

1.5pp in correlation was observed, when the basis of comparison was the best pre)selection 178 

method. Largest improvements were observed for fat content (4.3pp in correlation compared 179 

to correlations observed with the other two methods) and for protein yield (1.7pp gain in 180 

correlation). Although the observed increase in correlations was very limited for certain traits, 181 

a significant Wilcoxon signed)rank test (p)value: 0.03) between the haploblock based results 182 

and those obtained with the pre)selection method showed that an increase was always 183 

observed when haploblock information was taken into account. The large improvement with 184 

these traits is most likely because when regions are pre)selected based on a prior Bayes)Cπ 185 

analysis, multiple SNP are linked to the same major genes (such as diacylglycerol O)186 

acyltransferase 1 or DGAT1) and as a consequence, SNP that were linked to other QTL were 187 

missed in these analyses. In contrast, they are necessarily kept when all markers from all 188 

regions are kept in the haploblock based analysis, leading to higher selection accuracies. 189 

Regression slopes of DYD on GEBV were substantially improved as well. On average, 190 

deviation of the regression slopes from their optimal value (i.e. from 1) was 0.078 smaller 191 

when compared to either the pre)selection method or the GBLUP method. 192 

A test using all consecutive haplotypes of 4 SNP along the genome was also implemented, 193 

resulting in inferior correlations and regression slopes compared to the haploblock based 194 

analyses (data not shown). 195 
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In conclusion, the use of information on LD)pattern along the genome in combination with 196 

allele frequency information to build haplotypes specifically for genomic evaluation purposes 197 

is a promising way to improve genomic evaluation accuracy. A very interesting feature of the 198 

proposed method is that the same haplotypes can be used to analyze all traits of interest. 199 

Further significant improvements can be expected following the refinement of the different 200 

steps of the proposed process. For example, Beissinger et al. (2015) developed a smoothing 201 

spline technique to better identify window boundaries. Application of this method can lead to 202 

a better haploblock definition, which in turn can further improve the selection efficiency. 203 

Another interesting aspect of the proposed method is that it allows the use of genotype data of 204 

the selection candidates (or that of the validation population in an experimental setup) in 205 

combination with the genotype data of the training population to build the haplotypes for 206 

genomic evaluation (that is because no phenotype data was used for the haplotype 207 

construction). 208 

)%*+,-�.�'./.+�0�209 

CARTOFINE and AMASGEN projects are funded by the Agence Nationale de la Recherche 210 

(ANR)10)GENM)0014) and APISGENE. 211 

(.1.(.+%.0�212 

Beissinger, T. M., G. J. M. Rosa, S. M. Kaeppler, D. Gianola and N. de Leon. 2015. Defining 213 

window)boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. 214 

Evol. 47: 30. 215 

Boichard, D., F. Guillaume, A. Baur, P. Croiseau, M. N. Rossignol, M. Y. Boscher, T. Druet, 216 

L. Genestout, J. J. Colleau, L. Journaux, V. Ducrocq and S. Fritz. 2012. Genomic selection in 217 

French dairy cattle. Anim. Prod. Sci. 52: 115)120. 218 

Croiseau, P., A. Baur, D. Jónás, C. Hozé, J. Promp, D. Boichard, S. Fritz and V. Ducrocq. 219 

2015. Comparison of different Marker)Assisted BLUP models for a new French genomic 220 

Page 9 of 13

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For P
eer R

eview

 

10 

 

evaluation. Page 248 in Book of Abstracts of the 66
th

 Annual Meeting of the European 221 

Federation of Animal Science, Warsaw University of Life Sciences, Poland. 222 

Croiseau, P., M. N. Fouilloux, D. Jónás, S. Fritz, A. Baur, V. Ducrocq, F. Phocas, and D. 223 

Boichard. 2014. Extension to haplotypes of genomic evaluation algorithms. AB#708 in Proc. 224 

10
th

 World Congress of Genetics Applied to Livestock Production. Vancouver, Canada. 225 

Cuyabano, B. C. D., G. Su and M. S. Lund 2014. Genomic prediction of genetic merit using 226 

LD)based haplotypes in the Nordic Holstein population. BMC Genomics 15: 1171. 227 

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A. 228 

Mason and M. E. Goddard. 2012. Improving accuracy of genomic predictions within and 229 

between dairy cattle breeds with imputed high)density single nucleotide polymorphism 230 

panels. J. Dairy Sci. 95: 4114)4129. 231 

Garrick, D. J., and R. Fernando. 2014. Genomic prediction and genome)wide association 232 

studies in beef and dairy cattle. Pages 474)501 in: The genetics of cattle. D. J. Garrick and A. 233 

Ruvinsky, ed. CABI (2nd edition), Wallingford, UK. 234 

Habier, D., R. L. Fernando, K. Kizilkaya and D. J. Garrick. 2011. Extension of the Bayesian 235 

alphabet for genomic selection. BMC Bioinformatics. 12: 186. 236 

http://dx.doi.org/10.1186/1471)2105)12)186. 237 

Hayes, B. J., A. J. Chamberlain, H. McPartlan, I. Macleod, L. Sethuraman and M. E. 238 

Goddard. 2007. Accuracy of marker)assisted selection with single markers and marker 239 

haplotypes in cattle. Genet. Res. 89: 215)220. http://dx.doi.org/10.1017/S0016672307008865. 240 

Jeffreys, A. J., R. Neumann, M. Panayi, S. Myers and P. Donnelly. 2005. Human 241 

recombination hot spots hidden in regions of strong marker association. Nat. Genet. 37:601)242 

606. 243 

Jónás, D., V. Ducrocq, M)N. Fouilloux and P. Croiseau. 2016. Alternative haplotype 244 

construction methods for genomic evaluation. J. Dairy Sci. 99: 4537)4546. 245 

Page 10 of 13

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For P
eer R

eview

 

11 

 

Knürr, T., I. Strandén, M. Koivula, G. P. Aamand and E. A. Mäntysaari. 2013. Haplotype)246 

assisted genomic evaluations in Nordic red dairy cattle. Page 454 in Book of Abstracts of the 247 

64
th

 Annual Meeting of the European Federation of Animal Science, Nantes, France. 248 

Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value 249 

using genome)wide dense marker maps. Genetics 157: 1819)1829. 250 

Villumsen, T. M., L. Janss, and M. S. Lund. 2009. The importance of haplotype length and 251 

heritability using genomic selection in dairy cattle. J. Anim. Breed. Genet. 126: 3)13. 252 

http://dx.doi.org/10.1111/j.1439)0388.2008.00747.x. 253 

Weng, Z)Q., M. Saatchi, R. D. Schnabel, J. F. Taylor and D. Garrick. J. 2014. Recombination 254 

locations and rates in beef cattle assessed from parent)offspring pairs. Genet. Sel. Evol. 46:34. 255 

Page 11 of 13

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For P
eer R

eview

 

12 

 

������256 

������": Descriptive statistics of the haploblocks 

$���������
����
&����������

	
������	�

"
�

Total number of markers 43,801 

Number of haploblocks 8,393 

Number of haplotypes built 7,804 

Average number of SNP per haploblock 5.22 

Average number of alleles per haplotype 13.29 
1: Results obtained using haploblock information with a D’ threshold of 45%.
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������2: Correlation coefficients and regression slopes of DYD on GEBV using haplotype 

markers. Results of GBLUP as well as those with the pre)selection and haploblock based 

methods are presented 

���	��
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%�������	�
� 0����� %�������	�
� 0����� %�������	�
� 0�����

MQ 0.490 0.810 0.496 0.789 0.504 0.910 

FY 0.551 0.850 0.562 0.806 0.564 0.943 

PY 0.478 0.738 0.476 0.697 0.493 0.803 

FC 0.570 0.785 0.594 0.865 0.637 0.933 

PC 0.584 0.987 0.609 0.971 0.613 1.071 

Average 0.535 0.166
4
 0.547 0.174

4
 0.562 0.096

4
 

1: Trait name abbreviations: MQ – milk quantity; FY – fat yield; PY – protein yield; FC – fat content; PC – protein content 

2: Results were taken from Jónás et al. (2016). 

3: Results obtained using haploblock information with a D’ threshold of 45%. 

4: Average deviations from 1. 
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3.5.3 Discussion 

In the previous section we could prove that the simultaneous use of LD- and allele 

frequency information to pre-select genetic markers for genomic evaluation purposes 

is beneficial. The level of gain was comparable to the gain obtained in Jónás et al. 

(2016). A likely explanation is that earlier a predefined number of SNP (haplotype) 

was selected to represent QTL, while haploblocks cover all genomic regions 

(including all QTL). Also, previously there were situations where more than a single 

SNP was linked to a specific QTL, depending on the effect size of the QTL and on 

the strength of LD within the haploblock in which the QTL is located. For example, 

the bovine diacylglycerol O-acyltransferase-1 (DGAT1) is a known causative 

mutation with a major effect on milk fat content and the LD around this SNP is also 

known to cover a region of several centiMorgan (cM) on the bovine genome (Grisart 

et al., 2002). In contrast, in this second study this was efficiently avoided due to the 

use of haploblock information. This is desirable, because it decreases the number of 

haplotypes in the model without the risk of removing relevant information. This either 

gives space to the estimation of additional haplotype allele effects or to the better 

estimation of the remaining effects. In this work implicitly, additional haplotypes were 

included in the model (all haploblocks were added in practice). This includes those 

that carry undetected QTL with smaller effects as well, which were missed earlier, 

when the SNP in the QTL-detection step were selected based on estimated 

probabilities of inclusion. 

We hypothesized that a larger LD threshold would result in better estimates. 

However, this hypothesis was not confirmed by our findings. Table 9 shows the 

validation results with a D’ of 90% (for an easier comparison the results obtained with 

a D' threshold of 45% are also indicated). Correlation coefficients measured between 

DYD and GEBV of the validation population as well as the regression slopes of the 

same DYD on GEBV are shown. These results are inferior compared to those 

published with a D’ threshold of 45%, most likely because of the much larger number 

of haploblocks/haplotypes and therefore more allele effects (+83%) to be estimated 

by the model. 
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Table 9: Correlation coefficients and regression slopes of DYD on GEBV values of 
the validation population with a D' threshold of 45% or 90%. 

Trait name1 

D' threshold: 45% D' threshold: 90% 

Correlation 
coefficient 

Regression 
slope 

Correlation 
coefficient 

Regression 
slope 

MY 0.504 0.91 0.497 0.868 

FY 0.564 0.943 0.565 0.917 

PY 0.493 0.803 0.491 0.786 

FC 0.637 0.933 0.615 0.911 

PC 0.613 1.071 0.603 1.077 

Average2 0.562 0.096 0.554 0.119 
1: Trait name abbreviations: MY – milk yield; FY – fat yield; PY – protein yield; FC – fat content; PC – protein content 

2: In case of regression slopes, average deviations from 1 are shown. 

 

In conclusion, selection accuracy could be improved with the inclusion of LD 

information in the haplotype selection step. This also led to a reduced inflation of the 

breeding value estimates of selection candidates (i.e. of the validation animals in the 

validation study). A major practical advantage of the presented evaluation pipeline is 

that it allows the use of the same haplotypes for all traits. The difference between the 

genetic background of the traits are expected to be reflected in the different 

estimated allele effects for these haplotypes: that is to say a haplotype might have an 

effect close to zero for a trait while for another trait, the same haplotype might have a 

sizeable effect. 

Creating haploblocks in a more sophisticated way may further improve the efficiency 

of genomic evaluation. Several authors have proposed methods to define window 

boundaries based on the LD patterns observed within a population, including 

Cuyabano et al. (2014), whose definition of haploblocks was very similar to ours. 

However, they measured the LD between every pair of SNP instead of between 

every neighboring SNP. Other works include that of Gabriel et al. (2002), or 

Beissinger et al. (2015). The removal of markers with very rare alleles prior to 

haplotype construction might be also a way to improve the performance of genomic 

evaluation (as it was done here). 
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The use of different haplotype sizes for the different haploblocks (i.e. longer 

haplotypes for longer haploblocks) might also have a positive impact on the selection 

accuracy. However, this test was not feasible with the available haplotypic BayesC-� 

software, as it works only with haplotypes of identical sizes. 
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Chapter 4  

Genomic evaluation in regional breeds 

At the start of this PhD, genomic evaluation was not yet implemented in regional 

breeds, due to lack of a sufficiently large reference population. Since genomic 

selection was implemented earlier in the large breeds, the gap between the genetic 

potential of regional and large breeds is expected to increase. Because of these 

considerations, there was an increased pressure from breeders and breeding 

organizations of regional breeds to benefit from genomic evaluation methods 

relatively efficient in breeds with a reference population of limited size. 

In order to address this demand, we assessed the performance of the French routine 

genomic evaluation pipeline in the regional breeds, which by 2015 incorporated the 

new methods presented in Chapter 3. Furthermore, we also investigated the possible 

gains of a multi-breed genomic evaluation using the 4 regional breeds available. This 

latter method seemed promising, because genetic distances between these breeds 

are relatively short (Figure 3; Gautier et al., 2010). 

Before describing these analyses, I will briefly describe the available dataset and 

characterize the linkage disequilibrium within- and between the breeds, because both 

the quality of the available dataset and the strength of LD have a major impact on the 

efficiency of genomic evaluation. 
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4.1 Datasets 

Regional breeds (such as the Abondance, Tarentaise, Simmental and Vosgienne) 

are characterized by a small population size. As follows, the reference population of 

these breeds consist of only a limited number of progeny tested bulls and the 

progeny-testing is also less accurate (in the aforementioned breeds, progeny testing 

is limited to ~25 recorded female offspring on average; D. Boichard, 2015, personal 

communication). Therefore, in order to enlarge the reference population and in turn to 

maximize the selection accuracy of genomic evaluation, breeding organizations 

invested in genotyping females from these populations in addition to the progeny-

tested males. Individuals genotyped within the framework of the GEMBAL project or 

imputed by August 2015 were available for testing with the 50K and HD data, while 

those available by February 2016 were used to evaluate whether candidate mutation 

information from large breeds can increase selection accuracy in regional breeds or 

not. Table 10 shows the number of males and females with genotype and 

performance records at these 2 dates. Considering all SNP-chips, Abondance had 

the largest reference population. 

Table 10: Total number of genotyped or imputed males and females in the 4 regional 
breeds, as of either August 2015 or August 2016. 

Breed 

Number of animals with 
genotype data 
(August 2015) 

Number of animals with 
genotype data 

(February 2016) 

Male Female Male Female 

Abondance 344 1482 388 2766 

Tarentaise 297 1167 320 1566 

Simmental 324 183 909 482 

Vosgienne 60 1008 65 1167 

 

In all the forthcoming validation analyses, validation sets consisted entirely of female 

individuals, because the 20% youngest individuals corresponded to females only. All 

individuals from all breeds had performance records for all the analyzed (i.e. 

production) traits, which were obtained in routine phenotype recording. 
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4.1.1 Genotyping and imputation 

Individuals were genotyped for one or more of the low-, medium- and high-density 

SNP-chips and they were imputed for all SNP for which they had no genotype 

records. Multi-allelic markers were removed prior to imputation. Genotype imputation 

in the regional breeds was done in 2015 (and repeated in 2016), following the update 

of the French routine evaluation pipeline. This update affected the imputation and 

phasing steps as well. After 2015, the FImpute software (Sargolzaei et al., 2014) 

replaced the BEAGLE software for imputation in France. This change resulted in an 

increased accuracy and a 3-fold decrease in running time (Croiseau et al., 2015b). In 

case of FImpute, the default parameters and values were used for imputation. 

FImpute had a built-in phasing function, which was used for phasing, instead of the 

previously used DAGPHASE software (Druet and Georges, 2009). 

Following imputation, the same quality control step was implemented in the regional 

breeds as in Montbéliarde to remove SNP of poor quality (see in section 3.1). After 

quality control, ~43,800 SNP were retained from the 50K SNP-chip panel, ~706,800 

SNP from the HD-panel and approximately 5,000 unique SNP (i.e. SNP that are 

neither present on the 50K nor on the HD chip) from the LD SNP-chip. 

With the FImpute software, the allelic imputation error rate (i.e. the proportion of 

incorrectly imputed alleles among all the imputed alleles) was lower than 1% in all of 

the regional breeds (S. Fritz, 2015, personal communication). 

The distribution of minor allele frequencies was very similar among the regional 

breeds (Figure 7). This figure was created using HD SNP-chip data and all 

chromosomes. These distributions are very similar to the ones obtained in the large 

breeds (data not shown). In case of all breeds, 86-88% of the SNP had a MAF >5% 

and more than 50% of them had a MAF >25%. This is important in genomic 

evaluation studies, because the estimation of allele effects is difficult for rare alleles. 
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Figure 7: Distribution of the minor allele frequency in the regional breeds (MAF 
resolution: 1%). 

Finally, the number and proportion of monomorphic SNP within each breed are 

shown in Table 11 for all 3 SNP-chips. A much larger proportion of the custom SNP 

was monomorphic, because many SNP on the LD chip are candidate mutations 

responsible for embryo mortality and genetic disorders. Such SNP do not necessarily 

segregate in every breed. Furthermore, a number of problematic SNP were removed 

prior to imputation (e.g. because they were difficult to impute in several breeds) in 

case of the 50K and HD SNP-chips, but not in case of the LD chip. 

Table 11: Number of monomorphic SNP on the different SNP-chips in the four 
regional breeds. 

Breed 
Custom SNP-chip 50K SNP-chip HD SNP-chip 

Nr. % Nr. % Nr. % 

 Abondance  1495 29.92  893 2.04  97649 13.82 

 Tarentaise  1788 37.53  2396 5.47  107463 15.20 

 Simmental  NA1 NA1  606 1.38  78906 11.16 

 Vosgienne  1545 31.04  813 1.86  87770 12.42 
1: Custom SNP-chip data was not used from the Simmental breed, due to insufficient number of animals genotyped with this 

chip 
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4.2 LD-pattern in the regional breeds 

The chance for recombination(s) to occur between any 2 markers is increasing with 

the distance between these markers, which leads to a decay in the LD between 

them. Since LD between markers and QTL is fundamental for an efficient genomic 

evaluation, it is of great importance to know the level of LD in the analyzed breeds. 

Furthermore, the comparison of LD-decay in the multi-breed case to the single-breed 

scenarios is an important indicator whether or not multi-breed genomic evaluation 

can be expected to outperform the single-breed tests in the analyzed breeds or not. 

The r2 measure of LD was used to measure the strength of LD among positions and 

to characterize the speed of linkage decay along the genome, because D’ is known 

to be more sensitive to rare alleles (McRae et al., 2002). The r2 measure of LD was 

calculated between every pair of SNP on each chromosome separately to 

characterize the LD-decay within each breed as well as to compare the different 

breeds. The average LD was calculated as a function of distance between markers. 

The 0-0.25 Mb region of this plot is shown on Figure 8. Markers with a minor allele 

frequency lower than 5% (including the monomorphic SNP) were removed, because 

it was shown that detection of LD is difficult when at least one of the SNP carries a 

rare allele (Goddard et al., 2000). Both the level of LD and the speed of its decay 

were very similar in the regional breeds and these were not different compared to the 

large breeds. Montbéliarde can be considered as a typical large breed in this aspect, 

based on Hozé et al. (2013). 

The range of the values on Figure 8 is lower from the results published by Hozé et 

al. (2013). This is because monomorphic SNP were removed for Figure 8, while they 

were kept in Hozé et al. (2013). The calculated r2 values presented here are in a 

similar range than those published by de Roos et al. (2009a). 
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Figure 8: Linkage disequilibrium decay in the single-breed contexts. 

The average distance between SNP on the 50K SNP-chip is 57,000 bp and it is 

3,500 bp on the HD SNP-chip, suggesting that the HD chip is much more likely to 

have SNP in strong LD with causative mutations. 

Figure 9 shows the average LD-decay of 11 multi-breed scenarios (solid black line), 

which correspond to the 6 different combinations of 2 breeds out of the 4 regional 

breeds plus the 4 combinations of 3 breeds out of the 4 regional breeds plus the case 

when all 4 breeds are merged together (11 in total). The slowest and fastest LD-

decays out of the 11 cases are also shown (dashed lines) as well as the average of 

the 4 within-breed cases (solid blue line). The 11 multi-breed scenarios are shown 

separately on S. figure 3, S. figure 4 and S. figure 5 in Appendix C on pages 205-

206. 
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Figure 9: Linkage disequilibrium decay in the multi-breed (MB) context (average of 
the 11 different multi-breed combinations (solid, black line); minimum/maximum of 
these combinations (dashed, black lines) and average of the four single-breed (SB) 
scenarios). 

Because a multi-breed population is genetically more diverse than a single-breed 

population, the linkage disequilibrium between adjacent markers is always weaker in 

multi-breed populations. Although the LD-decay in the multi-breed test is indeed 

faster, it is remarkably similar to the single-breed cases (Figure 9). 

4.3 Genomic evaluation with 50K data 

4.3.1 Introduction 

The introduction of genomic selection drastically increased the annual genetic gain in 

large dairy cattle breeds (see section 2.6.1 for a summary of the advantages of 

genomic evaluation). The lack of sufficient phenotype data is the most important 

disadvantage of regional breeds as compared to large dairy cattle breeds. Because 

of this, genomic selection was not applied to regional breeds before 2015. 

In the following, the performance of genomic evaluation methods in regional breeds 

both in single-breed and in multi-breed contexts is discussed. In this section the 

French routine genomic evaluation is applied to the 4 regional dairy cattle breeds 

(Abondance, Tarentaise, Simmental and Vosgienne). Afterwards, several ways to 
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improve the performance of genomic evaluation in these breeds will be proposed and 

their performances evaluated. 

4.3.2 Single-breed and multi-breed genomic evaluation with 50K data 

This article was submitted for publication to Journal of Animal Breeding and Genetics 

in 2016. 

Jónás, D., Ducrocq, V., Fritz, S., Baur, A., Sanchez, M-P. and Croiseau, P. 

Submitted. Genomic evaluation of regional dairy cattle breeds in single-breed and 

multi-breed contexts. J. Anim. Breed. Genet. 
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Summary

An important prerequisite for high prediction accuracy in genomic predic-

tion is the availability of a large training population, which allows accu-

rate marker effect estimation. This requirement is not fulfilled in case of

regional breeds with a limited number of breeding animals. We assessed

the efficiency of the current French routine genomic evaluation proce-

dure in four regional breeds (Abondance, Tarentaise, French Simmental

and Vosgienne) as well as the potential benefits when the training popula-

tions consisting of males and females of these breeds are merged to form a

multibreed training population. Genomic evaluation was 5–11% more

accurate than a pedigree-based BLUP in three of the four breeds, while

the numerically smallest breed showed a < 1% increase in accuracy. Mul-

tibreed genomic evaluation was beneficial for two breeds (Abondance and

French Simmental) with maximum gains of 5 and 8% in correlation coef-

ficients between yield deviations and genomic estimated breeding values,

when compared to the single-breed genomic evaluation results. Inflation

of genomic evaluation of young candidates was also reduced. Our results

indicate that genomic selection can be effective in regional breeds as well.

Here, we provide empirical evidence proving that genetic distance

between breeds is only one of the factors affecting the efficiency of multi-

breed genomic evaluation.

Introduction

In order to obtain high accuracies, the current geno-

mic selection methods require large training popula-

tions (i.e. animals with both phenotypic and

genotypic records), typically consisting of several

thousands of individuals (VanRaden et al. 2008).

Genomic selection is currently implemented for the

main dairy cattle breeds (e.g. for Holstein Friesian, in

the USA: Wiggans et al. 2011; in France: Boichard

et al. 2012b; Croiseau et al. 2015; in the Netherlands

and in New Zealand: de Roos et al. 2009b; the Euroge-

nomics initiative: Lund et al. 2011). In regional

breeds, the estimations of marker effects are less accu-

rate as a result of small training populations, leading

to lower selection efficiencies, when compared to

large breeds. Indeed, as of today, genomic selection

has not been implemented in regional dairy breeds.

However, there is an increasing demand for it from

breeders and breeding associations due to economical

considerations as well as due to fear of a growing

genetic gap between breeds with versus without

genomic selection.

There are at least two different ways to increase the

size of the training population for these breeds: the

first one is the inclusion of females in the training

population. However, in dairy cattle, much less infor-

mation is available from the performance of individ-

ual females than on that of males due to a lower

number of progeny per female, implying that many

© 2016 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2016) 1–11 doi:10.1111/jbg.12249
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more cows with records must be genotyped to

improve the efficiency of genomic evaluation (Harris

et al. 2013). The second approach is to merge the

training populations of several breeds and estimate

marker effects using the multibreed training popula-

tions. Although such a strategy can circumvent the

problem of small training populations (especially if

one or more large breeds are included as well), a

multibreed genomic evaluation can be efficient only if

(i) quantitative trait loci (QTL) affecting the traits of

interest are shared across breeds, (ii) there is a con-

served linkage disequilibrium (LD) between QTL and

genetic markers among the breeds and (iii) the same

QTL–marker phases are present in all of these breeds

as well (de Roos et al. 2008). Indeed, Porto-Neto et al.

(2015) have shown that consistent QTL–marker

phases are essential for successful multibreed genomic

evaluation. Given these requirements, markers from

the single nucleotide polymorphism (SNP) chips can

be split into two groups based on whether these con-

ditions are met or not: if QTL are shared among the

populations and the LD between the available mark-

ers and the shared QTL is conserved as well as the

phases, then marker effects are expected to be more

accurately estimated in a multibreed scenario. How-

ever, if at least one of these conditions is not met, the

accuracy of marker effect estimation may decrease

due to the additional noise introduced in the training

population with the inclusion of breeds, in which

either the QTL is not present or the linkage phases

between the QTL and marker(s) are different. Conse-

quently, to obtain the maximum gain possible, the

optimal training population should be a population

formed by individuals from breeds that are genetically

as similar to each other as possible (de Roos et al.

2008).

In a classical validation study using a simulated

multibreed experimental design derived from existing

large training populations, Hoz�e et al. (2014) showed

that multibreed training populations can improve pre-

diction accuracy in breeds with small training popula-

tions. Hoz�e et al. (2014) also showed that breeds with

small training populations benefit more from a multi-

breed training population than large breeds.

Multibreed genomic evaluations used in combina-

tion with haplotype markers can be expected to

increase the prospect of conservation of LD between

markers and QTL and therefore increase the accuracy

of breeding value estimation. Haplotypes are combi-

nations of N neighbouring SNP (Hayes et al. 2007; Vil-

lumsen et al. 2009; Garrick & Fernando 2014) and

unlike SNP with two alleles, haplotypes can theoreti-

cally carry 2N different alleles. Because of the

increased number of alleles with haplotypes, there is a

higher chance that at least one of these alleles will be

linked to a QTL – when the latter is present – as com-

pared to SNP markers. This assumption was confirmed

by recent works (e.g. Croiseau et al. 2015; J�on�as et al.

2016).

The main aim of this study was to assess the effi-

ciency and the potential gains of genomic evaluations

in four regional breeds. In addition to single-breed

analyses, multibreed scenarios were studied in order

to investigate the potential gains or losses in terms of

accuracy due to the use of merged training popula-

tions and inclusion of females in the reference set.

Materials and methods

Data sets

Four regional French dairy cattle breeds were

included in the analysis: Abondance, Tarentaise, Sim-

mental and Vosgienne. Abondance and Simmental

are the largest of these breeds with approximately

23 000 and 17 000 cows under performance record-

ing in 2014, respectively, followed by the Tarentaise

with ~7500 cows and finally the Vosgienne with

~1350 cows (Institut de l’Elevage, 2015). Performance

records were daughter yield deviations (DYD) for

males or yield deviations (YD) for females for the fol-

lowing five production traits: milk yield, fat content,

fat yield, protein content and protein yield. (D)YD

values were created by adjusting the observed perfor-

mances for all fixed effects, which were estimated in

the current genetic evaluation. When calculating the

DYD values, genotyped female performances were

excluded in order to avoid using the same phenotype

data twice during the analysis. Genotype information

from the Illumina Bovine SNP50 BeadChip� (manu-

factured by Illumina Inc., San Diego, CA, USA) was

available; following a quality control filtering (mini-

mum Hardy–Weinberg equilibrium p-value: 10�4,

minor allele frequency: 5%, minimum call rate:

10%), 43 801 SNP were retained.

A classical validation study was performed, where

the group of animals with both performance (as DYD

and YD values for males and females, respectively)

and genotype information was split into two popula-

tions based on birth date: a training population of the

80% oldest individuals and a validation population

(20% youngest individuals). In a first step, allele

effects were estimated using genotype and phenotype

information from the training population. Once the

estimated allele effects were available, they were used

together with genotype information from the

© 2016 Blackwell Verlag GmbH • J. Anim. Breed. Genet. (2016) 1–112
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validation population to estimate genomic estimated

breeding values (GEBV) for the validation population.

Finally, both the correlation coefficient and the

regression slope of YD on GEBV of the validation pop-

ulation were calculated.

Table 1 shows the total number of genotyped ani-

mals from the four different breeds as well as the

respective number of individuals in the reference and

validation populations per breed. Although the train-

ing populations of the Abondance and Tarentaise

breeds were relatively large, they mainly consisted of

females. Proportion of females in the populations ran-

ged from 36% (in Simmental) to 94% (in Vosgienne).

It can be noted that in the case of Vosgienne, nearly

all animals under performance recording have been

genotyped. All individuals in the validation popula-

tion of all breeds were females.

Because comparing the sizes of the training popula-

tions based on Table 1 is difficult due to the different

amount of information represented by female and

male records, the number of males that represent an

equivalent amount of information as the females alto-

gether within each breed was computed. For this pur-

pose, the number of females with own performance

corresponding to a single progeny-tested bull was

obtained from Table 1 of Boichard et al. (2015). Due

to a lower number of progenies per progeny-tested

bull in the regional breeds, the reliability of these bulls

was lower than that in the large dairy cattle breeds

and was considered to be 60% here.

Pedigree-based BLUP

Based on the same phenotypes, a pedigree-based

BLUP analysis was also carried out to assess the bene-

fits of the single-breed genomic selection scenarios.

The BLUP model was as follows:

yi ¼ ls þ ui þ ei ð1Þ

where yi is the performance value of individual i (DYD

for males and YD for females), ls is an overall mean

effect calculated separately for males (s = 1) and

females (s = 2), ui is the breeding value of animal i (u

~ MVN(0, Ar2u), where MVN refers to a multivariate

normal distribution, A is the additive relationship

matrix and r2u is the genetic variance), and ei is the

random error term of animal i (e~N(0, Dr2e ), where D

is a diagonal matrix with 1
w
elements (where w is the

equivalent daughter contribution for males and the

number of record equivalent for females) and r2e is the

residual error variance.

Single-breed scenarios

In the single-breed scenarios, the routine French

genomic evaluation procedure was applied to the four

regional breeds. An outline of the applied method is

given below.

Genomic evaluation in France is performed in a sin-

gle-breed context in the four major dairy cattle breeds

of the country: using phenotype and genotype infor-

mation from bulls in the case of Holstein Friesian and

Brown Swiss and from both bulls and cows in the case

of the Normande and Montb�eliarde breeds (Croiseau

et al. 2015). For each trait of interest, a set of SNP

linked to QTL were identified on the 50K SNP chip

using a Bayesian approach (Bayes-Cp) as imple-

mented in the GS3 software (Legarra et al. 2013). The

Bayes-Cp procedure was originally described by Hab-

ier et al. (2011), with two main originalities compared

to Bayes-B: a single variance is used for all SNP effects

and a proportion of markers without an effect on the

trait (i.e. p) can be estimated in an iterative way.

However, p had to be fixed in the case of the regional

breeds due to convergence problems (in other words,

instead of a Bayes-Cp analysis, a Bayes-C was used for

the regional breeds with p fixed to 80%). The model

used in this Bayes-C analysis was as follows:

yi ¼ ls þ pi þ
X

N

j¼1

zijajdj þ ei ð2Þ

where pi is the polygenic effect of animal i (p ~ MVN

(0, Ar
2Þ
u ; MVN, A and r2u are defined as for the pedi-

gree-based BLUP model), N is the total number of

SNP in the model, zij is an indicator variable repre-

senting the number of copies of one of the alleles at

marker j in animal i, and aj is the substitution effect

for marker j, dj is a 0/1 variable indicating whether or

not marker j has an effect. All other terms are as

defined previously. The model includes a residual

polygenic effect in addition to the marker effects to

account for the genetic variance not explained by the

Table 1 Population size and the number of genotyped males and

females of the four analysed breeds

Breed

Number of animals

Number of animals in

the ~ population

Male Female Total Training Validation

Abondance 344 1482 1826 1461 365

Tarentaise 297 1167 1464 1171 293

Simmental 324 183 507 406 101

Vosgienne 60 1008 1068 854 214
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markers. In practice, the genetic variance was split

into two parts: a certain proportion (a) was attributed

to the markers in the model and the remaining was

assumed to be explained by the residual polygenic

component. All a values between 10 and 90% (with

10% increases) were tested and the one resulting in

the highest correlation coefficient between YD and

GEBV measured in the validation population was

selected for each trait separately. All variance compo-

nents and the residual polygenic effect were estimated

iteratively during the analysis as well as the effects

and probabilities of inclusion of each marker in the

model.

Following the Bayes-C analysis, markers with the

highest probabilities of inclusion were selected

(n = 250, 500 or 1000). Two consequences of this

selection procedure are as follows:

1 Several selected markers might be linked to the

same QTL, if the QTL has a large effect (e.g. the case

of the diacylglycerol O-acyltransferase 1 (DGAT1)

gene for fat content).

2 For each trait, the smaller sets were subsets of the

larger set(s).

Once the SNP were selected, haplotypes of four SNP

were constructed around these SNP using the Crite-

rion-B haplotype selection procedure described by

J�on�as et al. (2016). This method constructs all possible

haplotypes within a short genomic window of 10 SNP

around the selected SNP. From these haplotypes, it

selects the haplotype that combines the largest num-

ber of well-represented alleles and the lowest number

of under-represented alleles. Such haplotype choice

was proven to be better in genomic evaluation than

the haplotypes built by merging the adjacent SNP into

a haplotype (J�on�as et al. 2016).

The selected haplotypes were then used as explana-

tory variables in the final step of the genomic evalua-

tion process. Haplotype allele effects were estimated

in a marker-assisted BLUP analysis and these esti-

mated effects were used to estimate genomic breeding

values for selection candidates (i.e. animals with only

genotype information). Therefore, the model used in

the MA-BLUP analysis is as follows:

yi ¼ ls þ
X

8218

j¼1

zijaj þ
X

Nh

k¼1

X

Nka

l¼1

bkleikl

 !

þ ei ð3Þ

where Nh is the number of haplotypes (i.e. 250, 500

and 1000), Nka is the number of segregating alleles at

haplotype k, bkl is the estimated allele effect of allele l

at haplotype k, and eikl is an indicator variable

indicating how many copies (0, 1 or 2) of allele l at

haplotype k individual i carries; all other terms were

defined as in equations 1–2. In equation 3, the usual

residual polygenic effect was replaced by the sum of

the effects of the 8218 SNP from the BovineLD� Bead-

Chip (Boichard et al. 2012a). This is equivalent to con-

sidering a genomic relationship matrix rather than a

pedigree one to represent the covariance structure of

the residual polygenic effect. The value of a (i.e. the

proportion of the genetic variance allocated to the

haplotype markers) was chosen with the same proce-

dure as for the Bayes-C analysis. A more detailed

description of the pipeline with initial results was

given by Croiseau et al. (2015).

Multibreed scenarios

In order to make multibreed evaluations possible,

the performance values were standardized within

each breed to have a genetic variance of 1 for each

trait. After this scaling and assuming that the heri-

tability did not differ significantly among breeds,

the environmental variances were equal across the

breeds as well.

The multibreed scenarios were conducted using the

same pipeline as in the single-breed analyses. How-

ever, the training populations consisted of the merged

sets of the training population of each breed. To test

which breeds benefit from which other breed(s), 11

different training populations were constructed using

the training populations of either two or three or four

breeds (Table 2). The validation part of the pipeline

was kept in a single-breed context. This allowed an

unbiased comparison between the results of the sin-

gle-breed and multibreed tests.

The multibreed genetic models were similar to

those of the single-breed models, but the sex-specific

overall mean effect was replaced by a breed- and sex-

specific mean effect to account for all the differences

in the genetic background of the breeds. The modified

equations are shown below for both the Bayes-C

Table 2 The 11 different training populations used in the multibreed

tests

Analyses with two breeds

A + T A + S A + V

T + S T + V S + V

Analyses with three breeds

A + T + S A + T + V A + S + V T + S + V

Analyses with four breeds

A + T + S + V

A, Abondance; T, Tarentaise; S, Simmental; V, Vosgienne.
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(equation 4) and marker-assisted BLUP (equation 5)

models:

ybi ¼ lbs þ pi þ
X

N

j¼1

zijajdj þ ei ð4Þ

ybi ¼ lbs þ
X

8218

j¼1

zijaj þ
X

Nh

k¼1

X

Nka

l¼1

bkleikl

 !

þ ei ð5Þ

where yib is the performance value of animal i from

breed b and lbs is the overall mean effect of breed b

and sex s. Other variables are defined as for equations

1–3.

Results

Both correlation coefficients and regression slopes of

DYD on GEBV were averaged over the five production

traits, and only the average results are presented here.

Furthermore, in all cases, the presented results are

measured on the validation population. Differences

between correlation coefficients were expressed in

percentage point and in the case of the regression

slopes, their average absolute deviations from 1 are

shown instead of the slopes themselves, as the desir-

able value of the slope of regression is 1 and several of

these values (particularly in case of the fat and protein

content traits and the Vosgienne breed) exceeded 1.

Table 3 shows the number of male-equivalent indi-

viduals (i.e. the number of males plus the number of

males representing the same amount of phenotypic

information as the genotyped females) in the four

populations studied in this study for two traits with

different heritabilities. The number of progeny-tested

bull-equivalent performances was the same for traits

with the same heritability, that is for traits with a heri-

tability of 0.3 (milk, fat and protein yield) and for

traits with a heritability of 0.5 (fat and protein con-

tents). However, due to the different heritabilities, the

females represent a very different amount of pheno-

typic information for these groups of traits.

Based on both the total number of individuals

(Table 1) and the number of male-equivalent individ-

uals, Abondance and Tarentaise had the most pheno-

typic data available. However, the difference between

the sizes of the two breeds was considerably smaller

based on the number of male-equivalent individuals

than based on the total number of individuals. Despite

a relatively large number of females genotyped

(Table 1), the number of male equivalents is the low-

est in the Vosgienne breed (348) in the moderately

heritable traits.

Linkage disequilibrium decay was compared

between the single-breed and multibreed scenarios

based on HD genotype data for more accurate esti-

mates. LD patterns were remarkably similar between

the single-breed and the 11 multibreed scenarios (see

Figure S1).

Single-breed scenarios

Figure 1 shows the part of genetic variance attributed

to the haplotypes (i.e. a) in the single-breed scenarios.

Values are averaged across the five traits. As expected,

this parameter increased with the increase in the

number of haplotypes in the model; that is, when

more QTL were included, a larger part of the genetic

variance was explained by the markers. The increase

in a was slower in the Simmental for reasons

explained later. Results for the multibreed tests (data

not shown) were very similar to the single-breed

results presented in Figure 1.

Table 4 shows the correlation coefficients between

GEBV and YD values for the four breeds in a single-

breed context, as function of the number of haplo-

types in the model. In addition, the results for the

pedigree-based BLUP analysis are provided as well.

The French routine genomic selection pipeline led to

increased average correlations between YD and GEBV

when compared to the correlations between YD and

EBV from the pedigree-based BLUP analysis in nearly

all traits and breeds. The gain [averaged across the five

production traits and across the three different num-

bers of assumed QTL in the model (i.e. 250, 500 or

1000 haplotypes)] was 10.9, 5.7, 7.5 and 0.7% for the

Abondance, Tarentaise, French Simmental and Vosgi-

enne breeds, respectively. When compared to the

pedigree-based BLUP analysis, the gain observed with

the genomic evaluation was increasing with the

number of haplotypes in all breeds except in the

Simmental.

Apart from Simmental, there was a positive correla-

tion between the number of animals in the training

population (Tables 1 and 2) and the gain in terms of

Table 3 The number of males plus the number of male-equivalent

femalesa in the analysed breeds

Milk yield Fat content

Heritability 0.3 0.5

Abondance 767 1332

Tarentaise 630 1075

Simmental 376 446

Vosgienne 348 732

aCalculated based on Boichard et al. (2015).
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correlation coefficients with the genomic evaluation

when compared to pedigree-based BLUP results. In

spite of its smaller training population size, Simmental

outperformed the Tarentaise in terms of extra gain in

genomic selection when compared to the pedigree-

based BLUP analysis.

In general, 500 and 1000 haplotypes in the model

resulted in the highest correlations between YD and

GEBV. However, Simmental was an exception again,

with the highest observed correlation with only 250

haplotypes in the model. Differences in prediction

accuracies with the different numbers of haplotypes

in the model were relatively small, with a maximum

of 1.1% in the Vosgienne.

Deviations from 1 of the regression slopes observed

in the single-breed analyses are shown in Table 5.

Once again, the applied genomic evaluation proce-

dure outperformed the pedigree-based BLUP analysis.

The deviation of the slopes from 1 was negatively cor-

related with the number of individuals with perfor-

mance information. The average regression slope was

closest to 1 in the Abondance and Tarentaise breeds,

while it was the farthest within the Simmental. In

general, the regression slopes were closest to 1 when

1000 haplotypes were included in the model. In addi-

tion, 500 haplotypes in the model resulted in slightly

better slopes of regression than 250 haplotypes.

Multibreed scenarios

The single-breed and multibreed tests were compared

based on the average correlation coefficients and

regression slopes observed across the three different

numbers of haplotypes tested (250, 500 and 1000).

The training populations of the multibreed scenarios

always included the breed that was used in the valida-

tion step.

Figure 2 shows the correlation coefficients between

YD and GEBV observed in the multibreed scenarios

for the four different breeds. In the multibreed scenar-

ios, an increased correlation coefficient between the

GEBV and YD values was observed in the Abondance

and Simmental breeds, while it decreased in the Tar-

entaise and Vosgienne breeds.

The Abondance breed benefited from all other

breeds in the multibreed tests, when the basis of com-

parison was the correlation coefficient between the

YD and GEBV measured on the validation population.

When the training population of only one additional

breed was added to the training population of the

Abondance breed, an increase of 3.5 to 7.3% in corre-

lation was observed. These values increased to 5.1

and 8.0%, when two additional training populations

were merged with the training population of the

Abondance breed and the gain in a multibreed test

was 6.1%, when all the four breeds were used to esti-

mate genomic breeding values in the Abondance

breed.

Similarly, the Simmental benefited from the multi-

breed training populations, with an increase in corre-

lation coefficient of 3.7% when the Abondance was

included in the training population, and of 4.2%

when the Vosgienne breed was added instead of the

Abondance (Figure 2). When both breeds were

included, the observed gain was lower (2.4%). In the

case of the Simmental breed, the inclusion of the Tar-

entaise was detrimental, leading to an average 2.4%
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Figure 1 Estimated proportion of genetic variance attributed to the

haplotypes in the four single-breed scenarios. Average values over the

five traits are plotted.

Table 4 Correlation coefficients between GEBV and YD values of the validation population in the single-breed scenarios. Results of the pedigree-

based BLUP analysis are also provided. Average correlations over the five production traits for the four different breeds

Method Number of haplotypes Abondance Tarentaise Simmental Vosgienne

BLUP – 0.346 0.391 0.243 0.418

Genomic selection 250 0.454 0.446 0.323 0.420

500 0.454 0.449 0.318 0.426

1000 0.459 0.449 0.314 0.430
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decrease in the correlations. When the Tarentaise was

added together with the Abondance (or the Vosgi-

enne) breed, the gain in terms of correlations was

lower when only the Abondance (or Vosgienne) was

included in the training population in addition to the

Simmental. The highest correlation was observed,

when the training population consisted of those from

all four breeds (average gain: 5.0%).

The accuracy of genomic evaluation decreased in

Tarentaise when multibreed training populations

were used. A similar result was found in case of the

Vosgienne breed, except with the Abondance+Vosgi-

enne training population, for which the accuracy did

not change compared to the single-breed scenario.

The decrease ranged from 0.4 to 3.6% in Tarentaise

and from 0.4 to 2.8% in Vosgienne.

Figure 3 shows the deviations of the regression

slopes from 1. The results for all multibreed scenarios

are plotted for all breeds. As for the correlation coeffi-

cients, deviations of the regression slopes were also

averaged across the three tested numbers of haplo-

types in the model and across the five traits. Similar to

the single-breed results, the estimated regression

slopes were better (i.e. closer to 1) in case of breeds

with larger training populations (i.e. with Abondance

and Tarentaise) than with the other ones. However,

when the results are compared to the single-breed

results, the conclusions are unclear: in general, the

deviation of the regression slopes from 1 became

smaller with the Simmental and Vosgienne breeds

and increased with Abondance and Tarentaise.

Statistical analysis of the observed gains

We investigated the significance of the obtained gains

using Fisher’s Z-transform (implemented in the ‘co-

cor’ R package by Diedenhofen & Musch 2015; based

on Zou 2007). Our assumption was that the genomic

evaluation results are superior compared to the BLUP

results. Therefore, a one-tailed test with an a ¼ 5%

was implemented. Gains were significant in case of

two traits (fat content and protein content) in Abon-

dance and Tarentaise (see Figures S1 and S2). In case

of the multibreed scenarios, observed gains were

mainly insignificant, when compared to the single-

breed results (data not shown).

While only very high gains (>10%) would have

been significant, a smaller gain was observed in most

of the cases. To test whether a small gain can be con-

sistently expected with genomic evaluation compared

Table 5 Regression slopes of DYD on GEBV in

the single-breed scenarios. Presented values

are averaged for the five production traits and

measured as absolute deviations from 1

Method Number of haplotypes Abondance Tarentaise Simmental Vosgienne

BLUP – 0.111 0.121 0.394 0.155

Genomic

selection

250 0.090 0.104 0.260 0.168

500 0.092 0.099 0.257 0.150

1000 0.092 0.079 0.244 0.114
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to the pedigree-based BLUP results, a Wilcoxon

signed-rank test was implemented. Genomic evalua-

tion (with 1000 haplotypes) correlations were com-

pared to those obtained with the pedigree-based

BLUP. Once again, a one-tailed test was used with

a ¼ 5% for the five pairs of correlations obtained in

the five traits. The Wilcoxon signed-rank test was

used because normality could not be assumed due to

the small sample size (i.e. the number of traits) and

because the correlations were paired by trait. Based

on these tests, genomic selection can be expected to

lead to an increased selection accuracy in Abondance

(W = 15; p � 0.03) and in Simmental (W = 15;

p � 0.03), but not in the other two breeds.

The same Wilcoxon signed-rank test was used to

compare the highest multibreed correlations with

those of the single-breed. In conclusion, in case of the

Abondance and Simmental breeds, multibreed geno-

mic evaluations led to systematically higher correla-

tions (p � 0:03), when compared to the within-breed

evaluation results.

Discussion

In this study, we evaluated the performance of single-

breed and multibreed genomic evaluations in four

regional dairy cattle breeds in a classical validation

study. The training populations consisted of both

males and females, while the validation populations

included only female individuals. The population sizes

for these breeds ranged from 145 till 548 progeny-

tested bulls after accounting for the differences

between cows and bulls with respect to the repre-

sented amount of information. We showed that sin-

gle-breed genomic evaluations were more accurate

than a pedigree-based BLUP analysis even in regional

breeds with a small training population. The obtained

gains in terms of accuracy depended on the number

of individuals in the training populations, and larger

gains were observed with larger breeds (Tables 3 and

4). The Simmental breed had a particular population

structure due to its large proportion of imported

breeding animals and/or semen. Because the progeny

of these animals had only a very limited amount of

pedigree information available in France, overall per-

formance of all breeding value estimation methods

was inferior in Simmental when compared to the

other breeds. This population structure of the Sim-

mental explains why both the pedigree-based BLUP

and the applied genomic evaluation procedures per-

formed worse in Simmental than in the other breeds.

In addition, this is also the reason why we observed a

larger gain with genomic evaluations (compared to

the pedigree-based BLUP) with Simmental (~7.54%)

than with Tarentaise (~5.68%), in spite of the larger

training population in the case of the latter breed

(Table 3). The gain with genomic evaluation com-

pared to pedigree-based BLUP was the smallest with

the Vosgienne, which can be because of the higher

average age of breeding animals within this breed,

resulting in more accurate EBV from the pedigree-

based BLUP tests. The deviations of the regression

slopes from 1 also improved with the genomic evalua-

tion, when compared to the pedigree-based BLUP

results (Table 5).

Genomic evaluation has a positive impact on the

quality of evaluation: all measured parameters

showed some improvement with the genomic evalua-

tion when compared to the pedigree-based BLUP

results. As a consequence, routine genomic selection

was implemented in the four regional breeds in

France in early 2016. The most important expected

benefits of genomic evaluation in the regional breeds

are the possibility to have shorter generation intervals

(if progeny testing is discontinued) and a larger num-

ber of evaluated animals, which has a positive influ-

ence on the within-breed genetic diversity as well.

Interpretation of the regression slopes is difficult in

the multibreed tests, because they are not consistent

for each trait within a breed. The unfavourable trends

with the Abondance and Tarentaise are at least partly

due to the positive correlation between the correla-

tion coefficient and the slope of regression of linear

regression models (i.e. given the

DYD ¼ b0 þ b1 � GEBV þ e regression model, the

regression slope can be written as b1 ¼ r � rDYD
rGEBV

, where

r is the correlation coefficient between DYD and

GEBV). In other words, the regression slope con-

stantly increases with the increase in the correlation

coefficient and this trend is either advantageous

(when the slope of regression was lower than 1) or

disadvantageous (when the slope of regression was

higher than 1).

Hayes et al. (2009) demonstrated a large gain in the

accuracy of the Jersey GEBV when analysing a Hol-

stein–Jersey multibreed population using SNP infor-

mation from the 50K chip. Using another combined

Holstein–Jersey training population, Erbe et al. (2012)

showed a 4% increase in prediction accuracy for the

smaller breed (Jersey), when compared to the within-

breed test, using the BovineHD BeadChip� (manufac-

tured by Illumina Inc., San Diego, CA), but found a

very limited gain when using 50K SNP chip data. Sim-

ilar to Hayes et al. (2009), we also observed an

improvement in terms of GEBV accuracies using the

50K SNP panel in several multibreed tests. While
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Hayes et al. (2009) did not observe any gain in the

Holstein Friesian (i.e. the large breed contributing to

the multibreed population), we could demonstrate a

large improvement of the accuracy even for the lar-

gest breed in our study. This is probably because of

the shorter genetic distance between the breeds anal-

ysed in this current study (Gautier et al. 2010). Hoz�e

et al. (2014) showed an improvement of 2.9% in

selection accuracy compared to a single-breed sce-

nario when analysing a Holstein–Normande–Mon-

tb�eliarde multibreed population. In terms of

correlation between YD and GEBV, we observed a

maximum gain of 8 and 5% in the Abondance and

Simmental breeds, respectively.

de Roos et al. (2009a) showed that genetic distance

between the breeds participating in a multibreed

genomic evaluation is an important factor with a sig-

nificant effect on the efficiency of the evaluations. In

our study, the Abondance breed benefited from the

addition of the training population of all other breeds,

while the Simmental benefited from the addition of

the training populations of Abondance and Vosgi-

enne. In contrast, neither the Tarentaise nor the Vos-

gienne benefited from any other breeds.

The level of accuracy of GEBV is partly due to a

quite accurate estimation of the parent average and

partly due to a relatively accurate estimation of QTL

effects. The high accuracy of the BLUP breeding val-

ues in Vosgienne indicates that the training and vali-

dation populations were closely related. In addition,

this breed had a small training population. Hence, in

Vosgienne, the high accuracies of GEBV result mainly

from an accurate estimation of the parent averages.

Adding other breeds to the reference population led

to more accurate QTL effect estimations (in the case of

the shared QTL), but probably decreased the accuracy

of the parent averages. Hence, the use of multibreed

training population was detrimental in Vosgienne.

Linkage disequilibrium persistency is another factor

that can explain the observed gains and losses in

terms of accuracy. In order to measure the LD persis-

tency, first we calculated the r values for the neigh-

bouring SNP in each of the four breeds (Figure S1).

Next, we calculated and plotted the correlations of the

r values between the breeds for different marker dis-

tances (moving averages covering ~4Kb each are

shown in Figure S4). This way of measuring the LD

persistency is identical to that of de Roos et al. (2008).

We did not observe the same decrease in correlation

of r values with the increasing marker distance as de

Roos et al. (2008) did. This is likely because of the

much shorter range of marker distances covered by

the neighbouring SNP in our analysis (20–60 Kb

versus 0–1 Mb in de Roos et al. 2008). The correla-

tions of r values ranged from 58% (between Abon-

dance and Tarentaise) to 70% (between Simmental

and Vosgienne). These correlations were generally

lower with the Tarentaise breed (58–64%) and higher

with the Simmental (64–70%). This can also partly

explain our results, for example why the multibreed

training population was detrimental for the Tarentaise

breed and why was it beneficial for the Simmental.

These results suggest that in addition to the genetic

distance between the breeds (Gautier et al. 2010),

there are other relevant factors determining the effi-

ciency of multibreed genomic selection (e.g. the fre-

quency and relative importance of breed-specific QTL

within each breed or the different QTL–marker allele

frequencies in the different breeds). Indeed, if only

the genetic distance would be relevant, genetically

close breeds would benefit from each other in both

ways.

Another essential condition for an efficient multi-

breed genomic evaluation is the consistency of phases

between marker and QTL alleles among the different

breeds. We found that the LD decay observed in the

analysed breeds was remarkably similar. In addition,

it was shown earlier that these breeds are very closely

related (Gautier et al. 2010); therefore, it was reason-

able to assume that these breeds would benefit from a

multibreed genomic evaluation. In contrast, the use

of a multibreed training population was detrimental

for some breeds, suggesting the lack of conserved

QTL–marker allele phases. A possible improvement

would be to identify those markers (with significant

effects) that influenced the traits in the same direc-

tion, as suggested by Porto-Neto et al. (2015).

Conclusions

The French routine genomic evaluation method was

applied to four regional breeds in both single-breed

and multibreed contexts. We showed that genomic

evaluation outperforms a pedigree-based BLUP analy-

sis even though the available training population is of

limited size. Both the Abondance and Simmental

breeds benefited from at least two other breeds in

multibreed genomic evaluations. In some cases, the

introduction of multibreed training populations did

not affect the estimated breeding values of the differ-

ent breeds constituting to this multibreed training

population in the same direction, suggesting that fac-

tors other than genetic distance between the breeds

also influence the efficiency of multibreed genomic

evaluations. Further research is required to better

understand the background of multibreed genomic
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evaluation. In particular, benefiting from known cau-

sative mutations identified in other dairy cattle breeds

is especially promising when the aim is to develop an

efficient genomic evaluation procedure for regional

breeds.
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Supporting Information

Additional Supporting Information may be found in

the online version of this article:

Figure S1. LD decay along the genome in both the

single-breed (dotted line) and multibreed (solid line)

scenarios. The slowest and fastest LD decays among

the 11 different multibreed tests are also shown

(dashed lines).

Figure S2. Results of the hypothesis testing indicat-

ing whether the observed gains in single-breed geno-

mic evaluations are statistically significant from zero

or not in the Abondance breed. Gains/losses in corre-

lations observed with the single-breed genomic evalu-

ation pipeline compared to the BLUP model are

indicated (short horizontal lines). The lower confi-

dence intervals for the gains/losses based on Fisher’s

Z-transform are also shown (black triangles). The fol-

lowing trait name abbreviations are used on the plot:

MQ, milk quantity; FY, fat yield; PY, protein yield; FC,

fat content; PC, protein content.

Figure S3. Results of the hypothesis testing indicat-

ing whether the observed gains in single-breed geno-

mic evaluations are statistically significant from zero

or not in the Tarentaise breed. Gains/losses in correla-

tions observed with the single-breed genomic evalua-

tion pipeline compared to the BLUP model are

indicated (short horizontal lines). The lower confi-

dence intervals for the gains/losses based on Fisher’s

Z-transform are also shown (black triangles). The fol-

lowing trait name abbreviations are used on the plot:

MQ, milk quantity; FY, fat yield; PY, protein yield; FC,

fat content; PC, protein content.

Figure S4. Between breeds correlation coefficients

of r values calculated within breeds, as a function of

markers distance. Different lines correspond to the

different pairs of breeds (A, Abondance; T, Tarentaise;

S, Simmental; V, Vosgienne).
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4.3.3 BayesC results 

The first step of the routine evaluation was a BayesC analysis, which was used as a 

QTL detection step. The proportion of SNP without an effect on the trait of interest (π) 

was fixed to 80% due to convergence issues with a variable π with BayesC. BayesC 

was implemented in a validation study with the same training and validation set 

definitions as for the MA-BLUP analysis. The results of this BayesC analysis are 

presented here. The correlation coefficients and regression slopes of YD on GEBV 

(regression slopes expressed as a deviation from 1) averaged over the 5 production 

traits and measured in the validation population are shown in Table 12 for the 4 

regional breeds (for an easier comparison, the routine evaluation results with 1000 

haplotypes in the model are also shown). 

Table 12: Average correlation coefficients and regression slopes (expressed as 
deviations from 1) of the 5 traits measured on the validation set from a BayesC and 
from the routine genomic evaluation. 

Breed 

BayesC Routine genomic evaluation 

Correlation 
coefficient 

Regression 
slope1 

Correlation 
coefficient 

Regression 
slope1 

Abondance 0.417 0.216 0.459 0.092 

Tarentaise 0.446 0.109 0.449 0.079 

Simmental 0.305 0.297 0.314 0.244 

Vosgienne 0.431 0.081 0.430 0.114 
1: Average absolute deviations from 1 

 

In terms of correlations, the BayesC model outperformed the pedigree-based BLUP 

procedure, (also see Table 4 and 5 from the paper), but not the French routine 

evaluation. In Abondance, Tarentaise and Simmental the correlation coefficients 

were higher with the routine evaluation than with the BayesC, while in Vosgienne the 

correlation coefficient in with BayesC is similar to the correlation obtained with the 

routine evaluation. Regression slopes with BayesC improved compared to BLUP in 

all breeds except Abondance (for regression slopes with BLUP, see Table 5 from the 
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paper). The regression slopes were better (especially in the Abondance breed) with 

the routine evaluation except for Vosgienne. 

The difference between the routine evaluation and the BayesC results, in terms of 

correlation coefficients and regression slopes were mainly in favor of the routine 

evaluation. A major advantage of the routine evaluation over the BayesC approach is 

that it uses the same markers over time and is much faster as well. However, the 

haplotype selection step of the routine might be repeated after a few generations of 

selection, as discussed in section 2.5 of Chapter 2. 

4.3.4 Discussion 

The French routine genomic evaluation was tested in four regional dairy cattle 

breeds. It was shown that the estimated GEBV reliabilities of the selection candidates 

were approximately the same compared to the reliabilities of progeny-tested bulls in 

these breeds (Sanchez et al., 2016) and therefore they are sufficiently high for official 

publications. Selection candidates in this context do not correspond to the validation 

population of the previous study (i.e. the 20% youngest – female – individuals) but to 

the population of young bulls without performance observations as of June, 2016. 

Due to the lower costs of genotyping compared to progeny-testing, a much larger 

number of male candidates can be evaluated (between 55 and 226, depending on 

the breed) than under progeny testing (Table 1). This is expected to have a positive 

impact on the genetic diversity of the breeds, because artificial insemination (AI) 

cooperatives and breeders can now select from a wider range of young bulls with 

reasonable reliabilities. Furthermore,  female reliabilities become as accurate as male 

reliabilities with genomic evaluation and breeding values also become available for 

fertility traits in females for the first time for these breeds. These are again important 

advantages compared to the previous breeding program. 

As a consequence of these benefits, routine genomic evaluation was implemented in 

three of the four tested regional breeds in France (Abondance, Tarentaise and 

Vosgienne). The reference population for these breeds includes both males and 

females. Genomic evaluation was implemented in Simmental as well but using a 
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much larger, international reference population. Although this breed classifies as a 

regional breed in France, there is a substantial worldwide Simmental population 

(especially in Germany and Austria) and these countries assembled a large 

Simmental reference population in the previous years, which provides significantly 

more accurate GEBV for selection candidates and therefore promises larger annual 

genetic gains compared to the ones obtained in our study. Consequently, the French 

breeding association of the Simmental breed decided to participate in this 

international cooperation. 

The use of a multi-breed training population in genomic evaluation was beneficial in 

two (Abondance and Simmental) of the four breeds. The three important 

requirements for an efficient multi-breed genomic evaluation are: 

− QTL and SNP are shared across the breeds 

− LD is conserved between the QTL and adjacent markers 

− QTL-SNP linkage phases are shared 

In the cases of the QTL where all of these 3 criteria are met, all of the 4 breeds 

benefit equally from the multi-breed training population. However, in the cases when 

at least one of these criteria is not fulfilled (e.g. the case of breed-specific QTL), the 

multi-breed training population introduces noise to the allele effect estimation. This 

latter phenomenon did not receive much attention until recently (e.g. Porto-Neto et 

al., 2015). 

In the multi-breed tests, we observed that two out of the four analyzed breeds 

benefited from the multi-breed genomic evaluation while the other two did not. This 

indicates that the relative importance of breed-specific QTL differs among the breeds, 

which led to either a gain or a loss when a multi-breed genomic evaluation was 

performed. However, since the multi-breed genomic evaluation does not hold any 

promise to increase the estimation accuracy of allele effects for breed-specific QTL, it 

might be beneficial to identify these in a first step (for example by comparing QTL-

detection analysis results from the different breeds) and estimate them separately in 

a within-breed context. This would efficiently avoid the noise introduced by the other 

breeds in which the QTL is not segregating. The same applies to the cases when 
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either the QTL-allele phases or the LD between the QTL and neighboring markers 

are not conserved. However, in these breeds the within-breed reference populations 

are likely to be too small to conduct such analyses with a high accuracy. 

4.4 Genomic evaluation with high-density data 

4.4.1 Introduction 

In the previous chapter the benefits of genomic evaluation using 50K SNP-chip 

information in the regional breeds was presented. However, the HD chip was thought 

to improve the performance of multi-breed genomic evaluation due to the higher 

marker density, which leads to higher LD between markers and QTL. This could 

efficiently counterbalance the diminishing LD between markers when the training 

populations of multiple breeds are mixed. 

The methodological developments presented in Chapter 3 allowed the combined use 

of HD data and haplotype markers in genomic evaluation, because the number of 

allele effects could be greatly reduced. If the windows of 144 SNP are used on the 

HD data in combination with haplotypes of 4 SNP, the number of haplotypes built 

from the 706,791 SNP of the HD chip could be reduced by 97% compared to the 

case when all consecutive haplotypes of 4 SNP are used. 

Based on the results from the Montbéliarde breed (see section 3.4), the use of the 

HD data was detrimental to the selection accuracy and regression slopes. 

Accordingly, the HD data was not used in a within-breed context in the regional 

breeds because no gain can be expected from such an analysis. The results 

obtained with the HD data in a multi-breed context were compared directly to the 

results obtained with the 50K data (both single- and multi-breed). 

4.4.2 Materials and methods 

The same populations were used for this analysis than for the 50K tests. This 

population was presented in section 4.1 and 4.3 in detail. The multi-breed training 

population consisted of the training populations of the 4 breeds altogether. The 

implemented validation study was also identical, with the same animals in the training 
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and validation sets as the validation study with the 50K data. These allowed a direct 

comparison of the results obtained to the HD data with those obtained with the 50K 

SNP-chip data. 

Three different analyses were implemented in a multi-breed context using HD data: 

1. The first test was the routine evaluation (with all its steps). The window size 

was fixed to 144 SNP, which was the average number of SNP within the 10 

SNP-wide windows from the 50K data in the Montbéliarde breed. 

2. The first results were inferior compared to the single-breed tests with 50K 

data. This could be because the QTL-SNP (the SNP linked to QTL) could not 

be identified accurately in the QTL detection step of the routine evaluation. 

Therefore, in the second scenario, the QTL-SNP detected with the 50K data 

were used in the HD dataset (or the closest SNP from the HD panel, if the 

QTL-SNP was not available on this SNP-chip). Window size was again fixed to 

144 SNP. 

3. Although the results improved significantly compared to the first analysis, they 

were still inferior compared to the 50K results, which is against expectation. 

One explanation can be that it is detrimental to use the same window size for 

all regions, because most windows of 10 SNP from the 50K SNP-chip 

overlaps with either more or less SNP from the HD SNP-chip. Figure 10 

shows the distribution of the number of SNP from the HD SNP-chip under the 

windows of 10 SNP from the 50K chip in the Montbéliarde breed (the 

Montbéliarde is presented, because the average number of 144 SNP was also 

calculated from this breed). Although the average number of the windows is at 

144 SNP, majority of the 10-SNP windows of the 50K overlap with either more 

or less than 144 SNP from the HD SNP-chip. Therefore, in the third analysis 

different window sizes were used for the different QTL-SNP, which covered 

the exact same genomic regions as the windows of the 50K. 
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Figure 10: Frequency distribution of the number of SNP from the HD SNP-chip 
overlapping with the 10 SNP-wide windows from the 50K SNP-chip (Montbéliarde 
breed). Trait name abbreviations: MY – milk yield; FY – fat yield; PY – protein yield; 
FC – fat content; PC – protein content. 

4.4.3 Results 

The first scenario gave inferior results compared to the other two, while the second 

analysis pipeline gave on average over the 4 breeds worse results than the third 

scenario. Therefore, only the results of the third analysis are presented and 

discussed here. 

The estimated correlation coefficients and regression slopes of YD on GEBV are 

shown in Table 13 for the 4 regional breeds using a multi-breed training population. 

When these results are compared to the results of the single-breed analysis with 50K 

data, the correlation coefficients were higher, except for the Tarentaise breed, in 

which breed an average decrease of 1% was observed (also see Table 4 from the 

previously inserted article). The average gains (over the 5 analyzed traits) in the 

other 3 breeds were between 0.2 (Vosgienne) and 4.5% (Simmental). Regression 

slopes improved in the same three breeds. 

When the HD results are compared to the results of the multi-breed analysis with 50K 

data, the correlation coefficients presented in Table 13 were inferior in Abondance 

and Simmental and an increase of 1.9% and 2.7% was observed in Tarentaise and 

Vosgienne, respectively. The decrease of the correlation coefficients in Abondance 
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and Simmental were relatively small (1.7% and 0.8%). Regression slopes improved 

considerably (i.e. were closer to 1) in Abondance and Vosgienne, but did not change 

in Simmental and declined in Tarentaise. Although in a multi-breed context slight 

improvements were observed in the correlation coefficients with the Tarentaise and 

Vosgienne breeds (HD vs. 50K), these gains were not large enough to surpass the 

correlations calculated for these breeds in a single-breed analysis with 50K data 

(Table 13). 

Table 13: Correlations and regression slopes between the DYD and GEBV in the 4 
regional breeds. Average single-breed (SB) and multi-breed (MB) results with 50K 
are also added. 

SNP-chip ID Trait1 
Correlation coefficient Regression slope 

A T S V A T S V 

HD 

MY 0.42 0.29 0.35 0.38 0.98 0.64 0.80 1.00 

FY 0.45 0.36 0.37 0.29 1.11 0.79 0.81 1.01 

PY 0.36 0.25 0.41 0.33 0.96 0.59 0.92 0.97 

FC 0.65 0.69 0.30 0.55 1.01 1.04 0.48 1.02 

PC 0.61 0.61 0.37 0.60 1.00 0.99 0.80 1.22 

Average2 0.50 0.44 0.36 0.43 0.04 0.21 0.24 0.06 

50K (SB) Average2 0.46 0.45 0.31 0.43 0.09 0.08 0.24 0.11 

50K (MB) Average2 0.52 0.43 0.38 0.42 0.16 0.15 0.22 0.11 
1: Trait name abbreviations: MY – milk yield; FY – fat yield; PY – protein yield; FC – fat content; PC – protein content 

2: Average deviations from 1 are indicated for regression slopes 

3: Breed name abbreviations: A – Abondance; T – Tarentaise; S – Simmental; V – Vosgienne 

4.4.4 Conclusions 

The multi-breed scenario with all 4 breeds contributing to the training population was 

performed as a pilot study. A consequence of the 3 analyses described earlier is that 

majority of the decrease in either the selection accuracy or in the bias with the HD 

SNP-chip was due to the poor performance of the QTL detection step with the HD 

chip (these results were not shown). When the SNP were identified using 50K SNP-

chip data and HD was used only to build haplotypes, the performance of the genomic 

evaluation improved significantly. However, the analyses with the HD could not 

outperform those with the 50K. 



4.5 Genomic evaluation with causative mutations 151 

 

Because the results of these first tests were not promising when compared to the 

50K data results, this test was not continued with the other 10 multi-breed 

populations. 

4.5 Genomic evaluation with causative mutations 

4.5.1 Introduction 

A possible way to improve the performance of genomic evaluation in regional breeds 

is the inclusion of candidate mutation information. These are specific SNP, which are 

likely to be either causative mutations underlying certain traits or in complete LD with 

such mutations; they were identified during the analysis of large dairy cattle breeds 

(Holstein, Normande and Montbéliarde in France). Since this information does not 

come from animals of regional breeds, there is uncertainty whether they can improve 

the performance of genomic evaluation in these breeds or not. This is because 

different QTL may be segregating in different breeds and QTL identified in one breed 

may not be present in other breeds (if the QTL is breed-specific) or it may not be 

segregating, if one of its alleles is fixed. Furthermore, when a QTL is present, its 

relative importance might be different in different breeds as well, depending on the 

genetic background (in particular, on the other QTL within the breed). 

However, since the QTL detection power is much larger in the large breeds, QTL 

location could be narrowed down to a much smaller genomic region overlapping with 

a much lower number of putative mutations. Such fine resolution is currently not 

achievable in the regional breeds. In conclusion, no candidate mutations specific of 

regional breeds are currently available and any analysis using candidate mutation 

information in these breeds must rely on mutations indentified in larger breeds. 

In this section, we aim to assess the possible gains with the inclusion of candidate 

mutation information in the regional breeds. 

4.5.2 Materials and Methods 

Datasets 
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Three of the four regional breeds were used for testing the impact of including 

potential mutations in their genomic evaluation. The Simmental breed was excluded, 

because only ~300 SNP from the LD SNP-chip could be imputed in this breed. 

In case of the other breeds an enlarged reference population was used (i.e. the 

“February 2016” set from Table 10). These reference populations were ~40% larger 

than the ones used earlier. Most of the additional animals were females with own 

performance only. The number of additionally genotyped males ranged from 5 (in 

Vosgienne) to 44 (in Abondance). 

The same SNP were used from the 50K data as used earlier in section 4.3, i.e. the 

43.801 SNP that passed the quality control step. In addition, ~5,000 SNP unique to 

the LD SNP-chip were also available, from which approximately 3,000 were retained 

after removing the monomorphic SNP (Table 14). Most of the 5,000 SNP are 

candidate mutations linked to QTL affecting different recorded dairy cattle traits and 

they come from QTL detection studies conducted on the large dairy cattle breeds 

(Holstein, Montbéliarde and Normande). Because not all SNP are useful for all traits, 

it is important to identify – for each trait separately – which SNP should be used for 

prediction. In addition, some of the SNP from the LD-chip are linked to genetic 

disorders observed in some breeds and not to QTL affecting traits of interest. This 

data was also described in section 4.1. 

Table 14: Number of imputed SNP and number of SNP retained from the LD SNP-
chip after quality control. 

Breed 
Number of SNP 

Imputed Retained 

 Abondance 4,996 3,501 

 Tarentaise 4,764 2,976 

 Vosgienne 4,977 3,432 

 

Phenotype data was used for the same 5 production traits as earlier: milk yield (MY), 

fat yield (FY), protein yield (PY), fat content (FC) and protein content (PC). 
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Genomic evaluation methods 

The same implementation of the SNP-based BayesC approach was used as in 

sections 4.3 and 4.4. The value of π (the proportion of SNP without an effect on the 

analyzed trait) was fixed either to 80% or to 95%. 

We also evaluated the BayesR procedure as implemented in the BESSiE software 

(Boerner and Tier, 2016) in addition to BayesC. Since the detection of large and 

medium sized QTL is the easiest (e.g. DGAT1, which gene has a major effect on fat 

content: Grisart et al., 2002), it is logical to assume that candidate mutations are 

either such QTL themselves or – more often – are linked such QTL. Hence, it seems 

advantageous to distinguish the different QTL based on their effect sizes, when 

including candidate mutation information. In contrast to BayesC, with BayesR the 

SNP can be divided into more than 2 groups, depending on their expected effect 

sizes (in practice, based on their associated variance). In our analyses, SNP were 

divided into 4 groups as indicated in Table 15. The proportions of the additive genetic 

variance explained by the SNP were identical to those used by Erbe et al. (2012), 

which values were regarded as standards. The proportions of SNP within each group 

were fixed, similarly to the value of π in the BayesC analysis. A total of 5% of the 

SNP was assumed to have an effect on the analyzed trait. 

Table 15: Summary of the QTL groups used with BayesR. 

SNP group 
Explained proportion of 

total ��� (%) 
Proportion of SNP within 

the group (%) 

 No effect 0 95 

 Small effect 0.01 4.49 

 Medium effect 0.1 0.485 

 Large effect 1 0.025 
 

The underlying model used with both BayesC and BayesR is as follows: 
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 �� = ��� + 
� +�����
�

��
+ �� (15) 

where all parameters are as defined for equation 9. 

In summary, the study compares different issues: 1) the effect of an increased 

reference population size (between 2015 and 2016) with the addition of mainly 

genotyped females with performances, 2) the effect of adding some putative 

mutations on the reliability of genomic evaluation, 3) the impact of using an a priori 

better method (BayesR) to account for the fact that putative mutations are expected 

to have a larger effect (i.e., to come from a distribution of effect with a larger 

variance). 

4.5.3 Results and discussion 

Correlation coefficient 

Table 16 presents the results obtained with the enlarged reference population and 

using only the 50K SNP-chip data while Figure 11 show the observed gains with 

BayesC when candidate mutations were also included in the model (the same plot 

with BayesR are shown in S. figure 6). 

Comparing the correlations in Table 16 to the results obtained with the 2015 

reference population (Table 12), we could observe an additional gain between 4.4% 

(Tarentaise) and 7.1% (Vosgienne). These gains were due to the genotyping of 

additional females and their inclusion in the reference population. Note that the value 

of π was also different: 95% here (Table 16) vs. 80% in 2015 (Table 12). However, 

more than 85% of the increase in correlations from 2015 to 2016 was observed with 

a π of 80% as well (data not shown). 

BayesC outperformed BayesR in genomic evaluation, which was not expected as 

BayesR can differentiate QTL based on their effect sizes. This may be because no 

clear distinction could be done among the SNP with BayesR regarding their effect 

size: based on the output of the BESSiE software, every SNP had very similar 
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probabilities for being sorted in each of the 4 groups in which SNP were divided (i.e. 

the small, medium, large and “no effect” SNP groups). An alternative reason can be 

the improper choice of prior probabilities. 

Table 16: Correlation coefficients obtained in the validation population with either 
BayesC or with BayesR (π=9%) using 50K SNP-chip information. 

Trait 
BayesC1 BayesR1 

A T V A T V 

Milk yield 0.344 0.432 0.401 0.301 0.436 0.386 

Fat yield 0.339 0.446 0.352 0.284 0.432 0.321 

Protein yield 0.257 0.439 0.451 0.196 0.414 0.438 

Fat content 0.725 0.626 0.617 0.688 0.629 0.632 

Protein content 0.654 0.508 0.689 0.602 0.447 0.698 

Average 2016 0.464 0.490 0.502 0.414 0.472 0.495 

Average 20152 0.417 0.446 0.431 - - - 
1: Breed name abbreviations: A – Abondance; T – Tarentaise; V – Vosgienne 

2: Results obtained with BayesC in 2015 (π=80%) 
 

When comparing the effect of adding the candidate mutations to the genetic markers 

(Figure 11 and S. figure 6), a small average gain (0.5% and 0.3% with BayesC and 

BayesR, respectively) was observed in the correlation coefficients. Larger gains were 

obtained for fat content (1-1.6% on average for the 3 breeds). Inclusion of the 

candidate mutations led to a moderate loss in selection accuracy only for protein 

yield and protein content with BayesR (maximum loss: -0.5% in Abondance). It is 

difficult to explain this loss of selection accuracy as the addition of a limited number 

of putative causative mutations is not expected to have a detrimental effect on the 

evaluation accuracy. Perhaps, the inclusion of many putative mutations not 

necessarily linked with the trait of interest led to an increased number of effects to be 

estimated (e.g. ~3,501 more SNP in Abondance), which may represent an extra 

noise responsible for the decrease of selection accuracy. 
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Figure 11: Effect of the inclusion of candidate mutations on the correlation between 
YD and GEBV measured on the validation population (BayesC). 

Regression slope 

The average absolute deviations of regression slopes from 1 are shown on Figure 

12. Slopes were mainly below 1 in Abondance, but were always higher than 1 in 

Vosgienne. In Tarentaise, the regression slopes were slightly above 1 for the yield 

traits. Regression slopes exceeding 1 were usually higher with BayesR. The changes 

in the regression slopes with BayesC compared to those obtained in 2015 (Table 12) 

were slightly favorable in Abondance (average absolute deviation from 1: 0.168 in 

2016 vs. 0.216 in 2016) and Tarentaise (average absolute deviation from 1: 0.085 in 

2016 vs. 0.109 in 2015) but were disadvantageous in the Vosgienne breed with an 

average increase of 0.08 in the deviations of the regression slopes from 1. 

Inclusion of the candidate mutations did not improve significantly the regression 

slopes with either BayesC or BayesR. An improvement was slightly more pronounced 

in the Vosgienne with BayesC and with Tarentaise with BayesR. 
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Figure 12: Average absolute deviation of regression slopes from 1 with either 
BayesC or BayesR and with the 50K and 50K+custom SNP-chip data. 

4.5.4 Conclusions 

Enlarging the reference population with additional females led to substantial (4-7%) 

increase in selection accuracy with BayesC while in two of the three breeds the 

regression slopes slightly improved as well. Therefore, extra genotyping of females 

can be expected to further improve the selection accuracy in the analyzed breeds. 

Clear improvement of the selection accuracy by inclusion of candidate mutations was 

obtained only for fat content. With a BayesC procedure for the other traits, either only 

minor improvements were obtained (e.g. for fat yield) or no improvement at all (e.g. 

for protein yield). BayesR generally did not perform as good as BayesC, probably 

because the SNP effects could not be properly distributed into the different variance 

groups. This is frustrating, because only a proportion of the candidate mutations are 

expected to have a large effect, the others being likely without any effect as they 

were detected for other traits than the one being analyzed. Neither increasing the 

number of iterations by 10-fold nor allowing a variable π nor the combination of these 

two changes led to significantly different results from those presented here. 

These observations are however not different from what was reported by Erbe et al. 

(2012) when they proposed the BayesR method: they analyzed the same 3 yield 

traits as in our study in a mixed Holstein-Jersey population. They compared the 
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performance of BayesR with BayesA and found only a very limited increase in 

selection accuracy and very similar regression slopes of DYD on GEBV. 

Another version of the BayesR, called BayesRC was published recently (MacLeod et 

al., 2016). With this method, a set of SNP “enriched” in causative mutations can be 

created based on any prior information. Therefore, this method can be much more 

adequate to analyze the available candidate mutation information. 
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Chapter 5  

General discussion 

5.1 Introduction 

Due to its economic advantages, genomic selection is more and more widespread in 

large dairy cattle breeds (e.g. García-Ruiz et al., 2016; Le Mézec et al., 2015). 

Genomic evaluation of animals assumes that information at DNA level is available on 

selection candidates as well as on a reference population (i.e. on genotyped animals 

with associated phenotype records). Since their development (2008 in bovine), SNP-

chips are used to obtain DNA marker information. In several countries (e.g., France, 

Germany, Netherlands and USA), breeding organizations of different breeds 

genotyped a large number of progeny tested bulls with these SNP panels in order to 

obtain a large reference population. The larger the available reference population is, 

the better genomic selection performs. This puts regional breeds with limited total 

population size at a disadvantage compared to large (mainly international) breeds. In 

case of some breeds (e.g. the Brown Swiss) it is possible to create a large 

international reference population from the smaller national populations. However, 

this assumes that the breed is used in multiple countries, which is not the case in 

most of the regional breeds (e.g. Abondance, Tarentaise or Vosgienne). 
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Our main aim was to contribute to the development of a genomic evaluation 

procedure which can be efficient in regional dairy cattle breeds with a limited 

reference population. Moreover, a multi-breed reference population can be easily 

used to enlarge the reference populations of the regional breeds so we were also 

interested in the assessment of the performance of an evaluation based on such 

multi-breed reference population. This was appealing because the four regional 

breeds considered are closely related from an evolutionary perspective (Gautier et 

al., 2010; Figure 3), suggesting that multi-breed genomic evaluation might be 

beneficial for these breeds. Based on previous studies (Hozé et al., 2014; de Roos et 

al., 2008), it was hypothesized that the bovine high-density SNP panel would be 

required for multi-breed evaluations because the higher LD between the markers 

provided by this SNP-chip could capture the effects of the shared QTL. 

5.2 Biodiversity 

Biodiversity is essential in breeds and species of agricultural importance. About 50% 

of the total genetic variance within species used in agriculture can be found within 

breeds (Engels and Fassil, 2007). Therefore preserving the different breeds is 

important to maintain the genetic diversity in all species used in agriculture, including 

cattle. Moreover, the existence of genetic variability is a prerequisite for artificial 

selection: without genetic variance in the traits of interest, no breeding program can 

be efficient (e.g. see equation 11: if the genetic standard deviation (σa) is zero, the 

annual genetic gain is also zero). The preservation of across-breed genetic variation 

(which is the remaining 50% of the genetic variability) is equally important, especially 

to conserve the differences observed between the breeds, which is crucial for a 

sustainable agriculture. Therefore, the preservation of both within- and across-breed 

genetic variation is of great interest for the present and the future of agriculture. 

Only a small number of bulls can be progeny tested within the regional breeds (Table 

1), because increasing the number of bulls entering progeny testing would lead to an 

increased proportion of daughters coming from the progeny testing phase, i.e. from 

unproven bulls. However, the small number of proven bulls results only in a few 

number of selected proven bulls, which is detrimental for the genetic diversity of the 

breed. This is even more expressed if among the progeny tested bulls, only by 
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chance there is one with an extremely high estimated breeding value. As a 

consequence, such an excellent bull may have many more daughters but also sons, 

leading to a disproportionately large contribution to the next generation(s) and to an 

additional diminution in the genetic variability of the breed. 

Genomic evaluation allows the simultaneous evaluation of many more selection 

candidates at a comparatively much lower cost. This can lead to a larger number of 

bulls selected for reproduction, while the annual genetic gain in the selected traits 

increases compared to the genetic gain observed with the breeding program 

including a progeny testing phase. The larger number of selected bulls will have a 

positive impact on the genetic diversity of the breed as well, contributing to an easier 

preservation of the breed. 

Genomic evaluation has been implemented in the large dairy cattle breeds and the 

mentioned advantages have been observed. In addition to the economic advantages, 

the number of bull sires has increased in these breeds as well. This can have positive 

impact on the genetic gain: for example if an otherwise outstanding young bull has a 

strongly detrimental effect on one trait (e.g. fertility), breeders will not want to use it in 

breeding. However, with carefully planned matings, the bull might have a number of 

excellent male offspring, some without the detrimental characteristics. Such bulls can 

be then used by the farmers. The larger number of bull sires is a promising sign 

indicating that genetic diversity may decrease at a slower pace in these breeds as 

well (note that genetic diversity decreases in all populations when any form of 

selection is implemented). This is indirectly caused by the fact that not only sons of 

elite bulls are evaluated with genomic evaluation: bulls who previously would not 

have obtained a breeding value due to lack of sufficient progeny testing capacities 

can be evaluated and used in practice. 

In addition to selection, the mating strategy also has an important role in 

management of genetic diversity. The larger number of selection candidates will give 

more room for population management decisions, for example to minimize the 

increase in inbreeding or perform assortative matings. This is a currently actively 

studied field of animal husbandry. 
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5.3 Effects of the slower genetic progress 

The absence of genomic evaluation in the regional breeds would have led to 

indisputable economic disadvantages. The two most important drawbacks from an 

economical point of view are the high costs of progeny testing in any breed and the 

slower genetic progress in the regional breeds. These are disadvantageous both in 

the short and in the long term. 

In the short term, either the presence or the absence of progeny testing is 

disadvantageous in the regional breeds compared to large breeds with genomic 

evaluation. If progeny testing is implemented in a breed, its high costs (compared to 

the costs of genomic selection) put the breeders in a difficult situation, because they 

have to remain competitive on a market they (partially) share with breeders of large 

breeds. Partly due to the smaller population size (especially the number of cows 

under performance recording) and partly due to the lower budget of breeding 

organizations devoted to regional breeds, progeny testing has also been limited by a 

lower number of progeny per bull. This has resulted in lower reliabilities compared to 

the reliabilities of either progeny tested or genomically evaluated bulls of large 

breeds. 

In the long term, as soon as the difference between the genetic merit of regional and 

large breeds becomes too large, more and more breeders may want to switch from 

regional breeds to large (inter)national breeds, which could eventually lead to the 

disappearance of regional breeds. The French Bretonne Pie Noire breed is a good 

example of this negative trend: at the beginning of the 20th century, there were about 

500,000 Bretonne Pie Noire cows in France, which decreased to about 15,000 by the 

middle of the 1970s (Colleau et al., 2002). In 1975 a conservation program was 

started to preserve the breed, which became the main focus of the population 

management by today. In parallel, although genetic improvement officially did not 

stop, the number of cows under performance recording continued to decrease to 125 

by 2000 (Colleau et al., 2002), which prohibits any type of selection. Note that only a 

small proportion of the whole population is under performance recording. Although a 

slight improvement could be observed by the year 2014 (number of cows under 

performance recording: 199; Institut de l’Elevage, 2015b), it is still largely insufficient 
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for selection purposes. Furthermore, the number of farmers keeping animals of this 

breed was 270 in 2000 and presumably has further decreased since (Colleau et al., 

2002). 

Such trends are not only detrimental for the breeds, breeding organizations and 

regions themselves, but also for agriculture in a wider sense. Preservation of breeds 

is a crucial aspect of agro-ecology because neither future demands nor future 

production circumstances are known and therefore it is also unknown which breeds 

could produce efficiently in the future. In consequence, it is of great interest to 

maintain the biodiversity in agriculturally important animal species as well, in order to 

ensure that the indispensible genetic diversity will be preserved for the future. 

Indeed, there are numerous initiatives to preserve and maintain biodiversity even in 

the agriculturally most important species and breeds. For instance, in 2005 in France, 

there were 132 different in situ conservation setups for livestock breeds, involving a 

huge variety of actors (Lauvie, 2011). Complementary to in situ programs, several 

genebanks conserve farm animal genetic resources (i.e. reproductive materials from 

both plants and animals) for the future. An example in case of plants is the European 

AEGIS initiative (http://www.ecpgr.cgiar.org/aegis/about-aegis/) and in case of 

animals, the EFABIS (EFABIS, 2016), both of which are organizations that coordinate 

multiple European genebanks (e.g. in France, the Cryobanque Nationale: 

http://www.cryobanque.org/index.php?lang=en; in Hungary, the Haszonállat 

Génmegőrzési Központ: http://genmegorzes.hu/). Moreover, there are European 

subsidies to farmers who keep breeds endangered to be lost for agriculture (e.g. in 

Hungary: Government of Hungary, 2015) as well as national and/or regional 

subsidies to organizations managing in situ conservation programs. 

To support the preservation of regional breeds in dairy cattle breeding, the 

introduction of genomic selection in such breeds is seen as a great advantage. 

5.4 Perspectives for the regional breeds 

Annual genetic gain 
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As it was discussed in section 2.6.1 of the General Introduction, genomic evaluation 

has a major impact on the annual genetic gain. A theoretical annual genetic gain can 

be calculated as shown in equation 11 and repeated below: 

∆G = �i�� ∗ r��,�� + i�� ∗ r��,�� + i�� ∗ r��,�� + i�� ∗ r��,��� ∗ σ!
L�� + L�� + L�� + L��  (11c) 

where ∆G is the annual genetic gain, i.. is the selection intensity calculated for the 

four different paths, rIH,.. is the selection accuracy calculated for the four paths, σa is 

the standard deviation of the additive genetic effect of the trait (or composite 

breeding objective) under selection and L.. is the generation intervals (expressed in 

years) again for the four paths. The distinction of the four paths is important, because 

the generation interval, selection intensity and accuracy change depending on 

whether males or females are selected and whether they are selected to create the 

next generation of bulls or cows. 

The introduction of genomic evaluation should have similar impacts on the regional 

breeds as it had on the large breeds, although some of these are to a smaller extent. 

In case of males, the most important effect is the decrease in the generation intervals 

(Lmf and Lmm), if progeny testing is discontinued. The accuracy of breeding values 

(rIH,mf and rIH,mm) either do not change markedly (e.g., for lowly heritable traits, such 

as the fertility traits) or slightly increase (for moderately heritable traits, e.g. the 

production traits). Selection intensity (imf, imm) will also increase in males. In case of 

females, the accuracy of breeding values (rIH,ff and rIH,fm) increases for lowly heritable 

traits, while the generation intervals of dams of cows (Lff) is not expected to change 

markedly. Generation interval of dams of bulls (Lfm) can also decrease because 

genotyped heifers can be used now as bull dams while earlier, dams with 2 (or more) 

finished lactations were usually selected. Potentially, selection intensity of dams of 

cows (iff) can be expected to increase due to the combined effects of the availability 

of both more accurate breeding values on heifers and the use of sexed semen, 

consequently increasing the number of female selection candidates. Selection 

intensity of dams of bulls (ifm) is likely to decrease slightly because more young bulls 

will be selected for breeding. 
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After the first year of availability of genomic evaluation in regional breeds, we can 

report the number of bull dams and the number of evaluated and selected male 

candidates planned by their breeding organizations (Table 17; S. Barbier, 2016, 

personal communication). The selection intensity of sires of bulls is expected to 

increase in all breeds. In Abondance ~30% of the selection candidates were retained 

for breeding with progeny testing, while with genomic evaluation this proportion 

decreases to ~20%. A larger decrease can be expected in Tarentaise (from 40% to 

~15%) and in Vosgienne (from 40% to ~8%). 

Table 17: Number of genotyped young candidates and selected bull sires and bull 
dams during the first year after the implementation of genomic selection in the 
regional breeds. 

Breed 

Number of 
genotyped elite 

females1 

Number of ~ male candidates 

Genotyped Selected 

Abondance 200 150 20 

Tarentaise 200 120 18 

Vosgienne 160 50 4 
1: Candidates to become dams of bulls 

 

These changes in the regional breeds together with the estimated annual genetic 

gains are summarized in Table 18 either with progeny testing or with genomic 

evaluation or with the mix of the two methods (i.e. when males to be progeny tested 

are retained based on their GEBV). For comparison purposes, the same parameters 

(with genomic evaluation) are also shown for a typical large breed. Note that all 

values presented in Table 18 are rough estimates and serve only illustrative 

purposes. Furthermore, it is also assumed that sexed semen will be more 

widespread in all dairy breeds (including the regional ones), allowing an increase in 

the selection intensity on the “dams of cows” path. See Appendix E on page 218 for a 

detailed description of the calculations. 

Based on the estimated values in Table 18, breeders can expect the annual genetic 

gain to increase by ~140% with the introduction of genomic selection, if they keep an 

organized progeny testing as well. Although this would lead to slightly higher genetic 
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gain per generation as a purely genomic evaluation selection scheme, the generation 

interval would be similar to that with progeny testing (apart from a small decrease on 

the “dams of bulls” and “sires of cows” path). If progeny testing is discontinued in the 

regional breeds, the genetic gain can further increase by ~28%, due to a large 

decrease in generation interval on the “sires of bulls” and “sires of cows” paths. 

Table 18: Asymptotic annual genetic gain and different parameters affecting it in 
large breeds with genomic selection (GS) or in regional breeds with or without 
genomic selection (indicative values). 

Scenario Path SP (%) i rIH L 
Σi·rIH 
(σa) 

∆G 
(σa) 

Large breeds 
with GS 

Sires of bulls 5 2.06 0.84 2.5 1.72  

Sires of cows 5 2.06 0.84 2.5 1.72  

Dams of bulls 5 2.06 0.84 2.5 1.72  

Dams of cows 80 0.35 0.77 4 0.27  

Total    11.5 5.44 0.47 

Regional breeds 
with progeny 

testing 

Sires of bulls 40 0.97 0.71 7.5 0.69  

Sires of cows 70 0.49 0.35 5.0 0.17  

Dams of bulls 5 2.06 0.71 5.8 1.46  

Dams of cows 100 0 0.59 5.2 0.00  

Total    23.5 2.31 0.10 

Regional breeds 
with GS 

(retaining 
progeny testing) 

Sires of bulls 4 2.15 0.84 7.5 1.80  

Sires of cows 8 1.89 0.76 4.0 1.43  

Dams of bulls 10 1.76 0.73 3.0 1.28  

Dams of cows 90 0.2 0.73 5.2 0.15  

Total    19.7 4.65 0.24 

Regional breeds 
with GS 

Sires of bulls 10 1.76 0.73 2.5 1.28  

Sires of cows 10 1.76 0.73 2.5 1.28  

Dams of bulls 10 1.76 0.73 3 1.28  

Dams of cows 90 0.2 0.73 5.2 0.15  

Total    13.2 3.99 0.30 
Abbreviations: SP – selection proportion; i – selection intensity; rIH – selection accuracy; L – generation interval; ∆G – annual 
genetic gain 
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When compared to large dairy cattle breeds, the decreases in generation intervals 

can be expected to be similar in the regional breeds, because in both cases GEBV 

become available before maturity. By the time an animal can be used for breeding, it 

has a GEBV. Selection intensity (in case of males and females) is higher in large 

breeds, due to the larger number of candidates, while selection accuracy is also 

higher in the large breeds (in males and females alike) due to the availability of a 

larger reference population. Overall, the performance of genomic evaluation is 

expected to be significantly more efficient in the large breeds than in the regional 

ones. 

However, the introduction of genomic selection is still a cardinal question in the 

regional breeds and must be implemented as quickly as possible. Figure 13 

illustrates the long-term effects of the existence or absence of genomic selection on 

the productivity of regional breeds compared to the productivity of large breeds. To 

create Figure 13, the estimated annual genetic gains from Table 18 were used (for 

the large breeds without genomic evaluation, the 0.22σa estimate from Schaeffer 

(2006) was used). Before the genomic selection era, the annual genetic gain was 

already larger in the large breeds, partly due to the higher selection accuracy 

(achieved by a larger number of daughters under performance recording per bull) 

and partly due to a larger selection intensity (due to the larger number of bulls 

participating in progeny testing). As we entered the genomic evaluation era, the 

introduction of these modern evaluation methods in the large breeds doubled the 

annual genetic improvement of these breeds. As it was outlined earlier, genomic 

evaluation can have similar effects on the regional breeds, although to a lesser 

extent. In contrast, the absence of genomic selection in the regional breeds would 

result in a much more rapidly increasing gap between the genetic potential of large 

and regional breeds. This might have disastrous effects on both the regional breeds 

themselves and on agriculture in a broader sense, as discussed earlier. 



168 5.5 Genomic evaluation in the regional breeds 

 

 

Figure 13: Illustration of the long-term effect of genomic selection (GS) on the 
production level of the regional and large breeds. 

To prevent the difference between the genetic potential of these breeds from 

widening, efforts should be devoted to the improvement of the efficiency of genomic 

selection in the regional breeds. For this, there are several directions for future 

actions or research which are promising. These are: 

− Increasing the reference population size: Breeding organizations should 

continue to genotype young heifers, which – by maximizing the available 

information for allele effect estimation – will contribute to a higher accuracy of 

the genomic evaluation in the regional breeds. 

− Continue to study ways to implement an efficient multi-breed evaluation: The 

use of a multi-breed reference population was shown to be beneficial at least 

in Abondance. 

− Find ways to benefit from larger breeds: Results of research work on large 

breeds, such as detection of putative candidate mutations can be transferred 

to the regional breeds to improve genomic evaluation. 

5.5 Genomic evaluation in the regional breeds 

The performance of different genomic evaluation methods were evaluated in four 

regional breeds. Our main aim was to assess the possible benefits and limits of 
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genomic evaluation in these breeds with particular interest in the haplotype-based 

methods: haplotypic MA-BLUP and haplotypic GS3. 

A major challenge in the regional breeds is to create a reasonably large reference 

population that can be used for allele effect estimation because of the very limited 

number of progeny tested bulls in these breeds (Table 1). Furthermore, given the 

limited size of the population under performance recording in these breeds, progeny 

testing is also limited to approximately 25-30 female offspring per bull in order to 

obtain a reliability of (approximately) 50% for the production traits. This makes 

genomic evaluation in these breeds even more difficult. A possible way to enlarge the 

reference population is the genotyping of females. However, a female with her own 

performance only brings in less information than a progeny tested male (Table 19). 

Considering a 50% reliability level and the heritability of production traits (~0.3), the 

number of first lactation females representing the same amount of information as a 

single progeny tested bull is ~2.3. Multiple recordings on females improve their 

reliabilities based on performances and therefore older cows are more informative. 

This – at least in theory – might eventually lead to instances where females are more 

informative than males for selection purposes in the regional breeds. 

Table 19: Number of females with one individual phenotype required to bring 
information equivalent to one male, according to heritability and male estimated 
breeding value (EBV) reliability based on progeny information only (Table 1 from 
Boichard et al., 2015). 

Male EBV 
reliability 

Heritability 

0.1 0.2 0.3 0.4 0.5 

0.40 6.0 2.7 1.6 1.0 0.7 

0.50 9.0 4.0 2.3 1.5 1.0 

0.60 13.5 6.0 3.5 2.3 1.5 

0.70 21.0 9.3 5.4 3.5 2.3 

0.80 36.0 16.0 9.3 6.0 4.0 

0.90 81.0 36.0 21.0 13.5 9.0 
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To maximize the reference population size and in turn the achievable gain from a 

genomic evaluation, breeding organizations (including those of the four regional 

breeds analyzed here) genotyped females with own performance(s) in addition to 

progeny tested bulls to form a mixed reference population. A mixed reference 

population is not a disadvantage in regional breeds, as it was demonstrated earlier 

that even in case of large breeds, the reference population will have to include 

females as the organized large-scale progeny testing of males has stopped or is 

likely going to stop (Boichard et al., 2015). The addition of a large number of cows to 

the reference population was shown to increase the prediction accuracies by ~4-5% 

while having no (or little) effect on the bias of the genomic breeding values (Kemper 

et al., 2015; S. Fritz, 2016, personal communication). We could also verify these 

results. However, in regional breeds the lack of a large number of animals with highly 

reliable performances (i.e. progeny tested bulls) is detrimental compared to the 

situation of the large breeds. Furthermore, the number of females that can be 

genotyped is also limited in these breeds. For example, in the Vosgienne breed, 

essentially all females under milk recording have been genotyped by 2016. 

Consequently, the two possible ways that remain to improve the efficiency of 

genomic evaluation in this breed are the improvements in genomic selection methods 

(e.g. exploiting genetic relationship information in a multi-trait analysis) and the 

opportunity of multi-breed genomic evaluations. 

Although their genotypes were available, females were not included in the reference 

population in case of longevity due to the low heritability of the trait. For this trait the 

amount of information brought by all the genotyped females is only a fraction 

compared to the bulls (see Table 19). On the other hand, calculations (e.g. the 

number of record equivalents to be used for weighting them and to deregress them) 

become much more complicated with the inclusion of females and wrongly adjusted 

parameters could have detrimental effects on the final estimates. 

The LD-decay pattern observed in the regional breeds were very similar to the LD-

decay observed in the large dairy breeds in France. In early studies, an r2 of 0.2 was 

often considered to be sufficient between adjacent markers for efficient genomic 

evaluations (de Roos et al., 2008: Calus et al., 2008). As pointed out by de Roos et 
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al. (2008), this was also the level of LD simulated by Meuwissen et al. (2001). This 

level of LD was observed in the regional breeds with an average marker distance of 

52.5-72.5 Kb, depending on the breed (for Abondance and Taranteise it was slightly 

longer – 72.5 Kb – than for Simmental and Vosgienne – 52.5 Kb). As a comparison, 

the corresponding distance was 67.5 Kb for the Montbéliarde breed. In case of all of 

these breeds, the resolution of the 50K SNP-chip (average distance between 

adjacent markers: ~57,000 bp) can be predicted to be sufficient for an efficient 

genomic evaluation, given that there is a sufficiently large reference population 

available. 

It is worth mentioning that the LD is measured between neighboring SNP and not 

between SNP and QTL. Indeed, QTL were assumed to be ungenotyped in all of the 

cited studies. As follows, QTL are expected to be located between the neighboring 

SNP and consequently, the distance between these QTL and the neighboring SNP 

can be predicted to be on average half of the average distance measured between 

the adjacent SNP. The LD corresponding to this distance (i.e. ~26.25-36.25 Kb) is 

approximately 30% in all breeds (including Montbéliarde). This is the LD that can be 

expected between SNP and (ungenotyped) QTL. This phenomenon could also 

(partially) explain why a D’ threshold of 45% did perform better in our tests (as well as 

in Cuyabano et al., 2014) than a higher threshold when creating haploblocks. 

Single-breed evaluations 

In the following section, the performance of genomic evaluation methods applied to 

the regional breeds is discussed. It includes the application of the French routine 

evaluation on the 4 regional dairy cattle breeds. This evaluation incorporates part of 

the methodological improvements previously presented. Possible improvements, 

including the use of haploblock information, the use of HD SNP-chip and multi-breed 

tests are also reviewed. These studies can be divided into two parts, based on either 

the reference population (single-breed vs. multi-breed) or based on the SNP-chip 

density (50K vs. HD). Here, the division is based on the reference population, 

because the high-density SNP-chip was used only in the multi-breed context. 
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In the regional breeds, a BayesC model using 50K SNP-chip information resulted in 

higher selection accuracies (measured as the correlation between YD and (G)EBV in 

the validation population) compared to the performance of a pedigree-based BLUP 

model. Inflation of breeding values measured as the regression slope of YD on 

(G)EBV in the validation population was also closer to the optimal value of 1 with the 

BayesC analysis, except for the Abondance breed. The French routine genomic 

evaluation outperformed the BLUP tests in the regional breeds and showed a slight 

improvement compared to the BayesC model in most cases as well. Sanchez et al. 

(2016) also showed that the reliability of selection candidates were very close to the 

reliabilities of progeny tested bulls with a BLUP model. In some instances, the 

reliabilities of genomic evaluation (Table 20) even outperformed those of BLUP. 

Table 20: Estimated reliabilities of selection candidates with the French routine 
evaluation (from Sanchez et al., 2016). 

Breed 

Training population Trait group 

Nr. of 
males 

Nr. of 
females 

Production 
Somatic 

cell 
count 

Fertility 
Type 
traits 

Abondance 389 2769 54 51 40 51 

Tarentaise 323 1569 52 48 34 49 

Vosgienne 66 1171 54 45 33 49 
 

As a consequence of the results obtained with the regional breeds, genomic 

evaluation was officially implemented in 2016 in Abondance, Tarentaise and 

Vosgienne. It is also implemented in Simmental, but in the framework of an 

international collaboration with Germany and Austria, a much larger reference 

population exists for this breed in Germany with a higher accuracy and lower bias 

than the ones obtained in France. As a result, the French Simmental breed 

association is currently relying on the German genomic evaluation. However, this is 

not optimal since French phenotypes are not included in the German evaluation. This 

situation may change in the future if a sufficiently large number of French cows are 

genotyped. Then the French Simmental breed may be officially added to the list of 

regional breeds with French genomic evaluation. 
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Genomic evaluation in the other three regional breeds is efficient and it also enables 

breeders to select for traits on which selection was not possible earlier. For example 

due to the low reliabilities of certain traits (e.g. the fertility traits) with BLUP, the 

breeding values of these traits were until now not published for females and in case 

of bulls, they were available with a sufficient accuracy only late in the bulls’ life. This 

hindered selection on these traits. With genomic evaluation, the reliabilities of these 

traits slightly increased compared to progeny tested bulls and are equally high for 

both males (with or without progeny) and females, which now allows some selection 

on these traits. 

Hayes et al. (2009) observed a positive correlation between the effective population 

size and the number of haplotypes: smaller effective population sizes lead to fewer 

and longer independent chromosome segments. We could observe the same trend: 

there were fewer haploblocks identified in Abondance (7,294), Tarentaise (6,485) 

and Vosgienne (8,296) than in Montbéliarde or in Simmental (8,393 and 9,918, 

respectively). This is partly due to the smaller effective population size of these 

regional breeds (51, 67 and 57 for Abondance, Tarentaise and Vosgienne, 

respectively according to Institut de l’Elevage (2015c). Simmental had more 

haploblocks than Montbéliarde which is also in accordance with the higher effective 

population size of this breed (73 vs. 141; Institut de l’Elevage, 2015c). A lower 

number of haploblocks also means that there are fewer effects that need to be 

estimated in a genomic evaluation study. However, in contrast with the Montbéliarde 

situation, the analysis using haploblock information in combination with haplotype 

selection did not improve the correlation coefficients nor the regression slopes of 

(D)YD on GEBV in the validation study for regional breeds (results not shown). This 

may be due to the much larger number of haplotype effects to estimate when 

haploblock information was used (~7,000-9,000, depending on the breed) compared 

to the number of haplotypes used in either the BayesC analysis or in the routine 

evaluation (#$%& = 1,000): when haploblock information was used, the number of 

haplotypes is not a priori determined and because of this, all haplotypes are used in 

the model, resulting in approximately 7-36 times more haplotype allele effects to 

estimate. 
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Multi-breed evaluations 

Multi-breed genomic evaluations are expected to outperform their single-breed 

counterparts if the analyzed breeds are closely related, because in such a case they 

can be expected to share a larger proportion of QTL than when they diverged earlier 

during their evolution. The genetic distances between 47 cattle populations – 

including all the 5 breeds analyzed here and 2 Holstein and Jersey populations – was 

estimated by Gautier et al. (2010; also see Figure 3). The genetic distance between 

the three regional breeds and Montbéliarde was found to be much shorter than the 

distance between e.g., the Jersey and Holstein breeds, which are the most frequently 

studied breeds in a multi-breed context. 

In our study, a multi-breed genomic evaluation was advantageous in Abondance and 

Simmental, but it was detrimental in Tarentaise and Vosgienne. The gains in 

accuracy in Abondance and Simmental were moderate (+5-8% at maximum), while 

the loss for the other two breeds were somewhat smaller (from <1% to 4%). There 

were no general trends regarding the traits (e.g. systematic decrease/increase with 

either the yield or the content traits, etc.) in either Tarentaise or Vosgienne. The loss 

in accuracy in these breeds was unexpected, again partly because these breeds 

were more closely related than Holstein and Jersey (for these breeds, other authors 

(Hayes et al., 2009b; Erbe et al., 2012) obtained a gain in accuracy) and partly 

because our reference populations were not smaller than those used in these other 

studies. In Abondance and Simmental, we obtained intermediate gains in accuracy 

compared to those published earlier (Hayes et al., 2009; Erbe et al., 2012; Zhou et 

al., 2014a). A contributing factor to the mainly higher gains observed with the 

Holstein-Jersey population can be the composition of the reference population, which 

included only progeny tested bulls (with a larger average number of daughters per 

bull) for the Holstein-Jersey tests, but consisted mainly of females in our case. 

Following the analyses with the 50K SNP panel, we conducted a multi-breed analysis 

with the HD SNP-chip. This multi-breed analysis used a training population consisting 

of animals from all the four breeds. The use of the HD SNP-chip in a multi-breed 

context was of interest, because of its higher marker density. The HD SNP-chip was 
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beneficial only in the Abondance and Simmental breeds, leading to a 4-5% increase 

in selection accuracy compared to the 50K within-breed tests. However, compared to 

the 50K multi-breed tests, a 2% decrease was observed in accuracy in both of these 

breeds. Results were less biased in Abondance, but did not change in that respect in 

Simmental. 

The genotyping of additional females was clearly beneficial, leading to an extra 4-7% 

increase in selection accuracy and in case of Abondance and Tarentaise, a 

significant decrease in bias. The interest of including candidate mutation information 

(identified in other breeds than the ones analyzed here) in the evaluation process 

was dubious: for certain traits it was beneficial, while for others it did not improve 

selection accuracy. Further research is required before this type of information can 

be exploited with the regional breeds. 

5.6 Financial considerations 

Until now the benefits of genomic evaluation in the regional breeds was discussed 

from a technical point of view. However, these benefits will occur only if genomic 

selection is used in practical animal breeding, which depends first and foremost on 

the breeders. Therefore it is essential to assure that breeders start using the results 

of genomic evaluation (i.e. the GEBV of young animals) and that they are 

encouraged to do so. According to S. Barbier (2016, personal communication for this 

whole section), to ensure that GEBV are used, the breeding organizations of the 

Abondance and Tarentaise breeds disseminate the semen of young bulls with GEBV 

values as if they were young selection candidates participating in progeny testing, 

that is without reporting detailed GEBV of the bulls. Breeders of these breeds receive 

these GEBV of the bulls only 20 months later (i.e., before the first mating of young 

heifers), allowing them to select the appropriate bulls for the heifers (planned 

matings). The objective of these breeding organizations is that 50% of the semen 

used for insemination in 2016 comes from young bulls with GEBV and to increase 

this proportion to 70% in the future. In the particular case of the Vosgienne breed, the 

breeding organization finances (with the help of regional subsidies) the genotyping of 

all heifers in performance recording herds, in order to make sure that all recorded 

animals will enter the reference population. Breeders are not required to contribute to 
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the costs. However, if they wish to receive GEBV, they will be asked to partly 

contribute to the costs of the establishment of the reference population. At this point, 

it has to be taken into account that breeders have their income from the (partially) 

open market, where they have to be competitive even on the short term. In the short 

term, breeders are mostly interested in maximizing their profits and therefore are 

most interested in either an increase in revenues or a decrease in costs (or optimally 

both at the same time). Although genomic evaluation leads to substantial savings in 

breeding schemes of breeds where it has been implemented, these savings mainly 

occur at the level of AI companies. These may not decrease their semen prices. In 

addition, in the large breeds, a substantial part of the realized savings was re-

invested in further genotyping of males and of females. Therefore, in order to 

persuade breeders of regional breeds (especially the Vosgienne) to use the genomic 

breeding values in practice, the promise of long-term gains is insufficient and they 

may need to be convinced by certain economic advantages in the short term (e.g. 

under the form of subsidies or reduced prices). 

Concerning the competitiveness of these breeds, their markets are protected to a 

certain degree, because part of it is very specific: for example, there are certain high 

level dairy products that require to be made from the milk of specific, regional breeds 

and the use of the milk of other breeds is strictly prohibited. This is the case for 

example of the Beaufort cheese, which can be made only from milk of Tarentaise or 

Abondance cows (http://www.fromage-beaufort.com/fr/index.aspx). 

There might be also hesitation from breeders in the use of young bulls without 

progeny due to distrust towards new technological improvements or towards a 

slightly lower reliability of genomic evaluations (compared with evaluation based on 

actual daughter phenotypes). Today breeders trust the progeny testing system as it 

was implemented for several decades and resulted in reliable breeding value 

estimates for bulls. However, from the calculations in Table 18, it is clear that a 

maximum annual genetic gain requires to move as quickly as possible to a 100% use 

of semen from young bulls. Convincing breeders (or even the breeding organizations) 

to abandon progeny testing and instead use breeding animals with potentially less 

reliable breeding values can be very challenging. Indeed, this issue was experienced 
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previously in case of breeders of large breeds, with an intermediate period when 

many breeders hesitated in using young bulls because of their lower reliability. But 

their much higher average genetic merit finally convinced more and more of them. In 

case of farmers keeping regional breeds, this distrust can decrease as they will see 

the larger annual gains that are already manifesting in the large dairy breeds today 

and by the opportunity to select from a wider range of bulls. Nonetheless, proper 

trainings and dissemination of knowledge would be useful to tackle this issue. 

5.7 Genomic evaluation with haplotypes 

During the course of my PhD, we also proposed several methodological 

developments to improve the efficiency of genomic evaluation methods. These 

methods were then implemented and their performance assessed. Our primary focus 

was on haplotypes, their efficiency and the way it can be improved. 

The combined use of haplotype markers and the HD chip is not straightforward, 

because their simultaneous use increases the number of allele effects to estimate to 

several millions, which is far beyond the capabilities of the available genomic 

evaluation procedures, given the limited reference population sizes. Therefore, the 

number of markers to be used from the HD chip has to be reduced prior to genomic 

evaluation. In our first methodological study, we addressed this issue. We also 

demonstrated the usefulness of haplotype markers in genomic evaluation. 

We provided an empirical proof of the superiority of haplotypes over SNP in 

improving the performances of genomic evaluation. Both the correlation coefficient 

between the estimated breeding values and the observed performances (expressed 

as DYD) and the observed regression slopes of DYD on GEBV (which is expected to 

be close to 1 to avoid bias) in a validation population were improved with the use of 

haplotypes. We could also demonstrate that haplotype selection based on allele 

frequency information is beneficial. Such methods are relatively easy to implement 

and are computationally not too demanding. These properties make haplotype 

selection an attractive choice to improve the efficiency of genomic evaluation. 

Furthermore, a version of the proposed methods allows the implementation of 

haplotype selection prior to genomic evaluation at no additional costs. In this version, 
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information on the LD-pattern along the chromosomes is also taken into account in 

the haplotype selection process in addition to the minor allele frequency data. This 

helped minimizing the number of haplotypes to be used in genomic evaluation. When 

all of these haploblocks are used in the genomic evaluation process, all of them 

contribute to the final GEBV and all QTL are therefore necessarily “represented” by 

proxies. This is a major advantage compared to the model where only the largest 

QTL are included based on a prior QTL detection study. It also allows the use of the 

same haplotypes for all traits which makes practical implementation easier. Applying 

this method in the Montbéliarde breed led to improvements both in selection 

accuracy and in regression slopes similar in absolute values to those observed with 

the haplotype selection criteria. 

The haplotype selection methods developed also allowed a large reduction in the 

number of allele effects to be estimated in the model. This was necessary for the 

combined use of the HD chip and haplotype markers. This reduction – when using 

fixed windows of 10 SNP (or 144 SNP in case of the HD) – was 60% with the 50K 

SNP-chip (97% with the HD chip) compared to a scenario in which all consecutive 

haplotypes of 4 SNP are built. When the developed criteria were used in combination 

with haploblock information, the reduction was somewhat smaller: on average ~26% 

with the 50K and ~90% with the HD data. Nevertheless, these reductions (especially 

in case of the HD data) were promising. 

The accurate estimation of the numerous bi-allelic markers available from the HD 

SNP-chip is difficult for the current evaluation methods in most of the breeds. 

However, the rapid improvement of biotechnology has led to large scale whole-

genome re-sequencing projects, which – combined with imputation – allows for the 

determination and prediction of tens of millions of SNP markers at a reasonable price 

for a large number of individuals (Daetwyler et al., 2014; Boussaha et al., 2016). 

Within the framework of the 1000 bull genomes project, Boussaha et al. (2016) 

identified approximately 28 million SNP on the bovine genome. The most important 

advantage of such a dataset is that it implicitly includes all causative mutations 

(excluding – at least directly – those that are due to structural variations). However, 

its analysis is not feasible with the genomic evaluation methods available today. This 
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was most recently demonstrated by several presentations at the most recent (67th) 

Annual Meeting of the European Federation of Animal Science (e.g. Erbe et al., 

2016). Indeed, no large improvements were obtained in terms of selection accuracy 

when using such a dataset and it was concluded that pre-selection of markers is 

essential when using whole-genome sequence (WGS) data in genomic evaluation 

studies (van den Berg et al., 2016). It is worth mentioning that the imputation of rare 

alleles is difficult when the number of re-sequenced bulls of the breed of interest is 

limited (Bouwman and Veerkamp, 2014), which further complicates the use of WGS 

data for genomic selection purposes. 

The concept of haploblocks was first published by Knürr et al. (2013) and it led to 

slight improvements in reliabilities. Cuyabano et al. (2015) published more promising 

results: they showed that the use of LD-based haploblocks as predictors instead of 

individual SNP is beneficial when using HD SNP-chip data in dairy cattle. We 

demonstrated that the combined use of such haploblocks with haplotype selection 

methods based on allele frequency information can outperform individual SNP as 

genetic markers as well. These methods are therefore promising to decrease the 

number of effects to be estimated when analyzing either high-density or WGS data. 

Use of HD SNP-chip was unsatisfactory in a single-breed context using the largest 

breed included in this study. This is not in accordance with the results of Cuyabano et 

al. (2015), who could show an improvement with the HD SNP-chip compared to the 

50K SNP-chip when using haploblock information. However, this discrepancy may be 

related to the fact that Cuyabano et al. (2015) had ~30% fewer SNP for the analysis 

after editing (492,057 vs. 706,791 in our study) and more than twice as many 

progeny-tested bulls (5,214 vs. 2,235). 

5.8 Future perspectives 

The advent of whole-genome sequencing started only a few years ago. In the near 

future, more and more animals are expected to be imputed with better accuracy to 

tens of millions of SNP and the available genotype data may be of the same order of 

magnitude as the number of phenotype observations. In parallel, more effort will be 

devoted to the analysis of WGS data to successfully exploit it for genomic evaluation 
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purposes. Reduction of the number of SNP prior to any analysis will be unavoidable 

and any efficient method to do so will be of great relevance. The haplotype selection 

method developed here can be a good candidate for this as it relies on simple 

statistical assumptions and does not require additional information (i.e., other than 

the genotypes). 

In addition, the 50K SNP-chip will continue to be used or new "custom" 50K chips 

can be assembled either from the high-density SNP-chip or from WGS results in 

order to further improve the performance of genomic evaluations. Haplotype 

selection/construction can play an important role in the exploitation of these new 

panels as well. 

The French routine genomic evaluation applied to the regional breeds gave 

appealing results. However, most of the additional tests we implemented to improve 

the performance of the routine analysis in these breeds either improved it only slightly 

(e.g. use of causative mutations) or the improvement was breed-dependent (e.g. the 

use of HD data or multi-breed training populations). The following changes might 

improve the performance of the routine evaluations: 

Inclusion of causative mutations 

Probably the most promising improvement is the inclusion of information on 

candidate mutations in the evaluation. The main reason for this assumption is that 

these mutations were often identified as potential candidate mutations for the same 

traits, but in other breeds. Therefore there is strong prior information that these SNP 

might be causative mutations in the regional breeds as well, when they segregate in 

such breeds. In our analyses, we could not completely exploit this information and 

therefore further research should address this question. BayesRC is a promising 

method, because this approach can incorporate the strong prior information that 

some SNP are present in a functional part of the genome and therefore are more 

likely to be causative mutations (MacLeod et al., 2016). 

Subsets of high-density data 
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Instead of using all SNP from the HD chip, using only a subset of them can reduce 

the number of effects to be estimated in genomic evaluation. A subset can be 

created by, for example, excluding the SNP that are in very high LD with neighboring 

SNP or the SNP, which are far away from genes or regulatory regions. The average 

distance between neighboring SNP from the 50K is ~3,500 bp, while r2 was on 

average 64% for SNP with <5,000 bp between them (Figure 8; ~61% in a multi-

breed case: S. figure 5). This suggests that there is room to decrease the number of 

SNP without risking a diminishing selection performance, since de Roos et al. (2008) 

recommended 20% or Cuyabano et al. (2014) used 45%. For example the creation of 

a “transcriptome set” (i.e. the set of SNP located either on genes or +/- 1Kb from 

genes) was shown to improve the efficiency of multi-breed genomic evaluation (Erbe 

et al., 2012). In their study the “transcriptome” panel included ~58,500 SNP and it 

increased the selection accuracy compared to the 50K and measured in the smaller 

breed (Jersey) for milk yield (+12%) and protein yield (+10%). However, the selection 

accuracy diminished for fat yield (-5%). 

Exploit LD-phase information 

Inclusion of LD-phase information (e.g. as it was done by Porto-Neto et al., 2015) can 

be a step towards distinguishing common and breed-specific QTL. Porto-Neto et al. 

(2015) identified the SNP that had similar effects in two different breeds based on a 

within-breed analysis and considered them as SNP linked to common QTL. The 

published results are promising. If the breed-specific and common SNP can be 

accurately distinguished, the breed-specific QTL effects could be estimated 

independently from the other breeds. This can significantly contribute to an accurate 

allele effect estimation of breed-specific QTL in an otherwise multi-breed analysis. 

However, the accurate distinction of breed-specific QTL from the shared QTL is 

difficult in large breeds and even more difficult in regional ones. 

Combine haploblock information and HD data 

The combined use of haploblocks and the HD SNP-chip data in a multi-breed context 

was unfortunately not possible due to the too large number of SNP within 
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haploblocks (up to 542). This was beyond the capacity of the available software, but 

it is still a promising direction for future research. However, there were ~26,000 

haploblocks created in total (with ~275,000 allele effects) when the 4 regional breeds 

were included together in the dataset, which might be disproportionately large 

compared to the number of available phenotypes. 

In conclusion, there are still promising opportunities to improve the performance of 

genomic evaluation methods in the regional breeds. Eventually, these improvements 

might further decrease the differences between the genetic potential of large and 

regional breeds. 
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Chapter 6  

Concluding remarks 

Genetic improvement of livestock helps to increase the production level of breeds, 

the adaptation of the breeds to farming systems as well as to the ever changing 

production environments. It is an important component to improve the cow 

productivity in all aspects which significantly contributes to the competitiveness of the 

farmers on an open market. 

A revolutionary change has occurred in the past decade, which culminated with the 

introduction of genomic evaluation in the largest dairy cattle breeds in multiple 

countries. The lack of genomic evaluation in the remaining (mainly regional) breeds 

put these breeds into a difficult situation with weaknesses that cannot be avoided 

using traditional selection. During this PhD work, we addressed the increasing 

demand of breeding organizations of such breeds for a genomic evaluation method 

that is efficient in small breeds. 

We chose to use haplotype-based genomic evaluation methods to address this 

question, because the linkage disequilibrium between the (usually unknown) 

causative mutations and the haplotype markers is expected to be higher than the 

linkage disequilibrium with individual SNP. We could provide empirical proof to 

support this claim. In several independent analyses, we found that a haplotype size 
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of 4 SNP was performing best. The first observations made on a large breed led us to 

the conclusion that using all haplotypes in a regional breed with a very limited 

reference population would be most likely inefficient due to over-parameterization. 

Therefore, we had to decrease the number of haplotype markers used in the models. 

We showed that this can be efficiently done in large breeds by either selecting 

markers based on a prior QTL detection analysis or by exploiting information on the 

linkage disequilibrium pattern along the genome. 

We developed a methodology for haplotype selection relying on haplotype allele 

frequency information which outperformed the haplotypes built from flanking markers 

in genomic evaluation. Using this approach, we could also confirm that statistical 

parameters, such as the haplotype allele frequencies or the linkage disequilibrium 

can be used to pre-select haplotypes for genomic evaluation purposes and that the 

selected haplotypes can improve the efficiency of genomic evaluation. The number of 

haplotypes could be greatly reduced along the genome as well. However, the 

combined use of both selection criteria (i.e. allele frequency and linkage 

disequilibrium) required a large reference population. Given these results, the 

haplotype selection method based on haplotype allele frequency information was 

incorporated into the French routine genomic evaluation in April, 2015. 

We evaluated the performance of the routine French genomic evaluation in four 

regional breeds and found that genomic evaluation was efficient in these breeds. As 

a consequence, genomic evaluation was officially implemented in three of the four 

breeds (namely, Abondance, Tarentaise and Vosgienne) in 2016. Genomic 

evaluation can be predicted to have a large and positive impact on the realized 

annual genetic gain (increasing it by 3-fold, compared to the annual genetic gain 

obtained with progeny testing in these breeds) and on their genetic variability as well. 

However, none of the benefits will be existent if farmers do not use young bulls with 

genomic breeding values in practice. Therefore it is fundamental that farmers are 

encouraged to use young bulls based on their GEBV. Furthermore, trainings should 

be also organized for farmers to ensure that their information about genomic 

evaluation is up to date and to create a forum where their questions can be 

addressed. 
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Genotyping of cows and young heifers will likely continue in all regional breeds in 

which genomic evaluation was implemented. Breeding organizations of these breeds 

receive funding mainly from the regional governments as incentives to preserve and 

improve them, not only to maintain biodiversity in livestock species but also because 

they are important parts of the economy of their regions of origin. Furthermore, 

research programs aiming at further improving the performance of genomic 

evaluations in breeds with a reference population of limited size should continue. 

These works could include among others, multi-breed genomic evaluation studies or 

the use of candidate mutations to enhance the performance of genomic evaluations. 

They can contribute to an increased efficiency of genomic evaluation in regional 

breeds in the future. 

Through this work, we demonstrated that genomic evaluation is efficient in four 

French regional breeds and that there are opportunities for further development of 

genomic selection in these breeds. Maintenance of regional breeds is essential both 

for agriculture and for the society and in this context, the introduction of genomic 

evaluation will play a significant role. The apparently fast practical implementation of 

genomic selection since the first genomic evaluation is a good sign for the future. In 

the longer term, the continuation of an efficient genomic selection will continue to 

require the collaboration of farmers, breeding organizations, scientists and 

representatives of the (regional) governments. 
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Appendix A 

S. table 1: GBLUP results of 5 production traits in the Montbéliarde breed. Calculated 

correlation coefficients and regression slopes are shown in the table below. These 

results were better than those of the pedigree-based BLUP (results not shown), but 

slightly inferior compared to those obtained with haplotypic GS3 (Table 4). 

S. table 1: Correlation coefficients and regression slopes of DYD on GEBV values 
obtained with the GBLUP analysis (Montbéliarde breed). 

Trait name Correlation coefficient Regression slope 

MY 0.490 0.810 

FY 0.551 0.850 

PY 0.478 0.738 

FC 0.570 0.785 

PC 0.584 0.987 

Average2 0.535 0.166 
1: Trait name abbreviations: MY – milk yield; FY – fat yield; PY – protein yield; FC – fat content; PC – protein content 

2: Average deviations from 1 are indicated for the regression slope 
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Appendix B 

Additional figures and tables related to the discussion of the new haplotype selection 

procedure presented in section 3.4. A short explanation is added to each table/figure. 

S. figure 1: Frequency distribution of the distances between adjacent SNP from 

either the 50K or the HD chip. Note the 1 order difference in magnitude between x-

axis values of the 2 figures. 

(See next page for the plots.) 
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50K 

 

HD 

 

S. figure 1: Frequency distribution of the distances between neighboring SNP from 
the (A) 50K and (B) HD SNP panels. Frequencies are calculated for every bins of 100 
bp and 2500 bp for the HD and 50K SNP panels, respectively. 

S. figure 2: Distribution of haplotype allele frequencies with 2 haplotype construction 

methods (Criterion-B and flanking haplotypes) using HD chip data and haplotypes of 

3 SNP with both methods. Window size was 80 SNP in case of Criterion-B. Criterion-

B resulted in better distribution of allele frequencies with less over-represented alleles 

and more alleles with an intermediate (10-40%) frequency. 
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S. figure 2: Overall distribution of haplotype allele frequencies according to the 
haplotype construction approach (haplotype size: 3 SNP; 6,000 QTL-SNP). The 0-
10% region is also depicted with a more detailed scale on the x-axis. 

S. table 2 and S. table 3: Correlation coefficients (S. table 2) and regression slopes 

(S. table 3) of DYD on GEBV with different SNP-based and haplotype-based 

genomic evaluation methods using HD data with the Montbéliarde breed.a) QTL-SNP 

test: analysis using SNP identified in a prior QTL detection step; b) flanking 

haplotypes: using haplotypes built from the QTL-SNP and the neighboring SNP; c) 

flanking SNP: using the same markers as with the flanking haplotypes but as 

independent, single-SNP markers; d) Criterion-B haplotypes: haplotypes selected by 

Criterion-B from a 10 SNP-wide window surrounding the QTL-SNP; e) Criterion-B 

SNP: using the same markers as with the Criterion-B haplotypes but as independent, 

single-SNP markers. 

Flanking haplotypes outperformed the analyses using only the QTL-SNP as genetic 

markers, while Criterion-B outperformed the flanking haplotypes. These are true for 

both the correlation coefficients and regression slopes and for both cases when the 

markers were used as haplotypes or as individual SNP. 
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S. table 2: Correlations between genomic estimated breeding values and DYD in the validation population for the scenario with an 
optimal number of QTL are presented. Window size: 80 SNP; Montbéliarde breed. 

Haplotype 
selection 
method 

Marker type 
Haplotype 

size 
Milk 

quantity 
Fat 

yield 
Protein 
yield 

Fat 
content 

Protein 
content 

Average 

QTL-SNP SNP 1 0.467 0.478 0.412 0.560 0.574 0.498 

Flanking 
markers 

SNP1 
3 0.456 0.491 0.415 0.563 0.591 0.503 
4 0.455 0.490 0.418 0.560 0.591 0.503 

haplotype 
3 0.481 0.530 0.433 0.565 0.604 0.523 
4 0.483 0.536 0.440 0.570 0.618 0.529 

Criterion-B 

SNP1 
3 0.462 0.503 0.434 0.588 0.614 0.520 
4 0.477 0.511 0.445 0.588 0.610 0.526 

haplotype 
3 0.476 0.539 0.452 0.585 0.614 0.533 
4 0.494 0.543 0.461 0.575 0.614 0.537 

1:All the SNP used for  haplotypes are included in the BayesC analysis but they are used separately, as independent explanatory variables. 
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S. table 3: Regression slopes of DYD on GEBV in the validation population for the scenario with an optimal number of QTL are 
presented. Window size: 80 SNP; Montbéliarde breed. 

Haplotype 
selection 
method 

Marker type 
Haplotype 

size 
Milk 

quantity 
Fat 

yield 
Protein 
yield 

Fat 
content 

Protein 
content 

Average 

QTL-SNP SNP 1 0.631 0.594 0.519 0.758 0.780 0.656 

Flanking 
markers 

SNP1 
3 0.632 0.649 0.545 0.791 0.808 0.685 
4 0.635 0.652 0.550 0.788 0.809 0.687 

haplotype 
3 0.705 0.739 0.594 0.804 0.868 0.742 
4 0.722 0.778 0.622 0.833 0.884 0.768 

Criterion-B 

SNP1 
3 0.677 0.675 0.598 0.828 0.895 0.735 
4 0.721 0.702 0.621 0.819 0.894 0.751 

haplotype 
3 0.747 0.781 0.676 0.835 0.945 0.796 
4 0.804 0.824 0.691 0.830 0.974 0.825 

1:All the SNP included in the haplotypes are included in the BayesC analysis but they are used separately, as independent explanatory variables. 
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Appendix C 

LD-decay pattern in the multi-breed scenarios are shown either with 2 breeds (S. 

figure 3) or with 3 breeds (S. figure 4) or with all the 4 regional breeds contributing 

to the multi-breed population (S. figure 5). 

The LD-decay is faster with more breeds contributing to the evaluated population, 

which is in accordance with the expectations: due to the between-breed genetic 

diversity, if more breeds are included in the analysis, a faster LD-decay is expected. 

However, the difference between the curves is minor, which is due to the short 

evolutionary distance between these breeds (e.g. see Figure 3). This also explains 

why the LD-decay in the multi-breed scenarios is also remarkably similar to that in 

the single-breed scenarios (Figure 9). 

 

S. figure 3: Linkage disequilibrium decay in the multi-breed (2-breed) scenarios. 
Breed name abbreviations: A – Abondance; T – Tarentaise; S – Simmental ; V – 
Vosgienne. 
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S. figure 4: Linkage disequilibrium decay in the multi-breed (3-breed) scenarios. 
Breed name abbreviations: A – Abondance; T – Tarentaise; S – Simmental ; V – 
Vosgienne. 
 

 

S. figure 5: Linkage disequilibrium decay in the multi-breed (4-breed) scenario. 
Breed name abbreviations: A – Abondance; T – Tarentaise; S – Simmental ; V – 
Vosgienne. 
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Appendix D 

S. figure 6: Effect of including the candidate mutations in the analysis with the 

BayesR method, compared to the scenario with only the 50K data used. Gain/loss in 

correlations between YD and GEBV of the animals in the validation population are 

shown. 

These results were almost exclusively inferior compared to the same values obtained 

with BayesC (Figure 11). 

 

S. figure 6: Effect of the inclusion of candidate mutations on the correlation between 
YD and GEBV measured on the validation population (BayesR). 
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Appendix E 

Most of the values presented in Table 18 are based on real-life information from 2 

breeds (Abondance and Tarentaise; Vosgienne is not considered due to its very 

particular situation), in which genomic evaluation was implemented in France. The 

way we obtained these estimates is presented in detail here. To create Table 18, the 

following four selection schemes were compared: 

− Large breeds with genomic evaluation 

− Regional breeds with progeny testing 

− Regional breeds with genomic evaluation, but retaining progeny testing (i.e., 

with a proportion of AI done using “unorganized progeny tested” bulls, that is 

evaluated on the basis of their first crop daughter records) 

− Regional breeds purely with genomic evaluation, i.e., all offspring born 

(daughters and bulls) are from young bulls 

These four scenarios are discussed in detail below. 

Large breeds with genomic evaluation implemented 

Real-life (rough) estimates were available for the large breed scenario. The final 

estimate for ∆G (0.47) is the same as in Schaeffer (2006). 

Regional breeds with progeny testing 

Before 2016, a breeding program based on progeny testing was implemented in the 

regional breeds, without any genomic information. The three parameters (selection 

intensity, selection accuracy and generation interval) are discussed here for each of 

the 4 paths (see section 2.6.1 of Chapter 2). 

Selection intensity 
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− Sires of bulls 

Table 1 shows the number of progeny tested bulls every year in the 4 regional 

breeds. The average number of bulls selected each year based on their progeny test 

results is 5 and 4 for Abondance and Tarentaise, respectively (D. Boichard and S. 

Barbier, 2016, personal communication). This means that ~40% of the tested males 

are selected (i.e. selection intensity: 0.97) on the “sires of bulls” path. 

− Sires of cows 

Approximately 50% of the cows are used for progeny testing, therefore these cows 

are inseminated with semen from unproven bulls; these bulls are assumed to 

represent the mean of the population of progeny of elite bulls and cows (whose 

selection intensity is taken into account in the sires of bulls and dams of bulls paths) 

and therefore the selection intensity is ~0 for them. The other 50% of the cows are 

inseminated with proven bulls (selection intensity ~0.97). A weighted selection 

intensity is calculated for the “sires of cows” path and it gives ~0.49 (or ~70% 

selection proportion). 

− Dams of bulls 

No data was available to estimate this parameter. Schaeffer (2006) used 2% for large 

breeds, but it is likely to be higher for the regional breeds and here it was assumed to 

be 5%. 

− Dams of cows 

Dams of cows are largely unselected as (nearly) all of the females are required to 

maintain the constant population size (selection proportion: 100%; selection intensity: 

0,0). 

Selection accuracy 

− Sires of bulls 

Bulls were progeny tested with ~25-30 individuals to obtain a reliability of ~0.50 for 

these animals (D. Boichard, personal communication). The corresponding accuracy 

is ~0.71. 
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− Sires of cows 

Accuracy of progeny tested bulls: ~0.71; accuracy of unproven bulls: 0. Similarly to 

the selection intensities, these accuracies are weighted with 0.5 and 0.5, 

respectively, because 50% of the cows are “used” for progeny testing and 50% of 

them are inseminated with semen of proven bulls. 

− Dams of bulls 

Dams of bulls are required to have at least 2 finished lactations. Therefore their 

accuracy is larger than the accuracy on the “dams of cows” path, but lower than that 

of the progeny tested bulls. It was assumed to be ~0.70. 

− Dams of cows 

Dams of cows have own performance records only; the accuracy of these animals 

was assumed to be ~0.60. Note that since selection intensity in cows is 0, this value 

is of no importance when calculating the annual genetic gain (that is because the 

genetic gain on this path is supposed to be zero irrespective of the selection 

accuracy). 

Generation interval 

All generation interval values were inspired by real data (Institut de l’Elevage, 2015c). 

Regional breeds with genomic evaluation 

In this scenario, only a genomic evaluation is assumed with no progeny testing. 

Again, the selection intensity, selection accuracy and generation interval are 

discussed separately: 

Selection intensity 

− Sires of bulls 

The ~10% figure was calculated from Table 17, which was created based on the 

information provided by the breeding organizations (S. Barbier, 2016, personal 

communication). The calculated intensities were averaged over the 2 breeds. 
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− Sires of cows 

Sires of cows were assumed to be the same as the sires of bulls. 

− Dams of bulls 

The ~10% figure was again calculated from Table 17. The calculated intensities were 

averaged over the 2 breeds. 

− Dams of cows 

Assuming an increase in the use of sexed semen (as observed in large breeds), it is 

expected that the number of female selection candidates will increase. Furthermore, 

genomic evaluation gives equally accurate GEBV for females as for males. As a 

consequence of these, selection intensity is expected to increase in females. 

However, still a large proportion will be needed to maintain the population size. The 

90% proportion (selection intensity equal to 0.2) in females is a rough estimate to 

express these expectations. 

Selection accuracy 

Selection accuracy is equally high for all paths. The 0.73 (a reliability of ~0.53) was 

chosen based on our estimates (Sanchez et al., 2016). 

Generation interval 

Generation intervals for the “sires of cows” “sires of bulls” are expected to be similar 

to those of the corresponding large breeds generation intervals. That is because 

GEBV are available before maturity. The generation interval in the “dams of sires” 

path is expected to increase slightly. 

Generation interval in the “Dams of cows” path is not expected to be affected by the 

introduction of genomic selection in the regional breeds, because cows were used for 

breeding at the age of maturity even in the previous selection program. Therefore, no 

decrease is expected on this path (unless using sexed semen is essentially on 

heifers). 
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Regional breeds with genomic evaluation, but retaining progeny testing 

In this scenario, ~10% of the bulls with GEBV are retained for progeny testing (18-20 

animals, depending on the breed) and 30% of them (5-6) are kept after progeny 

testing. 

Compared with the previous scenario, the “dams of bulls” and “dams of cows” paths 

are unaffected by the fact that progeny testing is retained. 

Selection intensity 

− Sires of bulls 

Sires of bulls come from the progeny tested bulls. Therefore, the 5-6 bulls passing 

progeny testing will become sires of bulls from a total of 120-150, which is ~4% of all 

the candidates. The corresponding intensity is 2.15. 

− Sires of cows 

The long-term aim of the breeding organizations is to inseminate 70% of the cows by 

the selection candidates with GEBV only (S. Barbier, 2016, personal communication), 

while the remaining 30% of the cows are going to be inseminated with semen from 

progeny tested bulls. The intensities with and without progeny testing are 1.76 and 

2.15, respectively. Weighting these gives a combined intensity for sires of cows of 

1.88 (~8% of the population selected). 

Selection accuracy 

− Sires of bulls 

Compared to the genomic evaluation scheme, the selection accuracy will increase 

due to progeny testing. Here we assume that the reliability will be ~70%. The 

corresponding accuracy is ~84%. 

− Sires of cows 
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Similarly to selection intensity, weighting the selection accuracy of progeny tested 

bulls (0.84) with 30% and the accuracy of bulls with GEBV only (0.73) will result in an 

overall accuracy of 0.76 in this path. 

Generation interval 

− Sires of bulls 

Generation interval in this path is the same as with progeny testing. 

− Sires of cows 

Generation interval in this path is the weighted average of the generation interval with 

progeny testing (7.5 years with a weight of 30%) and with genomic evaluation only 

(2.5 years with a weight of 70%). Combined together, it results in a generation 

interval of 4 years for this path. 
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sélection génomique, des marqueurs 
de l’ADN sont utilisés pour l’évaluation des grandes 
races laitières. La plupart des méthodes d’évaluation 
génomique actuelles utilisent des SNP, bien que 
l’utilisation d’haplotypes de SNP apporte un plus 

isme. Il n’y avait pas d’évaluation 
génomique en place en 2014 pour les races 
régionales (Abondance, Tarentaise, Vosgienne), 
plaçant ces races en position de faiblesse. 
Notre objectif principal a été  de mesurer l’intérêt de 

valuation génomique, y 
compris à partir d’une population d’apprentissage 
multiraciale. Nous avons montré que les haplotypes 
conduisent à de meilleurs résultats que les SNP et 
que la fréquence des allèles et l’étendu du 
déséquilibre de liaison sont importants pour une 
construction optimale des haplotypes. Nous avons 
développé deux critères incorporant ces informations 

qui améliorent la précision des évaluations tout en 
réduisant le nombre de marqueurs utilisés.
Depuis 2015, un de ces critères a été inclus d
évaluations génomiques officielles en France. Notre 
approche a donné dans les races régionales une 
précision similaire à celle obtenue après testage sur 
descendance. Une évaluation génomique de routine 
est en place pour 3 races régionales en France
Juin 2016. L’utilisation d’une puce Haute Densité 
n’a pas amélioré sa précision, alors qu’une 
population d’apprentissage multiraciale a été 
bénéfique uniquement pour certaines races. Le 
génotypage des nouvelle femelles a augmenté la 
précision de la sélection  mais l’inclusion de 
mutations candidates détectées dans les grandes 
races laitières n’a conduit qu’à une légère 
amélioration chez les races régionales.

based genomic selection methods with focus on their 
breed context in dairy cattle 

enomic evaluation, multi-breed, haplotype, haploblock 

In genomic selection, DNA marker 
information is exploited for evaluation purposes in 

Most of the current 
genomic evaluation methods rely today on SNP 
information, although haplotypes are expected to 
perform better due to their higher polymorphism. In 
2014, genomic evaluation had not yet been 
implemented in regional breeds (Abondance, 

taise, Vosgienne), resulting in economic 

Our aim was to assess the use of haplotypes in 
genomic evaluation with focus on their performance 

-breed reference 
populations. We found that haplotypes 
outperformed individual SNP markers for genomic 
evaluation. We also showed that information on 
haplotype allele frequency and on linkage pattern 
are relevant to select haplotypes for evaluation  

purposes. Our haplotype selection criteria also 
allowed a significant reduction of the number of 
markers used for genomic prediction.
One of these criteria was incorporated into the 
French routine genomic evaluation in 2015. The 
performance of such an evaluation was then 
assessed in four regional breeds, leading to similar 
or higher accuracies than current progeny testing. 
Consequently, routine genomic evaluation was 
implemented in these breeds in 2016. The use of 
high density genotypes did not improve the 
performance of genomic evaluation in these breeds, 
while multi-breed training populations were 
beneficial only in some of them. Additional
genotyped females led to notable increases in 
selection accuracies. Inclusion of candidate 
mutations identified in large breeds led to only 
minor improvements in regional breeds.
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qui améliorent la précision des évaluations tout en 
réduisant le nombre de marqueurs utilisés. 
Depuis 2015, un de ces critères a été inclus dans les 
évaluations génomiques officielles en France. Notre 
approche a donné dans les races régionales une 
précision similaire à celle obtenue après testage sur 
descendance. Une évaluation génomique de routine 
est en place pour 3 races régionales en France depuis 
Juin 2016. L’utilisation d’une puce Haute Densité 
n’a pas amélioré sa précision, alors qu’une 
population d’apprentissage multiraciale a été 
bénéfique uniquement pour certaines races. Le 
génotypage des nouvelle femelles a augmenté la 

sélection  mais l’inclusion de 
mutations candidates détectées dans les grandes 
races laitières n’a conduit qu’à une légère 
amélioration chez les races régionales. 
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