R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, Supramolecular Coordination: Self-Assembly of Finite Two-and Three-Dimensional Ensembles, Chem. Rev, vol.111, issue.11, pp.6810-6918, 2011.

H. Amouri, C. Desmarets, and J. Moussa, Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration, Chem. Rev, vol.2012, issue.4, pp.2015-2041

M. Yoshizawa, J. K. Klosterman, and M. Fujita, Functional Molecular Flasks: New Properties and Reactions within Discrete, Self-Assembled Hosts, Angew. Chem. Int. Ed, vol.48, issue.19, pp.3418-3438, 2009.

F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, and . Julius, Molecular Encapsulation, Angew. Chem. Int. Ed, vol.41, issue.9, pp.1488-1508, 2002.

S. Leininger, B. Olenyuk, and P. J. Stang, Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals, Chem. Rev, vol.100, issue.3, pp.853-908, 2000.

S. H. Leenders, R. Gramage-doria, B. Bruin, and J. N. De;-reek, Transition Metal Catalysis in Confined Spaces, Chem. Soc. Rev, vol.44, issue.2, pp.433-448, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01472875

B. H. Northrop, H. Yang, and P. J. Stang, Coordination-Driven Self-Assembly of Functionalized Supramolecular Metallacycles, Chem. Commun, issue.45, pp.5896-5908, 2008.

J. R. Hall, S. J. Loeb, G. K. Shimizu, and G. P. Yap, Supramolecular Arrays of 4,7-Phenanthroline Complexes: Self-Assembly of Molecular Pd6 Hexagons, Angew. Chem. Int. Ed, vol.37, issue.1-2, pp.121-123, 1998.

F. Würthner, C. You, and C. R. Saha-möller, Metallosupramolecular Squares: From Structure to Function, Chem. Soc. Rev, vol.33, issue.3, pp.133-146, 2004.

S. Hwang, C. N. Moorefield, F. R. Fronczek, O. Lukoyanova, L. Echegoyen et al., Construction of Triangular Metallomacrocycles

, Chem. Commun, pp.713-715, 2005.

E. Holló-sitkei, G. Tárkányi, L. Párkányi, T. Megyes, and G. Besenyei, Steric Effects in the SelfAssembly of Palladium Complexes with Chelating Diamine Ligands, Eur. J. Inorg. Chem, issue.10, pp.1573-1583, 2008.

M. Yoshizawa, M. Nagao, K. Kumazawa, and M. Fujita, Side Chain-Directed Complementary CisCoordination of Two Pyridines on Pd(II): Selective Multicomponent Assembly of Square-, Rectangular-, and Trigonal Prism-Shaped Molecules, J. Organomet. Chem, issue.23, pp.5383-5388, 2005.

M. Fujita, J. Yazaki, and K. Ogura, Which Recognizes an Organic Molecule in Aqueous Media, Bpy = Bipyridine), vol.112, issue.14, pp.5645-5647, 1990.

R. V. Slone, D. I. Yoon, R. M. Calhoun, and J. T. Hupp, Luminescent Rhenium/Palladium Square Complex Exhibiting Excited State Intramolecular Electron Transfer Reactivity and Molecular Anion Sensing Characteristics, J. Am. Chem. Soc, vol.117, issue.47, pp.11813-11814, 1995.

C. J. Kuehl, S. D. Huang, and P. J. Stang, Self-Assembly with Postmodification: Kinetically Stabilized Metalla-Supramolecular Rectangles, J. Am. Chem. Soc, vol.123, issue.39, pp.9634-9641, 2001.

Y. K. Kryschenko, S. R. Seidel, A. M. Arif, and P. J. Stang, Coordination-Driven Self-Assembly of Predesigned Supramolecular Triangles, J. Am. Chem. Soc, vol.125, issue.17, pp.5193-5198, 2003.

A. G. Olive, K. Parkan, C. Givelet, and J. Michl, Covalent Stabilization: A Sturdy Molecular Square from Reversible Metal-Ion-Directed Self-Assembly, J. Am. Chem. Soc, issue.50, pp.20108-20111, 2011.

L. Zhao, K. Ghosh, Y. Zheng, M. M. Lyndon, T. I. Williams et al., Construction of Coordination-Driven Self-Assembled [5 + 5] Pentagons Using Metal?Carbonyl Dipyridine Ligands, Inorg. Chem, issue.13, pp.5590-5592, 2009.

H. Yang, N. Das, F. Huang, A. M. Hawkridge, D. D. Díaz et al., ]Nonane into Discrete 2D Supramolecules via Coordination-Driven SelfAssembly, J. Org. Chem, issue.9, pp.6644-6647, 2006.

B. Olenyuk, J. A. Whiteford, and P. J. Stang, Design and Study of Synthetic Chiral Nanoscopic Assemblies. Preparation and Characterization of Optically Active Hybrid, Iodonium?TransitionMetal and All-Transition-Metal Macrocyclic Molecular Squares, J. Am. Chem. Soc, vol.118, issue.35, pp.8221-8230, 1996.

S. J. Lee and W. Lin, A Chiral Molecular Square with Metallo-Corners for Enantioselective Sensing, J. Am. Chem. Soc, vol.124, issue.17, pp.4554-4555, 2002.

B. Hasenknopf, J. Lehn, B. O. Kneisel, G. Baum, and D. Fenske, Self-Assembly of a Circular Double Helicate, Angew. Chem. Int. Ed. Engl, vol.35, issue.16, pp.1838-1840, 1996.

P. J. Stang and B. Olenyuk, Directed Self-Assembly of Chiral, Optically Active Macrocyclic Tetranuclear Molecular Squares, Angew. Chem. Int. Ed. Engl, vol.35, issue.7, pp.732-736, 1996.

T. R. Cook and P. J. Stang, Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination, Chem. Rev, vol.115, issue.15, pp.7001-7045, 2015.

L. Chen, H. Yang, M. Shionoya, and . Metallosupramolecular-architectures, Chem. Soc. Rev, vol.2017, issue.9, pp.2555-2576

R. Custelcean, Anion Encapsulation and Dynamics in Self-Assembled Coordination Cages, Chem. Soc. Rev, vol.43, issue.6, pp.1813-1824, 2014.

A. M. Castilla, W. J. Ramsay, and J. R. Nitschke, Stereochemistry in Subcomponent Self-Assembly, vol.47, pp.2063-2073, 2014.

D. L. Caulder, R. E. Powers, T. N. Parac, and K. N. Raymond, The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster, Angew. Chem. Int. Ed, vol.37, pp.1840-1843, 1998.

E. J. Enemark and T. D. Stack, Stereospecificity and Self-Selectivity in the Generation of a Chiral Molecular Tetrahedron by Metal-Assisted Self-Assembly, Angew. Chem. Int. Ed, vol.37, issue.7, pp.932-935, 1998.

T. Liu, Y. Liu, W. Xuan, and Y. Cui, Chiral Nanoscale Metal-Organic Tetrahedral Cages: Diastereoselective Self-Assembly and Enantioselective Separation, Angew. Chem. Int. Ed, issue.24, pp.4121-4124, 2010.

C. Zhao, Q. Sun, W. M. Hart-cooper, A. G. Dipasquale, F. D. Toste et al., Chiral Amide Directed Assembly of a Diastereo-and Enantiopure Supramolecular Host and Its Application to Enantioselective Catalysis of Neutral Substrates, J. Am. Chem. Soc, p.18802, 2013.

C. R. Glasson, G. V. Meehan, J. K. Clegg, L. F. Lindoy, P. Turner et al., A New FeII Quaterpyridyl M4L6 Tetrahedron Exhibiting Selective Anion Binding, Chem. Commun, issue.10, pp.1190-1192, 2008.

R. Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A. Watson et al., Urea-Functionalized M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions, J. Am. Chem. Soc, vol.134, pp.8525-8534, 2012.

J. K. Clegg, J. Cremers, A. J. Hogben, B. Breiner, M. M. Smulders et al., A Stimuli Responsive System of Self-Assembled Anion-Binding Fe4L68+ Cages, Chem. Sci, vol.2013, issue.1, pp.68-76

N. Ousaka, J. K. Clegg, and J. R. Nitschke, Nonlinear Enhancement of Chiroptical Response through Subcomponent Substitution in M4L6 Cages, Angew. Chem. Int. Ed, vol.2012, issue.6, pp.1464-1468

A. M. Castilla, M. A. Miller, J. R. Nitschke, and M. M. Smulders, Quantification of Stereochemical Communication in Metal-Organic Assemblies, Angew. Chem. Int. Ed, vol.55, pp.10616-10620, 2016.

P. Mal, D. Schultz, K. Beyeh, K. Rissanen, and J. R. Nitschke, An Unlockable-Relockable Iron Cage by Subcomponent Self-Assembly, Angew. Chem. Int. Ed, vol.47, issue.43, pp.8297-8301, 2008.

R. W. Saalfrank, H. Glaser, B. Demleitner, F. Hampel, M. M. Chowdhry et al., Self-Assembly of Tetrahedral and Trigonal Antiprismatic Clusters, Chem. -Eur. J, vol.8, issue.2, pp.493-497, 2002.

M. Albrecht, Into the Next Dimension: Nanometer-Sized, Oligonuclear Coordination Compounds with C3-Symmetric Ligands, Angew. Chem. Int. Ed, vol.38, issue.23, pp.3463-3465, 1999.

R. W. Saalfrank, H. Maid, A. Scheurer, F. W. Heinemann, R. Puchta et al., Template and PH-Mediated Synthesis of Tetrahedral Indium Complexes

, Angew. Chem. Int. Ed, vol.47, issue.46, pp.8941-8945, 2008.

C. J. Brown, F. D. Toste, R. G. Bergman, and K. N. Raymond, Supramolecular Catalysis in MetalLigand Cluster Hosts, Chem. Rev, vol.115, issue.9, pp.3012-3035, 2015.

G. Gupta, A. Das, K. C. Park, A. Tron, H. Kim et al., Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization, 2017.

A. J. Musser, P. P. Neelakandan, J. M. Richter, H. Mori, R. H. Friend et al., Excitation Energy Delocalization and Transfer to Guests within MII 4L6 Cage Frameworks, J. Am. Chem. Soc, vol.2017, issue.34, pp.12050-12059

M. Fujita, J. Yazaki, and K. Ogura, Their Ability for Molecular Recognition, Macrocylic Polynuclear Complexes [(En)M(4,4?-Bpy)]4(NO3)81 (M = Pd or Pt) as "Inorganic Cyclophane, pp.5589-5592, 1991.

P. Mal, B. Breiner, K. Rissanen, and J. R. Nitschke, White Phosphorus Is Air-Stable within a SelfAssembled Tetrahedral Capsule, Science, vol.324, issue.5935, pp.1697-1699, 2009.

C. J. Brown, G. M. Miller, M. W. Johnson, R. G. Bergman, and K. N. Raymond, High-Turnover Supramolecular Catalysis by a Protected Ruthenium(II) Complex in Aqueous Solution, J. Am. Chem. Soc, issue.31, pp.11964-11966, 2011.

S. H. Leenders, R. Becker, T. Kumpulainen, B. De-bruin, T. Sawada et al., Selective Co-Encapsulation Inside an M6L4 Cage, Chem. -Eur. J, vol.22, issue.43, pp.15468-15474, 2016.

B. Therrien, G. Süss-fink, P. Govindaswamy, A. K. Renfrew, P. J. Dyson et al., Complex-ina-Complex" Cations [(Acac)2M?Ru6(p-IPrC6H4Me)6(Tpt)2(Dhbq)3]6+: A Trojan Horse for Cancer Cells, Angew. Chem. Int. Ed, vol.47, issue.20, pp.3773-3776, 2008.

D. H. Leung, *. Bergman, R. G. Raymond, *. , and K. N. , Highly Selective Supramolecular Catalyzed Allylic Alcohol Isomerization, Journal of the American Chemical Society

, J. Am. Chem. Soc, vol.129, pp.2746-2747, 2007.

J. Wang, C. J. Brown, R. G. Bergman, *. Raymond, K. N. Toste et al., Hydroalkoxylation Catalyzed by a Gold(I) Complex Encapsulated in a Supramolecular Host, J. Am. Chem. Soc, p.7358, 2011.

C. J. Brown, R. G. Bergman, and K. N. Raymond, Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly, J. Am. Chem. Soc, vol.131, issue.48, pp.17530-17531, 2009.

D. Fiedler, R. G. Bergman, and K. N. Raymond, Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host, Angew. Chem. Int. Ed, vol.43, issue.48, pp.6748-6751, 2004.

T. Murase, S. Peschard, S. Horiuchi, Y. Nishioka, and M. Fujita, Remote chiral transfer into [2+2] and [2+4] cycloadditions within self-assembled molecular flasks, Supramol. Chem, vol.23, pp.199-208, 2011.

. Bibliographie,

S. A. Cardile, T. J. Burchell, M. C. Jennings, and R. J. Puddephatt, Self-Assembly of Polymers through Dynamic Coordination Chemistry and Hydrogen Bonding: Polymers from Mercury(II) Halides and Bis(Amidopyridine) Ligands, J. Inorg. Organomet. Polym. Mater, vol.17, issue.1, pp.235-240, 2007.

M. Baghernejad, X. Zhao, K. Baruël-Ørnsø, M. Füeg, P. Moreno-garcía et al., Electrochemical Control of SingleMolecule Conductance by Fermi-Level Tuning and Conjugation Switching, J. Am. Chem. Soc, vol.136, issue.52, pp.17922-17925, 2014.

A. Murray and W. H. Langham, A Synthesis of Isonicotinic Acid by Halogen-Metal Exchange and Its Application to the Preparation of Isonicotinic-C14 Acid Hydrazide1, J. Am. Chem. Soc, vol.1952, issue.24, pp.6289-6290

A. Gouloumis, D. González-rodríguez, P. Vázquez, T. Torres, S. Liu et al., Control Over Charge Separation in Phthalocyanine?Anthraquinone Conjugates as a Function of the Aggregation Status, J. Am. Chem. Soc, vol.128, issue.39, pp.12674-12684, 2006.

B. Roy, R. Saha, A. K. Ghosh, Y. Patil, and P. S. Mukherjee, Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly, Inorg. Chem, vol.2017, issue.6, pp.3579-3588

I. E. Crandall, W. A. Szarek, and J. Z. Vlahakis, Triazolium and Imidazolium Salts as Parasiticides and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Malaria, 2010.

H. Cristau, P. P. Cellier, J. Spindler, and M. Taillefer, Highly Efficient and Mild CopperCatalyzed N-and C-Arylations with Aryl Bromides and Iodides, Chem. -Eur. J, vol.10, issue.22, pp.5607-5622, 2004.

S. H. Leenders, R. Becker, T. Kumpulainen, B. De-bruin, T. Sawada et al., Selective Co-Encapsulation Inside an M6L4 Cage, Chem. -Eur. J, vol.22, issue.43, pp.15468-15474, 2016.

R. Ahlrichs, M. Ballauff, K. Eichkorn, O. Hanemann, G. Kettenbach et al., Aqueous Ethylenediamine Dihydroxo Palladium(II): A Coordinating Agent for Low-and High-Molecular Weight Carbohydrates, Chem. -Eur. J, vol.4, issue.5, pp.835-844, 1998.

M. O. Banikhaled, J. D. Becker, M. Koppang, and H. Sun, Perfluoroalkylation of Square-Planar Transition Metal Complexes: A Strategy To Assemble Them into Solid State Materials with a ?-? Stacked Lamellar Structure, Cryst. Growth Des, vol.16, issue.4, pp.1869-1878, 2016.

T. Allscher, Y. Arendt, and P. Klüfers, Conformational Fluctuation in Palladium(II)-methyl Aldopentopyranoside Complexes, Carbohydr. Res, issue.16, pp.2381-2389, 2010.

G. W. Watt and D. G. Upchurch, Deprotonation of Bipyridyl(Ethylenediamine)PlatinumnII) Iodide, J. Am. Chem. Soc, vol.90, issue.4, pp.914-917, 1968.

M. T. Ma, H. N. Hoang, C. C. Scully, T. G. Appleton, and D. P. Fairlie, Metal Clips That Induce Unstructured Pentapeptides To Be ?-Helical In Water, J. Am. Chem. Soc, vol.131, issue.12, pp.4505-4512, 2009.

R. A. Adrian, S. Zhu, K. K. Klausmeyer, and J. A. Walmsley, Synthesis and X-Ray Crystal Structure Determination of Monomeric Cis-Pd(2,2?-Bipyridine)(NO3)2, Inorg. Chem. Commun, vol.10, issue.12, pp.1527-1530, 2007.

J. M. Tobin, J. Liu, H. Hayes, M. Demleitner, D. Ellis et al., BODIPYBased Conjugated Microporous Polymers as Reusable Heterogeneous Photosensitisers in a Photochemical Flow Reactor, Polym. Chem, vol.7, issue.43, pp.6662-6670, 2016.

R. Redón, N. G. García-peña, V. M. Ugalde-saldivar, and J. J. García, Palladium-Triazine Aminoalcohol Nanocomposite, Its Reactivity on Heck Reaction, J. Mol. Catal. Chem, vol.300, issue.1-2, pp.132-141, 2009.

M. Fujita, J. Yazaki, and K. Ogura, Which Recognizes an Organic Molecule in Aqueous Media, Bpy = Bipyridine), vol.112, issue.14, pp.5645-5647, 1990.

E. Holló-sitkei, G. Tárkányi, L. Párkányi, T. Megyes, and G. Besenyei, Steric Effects in the SelfAssembly of Palladium Complexes with Chelating Diamine Ligands, Eur. J. Inorg. Chem, issue.10, pp.1573-1583, 2008.

M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki et al., On the Structure of Transition-Metal-Linked Molecular Squares, Chem. Commun, issue.13, pp.1535-1536, 1996.

K. Yamaguchi, Cold-Spray Ionization Mass Spectrometry: Principle and Applications, J. Mass Spectrom, vol.38, issue.5, pp.473-490, 2003.

S. Sakamoto, M. Fujita, K. Kim, and K. Yamaguchi, Characterization of Self-Assembling NanoSized Structures by Means of Coldspray Ionization Mass Spectrometry, Tetrahedron, vol.56, issue.7, pp.955-964, 2000.

C. A. Schalley, T. Müller, P. Linnartz, M. Witt, M. Schäfer et al., Mass Spectrometric Characterization and Gas-Phase Chemistry of Self-Assembling Supramolecular Squares and Triangles, Chem. -Eur. J, vol.8, issue.15, pp.3538-3551, 2002.

M. Schweiger, S. R. Seidel, A. M. Arif, and P. J. Stang, Solution and Solid State Studies of a Triangle?Square Equilibrium: Anion-Induced Selective Crystallization in Supramolecular SelfAssembly, Inorg. Chem, issue.9, pp.2556-2559, 2002.

B. Roy, R. Saha, A. K. Ghosh, Y. Patil, and P. S. Mukherjee, Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly, Inorg. Chem, vol.2017, issue.6, pp.3579-3588

S. Sakamoto, M. Yoshizawa, T. Kusukawa, M. Fujita, and K. Yamaguchi, Characterization of Encapsulating Supramolecules by Using CSI-MS with Ionization-Promoting Reagents, Org. Lett, vol.3, issue.11, p.1601, 2001.

, L'encapsulation de l'invité I-8 est mise en évidence par les signaux blindés observés entre 5,0 et 7,0 ppm et le signe négatif des effets NOE associés à ces protons

, Néanmoins, la trop faible intensité de ces signaux ne permet, ni d'observer par NOESY une interaction entre I-8 et Prism-1, ni de déterminer son coefficient de diffusion avec précision

. Cependant,

, Le succès de l'auto-assemblage de la structure prismatique Prism-1 ayant été validé avec Pd-2, des essais ont été réalisés en faisant varier les ligands tritopiques (3tpt, tib, tipt) en présence de l'invité I-8. Malheureusement, aucune auto-assemblée n

, Un second criblage d'auto-assemblages a été réalisé en faisant varier les complexes de coordination, les ligands bitopiques et les invités mais en conservant le ligand 4tpt

I. V. Schéma, 2-4 : Auto-assemblages étudiés à partir des différentes briques moléculaires Conclusion Des structures prismatiques chirales Prism-1 et Prism-2 ont été synthétisées à partir de l'autoassemblage Pd-2 / 4tpt / L H et L 4Me respectivement

, Prism-2, obtenu sous forme d'un racémique P-(Prism-2 (I-8)2) et M-(Prism-2 (I-8)2), a été entièrement caractérisé en solution et par DFT

, Un analogue énantiopur a été synthétisé par auto-assemblage de L 4Me

, Prism-3 (I-8)2) obtenu a été entièrement caractérisé par spectroscopie RMN

M. Yoshizawa, M. Nagao, K. Kumazawa, and M. Fujita, Side Chain-Directed Complementary Cis-Coordination of Two Pyridines on Pd(II): Selective Multicomponent Assembly of Square-, Rectangular-, and Trigonal Prism-Shaped Molecules, J. Organomet. Chem, issue.23, pp.5383-5388, 2005.

Y. Nishioka, T. Yamaguchi, M. Kawano, and M. Fujita, Asymmetric [2 + 2] Olefin Cross Photoaddition in a Self-Assembled Host with Remote Chiral Auxiliaries, J. Am. Chem. Soc, vol.130, issue.26, pp.8160-8161, 2008.

M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi et al., Self-Assembly of Ten Molecules into Nanometre-Sized Organic Host Frameworks, Nature, vol.378, issue.6556, pp.469-471, 1995.

R. D. Gaussian09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria et al., , 2013.

A. D. Becke, Density-functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, vol.98, issue.7, pp.5648-5652, 1993.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, vol.46, issue.11, pp.6671-6687, 1992.

D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß, Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements, Theor. Chim. Acta, vol.77, issue.2, pp.123-141, 1990.

A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth et al., A Set of F-Polarization Functions for PseudoPotential Basis Sets of the Transition Metals Sc Cu, Chem. Phys. Lett, vol.208, issue.1, pp.111-114, 1993.

J. M. Martin and A. Sundermann, Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe, J. Chem. Phys, vol.114, issue.8, pp.3408-3420, 2001.

R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules, J. Chem. Phys, vol.54, issue.2, pp.724-728, 1971.

W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys, vol.1972, issue.5, pp.2257-2261

P. C. Hariharan and J. A. Pople, The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies, Theor. Chim. Acta, vol.28, issue.3, pp.213-222, 1973.

P. C. Hariharan and J. A. Pople, Accuracy of AHn Equilibrium Geometries by Single Determinant Molecular Orbital Theory, Mol Phys, vol.27, pp.209-214, 1974.

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon et al., Self-consistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements, J. Chem. Phys, vol.1982, issue.7, pp.3654-3665

T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. Schleyer, Efficient Diffuse FunctionAugmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F, J. Comput. Chem, vol.4, issue.3, pp.294-301, 1983.

M. J. Frisch, J. A. Pople, and J. S. Binkley, Self-consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys, vol.80, issue.7, pp.3265-3269, 1984.

S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density Functional Theory, J. Comput. Chem, issue.7, pp.1456-1465, 2011.

A. E. Reed and F. Weinhold, Natural Bond Orbital Analysis of Near-Hartree-Fock Water Dimer, J. Chem. Phys, vol.78, issue.6, pp.4066-4073, 1983.

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev, vol.88, issue.6, pp.899-926, 1988.

, Projets en cours et perspectives

, La synthèse et la caractérisation des auto-assemblées prismatiques chirales ayant été effectuées, nos efforts se sont portés sur l'utilisation de ces supramolécules

, Ces essais préliminaires ont été réalisés avec l'auto-assemblée Prism-2. Echange d'invités encapsulés

. Dans, A partir du système Prism-2 (I-8)2.NO3, un échange d'invités a été envisagé en milieu biphasique. L'extraction de l'invité a été réalisée avec un solvant organique, tel que le dichlorométhane, à partir d'une solution aqueuse du système Prism-2 (I-8)2.NO3. Malheureusement, l'auto-assemblée n'est pas assez stable sans invité et se décompose, nous avons procédé en deux étapes : extraction de l'invité (1) puis encapsulation de l'invité

. Dans, nous avons procédé à l'extraction de l'invité (1) et l'encapsulation de l'invité (2) en une seule étape. Dans une solution aqueuse de Prism-2 (I-8)2.NO3, un excès du dérivé anthracène I-10 a été introduit et le mélange a été agité à 80 °C pendant 24 h (Schéma V.1-1). La formation d

V. Schéma, 1-1: Encapsulation de I-10 en solution

. Cependant, en raison de la faible résolution des signaux et de leur multiplicité, il n'a pas été possible de conclure quant à la composition exacte de la cavité des invités encapsulés

, Cette stratégie consiste à réaliser le processus d'extraction de l'invité 1 puis d'encapsulation de l'invité 2 en milieu hétérogène solide/liquide. Nous avons extrait l'invité par lavage du système Prism-2 (ISchéma V.1-4 : Réaction du composé I-8 avec I-20 catalysée par une structure prismatique

, L'étude de cette réaction avec le système Prism-2 (I-8)2.NO3 est en cours et pourrait permettre de mettre en évidence le rôle de catalyseur de notre auto-assemblée. De plus, nous pourrions aussi étudier l'induction asymétrique de l'auto-assemblée énantiopure Prism-3 sur cette réaction avec l

D. , encapsulation de complexes organométalliques à l'intérieur des structures prismatiques chirales est réalisée, nous envisageons leur étude dans des réactions métallo-catalysées

V. Schéma, 1-5 : Exemple d'une réaction métallo-catalysée envisagée 4

, Notre stratégie de synthèse a permis d'induire une chiralité inhérente aux structures prismatiques. Nous souhaitons étendre cette stratégie pour la synthèse de structures analogues de platine (II). De plus, nous développerons cette stratégie pour la synthèse de nouvelles structures énantiopures de palladium

, Pour cela, nous envisageons l'utilisation des nouvelles briques moléculaires comme celles représentées

M. Yoshizawa, M. Tamura, and M. Fujita, Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis, Science, issue.5771, pp.251-254, 2006.

D. Samanta, S. Mukherjee, Y. P. Patil, and P. S. Mukherjee, Self-Assembled Pd6 Open Cage with Triimidazole Walls and the Use of Its Confined Nanospace for Catalytic Knoevenagel-and DielsAlder Reactions in Aqueous Medium, Chem. -Eur. J, vol.2012, issue.39, pp.12322-12329

P. Das, A. Kumar, P. Howlader, and P. S. Mukherjee, Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water, Chem. -Eur. J, vol.23, issue.51, pp.12565-12574, 2017.

B. M. Trost, B. Vidal, and M. Thommen, Novel Chiral Bidentate ?5-Cyclopentadienylphosphine Ligands: Their Asymmetric Induction at the Ruthenium(II) Center and Application in Catalysis, Chem. -Eur. J, vol.5, issue.3, pp.1055-1069, 1999.

, Spectre RMN COSY du composé 7 dans CDCl3

, Spectre RMN 13 C T-9.PF6 / C-9.PF6, 67 mM, CD3CN (cf

, Spectre RMN HSQC T-9.PF6 / C-9.PF6, à 67 mM, p.3

, Spectre ROESY T-9.PF6 / C-9.PF6, 67 mM, vol.233, p.3

, Massif isotopique de la structure C-9, p.6

, Massif isotopique de la structure T-9, p.6

, Caractérisation du mélange T-10 / C-10, vol.14

, Spectre RMN 1 H du mélange T-10.PF6 / C-10

, Spectre RMN ROESY T-10.PF6 / C-10.PF6 dans CD3CN, p.233

, Annexe 15 : Caractérisation du mélange T-11 / C-11

, Spectre RMN ROESY du mélange T-11.PF6 / C-11a.PF6 / C-11b.PF6, 15 mM, CD3CN, 233K Annexe, vol.16

, Spectre RMN ROESY de T-12.PF6,15 mM, p.3

, Distances des liaisons (Å) et angles (°) des atomes de la structure T-12, p.6

. Pd,

C. , , vol.119

, C(211)-N(21)-C(215)

C. , N(21)-Pd(2) 126.2(3)

C. , Pd(1) 114.5(3) C(215)-N(21)-Pd(2) 114, vol.2

, C(121)-N(12)-C(125) 119, vol.8

, C(221)-N(22)-C(225)

, C(221)-N(22)-Pd

, C(225)-N(22)-Pd

, C(231)-N(23)-C(232)

C. ,

C. ,

, C(241)-N(24)-C(242)

, C(241)-N(24)-Pd(2)

, C(242)-N(24)-Pd(2)

, C(231)-N(25)-C(233)

, C(231)-N(25)-C(164)

, C(233)-N(25)-C(164) 127.4(4)

C. , , vol.107

, C(241)-N(26)-C(243) 107.3(4)

, C(141)-N(16)-C(161) 126.2(4)

, C(241)-N(26)-C(261) 126, vol.8

C. , N(16)-C(161) 126.2(4)

, C(243)-N(26)-C(261)

, C(341)-N(34)-C(342)

, C(331)-N(35)-C(333)

, C(331)-N(35)-C(264)

, C(333)-N(35)-C(264)

, C(341)-N(36)-C(343)

, C(341)-N(36)-C(361)

, C(343)-N(36)-C(361)

C. , C(112)-C(111) 119.2(5) C(213)-C(212)-C(211), vol.118

, C(113)-C(114) 119.4(5) C(212)-C(213)-C(214), C, vol.119, issue.112

C. , C(114)-C(113) 119.7(5) C(213)-C(214)-C(215), vol.119

, C(115)-C(125) 114.2(4) N(21)-C(215)-C(225) 115, vol.6

C. , C(115)-C(125) 125.2(4) C(214)-C(215)-C(225)

, N(22)-C(221)-C(222) 122.3(5)

C. , C(122)-C(121) 119.4(5) C(221)-C(222)-C(223) 118, vol.8

C. , C(124) 119.2(4) C(224)-C(223)-C(222), vol.119

C. , C(124)-C(125) 119.5(4) C(223)-C(224)-C(225)

, N(22)-C(225)-C(224) 120, vol.8

, C(125)-C(115) 116.2(4) N(22)-C(225)-C(215), vol.114

C. , C(125)-C(115) 123.5(4) C(224)-C(225)-C(215)

, N(23)-C(231)-N(25)

, C(233)-C(232)-N(23)

, C(232)-C(233)-N(25)

, N(24)-C(241)-N(26)

, C(243)-C(242)-N(24), vol.108

, C(142)-C(143)-N(16) 106.5(4)

, C(242)-C(243)-N(26) 106.5(5)

C. , C(161)-C(166) 121.5(4) C(266)-C(261)-C(262)

, C(266)-C(261)-N(26)

, C(262)-C(261)-N(26) 119.5(4)

C. ,

C. ,

C. ,

, C(265)-C(264)-N(35) 119.3(4)

, C(165)-C(164)-N(25) 120.2(4)

, C(263)-C(264)-N(35) 119.2(4)

C. , C(165)-C(164) 119.3(5) C(264)-C(265)-C(266), vol.119

C. , C(166)-C(165) 119.2(4) C(261)-C(266)-C(265)

, C(324)-C(325)-C(315), vol.123

C. , C(312)-C(313) 119.2(5)

, C(332)-C(333)-N(35) 106.3(4)

C. ,

, C(313)-C(314)-C(315) 119, vol.8

, C(343)-C(342)-N(34)

, C(342)-C(343)-N(36) 107.6(4)

, C(314)-C(315)-C(325) 124.6(4)

, C(362)-C(361)-N(36)

, C(366)-C(361)-N(36) 118.5(4)

, ) C(361)-C(362)-C(363), vol.117

C. ,

C. , C(324)-C(325) 119.2(5) C(363)-C(364)-C(365)

, C(363)-C(364)-N(15)

, C(365)-C(364)-N(15)

, C(364)-C(365)-C(366) 119.6(5)

C. ,

, Spectre RMN 1 H du mélange T-7.PF6 / C-7.PF6, 15 mM, CD3CN (cf

, Spectre RMN ROESY du mélange T-7.PF6 / C-7.PF6, 15 mM, vol.3, p.233

, Spectres RMN 1 H du mélange T-7.PF6 / C-7.PF6 à différentes températures, p.2

, Spectre RMN 1 H du mélange T-7.NO3 / C-7.NO3, 10 mM, p.2

, Caractérisation du mélange T-13 / C-13, vol.18

, Spectre RMN ROESY de T-13.PF6 ,15 mM, vol.3, p.233

, Spectres RMN 1 H de T-15.PF6 à différentes températures, p.2

R. Spectres and . Roesy-de-t-15, , p.2

, Analyse des orientations de I-8 dans Prism, Annexe, vol.23, issue.2

. Intéressons-nous, En envisageant uniquement les orientations permettant la formation d'une liaison hydrogène, huit combinaisons sont possibles à partir des deux structures énantiomères (P/M)-Prism-2 (Figure 1). Figure 1 : Liaison hydrogènes possibles via l'interaction avec un seul pilier

P. , ?. , P. , ?. , P. Et-?-;-m-a1 et al., Deux molécules énantiomères étant magnétiquement équivalentes, elles ne peuvent être distinguées par spectroscopie RMN. L'étude des systèmes issus de la structure P-Prism-2 est donc suffisante pour, P-B2 sont respectivement les énantiomères des systèmes ?

, Par ailleurs, une rotation de 180° autour de l'axe de symétrie C2 du système ?,P-A1 permet de faire coïncider les deux systèmes ?,P-A1 et ?,P-A2 qui apparaissent alors identiques

, Par conséquent, seuls les systèmes ?,P-A1, ?,P-B1 et ?,P-B2

, Intéressons-nous à présent aux orientations impliquant deux piliers différents de la structure P-Prism

, En considérant à nouveau seulement les orientations des invités permettant la formation d'une liaison hydrogène avec H 2 , huit nouveaux systèmes ont été envisagés

, Annexe 24 : Caractérisation du système Prism-1 (I-8)2

, Spectre RMN 1 H de Prism-1 (I-8)2 dans D2O (cf

, Spectre RMN 13 C de Prism-1 (I-8)2 dans D2O (cf

, Annexe 25 : Caractérisation du système Prism-2 (I-8)2

, Spectre RMN 13 C de Prism-2 (I-8)2 dans D2O (cf

, Annexe 26 : Caractérisation du système Prism-3 (I-8)2

, Spectre RMN 13 C de Prism-3 (I-8)2 dans D2O (cf

, Calculs DFT du système Prism, vol.27

, Différence d'énergie libre calculée par DFT entre anti-Prism-2 et syn-Prism-2 (cf

, Différence d'énergie libre calculée par DFT entre anti-Prism-2 ((I-8)2)a et anti-Prism-2 ((I-8)2)b anti-Prism-2 syn

, ?G(anti-Prism-2) -?G(syn-Prism-2

, ?G(anti-Prism-2 ((I-8)2)a) -?G