M. Abichou, C. Fournier, T. Dornbusch, C. Chambon, R. Baccar et al., Re-parametrisation of Adel-wheat allows reducing the experimental effort to simulate the 3D development of winter wheat, 7th International Conference on FunctionalStructural Plant Models, pp.304-306, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851389

M. E. Abreu and S. Munne-bosch, Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants, Physiologia Plantarum, vol.134, pp.369-379, 2008.

C. J. Birch, B. Andrieu, C. Fournier, J. Vos, and P. Room, Modelling kinetics of plant canopy architecture-concepts and applications, European Journal of Agronomy, vol.19, issue.4, pp.519-533, 2003.

J. J. Casal, Canopy light signals and crop yield in sickness and in health, ISRN Agronomy, 2013.

A. M. ?-clore, Cereal grass pulvini: Agronomically significant models for studying gravitropism signaling and tissue polarity, American journal of botany, vol.100, issue.1, pp.101-110, 2013.

T. Dornbusch, Development and application of a three-dimensional architectural model to describe morphological traits of spring barley (Hordeum vulgare L.) stands. Phd thesis, 2007.

T. Dornbusch and B. Andrieu, Lamina2Shape-An image processing tool for an explicit description of lamina shape tested on winter wheat (Triticum aestivum L.). Computers and Electronics in Agriculture, vol.70, pp.217-224, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01192138

J. B. Evers, J. Vos, B. Andrieu, and P. C. Struik, Cessation of tillering in spring wheat in relation to light interception and red:far-red ratio, Annals of Botany, vol.97, pp.649-658, 2006.

J. B. Evers, J. Vos, M. Chelle, B. Andrieu, C. Fournier et al., Simulating the effects of localized red:far-red ratio on tillering in spring wheat (Triticum aestivum) using a threedimensional virtual plant model, New Phytology, vol.176, pp.325-336, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191979

C. Fournier, B. Andrieu, S. Ljutovac, and S. Saint-jean, ADEL-wheat: a 3D architectural model of wheat development. Pages 54-63 in, Plant Growth Modeling and Applications. Beijing, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00909184

?. Franklin, O. Ågren, and G. I. , Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation, Functional Ecology, vol.16, issue.6, pp.727-733, 2002.

K. A. Franklin and G. C. Whitelam, Phytochromes and shade-avoidance responses in plants, Annals of Botany, vol.96, issue.2, pp.169-175, 2005.

?. Ledent and J. F. , Beam light interception by leaves with undulating edges-a simulation of maize leaf sections, Agricultural Meteorology, vol.19, issue.5, pp.399-410, 1978.

?. Ledent and J. F. , Mechanisms Determining leaf movement and leaf angle in wheat (Triticum aestivum L.), Annals of Botany, vol.42, issue.2, pp.345-351, 1978.

?. Liu, S. Baret, F. Abichou, M. Boudon, F. Zhao et al., Estimating wheat Green area index from ground-based LiDAR measurement through 3D ADEL-Wheat model

?. Wang, W. M. Li, Z. L. Su, and H. B. , Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage, Agricultural and Forest Meteorology, vol.143, pp.106-122, 2007.

W. Zhang, L. Tang, X. Yang, L. Liu, W. Cao et al., A simulation model for predicting canopy structure and light distribution in wheat, European Journal of Agronomy, vol.67, pp.1-11, 2015.

. Références, M. Abichou, C. Fournier, T. Dornbusch, C. Chambon et al., Re-parametrisation of Adel-wheat allows reducing the experimental effort to simulate the 3D development of winter wheat, 7th International Conference on FunctionalStructural Plant Models, pp.304-306, 2013.

M. E. Abreu and S. Munne-bosch, Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants, Physiologia Plantarum, vol.134, pp.369-379, 2008.

I. ?-alzueta, L. G. Abeledo, C. M. Mignone, and D. J. Miralles, Differences between wheat and barley in leaf and tillering coordination under contrasting nitrogen and sulfur conditions, European Journal of Agronomy, vol.41, pp.92-102, 2012.

?. Bertheloot, J. Andrieu, B. Fournier, C. Martre, and P. , A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling, Functional Plant Biology, vol.35, pp.781-796, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01189379

?. Bertheloot and J. , Distribution de l'azote chez le blé (Triticum aestivum L.) après la floraison : un modèle dynamique fondé sur une approche structure-fonction, 6th International Workshop on Functional-Structural Plant Models, pp.80-82, 2009.

R. Baccar, C. Fournier, T. Dornbusch, B. Andrieu, D. Gouache et al., Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model, Annals of botany, vol.108, pp.1179-1194, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00941163

?. Borràs-gelonch, G. Rebetzke, G. J. Richards, R. A. Romagosa, and I. , Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation, Journal of experimental botany, vol.63, issue.1, pp.69-89, 2012.

D. J. Davidson and P. M. Chevalier, Preanthesis tiller mortality in spring wheat, Crop Science, vol.30, issue.4, pp.832-836, 1990.

S. Drews, D. Neuhoff, and U. Köpke, Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions, Weed Research, vol.49, issue.5, pp.526-533, 2009.

C. T. ?-de-wit, Photosynthesis of Leaf Canopies, Agricultural Research Report, p.57, 1965.

C. T. ?-de-wit and J. P. Van-den-bergh, Competition between herbage plants, Netherlands Journal of Agricultural Science, vol.13, issue.2, pp.212-221, 1965.

J. B. Evers, J. Vos, M. Chelle, B. Andrieu, &. C. Fournier et al., Simulating the effects of localized red: far red ratio on tillering in spring wheat (Triticum aestivum) using a three dimensional virtual plant model, New Phytologist, vol.176, issue.2, pp.325-336, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191979

J. B. Evers, J. Vos, B. Andrieu, and P. C. Struik, Cessation of tillering in spring wheat in relation to light interception and red:far-red ratio, Annals of Botany, vol.97, pp.649-658, 2006.

J. B. Evers, J. Vos, M. Chelle, B. Andrieu, C. Fournier et al., Simulating the effects of localized red:far-red ratio on tillering in spring wheat (Triticum aestivum) using a threedimensional virtual plant model, New Phytology, vol.176, pp.325-336, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191979

J. B. Evers, J. Vos, C. Fournier, B. Andrieu, M. Chelle et al., An architectural model of spring wheat: evaluation of the effects of population density and shading on model cohort parameterisation and performance, Ecological Modelling, vol.200, pp.308-320, 2007.

C. Fournier, C. Pradal, M. Abichou, B. Andrieu, M. O. Bancal et al.,

N. Paveley, An integrated and modular model for simulating and evaluating how canopy architecture can help reducing fungicide applications, 7th International Conference on functionnal-structural plant models, p.345, 2013.

C. Fournier, B. Andrieu, S. Ljutovac, and S. Saint-jean, ADEL-wheat: a 3D architectural model of wheat development. Pages 54-63 in, Plant Growth Modeling and Applications. Beijing, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00909184

?. Franklin, O. Ågren, and G. I. , Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation, Functional Ecology, vol.16, issue.6, pp.727-733, 2002.

B. Gabrielle, P. Denoroy, G. Gosse, E. Justes, and M. N. Andersen, A model of leaf area development and senescence for winter oilseed rape, Field Crops Research, vol.57, pp.209-222, 1998.

G. ?-garin, C. Fournier, M. Abichou, V. Houlès, C. Pradal et al., A plant-pathogen model to explore the race between wheat growth and Zymoseptoria tritici epidemics, Phytopathology Journal

?. Garin and G. , Vers la compréhension des épidémies fongiques foliaires par modélisation multiéchelle dans les couverts architectures, Annals of Botany, vol.95, pp.521-533, 2005.

?. Hikosaka, K. Ishikawa, K. Borjigidai, A. Muller, O. Onoda et al., Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate, Journal of experimental botany, vol.57, issue.2, pp.291-302, 2006.

?. Hillier, J. Watt, J. Bertheloot, J. Lewis, P. Fournier et al., Modelling the time course of senescence in winter wheat at the individual leaf and whole plant level, Proceedings of 2007 International Workshop on Functional-Structural Plant Models, p.33, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191954

J. ?-jin, W. Huang, J. P. Gao, and J. Yang, Genetic control of rice plant architecture under domestication, Nature Genetics, vol.40, pp.1365-1369, 2008.

?. Ledent and J. F. , Beam light interception by leaves with undulating edges-a simulation of maize leaf sections, Agricultural Meteorology, vol.19, issue.5, pp.399-410, 1978.

?. Ledent and J. F. , Mechanisms Determining leaf movement and leaf angle in wheat (Triticum aestivum L.), Annals of Botany, vol.42, issue.2, pp.345-351, 1978.

R. H. Lee and S. Chen, Programmed cell death during rice leaf senescence is nonapoptotic, New Phytologist, vol.155, pp.25-32, 2002.

?. Liu, S. Baret, F. Andrieu, B. Abichou, M. Allard et al., Modeling the distribution of plants on the row for wheat crops: Consequences on the green fraction at the canopy level, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01530820

?. Liu, S. Baret, F. Abichou, M. Boudon, F. Zhao et al., Estimating wheat Green area index from ground-based LiDAR measurement through 3D ADEL-Wheat model, 2016.

?. Liu and S. , Describing the 4D canopy architecture of wheat crops by combining phenotyping observations into the ADEL-Wheat model, École doctorale 536 « Sciences et agrosciences », 2016.

G. S. Mcmaster, B. Klepper, R. W. Rickman, W. W. Wilhelm, and W. O. Willis, Simulation of shoot vegetative development and growth of unstressed winter wheat, Ecological Modelling, vol.53, pp.189-204, 1991.

?. Maddonni, G. A. Otegui, M. E. Andrieu, B. Chelle, M. Casal et al., Maize leaves turn away from neighbors, Plant Physiology, vol.130, issue.3, pp.1181-1189, 2002.

?. Mullen, J. L. Weinig, C. Hangarter, and R. P. , Shade avoidance and the regulation of leaf inclination in Arabidopsis, Plant, Cell and Environment, vol.29, pp.1099-1106, 2006.

?. Robert, C. Fournier, C. Bedos, C. Abichou, M. Andrieu et al., ECHAP : l'architecture des couverts végétaux: un levier pour réduire l'utilisation des fongicides?, 2015.

C. Robert, M. Abichou, and B. Andrieu, The ECHAP project: Reducing fungicide use by associating optimal treatment strategies and canopies promoting disease escape, Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000942

?. Prévot, L. Ariès, F. Monestiez, and P. , Modélisation de la structure géométrique du maïs, Agronomie, vol.11, issue.6, pp.491-503, 1991.

?. Sparkes, D. L. Holme, S. J. Gaju, O. Thomas, H. Ougham et al., Does light quality initiate tiller death in wheat, Journal of Experimental Botany, vol.24, issue.3, pp.1127-1132, 2003.

F. Tivet, B. D. Pinheiro, M. D. Raïssac, and M. Dingkuhn, Leaf blade dimensions of rice (Oryza sativa L. and Oryza glaberrima Steud.). Relationships between tillers and the main stem, Annals of botany, vol.88, issue.3, pp.507-511, 2001.

J. Vos, J. B. Evers, and G. H. Buck-sorlin, Functional-structural plant modelling: a new versatile tool in crop science, Journal of Experimental Botany, vol.61, pp.2101-2115, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01132296

?. Wang, W. M. Li, Z. L. Su, and H. B. , Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage, Agricultural and Forest Meteorology, vol.143, pp.106-122, 2007.

?. Weaver, L. M. Amasino, and R. M. , Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants, Plant Physiology, vol.127, pp.876-886, 2001.

B. S. Yu, Z. W. Lin, and L. Hx, TAC1, a major quantitative trait locus controlling tiller angle in rice, Plant Journal, vol.52, pp.891-898, 2007.

X. C. Yang and C. M. Hwa, Genetic modification of plant architecture and variety improvementin rice, Heredity, vol.101, pp.396-404, 2008.

. Plantgen-adelwheat, Application permettant la reconstruction à partir d'un protocole de mesure à effort expérimental réduit

, Elle permet de reconstruction la dynamique de l'architecture d'un couvert de blé pour tout le cycle de culture de l'émergence jusqu'à la maturité. Elle permet de reconstruire une expérimentation bien spécifique à condition que certaines mesures soient réalisées afin d'estimer les paramètres nécessaires pour la calibration. Un protocole expérimental de mesure, considéré aujourd'hui comme minimum, est défini et permet d'assurer l'obtention de l'ensemble des paramètres nécessaires, La routine « Plantgen » est une application qui intègre les fonctions paramétriques présentées dans cette thèse

, Ainsi, elle génère une description détaillée des caractéristiques d'une collection de plantes (nombre d'axes, d'organes, leurs dimensions et dynamiques) qui sont organisée dans des trois tables compatibles avec le format d'inputs d'ADELwheat. Ce couplage permet principalement d'utiliser les modules géométriques d'ADEL (disposition des plantes, géométrie des feuilles, géométrie des axes) et de reconstruire en 3D les couverts de blé avec les caractéristiques de la structure définies dans « Plantgen, Nous avons organisé une session de formation de deux jours à Arvalis pour présenter comment utiliser PlantgenADELwheat pour générer des maquettes 3D

, Nous décrivons ici les variables et paramètres nécessaires à la reconstruction 3D et montrons comment se présente l'interface utilisateur de l'application. Les principaux éléments du protocole expérimental mis en oeuvre pour acquérir ces données sont ensuite présentés

, comprennent : (i) le nombre final de feuilles et les dimensions des organes matures du brin maitre, (ii) des variables relatives à la phénologie, (iii) des variables relatives au tallage et (iv) une collection de forme de courbure de feuilles, Les données nécessaires à la calibration du « Plantgen-ADELwheat

. Documentation-«-plantgen-adelwheat,

L. Documentation and . Le-modèle-couplé-«-plantgen-adelwheat, Cette documentation est en cours de finalisation elle sera prochainement disponible en ligne sur l'interface OpenAlea à l